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Abstract 

Arabic, the world’s second most spoken language in terms of number of speakers, has not 

received much attention from the traditional speech processing research community. This 

study is specifically concerned with the analysis of vowels in modern standard Arabic dialect. 

The first and second formant values in these vowels are investigated and the differences and 

similarities between the vowels explored using consonant-vowels-consonant (CVC) 

utterances. For this purpose, a Hidden Markov Model (HMM) based recognizer is built to 

classify the vowels and the performance of the recognizer analyzed to help understand the 

similarities and dissimilarities between the phonetic features of vowels. The vowels are also 

analyzed in both time and frequency domains, and the consistent findings of the analysis are 

expected to enable future Arabic speech processing tasks such as vowel and speech 

recognition and classification. 
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1.  Background 
 

1.1. Arabic language and research 

Arabic is a Semitic language, and is one of the world’s oldest languages. Currently it is the 

second most spoken language in terms of number of speakers. Modern Standard Arabic 

(MSA) has 36 phonemes, of which six are vowels, two diphthongs, and 28 are consonants. In 

addition to the two diphthongs, the six vowels are /a, i, u, a: , i:, u:/ where the first three ones 

are short vowels and the last three are their corresponding longer versions (that is, the three 

short vowels are /a, i, u /, and their three long counterparts are /a:, i:, u:/) [1], [2], [3]. As a 

result, vowel sound duration is phonemic in Arabic language.  

Some researchers consider Arabic vowels to number eight in total by counting the two 

diphthongs as vowels and, this is normally considered to be the case for MSA [4]. Arabic 

phonemes comprise two distinctive classes, termed pharyngeal and emphatic phonemes. 

These two classes can be found only in Semitic languages such as Hebrew and Persian [1], 

[4], [5]. Arabic dialects may have different vowels - for instance, Levantine dialect has at 

least two extra types of diphthongs /aj/ and /aw/. Similarly, Egyptian dialect has other extra 

vowels [3]. 

The development of accurate Automatic Speech Recognition (ASR) systems is faced with 

two major issues. The first problem is related to diacritization where diacritic symbols refer to 

vowel phonemes in the designated words. Arabic texts are almost never fully diacritized: 



International Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern RecognitionInternational Journal of Signal Processing, Image Processing and Pattern Recognition    

Vol. 3, No. Vol. 3, No. Vol. 3, No. Vol. 3, No. 2222, , , , JuneJuneJuneJune, 2010, 2010, 2010, 2010    

 
 

12 
 

implying that the short strokes placed above or below the consonant, indicating the vowel 

following this consonant, are usually absent. This limits the availability of Arabic ASR 

training material. The lack of this information leads to many similar word forms, and 

consequently, decreases predictability in the language model. The three short Arabic vowels 

are represented using diacric symbols in the written form. The second problem is related to 

the morphological complexity since Arabic has a rich potential of word forms which 

increases the out-vocabulary rate [4], [6].   

Arabic language is comparatively much less researched compared to other languages such 

as English and Japanese. Most of the reported studies to-date have been conducted on Arabic 

language and speech digital processing in general, with only a few focusing on Arabic vowels 

specifically. A limited number of research studies have been carried out on MSA, classical 

and Quraanic (Islamic Holy Scripture based) versions of Arabic. More recently, Iqbal et al. 

[7] reported a new preliminary study on vowels segmentation and identification using 

formant transitions occurring in continuous recitation of Quraanic Arabic. The paper provided 

an analysis of cues to identify Arabic vowels. Their algorithm extracted the formants of pre-

segmented recitation audio files and recognized the vowels on the basis of these extracted 

formants. The study was applied in the context of recitation principles of the Holy Quraan. 

The vowel identification system developed showed up to 90% average accuracy on 

continuous speech files comprising around 1000 vowels. 

In other related recent works, Razak et. al.  [8] have investigated Quraanic verse recitation 

feature extraction using the Mel-Frequency Cepstral Coefficient (MFCC) approach. Their 

paper explored the viability of the MFCC technique to extract features from Quranic verse 

recitation. Features extraction is crucial to prepare data for the classification process. The 

authors were able to recognize and differentiate the Quranic Arabic utterance and 

pronunciation based on the extracted features vectors. Tolba et al. [9] have also reported a 

new method for Arabic consonant/vowel segmentation using the wavelet transform. In their 

paper, a new algorithm was presented for Arabic speech consonant and vowel segmentation 

without linguistic information. The method was based on the wavelet transform and spectral 

analysis and focused on searching the transient between the consonant and vowel parts in 

certain levels from the wavelet packet decomposition. The accuracy rate was about 88.3% for 

consonant/vowel segmentation and the rate remained fixed at both low and high signal to 

noise ratios (SNR). Previously, Newman et al. [10] worked on a frequency analysis of Arabic 

vowels in connected Speech.  Their findings do not confirm the existence of a high classical 

style as an acoustically ‘purer’ variety of modern standard Arabic. 

In another study, Alghamdi [11] carried out an interesting spectrographic analysis of 

Arabic vowels based on a cross-dialect study. He investigated whether Arabic vowels are the 

same at the phonetic level when spoken by speakers of different Arabic dialects, including 

Saudi, Sudanese, and Egyptian dialects. The author found that the phonetic implementation of 

the standard Arabic vowel system differs according to dialects.  

Previously, Al-Otaibi [12] also developed an automatic Arabic vowel recognition system. 

Isolated Arabic vowels and isolated Arabic word recognition systems were implemented. The 

work investigated the syllabic nature of the Arabic language in terms of syllable types, 

syllable structures, and primary stress rules. Next, ASR based Hidden Markov models are 

briefly described and formant readings reviewed. The goals of this study are then outlined. 
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1.2. Hidden Markov models 

ASR systems based on the Hidden Markov Model (HMM) started to gain popularity in the 

mid 1980’s [13]. HMM is a well-known and widely used statistical method for characterizing 

the spectral features of speech frame. The underlying assumption of the HMM is that the 

speech signal can be well characterized as a parametric random process, and the parameters 

of the stochastic process can be predicted in a precise, well-defined manner. The HMM 

method provides a natural and highly reliable way of recognizing speech for a wide range of 

applications [14], [15].  

In the main recognition module the feature vectors are matched with reference patterns, 

which are called acoustic models. The reference patterns are usually Hidden HMM models 

trained for whole words or, more often, for phones as linguistic units. HMMs cope with 

temporal variation, which is important since the duration of individual phones may differ 

between the reference speech signal and the speech signal to be recognized. Unfortunately 

this is not practical in short and long Arabic vowels, where the duration is very important and 

dictates the word meaning. A linear normalization of the time axis is not sufficient here, since 

not all allophones are expanded or compressed over time in the same way. For instance, stop 

consonants (“d”, “t”, “g”, “k”, “b”, and “p”) do not change their length much, whereas the 

length of vowels strongly depends on the overall speaking rate [15].  

The recently developed Hidden Markov Model Toolkit (HTK) [16] is a portable toolkit for 

building and manipulating HMM models. It is mainly used for designing, testing, and 

implementing ASR and its related research tasks. The HTK [16] is a general toolkit for the 

HMM model that is mainly geared towards speech recognition, but can also be used for other 

tasks. HTK includes a large number of tools for training and manipulating HMMs, working 

with pronunciation dictionaries, n-gram and finite-state language models, recording and 

transcribing speech, etc. 

 

1.3. Formant readings 

By changing the vocal tract shape, different forms of a perfect tube are produced, which in 

turn, can be used to change the desired frequencies of vibration. Each of the preferred 

resonating frequencies of the vocal tract (corresponding to the relevant bump in the frequency 

response curve) is known as a formant. These are usually referred to as F1 indicating the first 

formant, F2 indicating the second formant, F3 indicating the third formant, etc. That is, by 

moving around the tongue body and the lips, the position of the formants can be changed [2]. 

In vowels, F1 can vary from 300 Hz to 1000 Hz. The lower it is, the closer the tongue is to 

the roof of the mouth. F2 can vary from 850 Hz to 2500 Hz. The value of F2 is proportional 

to the frontness or backness of the highest part of the tongue during the production of the 

vowel. In addition, lips' rounding causes a lower F2 than with unrounded lips. F3 is also 

important in determining the phonemic quality of a given speech sound, and the higher 

formants such as F4 and F5 are thought to be significant in determining voice quality. 

 

1.4. Goals 

The goals of this study are to investigate MSA vowels using both speech recognition and 

time and frequency domain information especially formants. Firstly, a recognition system will 

be built to classify the vowels and determine the similarities and dissimilarities among the 8 
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different MSA vowels under investigation. Secondly, we carry out a formant based analysis 

of the six Arabic vowels as used in MSA. The outcomes of these two investigative 

methodologies will be crosschecked to conclude the final contributions of this research 

regarding the MSA vowels. 

The rest of this paper is organized as follows: Section II introduces the experimental 

framework for both methods employed in this study. The results are described and discussed 

in Section III. Paper conclusions and some remarks and suggestions are given in Section IV. 

2.  Experimental Framework 

The allowed syllables in Arabic language are: consonant-vowel (CV), consonant-vowel-

consonant (CVC), and consonant-vowel-consonant-consonant (CVCC), where V indicates a 

(long or short) vowel while C indicates a consonant. Arabic utterances can only start with a 

consonant [1]. Table 1 shows the eight Arabic vowels along with their names, examples, and 

IPA symbols. In this paper the formants of Arabic vowels will be analyzed to determine their 

values. These are expected to prove helpful in subsequent speech processing tasks such as 

vowel and speech recognition and classification. In carrying out the analysis, Arabic vowels 

have been viewed as if they are patterns on papers. Specifically, the vowels were plotted on 

paper or computer screen in the form of their time waveform, spectrograms, formants, and 

LPC spectrums.  

 

2.1. Recognition system overview 

An ASR based on HMM was developed. The system was partitioned into three modules 

according to their functionality. First is the training module, whose function is to create the 

knowledge about the speech and language to be used in the system. Second is the HMM 

models bank, whose function is to store and organize the system knowledge gained by the 

first module. Finally, there is the recognition module whose function is to figure out the 

meaning of the speech input in the testing phase. This was done with the aid of the HMM 

models mentioned above. 

The parameters of the system were 10 KHz sampling rate with 16 bit sample resolution, 25 

millisecond Hamming window duration with step size of 10 milliseconds, MFCC coefficients 

with 22 set as the length of cepstral filtering and 26 filter bank channels, 12 as the number of 

MFCC coefficients, and 0.95 as the pre-emphasis coefficients. 

Table 1. MSA Arabic vowels 

 
 

Vowel
The name of 

Arabic vowels
Example

IPA 

code

V01 Short fatha  ��َ a

V02 Long fatha ��د a:

V03 Short dummah  ��ُ u

V04 Long dummah ��د u:

V05 Shot kasrah  ��ِ i

V06 Long kasrah �
�ِ i:

V07 Fatha dummah َ�َ�د aw

V08 Fatha kasrah �
�َ ay
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A second speech recognition system was also implemented using the HMM technique with 
the help of HTK tools. The speech ASR was designed initially as a phoneme level recognizer 
with 3-states: continuous, left-to-right, no skip HMM models. The system was designed by 
considering all 21 MSA monophones by considering a subset of the thirty-four MSA 
monophones as given by the KACST labeling scheme given in [17]. The silenc`e (sil) model 
was also included in the model set. In a later step, the short pause (sp) was created from and 
tied to the silence model. Since most digits consisted of more than two phonemes, context-
dependent triphone models were created from the monophone models mentioned above. Prior 
to this, the monophones models were initialized and trained using the training data. This was 
done using more than one iteration and repeated again for triphones models. The pre-final 
training phase step was to align and tie the model by using a decision tree method. The last 
step in the training phase involved re-estimating the HMM parameters using the Baum-Welch 
algorithm [14] three times. 

 

2.2. Database 

An in-house database was built to help in investigating Arabic vowels depending on good 

selected and fixed phonemes. The utterances of ten male Arabic speakers, all aged between 

23 to 25 years with the exception of one child, were recorded. Nine of the speakers were from 

different regions in Saudi Arabia and the remaining one from Egypt. Each of the ten speakers 

participated in five different trials for every carrier word in the data set used along with all the 

eight intended Arabic phonemes. Some of the speakers recorded the words in one session and 

others in two or three sessions.   

The carrier words were chosen to represent different consonants before and after the 

intended vowel. These carrier words are displayed in Table 2 using the second vowel /a:/. The 

sampling rate used in recording these words was 16 kHz and 16-bit resolution mono. Total of 

the recorded audio tokens was 4000 (i.e., eight phonemes times ten speakers times ten carrier 

words times five trials for each speaker). These audio tokens were used for analyzing the 

intended phonemes in frequency, during the training phase of the recognition system, and in 

its testing phase.  

The database was partitioned into two subsets one for training phase (60% of the total 

database) and the other for testing phase (40% of the whole database). For the first subset, for 

each vowel, speaker, and carrier word the first three trials were considered as training data for 

the recognition system. This gave a total of 2,400 (i.e., eight phonemes times ten speakers 

times ten carrier words times three trials) speech tokens. On the other hand, the testing subset 

consisted of the last two trials for all speakers, carrier words, and vowels. It contained a total 

of 1,600 (i.e., eight phonemes times ten speakers times ten carrier words times last two trials) 

speech tokens. 
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Table 2. Carrier words used (with 2nd vowel) 

 
 
3.  Results 
3.1. Speech recognition analysis 

An HMM based speech recognition system was designed, tested, and used for recognizing 

Arabic vowels using the given database. The overall system performance (recognition success 

rate (%) with respect to Arabic vowels was 91.6% as depicted in Table 3. This table shows 

the confusion matrix that was generated by the recognition system. The last three columns in 

the table show, respectively, individual system accuracies for each vowel separately, total 

number of speech tokens for each individual vowel, and missed tokens per vowel. In addition 

to this, the table depicted the number of inserted and deleted tokens for each vowel – all of 

which were with zero deletion and insertion in this experiment.   

It can be seen from Table 3, that the totals of missed tokens were 135 out of 1599. The best 

vowel accuracy was encountered with Vowel 8 which is the diphthong “Fatha Kasrah” vowel. 

The accuracy for this vowel is 99% and only two tokens of Vowel 8 were missed by the 

system. On the other hand, the worst accuracy was encountered for the case of Vowel 1 

which is the “Short Fatha”. The system accuracy for this vowel was 77.5% with a total of 45 

missed tokens. Five of the vowels achieved over 90% accuracy but the remaining three did 

not. 

Analyzing the confusion matrix in Table 3, we can notice that Vowel 1, Vowel 2, and 

Vowel 6 are the most confusing vowels for the recognition system (i.e. they are mistakenly 

picked up by the system in case of missing the correct one). Also, we can conclude from the 

confusion matrix that there are significant similarities between the following vowel pairs 

(listed in order of degree of highest to lowest similarity): (Vowel 1, Vowel 2), (Vowel 5, 

IPA Info. IPA Info.

Start Consonant End Consonant

CW01 ��ر /s/ unvoiced fricative /r/ voiced lateral

Word 

(CVC)

In 

Arabic

CW02 
�ر /s؟/

CW03 ��ت /b/

/r/ voiced lateralunvoiced fricative emphatic

/d/ voiced stop

/t/ unvoiced stopvoiced stop

/r/ voiced lateral

CW04 ��د

CW05 ��ر /t؟/ unvoiced stop emphatic

/؟/ voiced fricative glottal

CW06 زاد /z/ voiced fricative

/z/

CW07 
�م /s؟/ unvoiced fricative emphatic

voiced nasal

/f/ unvoiced fricative

/d/ voiced nasal

/m/ voiced nasal

/m/ voiced nasal

voiced fricativeCW08 ��ز

CW09 ��م /n/

/?/ voiced fricatives glottalCW10 ��ع /З/ voiced affricative
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Vowel 6), (Vowel 3, Vowel 4), (Vowel 1, Vowel 3), and (Vowel 1, Vowel 5). The first, 

second and third pairs are similar but they differ in the length. For example Vowel 1 is the 

Short Fatha but Vowel 2 is the “Long Fatha”. It is important to emphasize here that the 

duration of vowels in Arabic language is phonemic which is otherwise, as in English 

language. For the first, second and third pairs’ similarities we can conclude that the system 

could not recognize the difference in duration and hence could not distinguish between 

Vowels 1 and 2 and between Vowels 5 and 6 and Vowel 3 and 4. This may be an important 

point to try to re-model the duration in HMM states and force the system to distinguish 

between short and long vowel in Arabic vowels since it is phonemic. For the fourth and fifth 

pairs we found that Vowel 2 (a:) was confused with Vowel 3 (u). This is considered a strange 

outcome due to the big difference between these vowels. The same thing can be said for the 

last pair. Also we can conclude from the recognition system outcomes that the vowel “Short 

Fatha” is the trouble source for the system where it made 3 major confusions to other vowels. 

Next, we will crosscheck the recognition system performance with the analysis carried out 

using the formant based approach. 

Table 3. Confusion matrix and other statistics from the vowel recognition system 

  
 

3.2. Formant based analysis 

The aim of this part of the experiments was to evaluate values of the first and second 

formants, namely F1 and F2, in all considered Arabic vowels. This study considered frames 

in the middle of each vowel to minimize the co-articulation effects. Based on Figure 2, we 

can estimate the Arabic vowel triangle’s location as (400, 800), (700, 1100), and (400, 2100) 

where the first value corresponds to F1 and the second value to F2.  

Figure 2 shows a plot for all short vowels for one of the speakers for three different trials. 

It can be seen from Figure 2 that the F1 value is relatively high for /a/, medium for /u/, and 

minimum for /i/. But in the case of F2, it is medium for /a/, minimum for /u/ and high for /i/. 

For the long vowels it is clear that the same situation is true as observed for their short 

counterparts. The long vowels are peripheral while their short counterparts are close to center 

when the frequencies of the first two formants are plotted on the formant chart.  

From the obtained results, it was found that F1 of /a/ is smaller than F1 of /a:/, while F2 of 

/a/ is smaller than F2 of /a:/ (and the values of F3 are close for both of the durational 

counterparts).  Also F1 of /u/ is larger than F1 of /u:/ except for the child, whereas F2 of  /u/ is 

smaller than F2 of /u:/ for all speakers and the values of F3 are close for both of them. 

Similarly, it has been found that F1 of /i/ is larger than F1 of /i:/ and F2 of  /i/ is smaller than 

F2 of /i:/. To conclude these specific outcomes, it can be said that F1 in a given short vowel is 

Vowel (IPA)

V
W

L1

V
W

L2

V
W

L3

V
W

L4

V
W

L5

V
W

L6

V
W

L7

V
W

L8

D
e

l

A
cc

. 
(%

)

T
o

k
e

n
s

M
is

se
d

VWL1 (a) 155 33 5 0 6 0 1 0 0 77.5 200 45

VWL2 (a:) 4 195 0 0 0 0 1 0 0 97.5 200 5

VWL3 (u) 11 3 173 7 3 0 3 0 0 86.5 200 27

VWL4 (u:) 0 0 6 190 0 0 4 0 0 95 200 10

VWL5 (i) 8 5 5 0 166 15 0 0 0 83.4 199 33

VWL6 (i:) 0 0 0 1 0 194 0 5 0 97 200 6

VWL7 (ay) 1 0 1 5 0 0 193 0 0 96.5 200 7

VWL8 (ay) 0 0 0 0 0 2 0 198 0 99 200 2

Ins 0 0 0 0 0 0 0 0

Total 0 91.6 1599 135
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larger than F1 in its long counterpart except for /a/ and /a:/; and F2 in a given short vowel is 

larger than F1 in its long counterpart except for /a/ and /a:/. These findings confirm those 

reported in previous studies [11].  

The first formant, F1, can be used to classify between /a/ and /u/. F2 can be used to classify 

/i/ and /u/. The vowel /a/ has the largest value of F1 and /i/ has the largest value of F2. The 

vowel /i/ has the smallest value of F1 and /

be used to classify /a:/ and /u:/ whereas F2 can be used to classify /i:/ and /u:/. The vowel /a:/ 

has the largest value of F1 and /i:/ has the largest value of F2, while the vowel /i:/ has the 

smallest value of F1 and /u:/ has the smallest value of F2. 

In Arabic vowels, as mentioned earlier, F1 can vary from 300 Hz to 1000 Hz, and F2 can 

vary from 850 Hz to 2500 Hz. F3 is also important in determining the phonemic quality of a 

given speech sound, and the higher formants such as F4 and F5 can also be significant in 

determining voice quality [18]. In /a/ and /a:/ the whole tongue goes down so the vocal tract 

becomes wider than in producing other Arabic vowels. In /u/ and /u:/ the end of the tongue 

comes near to the palate while the other parts of the tongue are in the regular position. In /i/ 

and /i:/ the front of the tongue comes near to the palate whereas other parts remain in their 

regular position. Lips are more rounded for /u/ and /u:/ than for /i/ and

usual patterns were noticed from their spectrograms as concluded in [18]. In addition, the 

similarities of the first (and final) consonant in all words can be clearly noticed since the same 

first and final consonants are used in 

inferred from Table 2. 

 

Figure 1. Vowels distribution depending on F1 and F2 for all speakers

 

3.3. Discussion 

In summary, the vowel pairs (Vowel 1, Vowel 2), (Vowel 5, Vowel 6), (Vowel 3, Vowel 

4), (Vowel 1, Vowel 3), and (Vowel 1, Vowel 5) that have major similarities depending on 

the speech recognition output, are mostly durational counterparts. This means that 

the short counterpart of Vowel 2 and so on. These pairs of vowels have major overlap in 

formant plot shown in Figure 1. Formants can thus be seen to be very effective in classifying 
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has the largest value of F1 and /i:/ has the largest value of F2, while the vowel /i:/ has the 

In Arabic vowels, as mentioned earlier, F1 can vary from 300 Hz to 1000 Hz, and F2 can 

vary from 850 Hz to 2500 Hz. F3 is also important in determining the phonemic quality of a 

e higher formants such as F4 and F5 can also be significant in 

determining voice quality [18]. In /a/ and /a:/ the whole tongue goes down so the vocal tract 

becomes wider than in producing other Arabic vowels. In /u/ and /u:/ the end of the tongue 

ar to the palate while the other parts of the tongue are in the regular position. In /i/ 

and /i:/ the front of the tongue comes near to the palate whereas other parts remain in their 

/i:/. Also, the formants’ 

usual patterns were noticed from their spectrograms as concluded in [18]. In addition, the 

similarities of the first (and final) consonant in all words can be clearly noticed since the same 

all the plots (with just the vowel being varied) as can be 

Figure 1. Vowels distribution depending on F1 and F2 for all speakers 

In summary, the vowel pairs (Vowel 1, Vowel 2), (Vowel 5, Vowel 6), (Vowel 3, Vowel 

4), (Vowel 1, Vowel 3), and (Vowel 1, Vowel 5) that have major similarities depending on 

the speech recognition output, are mostly durational counterparts. This means that Vowel 1 is 

the short counterpart of Vowel 2 and so on. These pairs of vowels have major overlap in 

1. Formants can thus be seen to be very effective in classifying 
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4.  Conclusions 

This paper has presented automatic speech recognition and formant based analysis of 

Arabic vowels using a spectrogram technique [18]. For the formant based technique, the 

Arabic vowels were studied as if they were patterns shown on screen or paper. Modern 

standard Arabic has six basic vowels and two diphthongs which are considered by some 

linguists as vowels rather than diphthongs. Thus the number of vowels in this study was 

considered to be eight (including the two diphthongs). All these eight Arabic phone

included for constricting the created database deployed in the speech recognition based 

investigation which has shown that the formants are very effective in classifying vowels 

correctly. The overall accuracy of the speech recognition system was 9
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vowels correctly and can be used in a future speech recognition system. Formants of the 

vowels can be included explicitly in the feature extraction module of the recognizer. If such a 

system is able to recognize the different vowels then this will tremendously assist in the 

Arabic speech recognition process. The reason behind this is that every word and syllable in 

Arabic language must contain at least one vowel; hence vowel recognition will play a key 

role in identifying the spoken utterance. Agreement between the recognition outputs and 

formant analysis can be inferred from these results. In addition to this, we can say that the 

distinguishing acoustic features of vowels are formants, in particular formants 1 and 2. Also, 

for Arabic vowels we can learn that the temporal duration is very important but this is missed 

both the investigative methods used in this study and we need to find a way to incorporate 

this feature in future speech recognition and formant-based analysis approaches.  

This paper has presented automatic speech recognition and formant based analysis of 

Arabic vowels using a spectrogram technique [18]. For the formant based technique, the 

Arabic vowels were studied as if they were patterns shown on screen or paper. Modern 

standard Arabic has six basic vowels and two diphthongs which are considered by some 

linguists as vowels rather than diphthongs. Thus the number of vowels in this study was 

considered to be eight (including the two diphthongs). All these eight Arabic phone

included for constricting the created database deployed in the speech recognition based 

investigation which has shown that the formants are very effective in classifying vowels 

correctly. The overall accuracy of the speech recognition system was 91.6%. Both methods of 

investigations agreed on the high degree of similarity between short Arabic vowels and their 

long counterparts. The temporal duration of the vowel which is phonemic in Arabic language 

could not be modeled in the recognition system. Also in the formant plots, there are big 

overlaps between pairs of vowels that also confused with each other in the recognition 

system.  We see an agreement between the conclusions drawn from speech recognition results 

and formant analysis regarding these vowels.  

 

Figure 2. Values of F1 and F2 for short vowels for Speaker 6 for three trials
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system. Formants of the 

vowels can be included explicitly in the feature extraction module of the recognizer. If such a 

system is able to recognize the different vowels then this will tremendously assist in the 

n behind this is that every word and syllable in 

Arabic language must contain at least one vowel; hence vowel recognition will play a key 

role in identifying the spoken utterance. Agreement between the recognition outputs and 

ed from these results. In addition to this, we can say that the 

distinguishing acoustic features of vowels are formants, in particular formants 1 and 2. Also, 

for Arabic vowels we can learn that the temporal duration is very important but this is missed 

both the investigative methods used in this study and we need to find a way to incorporate 

This paper has presented automatic speech recognition and formant based analysis of 

Arabic vowels using a spectrogram technique [18]. For the formant based technique, the 

Arabic vowels were studied as if they were patterns shown on screen or paper. Modern 

standard Arabic has six basic vowels and two diphthongs which are considered by some 

linguists as vowels rather than diphthongs. Thus the number of vowels in this study was 

considered to be eight (including the two diphthongs). All these eight Arabic phonemes were 

included for constricting the created database deployed in the speech recognition based 

investigation which has shown that the formants are very effective in classifying vowels 

1.6%. Both methods of 

investigations agreed on the high degree of similarity between short Arabic vowels and their 

long counterparts. The temporal duration of the vowel which is phonemic in Arabic language 

so in the formant plots, there are big 

overlaps between pairs of vowels that also confused with each other in the recognition 

system.  We see an agreement between the conclusions drawn from speech recognition results 

Figure 2. Values of F1 and F2 for short vowels for Speaker 6 for three trials 
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