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ABSTRACT 

 

In this paper, we add seasonality to the birth rate of an SIR model with density  

dependence in the death rate.   

 
We find that disease persistence can be explained by considering the average value of the 

seasonal term. If the basic reproductive ratio 10 >R with this average value then the 

disease will persist and if 10 <R with this average value then the disease will die out.  

 
However, if the underlying non-seasonal model displays oscillations towards the  

equilibrium then the dynamics of the seasonal model can become more complex. In this 

case the seasonality can interact with the underlying oscillations, resonate and the 

population can display a range of complex behaviours including chaos.  We discuss these 

results in terms of two examples, Cowpox in bank voles and Rabbit Haemorrhagic 

Disease in rabbits. 
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1.  INTRODUCTION 

 

It is important to understand how pathogens interact with their host - how they influence 

host dynamics, how they persist and, conversely, how they can be controlled. This is vital 

for both public health and economic reasons. In recent years mathematical models have 

been used very successfully to give insights into important disease systems such as BSE 

and HIV/AIDS. However, many of the simple mathematical models currently in use fail 

to capture important biological factors.   

 

In this paper, we are interested in the effects of seasonality in the birth rate of the host on 

host pathogen dynamics.  Seasonality in other parameters has already been incorporated 

into some models of disease systems.  For example, Williams and Dye (1997) 

investigated the case when the disease transmission rate varies seasonally and they 

illustrate (to a very good approximation) that for a general class of infected functions the 

arithmetic mean transmission rate gives an accurate value of the threshold parameter, R0 - 

often referred to as the basic reproductive ratio (when R0 > 1, a disease can invade and 

establish itself within a population).  In other words, they show that the average 

transmission rate can be used to calculate the appropriate threshold parameters.   

 

Roberts and Kao (1998) do look at seasonality in the birth rate, but they consider a pulsed 

birth rate, where wild animals give birth during a single short period of the year, and 

apply this to an example of tuberculosis in possums.  One drawback of this model is that 

the analysis requires complex numerical evaluation.  We therefore believe that further 
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research incorporating other forms of seasonality into these models would be beneficial, 

particularly as a pulsed birth rate is unrealistic for many host populations which have a 

breeding season which lasts for several weeks or months. 

. 

White et al (1996) considered the effect that seasonal host reproduction has on host-

macroparasite interactions and concluded that if seasonal effects are disregarded, 

regulation of the hosts by the parasite population are overestimated. 

 

In this paper we will illustrate that the effect of seasonality in the birth rate on the 

persistence of the pathogen can be understood easily, using simple max/min theory and 

arithmetic averaging as found in Williams and Dye (1997).  This is then verified by two 

specific examples, Cowpox in bank voles and Rabbit Haemorrhagic disease (RHD) in 

rabbits.  However, the population dynamics are not so simple to predict, since 

complexities in the dynamics may arise when there are underlying oscillations towards a 

stable equilibrium in the non-seasonal model - this is the case for Rabbit Haemorrhagic 

Disease.  When we add seasonal forcing in this case, it combines with these oscillations 

and resonates, allowing complex host dynamics and the possibility, within realistic 

parameter ranges, of chaos. 
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2. THE SIR MODEL WITH SELF-REGULATION AND NO SEASONALITY 

 

Anderson & May (1979) and Gao &Hethcote (1992) give details of the standard SIR 

model with self-regulation, and they are summarized here for completeness.   The host 

population is split into three distinct classes: Susceptibles (X), Infecteds (Y) and 

Immunes (Z); therefore, our total population density H = X + Y + Z.  The following set 

of coupled, non-linear differential equations describes the system: 

XYXsHbaH
dt
dX β−+−= )(       (1) 

( )YsHXY
dt
dY

+Γ−= β        (2) 

( )ZsHbY
dt
dZ

+−= γ        (3) 

( ) YHsHr
dt

dH α−−=        (4) 

Only three of these equations are needed, equation (4) is derived by adding Equations (1) 

to (3).  The parameters are defined in Table 1.  We have incorporated density dependence 

into the death rate, rather than the birth rate, partly for biological realism but also to avoid 

direct interaction between the seasonality and non-linearities in the density dependence 

term. 

 

We can find all of the possible equilibria of this system by setting the derivatives in 

equations (1) to (4) equal to zero.  This results in three possible equilibria.  There is the 

origin (H = 0, Y = 0, Z = 0), in which case nothing is present, and  (H = K, Y = 0, Z = 0), 
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in which case there is no disease and the host is at the carrying capacity, K (= r / s).   

Finally, there is the co-existence equilibrium, given by 

( )
( )*

2**
*

2***

sHb
sHrHZ

HsHrY

+

−
=

−=

α
γ

αα
 

 where *H  is a solution of the cubic equation 
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It can be shown that when 10 >R (where 0R  is the basic reproduction number, given by 

r
KR
+Γ

=
β

0 ) then this cubic can be shown to have one root between 0 and K (Appendix 1). 

 

2.1 Stability Analysis 

 

Having found all of the biologically relevant equilibria, we are concerned with when they 

are locally (and we assume globally) stable.  This can be determined by considering the 

eigenvalues of the Jacobian of the system evaluated at the equilibrium of interest. If the 

eigenvalues have negative real parts then the equilibrium is stable.  It can therefore be 

shown that the origin, (0,0,0), is only stable if b > a i.e. if the natural death rate exceeds 

the birth rate and the (K,0,0) equilibrium is only stable if a > b and 10 <R . Due to the 

algebraic complexities involved in these analyses, we assume that the disease can be 
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maintained, only if a > b and 10 >R .  This assumption is backed up by numerical 

simulations, and also is a consequence of the Theorem in section 3 below. 

 

For this model, we have not been able to prove that the population does not exhibit stable 

limit cycles but extensive numerical simulations have not shown them.  However, there 

have been seen to be oscillations towards the equilibrium for certain parameter values.  

This is because under these circumstances, the eigenvalues have negative real parts but 

are complex, indicating that we have a spiral point in state space. 

 

The model discussed above makes the assumption that the host birth rate takes a constant 

value over the whole year.  However, in reality, many animal species have seasonal birth 

rates, and this may affect the dynamics and persistence of the disease. 

 

3. SIR MODEL WITH SELF REGULATION AND SEASONALITY 

 

We now wish to represent the birth rate, a, by a function which varies over time, a t( ). In 

particular we expect that in most systems the birth rate is higher in the summer than in 

the winter, this is the case in the voles and rabbit systems which will be discussed later. 

Many models of childhood diseases have assumed that seasonal forcing could be 

modelled by a periodic function (Keeling et.al, 2001; Finkenstadt & Grenfell, 2000). 

Therefore, in accordance with these papers, and to keep the mathematics simple, the 

following sine function has been chosen, a t( )= a0 1+ a1 sin 2πt( )( ). We will discuss the 

relevance of the results to other functional forms for seasonality later in the paper. It 
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should be noted that if a1 = 0 we recover the previous case, outlined in Section 2. In 

addition, the average value, â , of this birth rate comes when the sine function equals zero 

and hence ˆ a = a0.   

 

We cannot analyze the equations in the same way as for the non-seasonal model, because 

equation (1) is now a non-autonomous equation where the right hand side depends 

explicitly upon time.  We want to see if there is a simple way to predict disease 

persistence in this system.  It turns out that a simple criterion may be formulated in terms 

of the average value ˆ a  of  a(t), provided certain conditions given below are satisfied. t 

Let us denote ˆ R 0 =
β ˆ K 

Γ + ˆ r 
=

βˆ r 
s Γ + ˆ r ( )

=
β ˆ a − b( )

s Γ + ˆ a − b( )
.  Then we have the following result. 

 

Theorem: 

The disease will persist,  in the sense that 0)(1lim
0

>∫∞→

T

T
dttY

T  when ˆ a > b and ˆ R 0 >1 , and 

the disease will die out, i.e. Y (t) → 0 as t → ∞ ,  when ˆ R 0 <1.  

 

In fact this result holds for any seasonal birth rate a(t) which satisfies the following 

assumptions: 

i) a(t) is continuous for all t≥0. 

ii) There exist constants amin and amax such that 0≤amin≤a(t)≤amax for all t≥0. 
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iii) For all t ≥ 0 , the average
1
T

a(s)ds
t

t +T∫ → ˆ a > 0as ∞→T uniformly in t, i.e. 

for all δ > 0 there exists T0 > 0 such that 
1
T

a(s)ds
t

t +T∫ − ˆ a < δ  for all 

T>T0 and all t≥0. 

iv) 0ˆˆ >−= bar  

v) All parameters α , b, s, β, γ ≥ 0. 

vi) Γ>0, s>0,  γ > 0. 

 

Proof: 

The proof of this theorem comes in two stages. The first result is a lemma, which is of 

interest in its own right, for it asserts that for each initial condition in the positive orthant 

the population is bounded above and below. Thus the lemma shows that for this model 

the disease cannot drive the population to extinction. 

Lemma 1: For each initial condition 0,, 000 >ZYX , there exist positive constants Hmin  and 

Hmax such that for all t≥0 maxmin )( HtHH ≤≤ .  

The proof of this lemma is given in Appendix 2.   

In order to state and prove the second lemma,  we introduce the following notation. For a 

positive quantity W(t), t≥0,  let  

  
W
W
ˆ W 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

=
lim
T →∞

lim
T →∞

lim
T →∞

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

1
T

W (t)
0

T∫ dt  

  
λ(W )
λ(W )
λ(W )

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

=
lim
T →∞

lim
T →∞

lim
T →∞

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

⎫ 

⎬ 
⎪ ⎪ 

⎭ 
⎪ 
⎪ 

1
T

logW (T)
W (0)
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Thus, when it exists, ˆ W   gives the limiting average value of W(t) , and, similarly, when it 

exists, λ(W )  gives the Lyapunov exponent of W(t).  

 

The second ingredient of the proof of the theorem is the following lemma: 

Lemma 2: For each initial condition 0,, 000 >ZYX  the following holds. If ˆ R 0 >1 then 0>p  

and if ˆ R 0 <1 then 0ˆ =p  and furthermore 0)(lim)(lim ==
∞→∞→

tYtp
tt

with exponential decay.  

Here p(t) is the prevalence of infection, Y(t)/H(t). 

 

 

Proof: Let X0 > 0,Y0 > 0,Z0 > 0, and H0 > 0  be the initial conditions  at t=0. We also 

assume that ˆ R 0 ≠1 as our analysis does not apply in this degenerate case. 

We note that the threshold conditions ˆ R 0 >1 and ˆ R 0 <1 may be written as Γ < β − s( )
ˆ r 
s

 

and Γ > β − s( )
ˆ r 
s

 respectively. Therefore lemma 2 can be restated as: 

If Γ < β − s( )
ˆ r 
s

 then 0>p  and if Γ > β − s( )
ˆ r 
s

 then ˆ p = 0. 

First consider the case 0≤− sβ , for which  Γ > β − s( )
ˆ r 
s

  must necessarily hold. Then  

( )

( )( ) YYHs

YsHXY
dt
dY

Γ−≤Γ−−≤

+Γ−=

β

β
 

so that  teYtY Γ−≤ 0)(  where 0Y is the initial density of infectious individuals. Now since, 

from Lemma 1, we have H(t)≥Hmin, we have 0
)(
)(lim)(lim ==

∞→∞→ tH
tYtp

tt
 so that in 

particular 0ˆ === ppp . 
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Henceforth assume that β − s > 0. From Lemma 1, we know that H(t) is bounded above 

and below, hence 0
)(

ln1lim)(ˆ
0

==
∞→ H

TH
T

H
T

λ . 

Now suppose that 0
)(
)(lim >=

∞→ tH
tYp

t
. We shall show that Γ < β − s( )

ˆ r 
s

. 

Now it follows that λ = λ(Y) = lim
t →∞

1
t
log Y (t)

Y0

= 0 . For clearly 0≤λ  since Y(t) is bounded 

above. Now if 0<λ then we must have Y (t) → 0 as t → ∞ , so that 0
)(
)(

lim ==
∞→ tH

tY
p

t
, since 

H(t) is bounded below. 
 

Now    ( )
( ) Γ−−≤

+Γ−=

Hs

sHX
Y
Y

β

β

     

.

 

so that,  taking averages, we have 
    ( ) Γ−−≤= HsY βλ )(0 . 
We must now estimate H . Now 

    H
.

= r(t) − sH( )H −αY

       ≤ r(t) − sH( )H.
 

Thus
H
HtrsH
.

)( −≤   so that     .
)(

log1)(1)(1

000 H
TH

T
dttr

T
dttH

T
s

TT
−≤ ∫∫  

On taking the limsup as ∞→T , we obtain H ≤
ˆ r 
s

, since 0)(log1lim
0

=
∞→ H

TH
Tt

. Hence   

  
0 = λ(Y ) ≤ β − s( )H − Γ

               ≤ β − s( ) ˆ r 
s

− Γ
 

so that  Γ < β − s( )
ˆ r 
s

, as Γ ≠ β − s( )
ˆ r 
s

. 

On the other hand, let 0=p . We shall show Γ > β − s( )
ˆ r 
s

. Now, since  p = 0, we have 

   0)(1limˆ
0

==== ∫∞→

T

t

def
dttp

T
ppp  
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Now psHr
H
H α−−=

.

 and 0)(log1lim1lim
00

.

==
∞→∞→ ∫ H

tH
T

dt
H
H

T T

T

T
 since H is bounded below. Thus 

Ĥ exists and HsrpHsr ˆˆˆˆˆ0 −=−−= α  so 
s
rH
ˆˆ = .  We have therefore shown that the limiting 

average size of the population is the average carrying capacity in this case. 

Now 0 ≤ Y (t) = p(t)H(t) ≤ p(t)Hmax  so that 00 max =≤≤≤ HpYY  and we have ˆ Y = 0.  

The equation for ÝZ  is Ý Z = γY − (b + sH)Z  so that  

(b + sHmin ) 1
T

Zdt +
Z(T) − Z0

T0

T∫ ≤
γ
T

Ydt
0

T∫ ≤ (b + sHmax ) 1
T

Zdt +
Z(T) − Z0

T0

T∫   

from which it easily follows that ˆ Z  = ˆ Y  = 0. We deduce the relation ˆ X = ˆ H . 

Now Y
.

Y
= βX − sH − Γ  , so that 0 ≥ lim

t →∞

1
T

logY (T)
Y0

= β − s( ) ˆ H − Γ = β − s( )
ˆ r 
s

− Γ  

and we conclude β − s( )
ˆ r 
s

− Γ < 0 , since β − s( )
ˆ r 
s

− Γ ≠ 0 . 

In summary, we have shown that if 0>p  then ( ) Γ>−
s
rs
ˆ

β  and if 0=p then β − s( )r 
s

< Γ. 

It follows that if ( ) Γ<−
s
rs
ˆ

β  i.e ˆ R 0 <1 then 0=p and if ( ) Γ>−
s
rs
ˆ

β  i.e. if ˆ R 0 >1 then 

0>p .  

 

Finally we note that if ( ) Γ<−
s
rs
ˆ

β  then 0=p  so 
s
rH
ˆˆ =  and  ( ) Γ−−≤ Hs

Y
Y β
.

 and 

( ) 0
ˆ)(log1lim

0
<Γ−−≤

∞→ s
rs

Y
TY

TT
β so that 0)( →tY exponentially as claimed. 
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We now apply this result to two real biological systems, firstly cowpox in bank voles and 

then Rabbit Haemorrhagic disease. 

 

4.  COWPOX IN BANK VOLES 

Cowpox virus is a member of the genus orthopoxvirus in the family Poxviridae, found 

throughout much of western Asia and Europe (Begon et al, 2003).  Despite its name, 

Cowpox appears to be rare in cattle (Sandvik et al, 1998).  Small wild rodents such as 

bank voles are believed to be the natural reservoir of Cowpox virus (Baxby and Bennett, 

1999).  Cowpox is endemic in bank voles (Lethrionomys glareolus).  It does not cause 

obvious signs of disease, nor does it affect the survival rate. However, it does have an 

adverse reaction on reproductive output (see Feore et al, 1997), a feature not present in 

the model.   

Voles are an important source of food for owls, foxes and other wildlife.  Several  

hypotheses exist to attempt to explain the cyclicity of vole populations, such as predation 

and varying food levels (Jedrzejewska and Jedrzejewska, 1998).  However, there has 

been no definite solution to this problem. (Yoccoz et al 2001) and  (Sauvage et al, 2003).   

 

Using the SIR model with self-regulation described previously, parameter values were 

chosen which were estimated to correspond to Cowpox in bank voles.  These are given in 

Table 2.  In this case, with a constant birth rate, there is a stable equilibrium (which is 

approached monotonically) where host and pathogen persist together. 
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If we add seasonality to the model as described in Section 3 above and take a1 = 0.3 

which is consistent with the data, then we have 26max =a , 14min =a and 20ˆ =a per year, 

which gives 15.19ˆ
0 =R  clearly all of these values are >1 and we would expect the disease 

to persist. The dynamics of cowpox in bank voles with 0=α is illustrated in Figure 3. In 

addition, numerical simulations, in which the parameters are varied appropriately confirm 

that the threshold in 0R̂  is, indeed correct. 

 

Since there is uncertainty in the parameter estimates, we have tested this model prediction 

by running simulations for various parameter values and the results hold.  It should also 

be noted that the pattern observed in the simulation of Figures 3 (a), (b) and (c) is 

consistent with the expected annual cycle in vole dynamics (Hazel et al, 2000).  Also, on 

closer inspection of the simulations generated for Cowpox in bank voles, with differing 

levels of seasonal forcing, it can be seen that the peaks and troughs in the infected section 

of the population come after those in the susceptible population.  This is consistent with 

the observed findings of Begon et al, 1998.  Both of these facts imply that this relatively 

simple model is nevertheless a reasonable one for cowpox in bank voles. 

 

5.  RABBIT HAEMORRHAGIC DISEASE 

 

Rabbit Haemorrhagic Disease (RHD) is a highly virulent disease of rabbits, which 

originated in China in 1984 (White et al, 2001).  Using the SIR model with self-

regulation, parameter values were chosen which correspond to RHD levels in UK rabbit 
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populations (Table 3).  Figure 4 illustrates the model output with these parameter values 

when there is no seasonality. 

   

It can be seen that the system exhibits extremely small oscillations towards the 

equilibrium value.  This periodicity corresponds to a stable spiral point in the X-Y state 

space.  If we then add the seasonality to the birth rate as described previously, the system 

behaviour becomes much more complex and with a1 = 0.5 (which is consistent with the 

data), we have 180ˆ
0 =R , we predict that the disease will persist for this system, and this is 

confirmed by the simulation shown in Figure 5. However, dynamically, we appear to 

have chaos in the population dynamics (Figure 5).  This is because when seasonality is 

added to the model for these parameter values, it combines with the natural oscillations of 

the system, resonates, and chaos can emerge.  To analyze this, we have to make use of 

the resonance techniques described by Greenman et al  2004,  the details of which are 

presented in another paper (Ireland, Norman and Greenman, 2004). 

 

Although the theory presented earlier helps us to determine when the disease will persist 

and when it will die out, it does not allow us to predict dynamical behaviour. In some 

circumstances (for example the cowpox system) we can predict that the dynamics of the 

seasonal model will be bounded by the equilibrium values of the maximum and minimum 

non-seasonal model (we would only expect it to reach these bounds if the season was 

long or the dynamics changed quickly). However, in other systems (for example RHD) 

we get more complicated dynamics which are not constrained by these bounds. This is 

because the underlying non-seasonal model has a stable spiral point in state space and we 
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have oscillations towards the equilibrium. In this case we get resonance between these 

oscillations and the seasonality. 

We can determine when we would expect this type of resonant behaviour to occur by 

considering the eigenvalues of the Jacobian in the non-seasonal model. When these 

eigenvalues are negative and real then we get a monotonic approach to equilibrium and 

hence no resonance with seasonality. When they are complex, with negative real parts 

then we get oscillations toward equilibrium and the possibility of resonance. We can 

determine the equation of the boundary to this region and use this to split parameter space 

into an area where there are no oscillations and an area where there are oscillations 

towards a stable equilibrium.  This is algebraically complex since the characteristic 

equation is a cubic, but we can also determine the line numerically and this is illustrated 

in Figure 6 for Rabbit Haemorrhagic Disease.  RHD has extreme parameter values, high 

α, high β and lies in the area where there are oscillations towards a stable equilibrium. 

 

6.  DISCUSSION 

 

Many of the simple mathematical models that are currently in use fail to capture 

important biological factors.  Here we extend the current models of host-pathogen 

interactions to include a sinusoidal seasonal function in the birth rate (although the results 

still appear to hold if we use a step function with similar variance (Greenman et al 2003, 

Ireland 2005). We find that we can apply a simple averaging theory to determine the 

effects of seasonal birth rates on the system.  In this case, as the birth rate oscillates over 

the year between two values amax and amin, the persistence of the disease in the seasonal 
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model can be determined from the behaviours of the non seasonal model with birth rate 

equal to â , the average birth rate over the season, and this result holds for more general 

a(t) than discussed here.  Indeed for some systems we can also predict that the dynamics 

of the system will be bounded by equilibria of the non-seasonal model with birth rate, a, 

taking the maximum and minimum values of the seasonal model. These types of 

predictions do work for some real biological systems, as was illustrated with the example 

of Cowpox in bank voles.  Indeed, this model describes well, at least qualitatively, the 

behaviour observed empirically in Cowpox-bank vole populations (Hazel et al, 2000). 

This is not just dependent on the fact that 0=α in the cowpox system. It applies to many 

other systems in which the non-seasonal model has a monotonically stable equilibrium. 

 

However, although we can predict disease persistence using the averaging theory, the 

dynamical predictions are not so robust since adding seasonality to the birth rate of even 

a simple SIR model can lead to complex dynamics and even chaos.  This occurs when the 

underlying non-seasonal model has oscillations towards the equilibrium which interact 

with the seasonality and resonate.  This turns out to be relevant in a number of interesting 

disease systems, for example, RHD in rabbits, as discussed here, and rabies in foxes (See 

Ireland et al, 2004).   

 

The work described here has shown that we can predict disease persistence in a simple 

way for a seasonal model. However, we have also illustrated that it is important to 

include seasonality in the birth rate of a host, since otherwise important dynamical 

behaviour would be missed.  It is important to know how the underlying non-seasonal 



 18

model behaves in order to predict how complex we would expect the seasonal system’s 

dynamics to be.  The behaviour predicted by these seasonal models is very sensitive to 

initial conditions and small changes in parameter values, in particular the “strength” of 

seasonality (i.e. the size of a1) (Ireland et al, 2004; Greenman et al 2003).  It is therefore 

important to look at the data and parameterize models as accurately as possible. 

 

Overall, the study here has illustrated that adding seasonality is not always as simple as 

one might think and can lead to interesting and biologically important dynamics which 

are in keeping with empirical data. 
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Appendix 1 
 
 
We wish to prove that there is a unique value of H0 between 0 and K. We know that H0 

satisfies the cubic equation 
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So, 0)( >Kf when Γ+> rKβ  i.e. when 1>oR .  Since the coefficient of 3
0H  is positive, 

then ( ) 0>∞f  and ( ) 0<−∞f .  So when 1>oR  there are either one or three roots of this  

 cubic which lie between 0 and K.  

We now consider the first derivative of the cubic with respect to H0 in order to determine 

where the turning points of the cubic lie. We get 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

Γ+
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

Γ
+=

r
Kb

r
Kb

r
bKK

r
KHH

dH
df 2

2

2

0
2
0

0
23 γ

β
αα

β
α                        A2 

Setting 0
0

=
dH
df , we wish to solve for H0 in order to determine where the turning points 

of the cubic are. There are three possibilities: 

i) If the constant coefficient of the quadratic equation 0
0

=
dH
df  is negative the 

one of the turning points occurs when H0 is positive and one when H0 is 



 20

negative, given that ( ) 0>∞f  and ( ) 0<−∞f , this must mean that the cubic has 

one root of the cubic between 0 and K.  

ii) If the constant coefficient of 0
0

=
dH
df  is zero, then, give that ( ) 0<−∞f , this 

must mean that we have a maximum at ( ) 00 <f and so, since ( ) 0>∞f there is 

one root of the cubic between 0 and K. 

iii) If the constant coefficient of 0
0

=
dH
df is positive then the positions of the two 

turning points must have the same sign, and we have 

( ) ( )

ααγββαβ

γ
β

αα

Γ+++>⇒

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

Γ+
−

rrbKrKrbbK

r
Kb

r
Kb

r
bK 0

2

2

2

                                                                 A3 

If we now consider the coefficient of 0H  in A2 (since the coefficient of 2
oH  is positive) 

then if this coefficient is positive then 0
0

=
dH
df  has two negative roots, in which case one 

root of cubic A1 lies between 0 and K. If this coefficient is negative then 0
0

=
dH
df  has 

two positive roots and cubic A1 has three roots which lie between 0 and K. 

 
The coefficient of 0H  can be rewritten in the form 

( )αβγββαβ
β

rbKrbbKKbbK
r

b
−−++ 22  which, from A3 is positive. 
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Appendix 2: 

In this appendix we give a proof of Lemma 1, which states that for each positive intitial 

condition, the total population H(t)  is bounded above and below.  As before,  we 

introduce the following notation. For a positive quantity W(t), t≥0 let 

  dttW
T

W
W
W

T

T

T

T

∫
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⎪
⎭
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∞→

λ
λ
λ

 

Now Let 0000  and ,, HZYX  be positive initial conditions at t=0. 

Proof of Lemma 1: 

The total population H(t) satisfies the differential equation 

  YHsHtrH α−−= ))((
.

 where r(t) = a(t) - b.  

Writing  bar −= maxmax ,  we have 0
.

≤H  for
s

r
tH max)( ≥ . It follows that 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

s
r

HtH max
0 ,max)(  for all t≥0. We may therefore take ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

s
r

HH max
0max ,max  and thus H 

is bounded above. To prove that H(t) is bounded below, we consider the prevalence of 

infection p = Y /H . The prevalence psatisfies the differential equation  

  ( )pptrXp αβ +−Γ−= )(
.

 

Note that 10 ≤≤ p  and HX ≤ , so that for δ≤H  

  
( )
( )
( )pa

pba
ptrp

γβδ
αβδ

αβδ

−≤
++−Γ−≤

+−Γ−≤

min

min

.

-    
    

)(
 

Let δ > 0 be chosen sufficiently small so that the following conditions hold: 

 1) δ≥0H  

 2) βδ − γ − amin = −ρ < 0 
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 3) 0ˆˆ >−−−=−− δδδδ sbasr  

Such a choice of δ  is always possible since H0 > 0,γ > 0  and ˆ r > 0. Now suppose H(t) is 

not bounded below.  Then for all δε <<0 there exists 210 tt <≤ such that ( ) δ=1tH  and 

( ) ε=2tH  and ( ) δ≤tH  for 21 ttt ≤≤ .  We show that H(t)  is bounded below, by showing 

that for ε > 0 chosen sufficiently small the time t2 − t1 is large enough for the average ˆ r  

to dominate the dynamics of the differential equation.  

Now for 21 ttt ≤≤  we have 

  pp ρ−≤&  so that ( ) ( )1
1)( ttetptp −−≤ ρ  for 21 ttt ≤≤  

and the prevalence decays exponentially. Now H
.

= (r(t) − sH −αp)H ≥ rmin − sδ −α( )H  

for 21 ttt ≤≤  . If 0min ≥−− αδsr we have δ=≥ )()( 1tHtH for 21 ttt ≤≤ , so that δ≥)( 2tH  

which is a contradiction. Thus we have 0min <−=−− σαδsr . Then )(
1

1)()( ttetHtH −−≥ σ  for 

21 ttt ≤≤  so ε = H(t2) ≥ δe−σ ( t2 − t1 ). We deduce that 
( )
σ

ε
δlog

12 ≥− tt . 

Now let us choose T0 > 0 such that for T ≥ T0  we have the inequality 

1
T

a(t) − b( )  dt − ˆ a − b( )
t1

t1 +T∫ < δ . This is by the uniform convergence hypothesis. Now 

let δε < be chosen so that 012 Ttt ≥−  and ( )( ) 0ˆ12 >−−−−−
ρ
αδδ sbatt . (This is possible 

since 0ˆ >−−− δδ sba .) 

Then  Ý H ≥ r(t) − sH −αp( )H ≥ r(t) − sδ −αp( )H  for 21 ttt ≤≤  so that 
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ε = H t2( )≥ δe
r( t )−sδ −αpdt

t1

t2∫

                  ≥ δe
t2 − t1( ) ˆ a −b−δ −sδ( )−α p( t )dt

t1

t2∫

                  ≥ δe
t2 − t1( ) ˆ a −b−δ −sδ( )−α p( t1 )e − ρ t−t2( )dt

t1

t2∫

                 ≥ δe
t2 − t1( ) ˆ a −b−δ −sδ( )−α

p t1( )
ρ

1−e − ρ t2−t1( )( )

                 ≥ δe
t2 − t1( ) ˆ a −b−δ −sδ( )− α

ρ 0

                 > δ

 

which is a contradiction. Thus H(t) ≥ ε  and H  is bounded below as claimed. 
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8.  LIST OF FIGURE CAPTIONS AND TABLES 

 

 

Figure 1:   Diagram illustrating (s Γ + b (β - s)) / ( a(t) (β - s)) versus time for α = 1.   

                  a0  = 0.5, a1 = 0.5, b = 0.1, γ = 0.4, β=0.05, s = 0.01, X0 = 200, and Y0 = 20 

 

Figure 2:   Diagram of infected hosts against time with α = 1, a0  = 0.5, a1 = 0.5, b = 0.1,  

γ = 0.4, β=0.05, s = 0.01, X(0) = 200, Y(0) = 20 and Z(0) = 0, where X(0), 

Y(0) and Z(0) are the initial values of X, Y and Z.   

 

Figure 3:   Graph of  (a)   susceptibles vs time for model of Cowpox in bank voles with  

                                         Parameter values as in Table 2 and a1 = 0.3 

 

                                  (b)   infecteds vs time for model of Cowpox in bank voles with  

                                         parameter values as in Table 2 and a1 = 0.3 

        

                                  (c)  total population vs time 

 

Figure 4:   Diagram of  (a)  infecteds vs time for model of Rabbit Haemorrhagic Disease   

                                            with parameter values a0 = 0.02; b = 0.01; α = 0.475;  

                                            γ = 0.025; β = 0.936; s = 0.0001 and a1 = 0 per day                                    
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                                      (b)  host population when a1=0 

 

Figure 5:    Graph of   (a)  infecteds vs time for model of Rabbit Haemorrhagic Disease   

                                          with parameter values taken from Figure 4 and a1 = 0.5 

 

(b) host population when a1= 0.5 

 

Figure 6:    Graph of  α - β parameter space for the SIR model with self-regulation, with  

                   other parameters as for RHD (see legend for Fig 4), showing rates of  

                   parameters of which the eigenvalues of the Jacobian are real and we have  

                   monotonic approach to equilibrium and rates of parameters for which we  

                   have complex eigenvalues and decaying oscillations towards equilibrium. 

Table 1:    Definition of parameters 

 

Table 2:    Parameter values for cowpox in bank vole populations 

 

Table 3:    Parameter values for rabbit haemorrhagic disease 
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Figure 1:   
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Figure 2:   
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Figure 3: 
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Figure 4:   
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Figure 5:   
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Figure 6
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Table 1:   

 

 

Symbol                  Meaning                                                                   Units 

 

     a                       per capita seasonal birth rate                                   time -1 

     b                       per capita natural death rate                                    time -1 

     α                      per capita death rate due to the disease                   time -1 

     β                       transmission parameter                                           density -1 

                                                                                                               time -1 

     s                       density dependent parameter                                   density -1 

     γ                       per capita rate of recovery from the disease            time -1 

     r                       per capita population growth rate, a-b                     time -1 

     Γ                      α + b + γ 
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Table 2:  

 

 

Parameter   Value(daily)   Value (yearly)                            Source 

 

     a0               20/365          20                                                Feore, 1997 

     b                1/548            0.666                                           WWW 1 

     α             0                   0                                         Approx - from Feore, 1997 

     β             0.036            13.14                                            Begon, 1998 

     s              0.0011          0.4015       Approx since K varies from 10-100 per ha, WWW 2 

     γ                1/28              13.0357                                         Begon, 1998 
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Table 3:  

 

 

Parameter   Value(daily)     Value (yearly)                          Source 

 

     a0               0.02                 7.3                                           White et al, 2001 

     b                0.01                 3.65                                         White et al, 2001   

     α            0.475               173.375                                    White et al, 2001 

     β            0.936               341.64                                      White et al, 2001 

     s             0.0001             0.0365                                      White et al, 2001 

     γ               0.025                9.125                                       White et al, 2001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


