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Abstract 

 

The expanding aquaculture industry continues to encounter major challenges in the form of 

highly contagious aquatic viruses. Control and eradication measures targeting the most lethal 

and economically damaging virus-induced diseases, some of which are notifiable, currently 

involve ‘stamping out’ policies and surveillance strategies. These approaches to disease 

control are performed through mass-culling followed by restriction in the movement of fish 

and fish products, resulting in considerable impacts on trade. Although effective, these 

expensive, ethically complex measures threaten the sustainability and reputation of the 

aquatic food sector, and could possibly be reduced by emulating innovative vaccination 

strategies that have proved pivotal in maintaining the success of the terrestrial livestock 

industry. DIVA ‘differentiating infected from vaccinated animal’ strategies provide a basis to 

vaccinate and contain disease outbreaks without compromising ‘disease-free’ status, as 

antibodies induced specifically to infection can be distinguished from those induced in 

vaccinated animals. Various approaches were carried out in this study to assess the feasibility 

of marker/DIVA vaccination for two of the most important disease threats to the global 

Atlantic salmon and common carp/koi industries, i.e. infectious salmon anaemia (ISA) and 

koi herpesvirus disease (KHVD), respectively. 

Antibody responses of Atlantic salmon (Salmo salar L.), following immunisation 

with an ISA vaccine, administered with foreign immunogenic marker antigens (tetanus toxoid 

(TT), fluorescein isothiocyanate (FITC) and keyhole limpet hemocyanin (KLH)) were 

assessed by antigen-specific enzyme linked immunosorbent assay (ELISA). Although 

antibodies were induced to some markers, these were unreliable and may have been affected 
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by temperature and smoltification. Detectable antibodies to ISAV antigen were also largely 

inconsistent despite low serum dilutions of 1/20 being employed for serological analysis. The 

poor antibody responses of salmon to the inactivated ISA vaccine suggested that DIVA 

vaccination is not feasible for ISA. A similar approach for KHV, utilising green fluorescent 

protein (GFP) as the marker, similarly failed to induce sufficiently detectable antibody 

responses in vaccinated carp (Cyprinus carpio L.). However, as high anti-KHV antibody 

titres were obtained with an inactivated KHV vaccine (≥1/3200), alternative approaches were 

carried out to assess the feasibility of DIVA vaccination for carp. Investigations of early 

KHV pathogenesis in vivo and antigen expression kinetics in vitro (0-10 days post infection 

(dpi)) provided valuable data for the diagnostics necessary for DIVA surveillance strategies. 

Following viral infection, molecular methods were shown to be the most effective 

approach for early detection of KHV infected fish prior to sero-conversion, during which 

time antibodies are not detectable. An experimental immersion challenge with KHV, 

however, revealed complications in molecular detection during early infection. The KHV 

DNA was detected in external biopsies of skin and gills, but also internally in gut and 

peripheral blood leukocytes ≤ 6 hours post infection (hpi), suggesting rapid virus uptake by 

the host. The gills and gut appeared to be possible portals of entry, supported by detection of 

DNA in cells by in situ hybridisation (ISH). However, many false negative results using 

organ biopsies occurred during the first 4 dpi. The gills were the most reliable lethal biopsy 

for KHV detection by various polymerase chain reaction (PCR) assays, with a PCR targeting 

a glycoprotein-gene (ORF56) and a real-time PCR assay being the most sensitive of the 7 

methods investigated. Importantly, non-lethal mucus samples reduced the number of false 

negative results obtained by all KHV PCR assays during the earliest infection stages with 

large levels of viral DNA being detected in mucus (up to 80,000 KHV DNA genomic 
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equivalents 200 μL
-1

). KHV DNA was consistently detected in the mucus as a consequence 

of virus being shed from the skin. 

Determining the expression kinetics of different viral structural proteins can be useful 

for DIVA serological tests. Analysis of KHV antigen expression in tissues by 

immunohistochemistry and indirect fluorescent antibody test was inconclusive, therefore 2 

novel semi-quantitative immunofluorescence techniques were developed for determining 

KHV antigen expression kinetics in susceptible cell lines. During the course of KHV 

infection in vitro, a greater abundance of capsid antigen was produced in infected cells 

compared to a glycoprotein antigen (ORF56), as determined by detection with antigen-

specific monoclonal antibodies (MAbs). The capsid antigen was characterised as a ~100 kDa 

protein by SDS-PAGE and identified as a product of KHV ORF84 by matrix-assisted laser 

desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). This antigen 

was subsequently detected in the serum of >25% of KHV infected/exposed carp (6/17), as 

well as in carp vaccinated with a live attenuated vaccine (3/4), but not with an inactivated 

vaccine (0/7), by Western blot making it a potential DIVA target for an inactivated vaccine. 

Attempts were made to improve the sensitivity of KHV serological testing by taking 

advantage of recombinant proteins specific for KHV (CyHV-3), rORF62 and rORF68 and 

eliminating any interference by cross-reacting antibodies to carp pox (CyHV-1). These 

proteins successfully reacted with anti-KHV antibodies. The feasibility of DIVA strategies 

for KHVD was determined using these recombinant antigens to coat ELISA plates. 

Differential antibody responses were detected from carp sera to an internal virus tegument 

protein (rORF62) and external region of a transmembrane protein (rORF68). Fish vaccinated 

with an inactivated vaccine produced significantly lower antibody responses to rORF62 than 

to rORF68, whereas infected, exposed and live attenuated vaccinated fish recognised both 

proteins allowing differentiation between vaccinated and infected carp. However, the 
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sensitivity of the assay was limited, possibly by high levels of natural antibodies detected at 

the relatively low serum dilutions (1/200) used. As the capsid antigen (ORF84) and tegument 

protein (ORF62) are derived from internal KHV structural proteins, they induce non-

neutralising antibodies, which may be useful for DIVA strategies. Such antibodies are longer 

lasting than neutralising antibodies and often comprise the majority of fish anti-viral 

antibodies. This was noted in a fish surviving experimental challenge, which had an antibody 

titre of 1/10,000, but neutralising titre of 1/45. Such antigens may therefore hold potential for 

developing effective serological diagnostic tests for KHV and provide the potential for DIVA 

strategies against KHVD. Natural antibodies will, however, continue to present a challenge to 

the development of sensitive and reliable KHV serological tests, and hence the application of 

DIVA strategies. 
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1.1. History of vaccinology and serology 

Although the science of ’immunology’ has been dominated by research on human and 

mammalian disease models, and much of what is known in lower vertebrate immunology, i.e. 

in fish, is based on these findings, the initial concept, rather ironically, all started in starfish! 

Elie Metchnikoff in 1882 found that after piercing starfish with a ‘rose thorn’, a coating of 

cells had developed around the thorn. These cells were later identified as phagocytes 

(Lydyard et al., 2004; Podolski, 2012). 

Vaccination aims to mimic the development of natural immunity against disease, 

which is usually attempted by means of inoculating the host with non-pathogenic, but still 

immunogenic components of the pathogen or an inactivated or attenuated whole pathogen 

(Meeusen et al., 2007). Vaccination originated from ‘cow’ when Sir. Edward Jenner in 1796 

conferred protection against smallpox in humans by inoculating children with the closely 

related, but avirulent, cowpox virus (‘vaccinus’ meaning ‘from cows’) (Hilleman, 2000; 

Cann, 2005; Moennig, 2005; Meeusen et al., 2007). However, the practice of ‘variolation’ 

(inoculation of material from small pox lesions) had been practiced in China for many years 

prior to this (Leung, 2011). 

While the discovery of ‘innate immunity’ is assigned to Metchnikoff, the field of 

‘acquired immunity’ was arguably founded by Louis Pasteur, Robert Koch, Emil von Behring 

and Paul Ehrlich. Their findings made vast grounds in the fields of bacteriology, medicine 

and empirical discoveries on immunology, namely antibody response. Ehrlich developed 

specific methods for the quantification of antibodies making von Behring’s theory of passive 

immunity possible (Hilleman, 2000), and this could possibly be flagged as one of the initial 

advances into serological research.  

Many advances in vaccinology have been made over the last sixty years, through a 

number of biotechnological approaches yielding whole, subunit, live attenuated, DNA, killed 
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or recombinant viral or bacterial vaccines (Henderson, 2005; Meeusen et al., 2007). These 

advances in vaccine development can be divided into eras (Hilleman, 2000) as illustrated in 

Fig. 1.1 A. The adaptive immune response of fish and the production of antibodies, e.g. in 

salmonids and cyprinids, to pathogenic bacteria, were first recognised in the 1940s (Smith, 

1940 cited in Evelyn, 1997). The first report on the development of a fish vaccine was 

published as early as 1942, as an apparent oral immunisation against furunculosis (Duff, 1942 

cited in Evelyn, 1997). It was not until the 1970s, however, that there was any further interest 

in fish vaccinology. Prior to vaccine development, attention for aquatic disease control was 

paid predominantly to the application of chemotherapeutants (Evelyn, 1997). Nonetheless, 

the initial successful vaccination of farmed fish against Vibrio ordalii and Vibrio anguillarum 

paved the way for a number of vaccines developed for the aquaculture industry (Evelyn, 

1997). Since the 1970s, vaccination has been a major contributor to the success of salmonid 

culture, and fish have been protected against bacterial diseases, such as vibriosis and 

furunculosis, while reducing costs and environmental damage associated with the application 

of antibiotics (Grave et al., 1990; Lillehaug et al., 2003 Sommerset et al., 2005a). 

The control of modern day terrestrial animal diseases, however, requires surveillance 

strategies for which serology has become an increasingly useful tool for the detection of 

specific antibodies in mammals and birds following immunisation with veterinary vaccines 

(Pasick, 2004; Suarez, 2005; Meeusen et al., 2007). The science of serology was initiated 

through the discovery of blood groups (i.e. A, B, AB and O) when Karl Landsteiner 

determined that ‘clumping’ of normal human red blood cells occurred when exposed to 

foreign healthy blood cells (Weatherall, 2011). The antibody-antigen complexes causing the 

agglutination instigated the development of immunoassays such as enzyme-linked 

immunosorbent assay (ELISA) by Eva Engvall and Peter Perlmann (Lequin, 2005).  
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Figure 1.1 The history of vaccine development from BC – 2000 and the application of ELISA in science from 1960-2005. (A) Advances in 

vaccinology throughout history showing major breakthroughs of vaccines developed against human pathogens, Modified after Hilleman (2000); 

(B) The estimated number of articles published by PubMed search within 5 year intervals using search terms: enzyme-immunoassay and 

enzyme-linked immunosorbent assay (ELISA) and immunosorbent assay (black line) and radio-immunoassay (RIA) (grey line), Modified after 

Lequin (2005). Blue dashed line indicates the time line of research and development undertaken for fish. Red dashed line indicates the time line 

of research and development undertaken on marker/DIVA vaccination. 
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The importance and application of serology has paralleled that of vaccine 

development, which is evident by the increasing use of immunoassays, e.g. ELISAs, in 

research (Fig. 1.1 B). When vaccination and serology are used in combination, disease 

management can be undertaken most effectively with revolutionary and advanced 

biotechnological tools. Serological analysis in warm blooded animals is now regarded as a 

primary epizootiological and diagnostic tool, however, serological procedures for monitoring 

of fish for infectious viral diseases is not used routinely in aquaculture (La Patra, 1996; 

Office International des epizooties (OIE), 2012). This is despite establishing 40 years ago that 

serology could be used to identify exposure of teleost fish to viral infection, e.g. in rainbow 

trout (Onchorhynchus mykiss) and channel catfish (Ictalurus punctatus) (Plumb, 1973; 

Jorgensen, 1974 cited in La Patra, 1996; Amend and Smith, 1974). Considering the advances 

in biotechnological tools available and knowledge of the fish immune response, for which it 

is known that detectable long-lasting anti-viral antibody responses are induced to certain 

diseases (La Patra, 1996; Lorenzen and La Patra, 1999; Adkison et al., 2005; Fregeneda-

Grandes and Olesen, 2007; St-Hilaire et al., 2009), serological diagnostics is likely to make a 

valuable contribution to controlling fish disease in the future (Adams and Thompson, 2006; 

2008). 

 

1.2 Control and vaccination against notifiable mammalian and avian 

diseases  

As noted by Moennig (2005), although aquatic animal production is different from animal 

production on land, the experiences in agriculture are worthwhile reviewing when deciding 

on and designing disease eradication or control measures in aquaculture. 
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Eradication programmes are often used as a means of controlling and preventing 

spread of notifiable diseases (Clavijo et al., 2004; Pasick, 2004; Moennig, 2005; Meeusen et 

al., 2007; Vannie et al., 2007; Uttenthal et al., 2010). Considering the rapidity with which 

disease can spread amongst farms, especially in regions of intensive culture, eradication 

measures conducted through what are known as ‘stamping-out’ policies alone can be 

extremely damaging (Pasick, 2004). Furthermore, exclusion and slaughter may not be 

sufficient to eradicate notifiable pathogens promptly (Clavijo et al., 2004). 

The economical and animal welfare costs associated with eradication programmes has 

been highlighted from notifiable disease outbreaks in Europe including foot and mouth 

disease (FMD), highly pathogenic avian influenza (HPAI) and classical swine fever (CSF) 

(also known as hog cholera) (Clavijo et al., 2004; Pasick, 2004). Outbreaks of FMD in the 

UK in 2001 resulted in losses of up to €4.5 billion with 4.2 million animals slaughtered 

(Pasick, 2004). Monumental impacts were inflicted as a result of avian influenza (AI) 

outbreaks in USA, between 1983 and 1984, when 17 million birds were slaughtered 

(Halvorson, 2002), which was followed by outbreaks that devastated the Italian poultry 

industry in 1999 - 2000, when 14 million birds were slaughtered resulting in losses of €500 

million (Pasick, 2004). However, the culling of birds infected or exposed to avian influenza 

virus (AIV) is still considered to be a less costly control strategy when the disease outbreak is 

wide-spread (Avellaneda et al., 2010). In 1980 the European Union (EU) adopted a non-

vaccination and stamping-out policy against CSF, which relied on pre-emptive slaughter of 

neighbouring herds in regions with high density pig populations (Pasick, 2004). More than 

half (56%) of the US$ 2.3 billion worth of losses due to CSF outbreaks in the Netherlands in 

1997 - 1998 were attributed to depopulation of infected herds and welfare slaughter 

(Meuwissen et al., 1999). Young piglets were also slaughtered and movement restrictions 

were put in place (Pasick, 2004). In Canada, the total net economic impact to FMD was 
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between $CND13.7 – 45.9 billion, based on models, depending on the number of affected 

premises (Clavijo et al., 2004). Emergency vaccination programmes may have been utilised 

for the control of these outbreaks. The reproduction ‘R’ value is a measure of the 

transmission of a virus defined as “the average number of secondary cases caused by one 

typical infectious individual” (Van Oirschot, 1999; Bouma, 2005). An infection will fade out 

if R<1, but an infection will spread when R>1 (Bouma, 2005). As a result of huge losses due 

to notifiable viral disease outbreaks, emergency vaccination procedures were considered a 

useful option to shorten the duration of such outbreaks until the ‘R’value was <1 (Pasick, 

2004).  

The predominant aim of vaccination for animal agriculture is to provide the most 

economically beneficial production of stock and provide protection to the consumer against 

potential zoonotic diseases. Immunisation for livestock and poultry has been estimated to 

have a greater impact on these economies compared to all other therapeutic and prophylactic 

treatments combined (Babiuk, 1999). Diseases causing mass mortalities and those that may 

not cause fatality, but do result in reduced growth rates and welfare concerns, make 

veterinary vaccination a valuable asset for which innovative vaccine development is 

important (Meeusen et al., 2007; Vannie et al., 2007). 

For centuries rinderpest (RP) was the most feared of all agricultural diseases, which 

threatened the livestock and general wellbeing of pastoral communities across much of Asia 

and Africa (Buczkowski et al., 2012). The power of well managed vaccination against animal 

diseases was demonstrated by the administration of a highly immunogenic, efficacious and 

safe attenuated live vaccine against rinderpest virus (RPV), for which RPV control was 

otherwise conducted by rigorous stamping out policies involving quarantine and mass 

slaughter (Diallo et al., 2007; Parida et al., 2007; Buczkowski et al., 2012; Albina et al., 

2013).  
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Conventional efficacious vaccination is intended to prevent disease, reduce clinical 

symptoms, reduce pathogen shedding, and increase resistance to infection (i.e. the dose 

required to cause infection), whilst providing a method to manage or eradicate a disease from 

a region (Vannie et al., 1991; Bouma, 2005; Henderson, 2005; Uttenthal et al., 2010). The 

effectiveness of vaccination has also been demonstrated for AD, FMD, AI and CSF, with 

reduction in virus shedding and transmission to susceptible in-contact animals that 

subsequently benefit from herd immunity (Donaldson and Kitching, 1989; Halvorson, 2002; 

Dewulf et al., 2003 cited in Pasick, 2004; Bouma, 2005). However, most vaccines do not 

completely protect the animal from infection or prevent shedding of the pathogen subsequent 

to infection. In this context, the vaccine effectiveness within a population, i.e. a measure of its 

ability to reduce virus transmission, is an important characteristic to be considered (Pasick, 

2004; Bouma, 2005). Therefore, where notifiable diseases are concerned, it is vital to detect 

active infection in vaccinated animals to avoid spreading the disease (Clavijo et al., 2004; 

Uttenthal et al., 2010). However, as sero-surveillance is used to monitor exposure of animals 

to the virus, vaccinated animals cannot be distinguished from infected animals as antibodies 

induced by vaccination cannot be differentiated from those induced by infection. Although 

vaccines are available to these diseases in the EU, ‘decisions to vaccinate – policies’ are 

made by the appropriate authority based on the severity and impact of the disease (Uttenthal 

et al., 2010). The situation differs from the contingency planning for other animal diseases, 

such as bluetongue, where compulsory vaccination is advocated once a disease outbreak has 

initiated (Uttenthal et al., 2010). Identifying those vaccinated animals by serology may, 

however, also be problematic. Indeed, vaccination programmes against RPV that eventually 

led the way to the first successful global eradication of a viral animal disease (Diallo et al., 

2007; Albina et al., 2013), did not enable a disease-free status for many years. This was 

because of the inability to differentiate between infected ruminants from those that were 
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vaccinated, which was required for a RPV-disease free status by the World organisation for 

animal health; OIE. Despite a highly sensitive and specific competitive ELISA being 

developed to distinguish antibodies to RPV infection from the closely related morbillivirus, 

peste des petits ruminants virus (PPRV) (Anderson and McKay, 1994), it took many more 

years to demonstrate sero-naivety after terminating vaccination programmes (Buczkowski et 

al., 2012). Suarez (2005) accurately stated in a review of DIVA strategies for AI that 

“vaccination by itself cannot be used as an eradication programme. An eradication 

programme must include strict quarantines, movement controls on animals and equipment, 

increased biosecurity, increased active and passive surveillance and education of affected 

groups.” 

 

1.3 Control and vaccination of notifiable viral diseases in aquaculture 

The aquaculture industry has grown rapidly since 1970 with a mean annual growth rate of 

8.8% to satisfy increasing demands. As a result, viruses of fish have become an area of 

interest to the public due to the increasing number of reports on epizootics and economic 

losses associated with them (Ilouze et al., 2011). Strict surveillance is carried out for a 

number of notifiable viral diseases caused by members of the rhabdoviridae, 

orthomyxoviridae and alloherpesviridae that, although effective, have proved both 

economically and ethically destructive to the aquaculture industry.  

Most vaccines available to the aquaculture industry are killed/inactivated whole virus 

vaccines that are safer than live vaccines, but provide weaker efficacy than live vaccines, 

which stimulate both cellular and humoral branches of the immune system (Sommerset et al., 

2005a; Dhar and Allnutt, 2011; Gomez-Casado et al., 2011). Furthermore, cost-effective 

inactivated viral vaccines are difficult to develop for commercial scale production as high 

doses of intra-peritoneal (ip) administered adjuvanted cell culture-derived antigen are usually 
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required to provide protection (Sommerset et al., 2005a). Nonetheless, the cost-effect margin 

can be greatly influenced by control measures necessary for particular diseases affecting 

particular fish species. 

Viral haemorrhagic septicaemia (VHS) is one of the most economically important 

viral diseases of salmonid aquaculture. The large number of susceptible host species of viral 

haemorrhagic septicaemia virus (VHSV) has made control of this rhabdovirus very difficult 

(OIE, 2012). In Denmark the rainbow trout industry suffered massive losses with 400 

rainbow trout farms infected, and costs in Europe mounted to £40 million per year (Olesen, 

1998). Sanitation programmes were subsequently implemented for stamping out VHS in 

Denmark in 1965, which resulted in a drop in infected farms from 400 to 26, but expenses 

were all covered by the farmer until financial support was later provided by the EU (Olesen, 

1998). After the eradication programme, 454 farms were subsequently free of VHSV 

(Olesen, 1998). However, these health surveillance schemes coupled to stamping out 

procedures have been very expensive (Olesen and Korsholm, 1997; Olesen; 1998) requiring 

all fish on the farm to be destroyed when an outbreak was detected, and the farm was left 

empty through a fallow period (Olesen, 1998; OIE, 2012). These sanitation programmes 

proved very effective throughout Europe, however outbreaks have been reported again 

recently in the UK and Norway (Stone et al., 2008; Dale et al., 2009) where the latter was 

attributed to transmission from free-living fish with an isolate previously considered to be 

avirulent (Dale et al., 2009). Despite extensive research into development of a VHSV 

vaccine, which has included killed, live attenuated and recombinant (through both 

prokaryotic and eukaryotic expression systems) (Lorenzen and La Patra, 2005) no 

commercialised VHSV vaccine is available (Lorenzen et al., 1998; Lorenzen and La Patra, 

2005; Sommerset et al., 2005a; Gomez-Casado et al., 2011). The most promising vaccine 

development for salmonid rhabdoviruses has been the development of DNA vaccines. This 
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led to the successful commercialisation of a DNA vaccine for the closely related infectious 

hematopoietic necrosis virus (IHNV) in Canada (Anderson et al., 1996a; b; Gomez-Casado et 

al., 2011). Nonetheless, for VHSV, vaccination would not be permitted in zones that are 

VHS-free according to EU regulations (OIE, 2012). Vaccination is not currently approved in 

VHS or IHN - free farms in the EU. However, killed or non-replicating vaccines may be 

approved for purposes of stocking infected farms with vaccinated fish (Olesen, 1998), i.e. to 

limit viral spread, although survivors can also become long-term carriers, meaning that 

vaccinated animals could continue to spread disease. Surveillance is difficult by virus 

isolation, which may not be possible in clinically healthy fish (Skall et al., 2005) thus 

detection of virus antigen using cross-serotype reactive monoclonal antibodies (MAbs) of 

VHSV isolates (Lorenzen et al., 1988) or nucleic acid by quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) (Garver et al., 2011; Jonstrup et al., 2012) are 

undertaken to confirm VHS-free status. Similar surveillance methods are also used for the 

other important salmonid rhabdovirus, IHNV (Jorgensen et al., 1991). 

Twenty years after the introduction of sanitation programmes for the control of 

VHSV, an even more destructive viral disease began to threaten the success and sustainability 

of salmonid aquaculture, this time infecting Atlantic salmon. Infectious salmon anaemia 

(ISA) is one of the most economically important diseases of farmed Atlantic salmon, with a 

history of outbreaks in both the Northern hemisphere (Lyngstad et al., 2008; Kibenge et al., 

2009a; Murray et al., 2010) and southern hemisphere (Godoy et al., 2008; Mardones et al., 

2009; 2011). Due to the serious economic consequences, multiple transmission routes and 

difficulty in containment and control, ISA previously constituted the only “list 1” classified 

notifiable fish disease under the former OIE disease classification system (OIE, 2009). The 

first recorded outbreak of ISA was in Norway in 1984, which resulted in 80% mortality. 

Subsequently the prevalence of ISA disease outbreaks peaked in 1990 when 80 cases were 
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reported (Thorud and Djupvik, 1988; Lyngstad et al., 2008). Between 1984 and 2005 a total 

of 437 outbreaks were reported in Norway. However, if it were not for the implementation of 

regulatory controls in the 1980s and 1990s by Norwegian authorities (Lyngstad et al., 2008) 

these figures may have continued to rise. During this period the use of non-disinfected sea 

water in hatcheries and movements of fish between sea sites was banned (Lyngstad et al., 

2008). Furthermore, health certificates were required for operating fish farms and regulations 

were implemented for disinfection of waste water from processing plants and slaughter 

houses (Thorud and Håstein, 2003). Since these stringent sanitary measures were employed 

the number of ISA cases in Norway has reduced, but between 1 and 20 cases are still reported 

annually (Lyngstad et al., 2008). The annual cost of ISA to Norwegian aquaculture is 

estimated at US$ 11 million. 

Infectious salmon anaemia virus (ISAV) has since been detected in all major Atlantic 

salmon producing regions including New Brunswick, Canada in 1996, Scotland in 1998, 

Nova Scotia in 1999, Faroe Islands in 2000, Maine, USA in 2001 and Chile in Coho salmon 

in 2001 (Bricknell et al., 1998; Mullins et al., 1998; Rodger et al., 1998; Bouchard et al., 

2001; Ritchie et al., 2001; Lyngøy, 2003). The first outbreak of ISA outside of Norway 

occurred in New Brunswick in 1997 resulting in losses of $14 million with 21 farms infected 

within 3 bays (Hastings et al., 1999). Outbreaks of ISA in Atlantic salmon have been reported 

since and different countries have employed different procedures to deal with the disease 

(Miller and Cipriano, 2003). In Maine, 2001, 19 cases of ISA were confirmed and 

precautionary measures to prevent transmission alone were very costly (Miller, 2003). The 

state’s salmonid industry had already voluntarily depopulated about 900,000 salmon worth 

nearly $11 million. Trade was severely affected as the EU and Chile prohibited importation 

of trout and salmon eggs from USA, which alone accounted to $2 million (Miller, 2003).  
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The first outbreaks of ISA in the EU occurred in Loch Nevis, Scotland in 1998 

(Rodger et al., 1998). The virus spread to 11 farms with another 25 farms suspected and the 

last confirmed outbreak, during this period, was in the Shetland Isles in 1999, although ISAV 

was still present on farm sites within surveillance zones in 2000 (Stagg et al., 2001). 

However, eradication programmes have been successfully implemented for the control of 

ISA, which were achieved in Scotland to control the outbreaks in 1998 – 1999 that had cost 

the industry £32 million (Bricknell et al., 1998; Rodger et al., 1998; Hastings et al., 1999; 

Stagg, 2003). The success was attributed to regulated extensive culling, restricted personnel 

and vehicle movements, and restricted fish and fish product movements. The implementation 

of control and surveillance zones with regular inspections, during and following the 

disinfection and fallow period, coupled with improved codes of practice for fish husbandry 

ensured no disease recurrences (RSE, 2002). However, no compensation was provided for 

farmers that suffered the effects of ISA outbreaks. Infectious salmon anaemia transmission is 

very efficient within the transport networks of live fish, harvesting operations, well-boat 

movements, wild fish and water currents (Nylund and Jakobsen, 1995; Munro et al., 2003; 

Gustafson et al., 2007; Munro and Gregory, 2009). Thus when ISA returned to Scotland in 

2008 - 2009 at 6 sites in the Shetlands, it was effectively controlled and limited to a localised 

spread by ‘management areas’ implemented by Marine Scotland where strict movement 

restrictions were enforced and depopulation of confirmed sites achieved within 7 weeks 

(Murray et al., 2010). However, because of preventative legislation in Europe, which 

employed a stamping-out policy, vaccines were not used despite being available in Canada 

(Sommerset et al., 2005a). 

The most disastrous effects of ISA were experienced in Chile between 2007 - 2009, 

where the epidemic had devastating social and economic consequences on the most important 

animal production system in the country (Mardones et al., 2011). From 2008, 159 salmon 
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farms in Chile were registered as positive for ISA by Chile’s National Fisheries and 

Aquaculture Service, SERNAPESCA (Kibenge et al., 2009a), costing the industry $2 billion 

directly as well as a 30% increase in production costs. Many communities were affected and 

15,000 people were made unemployed (Mardones et al., 2011). The harvest of Atlantic 

salmon in Chile in 2009 was 61% lower than the previous year and recovery is not expected 

until 2015 (Asche et al., 2010). Recent epidemiological analysis of the outbreaks suggests 

that control strategies in such highly populated farmed areas should implement control zones 

of at least 10 km in any future events rather than the 5 km recommended by the OIE 

(Mardones et al., 2011). This would possibly be more effective, but ultimately also incur 

more animal slaughter and trade restrictions.  

Problems are encountered with the current diagnostic procedures that are 

recommended for detecting ISAV in suspected sites. The criteria according the OIE ‘Manual 

of Diagnostic Tests for Aquatic Animals’ (OIE, 2012) includes the use of virus isolation in 

cell culture, but many isolates and strains of ISAV have limited cytopathogenicity thus may 

not replicate within the cell line and/or lack cytopathic effect (CPE) (Dannevig et al., 1995; 

Rolland et al., 2003; 2005; Kibenge et al., 2006). It may take a number of weeks or months 

before ISA develops in neighbouring pens and surveillance at present, other than cell culture 

isolation, is based on virus detection by indirect fluorescent antibody technique (IFAT) and 

RT-PCR for confirmation, whilst antibody detection is accepted to indicate a suspect case 

(OIE, 2012). Vaccination has been carried out in North America and Faroe Islands in the last 

5 years, but does not provide complete protection in Atlantic salmon (OIE, 2012). The 

current vaccines available are mostly whole inactivated vaccines (Dhar and Allnutt, 2011) 

that do not provide clearance of the virus in immunised fish which may subsequently become 

carriers (Kibenge et al., 2004; OIE, 2012). Therefore considering that antibody detection is 

included as diagnostic criteria for a suspected case, it would be necessary to indicate that 
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antibody responses to ISAV during surveillance programmes were induced by vaccination 

and that those fish are not carriers.  

During the outbreaks of ISA in Scotland in 1998, another important aquaculture 

sector, the common carp and koi industry, had suffered major losses as a result of a highly 

virulent, temperature-dependent disease, koi herpesvirus disease (KHVD). The outbreaks of 

KHVD have represented a contrasting problem to the epidemiological situation of the 

notifiable rhabdovirus and orthomyxovirus diseases. A lack of regulation of koi movements 

in Europe under EC (European Commission) or national health legislation may have 

represented a major root-cause to the spread of KHVD because fish from the ornamental 

industry were screened less stringently than food fish at border crosses (Haenen et al., 2004; 

Pearson, 2004). The enormous impacts incurred by KHVD have led to the virus being 

described as “the worst and most rapidly spreading virus in the past 30 years” (Hedrick pers. 

comm. cited in Pearson, 2004), which has affected not only carp fisheries (Peeler et al., 2009; 

Taylor et al.; 2010; 2011), the ornamental koi and food carp industries (Perelberg et al., 

2003; Antychowicz et al., 2005; Gomez et al., 2011; Azila et al., 2012), but also wild carp 

populations throughout the world (Takashima et al., 2005; Grimmett et al., 2006; Uchii et al., 

2009; 2011; Garver et al., 2010; Minamoto et al., 2011; 2012). Koi herpesvirus disease was 

recently likened to the global human influenza pandemic of 1918 (Ilouze et al., 2011).  

The first outbreaks of KHVD occurred in Israel in 1998 (Ariav et al., 1999) and in the 

following three years regular outbreaks occurred throughout the Spring and Autumn at 

temperatures between 22 - 26ºC (Haenen et al., 2004). The disease had spread to 90% of all 

carp farms in Israel by the end of 2000, costing the carp industry $3 million per year 

(Perelberg et al., 2003). Disease outbreaks also occurred in the USA where carp exhibited 

similar disease signs, which were initially reported at a koi show in New York in 1998 

(Hedrick et al., 2000). These exhibitions are thought to have contributed to the spread of 
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KHVD as fish were transported and held together in tanks or ponds without quarantine 

(Haenen et al., 2004). Isolation of the aetiological agent, koi herpesvirus (KHV), at this time 

in koi fin (KF-1) cells facilitated the development of sensitive diagnostic methods, including 

the real-time PCR (Gilad et al., 2004), that has since proved pivotal for characterisation and 

surveillance of KHVD. However, in the absence of sensitive diagnostic tests, incidents of 

KHVD were becoming very common. Two more outbreaks were reported in Los Angeles and 

California in 1999 (Gray et al., 2002). In Europe, the first outbreaks were reported with mass 

mortalities in ponds and koi dealerships in 1997 and 1998 (Bretzinger et al., 1999; Hoffmann 

et al., 2000 cited in Haenen et al., 2004). KHV was isolated in 2001 in a different cyprinid 

cell line, common carp brain cells (CCB), in Germany following further mass mortalities 

(Neukirch and Kunz, 2001). This cell line has since been preferred for propagation of the 

virus for both virological studies and diagnostics. Outbreaks of KHVD in the UK had also 

occurred following imports from Israel (Way et al., 2001 cited in Haenen et al., 2004), which 

suggested possible sources of transmission.  

The disease has since been reported extensively worldwide in at least 28 countries (OIE, 

2012), throughout Europe (Haenen et al., 2004; Bergmann et al., 2006; Novotny et al., 2010; 

Doszpoly et al., 2011; Toplak et al., 2011), Asia (Ariav et al., 1999; Perelberg et al., 2003; 

Sano et al., 2004; Tu et al., 2004; Sunarto et al., 2005; Bondad-Reantaso et al., 2007; 

Pokorova et al., 2007; Murwantoko, 2009; Pikulkaew et al., 2009; Cheng et al., 2011; Dong 

et al., 2011; 2013; Gomez et al., 2011; Lio-Po, 2011), Africa (Haenen et al., 2004), and 

North America (Hedrick et al., 2000; Haenen et al., 2004; Garver et al., 2010), but not South 

America or Australasia/Oceania (Pokorova et al., 2005). Outbreaks are still continuously 

being reported with the most recent reports of KHV prevalence in South Korea (Gomez et al., 

2011), Slovenia (Toplak et al., 2011), Hungary (Doszpoly et al., 2011), China (Dong et al., 
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2011; 2013), Romania, Spain and Sweden (OIE, 2012). The virus is likely to be present in 

more countries where it has not yet been detected (OIE, 2012).  

The outbreaks occurring in Asia devastated the carp industries in many countries where 

carp represents such an important market. After high mortalities (80 – 95%) on carp farms in 

Indonesia in 2003 (Rukyani, 2002 cited in Haenen et al., 2004) that resulted in costs of ~ $15 

million, the Indonesian government declared Java and Bali as isolated. Movements of carp 

from this region to other islands were subsequently prohibited unless quarantine checks were 

carried out (Sunarto and Rukyani cited in Haenen et al., 2004). In Japan 1200 tonnes (t) of 

carp died during the 2003 outbreaks of KHVD in Lake Kasuminguara, Ibaraki prefecture and 

in 2004 KHV had spread and was eventually detected in 42/47 prefectures in Japan with 

more than 100,000 mortalities reported (Iida and Sano, 2005; Ishioka et al., 2005; Matsui et 

al., 2008; Yuasa and Sano, 2009). The disease had seriously threatened the $75 million 

ornamental carp industry and consequently all nishikigoi shows were cancelled in November 

2003 (Haenen et al., 2004). Strict national disease control measures were subsequently put in 

place by the Indonesian and Japanese governments in an attempt to contain the outbreaks 

(Haenen et al., 2004).  

The spread of KHV is predominantly considered to be through trade in koi carp, 

particularly before the disease was understood and sufficient diagnostic tools were available 

to detect the virus. This prevented KHVD being listed as a notifiable disease because absence 

of disease could not be ascertained and diseased fish could not be confidently identified, 

which limited the usefulness of legislation (OIE, 2012). However, since being listed, a vast 

number of studies have been carried out to develop more sensitive, specific, convenient and 

cost-effective diagnostic tools for KHV surveillance. The most sensitive detection has been 

achieved through molecular based approaches. These are being continuously developed and 

improved to detect KHV DNA (Gilad et al., 2002; 2003; 2004; Gray et al., 2002; 
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Gunimaladevi et al., 2004; Soliman and El-Matbouli, 2005; Bergmann et al., 2006; 2009a; 

2010a; b; Yoshino et al., 2006) and RNA designed to detect replicating virus in fish with 

possible persistent infections (Yuasa et al., 2012a). However, there are still no validated tests 

that are accepted for declaration of freedom from KHV (OIE, 2012). 

Methods to control KHVD generally rely on avoidance of exposure, good hygiene 

and biosecurity practices (OIE, 2012). Quarantine protocols with sentinel fish at permissive 

temperatures and depopulation followed by disinfection (Kasai et al., 2005) may contribute to 

limiting KHVD outbreaks, especially as KHV has poor survivability in water (Perelberg et 

al., 2003; Shimizu et al., 2006; OIE, 2012). However, controlling the rapid transmission and 

global spread of KHV is complicated by a number of potential vectors (Bergmann et al., 

2009a; b; 2010c; Kempter et al., 2009; Ilouze et al., 2011; Kielpinski et al., 2010; Fabian et 

al., 2013), which are often cultured in close proximity with susceptible carp or in the same 

pond (Kempter et al., 2009).  

Water temperature is known to have a major influence on the replication kinetics of 

KHV and subsequent KHVD (St-Hilaire et al., 2005; 2009; Yuasa et al., 2008; Siwicki et al., 

2012). Manipulation of water temperature (i.e. raise > 30ºC) has been proposed as a method 

for controlling KHVD outbreaks (Omori and Adams, 2011). However, carp may 

subsequently become persistent carriers of the virus. Survivors of KHV are a problem as they 

may be resistant to KHVD but can still transmit the virus to naïve carp (St-Hilaire et al., 

2005). Such approaches were previously applied during the Israeli outbreaks in order to 

produce ‘naturally immunised’ carp, however, only ~60% were protected (Ronen et al., 2003; 

Michel et al., 2010a) and these fish subsequently carry wild-type virus. 

Differences in KHV-susceptibility between breeds and strains has been demonstrated 

(Shapira et al., 2005; Hedrick et al., 2006; Dixon et al., 2009; Rakus et al., 2012; Piačková et 
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al., 2013) and breeding programmes for genetically resistant strains has been suggested as a 

possible strategy to control KHV spread (Rakus et al., 2009), however a breeding system 

could not be implemented for ornamental koi (Ilouze et al., 2011). 

Vaccination is seen as a very important tool to control KHVD as eradication and 

disinfection has not been effective (Ronen et al., 2003; Costes et al., 2008; Perelberg et al., 

2008; Michel et al., 2010a; Ilouze et al., 2011). Vaccination against viral disease has been 

successfully applied for carp, e.g. the first viral vaccine in aquaculture was developed against 

another notifiable disease, spring viraemia of carp (SVC), caused by a rhabdovirus, spring 

viraemia of carp virus (SVCV) in 1982 using inactivated vaccines (Sommerset et al., 2005a). 

However, in the case of KHVD, the vaccination strategy is also a crucial consideration. A 

live attenuated vaccine was developed in Israel to enable emergency vaccination procedures 

during the mass outbreaks between 1998 - 2000, which provided good levels of protection 

against KHV challenge. This vaccine (KoVax, KV3) has now been used widely across Israel 

and has indeed been commercialised. However, there may have been implications as a result 

of this, including the possible spread and transmission of wild-type virus from exported 

vaccinated carp. Peeler et al. (2009) developed a risk assessment on the impact of importation 

of carp to the UK in terms of KHV prevalence. They found that the importation of carp 

vaccinated with KV3 were likely carriers of wild-type virus, which was transmitted to naïve 

carp in the UK, as carp mortalities were observed in quarantine facilities. Many of these fish 

were marketed as, or perceived to be, ‘safe’, which exacerbated the risk of disease 

introduction as sites intending to ‘protect’ uninfected stocks actually risked introducing wild 

type virus to naïve fish (Peeler et al., 2009). Although a commercial vaccine has also recently 

been made available in the USA (Cavoy®, Novartis), such vaccines will continue to present 

risks to naïve, unvaccinated carp stocks.  
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Other vaccines have also been developed including inactivated (Yasumoto et al., 

2006), live attenuated (Ronen et al., 2003; Perelberg et al., 2008) and recombinant multi 

deletion vaccines (Costes et al., 2008; 2012). However, identifying fish as vaccinated and 

uninfected provides a safer ground for introducing vaccinated fish to unvaccinated naïve 

populations. 

 

1.4 Differentiating infected from vaccinated animals: ‘DIVA’ 

vaccination 

1.4.1 Definition of Marker and DIVA vaccines 

The term ‘differentiating infected from vaccinated individuals’, i.e. ‘DIVA’, was first 

proposed by Jan T. Van Oirschot to replace the previously defined concept of ‘marker 

vaccine’ (Van Oirschot et al., 1986; 1996; Van Oirschot, 1999). A marker vaccine was 

defined by Van Oirschot et al. as “a vaccine (inactivated or live) based on deletion mutants or 

on isolated microbial proteins that allow the distinction between vaccinated and infected 

individuals based on the respective antibody responses. Hence, a marker vaccine is used in 

conjunction with a test that detects antibodies against a (glyco) protein, that is lacking in the 

vaccine strain” (Van Oirschot et al., 1996). Although the ‘marker vaccine’ was initially based 

on deletion mutants of the wild-type microbe in conjunction with a differentiating diagnostic 

test (Pasick, 2004) the term DIVA has now been extended to include subunit and whole killed 

vaccines (Pasick, 2004; Uttenthal et al., 2010), and any other vaccines developed that lack 

immunogenic proteins of the wild-type strain, e.g. DNA and recombinant vaccines. The 

accompanying serological diagnostic test has become just as important an area of research as 

the vaccine strain used for immunisation, as highly sensitive detection of marker-specific 
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antibodies must be feasible in order to effectively distinguish responses to the vaccine from 

responses to wild-type virus (Clavijo et al., 2004; Uttenthal et al., 2010). In the majority of 

cases the primary concern is to determine whether or not an animal has been infected, 

regardless of the vaccine status, which led Uttenthal et al. (2010) to propose the defined 

acronym for DIVA to be “Differentiating infection in vaccinated animals”  

1.4.2 DIVA strategies in practice 

Disease control and eradication approaches using marker or DIVA vaccination have never 

been applied for the aquaculture industry. The challenges and successes experienced in 

agriculture can provide a guide to successful applications of DIVA strategies against 

notifiable diseases if this approach were to be adopted in aquaculture. 

As well as reducing the impacts of disease, vaccination can also be used to manage or 

eradicate a disease from a region. It has previously been preferred to terminate vaccination, 

once a disease-free status had been achieved, as it is expensive for farmers to continue 

vaccinating (Bouma, 2005). Control of notifiable diseases by mass-culling is generally not 

acceptable to society (Pasick, 2004; Bouma, 2005), although this approach has been used 

extensively for both the livestock industry and aquaculture, e.g. for the control of ISA 

outbreaks in Scotland (Hastings et al., 1999). However, once a disease-free status has been 

obtained in consumer countries, trade may be adversely affected for vaccinating countries, as 

was observed with Aujeszky’s disease (AD) in the Netherlands in the 1980s. At this time, 

disease free-countries, such as the UK and Denmark, employed a sero-surveillance-identify-

cull strategy for AD without vaccination in order to retain disease-free status. Therefore 

export of swine products, e.g. to Japan and USA, was possible, but no import was allowed 

from countries where the disease was endemic, or if animals were vaccinated, as this would 

hamper sero-surveillance strategies (Bouma, 2005). Ultimately Pseudorabies virus (PrV), the 
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causative agent of AD, became an expensive virus for Dutch farmers, not because of animal 

losses from AD, but losses from trade as their vaccinated stock could not be exported 

(Stegeman et al., 1997 cited in Bouma, 2005). This is a similar problem for countries where 

FMD is endemic, as significant constraints are imposed on international trade in live animals 

and animal products, resulting in high economic impacts associated with loss of export 

markets and consumer fears (Paarlberg et al., 2002; Clavijo et al., 2004). 

 The application of marker vaccines, in combination with additional management 

measures, such as reduced contacts between herds, can contribute to reducing the R value <1 

thus improving the possibility of disease eradication, e.g. as seen for PrV (Pasick, 2004; 

Bouma, 2005), while providing a means to identify uninfected vaccinated animals. The first 

successful application of a DIVA strategy was achieved for the control and subsequent 

eradication of PrV through use of a glycoprotein E (gE) negative vaccine and gE specific 

serological diagnostic test (Van Oirschot et al., 1990; 1996; Stegeman, 1995; Van Oirschot, 

1999; Vannie et al., 2007). However, complications with using DIVA vaccination strategies 

for controlling notifiable disease also exist for the livestock industry (Bosman et al., 2012). 

Obtaining AD-free status breaks the trading restrictions with countries of the same status, but 

in the event of new outbreaks, as seen for CSF and FMD, disease can spread quickly to naïve 

pig populations. The control of AD infected farms would involve emergency vaccination and 

isolation of the virus by movement restrictions. According to the contingency plans for DIVA 

vaccination of PrV, a 10 km zone around infected farms (i.e. ring vaccination) would be 

established and all pigs within this zone would be protectively vaccinated while movement 

restrictions are imposed. This avoids culling of infected, but apparently healthy animals thus 

preventing controversial mass culling used for control of FMD and CSF (Bosman et al., 

2012). However, other animal welfare issues that must be considered during emergency 
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DIVA vaccination strategies, are the overcrowding and aging of animals that cannot be traded 

out-with the surveillance zone during the course of the outbreak (Bosman et al., 2012).  

However, the benefits of DIVA strategies far outweigh any potential negative 

impacts. DIVA vaccination has been accepted for control of AI by some countries in the EU. 

This has provided an opportunity for consistent monitoring of stocks, and assurance to 

trading partners on the infection-free status of vaccinated poultry during low pathogenic 

avian influenza (LPAI) (Capua et al., 2003; 2004; Avellaneda et al., 2010). Furthermore, 

prophylactic use of vaccines against exotic viral infections in production animals is now 

undertaken exclusively in regions where disease is endemic. For example, DIVA strategies 

have been used for many years in South America in order to satisfy their OIE status of 

‘FMD-free with vaccination’ in support of exports, e.g. beef. Due to the extensive farming 

practiced in these countries, clinical surveillance is not easy and sero-surveillance using 

DIVA offers many advantages (Uttenthal et al., 2010). DIVA strategies have also enabled the 

eradication of FMD from vaccinated pig populations in the far-east and in countries after 

emergency vaccination, e.g. against FMD in Macedonia and Albania in 1996 (Uttenthal et al., 

2010). Recently, a ‘genetic DIVA’ approach has also been applied to populations of wild 

boars against classical swine fever virus (CSFV) as transmission of the virus to domestic pigs 

caused outbreaks of CSF (Blome et al., 2011). Problems were encountered with diagnosis of 

dead pigs within the surveillance zones because of false positive PCR results to vaccine strain 

virus, thus a differential real-time RT-PCR (rRT-PCR) assay was developed in order to 

differentiate nucleic acid of wild-type virus from the vaccine strain (Blome et al., 2011). 

Ultimately, implementing a combination of vaccination and eradication programmes 

through DIVA strategies could enable a ‘vaccinate-to-live’ policy for notifiable diseases. By 

emergency ‘ring vaccination’ with marker vaccines and DIVA sero-surveillance, it may be 



Chapter 1 – General Introduction 

24 

possible to reduce transmission, clinical disease, and the presence of infectious virus within 

animal stocks, and perhaps fish farms, without jeopardising animal trade.  

1.4.3 Marker and DIVA vaccine developments 

The successful application of DIVA vaccination in eradication programmes for AD in 

pigs and AI in birds instigated the development of marker vaccines and DIVA systems for a 

number of other important notifiable diseases that inflict economical and ethical strain on the 

meat and poultry industries (Pasick, 2004). 

The majority of developments carried out on DIVA-compatible vaccines and 

diagnostic tests initially focused on four of the most economically important trans-boundary 

diseases in Europe: AD, AI, FMD and CSF (Van Oirschot et al., 1996; Babiuk, 1999; Van 

Oirschot, 1999; Clavijo et al., 2004; Pasick, 2004; Bouma, 2005; Suarez, 2005; 2012; Beer et 

al., 2007; Vannie et al., 2007; Uttenthal et al., 2010). There have since been a vast number of 

studies and approaches to marker/DIVA vaccine development for many other diseases. 

Although the purpose of applying DIVA vaccine strategies for many of these diseases is 

similar, the technological approaches that have been applied are extremely diverse and differ 

depending on the biology of the RNA or DNA virus, as well as the characteristics of the 

disease that they inflict and antibody response they provoke (Table 1.1 & 1.2). For example, 

the groundwork undertaken on PrV using molecular biological approaches enabled mapping 

of, and functional roles to be assigned to, the various structural proteins of the virus prior to 

development of the marker vaccine and companion diagnostic test (Van Oirschot et al., 1986; 

1996; Van Oirschot, 1999). Subsequently, the introduction of DIVA vaccination was largely 

attributed to collated knowledge of the herpesvirus glycoproteins of PrV (Mettenleiter, 2002). 

As conventionally attenuated PrV vaccines harbour a deletion within their genomes encoding 

for an immunogenic glycoprotein (Van Oirschot et al., 1990) marker vaccine approaches 
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initially focused towards several of these characterised envelope glycoproteins. Glycoprotein 

I or E (gI/gE) (Van Oirschot et al., 1996), was one of these targets (Van Oirschot et al., 1988; 

1990; 1991). This envelope protein had proved an effective marker antigen as antibodies to 

this glycoprotein persist for >2 years in infected/exposed animals and it is expressed by at 

least the majority of field strains (Van Oirschot et al., 1990).  

Different DIVA strategies have been developed since the origin of marker vaccines, 

some of which require the use of appropriate vaccines and specific companion serologic 

discriminatory tests (Avellaneda et al, 2010). However, many marker vaccines have been 

developed through more conventional routes without using DNA recombinant technology to 

engineer the marker vaccine. Conventional inactivated vaccines have been applied 

successfully for DIVA approaches with companion diagnostic tests targeting proteins 

involved in virus replication (Mackay et al., 1998; Chung et al., 2002; Suarez, 2005; 2012; 

Lambrecht et al., 2007; Barros et al., 2009; Hemmatzadeh et al., 2013). Recent advances in 

immunology, microbiology, molecular biology, proteomics, genetics, genomics and 

microbial pathogenesis have led to a wide variety of biotechnological approaches based on 

DNA mediated vaccine development. Vaccines engineered with gene deletions and additions, 

live vectored vaccines, chimeric vaccines, peptide and subunit vaccines have all been utilised 

to induce differential antibody responses (Babiuk, 1999; Henderson, 2005; Meeusen et al., 

2007). Importantly, many marker vaccines retain the essential properties to: (1) reduce 

clinical signs after infection; (2) reduce wild-type virus replication after infection; (3) reduce 

transmission of the virus in the laboratory and in the field (Pensaert et al., 1990; Vannie et 

al., 1991; Swayne et al., 2000; Uttenthal et al., 2010). Many of the approaches to develop 

marker/DIVA vaccines have utilised virus structural and non-structural proteins, depending 

on family-specific aspects of the virion particle, and their role in virus pathogenesis and host-

pathogen interactions. However, regardless of the approach taken, the essential properties 
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required to fulfil the DIVA principle is the ability to specifically detect antibodies of infected 

animals to the marker antigen with a sensitive ‘marker assay’ (Beer et al., 2007). Exploiting 

various biotechnological tools and expression systems have therefore also contributed to 

minimised production costs and time lag for development and analysis of diagnostic 

serological tests (Clavijo et al., 2004; Perkins et al., 2007a; b; Hema et al., 2007; Gómez-

Sebastián et al., 2008). Furthermore, different expression systems have be used for 

maximised purity of immunogenic proteins both for development of the vaccine and 

companion diagnostic test (Van Drunen Little-van den Hurk et al., 1997; Wang et al., 2002; 

Clavijo et al., 2004; Sørensen et al., 2005; Huang et al., 2006; Choi et al., 2013). 

A prerequisite for DIVA vaccination is that all field strains express the marker antigen 

and that infected animals always elicit antibodies to that protein after infection (Van Oirschot 

et al., 1996; Van Drunen Little-van den Hurk et al., 2006). A number of requirements for the 

DIVA diagnostic test were proposed by Van Oirschot et al. (1996): 

1. Antibodies must be detectable within three weeks after infection 

2. Antibodies must persist for a long period after infection 

3. Vaccinated and subsequently infected animals elicit antibodies if wild-type virus 

replicates within the host 

4. Repeatedly vaccinated animals must score negative to the marker 

5. A high sensitivity, specificity and reproducibility must be obtained 

 

There is often a lag time before detectable antibody responses are produced to the marker, 

not only following vaccination, but also following infection, which can vary depending on 

the disease and antigen used for serological screening (Van Oirschot et al., 1996; Van Rijn et 

al., 1996; Bouma et al., 1999; De Smit et al., 2001; Beer et al., 2007). Temperature may also 

represent an issue with the approach in fish as antibody responses are temperature dependent 
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for poikliotherms (Bly and Clem, 1992). Therefore, direct virus detection, of either antigen or 

nucleic acid, is usually necessary, especially if screening individual animals, to confirm their 

infection status. Furthermore, serology is only currently utilised for detecting suspect cases, 

but confirmation requires direct pathogen detection methods (OIE, 2012). 

Few bacterial DIVA vaccine approaches have been conducted, e.g. a subunit and 

negative marker vaccine for Actinobacillus pleuropneumoniae, the causative agent of Porcine 

pleuropneumonia, by deletion of the Apx2A gene which expresses Apx2 toxins (Goethe et 

al., 2001; Tonpitak et al., 2002; Mass et al., 2006). However, copious studies have been 

conducted for marker vaccines and DIVA approaches for RNA and DNA viral diseases of 

mammals and birds (Table 1.1 & 1.2). These DIVA approaches have been achieved by taking 

advantage of the properties of serum immunoglobulin specificity and affinity, particularly 

immunoglobulin G (IgG) in mammals and IgY in birds.  

DIVA approaches have varied considerably depending on the virus type. The 

approach to developing a DIVA vaccine requires either (1) construction of vaccines that 

exhibit different immunogenic properties to the wild-type strain or (2) exploit immunogenic 

variations that exist between vaccine and wild-type strain.  

Since no DIVA approach has been applied for aquatic viruses, developments 

undertaken for mammalian and avian viruses and their success in the field may provide useful 

models for aquatic DIVA developments. 
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Table 1.1 Animal RNA virus DIVA vaccine approaches 

Virus Virus family, 

genome, proteome 

DIVA approach References 

Vaccine Diagnostic assay 
Avian Influenza 

A virus (AIV) 

Avians  

 

Env. capsid 

Neg. ss RNA 

13.6 kbp; 8 seg 

Orthomyxoviridae 

 

(1) Inactivated vaccine,  

(2) Rec. H vaccine, 

(3) Rec. H5N8 vaccine, 

(4) Rec. antigenically matched H5N9 

inactivated vaccine, 

(5) H5N1 influenza marker vaccine with 

foreign gene insert, 

(6) Rec live-vectored (FPV, NDV, ILTV, 

VSV) HA expressing vaccine, 

(7) Inactivated reverse genetics engineered 

HA NA vaccine, 

(8) DNA vaccine, 

(9) Virus-like particles, 

(10) Reassortment heterologous N (H9N8) 

vaccine 

(1) Heterogenous N ELISA to wild-type, 

homologous H protein, 

(2) E.coli or baculovirus expressed NS1-

specific ELISA, 

(3) NA inhibition assay, 

(4) MHV 5B19 synthetic peptide ELISA, 

(5) Rec. M2e ELISA, 

(6) NP ELISA, 

(7) M ELISA, 

(8) Recombinant N2 ELISA 

Halvorson, 2002;  

Capua et al., 2003; 2004;  

Liu et al., 2003; 

Tumpey et al., 2005; 

Zhao et al., 2005; 

Gao et al., 2006;  

Lambrecht et al., 2007; 

Li et al., 2008; 

Jadhao et al., 2009; 

Kwon et al., 2009; 

Avellaneda et al., 2010; 

Brahmakshatriya et al., 2010; 

Uttenthal et al., 2010; 

Choi et al., 2013; 

Hemmatzadeh et al., 2013 

Foot and Mouth 

Disease Virus 

(FMDV) 

Suids, bovids 

Nak. capsid 

Pos. ss RNA 

8.5 kbp; 1 ORF 

Picornaviridae 

 

(1) Synthetic peptide vaccine, 

(2) Inactivated vaccine, 

(3) Rec. multiple epitope vaccine 

(1) EITB assay,  

(2) Indirect ELISA,  

(3) NSP - 3ABC Blocking ELISA, 

(4) E.coli and baculovirus expressed 

NSP, 

(5) Antigen-capture NSP ELISA, 

(6) Whole virus blocking ELISA, 

(7) Peptide and recombinant protein-

based multiplex assays, 

(8) Mucosal IgA ELISA  

Strebel et al., 1986;  

Villinger et al., 1989; 

Bergmann et al., 1993;  

De Diego et al., 1997;  

Mackay et al., 1998;  

Sørensen et al., 1998; 

Chung et al., 2002; 

Clavijo et al., 2004;  

Parida et al., 2006;  

Perkins et al., 2007a; b;  

Shao et al., 2011 

Classical swine 

fever virus 

(CSFV) 

Suids 

Env. capsid 

Pos. ss RNA  

12.5 kbp; 1 ORF 

Flaviviridae 

 

(1) Baculovirus expressed rec. subunit E2 B/C 

neg. vaccine,  

(2) Baculovirus expressed rec. subunit E2 A 

neg. vaccine,  

(3) Rec. adenovirus vector vaccine expressing 

CSFV E2 gene,  

(4) Chimeric vaccines containing marker 

antigens, 

(1) E
RNS

-ELISA, 

(2) E
RNS 

 sandwich blocking ELISA, 

(3) Recombinant ELISA,  

(4) rRT-PCR  

Van Rijn et al., 1996;  

Bouma et al., 1999;  

Hammond et al., 2000; 2001;  

Van Gennip et al., 2001; 

2002;  

De Smit et al., 2001; 

Floegel-Niesmann, 2001;  

Hahn et al., 2001; 
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(5) Live attenuated , 

(6) E2 glycoprotein subunit vaccine, 

(7) Rec. E2 expression through swinepox 

vector system, 

(8) Chimeric CSFV/BVDV rec. vaccines 

expressing E2 or E
RNS

 

Dong et al., 2005; 

Huang et al., 2006;  

Dong and Chen, 2006; 

Koenig et al., 2007; 

Blome et al., 2011;  

Aebischer et al., 2013 

Equine influenza 

A virus (EIV) 

Equids 

Env. capsid 

Neg. ss RNA 

8 seg 

Orthomyxoviridae 

(1) Inactivated vaccine, 

(2) Canarypox vectored expression of HA 

(1) E.coli expressed NS1 Western blot,  

(2) NP-specific ELISA 

Birch-Machin et al., 1997; 

Minke et al., 2004 

Equine arteritis 

virus (EAV) 

Equids 

Env. capsid 

Pos. ss RNA 

12.7 kbp; 8 ORF 

Arteriviridae 

(1) Live GL neg. live vaccine (1) Synthetic GL peptide ELISA Castillo-Olivares et al., 2003 

Blutongue virus 

(BTV) 

Bovids 

Nak. capsid 

ss RNA 

10 seg 

Reoviridae 

(1) Inactivated vaccine (1) E.coli expressed rec. NS3 indirect 

ELISA 

(2) Major core protein VP7 ELISA 

Barros et al., 2009 

 

Newcastle 

disease virus 

(NDV) 

Avians 

Env. capsid 

Neg. ss RNA 

15.2 kbp 

Paramyxoviridae 

(1) Live rec. NDV with immunodominant NP 

epitope substitution with MHV S2 GP 

 

(1) Synthetic NP immunodominant 

epitope indirect ELISA, 

(2) Synthetic MHV 5B19 synthetic 

peptide ELISA 

Mebatsion et al., 2002 

Bovine viral 

diarrhoea virus 

(BVDV) 

Bovids  

Env. Capsid 

Pos. ss RNA 

12.3 kbp 

Flaviviridae 

(1) Chimeric vaccine with heterogenous E
RNS

 

GP 

(1) E
RNS

 GP competitive ELISA with 

baculovirus rec. E
RNS

 

Luo et al., 2012 

Peste des petits 

ruminants virus 

(PPRV) 

Bovids 

Env. capsid 

Neg.-ss RNA 

16 kbp 

Paramyxoviridae 

(1) DNA vaccine, 

(2) Sub unit vaccines, 

(3) Rec. H protein through capripox 

expression, 

(4) Rec. F protein through capripox expression 

(1) Rec. N ELISA Diallo et al., 2007 

Rift valley fever 

virus (RVFV) 

Bovids, humans 

Env. capsid 

Neg ss RNA  

3 seg 

Bunyaviridae 

(1) Vectored rec. vaccine expressing GP: gN 

and gC 

(1) Multiplex NP and GP Van der Wal et al., 2012 

Susceptible hosts are listed in italics under viruses; Env. = enveloped; Nak. = naked; ss = single stranded; kbp = kilo base pairs; seg = segments; 

ORF = open reading frame; rec. = recombinant;  EITB = Enzyme-linked immunoelectrotransfer blot; ELISA = enzyme-linked immunosorbent 

assay; IFAT = indirect fluorescent antibody technique 
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Table 1.2 Animal DNA virus DIVA vaccine approaches 

Virus Virion proteome 

and genome 

DIVA approach References 

Vaccine Diagnostic assay 
Pseudorabies virus;   

Suid herpesvirus-1 

(PrV; SuHV-1) 

Suids 

Env., teg. capsid 

ds DNA  

143.4 kbp; 70+ORF 

Alphaherpesviridae 

 

(1) Live attenuated TK neg. mutant 

deletion vaccine,  

(2) inactivated  deletion vaccine  

(1) gE protein based indirect ELISA, 

(2) IFAT blocking ELISA,  

(3) Competitive ELISA 

Van Oirschot et al., 1988; 1990; 1991; 

1996; 

Kinker et al., 1997; 

Van Oirschot, 1999;  

Klupp et al., 2004 

Bovine herpesvirus-1 

(BoHV-1) 

Bovids 

Env., teg capsid 

ds DNA  

135.3 kbp; 73 ORFs 

Alphaherpesviridae 

 

(1) Live attenuated TK. neg., gE 

deletion mutant vaccine, 

(2) gD neg. eukaryotic expressed 

subunit vaccine, 

(3) killed gE deletion vaccine, 

(4) gD subunit vaccine, 

(5) gE neg. live attenuated vaccine, 

(6) gE neg. inactivated vaccine 

(1) Competitive gE blocking ELISA, 

(2) gD/gB indirect ELISA 

   

Flores et al., 1993;  

Kaashoek et al., 1994;1995, 1996; 

1998;  

Van Drunen Little-van den Hurk et al., 

1994; 1997; 

Bosch et al., 1996; 

Van Oirschot et al., 1996; 1997; 

Van Drunen Little-van den Hurk, 2006; 

Glazov et al., 2010; 

Zhao and Xi, 2011 

Bovine herpesvirus-5 

(BoHV-5) 

Bovids 

Env., teg. capsid 

ds DNA  

138.4 kbp 

Alphaherpesviridae 

 

(1) Live attenuated TK. neg. mutant 

deletion vaccine 

(1) Competitive gE blocking ELISA 

 

Delhon et al., 2003; 

Anziliero et al., 2011 

 

Infectious 

laryngotracheitis 

virus (ILTV) 

Avians 

Env., teg. Capsid 

ds DNA  

152.6 kbp 

Alphaherpesviridae 

 

(1) Rec. gG deleted vaccine (1) Rec. baculovirus/E.coli expressed 

gG ELISA 

Fuchs et al.., 2007; 

Lee et al., 2011; 

Shil et al., 2012 

 

Susceptible hosts are listed in italics under viruses; Env. = enveloped; Nak. = naked; ss = single stranded; kbp = kilo base pairs; seg = segments; 

ORF = open reading frame; rec. = recombinant; ELISA = enzyme-linked immunosorbent assay; IFAT = indirect fluorescent antibody technique 
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1.4.4 Manipulation of antibodies as markers of infection 

The DIVA concept was explained in Section 1.4.1, however, it may be argued that since 

modifying the definition to accommodate all vaccine/diagnostic systems, where a differential 

antibody response is provoked by the vaccine then subsequently detected by the 

accompanying diagnostic test, there is no specification of whether the biotechnological 

development has been towards the vaccine or the diagnostic assay. Since many DIVA 

approaches utilise conventional, inactivated or live attenuated vaccines, the current criteria 

for a ‘DIVA vaccine’ would imply that those conventional vaccines are then DIVA vaccines, 

which could apply for all vaccines if the relevant antigens could be characterised to 

differentiate responses to that vaccine. Therefore, ‘marker’ vaccination should still apply 

where the focus of development has been on manipulation of the vaccine antigens 

specifically, and perhaps DIVA applied to the overall system. This section attempts to 

provide a brief account of some of the many marker vaccines and DIVA approaches, 

independently, that have been developed against some of the most important RNA (Table 

1.1) and DNA (Table 1.2) viral diseases in the livestock and poultry industries. 

Exploiting the biological characteristics, i.e. of structural and non-structural proteins 

of the virus and/or host response to those proteins, is key to detecting differential antibody 

responses induced by the vaccine and infectious pathogen. Examples are given for six of the 

most economically important animal RNA (AIV, FMDV, CSFV and PPRV) and DNA (PrV, 

BoHV-1) viral diseases to highlight the different vaccine and diagnostic methods/strategies 

utilised, depending on the viral agent. 
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1.4.4.1 Marker vaccines 

(a) Endogenous antigen deletions 

Marker vaccines developed for the economically important alphaherpesviruses, PrV and 

BoHV-1, have been generated as live attenuated vaccines containing a deletion of a non-

essential, but immunogenic envelope glycoprotein, gE, and are used effectively as both live 

and inactivated marker vaccines (Van Oirschot et al., 1986; 1996; Vannie et al., 1991; 

Kaashoek et al., 1994; 1995; 1996; 1998; Bosch et al., 1996; 1997; Brum et al., 2010 cited in 

Anziliero et al., 2011). The live marker vaccines are often further attenuated by deletions of 

the thymidine kinase (TK) gene (Quint et al., 1987; Moormann et al., 1990; Kalthoff et al., 

2010; Anziliero et al., 2011). As described in Section 1.4.3, this was the first approach for 

differentiating antibody responses between infected and vaccinated animals. This protein 

target was particularly suitable as a ‘negative marker’ as it is not essential for replication or 

protection (Heffner et al., 1993; Van Drunen Little-van den Hurk, 2006). The negative 

marker approach permits identification of infected animals by detecting specific antibodies to 

the gE protein that is absent from the vaccine strain, thus vaccinated animals lack antibodies 

to this protein, but are sero-positive to the other glycoproteins of the virus. Despite other non-

essential envelope glycoproteins being identified and characterised as immunogenic from the 

PrV and BoHV-1 virions (Van Oirschot et al., 1996; Jones and Chowdury, 2008; Kramer et 

al., 2011; Zhao and Xi, 2011), only gE has been found to be expressed by all tested field 

isolates of PrV, making it the most reliable to detect antibody responses to all exposed 

animals (Van Oirschot et al., 1996). 

The diagnostic methods for detection of gE-specific antibodies were initially based on 

a competitive gE ELISA utilising gE-specific MAbs (Flores et al., 1993; Van Oirschot et al., 

1996; 1997; Van Oirschot, 1999). The high sensitivity and specificity of the serology tests for 

gE has contributed immensely to the success of intensive marker vaccination sero-
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surveillance programmes for AD (Pensaert et al., 2004). Improvements on the gE ELISA has 

been attempted using gE epitopes (Jacobs and Kimman, 1994), but concerns over potential 

antigenic drift (Ben-Porat et al., 1986) has limited their application. Recombinant, 

baculovirus expressed, gE protein ELISAs have proved much more promising and cost-

effective (Gómez-Sebastián et al., 2008). 

Another economically important disease that is likely to greatly benefit from DIVA 

vaccination strategies, which should pave the way to its global eradication is PPRV. Marker 

vaccines developed for PPRV have taken advantage of the virus surface proteins, which are 

highly immunogenic and an epitope mutation in the haemagglutinin (HA) protein has enabled 

differentiation of infected and vaccinated ruminants as antibodies were induced to the deleted 

epitope only in infected animals (Buczkowski et al., 2012). AIV also expresses immunogenic 

and protective HA surface proteins, but in contrast to PPRV a live attenuated AIV vaccine 

was developed focused on epitope deletions of the non-structural protein, NS1, however, only 

after inactivation was the vaccine strain safe (Brahmakshatriya et al., 2010).  

Chimeric viruses have proved an effective approach to marker vaccination and have 

been developed for PPRV and CSFV. By substitution of immunogenic proteins with 

homologous proteins of a closely related virus, the vaccine can be utilised as a marker 

vaccine by detecting antibodies of infected animals directed to the protein substituted from 

the vaccine. The NP protein of PPRV is known to be immunogenic and has been used as a 

negative marker on a recombinant ELISA after substitution with NP of the closely related 

RPV (Das et al., 2000; Parida et al., 2007). The chimeric virus vaccines developed for 

protection against CSFV were achieved by direct substitution of the analogous sequence of 

the immunogenic envelope proteins E2 or E
RNS

 with that of BVDV, which have proved 

highly efficacious marker vaccines and enabled antibody differentiation based on specific 

antibody detection to the protein absent in the vaccine (Van Gennip et al., 2001; 2002; 
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Koenig et al., 2007). The envelope proteins, E2 and E
RNS

, of this flavivirus, which have high 

and low neutralising activity, respectively (Hoffmann et al., 2005; Huang et al., 2006), 

provide ideal targets for this approach as one immunogenic protein is dispensable. The 

envelope protein E2 is predominantly protective protein, thus differential antibody responses 

can be induced by exploiting antibodies that recognise E
RNS

. However, the problems 

associated with negative markers in vaccines have been highlighted where the most 

protective antigen is also the most immunogenic, thus a lack of either one compromises either 

the diagnostic assay sensitivity or the vaccine efficacy as was the case for recent trials with 

chimeric marker vaccines for CSFV (Eblé et al., 2013). Other biotechnologically advanced 

approaches to marker vaccination for CSFV, which have proved very successful have 

included recombinant vectors such as porcine adenovirus, PrV and swinepox virus expressing 

CSFV E2 gene (Hammond et al., 2000; 2001; Hahn et al., 2001). CSFV replicon vaccines 

have been designed to carry CSFV-E2 and CSFV-E
RNS

 deletions (Van Gennip et al., 2001; 

2002; Stettler et al., 2002). 

DNA vaccination has not only proven a very promising approach to vaccination in 

general, but has broadened the potential for marker vaccination. DNA vaccines can be 

designed to express the immunogenic protein of interest, e.g. E2 of CSFV, and when used in 

conjunction with companion diagnostic ELISA tests targeting either the non-structural 

protein, NS3, or envelope protein E
RNS

, differentiation between infected and vaccinated 

animals is obtainable when a sufficient antibody response is induced (Andrew et al., 2000; 

Beer et al., 2007). 

(b) Exogenous antigens additions 

Exogenous marker vaccines are developed by either administering ‘foreign’ antigens (i.e. 

proteins not naturally recognised by the host), within the vaccine formulation (James et al., 
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2007; 2008) or through insertion of heterologous genes into the vaccine strain genome 

(Castrucci et al., 1992; Walsh et al., 2000a; b; Mebatsion et al., 2002; Fang et al., 2008) in 

order to induce a detectable differential antibody response. Antibody responses to the 

additional ‘foreign’ protein or epitope, detected by a serological test specific for the antigen, 

indicate that the animal is vaccinated, regardless of infection status. This so-called ‘positive 

marker’ (Van Oirschot, 1999) approach is described in detail in Section 3.1.1 and 3.1.2. 

1.4.4.2 DIVA strategies 

Despite the validity and sensitivity of the gE deletion marker vaccine approach for the alpha-

herpesviruses, a subunit vaccine was developed based on an alternative envelope 

glycoprotein, gD, which is an essential protein of BoHV-1 and is highly protective. This 

provided a highly cost-effective and safe vaccine that could be used in conjunction with 

sensitive and specific gE ELISA tests to detect infected animals (Babiuk, 1999; Kowalski et 

al., 1993; Van Drunen Little-van den Hurk et al., 1994; 1997). The disadvantage of the 

subunit vaccines is the delayed antibody response elicited compared to live attenuated 

vaccines (Van Oirschot, 1999; Van Rijn et al., 1996; Bouma et al., 1999; De Smit et al., 

2001; Beer et al., 2007) providing a longer window of potential false negative diagnosis. 

Highly efficacious vaccines have been available for AIV, FMDV and CSFV, but did 

not enable infected and vaccinated animals to be serologically differentiated using 

conventional diagnostics (Suarez, 2005; 2012; Beer et al., 2007; Rodriguez and Gay, 2011). 

This instigated research into diagnostic test development, as opposed to the vaccine 

specifically, for enabling DIVA strategies for already available subunit or whole inactivated 

vaccines (Bergmann et al., 1993; De Diego et al., 1997; Mackay et al., 1998; Clavijo et al., 

2004; Huang et al., 2006; Perkins et al., 2007a; b; Hema et al., 2007; Uttenthal et al., 2010; 

Mohapatra et al., 2011). The challenges that are encountered with development of DIVA 

strategies have varied depending on the viral disease.  
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DIVA diagnostic test development for whole virus inactivated vaccines against AIV 

and FMDV has been focused on non-structural proteins, e.g. NS1 of AIV and many of 

FMDV (Bergmann et al., 1993; De Diego et al., 1997; Mackay et al., 1998; Clavijo et al., 

2004; Tumpey et al., 2005; Hema et al., 2007; Kwon et al., 2009; Mohapatra et al., 2011) as 

well as structural proteins, e.g. the matrix protein for AIV (Suarez, 2005; 2012; Tumpey et 

al., 2005; Lambrecht et al., 2007; Kwon et al., 2009; Kim et al., 2010; Hemmatzadeh et al., 

2013). As these proteins are highly abundant when expressed during virus replication within 

the infected cell they induce antibody responses only in infected animals. They are either 

absent, or not highly abundant in vaccinated animals as the vaccine strain is not replicating 

(Clavijo et al., 2004; Uttenthal et al., 2010). Other characteristics that make the non-structural 

proteins ideal diagnostic targets is that they are highly conserved amongst serotypes and 

subtypes of AIV and FMDV (Doel, 2003; Clavijo et al., 2004; Uttenthal et al., 2010; Shao et 

al., 2011) unlike the vaccines themselves where many serotypes and subtypes exist for AIV 

and FMDV. However, for CSFV, this actually prevents their application for DIVA 

diagnostics as the high conservation of non-structural protein NS3 amongst pestiviruses, 

leads to problems of antibody cross reactivity in the field (Van Gennip et al., 2001; 

Hoffmann et al., 2005; Beer et al., 2007). This has made subunit vaccine development a 

preferred approach for CSFV as the envelope proteins can be used instead, i.e. so that the 

protective E2 protein is used in the vaccine and diagnostic tests are developed for sensitive 

and specific detection of antibodies to the E
RNS

 protein (Hulst et al., 1993; Floegel-Niesmann, 

2001; Huang et al., 2006). Subunit vaccines have also been developed to the protective 

HA proteins of AIV (Plotkin, 2011), which are compatible for DIVA strategies using the 

specific and sensitive diagnostic tests developed to other structural and non-structural 

proteins.  
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Multiplex assays have been developed to circumvent problems with variation in 

immunoreactivity of FMDV non-structural proteins (Perkins et al., 2007a; b) and detection of 

mucosal IgA, which is produced in high levels only in infected animals, has been proposed as 

an alternative diagnostic to alleviate the issues encountered with serological sensitivity of IgG 

detection (Parida et al., 2006).  

Virus-like particles (VLPs) have recently proved an effective approach for DIVA 

vaccination as they are protective, but lack the internal proteins for which many DIVA 

approaches are based. This has been achieved for AIV and FMDV with an ELISA based on 

antibodies to the non-structural proteins (NSPs) (Choi et al., 2013; Porta et al., 2013). Purer 

vaccine preparations that lack NSPs of FMDV are also being developed to enhance the 

reliability of DIVA strategies for FMDV (Wang et al., 2002; Li et al., 2010). Furthermore, 

genetically engineered vaccines have been designed with multiple epitopes of FMDV and 

suitable serotype antigens of AIV to alleviate issues with cross-serotype protection and 

antigenic drift (Liu et al., 2003; Jadhao et al., 2009; Shao et al., 2011). 

More conventional approaches have involved the use of inactivated AIV vaccines 

with heterologous NA, but homologous HA genes to the field strain, that were applied 

strategically as DIVA strategies by detection of antibodies to field strain NA to indicate 

infection (Capua et al., 2003; 2004). 

However, regardless of the pathogen or vaccine, the ultimate defining factor of DIVA 

vaccination is the reliable detection of specific antibodies. The lack of sero-conversion and 

variable antibody initiation and duration continuously reported has emphasised the limitations 

of DIVA approaches for AIV and FMDV that are based on non-structural proteins (Clavijo et 

al., 2004; Avellaneda et al., 2010). 
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1.4.5 Genetic DIVA strategy 

Novel genetic DIVA strategies have also been developed for direct differentiation of the 

wild-type strain and vaccine strain viral genome within the host. For example, CSFV wild-

type strain and attenuated live vaccine strain were differentiated based on nucleic acid 

sequences using rRT-PCR (Hoffman et al., 2005; Beer et al., 2007; Blome et al., 2011). 

Genetic DIVA has previously been applied for BoHV-1 by targeting the gE gene, which had 

been deleted in the vaccine, thus differences between the vaccine strain and wild-type strain 

sequences can be determined directly (Schynts et al., 1999). The genetic DIVA approach 

could be particularly useful during acute stages of viral infection when antibodies produced 

to the marker may not yet be detectable, e.g. anti-gE antibodies to PrV are not detectable until 

10-17 days post infection (dpi) (Van Oirschot et al., 1996). 

 

1.5 Potential of DIVA vaccination for notifiable diseases in aquaculture 

The development of DNA vaccines has provided encouraging results for rhabdoviruses 

VHSV, IHNV and SVCV (Anderson et al., 1996a; b; Lorenzen et al., 1998; Lorenzen and La 

Patra, 2005; Sommerset et al., 2005a; Emmenegger and Kurath, 2008; Tonheim et al., 2008), 

which may enable a DIVA strategy if immunogenic epitopes of the G protein, for which 

some have been previously mapped for VHSV (Fernandez-Alonso et al., 1998), are absent 

from the expressed protein in the vaccine. Specific antibody responses to VHSV have been 

reported to be detectable > 6 months (Lorenzen and La Patra, 1999; Fregeneda-Grandes et 

al., 2008), which would be necessary for DIVA strategies to be implemented for this 

rhabdovirus. One of the very few reported studies of developing marker vaccines for fish 

viruses (Enzmann et al., 1998; Dhar et al., 2010) inserted the G gene of VHSV and IHNV 
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into pathogenic bacteria (Aeromonas salmonicida) as a vector. This induced differential 

antibody responses from immunised rainbow trout to the vaccine strain and pathogenic virus 

by western blot (Enzmann et al., 1998). In the same study a genetic DIVA vaccine was also 

constructed by utilising a variable region of the G-gene to develop a differentiating RT-PCR 

for an attenuated vaccine. Therefore detection of vaccine strain virus can be differentiated 

from wild-type virus (Enzmann et al., 1998). Another example was obtained by successful 

expression of exogenous foreign marker genes in IHNV, i.e. GFP, following a deletion of the 

non-structural NV protein gene by reverse genetics (Biaccesi et al., 2000). This differential 

gene expression could be utilised for genetic DIVA approaches.   

Another study applied a different approach to positive marker vaccination for another 

aquatic RNA virus of the birnaviridae family, infectious pancreatic necrosis virus (IPNV). 

Subviral particles (SVPs) are formed by structural virus proteins self-aggregating to form 

particles that do not mimic the native virus capsid (Dhar et al., 2010). These have been 

synthesised from infectious pancreatic necrosis virus (IPNV) VP2 protein (Allnutt et al., 

2007). The subsequent recombinant VP2 (rVP2) particles were also able to carry foreign 

protein insertions, which reduced IPNV shedding in immunised rainbow trout and elicited 

specific antibodies to the foreign antigen, c-myc (human oncogene) and to VP2 (Dhar et al., 

2010). If antibodies are also detectable to alternative IPNV proteins only in infected fish, e.g. 

VP3, then such a vaccine could be utilised for DIVA vaccination.  

Previously, an aquatic DNA virus, a member of the alloherpesviridae, channel catfish 

virus (CCV), has also been investigated for its ability to support the insertion of foreign 

genes, thus provide an effective vaccine vector (Zhang and Hanson, 1996). The foreign 

protein was found to induce a specific antibody response in vaccinated catfish, but following 

infection it would not be possible to indicate fish as uninfected using such a vaccine. A 

number of vaccines have been developed for KHV, but at present only live attenuated 
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vaccines have been commercialised (Ronen et al., 2003; KV3, KoVax; Cavoy® Novartis). 

These vaccines do not, however, enable antibodies to be differentiated between infected and 

vaccinated, although genetic DIVA is available for the KoVax vaccine as a PCR was 

developed specific for an altered nucleotide sequence in the vaccine strain. This can be 

differentiated from the wild-type virus by PCR (KoVax). 

A recently developed oral subunit vaccine for ISAV is based on the haemaggluttinin 

esterase (HE) protein (Dhar and Allnutt, 2011; Centrovet, Chile). This could potentially 

enable a DIVA approach by screening for antibodies against the nucleoprotein (NP) that is 

lacking in the vaccine as only infected fish would respond to this antigen. Indeed the NP 

protein has been reported as a highly immunogenic antigen (Falk pers. comm. cited in Wolf 

et al., 2013) and recombinant proteins developed for the HE protein (Krossøy et al., 2001; 

Müller et al., 2008) would enable an indication of vaccine efficacy if coated on ELISA plates. 

By using such marker vaccines in conjunction with their companion diagnostic test, it 

may be possible to implement DIVA strategies using serology whereby all fish within the 

infected site are destroyed, but all fish in the control and surveillance zones are ‘emergency 

vaccinated’ with the marker vaccine. Those populations of fish that are subsequently found to 

be positive for antibodies to the marker would be destroyed, while those negative may be 

spared (Fig. 1.2). 
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Figure 1.2 Schematic map of hypothetical ISA outbreak in Scotland with control zone 

and surveillance zones during a DIVA vaccination eradication programme. 

Implementing a vaccination eradication programme during an outbreak of ISA, all fish at the 

infected site (A) are culled whilst those fish in farms within a 5-10 km radius of the infected 

site (Control zone) (B) are emergency vaccinated. Any fish positive for antibodies to the 

marker are immediately slaughtered, whilst negative fish are spared. Movement of stocks is 

still restricted within the control zone. All fish are also vaccinated within the surveillance 

zone (C) and movements are permitted as antibodies to the vaccine can be differentiated from 

those to infection. After McGill (2005)  

 

Dhar et al. (2010) pertinently stated that “methods to reduce viral diseases in 

aquaculture will improve both the quality of life of the animal and make the industry more 

sustainable”. This could be achieved more effectively by DIVA vaccination. However, 

approaches to marker vaccine development against fish viruses are limited, and the feasibility 

of DIVA vaccination for fish has not been assessed. Differences in humoral immunity 

between higher and lower vertebrates must be taken into consideration as well as the DIVA 
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approach to particular viral pathogens to shed more light on the feasibility of this vaccination 

strategy for aquaculture. 

 

1.6 Adaptive immunity: The antibody response 

The complexity of DIVA/marker vaccination, which is based upon the intrinsic association 

with viral antigen and host adaptive immunity, was described with examples in Section 1.4.4. 

Whether the protein targets used for DIVA are based on replication kinetics of the live virus, 

e.g. screening antibodies against non-structural proteins or matrix proteins in AIV and 

FMDV, or the absence of protein from the vaccine strain, i.e. in the case of a marker vaccine, 

e.g. envelope glycoproteins of CSFV, PrV and BoHV-1, the success of DIVA/marker 

vaccines is ultimately dependent on the adaptive immune response to these antigens. 

Therefore, for development of DIVA vaccination strategies in lower vertebrates, i.e. for fish, 

the intricacies of the immune system need to be taken into account. The adaptive immune 

response, and features that differ in fish compared to mammals, are particularly pertinent in 

this regard. In evolutionary terms fish are the first group of animals with the basic aspects of 

the immune system of mammals and there appear to be more similarities than differences 

(Flajnik, 1996; Sommerset et al., 2005a). An account of the adaptive immune response in this 

section refers primarily from what is known in mammals. Similarities and comparisons to the 

teleost fish immune system are made throughout. Text referring to Fig. 1.3 is indicated as 

bold numbers in brackets. 

1.6.1 B cell receptors, T cell receptors and complement activity 

In general terms, antibodies secreted by B cells bind to antigens of pathogens in the blood 

stream and at the mucosal surfaces, limiting infection to cells, whereas the T cells are 

responsible for recognising antigens and killing infected cells (Flint et al., 2009). Specific 
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molecular recognition is mediated by different routes via B cells and T cells (Fig. 1.3). B 

cells are produced in the bone marrow of mammals (Lydyard et al., 2000) and head kidney of 

teleost fish (Zapata et al., 1996; Press and Evensen, 1999) and harbour membrane bound 

antibody, as an antigen receptor, by the Fc domain of the immunoglobulin (Flint et al., 2009). 

Fc receptors (FcRs) have been described in fish such as carp and catfish (Koumans-van 

Diepen et al., 1994; Fujiki et al., 2000; Stafford et al., 2006). The head kidney and spleen of 

teleosts are the main lymphoid organs (Rombout et al., 2005). The fish head kidney is also a 

major producer of antibody as well as melanomacrophage accumulations that are able to 

retain antigens for long periods of time after vaccination and therefore has a possible role in 

immunological memory (Press et al., 1996; Press and Evensen, 1999).  

The T cell precursors are also produced in the bone marrow of mammals, but must 

migrate to the thymus gland for maturation (Workenhe et al., 2010). T cells utilise T cell 

receptors (TCR) and 1 of 2 glycoprotein oligomers, major histocompatibility complex 1 

(MHC I) or 2 (MHC II), that are able to display fragments of internal cellular proteins on the 

cell surface (Fig. 1.3 (1)). While most cells are able to display MHC class I molecules, only 

the professional antigen presenting cells (APCs), macrophages, neutrophils, B cells and 

mature dendritic cells, are able to present MHC class II (Flint et al., 2009). Following 

characterisation, these cells have been reported to be functionally and morphologically 

equivalent to those in fish (Manning and Nakanishi, 1996; Whyte, 2007). Pathogens entering 

the body are ingested by dendritic cells and macrophages by phagocytosis. This stimulates 

these cells to mature and migrate to secondary lymphoid tissue where the antigens are 

presented to naïve lymphocytes, which is critical for the adaptive immune response 

(Workenhe et al., 2010). After binding of FcR to the Fc region of the Ig molecule, a variety 

of responses are induced. These include a number of cellular responses such as increased 

phagocytosis and respiratory burst as well as regulation of B cells. Ig binding capacity has 
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previously been observed in peripheral blood leukocytes of Atlantic salmon and channel 

catfish (O’Dowd et al., 1998; Morrison and Nowak, 2002; Shen et al., 2002).  

 

Figure 1.3 Humoral and cellular branches of the adaptive immune response against 

viral infections. Numbers represent processes described in the text. 

After Flint et al. (2009) 

 

Antibody-dependent complement activation is also mediated through the Ig Fc region 

following antigen complexing. In fish, the complement system constitutes an important facet 

of defence against microbes. It has been characterised in cyclostomes, elasmobranchs and 
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teleosts (Yano, 1996) and is considered an adaptation for the lack of a well-developed 

acquired immune system (Sunyer et al., 1998; Nonaka and Smith, 2000). The classical 

(antibody-dependent), alternative (antibody independent) and lectin complement pathways 

have been characterised in fish and represent integral aspects of fish immunity (Yano, 1996; 

Sunyer et al., 1998; Nonaka and Smith, 2000; Morrison and Nowak, 2002; Nakao et al., 

2006). The classical complement pathway is activated, after binding of antibody (IgG or 

IgM) to C1q (Holland and Lambris, 2002), through a cascade of interactions involving C4, 

C2, C3, C5, C6, C7, C8 and C9 and the alternative pathway is activated directly through C3 

in the presence of factors B and D followed by C5 – C9 (Yano, 1996; Kaattari and Piganelli, 

1996; Holland and Lambris, 2002). The lectin complement pathway is initiated by binding of 

protein complex consisting of mannose-binding lectin (MBL) (Holland and Lambris, 2002). 

The latter components of the complement pathway (C5-C9) form the membrane attack 

complex (MAC), which forms a pore within the membrane of virus infected cells, causing 

lysis of the cell or pathogen, and has been demonstrated in fish (Tomlinson et al., 1993; 

Holland and Lambris, 2002). The MAC has been reported to have effective virucidal activity 

in salmonids, possibly contributing to resistance to infection (Sakai et al., 1994 cited in Yano, 

1996). The C1q molecule is an important aspect of the complement cascade and has been 

identified in fish, e.g. carp and Atlantic salmon (Yano et al., 1988 cited in Kaattari and 

Piganelli, 1996; Arason, 1996). The binding of the first component of complement (C1), 

requires an intimate association with more than one monomeric Fc, which is considered much 

more effective with pentameric IgM than monomeric IgG for cross-linking of Fcs with a 

single C1q molecule (Borsos et al., 1981; Winkelhake, 1979 cited in Kaattari and Piganelli, 

1996). This may contribute to the efficiency of fish complement activity after binding of the 

tetrameric IgM, which has been demonstrated in rainbow trout (Elcombe et al., 1985). 

  



Chapter 1 – General Introduction 

46 

1.6.2 Lymphocytes: B cells, T cells and natural antibodies 

Different antigenic properties determine the specific antibody or T cell response to a 

particular antigenic determinant. While antibodies can recognise 3-6 amino acids (aa) or 5-6 

sugar residues, large molecules are multideterminant (Lydyard et al., 2004). Different 

antigens capable of eliciting an immune response include proteins, carbohydrates, lipids and 

nucleic acids. Binding of antibody can vary depending on conformational antigenic 

determinants of the molecule and how it is folded while T cell receptors recognise linear aa 

sequences (Lydyard et al., 2004). B lymphocytes bind directly to discrete epitopes of 

contiguous sequences or unique conformations of intact proteins. Upon antigen recognition 

with the membrane bound antibody, the B cell is stimulated to divide and the progeny cells 

differentiate into antibody secreting plasma cells and a smaller number of memory B cells. 

The plasma cells are short lived, but continue to secrete clones of the membrane bound 

antibody of the precursor B cell (Roitt, 1997; Lydyard et al., 2004). 

 During maturation T lymphocytes are selected based on their TCRs and only those 

that do not possess TCR against self-antigens (1-2%) emerge from the Thymus gland of 

mammals to differentiate into T helper (Th) cells or cytotoxic T lymphocytes (CTLs). T 

helper cells are further divided into Th1, Th2 and Th17 cells, which are positive for the cell 

marker protein, Cluster of differentiation 4 (CD4
+
). These are able to interact with antigen 

presentation cells, such as dendritic cells, which have MHC II proteins on their surface (Fig. 

1.3 (2)). After interaction in lymphoid tissue, the cells mature into either Th1 or Th2 

depending on the type of infection being encountered. Following maturation, Th1 cells 

promote a cell mediated response (Fig. 1.3 (3)) by inducing the stimulation of CTLs by 

releasing cytokines such as interleukin-2 (IL-2) and interferon gamma (IFN-γ), which also 

leads to inflammatory responses. The release of IL-12 also stimulates immature Th cells to 
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differentiate into Th1 and also secrete more IFN- γ, which in turn increases the activity of 

macrophages. The Th2 response is important in antibody production and is stimulated by Il-4. 

Th2 cells promote the maturation of B cells (Fig. 1.3 (4)) as well as activation of 

macrophages and release of other inflammation associated cytokines such as Il-4, Il-6 and Il-

10. The Th2 response is usually more associated with bacterial infections and multicellular 

parasites, but may also be important for controlling viral blood infections (Flint et al., 2009). 

Differentiation into Th17 cells occurs at interfaces between the internal and external 

environments, such as in the skin and lining of the gastrointestinal tract. When activated, 

these cells stimulate strong inflammatory responses, secrete defensins and recruit neutrophils 

to the site of activation (Flint et al., 2009). The immune response to infection must be 

regulated to prevent immunopathology to the host induced by CTLs. This is achieved by 

another subset of T cell, regulatory T cells (Treg cells). Stimulated Treg cells divide more 

quickly than CTLs and through the action of Treg cytokines the CTL response shuts down 

(Flint et al., 2009). Thus, as activated CTLs and Th cells produce Il-2, which is necessary for 

Treg-cell replication, the pool of Treg cells also diminishes. Ultimately the system returns to 

an unstimulated state and only a few memory CTL and Treg cells remain, which limits the 

degree of self-damage incurred to the host when fighting infection (Flint et al., 2009). 

Previously Treg cells have also been identified in puffer fish (Tetraodon nigroviridis), which 

function similar to that of mammals (Wen et al., 2011).    

 Another type of B cell (B1) is the first B lymphocytes produced in mammals in the 

foetus, which are situated primarily in the peritoneal and pleural cavities of the developed 

organism. These produce antibodies from unmutated germ-line genes before encountering 

any external antigen and constitute the natural antibodies, which are thought to represent a 

form of evolutionary memory in mammals (Roitt, 1997). These antibodies are produced after 

B1 lymphocytes are stimulated by T independent (TI) antigen interactions, and 
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characteristically bind with low affinity to commonly encountered pathogenic antigens (Roitt, 

1997). These low affinity antibodies are predominantly IgM, which have been shown to be 

vital for an immediate acute, innate response in mammals, even to the point where some cells 

differentiate to antibody producing plasma cells immediately following stimulation with 

antigen, e.g. LPS, whereas others migrate to the spleen to divide prior to differentiation 

(Yang et al., 2007). Natural antibodies are considered to play a particularly important role in 

lower vertebrate immunity, including fish (Sinyakov et al., 2002; 2006; Magnadottir et al., 

2009; Sinyakov and Avtalion, 2009; Sandmeier et al., 2012). It is also considered that the 

natural antibodies have a role in prevention of B2 cell stimulation of autoantigens as the low 

affinity, high avidity IgM will block such interactions (Roitt, 1997). The natural antibodies 

also initiate a first line of cooperation between innate and adaptive immune responses 

through complement. 

1.6.3 Characteristics of IgM – The predominant antibody class of fish 

Two of the most important aspects of the immunoglobulin molecule, in terms of antibody-

antigen complexes, are the concepts of affinity and avidity. These vary between the 

immunoglobulin classes, especially considering the differences in conformation between the 

systemic immunoglobulin classes, IgG and IgM. Affinity is a measure of the binding strength 

of the antibody binding site on the F(ab’)2 fraction of the immunoglobulin to the single 

determinant of an antigen (Fig. 1.4 C). There are 2 binding sites per monomeric Ig providing 

a divalent form, thus the multivalence can be calculated by multiplying the number of 

monomeric subunits by 2 (Denzin and Staak, 2000) (Fig. 1.4). There are five 

immunoglobulin classes in mammals, IgM, IgD, IgE, IgA and IgG for which IgG is produced 

after class switching to yield higher affinity binding sites. IgM in mammals lacks high 

affinity but its high valency, resulting from the pentameric structure, enables cross-linking 

between multiple epitopes of complex antigens that possess repeating units. This provides an 
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effective immune strategy during the early stages of an infection (Roitt, 1997) when high 

affinity IgG is lacking. 

Fish lack isotype switching (Workenhe et al., 2010) and possess predominantly IgM 

and to a lesser extent IgD and the recently discovered mucosal immunoglobulins IgT/IgZ 

(Hansen et al., 2005; Tian et al., 2009; Tadiso et al., 2011). The IgM molecule in mammals is 

a large pentameric polymer of 5 4-peptide subunits (Roitt, 1997), whereas the form of this 

differs in fish (Fig 4.1 A), which has led to much debate regarding the specificity of fish 

antibody binding. Some reports have subsequently challenged the effectiveness of fish 

diagnostic serology due to the apparent high avidity but low affinity of IgM (Denzin and 

Staak, 2000). Although the polymeric fish IgM molecule can exist as a pentameric form in 

elasmobranchs, it is tetrameric in teleosts (Wilson and Warr, 1992) (Fig 1.4 A-B). 

Monomeric IgM has also been reported in some fish species (Clem and McLean, 1975). 
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Figure 1.4 Diagrammatic representation of the IgM antibody molecule in teleost fish representing the tetrameric structure (A) The 4 

arms of the tetrametic IgM molecule of fish with variable interdomain and interchain disulphide bridging (white lines) (A1) compared to that the 

5 arms of the pentameric IgM molecule of mammals with consistent disulphide bridging between domains and chains (A2). The disulphides 

indicated in fish IgM are potential sites only (Kaattari et al., 1998). (B) The tetrametic macroglobulin consists of 8 heavy (µ) polypeptide chains 

and 8 light (L) polypeptide chains arranged as (µ2L2)4 (where µ= heavy chain and L = light chain (Wilson and War, 1992). (C) The monomeric 

structure of the Fab and Fc domains of each arm of the IgM showing the interchain disulphide bonds. The variable regions of the heavy (VH) 

and light (VL) chains are indicated as well as the constant regions, CH and CL. The hypervariable regions and the invariable regions of the Fab 

and constant region of the Fc are also shown (Flint et al., 2009). The example shown is mammalian. Fish lack the consistency of the disulphide 

bridging seen in mammalian Ig monomers. After Kaattari et al. (1998), Wilson and Warr (1992) and Flint et al. (2009) 



Chapter 1 – General Introduction 

51 

The polymerised molecule in fish generally consists of 4 divalent monomer arms 

attached at the centre, which in mammals is held together by the J chain (Davis et al., 1989), 

however, there is some uncertainty as to the presence of a J chain in fish (Wilson and Warr, 

1992; Kaattari et al., 1998; Morrison and Nowak, 2002). Variations in the form and 

functionality of fish IgM have prompted questions regarding its limited immunological 

diversity. Fish IgM shares common structural and functional features with that of mammalian 

IgM including high carbohydrate content, similar heavy chain, low affinity but high avidity, 

lack of logarithmic response following secondary antigenic challenge and limited affinity 

maturation (Du Pasquier, 1982; Wilson and Warr; 1992; Kaattari et al., 1998; Morrison and 

Nowak, 2002; Cain et al., 2002). 

The lack of isotypic diversity has been considered a contributing factor to the minimal 

specificity of antibody responses observed in fish including interesting variation in affinity 

even between binding sites on the same IgM molecule (Clem and Small, 1970). Furthermore, 

spectrotypic analysis by isoelectric focusing has revealed that specific antibody heterogeneity 

is restricted in goldfish (Carrassius auratus), tench (Tinca tinca) and carp (Cyprinus carpio) 

(Vilain et al., 1984; Wetzel and Charlemagne, 1985; Wilson and Warr, 1992).  

There are 4 basic chain units of the fish IgM molecule, which comprise of 2 heavy 

chains (µ) that are held together with 2 associated light chains (L) and are stabilised in 

various forms by disulphide bridging (Pilstrӧm and Bengtén, 1996) (Fig 1.4). The molecule 

can be divided into domains of approximately 100 aa whereby the most N-terminal domain 

belongs to the variable (V) domain, and the C-terminal belongs to the smaller constant (C) 

domain which exist on both heavy and light chains (Pilstrӧm and Bengtén, 1996; Morrison 

and Nowak, 2002). Diversity of the immunoglobulin binding sites is achieved by three 

regions within the V domain called the complementarity determining region (CDR) (Pilstrӧm 

and Bengtén, 1996). 
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Diversity among the V domains is an important process during Ig production in order 

to enable conformational binding to an infinite number of epitopes (Morrison and Nowak, 

2002), which is achieved during B cell differentiation, where different segments of DNA are 

brought together to form the mature genes encoding the 2 Ig chains (Pilstrӧm and Bengtén, 

1996). 

The gene encoding the H chain consists of 3 loci: the variable segment (V), diversity 

segment (D) and the joining segment (J), whereas the light chain has only V and J segments. 

Rearrangement of the V, D and J segments in fish bring about diversity, similar to that 

observed in mammals (Tonegawa, 1983; Wilson and Warr, 1992). 

The 3 CDRs are encoded by the V and D segments. The variable heavy chain CDR1 

and CDR2 are encoded by the V segment while CDR3 is encoded by the D segment. 

However, all CDRs of the V light chain are encoded only by the V segment (Pilstrӧm and 

Bengtén, 1996). The affinity for specific antigens is enhanced in mammalian B cell 

centroblasts by somatic hypermutation, which occurs at the same time as isotype switching 

and is targeted to the V region (Manis et al., 2002; Li et al., 2004), often in the CDRs, before 

cells differentiate into antibody producing plasma cells. This in turn generates a greater 

diversity between antibodies (Pilstrӧm and Bengtén, 1996). However, although it does occur 

in fish (Du Pasquier et al., 1998), somatic mutation, and thus affinity maturation within B cell 

centroblasts, is more limited in fish (Du Pasquier, 1982). Instead, it is thought that fish may 

have a greater pressure to express immediate germ-line genes to ensure protection from 

infectious micro-organisms as the progeny develop outside the mother (Du Pasquier, 1982) in 

a pathogen-rich aquatic environment. Although Mochida et al. (1994) found that immunised 

Nile Tilapia (Oreochromis niloticus) could produce antibodies with increased affinity and 

specificity similar to higher vertebrates, which were thought to be associated with somatic 

mutations, it is questionable whether this was the result of affinity maturation as fish lack the 
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germinal centres that could enable high affinity B cell clones to be selected (Morrison and 

Nowak, 2002). Alternatively, a minor increase in affinity in fish antibody responses is 

thought to be of greater significance than would be deemed for mammals, since fish rely 

predominantly on mulitmeric IgM (Cain et al., 2002). It has been suggested that a memory 

state in fish may result from the expansion of unprimed B lymphocytes (Arkoosh and 

Kaattari, 1991). 

Kaattari et al. (1998; 1999) proposed that fish have other means by which to obtain 

diversified antibody responses. One of the main differences between mammalian IgM and 

that of fish is the ability to produce structurally heterogeneous IgM by variation in the degree 

of disulphide polymerisation of monomer and half-mer subunits (Lobb and Clem, 1983). This 

is thought to occur through the assembly of redox forms of the IgM molecule by post-

translational modification resulting in different combinations of intrasubunit disulphide 

bonding (Kaattari et al., 1998; 1999), therefore increasing the diversity of IgM (Fig 1.5 A). 

The redox structure of antibodies in rainbow trout was also found to vary from different 

biological fluids, e.g. sera, eggs, ovarian fluid and mucus (Bromage et al., 2006). An 

interesting hypothesis is that fish IgM may benefit over mammalian IgM by increased 

flexibility as a result of variation in disulphide crosslinking between monomeric subunits 

(Kaattari et al., 1998). Such flexibility may provide a broader latitude for mediating effector 

functions such as complement fixation via the C1q receptor (complement pattern recognition 

protein), opsonisation with increased exposure of FcR binding, and an ability to 

accommodate topologically diverse epitopes (Kaattari et al., 1998; 1999) (Fig 1.5 B). In 

contrast, the rigidity of the uniform covalent disulphide bonded mammalian IgM was 

suggested to preserve the binding sites for complement (by C1q) during cross-linking of 

multivalent antigens (Feinstein et al., 1986).  
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Figure 1.5 Diagrammatic representations of Redox forms of teleost IgM and their 

possible diverse function (A) The comparison of mammalian IgM pathway during 

polymerisation of the monomers is shown (1), in relation to 2 possible pathways for fish IgM 

as proposed by Kaattari et al. (1998) (2) and (3). In the mammalian pathway (1) assembly of 

IgM is via the secretory pathway whereby complete polymerisation of the pentamer occurs in 

the endoplasmic reticulum. The teleost assembly of IgM may occur through the same 

pathway as that utilised by mammals (2), however, the diversity of the molecular products 

secreted by the cell would require all the forms to be already present in the endoplasmic 

reticulum and subsequently all transported through the secretory pathway in their final form. 

An alternative possibility is therefore that polymerisation of the secreted molecule is not 

finalised until late in the secretory pathway (3), whereby the final disulphide linkage does not 

occur until the immunoglobulin is secreted from the vesicle (Kaattari et al., 1998). (B) The 

rigid, complete monomeric disulphide linked IgM molecule of mammals (1). The variable 

disulphide linked IgM of teleosts (2). The arrows depict the potential flexibility of the 

putative fish IgM arrangement with regards to enhanced ability for contact with topologically 

diverse epitopes as well as latitude for effector functions including complement and 

opsonisation (Kaattari et al., 1998). ER – Endoplasmic reticulum; G – Golgi body; SV – 

Secretory vesicle; M – Membrane; EC – Extracellular; Ig m – Immunoglobulin molecule; Ds 

b – Disulphide bridge  

After Kaattari et al. (1998) 
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Despite steric hindrance reducing the valency of mammalian IgM to some antigens, 

the multivalency potentially allows binding to many epitopes from the single Ig where 

antigens have several repetitive epitopes (Roitt, 1997). It is generally considered that the high 

multivalency but low affinity of IgM favours cross-reactions between epitopes, and that the 

high affinity obtained after isotype switching is a compromise of immunological evolution 

(Roitt, 1997). 

Pilstrӧm and Bengtén (1996) suggested that the non-specific defence system including 

complement and C reactive protein may have improved through evolution for some fish 

species, which may therefore be of greater importance in the overall immune response against 

pathogens than specific or adaptive defence mechanisms, thus maybe minimising the 

necessity for high affinity antibodies.  

1.6.4 B cell and T cell co-operation for memory 

 Immunological memory is generated through the interactions of B cells, T cells and 

CD4
+
 helper cells, which together provide the exclusive property of the acquired immune 

response (Welsh et al., 2004). This system is vital for generating protection in mammals 

following primary infection or immunisation, whereby following clonal expansion and 

differentiation of B and T cells, a faster secondary immune response can be mounted with 

higher affinity and at a greater magnitude with increased longevity (Kuby, 1994). However, 

this enhanced, logarithmic increase characteristic of a secondary response appears restricted 

to monomeric IgG of mammals, and therefore such a response is more limited for fish 

multimeric IgM (Kaattari, 1994). Antibodies generated against viral antigen can be crucial for 

preventing the progression of viral infections by binding to virus and inhibiting its adsorption 

into host cells (Dimmock, 1984; Abbas et al., 2000). T cells also express CD8 surface 

antigens (CD8
+
 T lymphocytes) and these cells are important for specific effector 
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mechanisms, becoming active as CTLs during immunosurveillance against virus-infected or 

altered cells (Workenhe et al., 2010). However, the induction of a B cell response to antigen 

for the production of specific antibody can vary depending on the type of antigen it 

encounters. Not all fish are capable of producing specific antibodies, such as Atlantic cod 

(Gadus morhua), which instead appears to produce a much greater yield of non-specific 

natural antibodies (Magnadottir et al., 2009). 

The antibody response to an administered antigen may require T cell activity in order 

to induce the required antibody response for both protection provided by the vaccine antigen, 

and in the context of marker vaccination and diagnostics, for the induction of specific 

detectable responses to a marker and/or vaccine antigen (Bly and Clem, 1992; Secombes et 

al., 1996). Antibody production to an antigen depends on its biochemical properties. 

Polysaccharide antigens tend to induce a B cell antibody response, which is T-independent 

(TI antigens), whereas proteins will usually induce a T-cell dependent antibody response 

(TD) (Kaattari and Piganelli, 1996). Some fish have a delayed ability to respond to TD 

antigens (Etlinger et al., 1979; Tatner, 1986), which may result in greater susceptibility at 

early life stages (Evelyn, 1997). In mammals, B cell responses differ for type 1 T cell 

independent (TI 1), type 2 T cell independent (TI 2) and TD antigens depending on the 

requirement for T cell help (Roitt, 1997). Type 1 TI antigens include LPS from bacteria, 

which can induce a mitogenic polyclonal antibody response via toll-like receptors (TLRs) 

without being recognised specifically by the B cell hypervariable region surface receptors. B 

cells are able to focus such antigens on the surface, regardless of concentration, until a high 

enough concentration is obtained to stimulate its activation, although the antibodies produced 

are generally of lower affinity (Roitt, 1997). Highly repeated determinants of linear antigen, 

such as polysaccharides, induce TI 2 responses. These are mediated by macrophages that 

bind the antigen to specific B cells by cross linking of complementary Ig receptors generating 
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strong activation signals. However, some antigens are unable to directly stimulate B cells as 

they are rapidly degraded by phagocytosis, lack mitogenicity or possess univalent specificity 

of each of their determinants. These antigens require T cell help in order to induce an 

antibody response. Such antigens are only immunogenic once conjugated to an antigenic 

carrier protein, after which, if the molecule is large enough, it can be recognised by and 

endocytosed by the B cell (Roitt, 1997), which has also been demonstrated in various studies 

on TD and TI antigen immunised fish (Arkoosh and Kaattari, 1991; Jones et al., 1999a; Cain 

et al., 2002 Swan et al., 2008). The processed peptides of the hapten-carrier conjugate are 

subsequently presented by the MHC II pathway to the Th2 cell and in return the Th2 cell 

stimulates the B cell to divide, differentiate and produce anti-hapten antibodies (Roitt, 1997).  

1.6.5 Enhanced immunity by adjuvant and carrier molecules and implications on 

antigenic competition 

Adjuvants and carrier proteins can be used for formulating vaccines for TD antigens in order 

to induce the required specific antibody responses. Adjuvants containing antigens from killed 

pathogens, i.e. Mycobacterium cells of Freunds complete adjuvant (FCL), can induce strong 

stimulation of both B lymphocyte and T lymphocytes (Anderson, 1992). However, it is often 

necessary to manipulate the pathogen associated antigens in order to retain potency, but 

reduce toxicity. Following inactivation of the pathogen, it is not always possible to induce the 

responses required, as seen with bacterial enterotoxin B subunits, which successfully resulted 

in strong antibody responses in mice to Hen egg lysozyme (HEL) when co-administered with 

Escherichia coli heat labile enterotoxin (Etx) B subunit, but not the closely related Cholera 

toxin (Ctx) B subunit (Millar et al., 2001). The route of administration, which in fish is 

usually via ip where a relatively large volume of adjuvant can be inoculated into the 

peritoneal cavity, can also have a major influence on the antibody production induced to 
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multiple antigens as inoculation directly into the bloodstream can induce tolerance to the 

carrier (Serero and Avtalion, 1978). 

 Hapten-specific antibody responses can, however, be suppressed by booster 

immunisation resulting in limited production of anti-hapten antibodies especially to 

immunoglobulin isotypes IgG2 and IgG3 but not to IgM, therefore would hypothetically have 

little influence on the fish antibody reactivity in terms of DIVA vaccination, i.e. if using 

conjugated peptide vaccines. After immunisation of fish with hapten-carrier immunogens, 

Killie and Jorgensen (1994) noted that anti-hapten antibody responses in Atlantic salmon are 

suppressed when more than one hapten is conjugated to the carrier protein. For example NIP 

(4-hydroxy-3-iodo-5-nitrophenyl-acetic-acid) suppressed responses to FITC (fluorescein-5-

iso-thiocynate), despite antibodies being raised against the carrier molecule Limulus 

polyphemus hemocyanin (LPH). This is considered to be a phenomenon of intra-molecular 

induced antibody suppression, i.e. antigen induced suppression (AIS) (Pross and Eidinger, 

1974; Killie and Jorgensen, 1994). In mammals immunisation with hapten-carrier molecules 

has resulted in the development of carrier specific T cells and hapten-specific B cells 

(Mitchison, 1971), although epitope-specific suppression has also been noted where 

conjugates may provoke the down regulatory effects on the antibody response. 

1.6.6 Detection of fish immunoglobulins: The basis of marker/DIVA vaccination 

Detection of the specific alternative antibody response to a ‘foreign’ exogenous marker 

(positive marker) or absent endogenous marker (negative marker) is achieved by serological 

testing using ELISA. Only animals inoculated with the vaccine containing the marker antigen 

will produce a detectable antibody response against the marker, whereas animals responding 

to epitopes associated with the pathogen indicate that they are infected or have been 

vaccinated with an alternative vaccine (James et al., 2008) (Fig. 1.6 A-B). Although this 
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approach does not enable a DIVA strategy, it can be applied for DIVA approaches if 

accompanied with a vaccine that differs sufficiently to the infectious agent to distinguish 

animals that had been vaccinated prior to becoming infected, which otherwise cannot be 

serologically identified by negative markers alone. The negative marker approach is achieved 

by specific detection of antibodies to an antigen absent from the vaccine to indicate infection, 

but antibodies to alternative antigens of the pathogen indicate vaccination (Fig. 1.6 C-D). 
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Figure 1.6 Schematic diagram of antigen specific enzyme-linked immunosorbent assay 

(ELISA) and antibody response to exogenous ‘positive’ and endogenous ‘negative’ 

marker vaccine antigens. A = conventional vaccine and ELISA; B = ‘positive exogenous’ 

marker vaccine and ELISA; C and D = ‘negative endogenous’ marker vaccines and ELISAs. 

(A) Antibody response to all vaccine antigens. Note no differential response to WT and 

vaccine; (B) Antibody response induced to vaccine and marker antigens indicating 

vaccination; (C) Positive signal induced to 2 viral antigens including antigen absent in the 

vaccine indicating infection; (D) Positive signal only to vaccine antigen present in the 

vaccine indicating vaccinated, but uninfected. Different coloured immunoglobulins represent 

specific antibody responses to: Orange = marker, blue = virus, yellow = vaccine. HRP and 

TMB are enzyme and substrate, respectively, involved in the reaction resulting in a 

chromogenic signal. WT = Wild type antigen. Shapes represent epitopes of the marker      , 

vaccine       and virus        antigens. 
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1.7 Model diseases for the application of marker or DIVA vaccination 

in aquaculture: 

Disease characteristics and aetiological agents 

1.7.1 ISA 

Thorud and Djupvik (1988) first recognised ISA, which they named Brennes syndrome after 

the region (Hastings et al., 1999; RSE, 2002), as a highly lethal and systemic disease of 

Atlantic salmon in Norway in 1984. The disease inflicts a broad pathology including 

lethargy, exophthalmia, ascites, pale gills with filamentous sinus congestion, enlarged 

haemorrhagic liver with necrosis, splenic congestion, erythrophagocytosis, congestion of the 

lamina propria in the stomach and foregut, petechiation of visceral fat, haemorrhage of the 

renal interstitial tissue and tubular nephrosis (Evensen et al., 1991; Nylund et al., 1993; Jones 

et al., 1999b; Simko et al., 2000; Hovland et al., 1994; Cipriano and Miller, 2003; Kibenge et 

al., 2004). Mortality rates can be highly variable between 10-100 % both during a disease 

outbreak and under experimental conditions, which can also be influenced on the genetic 

background of Atlantic salmon stocks (Nylund et al., 1995; RSE, 2002). Although ISA is 

considered to be a marine disease, and transmission between wild fish is thought to occur 

during the marine phase of the life cycle, horizontal transmission has been demonstrated in 

freshwater (Nylund et al., 1993; Simko et al., 2000). It is well established that the virus is 

present in the wild (Raynard et al., 2001; Snow et al., 2003; Plarre et al., 2005) with an 

abundance of potential reservoir hosts including sea trout (Salmo trutta), rainbow trout 

(Oncorhynchus mykiss), herring (Clupea harengus) and Arctic char (Salvelinus alpinus) 

(Nylund et al., 1994; 1995; 1997; 2002; Nylund and Jakobsen, 1995; Rolland and Nylund, 

1999; Devold et al., 2000; Snow et al., 2001). There is a possibility that these species may 



Chapter 1 – General Introduction 

62 

constitute asymptomatic life-long carriers of the virus, which may pose a threat to farmed fish 

stocks (Murray et al., 2010), but this has yet to be clarified (OIE, 2012). 

It is possible to isolate and propagate ISAV in cell culture, which has facilitated 

extensive analysis of the biochemical, physicochemical and morphological features of the 

pathogen. However, there is a great variation in cell susceptibility and virus titres that are 

yielded in vitro (Dannevig et al., 1995; 1997; Sommer and Mennen, 1996; Falk et al., 1997; 

1998; Kibenge et al., 2000; Rolland et al., 2003; 2005; Weli et al., 2013), which can be 

detrimental to diagnostics. These variations have been attributed to differential virulence 

factors in ISAV isolates and strains (Kibenge et al., 2000; 2007; Cunningham et al., 2002; 

Cook-Versloot et al., 2004), but they may also be associated with different host cell innate 

immune responses (Joseph et al., 2004; Kibenge et al., 2005; Schiøtz et al., 2009). 

Ultrastructural and molecular characterisation has revealed the aetiological agent as an 

enveloped, negative-sense single-stranded RNA virus with a virion of 90-140 nm diameter 

(Dannevig et al., 1995; Koren and Nylund, 1997; Mjaaland et al., 1997; Kibenge et al., 

2004). Further morphological and genomic characterisation of ISAV have led to its 

classification as an orthomyxovirus (Falk et al., 1997; Koren and Nylund, 1997; Mjaaland et 

al., 1997; Krossøy et al., 1999) in a newly formed Isavirus genus (Kawaoka et al., 2005 cited 

in OIE, 2012). The genome consists of 8 distinct linear RNA segments that have all been 

sequenced (Biering et al., 2002; Mjaaland et al., 1997; Krossøy et al., 1999; 2001; 

Cunningham and Snow, 2000; Rimstad et al., 2001; Ritchie et al., 2001; 2002; Clouthier et 

al., 2002; Snow et al., 2003). The genome segments 7 and 8 have 2 open reading frames 

(ORFs), while all others have 1 each, similar to influenza virus A and B. The total molecular 

size of the genome is 14.3 kbp (Clouthier et al., 2002) encoding for at least ten proteins 

including nine structural proteins: the 66 kDa phosphorylated nucleoprotein (NP), 22 kDa 

matrix protein (M), and 2 glycosylated surface proteins, the 42 kDa haemagglutinin-esterase 
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protein (HE) and 50 kDa fusion protein (F) (Falk et al., 2004; Aspehaug et al., 2005), as well 

as one non-structural protein. The proteins of ISAV have been identified and characterised 

(Falk et al., 2004; Kibenge et al., 2004; 2007) and like other orthomyxoviruses e.g. AIV, the 

haemagglutinin is essential for binding the virus envelope to sialic acid residues on the cell 

surface and is one of the most important proteins in terms of virulence, but unlike the 

neuraminidase of AIV, the haemagglutinin of ISAV is accompanied by esterase. The HE 

protein exhibits haemagglutinating activity of red blood cells as well as receptor destroying 

activity and the F protein has a role in fusion of the virus to the cell membrane. (Falk et al., 

1997; Mjaaland et al., 1997; Rimstad and Mjaaland, 2002; Kibenge et al., 2004). Therefore, 

although the ISAV haemagglutinin differs remarkably in size from that of AIV, it still 

conforms to many of the properties of the orthomyxovirus viral heamagglutinins (Rimstad et 

al., 2001). More recently, however, evidence indicates that the ‘haemagglutination-infection’ 

differs phenotypically from that of AIV (Workenhe et al., 2007) and the lack of elution from 

infected Atlantic salmon erythrocytes, which is facilitated by acetylesterase activity (Falk et 

al., 1997; Eliassen et al., 2000), is an advantage for the virus. 

Sequence analysis of the genome has revealed some very important differences, 

especially with regards to the HE gene, not only in terms of virulence, but also the 

geographical origin of isolates (Kibenge et al., 2004; 2009a; Mjaaland et al., 2005; Vike et 

al., 2009). Mutations within the highly polymorphic region (HPR0) of the HE gene, i.e. 

amino acid deletions, have been associated with virulence (Kibenge et al., 2006; 2007).  

Genotyping of segment 5 (F protein) of the viral genome revealed that an isolate had 

originated from Norway in a ‘dormant’ state before mutations (recombination insertion 

event) of the F gene occurred resulting in a virulent phenotype leading to disease outbreaks in 

Chile between 2007-2009 (Kibenge et al., 2009a). This highlights the instability of this virus 

(Kibenge et al., 2009a). Therefore, although the HE protein constitutes an important protein, 
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in terms of virulence, that has rendered it a target for development of a recombinant vaccine 

(Mikalsen et al., 2005; Müller et al., 2008; Dhar and Allnutt, 2011; Gomez-Casado et al., 

2011; Wolf et al., 2013), the F protein may also be an effective target regarding its 

association with virulence, but it too is prone to mutations (Markussen et al., 2008). 

1.7.2 KHVD 

Although the first outbreak of KHVD was described in Germany in 1997 (Bretzinger et al., 

1999) and the causative agent was identified the following year after disease outbreaks 

amongst carp and koi in Israel and the U.S.A. (Ariav et al., 1999; Hedrick et al., 2000), 

archival evidence and clinical observations suggests that the disease, or at least the virus, may 

have been prevalent in England in 1996 (Walster, 1999; Haenen et al., 2004). This report was 

based on the detection of KHV DNA in fixed tissues by in situ hybridisation (ISH). However, 

a recent report in South Korea also found viral KHV DNA in archival tissue samples (Lee et 

al., 2012), suggesting that the mass mortalities of common carp experienced there in 1998 

was likely to be KHVD-associated. This finding was supported by the detection of herpes-

like virus particles in infected common carp tissues by TEM (Choi et al., 2004). 

 Juveniles and younger carp appear more susceptible to KHVD although all age groups 

succumb to disease (Bretzinger et al., 1999; Perelberg et al., 2003; Sano et al., 2004). 

Experimental challenges of carp larvae have revealed that prior to maturation (i.e. >3 days 

post hatch), these fish were resistant to KHVD, however following maturation they succumb 

to disease (Ito et al., 2007a; 2007b both cited in Ilouze et al., 2011). A number of other 

factors can influence the manner of disease including stress and population density, 

especially considering the efficient transmission via faeces and secretions (Perelberg et al., 

2003; Dishon et al., 2005). However, temperature has the most significant impact on KHVD 

(St-Hilaire et al., 2005; 2009; Gilad et al., 2003; 2004; Ronen et al., 2003; Perelberg et al., 
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2005; 2008; Uchii et al., 2011). Koi herpesvirus disease is a seasonal disease and at optimal 

temperatures of 18-28ºC mortality rates can reach between 80-100% within 6 – 22 days 

(Bretzinger et al., 1999; Hedrick et al., 2000; Perelberg et al., 2003) with peak mortalities 

occurring after 8-12 dpi, whilst morbidity is usually 100% (Perelberg et al., 2003). The 

disease does not manifest above 30ºC due to inhibited viral replication, which has been 

demonstrated in vitro (Dishon et al., 2007; Ilouze et al., 2012a). 

 Both behavioural and clinical disease signs of KHVD can initiate rapidly after only 2-

3 dpi and vary massively, including lethargy, anorexia, increased respiratory movements, 

uncoordinated swimming, hyperaemia at the base of the fins and on the abdomen. Fish often 

gather at water inlets and gasp at the water surface. At these early stages pathology may 

already be evident in the gills (i.e. after 2 dpi). Gill filaments appear pale, patchy and necrotic 

with respiratory hyperplasia. Haemorrhaging may also be apparent on the body surface. 

Eosinophilic intranuclear inclusion bodies have also been observed histologically in the gills 

and severe inflammation can result in fusion of adjacent lamellae. Hyper-secretion of mucus 

can result in patches developing on the skin with a sandpaper-like texture. Sunken eyes 

(enophthalmia) is a common disease sign and is accompanied by emaciated body condition. 

Neurological signs occur towards the final stages of the disease and the fish swim awkwardly 

becoming disorientated with a loss of equilibrium. Internally, clinical pathology may include 

a swollen kidney and spleen with peritubular inflammatory infiltrate and congested blood 

vessels. (Walster, 1999; Hedrick et al., 2000; Haenen et al., 2004; Pikarsky et al., 2004; 

Ilouze et al., 2006a; Bergmann et al., 2007; Miyazaki et al., 2008; Michel et al., 2010a; 

Cheng et al., 2011). At lower temperatures the disease is notably more protracted (Walster, 

1999).  

 The only susceptible hosts to KHVD are Cyprinus carpio: common carp and koi and 

their hybrids (Gilad et al., 2002; Perelberg et al., 2003; Hedrick et al., 2006; Bergmann et al., 
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2010b; Ilouze et al., 2011; Michel et al., 2010a). However, KHV DNA has been detected in a 

large number of other species that were either experimentally challenged or naturally exposed 

to the virus, despite these fish being asymptomatic, including grass carp (Ctenopharyngodon 

idella), tench, (Tinca tinca), crucian carp, (Carassius carassius), Atlantic sturgeon (Acipenser 

oxyrinchus), Russian sturgeon (Acipenser gueldenstaedtii), blue back ide (Leuciscus idus), 

Ancistrus spp., and goldfish (Carassisus auratus) among others (El-Matbouli et al., 2007; 

Sadler et al., 2008; Kempter et al., 2009; Bergmann et al., 2009a; b; 2010b; c; Ilouze et al., 

2011; El-Matbouli and Soliman, 2011; Fabian et al., 2013). Furthermore, other studies have 

also detected KHV DNA in invertebrates such as the freshwater molluscs, swan mussel 

(Anodonta cygnea) and crustaceans such as scud (Gammarus pulex) (Kielpinski et al., 2010). 

These studies emphasise the potential role that abundant and diverse KHV reservoir species 

may play in the spread and outbreaks of KHVD. Moreover, experimental cohabitations have 

revealed that goldfish, grass carp and tench are capable of transmitting virulent KHV that has 

induced mortalities in naïve common carp (Bergmann et al. 2007; 2009b; 2010c; Michel et 

al., 2010a; El-Matbouli and Soliman, 2011). 

 Since its first isolation KHV has been successfully cultured in a number of cyprinid 

cell lines (Hedrick et al., 2000; Neukirch and Kunz, 2001; Oh et al., 2001; Ronen et al., 

2003; Pikarsky et al., 2004; Davidovich et al., 2007; Dong et al., 2011). This has facilitated 

extensive characterisation of this relatively new virus, which has been crucial for 

understanding the biology and pathogenesis of this important aquatic pathogen.  

Following the isolation of the etiological agent in different research laboratories in 

both Israel and U.S.A., there was initially some disagreement on the terminology of the virus. 

The name koi herpesvirus was associated with the morphologic resemblance to viruses of the 

order herpesvirales (Hedrick et al., 2000). Due to its larger genome than other herpesviruses, 

however, and the associated lesions that resulted from the disease, the virus was referred to as 
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carp nephritis and gill necrosis virus (CNGNV) in Israel (Perelberg et al., 2003; Ronen et al., 

2003; Pikarsky et al., 2004; Hutoran et al., 2005). The taxonomic designation of the virus has 

now been established. Although often still referred to Koi herpesvirus (KHV) the virus is 

now officially classified as Cyprinid herpesvirus -3 (CyHV-3) according to the International 

committee on Taxonomy of Viruses (ICTV) (Waltzek et al. 2005). The virus has also 

recently been classified as a member of the family Alloherpesviridae (Waltzek et al. 2009), of 

the newly formed order Herpesvirales (Davison et al. 2009), based on the complete 295 Kb 

genome sequence (Aoki et al. 2007).  

The large enveloped, double stranded DNA virus has an icosahedral capsid measuring 

110 nm in diameter, and the mature virion is between 180-230 nm including its glycoprotein 

envelope (Hedrick et al. 2000). Thus KHV has a typical structure for a virus of the 

Herpesvirales (Mettenleiter et al., 2009). The capsid is covered by a proteinaceous matrix that 

makes up the tegument, which is surrounded by a lipid envelope derived from host cell 

membranous organelles. The large double stranded linear DNA genome is flanked with left 

and right repeats (Aoki et al., 2007). The virus is closely related with CyHV-1 (carp pox 

virus; papilloma virus) and CyHV-2 (goldfish haematopoietic necrosis virus; GHNV) and 

distantly related to IcHV-1 (channel catfish virus CCV) and RaHV-1 (ranid herpesvirus; frog 

herpesvirus) (Waltzek et al., 2005; Ilouze et al., 2006b; Davison et al., 2009). Strains of KHV 

from Japan (J), Israel (I) and U.S.A. (U) sequenced by Aoki et al. (2007) revealed almost 

99% homology despite their geographical distance from each other. Sequence homology 

between isolates appears to be typical of KHV (Michel et al., 2010a). These were divided 

into 2 lineages: J and U/I, although all were thought to have been introduced into Europe 

since 2001 (Bigarré et al., 2009). 

There are 156 potential protein encoding ORFs including 8 ORFs encoded by 

terminal repeats (Aoki et al., 2007) in the KHV genome. The ORF25 family consists of 6 
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potential membrane glycoprotein encoding ORFs, four of which were detected in mature 

extracellular virions although the glycoproteins of KHV are not considered to have much 

similarity with other members of the Herpesviridae (Michel et al., 2010a; b). There are a 

number of other genes that are thought to play a possible role in immune evasion, such as 

ORF16, which encodes a potential G protein coupled receptor, ORF134, which codes for IL-

10 homologue and ORF12 which codes for a tumor necrosis factor receptor homologue. 

However the majority of the 156 ORFs of KHV (i.e. at least 110) lack any obvious homology 

with other organisms (Michel et al., 2010b). Six of the ORFs encode proteins with the closest 

relative in the families of Poxviridae and Iridoviridae (Aoki et al., 2007), e.g. ORF140 that 

encodes a thymydylate kinase and ORF 55 that encodes a thymidine kinase (Michel et al., 

2010b). Some of these proteins have been characterised more intently such as the TK 

encoded by ORF 55, which is the target of a sensitive PCR method (Bercovier et al., 2005), 

and the IL-10 encoded by ORF 134, which is potentially important for virus immune evasion 

mechanisms (Van Beurden et al., 2011a; Sunarto et al., 2012). However, compared with 

ISAV, very little is known regarding the functionality and complexity of the KHV proteins.  

Despite minimal heterogeneity between isolates of KHV (Aoki et al., 2007), low 

diversity molecular markers are being developed to discriminate between 9 genotypes (i.e. 7 

from Europe and 2 from Asia) (Kurita et al., 2009). Because KHV harbours the largest 

genome of the order herpesvirales, it has proven to be an ideal model for mutagenesis studies, 

which are being utilised to generate an infectious bacterial artificial chromosome (BAC) to 

produce recombinant KHV virus strains and possible live vaccine candidates (Costes et al., 

2008; Michel et al., 2010a). None of the many structural proteins have been studied in detail 

although the product of ORF81 is thought to represent one of the most immunogenic 

membrane proteins (Rosenkranz et al., 2008; Michel et al., 2010a). 
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1.8 Project aims 

The current project was undertaken to assess the feasibility of DIVA vaccination in 

aquaculture. The goal was to develop a DIVA strategy for vaccinated Atlantic salmon and 

carp against infectious salmon anaemia and koi herpesvirus disease, respectively, by 

exploiting fish antibody responses to various vaccine ‘markers’ using serology. The project 

was carried out over the course of a number of in vitro and in vivo experiments: 

 Investigate the feasibility of exogenous marker vaccination with whole inactivated 

vaccines against 2 model notifiable diseases: infectious salmon anaemia in Atlantic 

salmon and koi herpesvirus disease in common carp. (Chapter 3) 

Further studies were then focused on 1 of the models depending on antibody responses to the 

vaccines. Subsequently, the aims listed below were orientated towards DIVA vaccination for 

KHVD specifically 

 Characterise early pathogenesis with a virulent isolate and its influence on pathogen-

directed diagnostic methods prior to the production of pathogen-specific antibodies 

(Chapter 4) 

 Elucidate the most sensitive diagnostic assays for early stage detection (Chapter 4) 

 Examine the expression kinetics of virus structural proteins during the course of the 

infectious cycle in vivo and in vitro. This could provide useful information regarding 

their potential application in DIVA diagnostics (Chapters 4 and 5) 

 Establish the feasibility of sero-surveillance by screening fish from various case 

studies in the field and vaccine challenge trials (Chapter 6) 

 Develop a highly specific and sensitive serological test that can detect infected 

/exposed fish reliably (Chapters 3 and 6) 
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 Utilise recombinant proteins for an endogenous marker approach and evaluate the 

feasibility of a DIVA strategy for an inactivated vaccine (Chapter 6) 

 Extrapolate and characterise any potential targets for DIVA diagnostics (Chapters 5 

and 6) 
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2.1 Monoclonal antibody production 

2.1.1 Hybridoma cell culture 

2.1.1.1 Growth and maintenance 

Hybridoma cells producing monoclonal antibodies (MAbs) to Koi herpesvirus (KHV) were 

kindly provided by Dr. Sven Bergmann (Friedrich Loeffler Institut (FLI), Greifswald, 

Germany). Hybridoma cells producing MAbs to Infectious salmon anaemia virus (ISAV) and 

rainbow trout (Oncorhynchus mykiss) or Atlantic salmon (Salmo salar) immunoglobulin M 

(IgM) were developed at the Aquatic Vaccine Unit, Institute of Aquaculture, University of 

Stirling, Stirling, Scotland. Cells were cultured in Dulbecco’s Minimum Essential Medium 

plus additive (DMEM+) (Sigma-Aldrich, St. Louis, USA), containing 10% (v/v) foetal calf 

serum (FCS) (Sigma-Aldrich), 2.5 mL penicillin streptomycin (PenStrep) 1250 units (U) 

(10,000 U penicillin; 10 mg mL
-1

 streptomycin (Sigma-Aldrich)), 5 mL L-glutamine (200 

mM) (Sigma-Aldrich), and 5 mL sodium pyruvate (100 mM) (Sigma-Aldrich). The cells 

were cultured at 37°C in 5% CO2. Cells were expanded from 25 cm
2 

culture flasks containing 

approximately 8 mL to 75 cm
2
 (30-50 mL) then finally 150 cm

2
 flasks (100-125 mL) in order 

to obtain 1 L of cell supernatant from which the MAbs were concentrated and purified.  

Hybridoma cell suspension was harvested when > 90% of cells had died after 

approximately 10 days of culture. Forty-five mL of lysed cell suspension was aliquoted into 

50 mL centrifuge tubes (VWR International, Radnor, USA) and centrifuged at 1912 x g in a 

Sigma 4 K 15 centrifuge for 10 min at 4°C in order to pellet cell debris, and the supernatant 

containing the MAbs was pooled and retained. The supernatant stocks were kept at either 4°C 

for short term storage or -20°C for long periods of time.  
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2.1.1.2 Concentration of MAbs 

MAbs were concentrated through either (1) Amicon Ultra centrifugal filters (Millipore, Cork, 

Ireland) for small scale production, or (2) a Pall LV Centramate for larger scale production 

according to the manufacturer’s instructions. 

(1) The 10 Kilodalton (kDa) membrane of the Amicon Ultra centrifugal filters provides a 

simple method for concentrating MAbs, as high molecular weight immunoglobulins are 

retained within the filter and concentrated. Approximately 5 mL of hybridoma sample was 

added to the tubes, which were then centrifuged at 2,000 x g for 10 min at 4°C in a Sigma 4 

K 15 centrifuge. The eluent was discarded and more sample added. This procedure was 

repeated to concentrate the MAb samples to a volume of 1-2 mL.  

(2) The Pall L V Centramate concentrator consists of a peristaltic pump and membrane 

system and is more suitable for larger volumes of supernatant. After attachment of the 

cassettes and gasket to the concentrator, the system was sanitised with 0.1M NaOH at a 

pressure of 3-5 pounds per square inch (psi), then washed with H2O prior to equilibration 

with phosphate buffered saline (PBS), pH 7.2. Approximately 500 mL of hybridoma 

supernatant was fed through the system at 10 psi providing 25 mL of concentrated 

supernatant. The system was washed through with 0.5M NaOH pre-heated to 37°C at 25-30 

psi between runs with different samples. 

2.1.1.3 Purification of MAbs  

The concentrated MAb hybridoma supernatant was made up to 50 mL with binding buffer 

(20mM sodium phosphate, pH 7). The solution was filtered through a 0.66 µm filter step 

followed by a 0.22 µm nitrocellulose membrane (Millipore). All buffers including binding 

buffer, elution buffer and Tris-HCl were filtered through a 0.45 µm nitrocellulose membrane 
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before undertaking the procedure in order to eliminate contaminating particles that could 

affect the efficiency of the system and purity of the sample.  

Purification was undertaken by affinity chromatography through pre-packed 1 mL 

Affinity Purification High Trap Protein-G columns (GE Healthcare) containing Protein G 

sepharose
 
for binding Immunoglobulin G. The ÄKTA prime liquid affinity chromatography 

system (Amersham Biosciences) was used for purification of the MAbs. 

After fitting the column to the system, it was washed with ultrapure H2O and equilibrated 

with binding buffer prior to use. Filtered samples containing MAbs were passed through the 

system at a rate of 1 mL min
-1

 to allow IgG to bind to the column. Unbound proteins were 

washed through the column, monitored by UV spectrophotometry at 280 nm. Once the 

column was cleared of contaminating proteins, IgG bound to the column was eluted as 1 mL 

fractions with Glycine-HCl, pH 2.7. The eluted fractions were neutralised with 100 µL Tris-

HCl, pH 9. Fractions containing purified MAbs, determined from their absorbance at 280 nm 

were pooled and dialysed against PBS. Dialysis tubing cut into 20 cm lengths was activated 

by boiling for 5 min in 5mM EDTA, 200mM sodium bicarbonate then rinsed thoroughly in 

deionised H2O. This was repeated before autoclaving the tubing in deionised H2O. After 

extensive washing, the dialysis tubing was tied at either end after having added the purified 

MAb to the tubing. Three x 4 L buffer changes of PBS were carried out during the dialysis 

procedure before harvesting the sample. The concentration was then determined using a 

protein assay as described in the section below. 

2.1.1.4 Determining the concentration of the purified MAbs 

The Pierce BCA protein assay kit (Thermo Scientific, Rockford, USA) was used to determine 

the concentration of the affinity purified MAbs. The BCA kit is a colorimetric detection and 

quantification method for proteins, and is based on the reduction of Cu
+2

 to Cu
+
 in the 
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presence of protein in an alkaline medium, which can then be detected by chelation of 

molecules of bicinchoninic acid by the cuprous ion (Smith et al., 1985). This reaction is 

spectrophotometrically analysed at 562 nm and the concentration of unknown samples can be 

determined from a calibration curve of absorbance for known Bovine Serum Albumin (BSA) 

standards of known concentration. For this, BSA diluted in PBS was used to establish the 

standard curve according to the manufacturer’s instructions. Briefly, 25 µl of standard or 

unknown samples, in replicate, were mixed with 200 µl (1:8) of working reagent which was 

composed of 50 parts of solution A to 1 part of solution B and added to 96-well plates 

(Sterlin, Fisher Scientific, Newport, UK). The plates were covered with foil, shaken for 30 

sec at 600 shakes per sec (sps) on a plate shaker (Minishaker IKA) and incubated at 37°C for 

30 min. The plate was then read on a spectrophotometer (CECIL CE 2021) at 562 nm. 

Protein concentrations were calculated from a standard curve of absorbance values from 

protein standards of BSA ranging from 0-2,000 µg mL
-1

. 

 

2.2 Fish cell line culture 

During the project two salmonid cell lines were used for the production of ISAV and two 

cyprinid cell lines for the production of KHV. Growth conditions and maintenance varied 

depending on the type of cell line used. During subculture, volumes, concentrations and types 

of reagents varied depending on the culture vessels being used and these are summarised in 

Table 2.1. Unlike hybridoma cell cultures, all of these continuous cell lines are anchorage-

dependent requiring trypsinisation for subculture. 
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Table 2.1 Reagent volumes used during subculturing of cells 

Flask size 

(cm
2
) 

Dulbecco’s PBS 

(mL wash
-1

) 

Trypsin 

EDTA (mL) 

Volume (mL
-1

) added 

to new flask 

25 5 0.5 5-6 

75 10 1.5 18-21 

175 20 3 40-45 

PBS = phosphate buffered saline; EDTA = ethylenediaminetetraacetic acid 

 

2.2.1 Salmonid cell lines 

2.2.1.1 Salmon Head Kidney (SHK-1) cells 

SHK-1 cells were kindly provided by Prof. Birgit Dannevig (Norwegian College of 

Veterinary Medicine, Oslo, Norway). The cell line was originally developed from the head 

kidney of post-smolt Atlantic salmon and exhibits a fibroblast-like morphology (Dannevig et 

al.,1995), the cells of which have been characterised as leukocytes (Dannevig et al., 1997). 

The cells were cultured at 20-22°C without CO2 in Leibovitz’s L-15 +GlutaMAX-I 

medium (Invitrogen, Paisley, UK) containing 5% Australian Foetal Bovine Serum (AFBS) 

(Gibco, Paisley, Scotland), 4mM L-glutamine (Invitrogen), 40µM 2-mercaptoethanol 

(Invitrogen) and 50 i.u./µg Pen/Strep (Penicillin/Streptomycin, Invitrogen). Subculturing was 

undertaken at intervals of 10-14 days at a split ratio of 1:2 or 1:3 depending on the level of 

monolayer confluence and whether the subculture was for viral culture. A passage between 

50-72 was maintained as SHK-1 cells lose their susceptibility to ISAV around passage 80.  

Spent media was decanted and the monolayer was washed twice with Dulbecco’s PBS 

(Invitrogen). Trypsin- ethylenediaminetetraacetic acid (EDTA) solution (0.05% w/v trypsin, 
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0.02% w/v EDTA in PBS) (Invitrogen) was added to the monolayer for 1-2 min. Excess 

trypsin was decanted off once cells had developed an opaque and rounded appearance. 

Detached cells were subsequently collected and resuspended in fresh medium containing the 

necessary supplements, aspirating carefully before transferring to a fresh tissue culture flask 

and incubating at 20-22°C.  

2.2.1.2 Atlantic Salmon Kidney (ASK-2) cells 

ASK-2 cells are epithelial-like cells that were isolated from the kidney of a healthy Atlantic 

salmon for isolation of ISAV (Devold et al., 2000). These had originally been purchased 

from the American Type Culture Collection (ATCC). The culture conditions of these were 

similar to that of SHK-1 cells with minor modifications in the medium specification and the 

subculture intervals, which were between 2-3 weeks. The cells were cultured at 20-22°C 

without CO2 in Leibovitz’s L-15 +GlutaMAX
TM

-I medium containing 20% FBS (Gibco) and 

50 i.u./µg Pen/Strep (Invitrogen) maintained between passage 60-78. These cells were slow 

growing and could only be split at a ratio of 1:2 following the same protocol described for 

SHK-1 cells.   

2.2.2 Cyprinid cell lines 

2.2.2.1 Koi Fin (KF-1) cells 

KF-1 cells were developed from epidermal tissue of Koi and are characteristic of fibroblasts 

(Hedrick et al., 2000) (Fig. 2.1 C and D). The cell line was kindly provided by Dr. Keith Way 

(Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK).  

KF-1 cells were cultured in Minimum Essential Medium (MEM) medium containing 

Eagles’s salts (Invitrogen), 10% foetal bovine serum (FBS), 1% Non-Essential amino acids 

(NEAA, Invitrogen) and 2mM L-glutamine at 22-25°C with 4% CO2. Cells were subcultured 
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as described for salmonid cell lines using a 1:3 split ratio at 7-14 day intervals and passages 

were maintained between 108-144. Noticeable changes in cell morphology occurred towards 

later passages and the cells became increasingly difficult to maintain.  

2.2.2.2 Common Carp Brain (CCB) cells 

CCB cells were kindly provided by Dr. Matthias Lenk (Friedrich Loeffler Institut, 

Greifswald, Germany), which had previously been developed from brain tissue of Common 

carp (Cyprinus carpio L.) (Neukirch et al., 1999). The culture conditions for CCB cells were 

identical to that of KF-1 cells, however a much greater split ratio could be used with CCB 

cells (i.e. 1:3 to 1:6). One hundred percent confluent monolayers was achieved in just 5-7 

days and cell passage was maintained between 69-84, after which cell morphology changed 

and further subculture was often not possible. These cells also have a fibroblast-like 

morphology (Fig. 2.1 A and B). 

2.2.3 Cell counts 

Cell concentrations were required to determine specific seeding densities and multiplicities of 

infection (moi) for in vitro experiments. Cell monolayers were washed twice with DPBS then 

trypsinised, as described previously in Section 2.2.1.1. After detachment from the flask, 3-6 

mL of cell suspension was placed in a universal. One hundred microlitres of cell suspension 

was combined with 100 µl 0.5% Trypan blue dye in a Bijoux, placed on a haemocytometer 

(Hawksley, England) and viable cells counted under a compound microscope (Olympus, 

Japan) at 10x magnification. The mean cell number was determined from the two chambers 

of the haemocytometer. The average cell count was then multiplied by 2 (as the dilution 

factor of the cells was 2) giving the total number of cells = n x 10
4
 mL

-1
. This value was then 

multiplied by the total volume of cell suspension from which the count was made.  
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2.2.4 Storage of cells in liquid nitrogen 

Cells were washed and trypsinised as described in Section 2.2.1.1 and counted as described in 

Section 2.2.3. The suspended cells were centrifuged (Denley, BR401 centrifuge) at 150 x g 

for 5 min at room temperature (RT) in order to pellet the cells. After removing the medium, 

the cell pellet was resuspended in fresh medium, containing the optimal serum concentration 

for the cell line, and 10% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Dorset U.K.) was 

added. One millilitre ampoules of 3 x 10
6
 cells in cryovials were stored at -70°C for 1 h in a 

polystyrene container, which were then transferred to liquid nitrogen. A similar procedure 

was undertaken for storage of hybridoma cells except that they were cultured on 24-well 

tissue culture plates (Nunc, Fisher-Scientific, UK). 

 

Figure 2.1 Healthy common carp brain (CCB) cells and koi fin (KF-1) cells. 

Photomicrographs of CCB and KF-1 cell monolayers under phase contrast (A) Uninfected 

CCB cells 6 days old, x10 mag.; (B) Uninfected CCB cells 6 days old, x25 mag; (C) 

Uninfected KF-1 cells 6 days old, x10 mag.; (D) Uninfected KF-1 cells 6 days old, x25 mag. 

Scale bar = 500 µm mag. x10; 200 µm mag. x25 
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2.2.5 Recovery of cells from liquid nitrogen 

Cells were thawed and the 1 mL suspension was mixed with 5 mL of fresh medium 

containing the required supplements and placed in a 25cm
2
 culture flask (Nunc, Denmark). 

The cells were cultured at the optimal temperature and were checked after 3-5 h for cell 

attachment. Culture medium was replaced with fresh medium and the cells cultured until 

confluent. 

 

2.3 Virus Production  

2.3.1 Infectious Salmon Anaemia virus (ISAV) 

ISAV Scottish isolate V 0431 (Solway Project), obtained at the Virology Unit of the Institute 

of Aquaculture, University of Stirling, was cultured for use as antigen on ELISA for detecting 

anti-ISAV antibodies. The isolate was originally isolated from ISA infected Atlantic salmon 

on 10/02/2009 and was kindly provided by Dr. David Smail (Fisheries Research Services 

(FRS) Marine Laboratory, Aberdeen, Scotland). ISAV was initially propagated in SHK-1 

cells by inoculating a 60-70% confluent monolayer within 48 h of subculturing. Weaker 

cytopathic effects (CPE) were obtained by increasing the passage number. Therefore, ASK-2 

cells were also used as these have been found to be just as susceptible to ISAV as SHK-1 

cells (Rolland et al., 2005). The ASK-2 cell line was used at a confluence of 50-60% after 48 

h of incubation at 20°C. All virus inoculations were undertaken on pre-formed monolayers. 

Culture medium was decanted from cultures to be used for viral propagation, and the 

monolayer carefully washed with DPBS. One millilitre of ISAV-infected culture supernatant, 

diluted 1:2 in Hank’s Buffered Salt Solution (HBSS, Invitrogen) containing 2% FBS and 1 

mL, was applied to the SHK-1 or ASK-2 cell monolayers to allow absorption of the virus. 
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Cultures were incubated overnight on a rocking platform (Biometra) at 15°C without CO2 to 

allow absorption of the virus after which fresh L-15 medium with additives was added and 

cells cultured as described in Section 2.2.1. The serum concentration added to the ASK-2 

cells was reduced from 20% to 5% and the cultures were incubated at 15°C and checked 

regularly for signs of a cytopathic effect (CPE). Mock infected cells were incubated with 

HBSS, 2% FBS without virus during the absorption period. Once an obvious CPE and/or 

lysis was observed, monolayers were freeze/thawed at -70°C, and the cells scraped from the 

monolayer into suspension using a cell scraper (Nunc, Rochester, New York, U.S.A.). The 

CPE observed with ISAV in SHK-1 cells rarely developed into a full CPE, however infected 

medium was passaged every 7-10 days post infection (dpi) onto fresh monolayers. The cell 

suspension was centrifuged at 2,500 x g in an Eppendorf 5804 R centrifuge for 15 min at 

4°C. The resulting supernatant was retained and the pellet discarded. The supernatant was 

aliquoted and stored at -70°C and the viral titre determined by back titration according to the 

method of Spearman Kärber (Karber, 1931). 

2.3.2 Koi Herpesvirus (KHV) 

Four isolates of KHV were utilised during the project. An American isolate of KHV, H361, 

was kindly provided by Dr. Dietner Fichtner (FLI, Germany) via Dr. Keith Way (CEFAS, 

UK) and was cultured and maintained within the Virology Unit at the Institute of Aquaculture 

(IOA), University of Stirling and was used for all experimental work undertaken at IOA. This 

virus had originated from an adult Koi population experiencing mass mortality from koi 

herpesvirus disease (KHVD) in Eastern USA in 1998 (Hedrick et al., 2000). The second 

KHV isolate (D-182) was isolated from diseased Koi in England and was kindly provided by 

Dr. Keith Way (CEFAS, UK) and was cultured and maintained in CCB cells at the Friedrich 

Loeffler Institut, Greifswald, Germany by Miss Irena Werner and Dr. Sven Bergmann. This 
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isolate was used for the challenge performed in Germany at the FLI with Dr. Sven Bergmann, 

as part of the study presented in Chapter 4. Attempts to culture an Asian isolate kindly 

provided by Ms. Yahui Wang (Agri-Food and Veterinary Authority of Singapore (AVA), 

Lorong Chencharu, Singapore) were unsuccessful as a result of the freeze-dry process used to 

store the virus stock. However, an Asian isolate was utilised for an experimental challenge 

undertaken in Singapore by Ms. Yahui Wang and an Israeli isolate was utilised for an 

experimental challenge undertaken in Israel by Dr. Ofer Ashoulin (Madan, Ma’agan Michael 

Kibbutz, Israel), as part of the study presented in Chapter 6. 

KHV was initially propagated in KF-1 cells (Fig. 2.2 C and D), but susceptibility of the 

cell line deteriorated at later passages, which has also previously been noted by other 

researchers (Zhou et al., 2005, cited in Dong et al., 2011; Gomez et al., 2011). The CCB cell 

line proved to be more stable, grew faster, could be subcultured at a greater split ratio and 

was highly susceptible to KHV (Fig. 2.2 A and B), thus proving a more suitable alternative to 

KF-1 cells, particularly because of the need to bulk culture the virus for viral purification. All 

virus inoculations were undertaken on preformed monolayers. 

The cells were subcultured and maintained at 22°C over a period of 24-36 h until a 50% 

or 70-80% confluence had been obtained in KF-1 and CCB monolayers, respectively. The 

culture medium containing 10% FBS was removed and the monolayers were carefully 

washed with DPBS prior to inoculation with KHV. An adsorption period of 1-2 h at 20°C 

was performed before resupplementing the infected cultures with fresh MEM, which 

contained a reduced serum content (2%).  

Infected cells were maintained at 20°C in 4% CO2 and CPE was recorded every 2 days. 

Full CPE was obtained in 7-14 dpi after which the virus was passaged or harvested. Virus 

was passaged directly from the infected culture medium onto a fresh monolayer and stocks 
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were retained from each passage of virus in case of attenuation. An aliquot from each viral 

stock was titrated, stocks of which were kept at -70°C.  

Virus was harvested after CPE had reached 90-100% by centrifuging the lysed cell 

suspension at 3,800 x g (Eppendorf 5804 R centrifuge). The clarified supernatant was 

aliquoted and stored at -70°C. 

 

Figure 2.2 Koi herpesvirus (KHV) infected common carp brain (CCB) cells and koi fin 

(KF-1) cells. Photomicrographs of CCB cell monolayers under phase contrast (A) Infected 

CCB cells 6 dpi, x10 mag; (B) Infected CCB cells 6 dpi, x25 mag.; (C) Infected KF-1 cells 6 

dpi, x10 mag.; (D) Infected KF-1 cells 6 dpi, x25 mag. Scale bar = 500 µm mag. x10; 200µm 

mag. x25 
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2.4 Virus quantification 

2.4.1 ISAV quantification 

2.4.1.1 End-point titration of ISAV from pre-formed cultures 

SHK-1 and ASK-2 cells were seeded in 12-well plates to prepare pre-formed monolayers for 

virus inoculation. Cells were cultured as previously described in Section 2.2.1.2. One 

medium change was undertaken 24 h post seeding, then once the monolayers had reached a 

50-60% confluence after 48 h, after which spent medium was decanted and 0.2 mL of 5-fold 

serially diluted ISAV in HBSS, 2% FBS was added to the wells. After adsorbing overnight at 

15°C the cultures were supplemented with fresh medium, and cells were incubated for 2-3 

weeks. Mock infected cells, which received non-infected culture medium, were included in 

every assay. Cells were scored for CPE after 7, 14 and then finally 21 dpi. Only cultures 

exhibiting a CPE of at least 50% were scored as positive before determining the TCID50 

value by the method described in Section 2.4.3.1. 

2.4.1.2 End-point titration of ISAV from simultaneous cultures 

It proved difficult to undertake a simultaneous inoculation and back titration in 96-well tissue 

culture plates (Nunc, Denmark) with SHK-1 cells, therefore for simultaneous infection only 

ASK-2 cells were used. Eighty microlitres of HBSS (2% FBS) were mixed with 20µl of virus 

culture from Section 2.3.1 from left to right of the 96-well plate to produce a 5-fold dilution 

series of virus inoculum across the plate. The top and bottom rows of the plate only contained 

HBSS diluent. Confluent ASK-2 cells from a 25cm
2
 culture flask (Section 2.2.1.2) were 

trypsinised and 100µl of cell suspension added to every well of the 96-well plate, aspirating 

after the addition of the cells and incubating at 15°C without CO2. Cells were scored as 
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positive or negative depending on the level of CPE after 2 weeks and the end point titre was 

determined as described in Section 2.4.3.1. 

2.4.2 KHV quantification 

2.4.2.1 24-well plate end-point titration (pre-formed) 

Similarly to the pre-formed titration carried out for ISAV (Section 2.4.1.1), KF-1 and CCB 

cells were cultured overnight at 22°C in 24 well tissue culture plates (Nunc, Denmark) to 

form a monolayer. After 50-60 % confluence had been obtained, medium was removed and 

the cells were inoculated with 100 µL 5-fold serially diluted KHV virus in HBSS, 2% FBS. 

Mock infected cells received only culture medium with no virus. Absorption of the virus to 

the plate was undertaken for 1-2 h at 20°C before cells were resupplemented with fresh MEM 

medium containing 2% FBS. Cells were checked for the development of a CPE after 7 and 14 

dpi. TCID50 was determined according to the method described in Section 2.4.3.1. 

2.4.2.2 96-well plate end-point titration (Simultaneous/pre-formed) 

Simultaneous inoculation of 96-well plates was undertaken as that described in Section 

2.4.1.2 with KF-1 cells and CCB cells inoculated with 5-fold diluted KHV virus. However, 

the pre-formed method was preferred for KHV. One hundred microlitres of cell suspension 

was added to the wells of the 96-well plate (Nunc) and incubated overnight at 22°C in 4% 

CO2. The following day, 5-fold dilutions of KHV were prepared and 100 µL of this was 

added to cells after removing the old culture medium. After 1-2 h adsorption at 20°C, the 

cells were re-supplemented with fresh MEM medium containing 2% FBS and cultured for 14 

days, at which point the titre was determined according to the method described in Section 

2.4.3.1. 
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2.4.2.3 Plaque assay 

The plaque assay was predominantly used for confirmation of calculated TCID50 values. The 

plaque assay provides very sensitive, accurate and reliable quantitation of infectious virus 

particles, with each plaque being derived from a single infectious clone (Burleson et al., 

1992). The assay was originally developed to determine titres of bacteriophages (Dulbecco 

and Vogt, 1953) and was applied here to detect KHV (Ronen et al., 2003; Hutoran et al., 

2005). The used protocol was kindly provided by Dr. Maya Ilouze, The Hebrew University-

Hadassah, Jerusalem, Israel).  

The CCB cells were seeded at 1 x 10
5
 cells well

-1
 into a 24-well plate and incubated 

overnight at 22°C. The following day the old medium was removed and the monolayers were 

washed twice with DPBS. Five or ten fold serial dilutions of virus were made in HBSS, 2% 

FBS. Cells were then inoculated with 100µL KHV for 1-2 h at 20°C to allow adsorption of 

virus on to cells. Mock infected cells received only HBSS, 2% FBS. MEM media was 

prepared with 8% FBS and the usual supplements of 1% NEAA and 2mM L-glutamine. In 

some cases when CO2 was not available for the incubation, 15mM HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid, pH 7.4) was added to the medium. The 

culture media was mixed 1:4 with 1.2% melted sterile agarose (Multi ABgarose, Thermo 

Scientific, UK) in PBS to form a media overlay containing 0.3% agarose. One millilitre of the 

MEM/agarose overlay gel was then added to the infected monolayers and the cells were 

incubated at 20°C with 4% CO2. After 5-7 dpi, the plaques were fixed with 1 mL 4% 

formaldehyde for 10 min at RT and the cells were stained with 1.5% Gentian violet Gurr 

(Certistain®, VWR) in distilled H20 after careful removal of the overlay. The Gentian violet 

stains the intact cells of the monolayer allowing the plaques to be easily counted (Fig. 2.3). 
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Figure 2.3 Plaques obtained for quantification of koi herpesvirus (KHV) infectious 

particles on common carp brain (CCB) cells. The cells were fixed and stained 5 dpi and 

the plaques (arrows) counted. Row C = Control wells, row I = Infected wells. 

 

2.4.3 Quantification of infectious virus particles  

2.4.3.1 Spearman-Kärber method for virus titration 

Mean log TCID50 (m) = 









n

r
ddX

2

1
 

Where 

X = log of the highest reciprocal dilution 

 d = log of the dilution interval 

 r = number of test subjects not infected at any dilution. 

n = number of test subjects inoculated at any dilution. 

 

 After Kärber, 1931 
 

The Spearman-Kärber method (Kärber, 1931) provided a means for determining the dilution 

of virus (or virus sample) required to infect 50% inoculated cells. This is expressed as tissue 

culture infectious dose required for 50% infection of cells inoculated (i.e. TCID50). The 

TCID50 assay ultimately measures cytocidal virions (Burlesson et al., 1992). 
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After inoculation of cells with serial dilutions of virus the CPE was analysed and an all-

or-nothing score was given for the culture: positive for a culture with ≥ 50% CPE of the 

monolayer and negative for a culture with < 50% CPE. The number of cultures infected at a 

specific viral dilution were then determined and TCID50 calculated using the formula defined 

above. 

2.4.3.2 Plaque quantitation (plaque forming units; PFU) 

PFU = Mean plaque number X reciprocal dilution X reciprocal of volume in mL 

 After Burleson et al. (1992). 

Only wells with 20-100 plaques were counted at that reciprocal dilution. The number of 

plaques counted provides an estimate of the total number of infectious virions initiating 

infection. The infection titre of the plaque assay is expressed as plaque forming units (PFU) 

per mL and is calculated from the formula defined above. 

2.4.3.3 Multiplicity of infection (MOI) 

m = aN/C 

Where 

 a = proportion of viral particles that initiate infection 

N = Total number of viral particles 

C = Total number of cells 

 

After Dulbecco and Ginsberg, (1988) 

 

The multiplicity of infection is important in order to know the distribution and proportion of 

cells infected by virus particles which depends on the average number of viral particles per 

cell. MOI was calculated using the formula defined above.  
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Therefore, the number of PFU, which is a measure of the proportion of infectious 

particles, is divided by the total number of cells to give the MOI. Where plaque assays were 

not performed, TCID50 was converted to PFU by multiplying the antilog by 0.69. This takes 

into account the Poisson distribution which is a measure of the proportion of cells infected by 

a given number of virus particles (Dulbecco and Ginsberg, 1988), and has also been 

described elsewhere for determining the MOI for other virus infections (Wang et al., 2008; 

Voronin et al., 2009).  

 

2.5 Virus purification 

The purification method used differed for the 2 viruses. Caesium chloride gradient 

ultracentrifugation was used to purify ISAV and sucrose gradient ultracentrifugation for 

KHV.  

2.5.1 ISAV caesium chloride gradient purification 

Purification of ISAV was initially attempted using ASK-2 cells for bulk production of 

particles, as later passages of SHK-1 cells appeared to become more resistant to cell lysis 

following ISA infection despite permitting replication. However, only low yields of virus 

were obtained with isopycnic gradient purification from ASK-2 cells, thus a pelleting method 

of ISAV infected SHK-1 cells was also attempted.  

2.5.1.1 Virus harvest and slow speed clarification from infected ASK-2 cells and SHK-1 

cells 

Cultures of ASK-2 and SHK-1 cells were both used for producing batches of virus cultures for 

purification, however, purification through a caesium gradient was only attempted for virus grown in 

ASK-2 cells. Twenty x 175 cm
2
 tissue culture flasks were used to culture the virus in both cell 
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lines. Culture of cells and inoculation with virus was undertaken as described in Section 2.2.1 

and 2.3.1. Cells used for antigen production were inoculated with 7 mL flask
-1

 of 10
5.5 

TCID50 mL
-1

 ISAV adsorbed overnight at 15°C before resupplementing with fresh culture 

medium as described previously (Section 2.3.1.). Each flask contained a total of 40 mL 

infected culture media with supplements (as described in Section 2.2.1), which were pooled 

to provide the final volume necessary for purification/concentration of virus particles, at least 

500 mL of infected media. Only ASK-2 cells of passage 60-70 or SHK-1 cells of passage 50-

60 were used for virus propagation. After 2 weeks post-infection (wpi), cells were freeze-

thawed twice at -70°C and the lysed cell suspension was pooled together for viral 

purification. Four x 175 cm
2
 tissue culture flasks of the mock infected (i.e. uninfected cells) 

cultures were also harvested in parallel.  

All vessels and buffers were RNAse-free by treating with diethyl pyrocarbonate (DEPC, 

Sigma, USA) prior to initiating the procedure. The ISAV infected cell suspension was 

aliquoted into 10 mL centrifuge tubes and centrifuged at 2,500 x g for 15 min at 4°C. The 

resulting pellets were resuspended in 1 mL TNE buffer by aspirating then pooled together 

and dispensed into 4 x 4 mL centrifuge tubes. 

The tubes containing the resuspended pellets were placed in an ultrasonicator bath 

(Kerry) filled with iced water. Four x 30 sec blasts were applied before centrifuging again at 

2,000 x g for 10 min at 10°C. The pellets were stored at -70°C, in case virus had been 

retained in lysed cell debris, and the supernatant of ~16 mL was kept at 4°C overnight.  

The pooled ISA infected culture media supernatant was dispensed into 6 x 38.5 mL 

Ultraclear centrifuge tubes (Ultra-Clear, Beckman, UK) and centrifuged for further 

clarification at 12,000 x g  for 35 min at 4°C in a SW28 rotor of a Beckman L-80 

ultracentrifuge. The supernatants were pooled together and kept at 4°C. 
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2.5.1.2 High speed clarification and virus pelleting of ISAV 

Clarified virus supernatant was then placed into 6 x 13.2 mL Ultraclear ultracentrifuge tubes 

(Ultra-Clear, Beckman, UK). The tubes were placed in SW41Ti buckets and centrifuged at 

100,000 x g for 95 min at 4°C on a SW41Ti rotor. The resulting supernatant was discarded 

and supernatant from the previous step was added to the tubes and the tubes centrifuged 

again. 

Excess media was removed from the pellets immediately following pelleting by inverting 

the tubes on ethanol wipes. Fifty microlitres of TNE buffer (10mM Tris, 100mM NaCl, 1mM 

EDTA, pH 7.4) was added to the pellets, which were dissolved at RT for 10 min. For infected 

SHK-1 cell cultures, the pelleted virus proteins were aliquoted and stored at -70°C as either 

concentrated or 1:10 stocks. Preparations of non-infected, control SHK-1 cells proteins were 

also pelleted in the same way to harvest host cell proteins that would also be present in the 

virus preparation as a negative control. These were also aliquoted and stored at -70°C.  

Tubes containing virus pellets from infected ASK-2 cells were covered with Nescofilm 

and kept at 4°C overnight. 

2.5.1.3 Caesium chloride centrifugation and purification of ISAV   

A stock solution of 50% w/w caesium chloride was prepared in RNAse-free TNE buffer. 

Stocks of 40%, 35%, 30%, 25% and 20% caesium chloride were prepared from the 50% 

stock and a dis-continuous gradient was produced by careful addition of each solution into a 

clean 13.2 mL Ultraclear centrifuge tube (Beckman) from the most dense to the least dense. 

The following volumes of caesium chloride solutions were used to make the gradient: 1.5 mL 

20%, 2.5 mL 25%, 2.5 mL 30%, 2.5 mL 35% and 2 mL 40%.  
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One millilitre of pelleted ISAV derived from infected ASK-2 cells was layered on top of 

the gradient and tubes placed in SW41Ti rotor buckets. The gradients were then centrifuged 

at 150,000 x g for 17 h at 4°C in a SW41Ti rotor. A band was visualised (Fig. 2.4) and 

collected by puncture of the tube with a 16G needle (Terumo, Leuven, Belgium) attached to a 

2 mL syringe (Terumo). The purified virus was diluted in TNE buffer in clean Ultraclear 

centrifuge tubes (Beckman). 

2.5.1.4 Washing and re-pelleting of purified ISAV 

The tubes containing diluted ISAV in TNE buffer were centrifuged a final time on a 

SW41Ti rotor at 100,000 x g for 1 h 35 min at 4°C. The supernatant was discarded and the 

pellet was resuspended in 1 mL fresh TNE buffer. One hundred microlitre aliquots of 

concentrated virus or 1:10 diluted virus were prepared and stored at -70°C.  

 

Figure 2.4 The band obtained after CsCl gradient ultracentrifugation of ISAV. This was 

extracted and the constituents of ISAV particles were characterised by negative staining TEM 

as shown later in Section 3.3.1. 
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2.5.2 KHV sucrose gradient purification 

Four different protocols were attempted for the purification of KHV, however yields of virus 

were very low. The most successful approach, similarly to that used for ISAV, was achieved 

by sonication of the cell pellets prior to ultracentrifugation for separation of intracellular virus 

from cell debris. Bulk culture of KHV was carried out in CCB cells only as KF-1 cells grew 

slower and the cell line lacked stability at later passages.  

2.5.2.1 Virus harvest and slow speed clarification from infected CCB cells 

Purification of KHV was undertaken following procedures similar to those used by Hutoran 

et al., (2005) and Bergmann (pers. comm.) with modifications of the method by Gray et al. 

(2002). Between 500 – 2000 mL of virus culture medium is necessary for a high yield of 

purified KHV virus therefore CCB cells were bulk cultured in 15-20 x 175cm
2
 tissue culture 

flasks (Nunc) for each purification procedure undertaken. The cells were cultured and split 

1:4 as described previously in Section 2.2.2.2. Twenty-four h after seeding, cultures were 

inoculated with 7 mL 10
4.4

 TCID50/mL KHV American isolate H361 at a virus passage 

between 14-17 and cell passage of 73-80. Virus adsorption was allowed for 2 h at 20°C 

before the addition of fresh media containing 2% FBS. Full CPE was achieved after 11 dpi at 

which point all monolayers were frozen at -70°C to expose all the cells to freeze/thaw lysis.  

All infected media were thawed at RT and the resulting lysed cell suspension was 

aliquoted into 10 mL centrifuge tubes at approximately the same volume. The solutions were 

centrifuged at 3000 x g for 20 min at 10°C. The resulting supernatant (supernatant 1) was 

pooled and retained at 4°C. The pellets were kept and incubated with 1 mL TNE buffer 

(10mM Tris, 10mM NaCl, 3mM EDTA, pH 7.4) for 10 min and dissolved by aspirating. The 

dissolved pellet solutions were then pooled to yield 4 x 4 mL. 
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Separation of intracellular KHV virions from cell debris was important for a high yield of 

purified virus. The same sonication procedure undertaken for ISAV in Section 2.5.1.3 was 

applied for KHV. The pellets were kept at -70°C, in case of retained KHV protein in the cell 

debris, and the supernatant (supernatant 2) was kept at 4°C overnight.  

2.5.2.2 High speed clarification and virus pelleting of KHV 

The supernatants were pooled together and placed into sterilised ultraclear centrifuge tubes 

(Beckman) and placed into SW41ti rotor buckets on a SW41Ti rotor for ultracentrifugation. 

The supernatant was centrifuged at 100,000 x g for 50 min at 4°C in a Beckman Coulter 

ultracentrifuge. Pellets were kept and supernatant was discarded. Once all the supernatant had 

been centrifuged it was discarded immediately to prevent the pellets dissolving and the 

pellets were subsequently air dried for 5 min. Once the majority of residual supernatant had 

been removed from the pellets, they were kept at either 4°C overnight or in 0.5 mL TN buffer 

(10mM Tris, 10mM NaCl, pH7.4) and left to dissolve at RT. 

2.5.2.3 Sucrose gradient centrifugation and purification of KHV 

Two dis-continuous sucrose gradients were prepared from sucrose dissolved in TN buffer. 

The gradients were made by the slow addition of 3 mL sucrose solutions of decreasing 

densities using a 5 mL syringe (Terumo) into a 13.2 mL Ultraclear tube (Beckman) starting 

from 60% followed by 50%, 40% then finally 20%.  

The pellet solutions were made up to a final volume of 4 mL in TN buffer and 2 mL was 

layered onto each gradient in Ultraclear centrifuge tubes (Beckman). The tubes were placed 

in SW41Ti buckets on a SW41Ti rotor and centrifuged at 110,000 x g for 1 h at 4°C. The 

gradients were then placed in a fractionator and bands around 40% and 50% were visualised 

(Fig. 2.5) and collected by puncture of the ultraclear tube with a 16G needle (Terumo) 
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attached to a 2 mL syringe (Terumo). The bands containing KHV virions were diluted in 

fresh TN buffer in clean Ultraclear tubes. 

2.5.2.4 Washing and re-pelleting of purified KHV  

Tubes containing diluted sucrose gradient purified KHV were placed in SW41Ti buckets and 

centrifuged for a final time at 100,000 x g for 60 min at 4°C. The supernatant was decanted 

and the resulting pellets were dissolved in 1 mL TN buffer at RT. One hundred microlitre 

aliquots of concentrated and 1:10 diluted purified virus stocks were stored at -70°C until use.  

2.5.3 Virus protein quantitation 

Purified virus protein was quantified similar to the method used for purified MAbs in 

Section 2.1.1.4. However, TNE or TN buffer was used as a diluent for BSA standards instead 

of PBS. The total yield of purified KHV protein was between 0.9 and 1.4mg mL
-1

. 

 

Figure 2.5 Bands obtained following sucrose gradient purification of KHV. The bands 

were extracted and the constituents of KHV particles were characterised by negative staining 

TEM as shown later in Section 3.3.5 
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3.1 – Introduction 

3.1.1 Application of marker vaccination 

There has been some debate regarding the use of positive marker vaccines, because it is 

difficult to differentiate infected carrier animals from vaccinated animals (Van Oirshot, 

1999). However, the incorporation of a positive marker can ensure that only authorised 

vaccines are used during regulated vaccination programmes, which is essential both for trade 

and surveillance purposes with regards to successful control of notifiable diseases (Suarez, 

2005). Positively marked vaccinated animals could then be traded or moved between regions 

or countries with full awareness of the product the animal has been vaccinated with. The 

antibody response elicited against the marker identifies the animal as vaccinated, whereas 

antibodies elicited to the pathogen can indicate that the animal is either infected or vaccinated 

with unapproved vaccines lacking the marker (James et al., 2007). The principle is illustrated 

schematically in Fig. 1.6 A-B, Section 1.6.6.  

3.1.2 Vaccine manipulation to elicit antibodies against foreign antigens  

Extensive research has been conducted, although not for fish, for development of vaccines 

incorporating immunogenic markers (Wigdorovitz et al., 1999; Walsh et al., 2000a; b; 

Mebatsion et al., 2002; Root-Bernstein, 2005; James et al., 2007; 2008; Fang et al., 2008) 

with a view to developing a system with an accompanying serology test that can reliably 

detect specific antibodies to the respective marker (see Section 1.4.4.1). Two fundamental 

approaches have been utilised for the meat and poultry industries; (1) addition of an 

endogenous marker requiring genetic modification of the agent and (2) addition of a foreign 



Chapter 3 - Exogenous marker vaccination 

98 
 

exogenous marker, which can be applied to conventional and commercially available 

vaccines with ease.  

The incorporation of a foreign gene into the genome of a pathogen for endogenous 

marker vaccination, can prove complicated as the protein expressed must be sufficiently 

immunogenic. Green fluorescent protein (GFP) derived from the jelly fish, Aequorea 

victoria, is a well characterised, commonly used reporter gene in transfection, microbial 

pathogenesis and virus mutagenesis studies (Chalfie et al., 1994; Ling et al., 2000; Geada et 

al., 2001; Engel-Herbert et al., 2003; O’Toole et al., 2004; Mikalsen et al., 2005; Chu and 

Lu, 2008; Costes et al., 2008). When expressed in an anti-tumor vaccine, the protein of the 

GFP gene was found to be antigenic, inducing a T cell immunogenic response in mice, 

resulting in increased cytotoxic T cell activity against leukaemic tumor cells (Stripecke et al., 

1999). The induction of anti-GFP antibodies has also been demonstrated as a possible vaccine 

marker. For example, Walsh et al. (2000a) inserted the gene encoding GFP into the genome 

of attenuated Rinderpest virus (RPV), which subsequently expressed GFP protein provoking 

a detectable anti-GFP response. However, the expression system was also found to be vital 

for sufficient presentation of the GFP antigen to B cell receptors to induce a strong T-cell 

independent (TI) antibody response, which was conclusively achieved by cell membrane-

anchored expression (Walsh et al., 2000a; b). Subsequently, antibody responses could be 

detected to the attenuated vaccine and GFP marker.  

Alternatively, a simpler exogenous marker approach conducted by James et al. (2007; 

2008), successfully induced an alternative antibody response by the inclusion of Tetanus 

toxoid (TT) in the vaccine formulation of an inactivated Avian influenza (AI) vaccine, 

intended for the protection of chickens and ducks. Birds responding to TT were subsequently 

tagged as ‘vaccinated’. The production of synthetic peptides has also been proposed as a 
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potentially feasible approach, focusing on amino acid (aa) sequences associated with 

antigenic determinants (Root-Bernstein, 2005). This biomarker approach aims to induce an 

alternative antibody response by the administration of synthetic antigen consisting of 

sequences that are likely to be antigenic, but differ significantly from all proteins listed in the 

protein database (Root-Bernstein, 2005). As a result of the dissimilarity to any naturally 

occurring antigen, only vaccinated animals inoculated with the synthetic antigen will test 

positive. 

3.1.3 Potential for notifiable viral diseases in fish: infectious salmon anaemia 

(ISA) and koi herpesvirus disease (KHVD) 

Many DIVA vaccines use genetic modification to delete immunogenic epitopes of live 

attenuated vaccines, i.e. so that non-antibody responsive individuals to that antigen can be 

identified as vaccinated (Van Oirschot et al., 1996; Van Oirschot, 1999; Mebatsion et al., 

2002; Brahmakshatriya et al., 2010; see section 1.4.3). However, live attenuated vaccines, 

particularly genetically modified microorganisms (GMM), are not currently licensed for 

aquaculture and fish that are immunised with such vaccines are, generally, also regarded as 

being genetically modified. Increased consumer resistance to using genetically modified 

organisms for vaccines, particularly in Europe, also makes licensing very difficult (Suarez, 

2005; Gomez-Casado et al., 2011). Therefore, despite progression in development and 

commercialisation of vaccines, including DNA vaccines, for notifiable diseases in 

aquaculture (Anderson et al., 1996a; b; Lorenzen and La Patra, 2005; Mikalsen et al. 2005; 

Salonius et al., 2007; Gomez-Casado et al., 2011; Dhar and Allnutt, 2011; Wolf et al., 2013) 

it is unlikely that such vaccination with ‘new generation vaccines’ will become feasible for 

fish, at least in the short term (Lorenzen and Olsen, 1997; Gomez-Casado et al., 2011). 

Although inactivation of the resultant GMM is possible, without affecting its ability to induce 

a differential antibody response (Kaashoek et al., 1995; Van Oirschot et al., 1996; Bosch et 
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al., 1997), inactivated whole virus particles will often provide the most protective response 

possible for an inactivated vaccine as they retain all viral surface antigens and an inactive 

genomic compartment (Dhar and Allnutt, 2011). Positive marker vaccines can also be 

developed by insertion of genes encoding immunogenic protein antigens into the genome of 

the respective pathogen to produce positive marker GMMs. Previous research has, however, 

found that certain positive markers require the vaccine to be live for sufficient presentation of 

antigen (Walsh et al., 2000a; b). Whilst a number of marker vaccines have been successfully 

developed for notifiable avian and mammalian diseases (Walsh et al., 2000a; b; James et al., 

2007; 2008; Fang et al., 2008), only one positive marker approach has previously been 

attempted for fish (Dhar et al., 2010) using a non-notifiable disease model, infectious 

pancreatic necrosis (IPN) in rainbow trout (Section 1.5), which would have limited 

application in the field. Considering that effective inactivated vaccines are often available for 

notifiable fish diseases (Dhar and Allnutt, 2011; Gomez-Casado et al., 2011), but OIE and 

EU regulations prevent their use, partly because of the inability to differentiate infected and 

vaccinated hosts, an attractive marker approach is the addition of immunogenic foreign 

proteins to commercially available vaccines. 

To successfully implement marker vaccination programmes, specific antibodies to the 

marker and vaccine must be detectable at all stages of the fish life cycle in order for control 

strategies, i.e. ring vaccination, to be effective in the event of an outbreak. This is particularly 

important for salmonid vaccines that are administered during the early stages (Eggset et al., 

1999; Mikalsen et al. 2005; Tobar et al., 2010; Wolf et al., 2013), thus, the response to 

marker vaccination for ISA would need to be detectable throughout the production cycle. 

Sero-surveillance may be easier for diseases of non-anadromous fish like KHVD.  

Previous studies have demonstrated both the challenges and potential of successful 

vaccination against ISA using predominantly inactivated vaccines, but also subunit and DNA 
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vaccines (Jones et al., 1999b; Brown et al., 2000; Mikalsen et al. 2005; Tobar et al., 2010; 

Gomez-Casado et al., 2011; Lauscher et al., 2011; Wolf et al., 2013), however, the 

application of vaccination for ISA remains the subject of debate with regards to OIE 

legislation and the impacts associated with carrier fish is still a concern following vaccination 

(Section 1.3). However, Tobar et al. (2010) and Lauscher et al. (2011) did report successful 

protection of salmon following oral vaccination and ip vaccination, respectively, of 

experimentally ISAV challenged fish. If vaccinated fish are capable of clearing infectious 

virus without harbouring a carrier status then exogenous marker vaccination may be a highly 

desirable approach for implementing vaccination strategies. A contrasting case stands for 

KHVD where highly efficacious vaccines are available (Ronen et al., 2003), but as these are 

live, licensing is difficult. Such a strategy could enable those fish ‘marked’ to be diagnosed as 

antibody positive for ISA or KHV vaccination as opposed to antibodies produced as a result 

of infection. The other challenge lies in the reliability of the accompanying serological 

diagnostic test, for which antibody enzyme linked immunosorbent assay (ELISA) will not be 

an accepted diagnostic method for ISAV or KHV until such assays can be standardised (OIE, 

2012).  

3.1.4 Effects of smoltification and temperature on humoral response 

Studies have previously been undertaken to determine if smoltification affects efficacy of 

vaccination in Atlantic salmon (Melingen et al., 1995a; b; Eggset et al., 1997a; b; 1999). 

Vaccination is performed either in March-May, only a few weeks prior to sea water transfer, 

August-October, six months prior to sea water transfer or in the autumn (i.e. August-October) 

by manipulation of light and temperature regimes (Eggset et al., 1999). During the 

smoltification period, the immunological defensive system of fish is reduced and there is an 

increase in plasma cortisol levels (Langhorne and Simpson, 1981; Specker and Schreck, 

1982), which is indicated by reduced splenic and circulating lymphocytes (Maule et al., 1987; 
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Zapata et al., 1992). Timing of vaccination may therefore prove pivotal for the detection of 

specific antibodies to marker antigens administered with an ISA vaccine. The vaccination 

procedure itself is deemed to have an impact on smoltification development of salmon when 

performed at the onset of smoltification when light and temperature regimes are manipulated 

(Eggset et al., 1999) and lower antibody values have been reported when fish are vaccinated 

during smoltification (Melingen et al., 1995a). Any adverse affects on specific antibody 

production would compromise serology and thus marker vaccination strategies.  

Temperature has also been noted as a major factor influencing differences in the 

immune response of ectotherms compared to endotherms (Paterson and Fryer, 1974; Bly and 

Clem, 1992; Le Morvan et al., 1998). Higher environmental temperatures generally result in 

faster antibody production and of a greater titre (Rijkers et al., 1980; Ellis, 1982), which of 

course may have a major effect on serological diagnostic testing for specific antibodies, e.g. 

to marker antigens. The temperature limits for establishing good immune responses depends 

on the physiological temperature range of the fish. Non-permissive temperatures for carp, 

have been suggested at <14°C, whereas for salmonids this is in the region of around 4°C (Bly 

and Clem, 1992). Lillehaug et al. (1993) demonstrated that temperatures as low as 2°C were 

sufficient to vaccinate Atlantic salmon against cold water vibriosis, but where fish are 

immunised at temperatures below that permitting an immune response, defined by Bly and 

Clem (1992) as the ‘Non permissible temperature limit’ will no longer elicit a primary 

immune response. Killie (1987) (Cited in Eggset et al., 1997a) showed this lack of immune-

responsiveness in Atlantic salmon immunised with hapten antigens and held at 1-2°C. The 

differences of fish humoral immunity to that of warm blooded mammals and birds must 

therefore, in the context of marker vaccination and diagnostics, also be taken into account. 
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3.1.5 Aims 

The aim of this Chapter was to develop a marker vaccine system for fish by administering 

‘foreign’ immunogenic antigens with inactivated vaccines so that fish could be identified as 

vaccinated using serology. The feasibility of positive marker vaccination was assessed for 

ISA in Atlantic salmon and KHVD in Common/Koi carp. The implications of antigenic 

competition, i.e. inter-molecular and intra-molecular antigen induced antibody suppression 

(AIS), within the vaccine strain of marker vaccinated fish, was also investigated, particularly 

with regards to detection of specific antibodies to the marker and vaccine antigens, but also 

the potential interference on the protective effects of the vaccine antigen- induced antibodies. 

A number of antigens that were likely to be immunologically foreign to Atlantic salmon 

(tetanus toxoid (TT), keyhole limpet hemocyanin (KLH) and fluorescein isothiocyanate 

(FITC)) and carp (green fluorescent protein (GFP) were applied as candidate marker 

antigens.  

The impacts of smoltification on serological detection of ISA vaccinated salmon has 

not previously been investigated, thus the current study also assessed these factors from pre-

smolt to post-smolt salmon cultured under 12 hour light: 12 hour dark photoperiod as this 

may have major implications on the feasibility of marker vaccination against ISA. 

Furthermore, a marker antigen administered with a KHV vaccine was also assessed for this 

approach in carp. The influence of temperature was taken into consideration during 

assessment of specific antibody responses to the potential markers and vaccines. 
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3.2 – Materials and Methods 

3.2.1 ISAV production 

3.2.1.1 ISAV production 

Salmonid cell lines were cultured and maintained as described in Section 2.2.1. and ISAV 

was cultured as explained in Section 2.3.1.  

3.2.1.2 Reverse transcription polymerase chain reaction (RT-PCR) for ISAV 

(a) RNA extraction 

RNA was extracted directly from salmon head kidney (SHK-1) (passage; P. 53) cell 

supernatant infected with ISAV (Scottish Isolate, P. +5) after 20 days post infection (dpi) at 

15°C once an obvious cytopathic effect (CPE) was obtained. RNA extraction was undertaken 

using the NucleoSpin® RNA Virus, Viral RNA Isolation kit (Machery-Nagel, Germany) 

according to the manufacturer’s instructions. The protocol for cell-free biological fluids with 

Nucleospin RNA virus (Protocol 5.1, Nucleospin® RNA virus User manual) was used.  

(b) RT-PCR  

RT-PCR was undertaken using Ready-To-Go
TM

 RT-PCR beads (Amersham Biosciences, 

UK). For each 50 µL reaction the beads consisted of ~2.0 Units (U) Taq DNA polymerase, 

10mM Tris-HCl, 60mM KCl, 1.5mM MgCl2, 200µM of each dNTP, Moloney Murine 

Leukemia Virus (M-MuLV) Reverse Transcriptase (FPLC pure
TM

), RNA guard
TM

 

Ribonuclease Inhibitor (porcine) and stabilisers, including RNase/DNase free BSA. RT-PCR 

was undertaken according to Mjaaland et al. (1997; 2002) cited in OIE: Manual of diagnostic 

tests for aquatic animals (OIE, 2012). 

One Ready-To-Go RT PCR bead was dissolved in 43 µL of RNase-free H2O which 

was briefly mixed and centrifuged before the addition of 1 µL of 12.5pmol forward primer 
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ISA-F-5’-GGCTATCTACCATGAACGAATC-3’ and 1 µL of 12.5pmol reverse primer ISA-

R-5’-GCCAAGTGTAAGTAGCACTCC-3’. Five microlitres of template RNA was added to 

make a final volume of 50 µL and reactions were performed on a thermocycler (Biometra®). 

Samples for RT-PCR included 1 positive RNA control (ISA virus RNA), 1 negative RNA 

control (Irrelevant, non-ISA virus (infectious pancreatic necrosis virus; IPNV) RNA), 1 

negative sample (uninfected SHK-1 cell supernatant), 1 test sample (suspected ISA virus 

positive infected SHK-1 cell supernatant) and a no template control (RNase-free H2O). 

Reaction conditions were 42°C for 30 min for 1 cycle to make cDNA then 95°C for 5 

min for 1 cycle for initial denaturation followed by 32 cycles of 95°C for 1 min, 55°C for 1 

min for annealing, 72°C for 1 min for extension then a final cycle at 72°C for 7 min. Final 

PCR products were stored at 4°C until visualised in a gel.  

A 1% agarose gel was prepared with 0.5 g agarose (Multi ABgarose, Thermo 

Scientific, UK) dissolved in 50 mL TAE buffer (40mM Tris-acetate, 1mM EDTA, pH 8). The 

agarose was melted for 1 min in a microwave and 1 µL of ethidium bromide was added to the 

solution. Once the gel had set after 30 min incubation at room temperature (RT) in a caster 

containing a multi-well comb, the gel was placed into an electrophoresis unit (Pharmacia, 

Sweden). The unit was filled with 1x TAE buffer and the gel was loaded with 5 µL of 100 bp 

ladder and 5 µL of PCR products which had been mixed with 1 µL loading buffer. A current 

of 85 volts for 40 min was passed through the gel and the products were visualised under UV 

light using a trans illuminator (Syngene, BioImaging).  

3.2.1.3 Transmission electron microscopy (TEM) characterisation of ISAV 

(a) TEM of cultured cells 

A Scottish isolate of ISAV with a titre of 10
5.3 

TCID50/mL was cultured in a 75 cm
2
 culture 

flask of Atlantic salmon kidney cells (ASK-2) (p.77) as described in Section 2.3.1. The stock 
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was diluted 1:2 in Hanks buffered salt solution (HBSS), 2% foetal bovine serum (FBS) prior 

to inoculation. Another culture of ASK-2 cells was inoculated with diluent only (HBSS, 2% 

FBS) to serve as a negative control. After 3 dpi when first signs of CPE were evident the 

inoculated monolayer was harvested by removal of old media and monolayers were washed 

twice with 10 mL Dulbecco’s phosphate buffered saline (DPBS, Invitrogen). Cells were fixed 

with 6 mL 2.5% gluteraldehyde (Sigma-Aldrich, UK) by completely submerging the 

monolayer with fixative, scraping the cells into suspension using a cell scraper (Nunc, 

Rochester, New York, U.S.A.) then immediately centrifuging 3 mL of the suspension in 2 x 

12 mL centrifuge tubes at 2000 x g for 10 min at 4°C to fix cells into a pellet. Slow speed 

centrifugation was vital to the procedure to prevent rupture to the cells and thus loss of 

ultrastructural architecture when visualised by TEM. Excess gluteraldehyde was decanted off 

and the fixed pellets were retained. Fresh 2.5% gluteraldehyde was added to the pellets which 

were subsequently fixed for 2-4 h or overnight at 4°C. The fixative was removed and 2 mL 

cacodylate buffer rinse was added to the pellets which were flicked into suspension using a 

wooden applicator to ensure the pelleted cells had fixed. Fixed pellets were stored at 4°C 

until processing.  

Gluteraldehyde fixed cell pellets were post-fixed in 1 % osmium in cacodylate buffer 

in closed vials for 1 h at RT. The pellets were then washed for 3 x 10 min in distilled H2O. 

Thorough rinsing of cacodylate buffer was important at this stage as ‘En-bloc’ staining was 

undertaken with uranyl acetate and sodium cacodylate is incompatible with uranyl salts. ‘En-

bloc’ staining of pellets was undertaken with 2 % uranyl acetate in 30 % acetone in the dark 

for 1 h then the pellets were dehydrated through an acetone series of ascending 

concentrations. Dehydration was carried out in 60 % acetone for 30 min, 90 % for 30 min, 

100 % for 30 min then incubation in fresh 100 % acetone for 1 h.  
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 Pellets were then infiltrated with agar low viscosity resin (ALVR) on a rotator (Taab, 

UK). The pellets were first incubated with ALVR diluted 1:1 in acetone for 45 min followed 

by 100% ALVR for 1 h and then into fresh ALVR for another h. The pellets were finally 

embedded in green or blue block moulds and polymerised in an oven at 60°C overnight. One 

hundred micron thick ultra-thin sections were prepared from the resin blocks using a 

microtome (Reichert Ultracut E, Leica, UK) with a diamond knife (Diatome, US) and placed 

on 200 µm mesh Formvar-coated copper grids. 

(b) TEM negative staining 

A drop of caesium chloride gradient purified ISAV in TNE buffer (10mM Tris, 100mM 

NaCl, 1mM EDTA, pH 7.4) was placed on a 3 mm Formvar Carbon 200 µm mesh film 

coated copper grid for 2 min at RT. Excess buffer was blotted off with filter paper and a drop 

of PBS was added to the grid which was then incubated for 2 min at RT. Excess PBS was 

then blotted off with filter paper before staining the preparation. Staining was undertaken 

with 2% Phosphotungstic acid adjusted to pH 7.2 with 10M KOH and left to incubate for 2 

min at RT before blotting again and allowing the grid to air dry. The grid was then analysed 

for virus particles under an FEI Tecnai Spirit GR Bio Twin Transmission electron 

microscope. 

3.2.1.4 ISAV purification 

ISA virus antigen required for serological screening of ISA vaccinated fish was cultured in 

SHK-1 and ASK-2 cells and purified by caesium chloride gradient ultracentrifugation as 

described in Section 2.5.1. 
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3.2.2 KHV production 

3.2.2.1 KHV virus production 

Cyprinid cell lines derived from Common carp brain (CCB) and Koi fin (KF-1) tissues were 

cultured as described in Section 2.2.2. and KHV was cultured in both Cyprinid cell lines as 

explained in Section 2.3.2.  

3.2.2.2 PCR for KHV 

(a)DNA extraction 

DNA was extracted directly from KF-1 cell supernatant infected with KHV (American 

isolate, H361, P.17 (St-Hilaire et al., 2009)) after 8 dpi at 20°C. DNA extraction was 

undertaken similar to the RNA extraction procedure undertaken for ISAV using the 

NucleoSpin® RNA Virus, Viral RNA Isolation kit (Machery-Nagel, Germany) according to 

the manufacturer’s instructions. The protocol for cell-free biological fluids with Nucleospin 

RNA virus was also used here with modifications for DNA extraction, which includes the 

addition of proteinase K (Machery-Nagal, Germany). 

(b) PCR 

PCR was conducted using the 2 X Reddy Mix PCR Master Mix (1.5mM MgCl2) (Thermo-

Scientific, UK). The Master Mix consisted of 1.25 Units Thermoprime Plus DNA 

Polymerase (Thermus Aquaticus; Taq), 75mM Tris-HCl (pH 8.8 at 25ºC, 20mM (NH4)2SO4, 

1.5mM MgCl2, 0.01% (v/v) Tween® 20, 0.2mM each of dATP, dCTP, dGTP and dTTP and 

Precipitant and Red dye for electrophoresis. PCR was carried out according to Gilad et al. 

(2002).  

 A total reaction mix of 50 µL was made up from 25 µL of 2 X Reddy Mix PCR 

master mix, 0.5 µL of 30 pmol forward primer, Gil-F-5’-

GACGACGCCGGAGACCTTGTG-3’ and 0.5 µL of 30pmol reverse primer, Gil-R-5’-
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CACAAGTTCAGTCTGTTCCTCAAC-3’, 2.5 µL of template DNA and 21.5 µL 

RNAse/DNAse-free H2O. Samples that were tested consisted of uninfected KF-1 cell 

supernatant, KHV infected KF-1 cell supernatant and no-template control. A positive and 

negative KHV DNA control was not available at the time of screening.  

 Reaction conditions were one cycle at 95°C for 5 min for denaturation followed by 40 

cycles of 94°C for 1 min, 68°C for 1 min for annealing and 72°C for 30 sec for extension 

with a final cycle of 72°C for 7 min. Final PCR products were stored at 4°C until visualised 

in an ethidium bromide stained gel as described in Section 3.2.1.2(b)  

3.2.2.3 TEM characterisation of KHV  

(a) TEM of cultured cells 

The American isolate of KHV (H361) from a stock with a titre of 10
3.8 

TCID50 mL
-1

 was 

cultured in a 75cm
2
 tissue culture flask of CCB cells (P.86) as described in Section 2.3.2. The 

stock was diluted 1:5 in HBSS, 2% FBS prior to inoculation and another culture of CCB cells 

was inoculated with diluent only to serve as a negative control. Once plaque formation and 

CPE was extensive after 8 dpi, the monolayer was harvested as described for ISAV in Section 

3.2.1.3(a) and prepared for TEM analysis. 

(b) TEM negative staining 

A drop of sucrose gradient purified KHV in TN buffer (10mM Tris, 10mM NaCl, pH7.4) was 

placed on a 3 mm Formvar Carbon 200 µm mesh film coated copper grid and processed as 

described in Section 3.2.1.3(b) for visualisation of negative stained KHV virions.   

3.2.2.4 KHV purification 

KHV antigen to be used for serological screening of KHV vaccinated fish was cultured in 

CCB cells and purified through ultracentrifugation in a sucrose gradient as described in 

Section 2.5.2. 
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3.2.3 Anti-salmon IgM MAb production and screening 

In order to ensure that an appropriate monoclonal antibody (MAb) against salmon 

immunoglobulin was used to measure the fish antibody response in the ELISA, a variety of 

existing MAbs raised against rainbow trout immunoglobulin M (IgM) were screened to 

establish which cross-reacted with Atlantic salmon IgM using an ELISA. 

3.2.3.1 MAb production and purification 

The panel of hybridoma cell lines producing MAbs raised against Rainbow trout/Atlantic 

salmon IgM, developed in the Aquatic Vaccine Unit (Institute of Aquaculture, University of 

Stirling, Scotland), were cultured as described in Section 2.1.1. Monoclonal antibodies were 

harvested, concentrated, purified and quantified also as described in Section 2.1.1. 

3.2.3.2 Screening anti-salmon MAbs against Atlantic salmon IgM by ELISA 

Serum was prepared from the fish outlined below in Section 3.2.4.2. Atlantic salmon or 

Rainbow trout sera (1 mL) was mixed with sodium sulphate (14% w/v) and incubated in a 

25°C water bath (Grant Instruments, Cambridge, UK) until the sodium sulfate (Na2SO4) had 

dissolved. The resulting solution was centrifuged at 17,000 x g in a microfuge (Microlite) for 

15 min at RT. The supernatant was discarded, the pellet resuspended in PBS and washed 

twice by centrifuging the redissolved pellet at 17,000 x g for a further 15 min. The final pellet 

was resuspended in approximately 1 mL PBS and the absorbance read spectrophotometrically 

at 280 nm in a 1 cm
3
 path length quartz cuvette using a Spectrophotometer (CECIL CE 

2021). An optical density (OD) of 1.4 gave an equivalent of approximately 1 mg mL
-1

 fish 

IgM. 

Sodium sulphate precipitated Atlantic salmon IgM (14.9 mg mL
-1

) and Rainbow trout 

IgM (11.5 mg mL
-1

) were diluted in PBS to 20 µg mL
-1

 in coating buffer (0.05M carbonate-

bicarbonate (Sigma-Aldrich, St.Louis, UK)) and 100 µL added to the wells of an Immulon-4 
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HBX 96-well microtitre plate (Thermo Fisher Scientific, Germany). PBS was also added to 

empty wells as a blank background control. The plates were incubated overnight at 4°C 

before washing 3 x with low salt wash buffer (LSWB: 0.02 M Trizma base, 0.38 M NaCl, 

0.05 % Tween-20, pH 7.3). The plates were then post-coated with 250 µL well
-1

 3% w/v 

casein (Marvel Original, Dublin, Republic of Ireland) for 2 h at RT in H2O in order to block 

non-specific binding sites. The plate was washed again 3 x with LSWB after which 100 µL 

well
-1

 of purified anti-trout/salmon MAbs (from a panel of 8) (mouse IgG) were added to the 

plates. This included the commercially available anti-trout/salmon IgM MAbs from Aquatic 

Diagnostics Ltd., Stirling, Scotland, which were also added to the plate after diluting 1/33 in 

antibody buffer (0.1% w/v BSA in PBS) according to the manufacturer’s instructions. The 

MAbs were incubated for 1 h at RT and then plates were washed again 5 x with high salt 

wash buffer (HSWB: 0.02 M Trizma base, 0.5 M NaCl, 0.1% Tween-20, pH 7.7) with a 5 

min incubation on the last wash. One hundred microlitres well
-1

 horseradish peroxidase 

(HRP)-conjugated goat anti-mouse IgG MAbs diluted 1/4000 in conjugate buffer (Sigma-

Aldrich, St.Louis, UK) were then added to the wells. After a further 1 h incubation at RT the 

plate was washed a final time with HSWB with 5 min incubation on the final wash before the 

addition of 100 µL well
-1

 chromogen (42 mM tetramethylbenzidine dihydrochloride in 1 part 

acetic acid to 2 parts distilled water) diluted 1:100 in substrate buffer (0.1 M citric acid, 0.1 

M sodium acetate, pH 5.4, 0.033% H2O2) and incubated for 10-15 min at RT to allow colour 

development. The reaction was stopped after adding 50 µL well
-1

 of 2M H2SO4 and plates 

read at 450 nm using the Synergy™ HT Multi-Mode Microplate Reader (BioTek 

Instruments, USA).  
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3.2.4 FITC-KLH ISA marker vaccination of Atlantic salmon, Salmo salar 

3.2.4.1 Antigen formulation 

Initial exogenous marker vaccination trials were undertaken unsuccessfully with a tetanus 

toxin (TT) vaccine (TT concentrated formaldehyde-inactivated commercial vaccine 

containing 150 International Units (I.U.) of purified tetanus toxoid mL
-1

 absorbed to 

aluminium hydroxide, Intervet Schering-Plough, Milton Keynes, UK) and accompanying 

ELISA using TT antigen (Calbiochem®, Darmstadt, Germany) derived from formaldehyde 

inactivated TT. Therefore alternative foreign antigens KLH and FITC were used for further 

ISA marker vaccine trials. The antigens were prepared independently and as a conjugated 

antigen in order to assess intra-specific as well as inter-specific antibody competition.  

(a) KLH 

Keyhole Limpet Hemocyanin (Calbiochem, Darmstadt, Germany) was reconstituted in PBS, 

mixed gently to dissolve and aliquoted as 5 mg mL
-1

 stocks, which were stored at 4°C until 

used. It was important not to vortex the solution of KLH vigorously as it is a large protein 

complex, which can form aggregates and precipitate from solution. Antigen formulations for 

salmon were prepared by diluting with PBS into 4 mL stocks of 1.67 mg mL
-1

 prior to mixing 

30:70 with water in polymer adjuvant, Montanide
TM

 ISA 760 VG to a final concentration of 

0.5 mg mL
-1

. The solution was vortexed gently for 5 min to homogenise into an emulsion 

prior to inoculating fish with a final dose of 50 µg fish
-1

.  

(b) FITC 

Fluorescein isothiocyanate (Calbiochem, Darmstadt, Germany) was reconstituted in PBS, 

mixed vigorously to dissolve, and aliquoted as 5 mg mL
-1

 stocks, which were stored at -20°C 

until used. Antigen formulations were prepared by diluting with PBS into 4 mL stocks of 
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1.67 mg mL
-1

 prior to mixing 30:70 with water in Montanide
TM

 ISA 760 VG to a final 

concentration of 0.5 mg mL
-1

. The solution was also vortexed for 5 min to homogenise into 

an emulsion before fish were inoculated with a dose of 50 µg fish
-1

. 

(c) FITC-KLH conjugation 

Two methods were used for conjugation of FITC (hapten) to KLH (carrier protein). The first 

approach was undertaken using a FITC-labelling kit (Calbiochem, Darmstadt, Germany) 

according to the manufacturer’s instructions. Briefly, 10 mg mL
-1

 of KLH protein was 

dialysed overnight in carbonate buffer concentrate (supplied in the kit). Dialysis was 

conducted in tubing prepared similar to that described for purified MAbs in Section 2.1.1.4. 

The protein was removed from dialysis tubing and diluted to 2 mg mL
-1

. At least 1 mg mL
-1

 

of KLH protein was kept aside in order to measure the approximate concentration of the final 

conjugate. One vial of FITC supplied in the kit was added to 850 µL Solvent reagent (also 

supplied in the kit) to make a concentration of 1 mg mL
-1

 and mixed well by vortexing for 1-

2 min. Subsequently, 500 µL of FITC solution was added to the KLH solution and vortexed 

providing an approximate conjugation ratio of 200 µg FITC to 1 mg KLH. This solution was 

mixed end-over-end on a blood tube rotator (SBI, Stuart Scientific, UK) for 2 h at RT and the 

container was sealed with aluminium foil to block out ambient light. The final solution was 

then dialysed in 1 L PBS overnight at 4°C with two buffer changes.  

 

The FITC/protein molar ratio and the final conjugate concentration was determined 

spectrophotometrically using a CECIL CE 2021 Spectrophotometer with the following 

formulae: 
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F/K Molar Ratio 

Molar F/K = Mole FITC/Moles KLH 

Molar F/K = 2.77 x A495 

A280 – (0.32 x A495) 

 

Concentration of FITC-KLH 

Protein x (mg/mL) = A280 – (0.32 x A495) 

E
0.1%  

Where E
0.1% 

is the A280 reading of a 1mg mL
-1

 solution of the unconjugated KLH protein, as 

measured in a cuvette of 1cm
3
 path length. 

 

The concentration of conjugated protein using this method was between 0.45 mg mL
-1

 and 

0.76 mg mL
-1

 with approximate molar ratios varying from 1.5:1 FITC:KLH and 12:1 

FITC:KLH.  

For larger scale immunisation trials more conjugated antigen was required, therefore a 

second method was employed similar to that described by Jones et al. (1999a). This method 

was much simpler but the conjugation procedure was not as efficient as the kit. Two 

milligrams KLH was mixed with 1 mg FITC in 2 mL 0.05M carbonate-bicarbonate (Sigma-

Aldrich, St.Louis, UK) on an end over end rotator for 2 h at RT. The conjugated protein was 

dialysed into PBS as described above and the FITC/protein molar ratio and the final 

conjugate concentration was determined spectrophotometrically as described in Section 

3.2.4.1(c). 

Concentration of conjugated antigens was undertaken in 10 kDa centrifuge filter units 

(Amicon Ultra, Ultra centrifugal filters, Millipore, Cork, Ireland) by centrifugation at 2,000 x 
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g for 6-8 min in a (Sigma 4K15 centrifuge (Germany) at 4°C until a final volume of ~1 mL of 

concentrated antigen remained. The flow through was discarded. Filter centrifugation was 

also used for removal of unbound FITC where only a small volume of conjugated antigen 

was required (as conjugated FITC to KLH would be retained in the solution of larger (>10 

kDa) proteins). Final doses for the vaccination trial were prepared in PBS after concentrating 

the conjugate. 

(d) FITC-BSA conjugation 

In order to assess specific antibody responses to FITC on the FITC-KLH conjugate, the 

hapten was also conjugated to BSA and this antigen used to coat ELISA plates. The method 

used was similar to that used for FITC-KLH conjugation described in Section 3.2.4.1(c). 

Briefly, 2 mg BSA was mixed with 1 mg FITC in 2 mL 0.05M carbonate-bicarbonate in an 

end over end rotator for 2 h at RT. After dialysis, as described in Section 3.2.4.1.(c), the 

FITC/protein molar ratio and the final conjugate concentration was determined 

spectrophotometrically. 

(e) ISAV 

An inactivated compact oil adjuvanted monovalent ISA vaccine (Intervet Schering-Plough, 

Milton Keynes, UK, January 2009) was used for inoculation of salmon with 0.1 mL per dose. 

The vaccine had been developed by formaldehyde-inactivation of whole ISAV cultured 

through a cell line. The vaccine was also vortexed to produce a homogenised emulsion prior 

to inoculating fish. 

(f) PBS control  

A formulation of 30:70 PBS in Montanide ISA 760 VG was prepared as an injection control. 
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3.2.4.2 Experimental design 

(a)Pre-smolt fish 

Pre-smolt Atlantic salmon from a stock of fish reared for commercial smolt production at the 

Fresh Water Research Unit, Buckieburn, were used in the study that had never been 

vaccinated against or exposed to ISA. Fish with an average weight of 30.7 g ± 5.2 were not 

fed for at least 24 h prior to initiating the trial. Vaccination was undertaken at this time to 

simulate vaccination regimes used for commercial aquaculture production. Ten fish were pre-

bled, to ensure that fish lacked antibodies against all of the antigens being investigated, after 

euthanasia with an overdose of anaesthetic (8 mL benzocaine (10% w/v in ethanol) in 5 L of 

rearing water) from the caudal vein using a 25G needle (Terumo, Leuven, Belgium) attached 

to a 1 mL syringe (Terumo, Leuven, Belgium). Blood samples were dispensed into eppendorf 

tubes after removal of the needle and allowed to clot overnight at 4°C. The following day the 

samples were centrifuged (Microlite, Thermo IEC, USA) at 850 x g for 5 min to pellet red 

blood cells. The serum was carefully removed, aliquoted (20 µl per aliquot) then stored at -20 

or -70°C until analysis. 

Atlantic salmon (n = 555) were injected on the 18th November, 2010 with 0.1 mL of 

nine different vaccine formulations as indicated in Table 3.1. All injections were 

administered ip after lightly anaesthetising fish by immersing into 10 L of rearing water 

containing 4 mL benzocaine (10% benzocaine (Sigma-Aldrich, St. Louis, USA)) w/v in 

ethanol (Fisher Scientific, Loughborough, UK). Dual injections were administered to some 

groups, one either side of the ventral line, as indicated in Table 3.1. After immunisation, each 

of the nine groups receiving different vaccine formulations were allocated to two replicate 

300 L tanks supplied with flow through, gravity fed freshwater from the Buckieburn reservoir 

at a temperature of 6°C ± 1 and a flow rate of 25 L min
-1

. The number of fish immunised with 



Chapter 3 - Exogenous marker vaccination 

117 
 

each antigen and the tank that those fish were allocated to is indicated in Table 3.1. The fish 

were kept on a simulated natural photoperiod under 28W fluorescent tubes (3800°K). 

Feeding was resumed 2-3 days post vaccination (dpv) ad lib on a commercial pellet diet 

(Nutra Olympic 25, Skretting, Stavanger, Norway) and fish were checked twice daily for 

signs of distress or mortality. Temperature was monitored and recorded daily. 

Six pre-smolt fish were sampled from each tank 98 dpv (24
th

 February, 2011) by 

overdosing with anaesthetic and bleeding as described above. Each sampled fish was then 

weighed and measured to calculate its body condition factor (CF) and its smoltification score 

according to Sigholt et al. (1995), and modified by Dr. John Taylor, Institute of Aquaculture, 

University of Stirling (pers. comm.) (Fig. 3.1). 

The peritoneal cavity was also checked for the presence of adjuvant. CF was 

calculated using the following formula according to Fulton’s condition factor (K) (Rikardsen 

and Elliot, 2000; Reid et al., 2005):  

K = 100 X W 

          L
3
 

Where 

 

K = Condition factor/coefficient of condition 

W = Weight of fish in grams (g) 

L = Length of fish in millimetres (mm) from rear edge of fork, centre of the caudal fin to the 

tip of the snout. (Length
3
 because growth in W of salmon is proportional to growth in 

volume). 

(b) Smolt fish 

Following sampling, all pre-smolt fish were then transferred to larger tanks of 800 L on the 

same flow-through system. Two randomly netted fish from each tank were scored for 
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smoltification 29 days post-transfer (dpt), after lightly anaesthetising as previously described 

(Section 3.2.4.2. (a)), to ensure fish were smolting prior to the next sampling point. Ten days 

later (39 dpt; 137 dpv; 14
th

 April, 2011) 6 smolts from each tank were sampled as described 

previously for pre-smolts (Section 3.2.4.2.(a)). 

Table 3.1. Immunisation groups of pre-smolt fish used in infectious salmon anaemia 

marker vaccine trial 

Treatment group Fish group 

abbreviations 

No. 

injections 

Tank Number of 

fish 

PBS C 1 H11 36 

PBS  1 H6 35 

FITC  F 1 H12 35 

FITC  1 H15 35 

FITC + ISA vaccine  FI 2 H7 35 

FITC + ISA vaccine   2 H2 35 

ISA vaccine only I 1 H1 35 

ISA vaccine only  1 H8 35 

KLH  K 1 H16 35 

KLH   1 H14 35 

ISA vaccine + KLH  IK 2 H9 35 

ISA vaccine + KLH  2 H13 35 

FITC-KLH conjugate FK 1 H17 35 

FITC-KLH conjugate  1 H10 35 

FITC-KLH + ISA vaccine conjugate IFK 2 H18  32 

FITC-KLH + ISA vaccine conjugate IFK 2 H19  32 

Less fish inoculated due to insufficient antigen 

PBS = phosphate buffered saline; FITC = fluorescein isothiocyanate; ISA = Infectious salmon 

anaemia vaccine; KLH = keyhole limpet hemocyanin 

(c) Post-smolt fish 

Two randomly netted fish from each tank were scored again (20
th

 April), 6 days since the last 

sampling point, for smoltification as described previously (Section 3.2.4.2.(b)) in order to 

assess the level of silvering prior to transferring fish to salt water. Salt water tolerance was 

further assessed with a salt water challenge undertaken on 10 randomly netted fish. The fish 

were held in a 100 L, aerated tank of static salt water (34 ppt), similar to the salt water 

challenge test used by Sigholt et al. (1995), for at least 48 h. Following a survival rate of 

90%, the remainder of fish were considered ready for transfer to salt water.  
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Figure 3.1 Smolt index scoring used for determining advancement of smoltification in 

the infectious salmon anaemia marker vaccine trial. After Sigholt et al. (1995) with 

modifications by Dr. John Taylor (pers.comm.).(A) Changes in appearance of salmon during 

smoltification from immature parr (1) to mature post smolt (4). (B) Numerical scoring system 

based on appearance of smolting salmon including silvering, parr marks and fin edges. 
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A temporary salt water recirculation system was established using filter pumps 

(Fluval Fx5, Hagen, UK) running water through each of 4 x 300 L tanks at a flow rate of 10 L 

min
-1

. A total of 40.8 Kg sea salt (Tropic Marin, Wartenberg, Germany) was dissolved in 

1200 L of freshwater, from the same reservoir inlet as used previously, for 24 h before 

transferring fish.  During smoltification, a fungal infection with Saprolegnia had caused some 

mortalities in all tanks, resulting in a reduction of fish numbers. In addition to this, it was not 

possible to transfer all of the fish to salt water due to insufficient salt water for the complete 

recirculation system. Therefore only 4 vaccine groups (the ones considered to provide the 

most informative results), were transferred to the salt water system 162 dpv (29
th

 April, 

2010). 

The 2 replicate tanks of the 4 groups were pooled together and transferred into 4 

separate tanks on the same saltwater recirculation system with a total of 12 fish from the 

control group, 16 fish from the FITC-KLH vaccinated (FK) group, 18 fish from the ISA 

vaccinated (I) group and 15 fish from the FITC-KLH and ISA vaccinated (FKI) group. 

Feeding was resumed after 2-3 dpt and fish were monitored daily for signs of distress. All 

mortalities were removed and recorded.  

All fish were finally sampled after 176 dpv (13
th

 May, 2010) by overdosing with 

anaesthetic and bleeding as described previously (Section 3.2.4.2 (a)). Due to poor fish body 

condition and technical problems, a number of mortalities resulted in low fish numbers 

surviving to the final sampling point. 

3.2.4.3 ELISA to measure antibody responses against the FITC-KLH ISA marker vaccine 

(a) ELISA optimisation 

ELISA optimisation was based on previous publications with modifications, through a 

checkerboard design with variations in antigen concentration; blocking reagents, e.g. 1% 
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BSA, 3% casein; serum concentration; primary antibody (anti-trout IgG) concentration; 

secondary antibody conjugate (anti-mouse IgG) concentration. Additionally, Roti block 

(Roth, Karlsruhe, Germany) was used as a blocker and casein added to the serum to reduce 

non-specific IgM activity as described by Kim et al. (2007a). 

The final protocol used for screening salmon sera was established based on the 

principle of an ELISA absorbance with anti-FITC, anti-KLH or anti-ISAV MAbs signal of 

OD450nm ≥ 1 with negative sera below the sensitivity threshold. Assay optimisation was 

carried out using sera from a preliminary immunisation trial, which was used to indicate the 

level of antigenicity of marker antigens prior to initiating the large scale marker vaccine trial 

(not shown). 

(b) KLH and FITC marker antigen ELISAs 

The KLH and FITC ELISAs were carried out using a similar method to that described 

by Jones et al. (1999a) for rainbow trout with modifications. Briefly, 20 µg mL
-1

 of KLH 

diluted in coating buffer (carbonate-bicarbonate, pH 9.6) was coated onto all wells of an 

Immulon-4 HBX 96-well microtitre plate, while only half of a plate was coated with 20 µg 

mL
-1

 of FITC-BSA conjugate. The other half of the FITC-BSA plates were coated with BSA 

only. The plates were incubated overnight at 4°C. The plates were then washed 3 x with 

LSWB and post-coated with 3% casein in H2O for 5 h at RT to block non-specific binding. 

The plates were then washed again 3 x with LSWB and 100 µL Atlantic salmon serum 

diluted 1/50, 1/40 or 1/20 in PBS containing 1% casein (w/v), was added. Serum from each 

fish was applied to replicate wells of whole KLH ELISA coated plates or on the two halves 

of FITC-BSA and BSA coated plates in order to determine FITC-specific antibody responses. 

One hundred microlitres of anti-FITC mouse ascites fluid (Sigma-Aldrich, St.Louis, USA) 

diluted 1/2000 or anti-KLH mouse ascites fluid (Sigma-Aldrich, St.Louis, USA) diluted 
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1/500 in PBS were added to replicate wells of the FITC-BSA and KLH ELISA plates, 

respectively, instead of sera, to act as positive controls for ensuring antigen adherence to the 

plate and for plate to plate comparisons. Phosphate buffered saline was also added 100 µL 

well
-1 

in duplicate, instead of sera, as a blank negative control. After overnight incubation at 

4°C the plates were washed 5 x HSWB with a 5 min incubation on the last wash. One 

hundred microlitres anti-rainbow trout/Atlantic salmon MAbs (Aquatic Diagnostics Ltd., 

Stirling, Scotland) diluted 1/33 in antibody buffer according to the manufacturer’s 

instructions or neat from hybridoma cell culture supernatant of anti-trout MAb cell line 6 

were added to the wells of the plates. After 1 h incubation the plates were washed again 5 x 

HSWB with 5 min incubation on the final wash and the remainder of the procedure was 

carried out as described in section 3.2.3.2. The sensitivity threshold of the assay was 

determined as 3x the absorbance value of wells containing PBS. Any sample above this value 

was considered positive for specific antibodies to the respective antigen. 

(c) ISAV ELISA 

Immulon-4 HBX 96-well microtitre plates were coated with 100 µL 20 µg mL
-1

 of 

concentrated/purified ISAV (described in Section 2.5.1) in carbonate-bicarbonate buffer on 

one half of the plate and 100 µL of 20 µg mL
-1

 pelleted uninfected SHK-1 cell antigen in 

carbonate-bicarbonate on the other half of the same plate in order to determine antibody 

responses specific to the virus. The plate was incubated overnight at 4°C then the following 

day the plate was washed 3 x with LSWB and 250 µL well
-1

 3% w/v casein in H2O was 

added to the wells and incubated for 2 h at RT. The plate was washed again 3 x with LSWB 

and 100 µL salmon serum samples diluted 1/50 (or 1/20 and 1/40 for the final assay) in PBS 

containing 1% v/v casein were added to the wells. Additionally, 100 µL PBS only was added 

to replicate wells to serve as background controls and 100 µL well
-1

 of anti-ISAV MAb 

hybridoma supernatant (MAb 3-3), developed at the Institute of Aquaculture, University of 
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Stirling) were added to replicate wells to serve as positive antigen controls. It was not 

possible to obtain positive sera to ISAV during the study, therefore anti-ISAV MAbs were 

utilised for initial optimisation of the assays. PBS was used in place of negative control sera. 

After overnight incubation at 4°C the plate was washed 5 x with HSWB and the remainder of 

the procedure was also performed the same way as that described for FITC and KLH ELISAs 

(Section 3.2.4.3 (b)). 

3.2.5 GFP KHV marker vaccination in Cyprinus carpio 

3.2.5.1. Antigen formulation 

(a) GFP 

Purified recombinant GFP (Millipore, Temecula, USA) from a solution of 300 µg in PBS (20 

% glycerol) was diluted to stocks of 50 µg 100 µL
-1

 (0.5 mg mL
-1

) in PBS. After mixing the 

protein 30:70 in Montanide
TM

 ISA 760 VG the final dose was 0.15 mg mL
-1

. The solution 

was emulsified by vortexing for 4-5 min prior to inoculating carp with a dose of 15 µg fish
-1

.  

(b) KHV 

An inactivated KHV vaccine was kindly provided by Dr. Ian Pardoe (Henderson Morley 

PLc., Birmingham, England - Jan 2009), which was developed through formalin inactivation 

of purified virus. The total dose of vaccine was 1.6 mg mL
-1 

purified KHV in aluminium 

hydroxide adjuvant.  

3.2.5.2 Experimental design 

An immunisation trial was undertaken to assess the feasibility of utilising GFP as an 

exogenous marker antigen in Mirror carp (Cyprinus carpio L.), which would not interfere 

with antibody responses induced by the KHV component in the vaccine. Mirror carp (n = 50) 

weighing between 30 – 40 g were obtained from a carp farm in Hampshire, England 
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(Hampshire Carp Hatcheries, Hampshire, England) with no history of KHV. The carp were 

maintained in fresh water at the Aquatic Research Facility (ARF) at the Institute of 

Aquaculture, University of Stirling, Stirling, Scotland in 100 L tanks of fresh dechlorinated 

(Elga Piltramat AC4) mains water on a flow through system at 14°C ± 2 with a flow rate of 1 

L min
-1 

oxygenated through air stones (Betta, J and K Aquatics Ltd., UK). The fish were 

acclimated to these conditions for at least 4 weeks prior to commencing any experimental 

work. Five fish were pre-bled to screen for anti-KHV antibodies by antibody ELISA. For the 

vaccination experiment, 36 of the remaining fish were randomly divided into three groups of 

8 and one group of 10 and vaccinated as described in Section 3.2.4.2 (a). One group of 8 carp 

were injected ip with 0.1 mL
 
fish

-1
 of

 
adjuvanted recombinant GFP. The second group of 8 

fish were injected ip with 0.1 mL of inactivated KHV vaccine. A third group of 8 fish 

received two ip injections of 0.1 mL adjuvanted GFP and 0.1 mL KHV vaccine, one injection 

either side of the ventral line. The final group of 10 fish were inoculated ip with 0.1 mL of 

adjuvanted PBS to serve as a negative control. Following vaccination the fish were 

transferred to a recovery tank of rearing water before being replaced into their respective 

holding tanks. The fish were fed ad lib on a commercial pellet diet (Skretting, Norway) and 

checked twice a day for any adverse reactions. After 6 wpv, fish were sampled for serological 

analysis as described for Atlantic salmon in section 3.2.4.2 (a). 

3.2.5.3 GFP KHV marker vaccine ELISA 

(a) ELISA optimisation 

The GFP ELISA was optimised using a similar approach to that taken for the FITC and KLH 

ELISAs to screen salmon serum as described in Section 3.2.4.3.(a). The protocol used for 

screening carp sera for anti-GFP antibodies was considered optimised once the absorbance 
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for the anti-GFP MAbs had an absorbance OD450nm ≥ 1 and negative sera was below the 

sensitivity threshold.  

 Optimisation of the KHV ELISA was undertaken based on published protocols 

according to Adkison et al. (2005) and St-Hilaire et al. (2009) and the protocol developed by 

Dr. Sven Bergmann (pers. comm.) with modifications. Intensive blocking appeared critical as 

carp sera tended to produce a high level of non-specific binding, thought to be associated 

with natural antibodies. As positive and negative control sera was available, it was possible to 

perform checkerboard assays with sera using various blockers including casein, BSA and a 

synthetic blocker, Roti-block (Roth), until the minimal ODs from negative sera were obtained 

without affecting the endpoint titre of the positive control of 1/1600 (i.e. until the 

concentrations that generated the maximum positive to negative (P/N) ratio).  

(b) GFP ELISA 

Immulon-4 HBX 96-well microtitre plates were coated with 100 µL of 20 µg mL
-1

 of purified 

recombinant GFP (Millipore) well
-1

. The plate was incubated at 4°C overnight then washed 3 

x with LSWB and post-coated to block non-specific binding. Blocking methods differed for 

GFP protein and KHV antigen as signals from carp sera on the GFP ELISA were always 

much lower compared to that of KHV coated plates during optimisation. The plate was 

blocked with 5% casein in H2O for 3 h at RT then washed 3 x with LSWB. One hundred 

microliters per well of 2-fold dilutions of carp sera from 1/100 to 1/1600 diluted in PBS was 

added to the plate in duplicate and incubated overnight at 4°C. Positive antigen control wells 

received 100 µL of 4 µg mL
-1

 in duplicate of anti-GFP MAbs (Roche, Mannheim, Germany) 

diluted in PBS. Negative control blank wells received 100 µL PBS instead of carp sera. The 

following day the plate was washed 5 x with HSWB and 100 µL well
-1

 anti-carp IgM mouse 

IgG MAbs (Aquatic Diagnostics, Stirling, UK) diluted 1/55 were added to the plate and 
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incubated at RT for 1 h. The plate was washed again 5 x HSWB with a 5 min incubation on 

the final wash and the remainder of the assay was undertaken identically to that used for the 

detection of anti-FITC, anti-KLH and anti-ISAV antibodies (Section 3.2.4.3). 

(c) KHV ELISA 

Immulon-4 HBX 96-well microtitre plates were coated with 50 µL of sucrose purified KHV 

(Section 2.5.2) or BSA at 0.3 µg well
-1

 in 0.05M carbonate-bicarbonate buffer (Sigma-

Aldrich) and incubated overnight at 4
o
C, followed by three washes with LSWB. Non-specific 

binding sites on wells were blocked with 250 µL of 10 % casein (w/v) in distilled water for 5 

h at RT, before being washed with LSWB and adding 50 µL of either two-fold serial 

dilutions of vaccinated Mirror carp serum samples from 1/200–1/3200 or positive and 

negative control serum diluted in 5 % casein in PBS, as well as 5 % casein in PBS to two 

duplicate wells on each plate as a blank negative control. Pre-bled Mirror carp prior to 

vaccination were used for negative sera controls and anti-sera from infected koi from an 

experimental challenge undertaken at the Centre for Environment, Fisheries and Aquaculture 

science (CEFAS) with an antibody titre of 1/1600 (kindly provided by Dr. Peter Dixon) was 

used as a positive control. After incubating the sera on the ELISA plate overnight at 4
o
C, 

wells were washed 5 x HSWB with 5 min incubation on the last wash. Fifty microlitres of 

mouse anti-carp IgM diluted 1:73.3 in 0.1% BSA in PBS was added to each well and 

incubated for 1 h. Wells were washed with HSWB and incubated with 50 µL of goat anti-

mouse IgG-HRP Conjugate (Sigma-Aldrich) diluted 1:4000 in 0.1% BSA in LSWB. 

Following the wash step with HSWB, 100 µL chromogen (42 mM TMB in 1 part acetic acid 

to 2 parts distilled water) diluted 1:100 in substrate buffer (0.1 M citric acid, 0.1 M sodium 

acetate, pH 5.4, 0.033% H2O2) was added to each well. The reaction was stopped after 12 

min by the addition of 50 µL of 2M H2SO4 well
-1

 and plates read at 450 nm using the 

Synergy™ HT Multi-Mode Microplate Reader (BioTek Instruments, USA).  
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3.2.6 Analysis and statistics 

Data was tested for normality using the Anderson-Darling test and tested for homogeneity of 

variance using the Levene’s test. Where data was normally distributed and equal variance 

could be assumed, univariate General Linear Model (GLM) was used to compare the analysis 

of variance between means followed by post-hoc testing between groups using the Fisher 

Least significant difference (LSD) test. Where data was not normally distributed, attempts 

were made to transform the data by Log10 and Square root. When this failed to normalise 

data, non-parametric testing was undertaken using Kruskal-Wallis one-way ANOVA by 

ranks and median test and Mann Whitney-U pairwise comparison test. SPSS (IBM® SPSS® 

Statistics 19) and Minitab (Minitab 16) statistical software packages were used for all 

statistical analyses. 

3.3 – Results 

3.3.1. Confirmation and characterisation of purified ISAV antigen for anti-ISAV 

antibody screening 

The RNA extracted from ISAV was successfully amplified in the RT-PCR from infected 

SHK-1 cells supernatant (Fig. 3.2 C). ISAV virus particles were also detected after 3 dpi in 

fixed infected ASK-2 cells (Fig. 3.2 A- B) by TEM confirming the virus had been 

successfully cultured. Negative staining and positive anti-ISAV MAb controls on ELISA 

further confirmed the successful purification of ISAV after ultracentrifugation (Fig. 3.2 D). 

3.3.2 Screening anti-salmon IgM MAbs by ELISA  

Of the eight anti-rainbow trout IgM MAbs tested, affinity purified MAb from hybridoma cell 

line 6 produced the highest ODs to sodium sulphate precipitated Atlantic salmon IgM when 

ELISA plates were coated with 10 µg mL
-1

 of the precipitated fish IgM (Fig. 3.3). Therefore, 

this cell line was used to detect salmon IgM, as well as the commercial anti-salmon MAb 
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produced by Aquatic Diagnostics Ltd., in the ELISAs for detecting antibody responses to 

vaccine and marker antigens. 

 

Figure 3.2 Molecular and morphogenic characterisation of infectious salmon anaemia 

virus (ISAV) from infected salmon head kidney (SHK-1) and Atlantic salmon kidney 

(ASK-2) cells by Reverse transcription polymerase chain reaction (RT-PCR) and 

transmission electron microscopy (TEM). (A) TEM micrograph of ISAV infected ASK-2 

cells with many extracellular virions; (B) TEM micrograph of ISAV infected ASK-2 cells 

showing an intracellular virion; (C) Stained 1% agarose gel showing products of single round 

RT-PCR according to Mjaaland et al. (2002) using RNA extracted from ISAV infected and 

non-infected SHK-1 cells. Note expected molecular weight bands from positive samples of 

155 bp; (D) TEM micrograph of negative stained preparation of ISAV virion, which appears 

to be a non-enveloped capsid. Arrow heads = enveloped virions; Arrow = purified 

unenveloped virus capsid. 

 

3.3.3 FITC-KLH ISA marker vaccine trial in Atlantic salmon 

3.3.3.1 Antibody response to markers and vaccine throughout the course of smoltification 

Since initial screening of salmon from a pre-trial resulted in low antibody responses to any 

antigen at serum dilutions ≥ 1/100 using the optimised protocol, sera from the main trial were 
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only screened using serum dilutions of 1/20 and 1/40, and differences of antibody responses 

were based on absorbances OD450nm at these dilutions, i.e. antibody values, obtained by 

ELISA. 

 

Figure 3.3 Detection of fish immunoglobulin (IgM) by anti-rainbow trout/Atlantic 

salmon IgM mouse IgG MAbs from different hybridoma cell lines. The different anti-fish 

IgM hybridoma cell line reference number is shown on the x-axis. Bars indicate Mean 

absorbance OD450nm from replicate wells. 

 

Responses were generally very low against all vaccine formulations administered to 

fish during the trial, and very few vaccinated fish produced a positive antibody response at a 

dilution of 1/40 (results not shown). However, significant differences were noted between 

vaccine groups at a dilution of 1/20 and there appeared to be trends between fish antibody 

responses to the different antigens, within and between groups, and stages of smoltification. 

Poor antibody responses were observed in the various ELISAs in spite of the high values 

obtained from the positive control MAbs (i.e. OD450nm ≥1.0) used, indicating that the low 
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antibody responses in fish were not associated with low antigen concentrations on the plate 

(results not shown). It should also be noted that all positive control MAbs were also diluted 

with internal blocking diluent, i.e. 1% casein. 

 The CF had also been determined for vaccinated fish, sampled for serology, and the 

expected negative correlation between mean CF and period of smoltification was evident as 

previously reported for smolting salmon (Sigholt et al., 1995), in all vaccine groups (Table 

3.2; Fig. 3.4). This was supported by the fact that there were significantly lower CF of smolt 

salmon than pre-smolt salmon (p < 0.0001) in April and significantly lower CF of early post-

smolt salmon to smolt salmon (p < 0.0001) in May (Fig. 3.4). No significant differences in 

CF were noted between vaccine groups at each sampling point (not shown), thus all fish were 

considered to be of a similar physiological state and different antigens did not affect CF. The 

reduced CF corresponded well with the smolt index scoring (Fig. 3.1) indicating that 

sampling points were representative of pre-smolt, smolt and post-smolt fish. 

(a)Variation of antibody response in pre-smolts  

At the pre-smolt stage, despite significantly higher antibody values in fish immunised with 

FITC, from the FI and FK vaccine groups, compared to controls (p < 0.05), with no 

significant differences to BSA, the very low absorption values (OD450nm) obtained at low 

serum dilutions of 1/20 suggest that there was no specific antibodies induced to FITC despite 

apparent absorbances (OD450nm) above the sensitivity threshold (Table 3.2; Fig. 3.5; Fig. 3.6 

A). 
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Figure 3.4 Body condition factor (CF) of sampled Atlantic salmon from infectious 

salmon anaemia (ISA) marker vaccine trial during the course of smoltification. Different 

letters above SE bars indicate a different sampling point during the trial. Prs = Pre-smolt 

salmon, Mean ± SE (n = 96); Smo = Smolt salmon, Mean ± SE (n = 96); PoS = Post-smolt 

salmon, Mean ± SE (n = 22). Stars indicate significant differences of CF between smolt 

stages (Mann Whitney-U pairwise comparison test; p  < 0.05). 

 

At the pre-smolt stage some significantly higher antibody responses were obtained 

against ISAV in the sera of ISA vaccinated fish (IK, p=0.03; IF, p=0.028) compared to 

controls (Fig. 3.5). Very few fish were deemed positive for anti-ISAV antibodies at this stage 

(Fig. 3.6 B) with most positive responders (4/12) observed from the IK vaccine group (Table 

3.2). Despite the apparent cross reactive antibodies of immunised fish with viral and non-

viral antigen, all control pre-smolt fish were negative for ISA, FITC, BSA and SHK-1 

antigens (Table 3.2). 
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Table 3.2 Number of fish with a positive antibody response (i.e. with an absorbance at 

450 nm greater than the sensitivity threshold at 1/20 sera dilution) 

Fish 

group 

Mean 

condition 

factor 

ELISA antigen 

FITC BSA ISA SHK-1cells KLH 

Pre-smolt 

C 1.03 0/12 0/12 0/12 0/12 2/12 

F 1.028 0/12 1/12 - - - 

K 1.035 - - - - 7/12 

I 1.029 - - 2/12 1/12 - 

IF 1.029 0/12 0/12 1/12 1/12 - 

IK 1.017 - - 4/12 3/12 3/12 

FK 1.044 1/12 1/12 - - 5/12 

IFK 1.058 2/12 3/12 3/12 1/12 8/12 

Smolt 

C 0.939 2/12 1/12 1/12 0/12 4/12 

F 0.981 0/12 0/12 - - - 

K 0.942 - - - - 5/12 

I 0.962 - - 5/12 2/12 - 

IF 0.93 0/12 0/12 3/12 1/12 - 

IK 0.963 - - 4/12 4/12 6/12 

FK 0.992 1/12 2/12 - - 5/12 

IFK 0.952 0/12 0/12 2/12 0/12 3/12 

Post-smolt 

C 0.86 0/3 0/3 2/3 1/3 0/3 

I 0.932 - - 2/7 0/7 - 

FK 0.863 0/6 0/6 - - 1/6 

IFK 0.91 0/6 0/6 2/6 0/6 2/6 

       

Results in bold indicate fish expected to have specific antibodies to the respective antigen.  

Underlined results are false-positive results from negative control fish or immunised fish to non-

specific antigen.  

Dashes (-) indicate tests not undertaken as the antigen on the ELISA had not been administered 

to the fish. Letters indicate the following antigens: C (Control), F (FITC), K (KLH), I (ISA), IF 

(ISA+FITC), IK (ISA+KLH), FK (FITC+KLH), IFK (ISA+FITC+KLH) 

 



Chapter 3 - Exogenous marker vaccination 

133 
 

 

Figure 3.5 Box plot of antibody responses of infectious salmon anaemia (ISA) marker 

vaccinated pre-smolt salmon at a serum dilution of 1/20. Letters on the x axis represent 

vaccine groups: C = Control, F = FITC only, IF = FITC + ISA vaccine, FK = FITC 

conjugated to KLH only, K = KLH only, I = ISA vaccine only, IK = KLH + ISA vaccine, 

IFK = FITC conjugated to KLH + ISA vaccine. Abbreviations at foot of the x axis indicate 

ELISA antigen that sera is screened against.  = outliers. Different letters indicate significant 

differences within groups for each antigen. Data are medians of each fish vaccine group (n = 

12). (Mann Whitney-U pairwise comparison test; p  < 0.05).  

 

All KLH immunised groups of fish were positive by KLH ELISA and produced 

significantly higher antibody responses to KLH compared to controls (p<0.01) (Fig. 3.5) with 

7/12 and 8/12 fish from the K and IFK vaccine groups positive, respectively, and a total of 

23/48 (48%) positive of all the KLH immunised fish (Table 3.2; Fig. 3.6 C). There was a 

great variation of antibody values between individual positive fish from an OD of 0.15 to 0.9, 

which resulted in a number of extreme outliers in the group, which may have been 

particularly strong responders to the antigen (Fig. 3.5).  
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Figure 3.6 The total percentage of immunised fish with positive antibody values 

(OD450nm> sensitivity threshold) to fluorescein isothiocyanate (FITC), infectious salmon 

anaemia virus (ISAV) and keyhole limpet hemocyanin (KLH) by enzyme-linked 

immunosorbent assay (ELISA). (A) Positive antibody values of fish immunised with FITC, 

FITC-KLH, FITC-ISA and FITC-KLH-ISA; (B) Positive antibody values of fish immunised 

with ISA, FITC-ISA, KLH-ISA, FITC-KLH-ISA; (C) Positive antibody values of fish 

immunised with KLH, FITC-KLH, ISA-KLH and FITC-KLH-ISA. Pre-smolt control n = 12, 

immunised n = 48; Smolt control n = 12; immunised n = 48; Post-smolt control n = 3, 

immunised n = 12 – 13. 
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Even where high antibody values were observed at a dilution of 1/20, a 2 to 3-fold 

decrease in OD occurred subsequent to serial dilution of sera to 1/40 (results not shown). 

There were 2 control fish that were also sero-positive for KLH, however these same fish 

produced relatively high antibody values of OD450nm of 0.195 and 0.395 to unrelated antigens 

such as uninfected SHK-1 cells, and represented the only control group outliers, thus such 

fish may harbour higher levels of natural antibodies leading to non-specific reactions. 

(b) Variation of antibody response in smolts 

During smoltification, the majority of antibody responses were still very low with many non-

responders to vaccination. There were no antibody responses to FITC and in spite of a few 

strong individual responders to KLH from KLH immunised fish (i.e. with OD450nm 0.56 – 

1.05), the response to KLH was not significantly greater in these fish compared to control 

fish (Fig. 3.7), which is in contrast to pre-smolt fish. Although 19/48 (40%) of fish 

immunised with KLH antigen were positive by ELISA, 4/12 (33%) control fish also had 

antibody values above the sensitivity threshold for KLH (Fig. 3.6 C; Table 3.2). 

Antibody responses of ISA vaccinated smolts to ISAV antigen were still inconclusive, 

however, significantly higher antibody values were noted between ISA vaccinated (I, 

p=0.008) and control fish (Fig. 3.7). There were also significantly higher responses from the I 

vaccine group compared to IFK vaccine group (p=0.009). A total of 14/48 (29%) ISA 

vaccinated fish were deemed positive for ISAV antibodies (Fig. 3.6 B) and, although positive 

results were also observed to uninfected SHK-1 cells, 7 of these fish were only positive to 

ISAV antigen (Table 3.2). 
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Figure 3.7 Box plot of antibody responses of infectious salmon anaemia (ISA) marker 

vaccinated smolt salmon at a serum dilution of 1/20. Letters on the x axis represent 

vaccine groups: C = Control, F = FITC only, IF = FITC + ISA vaccine, FK = FITC 

conjugated to KLH only, K = KLH only, I = ISA vaccine only, IK = KLH + ISA vaccine, 

IFK = FITC conjugated to KLH + ISA vaccine. Abbreviations at foot of the x axis indicate 

ELISA antigen that sera is screened against.  = outliers. Different letters indicate significant 

differences within groups for each antigen. Data are medians of each fish vaccine group (n = 

12). (Mann Whitney-U pairwise comparison test; p < 0.05).  

 

(c)Variation of antibody response in post-smolts 

As a result of fungal infections affecting smolting fish, a number of fish from the study died, 

prior to, or following transfer to salt water. Therefore, only a limited number of vaccine 

groups were analysed at the final time point: the I vaccine group, FK vaccine group, IFK 

vaccine group and controls. There were no positive responses observed in the FITC-ELISA 

from any fish and only 3/12 (25%) fish were positive for KLH antigen (Fig. 3.6 C), 2 from 

the IFK vaccine group and 1 from the FK vaccine group (Table 3.2), which were also 

significantly different from each other (P < 0.05) (Fig. 3.8). All control post-smolt fish were 
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negative to these antigens (Fig. 3.6 A & C). There were no significant differences in antibody 

values between vaccinated fish and controls. Four of the thirteen fish from either the I 

vaccine group or IFK vaccine group were positive for anti-ISAV antibodies, although no 

responses from any of the ISA vaccinated groups were significantly different from controls 

(Fig. 3.8). Despite 2/3 of the control fish producing antibody values above the sensitivity 

threshold (Table 3.2; Fig. 3.6 B), these were much lower than those produced by vaccinated 

fish (Fig. 3.8) An interesting point to note from these fish was that significantly higher 

antibody values to ISAV antigen compared to SHK-1 cell antigen (P < 0.05) was observed 

for the first time in the study.  

(d) Variation of antibody responses between Atlantic salmon life stages  

Variations in mean antibody responses to ISAV and KLH occurred at the different salmon 

life stages, but not to FITC (Fig. 3.9), however mean antibody values were very low (OD450nm 

<0.3) due to the high number of negative fish as noted previously (Table 3.2). 

 After pooling data from all ISA vaccinated salmon, a significant increase in response 

to ISAV from smolt to post-smolt was noted (p=0.02). There was no significant difference in 

the responses to SHK-1 cell antigen (p=0.34) suggesting a specific anti-ISAV antibody 

response from the vaccinated fish. There was also no significant difference in response of the 

control group between the smolt to post-smolt life stages (ISA p=0.19; SHK-1 p=0.43) 

although the number of post-smolt fish analysed was very low. Responses to KLH were in 

contrast from those to ISAV antigen with a general decrease of antibody values from pre-

smolt to smolt fish from all KLH immunised groups (Fig. 3.9). Interestingly, antibody values 

from the control group increased when fish were smolting (not shown). 
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Figure 3.8 Box plot of antibody responses of infectious salmon anaemia (ISA) marker 

vaccinated post-smolt salmon at a 1/20 sera dilution. Letters on the x axis represent 

vaccine groups: C = Control, F = FITC only, IF = FITC + ISA vaccine, FK = FITC 

conjugated to KLH only, K = KLH only, I = ISA vaccine only, IK = KLH + ISA vaccine, 

IFK = FITC conjugated to KLH + ISA vaccine. Abbreviations at foot of the x axis indicate 

ELISA antigen that sera is screened against.  = outliers. Different letters indicate significant 

differences within groups for each antigen. Data are medians of each fish vaccine group (C: n 

= 3; FK: n = 6; I: n=7; IFK: n = 6) (Mann Whitney-U pairwise comparison test; p<0.05).  

 

After pooling of data from KLH immunised salmon, there was a significant decrease in 

response to KLH (p=0.01) from pre-smolt to smolt, but a significant increase (p=0.01) from 

controls. There were also lower mean antibody values from pooled data of KLH immunised 

post-smolt fish compared to smolt fish, however this was not statistically significant (p=0.55) 

(Fig. 3.9). The temperature regime is also indicated in Fig. 3.9, which was notably low from 

December to March and may have influenced the antibody responses observed over the 

course of the trial. 

 



Chapter 3 - Exogenous marker vaccination 

139 
 

 

Figure 3.9 Sampling points for Atlantic salmon antibody analysis of infectious salmon 

anaemia (ISA) marker vaccinated fish during the course of smoltification. The graph 

shows the temperature regime throughout the course of the study and the months and days 

following vaccination in which sera was collected for analysis. The Blue line graph from 0 – 

176 dpv shows the water temperature (°C) which is indicated on the second y-axis. The mean 

antibody responses for each time point, that the sera was analysed, are indicated in the 

legend. The antibody OD450nm indicated for responses to each antigen are the mean of pooled 

results from all vaccinated groups immunised with ISA (n = 48, 48, 13), FITC (n = 48, 48, 

12) or KLH (n = 48, 48, 12). BSA and SHK are control antigens for FITC and ISA ELISA, 

respectively. Results of control fish are not shown. Numbers in boxes indicate initiation of 

experiment and sampling points at different salmon life stages: (1) Vaccination of salmon 

with ISA, FITC and KLH antigen formulations, (2) Sampling of pre-smolt salmon 98 dpv, (3) 

sampling of smolt salmon 137 dpv and (4) sampling of post-salmon 176 dpv and termination 

of experiment. All sera diluted 1/20. 
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3.3.4. GFP KHV marker vaccine trial in carp 

3.3.4.1 Purification of KHV antigen for anti-KHV antibody screening 

The DNA from KHV was successfully amplified in the PCR using infected KF-1 cell 

supernatant (Fig. 3.10 A), and KHV particles were also detected after 8 dpi in fixed infected 

KF-1 cells by TEM (Fig. 3.10 B), confirming that the virus had been successfully cultured to 

utilise as antigen for serology. Further confirmation was obtained by negative staining of 

purified KHV antigen following ultracentrifugation, which appeared as 2 bands on the 

gradient (Section 2.5.2). TEM analysis revealed that both enveloped particles (Fig. 3.10 C) 

and unenveloped capsids (Fig. 3.10 D) were present in the whole virus antigen sample. 

 

Figure 3.10 Molecular and morphological identification of koi herpesvirus (KHV) from 

infected koi fin (KF-1) cells. (A) Single round PCR according to Gilad et al. (2002) with 

expected molecular weight bands from positive samples of 484 bp, (B) TEM micrograph 

KHV infected KF-1 cell with marginated chromatin (MC) and nucleocapsids in the nucleus 

(INC), (C) TEM micrograph of negative stained preparation of enveloped KHV virion, (D) 

TEM micrograph of negative stained preparation of disrupted KHV virion with unenveloped 

capsid. N = Nucleus; C = Cytoplasm; Arrow head = enveloped virion; Arrows = unenveloped 

capsids. 
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C 
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3.3.5 Carp antibody responses to GFP and inactivated KHV vaccine 

3.3.5.1 Optimisation of the GFP-ELISA 

No conclusive positive anti-GFP antibody responses were detected, despite numerous 

attempts, mainly due to high background levels from control fish resulting in very high cut 

off ODs (i.e. >0.7) (Fig. 3.11 A & B). However, greater antibody values were detected in the 

GK vaccine group compared to all other groups (Fig 3.11 A), and although K vaccine group 

fish also produced high antibody values to rGFP, this group were also positive to BSA 

antigen suggesting a greater presence of cross-reacting non-specific antibodies (Fig 3.11 B). 

Interestingly, the GK vaccinated group were still the strongest responders with a positive 

antibody titre of 1/256 during optimisation involving intensive blocking, although there were 

only minimal differences compared to responses from non-GFP immunised fish in the K 

vaccine group and controls, which were also always higher than the sensitivity threshold of 

the assay (results not shown), thus producing false positive results. 

3.3.5.2 Anti-GFP antibody screening from GFP + KHV marker vaccine trial 

All fish from the trial were finally screened using internal sera blocking with 1% casein as a 

diluent, which minimised the non-specific binding, but revealed a lack of GFP-specific 

antibodies in any of the vaccinated fish in this trial (results no shown) suggesting the results 

observed during optimisation may have been associated with natural antibody responses. 
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Figure 3.11 Optimisation of green fluorescent protein (GFP) enzyme linked 

immunosorbent assay (ELISA) with sera from carp immunised with GFP. (A) ELISA 

plate coated with 3µg mL
-1

 recombinant GFP and screened with pooled sera from each 

vaccine group (n=2 – 4) from a GFP + KHV marker vaccine trial. (B) ELISA plate coated 

with 3µg mL
-1

 BSA and screened with the same serum samples as ‘A’. Colour coded legend 

indicates the dilution of serum used for screening: red = 1/64; blue = 1/128. C = Control, G = 

GFP inoculated only, GK = GFP + KHV vaccinated, K = KHV vaccinated only. Black line 

indicates cut-off. 

 

3.3.5.3 Optimisation of KHV ELISA 

In contrast to responses observed to GFP antigen, there were strong antibody responses to 

KHV, up to titres of 1/3200, from pooled sera of all fish in KHV vaccinated groups (results 

not shown). However, there were also very high backgrounds noted with negative control 

sera, especially at lower dilutions (1/100), whereby pooled fish sera from the G vaccinated 

group and control group produced ODs as high as 0.59 resulting in false positive results 

(results no shown). Therefore further optimisation was carried out and 10% casein proved to 

be the most effective blocking reagent for post-coating ELISA plates, similar to that utilised 

by St-Hilaire et al. (2009) for KHV serology. Intensive blocking using 5% casein within the 

sera, that was similar to the method employed by Kim et al. (2007a), but more stringent than 

that applied in the KHV ELISA by Adkison et al. (2005), reduced absorbance ODs in both 

negative and positive control sera, however, while the negative control sera remained 

negative at a 1/200 dilution, the end point antibody titre remained at 1/1600 for positive 
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control sera (results not shown). Therefore reduced ODs from blocking of positive sera was 

not detrimental to the assay as the highest affinity IgM remained bound to the antigen, even 

at higher dilutions.  

Other ELISA parameters that were varied in an attempt to optimise the assay included 

altering the concentration of the conjugate, anti-carp MAb and the KHV coating antigen by 

screening with 2-fold dilutions of carp sera. Variation in antigen concentration had the 

biggest impact on improving the assay, which resulted in reduction in absorbance of 

approximately OD450nm 0.1 per 0.1 µg well
-1

 KHV protein. Due to the limited amount of 

purified KHV and the difficulty in generating purified virus, as described in Section 2.5.2, a 

final working assay concentration of 0.4 µg mL 
-1

 was utilised for carp antibody screening, 

whereby an OD450nm of 0.6 could still be obtained at a dilution of 1/800. Limiting the 

concentration of anti-carp MAbs also resulted in little variation of positive signal. Controls 

were consistently negative at all dilutions with all assay variations attempted during 

optimisation, further verifying the effectiveness of the intensive serum blocking. 

3.3.5.4 Anti-KHV antibody screening from GFP + KHV marker vaccine trial 

The mean response from KHV vaccinated fish was significantly higher (p = 0.01) than 

controls at titres from 1/200 to 1/3200 (Fig. 3.12 A). There was no significant difference 

between the GK vaccine group and the K vaccine group (p = >0.05), although the mean 

response of the K vaccine group was consistently higher than GK group. However, 6/8 carp 

from the control group (sham vaccinated) were also sero-positive for KHV at a 1/200 sera 

dilution and 1/8 were positive at a 1/400 dilution (Fig. 3.12 B). The naïve carp sera (negative 

control) remained negative and the positive control (pooled anti-KHV sera from 

experimentally challenged carp, CEFAS) (Fig 3.12 A) was consistently positive. Six 
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vaccinated fish were positive at a titre of 1/800 from both the K vaccine group and GK 

vaccine group and 5 of these fish produced even higher titres (Fig. 3.12).  

 

Figure 3.12 Optimised koi herpesvirus (KHV) enzyme linked immunosorbent assay 

(ELISA): Final screening of carp sera from KHV marker vaccine trial, 6 weeks post 

vaccination (wpv). ELISA was undertaken with the optimised protocol for KHV antibody 

screening. (A) Values are mean ± SE (n = 7 - 8) of antibody responses from each vaccine 

group. Colour coded legend indicates the different vaccine groups; C = Control, K = KHV 

vaccinated only, GK = GFP + KHV vaccinated. Note GFP only group was not tested against 

KHV antigen. Different letters indicate significant differences within groups for each antigen 

(Mann Whitney-U pairwise comparison test; p<0.05); (B) Number of serologically positive 

fish from from each vaccine group at each titre above the cut-off. Note the high number of 

false positive fish from C group at 1/200 dilution despite protocol optimisation. Black broken 

line indicates cut-off from background controls.  
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3.4 Discussion 

Vaccines containing positive markers, foreign to the host, have been shown to enable 

differentiation between vaccinated and non-vaccinated mammals and birds using serology 

(Walsh et al., 2000a; b; Mebatsion et al., 2002; James et al., 2007; 2008, Fang et al., 2008). 

Marker vaccination approaches like these may enable the implementation of control and 

eradication programmes for notifiable diseases. 

A model exogenous marker approach was undertaken in this study using inactivated 

vaccines for ISA and KHVD by administering foreign antigens found previously to be 

immunogenic in mammals, avians and fish (Hodgins et al., 1967; Gonzalez et al., 1988; 

Killie and Jørgensen, 1994; Jones et al., 1999a; Cain et al., 2002; Companjen et al., 2006; 

James et al., 2007; Swan et al., 2008; Lu et al., 2009; Valdenegro-Vega et al., 2013). The 

principle objective was to determine if an antibody response to the marker antigens could be 

produced and detected by serology using ELISA, thus enabling the distinction between 

vaccinated and unvaccinated Atlantic salmon and Mirror carp to ISAV and KHV, 

respectively.  

3.4.1 Exogenous marker vaccination for infectious salmon anaemia in Atlantic 

salmon  

Tetanus toxoid, the inactivated form of tetanus toxin produced from Clostridium tetani, was 

previously utilised by James et al. (2007; 2008) to develop an exogenous marker vaccine for 

AI, which could be used to differentiate between vaccinated and infected ducks and chickens. 

The vaccine used was an inactivated preparation of subtype H6N2 containing TT and the 

presence of antibodies to TT indicated that animals had been vaccinated while non-

vaccinated birds lacked anti-TT antibodies. As TT is likely to be immunologically foreign to 
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fish, it has the potential as a very useful marker antigen to use in aquaculture vaccines, 

especially since it is already registered for applications in food animal vaccines (James et al., 

2007). Only a few studies have examined the serological responses of fish to TT, in which the 

14S macroglobulin fraction of IgM, from the catfish, Ictalurus punctatus, was found to 

successfully neutralise tetanus toxin (Ourth, 1982). An exogenous marker like TT added to an 

ISA vaccine could potentially pave the way to DIVA vaccination if a standardised ELISA 

could be developed for ISA, as proposed by James et al. (2008) for AI. Recent ISA infection 

could then perhaps be indicated by elevated antibody titres compared to non-infected, 

vaccinated fish. However, the TT marker vaccination did not induce a strong detectable 

specific anti-TT antibody response in Atlantic salmon with the doses administered (results 

not shown). This was despite anti-TT MAbs always producing antibody values of absorbance 

OD450nm >1.0 and anti-salmon IgM MAbs binding strongly to precipitated Atlantic salmon 

IgM during optimisation, thus the TT assay was considered to be performing well (results not 

shown). The lack of response may have been associated with insufficient doses of TT 

administered to the fish or poor immunogenicity of TT in Atlantic salmon, which 

corroborates previous immunisation studies of rainbow trout to a closely related bacterial 

antigen, Diphtheria toxoid (Eide et al., 1994), thus suggesting that this antigen is not 

sufficiently immunogenic as a marker in fish. These preliminary results highlighted the 

challenges facing exogenous marker vaccination, especially with regards to cost for vaccine 

and serological test development, but also potential implications of multiple antigen 

administration, thus alternative antigens were utilised as model markers. 

Keyhole limpet hemocyanin and fluorescein isothiocyanate, carrier protein and hapten 

respectively, were investigated for their potential as exogenous markers as they have been 

utilised previously for immunisation studies in fish and their immunogenicity in salmonids 

has been demonstrated (Hodgins et al., 1967; Killie and Jørgensen, 1994; 1995; Jones et al., 
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1999a; Alcorn and Pascho, 2002; Cain et al., 2002; Swan et al., 2008; Valdenegro-Vega et 

al., 2013). Furthermore, these antigens are highly accessible and cost-effective with regards 

to vaccine formulation and serological test development. The conjugation of FITC-KLH was 

also intended to provide an insight into the potential complications of antigenic competition 

between simultaneously administered antigens, a phenomenon well characterised in fish 

(Avtalion and Milgrom, 1976; Killie and Jørgensen, 1994; 1995), which is required for 

marker vaccination.  

A stronger antibody response to KLH than to FITC was observed in pre-smolt fish 

from all groups vaccinated with KLH. The stronger response to KLH than to FITC observed 

in Atlantic salmon vaccinated with the FITC-KLH conjugate, is in contrast to the findings of 

Jones et al. (1999a) in immunised rainbow trout. Jones et al. (1999a) did however, also note 

strong antibody responses to KLH in trout immunised ip with either conjugated FITC-KLH 

or monovalent KLH. Thus, the relatively strong responses of both pre-smolt salmon and 

rainbow trout indicated that KLH was able to induce a T-cell independent (TI) antibody 

response, which was detectable to a similar degree in both the Jones et al. (1999a) study and 

the current study, up to 14 wpv. This differs to the findings and of Killie and Jørgensen 

(1994; 1995), who proposed that AIS results from the antigenic competition of B-cell T-

dependent (TD) antibody responses to the hapten, i.e. FITC, suppressing the TI antibody 

response to the carrier, which in that study was Limulus polyphemus hemocyanin (LPH). In 

the current study, there appeared to be no responses to FITC, with the highest antibody value 

of OD450nm < 0.18 at a 1/20 serum dilution. This non-responsiveness to FITC may have been 

associated with low FITC:KLH ratios following conjugation, but this is unlikely as 

hapten:carrier protein conjugate ratio has been reported previously not to be influential on the 

antibody response to the 2 antigens in fish (Killie and Jørgensen, 1994). In fact, Avtalion and 

Milgrom (1976) found that carp immunised with heavily substituted haptenic antigens were 



Chapter 3 - Exogenous marker vaccination 

148 
 

non-responsive to the carrier. They suggested that the heavily substituted carrier, in this case 

BSA, loses its ability to stimulate B cells, but not the T-cell directed antigenic determinants. 

Furthermore, the lack of anti-FITC response was surprising as it has also been found that 

there is a hapten - carrier effect in fish, whereby an antibody response to the hapten by B cells 

requires carrier-specific and thus putative, T-cell cooperation, which should have been 

provided by KLH in FITC-KLH inoculated fish (Stolen and Mäkelä, 1975; Avtalion and 

Milgrom, 1976; Ruben et al., 1977). Perhaps a secondary response may have been elicited 

following a booster immunisation as amnestic responses to TD antigens conjugated to KLH 

have previously been demonstrated in rainbow trout (Arkoosh and Kaattari, 1991). 

Conjugation to KLH previously induced a minor increase in antibody affinity to the hapten 

dinitrophenyl (DNP) (Cossarini-Dunier et al., 1986), whereas the affinity and titre of the 

antibody response to FITC in FITC-KLH immunised rainbow trout was found to increase 

significantly over the course of 4-6 weeks (Cain et al., 2002; Swan et al., 2008). The 

unexpected lack of FITC response accompanied with a stronger KLH response may have 

been solely a result of the low temperatures (6ºC during immunisation) leading to poor T cell 

stimulation. T cells are typically sensitive to low temperatures (Bly and Clem, 1992; 

Secombes et al., 1996; Le Morvan et al., 1998) therefore the carrier protein may have 

induced a TI B cell response without B cell antigen presentation to Th2 cells in order for the 

hapten to be processed via the MHC II pathway. This is a pertinent point with regards to 

immunisation regimes for marker vaccination in fish as specific antibody responses may be 

suppressed to the marker antigen at low temperatures. 

Low level antibody responses were also detected from ISA vaccinated fish,  

particularly at the pre-smolt stage 14 wpv, whereby only 2 ISA vaccinated groups had 

produced antibody values significantly higher than controls and 10/48 fish were positive for 

ISA antibodies, although 6 of these fish were also positive for SHK-1 cell antigen. Antibody 
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responses to the ISA vaccine were not adversely affected by the inclusion of marker antigens 

in the vaccine formulation, in fact, there were always greater antibody values to ISAV in fish 

vaccinated with both ISA vaccine and marker antigens, which may be associated with effects 

of the additional adjuvant that those fish received from dual inoculation or even through an 

adjuvant effect provoked by the additional antigen as opposed to antigenic competition. This 

is a phenomenon that has been reported in mice after immunisation with 2 antigens at the 

same site (Monier, 1975), which was thought to be the result of T-cell cooperation with the 

presence of numerous macrophages. In mammals, administration of 2 antigens at the same 

time, has been shown not to provoke antigenic competition, as long as the antigens were not 

administered at the same lymphatic site (Brody and Siskind, 1972). 

Kibenge et al. (2002) successfully screened wild infected and experimentally 

challenged Atlantic salmon for anti-ISAV antibodies, however, the serum titre found to be 

optimal in that study was also 1/20. Obtaining high specific anti-ISAV antibody titres was 

also difficult in the ELISA developed in the current study, although much of the signal was 

removed after optimisation of the ELISA by internal serum blocking to allow positive sera to 

be differentiated from controls as high backgrounds were observed in a preliminary trial, 

which made interpretation of ELISA results difficult (results not shown). Indeed a few 

control fish were positive for anti-ISAV antibodies at this concentrated serum dilution. This 

may have been due to natural antibody induction, e.g. by the marker as noted in fish 

immunised with KLH and the hapten trinitrophenol (TNP) in a previous study (Gonzalez et 

al., 1988). In the ELISA developed by Kibenge et al. (2002), non-specific antibody responses 

were also very high to SHK-1 cell antigen in some fish that were negative for anti-ISAV 

antibodies. Mikalsen et al. (2005) also remarked on high background staining during 

serological analysis of fish vaccinated with a DNA ISA vaccine and subsequently challenged, 

which emphasises difficulty for detecting specific anti-ISAV antibodies at a high serum 
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concentration. Furthermore, injection itself could elicit non-specific weak immune responses 

(Anderson, 1992) that may result in cross-reactive antibody responses to certain conserved 

epitopes. Non-specific antibody signals to SHK-1 cell antigen were also apparent in the 

current study and fish with stronger anti-ISAV antibody responses usually had high responses 

to SHK-1 cell antigen, thus cell culture derived antigens could possibly be utilised as markers 

of vaccination as well, if high titre, specific responses could be obtained, as these antigens 

would only be recognised from exposure to ISAV vaccine formulations and not infectious 

ISAV. Attempts to block such non-ISAV specific antibody attachment with low fat milk as 

serum diluent (Kim et al., 2007a) used for the ELISAs developed in the current study, is a 

common application for companion marker vaccine diagnostic tests for mammals and birds 

(James et al., 2008; Barros et al., 2009). Heat treatment of sera to 56°C for 30 min proved 

effective in the study by Kibenge et al. (2002) for reduction of background signals, however, 

numerous reports for mammalian ELISA tests have reported false positive results using this 

method (e.g. Hasselaar et al., 1990) and in fact heat treatment is used to eliminate the activity 

of IgM in mammalian and avian serology (Denzin and Staak, 2000) as previously applied for 

DIVA diagnostics for birds when detecting IgY (Tumpey et al., 2005). Therefore the internal 

blocking procedure was preferred in the current study. Although specific antibodies produced 

in Atlantic salmon to ISAV do constitute a protective effect (Falk and Dannevig, 1995; 

Lauscher et al., 2011), the majority of antibodies are thought to be directed to the 

nucleoprotein on ELISA (Falk pers. comm. cited in Wolf et al., 2013). The ISAV antigen 

used to coat ELISA plates in the current study had been characterised by TEM and RT-PCR 

and negatively stained purified ISAV antigen samples contained mostly unenveloped 

nucleocapsids. Due to disruption of virions during purification procedures a lack of envelope 

proteins on the ELISA plate, could result in the lack of antibodies detected in vaccinated fish. 

Salmon vaccinated with DNA and recombinant ISA vaccines expressing the surface HE 
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protein were negative by ELISA until they were challenged with infectious virus (Mikalsen et 

al., 2005; Wolf et al., 2013). This may also have affected antibody detection in the current 

study, as fish were vaccinated with a whole inactivated virion preparation, which likely 

consisted predominantly of enveloped particles with abundant protective HE protein.  

ELISA methods for detecting antibody responses of Atlantic salmon, and other fishes, 

vary extensively in the literature. Where detection is expressed as absorbance value, 

especially in cases where only very low titres of specific antibody can be detected, as in the 

current study, the assay development method and wavelength at which the result is 

determined should be compared with caution. Anti-ISAV antibody responses reported by 

Kibenge et al. (2002) and Cipriano (2009) were determined using the alkaline phosphatase 

(AP) - p-nitrophenyl phosphate enzyme – chromogen system in which the optimal 

development time for assay was 24 h. This method enabled colour development proportional 

to the amount of suspected specific antibody in the fish serum with a final signal OD of > 4.0 

at 405 nm for positive sera and only 0.5 for negative sera (Kibenge et al., 2002). Initially, 

however, the signal obtained was much lower after 10 min of development. This is in contrast 

to the final ODs obtained in the current trial where the highest responder had an OD of only 

0.53 at 450 nm and the lowest negative sera only 0.04, using the HRP - TMB enzyme – 

chromogen system. The use of AP as a chromogen is less self-limiting than that of HRP, and 

thus enables the operator to increase sensitivity of the assay (Afolabi and Thottappilly, 2008) 

as the product of the AP – substrate reaction initiates a secondary cyclic enzyme reaction 

leading to an amplified signal (Fig. 3.13). Thus, the compromise for a rapid serological 

detection system for anti-ISAV antibodies, is perhaps an approach necessary for maximising 

signal output for detection of very low antibody responders similar to the method of Kibenge 

et al. (2002). Although the requirement of such a compromise to increase sensitivity may 

have negative implications with regards to developing a rapid serological assay, i.e. lateral 
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flow test, which is an important consideration for marker vaccines. Nonetheless, anti-ISAV 

antibody responses at a titre of 1/20 were detected, though only 28/109 (26%) of ISA 

vaccinated fish were sero-positive for ISAV and 13 of these also positive for SHK-1 cell 

antigen. 

Previous ISA vaccination trials have proved successful for the protection of salmon 

following experimental challenge yet have failed to detect specific anti-ISAV antibodies 

(Brown et al., 2000) and only 1.2% of 1141 fish serum samples, screened by ELISA 

according to Kibenge et al. (2002), taken from wild salmon in the Penobscot, Merrimack and 

Connecticut River (U.S.A.) were found to be positive (Cipriano, 2009). While the latter study 

would appear promising, implying almost complete freedom of the virus in wild fish stocks 

in these rivers, the test sensitivity could also be questioned. 

 

Fig. 3.13 Schematic diagram of sandwich enzyme linked immunosorbent assay (ELISA) 

showing chemical reactions involved in the alkaline phosphatase (AP) amplification 

system resulting in amplified signal over time. The bound alkaline catalyses the breakdown 

of nicotinamide adenine dinucleotide phosphate (NADPH) whose products initiate a 

secondary cyclic enzyme reaction, which results in a coloured product. Amplification occurs 

as the process is repeated several times. After Afolabi and Thottappilly (2008) 
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A recent investigation highlighted the possibility that detection of specific anti-ISAV 

antibodies may be associated with the dose of antigenic challenge, implying that specific 

antibody detection may be difficult unless the salmon immune system encounters an intense 

viral dose. Lauscher et al. (2011) found that fish vaccinated with a very high dose of 

inactivated ISAV produced very strong antibody responses of titres >1/3200 after 6 wpv., 

however, it was noted that fish vaccinated with lower doses, 80% less than the high vaccine 

dose, produced very poor antibody responses or did not respond at all after the same time 

period. Reduced relative percent survival has also been observed in fish vaccinated with low 

concentrations of inactivated ISAV following experimental challenge (Jones et al., 1999b). 

The lower dose vaccinated fish reported by Lauscher et al. (2011) were still poorly sero-

responsive after 6 days post challenge (dpc) and were all negative after 21 dpc. This was in 

contrast to the high dose group, which continued to sero-convert with high titres of anti-ISAV 

antibody after 6 and 21 dpc (Lauscher et al., 2011). The temperature was constant during this 

vaccine – challenge trial at 12°C, whereas in the current study the temperature was < 6°C, 

thus higher temperatures may have accounted for greater antibody responses to ISA 

vaccination in the trial by Lauscher et al. (2011). However, subsequent vaccination trials 

using a DNA-layered salmon alphavirus (SAV)-derived replicon vaccine, also undertaken at 

12ºC in pre-smolt salmon, did not induce antibody responses and only 12/18 fish were 

seropositive using an inactivated ISA vaccine (Wolf et al., 2013). The low antibody 

responses observed in the current trial may be attributed to insufficient antigenic dose in the 

Intervet Schering Plough ISA vaccine, as indeed the high dose applied by Lauscher et al. 

(2011) was not typical. This would perhaps represent one of the major hurdles for ISA 

marker vaccination as it is not likely to be economically feasible to produce such high 

quantities of inactivated virus for vaccination on a commercial scale, but vaccines lacking all 

virion proteins do not appear to induce detectable antibodies prior to infection (Mikalsen et 
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al., 2005; Lauscher et al., 2011; Wolf et al., 2013). However, in the current study the 

sampling of salmon sera was also undertaken at much later time points of 14, 20 and 25 wpv, 

thus there is unlikely to have been a high level of proliferating clonal B cell production after 

such a long period following primary vaccination. Detection of low level antibodies 

throughout the production cycle is however vital if marker vaccination can be potentially 

implemented for Atlantic salmon to control this virus. Thus the influence of the adjuvant as a 

depot is also key for which Montanide ISA may have been most suitable. The use of 

Montanide ISA adjuvant is considered to induce antibody responses with equivalent efficacy 

to that of Freund’s complete adjuvant with less damage caused to tissue and granuloma 

formation (Stils, 2005). Experimental challenge in sea water may have revealed any 

protection provided by the vaccine used in this trial and any associated memory antibody 

response, but unfortunately, too few fish were available post salt water transfer.  

The weak antibody responses observed in general may have been associated with the 

poor CF of the experimental fish. Overall CF declined, relative to salmon smoltification 

status, as expected, over the course of the experiment, but was lower than would be expected, 

which may have been associated with very low water temperatures experienced between 

December and March. It is important to take into consideration the effects of temperature and 

stage of smoltification on the overall humoral response of Atlantic salmon to different 

antigens for determining the reliability of serological testing for responses to marker 

vaccination.  

The effects of smoltification and temperature on the immune response in Atlantic 

salmon have been widely researched (Specker and Schreck, 1982; Maule et al., 1987; Zapata 

et al., 1992). Immunosuppression of smolting salmon has been correlated to increasing 

cortisol levels in plasma and reduced lymphocytes in the spleen (Specker and Schreck, 1982; 
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Maule et al., 1987) and a reduced ability to deal with pathogenic insult (Zapata et al., 1992), 

however, no definitive indication of this complex metamorphosis of Atlantic salmon has been 

investigated with regards to antibody detection following ISA vaccination. The general trend 

in antibody response over the course of the pre-smolt, smolt and post-smolt stages was of a 

decline in the response against KLH from pre-smolt to post smolt, but in contrast, an increase 

in mean antibody values were observed to ISAV. However, no fish immunised with FITC 

antigen produced a true positive response regardless of smoltification status, which is in 

contrast to Atlantic salmon immunised ip with FITC-KLH at higher temperatures (~11ºC) 

and booster vaccinated, which produce significantly elevated anti-FITC antibodies 

(Valdenegro-Vega et al., 2013). 

Smoltification is the physical transformation and physiological transition of parr, in 

fresh water, to smolt, in sea water. The process of smoltification involves a number of 

complicated events including the ability for increased hypo-osmoregularity, increased growth 

rate and rapid metabolic changes (Hoar, 1976; Stefansson et al., 2008; Björnsson et al., 

2011). These changes include the reduction of body CF, as well as an increase in sodium 

potassium ATPase, peaking towards the end of smoltification (Zaugg and McLain, 1970). 

Previous studies have investigated the impact that vaccination may have on smoltification as 

well as the affects that smoltification has on the fish immune response, which may have 

implications on vaccine efficacy (Melingen et al., 1995a; b; Eggset et al., 1999). However, 

pre-smolt fish were vaccinated at least 6 weeks prior to smoltification, which is a window 

post-immunisation that has previously been found not to cause adverse effects on fish 

vaccinated with Aeromonas salmonicida and Vibrio salmonicida prior to the induction of 

smoltification (Eggset et al., 1999). Eggset et al. (1999) hypothesised that immunisation with 

antigens in oil adjuvant close to the initiation of smoltification, is perhaps a stage when fish 

are more vulnerable. Smoltification has been associated with reduced total IgM (Melingen et 
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al., 1995b), which was subsequently found to rise up to 2-fold post sea water transfer in the 

same study, which interestingly corresponds to the rising antibody titre to ISAV in the current 

study. It is likely that a significant portion of these antibodies, however, represent natural 

antibodies as false positive detection of control fish to ISAV was also evident at the post-

smolt stage. Fish vaccinated at various stages of smoltification always tended to produce a 

strong antibody response between 4–10 weeks post vaccination (wpv) (Melingen et al., 

1995a). However, this may have been associated with the high temperature at which these 

fish were vaccinated. Although Lillehaug et al. (1993) claimed that temperature had not 

affected the antibody responses observed after vaccination against Vibrio salmonicida at low 

temperatures, i.e. also 6°C, the ELISA employed in that study was similar to the assay 

utilised in the current study with sera tested at a dilution of 1/20. Interestingly, the antibody 

curves reported in the Lillehaug et al. (1993) study resembled the curve noted for anti-ISAV 

antibodies in the current study, whereby there was a significantly lower antibody response at 

16 wpv compared to 8 wpv and 28 wpv. The ISA marker vaccination trial conducted here 

resulted in significantly lower antibody responses to ISAV at 14 wpv than at 25 wpv 

following sea water transfer. There may therefore be a trend whereby greater specific 

antibody production occurs following smoltification. Unfortunately, the stage of 

smoltification was not taken into account in the study by Lillehaug et al. (1993), although the 

fish were vaccinated as parr at 15 g, thus it is reasonable to hypothesise that the fish may 

have been smolting during the experimental period from 10 – 20 wpv, where a vast reduction 

in specific antibody production was detected. On closer examination, the antibody responses 

obtained in that study actually appear weak for which low temperature and/or smoltification 

may have been a contributing factor. Nonetheless, the vaccine still provided very good 

protection when fish were subsequently challenged, suggesting important non-humoral 

immune responses may have been involved in protection provided by the vaccine, which 
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portrays a similar inverse correlation of antibody response to protection reported by Eggset et 

al. (1997a) after vaccination and challenge against cold water vibriosis. Timing of primary 

vaccination is suggested not to be as vital as the secondary ‘booster’, although vaccination at 

low temperatures has been reported to adversely affect T-cells and thus the TD antibody 

response but not the TI antibody response (Clem et al., 1991 cited in Bly and Clem, 1992). 

This perhaps helps to explain why good antibody responses are usually obtained subsequent 

to bacterial vaccination and challenge, such as with Vibrio salmonicida and Aeromonas 

salmonicida, as the lipopolysaccharide (LPS) (Melingen et al., 1995a; Eggset et al., 1997a) 

epitopes constitute major TI antigens. The diversification of antibody production by lower 

vertebrates may also be adversely affected by low temperature as fish may rely on the germ-

line genes in which the cell cycle may be prolonged. Therefore cells are relatively big and 

low in abundance thus wasted energy on lymphocytes may be considered biologically 

‘expensive’ (Du Pasquier, 1982), which may present further challenges to DIVA serology in 

terms of inducing specific antibody responses to various antigens.  

It has been suggested by Kaattari et al., (1999), that variations in the antibody form of 

fish IgM, may have major implications with regards to serological diagnostics as well as 

vaccine efficacy, as the proposed redox forms of the fish tetrameric IgM, may result in 

variation in epitope binding specificity and thus possible blocking effects resulting in poorly 

titrated specific antibody. Furthermore, immunological studies in salmonids with foreign 

antigens that have been well classified as immunogenic molecules in mammals, often reveal 

inconsistent results (Alcorn and Pascho, 2002), which may be due to variation of the 

experimental environment, condition of fish, genetic background and as noted from the 

current study, perhaps smolt status. Marker vaccination using serology may therefore be more 

feasible for non-anadromous fish species. 
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3.4.2 Exogenous marker vaccination for koi herpesvirus in carp 

Green fluorescent protein has been demonstrated to possess immunogenic properties in 

mammals (Stripecke et al., 1999; Walsh et al., 2000a; b; Fang et al., 2008) and anti-GFP 

antibodies have been successfully detected in inoculated carp (Companjen et al., 2006). It 

was therefore investigated as a marker antigen for an inactivated KHV vaccine. During 

optimisation there were higher antibody values to the GK group than the G group, suggesting 

a possible adjuvant effect from the dual inoculation, however the antibody response of the K 

vaccine group was also higher than the G group. The GFP vaccine formulation consisted only 

of ISA montanide adjuvant, a water in oil adjuvant that provokes both Th 1 and Th2 

responses (Mata et al., 2007). The KHV vaccine, however, is formulated in aluminium 

hydroxide, which induces strong Th2 responses (Cox and Coulter, 1997; Kool et al., 2008) 

and thus may have resulted in greater antibody induction in KHV vaccinated fish. However, 

the antibody responses of the K group, not immunised with rGFP, were also relatively strong 

against BSA implying non-specific, possibly natural antibody responses, which are 

characteristic of cyprinid IgM (Kachamakova et al., 2006; Sinyakov et al., 2002; 2006; 

Sinyakov and Avtalion, 2009). Non-specifically bound antibodies were completely 

eliminated following intensive blocking. It was noted that the cut-off used for the sandwich 

GFP ELISA, utilised by Companjen et al. (2006), was only OD ≥ 0.05 at 450 nm, which 

would imply that the antibody values observed were also very low, despite the authors 

reporting a positive titre of ~ 1/400 for primary inoculated positive control fish. However, 

following a booster immunisation, a high antibody titre was detected at a cut-off OD ≥ 0.2, 

thus a booster immunisation may be required to induce detectable anti-GFP antibody 

responses for detection of marker vaccinated fish. No antibody response to GFP from a single 

immunisation was observed in the current study following serum blocking, which may also 

have been the result of poor presentation to the immune system and rapid removal by 
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stimulated macrophages. It may be necessary for continuous antigen expression from a 

replicating virus with a GFP insert in order to activate a Th2 response by the MHC 2 class 

pathway to induce a measurable anti-GFP antibody response. Green fluorescent protein has 

previously been inserted into the genome of attenuated KHV without affecting replication 

(Fichtner et al., 2007; Costes et al., 2008), which may make it a useful endogenous marker 

strategy for an attenuated replicating virus as results for mammalian vaccines have previously 

been encouraging (Walsh et al., 2000a; b; Fang et al, 2008). Negative factors regarding the 

use of GFP as a marker antigen is that it is unlikely that such a vaccine could be licensed for 

food fish and there have also been reports of GFP-induced cell toxicity in cells expressing the 

protein in vitro (Liu et al., 1999). The expression system used in such marker vaccines is also 

vital for sufficient presentation of the antigen to B cells. A secreted expression system 

allowed GFP antigen to be easily internalised, degraded, presented and subsequently 

recognised by specific antibody receptors of B lymphocytes in a previous study (Walsh et al., 

2000a). Anchorage of the same marker antigen to the membrane proved to be a more 

effective approach, which was thought to result in an efficient uptake from the cell surface 

and directed to the MHC II presentation pathway, thus allowing the marker antigens to 

activate B lymphocyte antibody production (Walsh et al., 2000a). Therefore, endogenous 

expression of GFP may be necessary for specific anti-GFP-antibody induction. It may not be 

feasible to induce specific antibodies to the marker by the simple exogenous marker 

vaccination approach employed in the current study. It may be necessary for recombinant 

GFP to be conjugated to a carrier (i.e. as it may constitute a TD antigen) in order to induce a 

good detectable antibody response, which could then be applied to an inactivated KHV 

vaccine. Weiss and Avtalion (1977) found it possible to induce an upregulation of anti-hapten 

antibody responses at low temperatures, as long as fish were pre-injected with modified 

carrier proteins at optimal temperatures to enable helper cell maturation. Cell co-operation 
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and antibody synthesis could then occur at low temperatures, which would be particularly 

beneficial for specific detection of antibodies to the marker antigen, as the effect of 

temperature has been found to influence antibody production in carp (Rijkers et al., 1980; Bly 

and Clem, 1992). Although natural antibody responses have previously been shown to bind 

strongly to some carrier proteins such as KLH (Kachamakova et al., 2006), which would 

have adverse effects on marker vaccine diagnostic test sensitivity. 

Although there has been a lack of success with the application of heat inactivated 

KHV vaccines (Ilouze et al. 2011) the formalin-inactivated KHV vaccine in the current study 

has proved highly antigenic with strong anti-KHV titres produced and previous field trials 

have reported high levels of protection (Pardoe, Henderson Morley PLc., pers. comm., 2009; 

Clarke, 2009). Other studies have also demonstrated protective potential of formalin 

inactivated KHV administered orally (Yasumoto et al., 2006). Even following stringent 

blocking techniques similar to Kim et al. (2007a) with modifications to published assays 

from Adkison et al. (2005) and St-Hilaire et al. (2009), a sera dilution of 1/200 still resulted 

in false positive results in negative carp and only at a dilution of 1/800 was this eliminated. 

The plate was coated with mostly fully enveloped KHV virions, which appeared to be 

similar to ultracentrifuge gradient purified KHV shown in previous studies (Hedrick et al., 

2000; Michel et al., 2010b) as observed after negative staining and TEM analysis of the 

purified KHV sample. Although unenveloped capsid particles were still present, the virus 

coating antigen was otherwise relatively pure and the specific antibodies detected are likely 

to be directed to envelope glycoproteins. Depending on the carp strain, natural antibody 

levels can be highly abundant from a dilution of 1/80 (Kachamakova et al., 2006), which 

probably compromised the ELISA sensitivity in the current study. Although carp appear to 

produce strong, specific antibodies following formalin inactivated KHV vaccination 
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administered ip, improved sensitivity of the accompanying diagnostic test is required in order 

for marker vaccination to be feasible.  

3.4.3 Concluding remarks 

Suitably immunogenic foreign antigens reported for mammals may not be applicable for fish, 

as identified with TT, and the life cycle of the fish species should be considered during 

marker vaccine development. Due to the expense in adding antigens such as TT, alternative 

more cost-effective foreign antigens should be applied as exogenous vaccine markers, which 

can be detected reliably, i.e. throughout the production cycle, but this can be complicated for 

anadromous species like Atlantic salmon. Timing of vaccination with regards to temperature 

may be vital for enabling detection of antibody responses to marker antigens, but 

accompanying diagnostic test sensitivity must be optimal by using low serum dilutions, 

although high concentrations of serum, e.g. a 1/20 dilution for Atlantic salmon and 1/200 for 

carp, can result in false positive antibody detection possibly due to natural antibodies. In 

contrast to Atlantic salmon antibody responses to ISA vaccination, strong antibody responses 

were obtained to KHV vaccination and quantified using a fully optimised and working 

ELISA. Previous immunisation and challenge studies have highlighted the importance of 

antibody responses of carp to KHV, which, although only measured after 6 wpv in the current 

study, can reach high titres for long periods (Ronen et al., 2003; Adkison et al., 2005; St-

Hilaire et al., 2009). Koi herpesvirus disease therefore represents a suitable model for further 

investigations on applying DIVA vaccination for fish species, i.e. carp, for which such a 

strategy may not only become highly beneficial, but necessary if safe and effective 

vaccination programmes can be introduced to control this highly fatal disease and prevent 

further spread. 
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On applying a suitable foreign antigen, e.g. perhaps utilising synthetic biomarkers as 

described by Root-Bernstein (2005), applications of exogenous marker vaccination may still 

prove useful for DIVA strategies. Vaccines carrying genetic deletions, or ‘negative 

endogenous’ markers, allow uninfected and immunised animals to be distinguished from 

infected animals based on sero-negative responses to the epitope absent in the vaccine, but 

the vaccine status of the host is subsequently masked. The inclusion of a foreign antigen 

administered with ‘negative marked’ vaccines enables detection of antibodies to alternate 

epitopes, i.e. a vaccinated and uninfected animal. Furthermore, live attenuated vaccines 

commercialised for protection against KHVD (Cavoy®, Novartis; KV3, KoVax) could 

benefit from the inclusion of exogenous markers in the vaccine as only naïve carp are 

subsequently at high risk of disease. These high risk fish could be screened and identified 

prior to transportation (i.e. sera from these fish will lack antibodies to the marker) and 

cohabitation with vaccinated, but potential carrier and reservoir fish. However, serology is 

not, and is unlikely to be, an accepted isolated method for diagnostics, especially with regards 

to notifiable diseases (OIE, 2012). Therefore accompanying molecular testing is paramount 

for successful disease control strategies.  
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4.1 Introduction 

4.1.1 Acute aquatic viral pathogenesis and problems associated with detection 

methods 

Detection of anti-KHV antibodies is often not feasible until later stages of KHV infection 

(Ronen et al., 2003; Perelberg et al., 2008; St-Hilaire et al., 2009; Matras et al., 2012), which 

may compromise the application of DIVA vaccination strategies as they require detection of 

anti-KHV antibodies. Additionally, anti-viral antibodies only indicate exposure to the virus, 

but do not confirm infection. Therefore accompanying methods for direct detection of the 

virus are required for its control, especially during the earliest stages of infection, so that 

appropriate measures can put in place.  

Various methods have been used for detecting aquatic viruses within the host 

following infection, which have provided information not only on viral pathogenesis, but 

importantly, have also revealed the difficulties associated with the application of particular 

diagnostic methods with respect to specific stages of infection (Sano et al., 1991; 1992; 1994; 

Lopez-Jimena et al., 2011; 2012). 

 The various in situ detection methods have their advantages and disadvantages 

(Adams et al., 2008). Compared to immunohistochemistry (IHC) and immunofluorescent 

antibody tests (IFAT), the use of In situ hybridisation (ISH) is less prone to false negative 

results that can occur in the former two methods due cross-linking of antigens, and 

subsequent masking of epitopes, in tissues following formalin fixation. However, viral DNA 

detection by ISH does not indicate whether or not viral replication is taking place, whereas 

IHC and IFAT can indicate the presence of viral structural proteins (e.g. γ; late proteins), and 

hence replication. Unlike IHC and ISH, IFAT does not suffer from problems with non-
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specific staining due to the presence of endogenous peroxidases, but pathological lesions and 

host responses cannot be determined by IFAT as the tissue is not counterstained (as in IHC 

and ISH). IFAT is often the most ideal approach for virus detection compared to IHC because 

of its superior sensitivity (Adams and Thompson, 2006; Adams et al., 2008). In terms of 

histopathology, IHC is preferred to ISH as the tissue integrity is usually well preserved in 

IHC (Adams and Thompson, 2008). Proteinase K digestion is required during ISH to enable 

hybridisation of probes to DNA and this often leads to structural denaturation.  

There are many reports relating to detection and analysis of KHV for both diagnostics 

and research, where the authors utilised polyclonal rabbit anti-sera for antigen detection 

(Hedrick et al., 2000; Pikarsky et al., 2004; Rosenkranz et al., 2008; Kempter et al., 2009; 

Bergmann et al., 2010c), and only very few have used MAbs (Kempter et al., 2009; 

Bergmann et al., 2010c; Aoki et al., 2011) or ISH for diagnostics (Bergmann et al., 2006; 

2007; 2009b; 2010c; Kempter et al., 2009; Lee et al., 2012). No studies have been undertaken 

with these methods do determine their sensitivity for KHV. Application of such methods 

could also provide vital information with regards to pathogenesis, i.e. the expression of 

known antigens in infected carp tissues, the portal of entry and target tissues for viral 

replication, especially with respect to asymptomatic carriers. 

 DNA probes have been previously used to detect other aquatic herpesviruses, such as 

Channel catfish virus (CCV) in asymptomatic fish using Southern blotting (Wise et al., 1985; 

Gou et al., 1991). Detection of viral nucleic acid, e.g. by expression ISH, does not always 

correlate with positive detection of viral protein by IHC, even within sections of the same 

tissue samples, as noted in turbot injected with a DNA vaccine against Nodavirus 

(Sommerset et al., 2005b). This can be associated with both assay sensitivity and time lag 

between transcription (detected by the ISH probe) and translation (detected by the IHC MAb) 

(Sommerset, et al., 2005b). 
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ISH has proved very sensitive for detecting viral DNA of eel herpesvirus (Herpesvirus 

anguillidae; HVA) at early stages (3 hpi) in infected cell cultures (Shih et al., 2003). 

Conserved genomic regions have been targeted in ISH for the detection of fish viruses 

(Alonso et al., 2004; Huang et al., 2004) such as the major capsid protein gene of Iridovirus 

(Huang et al., 2004). Alonso et al. (2004) detected the virus in cell culture after 8 hpi with 

ISH compared to 24 hpi with IHC. However, specificity is key for KHV bearing in mind that 

it is closely related to carp herpesviruses, CyHV-1 (carp pox virus) and CyHV-2 (Goldfish 

herpesviral haematopoietic necrosis virus) (Waltzek et al., 2005).  

Using IFAT on experimentally infected carp enabled the progressive systemic 

infection of another aquatic herpesvirus, carp pox, to be investigated in detail where antigens 

were detected in the gills and gastrointestinal tract after only 2-3 dpi then later in the skin 

(Sano et al., 1991). However, due to various sensitivities of detection methods, there has been 

much debate regarding the pathogenesis and portals of entry in fish. For example with IHNV 

the use of bioluminescence, IHC, TEM and virus infectivity titration resulted in conflicting 

results (Yamamoto and Clermont, 1990; Yamamoto et al., 1990; Harmache et al., 2006). In a 

study on the pathogenesis of Red Spotted Grouper Nervous Necrosis Virus (RGNNV) in 

European sea bass, ISH was unable to detect viral genome in some tissues that were positive 

by RT-qPCR during a time course of experimental infection (Lopez-Jimena et al., 2011). 

Furthermore, IHC detected antigens in tissues where ISH was negative for genomic viral 

RNA in the same challenge (Lopez-Jimena et al., 2012). This, like other studies indicates the 

necessity to determine the most ideal target antigens of antibody-based methods as well as the 

target genes or sequences for ISH methods for in situ diagnostics. 

Latency is a silent persistence of virus in the host (Pastoret et al., 1982), which results 

in less viral antigen within host tissues for detection by antibody based methods such as IHC 

and IFAT (Thiry et al., 1986). However, nucleic acid based detection methods such as ISH 
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have previously been successfully used to define mechanisms of herpesviruses during latent 

infections in mammals and fish (Teo and Griffin, 1990; Sano et al., 1994; Cardoso et al., 

2012). Whereas viral antigens could not be detected during the period between acute 

infection and tumor formation in carp experimentally infected with carp pox, DNA could be 

detected by ISH (Sano et al., 1991; 1992; 1994).  

It would useful to investigate the application of in situ diagnostic methods for 

detecting KHV infected carp during the early stages of infection, but it is vital to compare 

these methods with the most commonly, and reliably, used molecular detection methods from 

extracted DNA. 

4.1.2 Importance and limitations of molecular detection of KHV 

Like other herpesviruses, despite inhibition of viral replication at non-permissive 

temperatures, i.e. above 30°C, KHV retains infectivity and a persistent infection ensues 

(Dishon et al. 2007; Ilouze et al., 2012a). Latency as defined as ‘the delivery of viral genome 

to the nucleus without the initiation of a productive infection’ (Penkert and Kalejta, 2011) 

where the genome is maintained as a non-integrated episome and expression occurs in only a 

limited number of viral genes and microRNAs (Michel et al., 2010a). This occurs in specific 

cell types during other herpesvirus infections, but has not yet been proven for KHV, however 

many studies have demonstrated latency-like characteristics of the virus (Dishon et al., 2007; 

St-Hilaire et al., 2009; Eide et al., 2011a; Ilouze et al., 2012a). It is possible that latency may 

be a contributing factor to the problems encountered with detection of KHV-infected fish 

surviving an outbreak as low viral copy numbers are difficult to detect by PCR. This has 

important implications with regards to controlling and eradicating the disease, as the host 

appears healthy, but may subsequently transmit the virus to naïve carp, particularly during 

periods of stress and temperature fluctuation; indeed both seasonal changes and 
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transportation stress have been shown to reactivate KHV from persistent, potentially latent, 

infections (Bergmann and Kempter 2011; Eide et al., 2011a).  

Koi herpesvirus disease is listed as notifiable by the OIE and EU, thus specific and 

sensitive detection of KHV in infected fish has been a principal area of research to assist in 

its control. The development of conventional polymerase chain reaction (PCR) vastly 

improved detection of the virus and viral DNA, especially from necrotic or frozen tissues of 

fish (Gilad et al. 2004), and in cases where isolation of KHV on cell lines proved impossible. 

Molecular-based techniques are now the most effective method for detecting the virus and a 

number of assays have been published to date, but it is important that the most reliable 

diagnostic methods are employed. Highly specific and sensitive conventional PCR assays 

(Gilad et al., 2002; Gray et al., 2002; Bercovier et al., 2005; Yuasa et al., 2005), nested PCRs 

(Bergmann et al., 2006; El-Matbouli et al., 2007) semi-nested PCR (Bergmann et al., 2010a), 

real-time PCR (Gilad et al., 2004) and loop mediated isothermal amplification assays 

(Gunimaladevi et al., 2004; Soliman and El-Matbouli 2005; 2010) have been developed for 

the detection of viral DNA in fish tissues with sensitivity limits as low as 1-5 genomic copies 

(Bergmann et al., 2010a) obtained by some of these (Gilad et al., 2004; Bergmann et al., 

2006; 2010a).  

While generally accepted that acutely infected fish undergoing clinical disease can be 

successfully diagnosed with KHV using the majority of the molecular methods developed, 

which normally requires lethal sampling procedures for screening DNA from gill and kidney 

biopsies, as these support the production of high virus loads (Gilad et al., 2004; Pikarsky et 

al, 2004; Eide et al., 2011b) false negatives are often reported and only rarely are 100 % of 

fish sampled from experimental challenges positive for KHV (Gilad et al., 2003; Bergmann 

et al., 2010a; b), which reflects the difficulties in diagnosing fish from populations that have 

experienced disease outbreaks. Although such results are often likely to be associated with 
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low viral copy numbers during a latent or persistent infection, they may also be attributed to 

an acute phase of infection, i.e. initial viraemia, where fewer genomic copies of virus DNA 

are present for amplification by PCR. The onset of KHVD can be rapid, with sub-clinically 

infected fish suddenly developing the disease and dying one or two days later (Bretzinger et 

al., 1999; Antychowicz et al., 2005). Diagnosing sub-clinical KHV presence is therefore 

important, however, the efficiency of the various PCR methods cited for KHV detection has 

not yet been determined with regards to detecting KHV immediately after exposure. As 

clinical signs of KHVD are never evident in these fish, reliable diagnostics for early detection 

of the virus is vital to prevent false negative results. An inactivated KHV vaccine was found 

to induce high specific anti-KHV antibody titres in Chapter 3. However, as serological 

diagnostics will not be accepted in isolation (OIE, 2012), and antibodies are not detectable till 

later stages of infection, it is essential to accompany serology with the most reliable 

molecular diagnostic tests. 

4.1.3 Aims  

The goal of this study was to determine the most sensitive diagnostic method for detection of 

KHV during the early stages of infection. During the study the acute stages of KHV 

pathogenesis were investigated in vivo, and how this may influence the sensitivity of various 

detection methods targeting viral nucleic acid (e.g. ISH and PCR), or different viral antigens 

(e.g. using KHV-specific MAbs in IHC and IFAT) and virus particles (TEM). Serology was 

also used to try to measure early antibody responses to the virus. Samples were collected, 

either lethally (i.e. skin, gills, spleen, kidney, gut, liver and brain) or non-lethally (mucus and 

leukocytes) over a 10 day period from fish experimentally infected with the virus by 

immersion. The sensitivities of seven PCR-based methods, including single round PCR 

(Gilad et al., 2002; Bercovier et al., 2005; Bergmann et al., 2010b), nested PCR (Bergmann 

et al., 2006; Centre for Environment, Fisheries and Aquaculture Science (CEFAS) 2007 
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unpublished); semi-nested PCR (Bergmann et al., 2010a) and real-time qPCR (Gilad et al., 

2004) were compared using these samples. 

 

4.2 Materials and Methods 

4.2.1 Experimental infection with KHV 

4.2.1.1 Virus propagation by cell culture 

KHV isolate KHV-E D 182 (kindly provided by Dr. Keith Way, CEFAS, Weymouth, UK) 

obtained from clinical KHVD, was propagated in CCB cells similar to that described in 

Section 2.2.2.2 and Section 2.3.2, with modifications. Fresh sub-cultured CCB cells were 

infected with Koi herpesvirus for 1 h at 20°C, then 10 mL Hanks buffered salt solution 

(HBSS) containing 10 % foetal calf serum (FCS) without antibiotics was added. After virus 

absorption, fresh Earle’s minimum essential medium (EMEM) containing 5% FCS was 

resupplemented to the cells, which were incubated for 7-10 days at 26°C. Once a 95-100 % 

CPE had been obtained, cells and virus were harvested by a freeze-thaw cycle at -80°C, 

followed by centrifugation at 1000 x g for 20 min at 4°C (Hettich Zentrifugen, Tuttlingen, 

Germany) in order to remove the cell debris. The supernatant was used as the viral inoculum 

for the challenge. 

4.2.1.2 Fish, experimental design and sampling 

One year old specific pathogen-free carp (n=60) weighing approximately 130 – 150 g, 

obtained from a commercial farm in Thuringia, Germany, were used in the study. The fish 

were held in a quarantine facility in 1 m
3
 re-circulating tanks at FLI at a water temperature of 

20°C and flow rate of 300 L h
-1

 for 6 days prior to the trial to allow them to acclimate to these 

conditions. They were fed daily with a commercial carp diet (Ssniff, Germany). These fish 

tested negative for antibodies to KHV and carp pox (CyHV-1) using a serum neutralisation 
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test (SNT) and ELISA (Bergmann pers. comm.), and negative for virus nucleic acid using a 

range of different PCRs (Gilad et al., 2004; Bergmann et al., 2006). Prior to performing the 

infection, two carp from a group of 40 fish were sampled after lightly anaesthetising them 

with benzocaine (2 mL [2% v/v in ethanol] in 10 L). Mucus swabs were taken from skin, fin 

base and gill (Fig. 4.1) with a sterile cotton wool bud, which was placed directly into 200 µL 

ATL lysis buffer (Qiagen, Germany) containing 20 µL proteinase K supplied in the kit 

(Qiagen, Germany) and 2 µL Internal control (IC2, Bergmann et al., 2010a). Fish were then 

bled with sterile heparinised and non-heparinised 2 mL syringes for leukocyte separation 

(Bergmann and Kempter, 2011) and serum collection, respectively. The same carp were then 

killed by overdosing them in benzocaine (8 mL [2% v/v in ethanol] in 5 L). Tissue (skin, 

gills, spleen, kidney, gut, liver and brain) were sampled using new gloves and dissection tools 

between biopsies to prevent cross-over of KHV DNA between samples. The tissues were 

frozen and stored at -70°C for molecular analysis. The samples for histological and antibody-

based analysis, i.e. IHC and IFAT, were placed in Davidson’s solution (v/v: 35% water, 35% 

ethanol, 9% formaldehyde, 12% glycerol, 9% glacial acetic acid) and samples for TEM 

analysis were placed in Karnovsky’s fixative (Science Services GmbH, Munich, Germany). 

Leukocytes (their isolation is described later in Section 4.2.1.3) were also fixed for TEM in 1 

mL of a 500 mL Karnovsky’s fixative stock (Science Services GmbH). Carp (n=38) were 

challenged with KHV (at a viral dose of 10
3
 TCID50 mL

-1
) by immersion for 1 h in 30 L of 

water at 20°C, and then transferred randomly (n=19) to two separate 400 L tanks with a flow 

rate of 100 L h
-1

 at 20°C. Twenty additional carp, from the same acclimatised population, 

were immersed in non-infected culture medium instead of virus, as uninfected controls. The 

two experimental challenge tanks were each on a recirculation system with bio-filtration 

under identical conditions (Fig. 4.2). 
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Figure 4.1. Non-lethal sampling of carp mucus for the detection of koi herpesvirus 

DNA.  Mucus swabs were taken using sterile cotton wool buds, which were placed into lysis 

buffer (A) Skin swab, (B) Gill swab, (C) Fin base swab. 

 

 

 

Figure 4.2. Experimental set up for koi herpesvirus (KHV) challenge. Fish were 

challenged with KHV by immersion in the same challenge tank (CT), then placed in separate 

tanks B15 and B16, attached to different recirculation systems, supplied with de-chlorinated 

water and a daily 50 % water change. 

 

Two infected carp (one from each tank, B15 and B16) were sampled both lethally and non-

lethally as described above at time points 1, 2, 4, 6 and 8 hours post-infection (hpi), then one 

fish sampled daily 1 – 10 dpi. A single control carp was also sampled daily. Due to the 

differential onset of disease between the two tanks (i.e. Tank B15 exhibited per-acute KHVD 

with all fish dying by 4 dpi and was designated the peracute disease tank, while a slower 

onset of mortalities were observed in B16 and was designated the acute disease tank), fish 
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could only be sampled from Tank 16 from 4 dpi. The condition of fish was monitored daily 

and morbidity and mortalities recorded. Maintenance of infected and control carp was 

identical throughout the experiment, which included a daily 50% water change, and 

monitoring ammonia, nitrite, pH and dissolved O2 (dO2) levels (Tetra Pond water test set, 

Tetra, Germany). Any mortalities were removed immediately, and the gills and kidney of 

these fish sampled individually as described above (tissues pooled) for viral DNA detection 

by PCR (Gilad et al., 2002; Bergmann et al., 2006). Each fish sample was analysed 

independently using a range of single round, nested and semi-nested PCR methods as well as 

real-time qPCR and all fish tissues were analysed by ISH. Blood serum samples were 

analysed by ELISA and SNT, and further analysis of fish harbouring a high concentration of 

viral DNA was undertaken on tissues and leukocytes using IHC, IFAT and TEM.  

4.2.1.3 Leukocyte separation 

Heparinised blood, sampled in Section 4.2.1.2., was diluted 1:5 with EMEM. Leukocytes 

were separated from this through a 1.075 % Percoll gradient by centrifuging at 800 x g for 40 

min at 4°C. The buffy coat of leukocytes shown in Fig. 4.3 was collected and washed with 

phosphate buffered saline (PBS, 0.02M phosphate, 0.15M NaCl, pH 7.2) by centrifuging at 

800 x g for 10 min. The cell concentration of the washed leukocytes was adjusted to at least 

10
7
 cells mL

-1
 (Bergmann et al., 2010c), which was placed directly into 200 µL lysis buffer 

containing 20 µL proteinase K and 2 µL IC2 for DNA extraction. 
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Figure 4.3. Isolation of carp leukocytes on a 1.075 % Percoll gradient. (A) Carp blood 

diluted 1:5 with EMEM media; (B) buffy coat of leukocytes (arrow) collected after 

centrifugation . 

 

 

4.2.2 Molecular analyses  

4.2.2.1 DNA extraction 

DNA was extracted directly from the mucus samples placed into lysis buffer as described 

above (Section 4.2.1.2). For tissues, organs were dissected and 25-30 mg of tissue was placed 

in eppendorf tubes containing a metal bead and 80 µL PBS before mechanically lysing using 

a tissue lyser (Qiagen, Germany) for 2 min at 30 shakes sec
-1

. Two hundred microliters of 

lysis buffer, 20 µL proteinase K and 2 µL IC2 were then added to the lysed tissue. This was 

heated at 56°C on a thermo shaker at 900 rotations min
-1

 (rpm) for 1 h. The lysed samples 

were then heated for 10 min at 70°C on the thermo shaker to deactivate the proteinase K. 

DNA extractions were then carried out using a QIAamp DNA Mini kit (Qiagen, Germany) 

according to the manufacturer’s instructions and excess tissues and leukocytes stored at -

70°C for repeated DNA extractions and PCR testing. 
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4.2.2.2 Controls and plasmids 

Positive internal controls for KHV DNA in qPCR were prepared as previously described by 

Bergmann et al. (2010a) using a plasmid preparation kit (vector pGEM®-T Easy: Promega, 

Mannheim, Germany) with a KHV fragment of 484 bp from open reading frames (ORFs) 89-

90, accession no. AF411803 (Gilad et al., 2002) for which the plasmid concentrations and 

fragment copy numbers had been previously determined by Bergmann et al. (2010a). A 

standard curve from 1 – 10
6
 gene copies was prepared and used for quantification of viral 

load from each sample. The internal control system (IC2) was used according to Hoffman et 

al. (2006) and a duplex real-time PCR was used, modified from Gilad et al. (2004) by 

Bergmann et al. (2010a). 

4.2.2.3 PCR, nested PCR and semi-nested PCR 

The PCR methods used in the study are highlighted in Table 4.1, together with relevant 

primers sequences, product sizes, cycle conditions and estimated sensitivity limit of the 

reactions according to a previous study (Bergmann et al., 2010a). All PCRs were undertaken 

in duplicate for each extracted DNA sample. A random selection of samples was reanalysed 

to examine the reproducibility of the PCR results. A Go Taq Flexi DNA Polymerase Kit 

(Promega, Mannheim, Germany) was used in each assay except in the qPCR. Products were 

visualised on a 1.5 % agarose gel (in TAE buffer, 40mM Tris-acetate, 1mM EDTA, pH 8) 

containing ethidium bromide (0.5 μg ml
-1

)
 
under UV light after electrophoresis at 60 V for 60 

min. All PCR reactions included no-template negative controls (DNAse-free water) and a 

second no-template control was included in the second round reactions of the nested PCR. 

DNA extractions, PCR reaction preparations and gel electrophoresis were undertaken in 

different rooms to prevent contamination. Positive controls (KHV, HP783, Israeli attenuated 

vaccine DNA) were always prepared and added in a different room to prevent cross-

contamination of KHV DNA. 
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Conventional PCR methods were undertaken with the following Master Mix: 100 µM 

each of dNTPs, 2.5 mM MgCl2, 0.5 µM each of forward and reverse primers, 0.6 Units Go 

Taq-polymerase enzyme, 1 x colourless Go Taq Flexi Buffer and 5 µl of extracted, purified 

DNA added as template. The reaction mixture used for the second round of the nested PCR 

was the same as the first round, using 2 µl of the first round reaction as DNA template. The 

reaction mixtures for both rounds were made up to 25 µl with molecular grade water. The one 

tube semi-nested glycoprotein gene PCR, according to Bergmann et al., (2010a), was carried 

out using one forward primer and three reverse primers with annealing temperatures of 68°C 

for 5 cycles, then 65°C and 60°C for 20 cycles each. The master mix for this PCR consisted 

of 100 µM dNTPs, 5 mM MgCl2, 1 µM forward primer Sn 1F improved, 0.2 µM reverse 

primer Sn 1R improved, 0.3 µM reverse primer Sn 2R improved, 0.6 µM reverse primer Sn 

3R improved, 0.6 units Go Taq-polymerase enzyme, 1 x colourless GoTaq Flexi buffer, 5 µl 

template DNA and the final volume made up to 25 µl with molecular grade water. The 

reaction was performed in a thermo cycler (Master Gradient, Hamburg, Eppendorf, Germany) 

using the temperature regime shown in Table 4.1, with a final cycle of 5 min at 72°C to 

complete the reaction. 

4.2.2.4 Real-time quantitative PCR 

Real-time qPCR was carried out according to Gilad et al. (2004) with modifications made by 

Bergmann et al. (2010a) to amplify a fragment of the KHV genome (Accession No. 

AF411803). An internal control mix consisted of Enhanced green fluorescent protein (EGFP) 

primers 1F and 2R at 10 pmol µL
-1

 each and 1.5 pmol µL
-1

 EGFP-HEX (Hex 

phosphoramidite) IC2 probe (accession No. U55761). The KHV mix consisted of KHV 

primers 86F and 163R at 10 pmol µL
-1

 each and KHV probe KHV 109P at 1.25 pmol µL
-1

. 

The 2 x reaction mix from Quanti Tect, multiplex PCR, No ROX kit (Qiagen, Germany) was 

used according to the manufacturer’s instructions. Briefly, master mix was prepared with the 
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components described above with 2 µL IC mix (3 pmol EGFP-HEX IC2 probe), 2 µL KHV 

mix (20 pmol EGFP primers 1F and 2R), 12.5 µL 2 x reaction mix and 3.5 µL DNAse-free 

water plus 5 µL of template DNA or ‘no template’ control for each reaction. Thermal cycle 

conditions, shown in Table 4.1, were run in a MX3000P qPCR machine (Stratagene). 

Significant differences of medians of KHV viral load between per-acute, early acute and 

acute stages of infection and between different tissue, mucus and leukocyte samples were 

assessed by Kruskal-Wallis test and pair wise comparisons were assessed by Mann-Whitney 

U test using Minitab 16 statistical software.  

4.2.2.5 In situ hybridisation (ISH) 

(a) Preparation of KHV DNA for developing probes 

The CCB cells were cultured and infected with KHV as described previously (Section 

4.2.1.1) and DNA was extracted by the DNAzol method (Invitrogen, Kalsruhe, Germany) 

(Bergmann et al., 2010a). KHV DNA was amplified by PCR to prepare two different sized 

probes, one of 414 bp amplified with primers according to Bergmann et al. (2006) [for this a 

single round PCR was performed using the Gilad nested primers] and the other of 517 bp 

amplified with primers according to Hutoran et al. (2005) [using the cycling conditions of 

Gilad et al. (2002) without a nested step] (Table 4.2). These primer sets have been shown to 

not react with closely related heterologous viruses, including Channel catfish herpesvirus 

(CCV), Carp Pox virus (CyHV-1), Goldfish hematopoietic necrosis herpesvirus (CyHV-2) 

and herpesvirus anguillae (HVA) (Kempter et al., 2009). A dig-labelled Viral haemorrhagic 

septicaemia virus (VHSV) probe was used as an alternative virus negative control. 

(b) Labelling of KHV DNA with Digoxigenine (DIG) 

Koi herpesvirus DNA was labelled with Digoxigenin-11-2'-deoxy-uridine-5'- triphosphate 

(DIG-dUTP, 30%) using a DIG Probe Synthesis Kit (Roche) according to the manufacturer’s 
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instructions, in which 2'-deoxythymidine 5'-triphosphate (dTTP, 70 %) was substituted with 

DIG-dUTP by PCR. The PCR used was similar to the single round PCR performed by Gilad 

et al. (2002) (Section 4.2.2.4; Table 4.1) except the annealing temperature was reduced to 

60°C because of the large size of the probe. The buffers, enzyme and dNTPs supplied in the 

DIG Probe Synthesis Kit were used for the DIG-labelling PCR. The DIG Probe Synthesis 

Mix consisted of 20 µM each of dCTP, dGTP and dATP, but with 13 µM dTTP and 7 µM 

DIG-11-dUTP, which results in the substitution of DIG-labelled dUTP (DIG-11-dUTP) for 

dTTP in a ratio of 30:70, respectively. 

A total of four reactions were undertaken during validation of probe labelling: PCR 

with and without DIG-dUTP for both the Gilad nested primers (Bergmann et al., 2006) and 

the Hutoran et al. (2005) primers. Gel electrophoresis was used, as described in Section 

4.2.2.3, to show that the probes had been successfully incorporated into the amplified 

oligonucleotides. 
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Table 4.1. PCR conditions for the amplification of viral DNA and estimated sensitivity threshold 

PCR Primer sequence 5’-3’ Product 

size (bp) 

Denaturation Annealing Extension Copy no.* 

 

Gilad 1 round 

(Gilad et al., 

2002) 

 

F = KHVF: 

GACGACGCCGGAGACCTTGTG 

R = KHVR: 

CACAAGTTCAGTCTGTTCCTCAAC 

 

484 

 

95°C – 5 min (x1) 

94°C – 1 min (x39) 

 

 

68°C – 1 min (x39) 

 

 

72°C – 30 s (x39) 

72°C – 7 min (x1) 

 

10
4-5

 

 

Gilad nested 

(Bergmann et al., 

2006) 

 

F = KHV-1Fn: 

CTCGCCGAGCAGAGGAAGGC 

R = KHV-1 Rn: 

TCATGCTCTCCGAGGCCAGCGG 

 

414 

 

95°C – 5 min (x1) 

94°C – 1 min (x25) 

 

 

68°C – 1 min (x25) 

 

 

72°C – 30 s (x25) 

72°C – 7 min (x1) 

 

1-5 

 

TK one round 

(Bercovier et al., 

2005) 

 

F = TKF: GGGTTACCTGTACGAG 

R = TKR: CACCCAGTAGATTATGC 

 

409 

 

95°C – 5 min (x1) 

95°C – 30 s (x35) 

 

 

55°C – 30 s (x35) 

 

 

72°C – 1 min (x35) 

72°C – 10 min (x1) 

 

10
1-2

 

 

TK nested 

(CEFAS, 2007 

Unpublished) 

 

F = TKFn: 

CGTCTGGAGGAATACGACG 

R = TKRn: 

ACCGTACAGCTCGTACTGG 

 

348 

 

95°C – 5 min (x1) 

95°C – 30 s (x25) 

 

 

52°C – 30 s (x25) 

 

 

72°C – 1 min (x25) 

72°C – 10 min (x1) 

 

10
1-2

 

 

Glycoprotein one 

round (KHV-U, 

ORF 56) 

(Bergmann et al., 

2010b) 

 

F = SBM-gp-2F: 

ACGTCGGCGTGCGCCAC 

R = SBM-gp-2R: 

GGACGTGGTCTGCCACTAC 

 

661 

 

95°C – 5 min (x1) 

95°C – 30 s (x35) 

 

 

60°C – 30 s (x35) 

 

 

72°C – 1 min (x35) 

72°C – 10 min (x1) 

 

10
2-3

 

 

Semi-nested  

glycoprotein 

(ORF 56) 

(Bergmann et al. 

2010a) 

 

F = Sn 1F improved: 

GGTACTTGTTGGCGTACATGGC 

R1 = Sn 1 R: 

CGGTTGTCAGCAGCACCTCAA 

R2 = Sn 2- R Improved: 

GCGAGGAGCACATCGCGC 

R3 = Sn 3-R Improved: 

CGTGGTGGCCGTCGC 

 

464 

372 

182 

 

93°C – 5 min (x1) 

93°C – 1 min (x5) 

 

 

68°C – 1min (x5) 

65°C – 1 min (x20) 

60°C – 1 min (x20) 

 

 

72°C – 1 min (x5) 

72°C – 1 min (x20) 

72°C – 1 min (x20) 

72°C – 1 min (x5) 

 

1-5 
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TaqMan real-

time 

(Gilad et al., 

2004) with 

modifications 

acc. Bergmann et 

al. (2010a) 

 

F = KHV-86 F: 

GACGCCGGAGACCTTGTG 

R = KHV-163 R: 

CGGGTTCTTATTTTTGTCCTTGTT 

 

KHV probe = KHV-109P (FAM) 

CTTCCTCTGCTCGGCGAGCACG- 

(BHQ1) 

IC2 probe = EGFP1-HEX (HEX) 

AGCACCCAGTCCGCCCTGAGCA- 

(BHQ1) 

IC2 F = EGFP1-F 

GACCACTACCAGCAGAACAC – 

IC2 R =EGFP2-R 

GAACTCCAGCAGGACCATG 

 

78 

 

95°C – 15 min (x1) 

95°C – 1 min (x42) 

 

 

 

 

 

60°C – 30 s (x42) 

 

 

72°C – 30 s (x42) 

 

1-5 

*Copy no. threshold necessary for KHV detection (Bergmann et al., 2010a), determined from known plasmid concentrations and fragment 

copy numbers of a KHV insert (ORF 89-90, Gilad et al., 2002).  

Cycling conditions in bold type indicate initial denaturation conditions and final extension conditions for the respective PCR. F = Forwards 

primer; R= reverse primer; sequences of probes and internal control (IC2) are shown below primers for real-time PCR 

 

 

Table 4.2. Primer sets used to develop ISH probes 

In situ hybridisation protocols (references) Primer sequence 5’-3’ 
Product 

size (bp) 

Bergmann et al. (2006) from Gilad single round PCR sequence (Gilad et 

al. (2002) 

KHV-1Fn: CTCGCCGAGCAGAGGAAGCGC 

KHV-1Rn: TCATGCTCTCCGAGGCCAGCGG 

 

414 

 

Hutoran et al. (2005) 
NH-1: GGATCCAGACGGTGACGGTCACCC 

NH-2: GCCCAGAGTCACTTCCAGCTTCG 
517 
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(c) ISH on fixed tissue sections 

Tissues fixed in Davidson’s were dehydrated, impregnated and embedded with paraffin wax 

using an automated Tissue-TEK® VIP system (Miles Scientific) according to standard 

protocols. The wax-embedded tissues were sectioned (5 μm) using a Jung RM 2055 power 

microtome (Leica) and placed on Superfrost ® microscope slides (Microm International) for 

18 h at 62°C. The tissues were dewaxed by 2 x 10 min incubations in Rotihistol (Roth), 

followed by 2 x 10 min incubations in 100 % ethanol before air-drying. Sections were framed 

with a wax Pap Pen (Merck, Darmstadt, Germany) and tissues treated with 100 μg mL
-1

 

proteinase K (Appligen, Ilkirch, France) in TE buffer (50mM Tris, 10 mM EDTA, 10mM 

NaCl, pH 7.4) for 20 min at 37°C to permeabilise cell membranes. The sections were then 

further fixed by incubating for 1 min in 95 % ethanol followed by 1 min in 100 % ethanol. 

After air-drying, the sections were again framed with the Pap Pen and equilibrated with pre-

hybridisation buffer by covering sections with approximately 200 µL hybridisation mixture 

[ISH-M: 4 x standard saline citrate (SSC, 0.6M NaCl, 0.06M Na-citrate, pH 7), 50% 

formamide, 1 x Denhardt’s reagent, 250 μg yeast tRNA mL
-1

 and 10 % dextran sulphate] and 

incubated for 1 h at 42°C in a humid chamber. DIG-labelled probes (5 μL in 200 µL ISH-M) 

were added to the sections, which were then covered with a cover slip. The slides were placed 

on the in situ plate of a thermal cycler (Eppendorf Mastergradient) and heated to 95°C for 5 

min to denature the DNA within the tissues. The slides were then cooled immediately on ice 

for 2 min before incubating overnight at 42°C in a humid chamber to allow the probes to 

hybridize to complimentary DNA. A solution of 0.4 x SSC was also incubated at 42°C 

overnight and the following day, the cover slips were removed by washing sections in 2 x 

SSC twice for 10 min at RT. To remove non-specifically bound probes, slides were incubated 

in pre-warmed 0.4 x SSC at 42°C for 10 min. The sections were subsequently submerged in a 
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bath of DIG 1 buffer (0.1 M maleic acid, 0.15 M NaCl, pH 7.5) for 1-2 min, then blocked 

with approximately 200 µL (or sufficient to cover the tissue) DIG 2 buffer (10 % Roti-block 

in DIG 1 buffer) for 30 min at RT. The slides were washed again for 1-2 min in DIG 1 buffer, 

and then covered with approximately 200 µL anti-DIG alkaline phosphatase-conjugated MAb 

diluted 1: 500 in DIG 2 buffer and incubated for 1 h at RT, covered with foil to prevent 

evaporation. The sections were washed 2 x 1 min in DIG 1 buffer, before equilibrating the 

tissues for 10 min with DIG 3 buffer (0.1M Tris, 0.1M NaCl, 0.05M MgCl2, pH 9.5). The 

sections were finally incubated with approximately 200 µL nitroblue tetrazolium and 5-

bromo-4-chloro-3-indolylphosphate (NBT/BCIP) freshly diluted at a ratio of 1:50 in DIG 3 

buffer at RT and the reaction stopped with DIG 4 buffer (100 mM Tris-HCl, 0.001M EDTA, 

pH 8). The sections were counter-stained with Bismarck-Brown Y (0.5 % w/v in 30 % 

ethanol) (Sigma-Aldrich, Steinheim, Germany) by washing the sections in dH2O then 

incubation in Bismarck Brown Y for 1-2 min at RT. The sections were immersed 2 x in 95 % 

ethanol for 1 min then 2 x in 100 % xylene for 1 min. The slides were then mounted with 

Histokitt (Roth, Germany), cover slipped and visualised using a BX51 phase contrast 

microscope (Olympus, Japan) and images were recorded with an Infinity X U-CMAD3 

camera (Olympus, Japan) with software. Positive staining was evident as violet-black foci in 

infected cells. 

4.2.3. Histology 

Tissues were fixed in 10 % buffered formalin for a minimum of 24 h. Post-fixed tissues were 

processed through an ethanol series over 24 h in a tissue processor (Shandon Citadel 2000, 

Thermo) and embedded in paraffin wax blocks. For hard tissues (e.g. cartilagionous gills) 

hardened blocks were sometimes placed in decalcifier for 10 min to 1 h. Sections were then 
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cut using a Shandon Finesse microtome (Fisher Scientific, UK) at 5 μm and routinely stained 

with haematoxylin and eosin (H&E). 

4.2.4 Antibody-based detection methods 

4.2.4.1 Immunohistochemistry (IHC) 

A panel of anti-KHV MAbs were used for IHC, of which only a few had been partially 

characterised. The MAbs are described in more detail in Chapter 5 and three of these that 

produced promising signals in preliminary experiments on KHV-infected tissues were used in 

the analysis. A final protocol for the IHC was established after obtaining positive signals in 

infected tissues, while negative tissues exhibited no signal. Five µm sections were cut using a 

Shandon Finesse microtome (Fisher Scientific, UK) from carp tissues fixed in Davidson’s 

solution and wax embedded, as described for ISH (Section 4.2.2.5c). Sections from KHV 

disease-free (control carp) and KHV positive carp from experimentally infected fish 

(conducted by Dr. Sven Bergmann), were used as negative and positive controls, 

respectively. The sections were deparaffinised and rehydrated 2 x 5 min in xylene baths 

followed by 100 % ethanol for 5 min and 70 % ethanol for 3 min and finally H2O for 3 min. 

The tissues were outlined using a Pap pen (ImmEdge, Vector Laboratories Ltd, UK) and 

approximately 200 µL endogenous peroxidase blocking solution (glucose, glucose oxidase, 

sodium azide) was added to tissues and incubated for 1 h at 37°C on a Hybaid Omni (UK) 

plate to quench endogenous peroxidase activity (Andrew and Jasani, 1987). Slides were then 

washed 2 x 5 min in PBS and blocked with 10 % goat serum (Sigma-Aldrich, UK) in PBS for 

45 min at RT. Monoclonal antibodies (hybridoma cells and ascites) produced against KHV 

(kindly provided by Dr. Malte Dauber, FLI, Germany) and against recombinant proteins of 

KHV ORF 62 and 68 (Aoki et al., 2011) (kindly provided by Professor Takashi Aoki, 
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University of Marine Science and Technology, Tokyo, Japan and Dr. Taesung Jung, Aquatic 

Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, 

Korea) were used to detect different antigens of KHV in situ. All MAbs were produced from 

hybridoma cell lines as described in Chapter 2, Section 2.1.1. Purified MAbs were used at a 

final concentration of 60 µg mL
-1

, while MAb 10D10 was used at a 1/4 and MAb 7C6 at a 

1/3 dilution. A commercially available anti-KHV MAb (Aquatic Diagnostics Ltd, UK) was 

also used at a 1/15 dilution. Ascites fluid from mice injected with either MAb 10D10 or MAb 

7C6 hybridoma cells (Mabs against ORF 62 and ORF 68, respectively) were diluted 1/300. 

PBS was used as a diluent for MAbs and PBS containing 10 % goat serum was used as 

diluent for ascites dilutions.  

The tissue sections were incubated with the MAbs for 1 h at RT, followed by 2 x 3 

min washes with PBS. Anti-mouse IgG MAb conjugated to biotin (Sigma-Aldrich, UK) were 

added to tissue sections at a dilution of 1/250 in PBS for 30 min, which was followed by 

another wash step of 2 x 3 min with PBS. Streptavidin conjugated with horseradish 

peroxidase (HRP) (Vector Laboratories Ltd, UK), diluted 1/250 in PBS, was added to 

sections for 30 min RT and the sections were washed again 2 x 3 min with PBS. The sections 

were developed with a Vector VIP kit (Vector Laboratories Ltd, UK) according to the 

manufacturer’s instructions. After 10 min the reaction was stopped by washing the sections 

for 1 min in PBS and then counterstaining them with methyl green (Vector Laboratories Ltd, 

UK) for 5 min at 60°C on the Hybaid Omni plate. The sections were washed 2 x 3 min in 

distilled H2O, dehydrated through an alcohol series of 95 % ethanol for 3 min, 100 % ethanol 

for 3 min followed by 2 x xylene baths for 5 min each. The sections were mounted with 

Pertex and left to air-dry overnight. 
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MAbs recognising ISAV, previously used as a positive control for ISAV ELISA in 

Chapter 3, were used as negative control for the primary antibody as it had the same isotype 

as the anti-KHV MAbs. Ascites fluid produced against Keyhole Limpet Hemocyanin 

(AKLH: Sigma-Aldrich, US), used as a positive control for KLH ELISA in Chapter 3, was 

used here as a negative control for the IHC using ascites fluid. PBS or 10 % goat serum in 

PBS were negative controls for the secondary antibody. 

Antigen retrieval was also attempted after de-waxing the sections by heat induction 

(heat induced epitope retrieval (HIER)). Briefly, slides were heated at 700 W in a microwave 

for 6 min in 300 mL of 0.1 M citrate buffer, pH 6, resting for 5 min before repeating the 

microwaving as before. After cooling for 15 min, slides were rinsed in PBS and outlined with 

a PAP pen for performing subsequent steps as described for IHC without HIER. Slides coated 

with 3-aminopropyltriethoxysilane (APES: Sigma Aldrich, UK) following the manufacturer’s 

instructions, were used for sections in HIER to minimise tissue loss during the process. 

4.2.4.2 Immunofluorescence Antibody Test (IFAT) on wax embedded tissue sections 

Due to endogenous peroxidase activity observed in the kidney tubules of both infected and 

non-infected fish with the IHC procedure, IFAT was undertaken to confirm the staining 

specificity.  

Five µm paraffin wax embedded tissue sections deparaffinised and rehydrated as 

described above were outlined with a PAP Pen (Vector Laboratories Ltd, UK), washed in 

PBS and then blocked with 10 % goat serum (Sigma-Aldrich, UK) in PBS for 1 h. Screening 

was undertaken with ASc10D10 diluted to 1:600 or anti-KHV MAb 20F10 (60 µg mL
-1

), 

which were then added to sections for 1 h at RT. All reagents were diluted with 10 % goat 

serum in PBS. The slides were washed with PBS, and then incubated for 1 h in the dark with 

goat anti-mouse IgG conjugated to fluorescein isothiocynate (FITC: Sigma-Aldrich, UK) 
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diluted 1:50 in 10 % goat serum in PBS. Slides were washed with PBS, and 20 µg mL
-1

 

propidium iodide (Vector Laboratories) was used as a counter stain and mounting medium 

for cover slipping. The sections were then viewed using a Leica TCS SP2 AOBS confocal 

laser scanning microscope (CLSM) (Leica Microsystems, Milton Keynes, UK) coupled to a 

DM TRE2 inverted microscope (Leica Microsystems, Milton Keynes, UK) and employing a 

X 63 oil/glycerol immersion objective, in conjunction with Leica confocal software (v. 621).  

A primary antibody isotype negative control, (anti-ISAV MAb at a 1:2 dilution) and a 

negative control with AKLH diluted 1:600 were also included. Imaging by confocal 

microscopy is described in detail in Chapter 5, Section 5.2.3.6. 

4.2.5 Immunological analysis 

4.2.5.1 Enzyme-linked immunosorbant assay (ELISA) to determine the anti-KHV antibody 

titre in the serum of infected fish 

The indirect ELISA was used to screen serum from infected fish for antibodies against KHV, 

similar to that described in Section 3.2.5.3(c), but this assay was developed at the FLI, 

Germany as part of the EU project ‘Epizone WP 6.1. (Denmark)’(Sven Bergmann, pers. 

comm.). 

4.2.5.2 Serum neutralisation test (SNT) to determine the neutralising antibody titre against 

KHV in the serum of infected fish 

The SNT used for determining the specific neutralising antibody titre against KHV in the 

serum of infected fish, was developed at the FLI, Germany, as part of the EU project 

‘Epizone WP 6.1. (Denmark)’ (Sven Bergmann, pers. comm.). 

4.2.6. TEM analysis of gluteraldehyde fixed tissues and leukocyte pellets 
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Tissues and leukocyte pellets were fixed with a 2.5 % gluteraldehyde fixative (2.5% v/v 

gluteraldehyde in 100 mM sodium cacodylate, pH 7.2) for at least 24 h at 4°C and then 

processed as described by Hayat (1989). Briefly, sections were rinsed in 0.1 M sodium 

cacodylate containing sucrose, pH 7.2, overnight at 4°C in order to remove excess fixative. 

The tissues and cell pellets were then post-fixed in 1 % buffered osmium tetroxide (1 % (v/v) 

osmium in cacodylate buffer, pH 7.2) and rinsed in distilled water (3 x 10 min). The tissues 

and leukocytes were then en-bloc stained in 2 % (w/v) uranyl acetate in 30 % (v/v) acetone 

for 1 h in the dark and dehydrated in an acetone series of 60 % for 30 min, 90 % for 30 min 

and 2 x 100 % acetone for 30 min and 1 h, respectively, prior to embedding in agar low 

viscosity resin (ALVR) (Agar Scientific, Essex, UK) mixed 1:1 with acetone. The tissues in 

ALVR were allowed to polymerise at 60°C for 24 h, before 100 µm ultra-thin sections were 

prepared from the resin blocks using a microtome (Reichert Ultracut E, Leica, UK) with a 

diamond knife (Diatome, US) and placed on 200 µm mesh Formvar-coated copper grids. 

These were first stained with 4 % uranyl acetate in 50 % ethanol for 4 min followed by 

Reynold’s lead citrate for 7 min. The sections were finally observed under an FEI Tecnai 

Spirit G2 Bio Twin Transmission Electron Microscope (TEM). 

 

4.3 Results 

4.3.1 Virulence of KHV isolate in experimental infection 

4.3.1.1 Mortality and morbidity 

A differential onset of acute KHVD occurred between the two challenge tanks (B15 and B16) 

in which disease signs started as early as 2 dpi in the first tank (B15) and 100 % morbidity 
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was evident in both tanks after just 4 dpi (Fig 4.4). Despite all carp receiving the same virus 

dose, a peracute infection occurred in one tank (B15), whereby mortality started as early as 3 

dpi, reaching 100 % after only 4 dpi, whereas the second tank (B16) exhibited a more typical 

acute onset of disease with mortalities starting after 7 dpi and all but 1 of the non-sampled 

fish dying after 11 dpi (Fig. 4.4). Tank B15 was therefore designated ‘peracute KHVD tank’ 

and tank B16 ‘acute KHVD tank’. Only live fish were randomly selected for sampling and 

DNA extractions. Gill and kidney pools taken individually from all dead fish were positive 

by PCR (Gilad et al., 2002; Bergmann et al., 2006) confirming the presence of KHV in dead 

fish (results not shown). It should be noted that all water parameters were within a normal, 

non-toxic range throughout the trial. There were no mortalities or morbidity observed in carp 

from the control tanks. 

4.3.1.2 Clinical disease 

Enophthalmos occurred as early as 3 dpi in the peracute KHVD tank followed by increasing 

mucus production and skin lesions, which became more pronounced in all fish after 6 dpi 

(Fig. 4.5 A, B). Infected carp sampled within the first 2 dpi appeared clinically healthy, 

indistinguishable from control carp (Fig. 4.5 D). Many fish lacked signs of disease until later 

stages of KHVD, and behaved normally until 4 dpi in the acute KHVD tank, at which point 

fish became lethargic. However, no obvious clinical KHVD was observed in the gills or in 

internal organs throughout the challenge. Blood taken from infected fish sampled after 4 dpi 

appeared much paler than uninfected controls (Fig. 4.5 C). 
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Figure 4.4. Morbidity and Mortality curves for carp experimentally infected with koi 

herpesvirus. 

 

 

Figure 4.5. External signs in carp experimentally infected with koi herpesvirus disease 

(KHVD). (A) KHV-infected carp with KHVD-induced enophthalmia at 3 dpi; (B) KHV 

infected carp with KHVD-associated skin lesions at 6 dpi; (C) blood samples of (I) KHV 

infected fish at 4 dpi and (U) uninfected fish at 0 hpi diluted 1/5 with MEM); (D) uninfected 

carp sampled at 0 hpi  
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4.3.2 Early pathogenesis of KHV 

4.3.2.1 Real time qPCR quantification of KHV DNA in carp tissues 

(a) 1-8 hpi: Peracute and acute KHVD 

Different concentrations of KHV DNA were observed in the mucus of fish from the two 

tanks during the first day of infection. Very high concentrations of virus, up to 80, 000 

genomic equivalents (gen eq.), could be detected in swabs of skin and gill after only 1 hpi in 

the peracute tank (Tank B15) (Fig. 4.6 A). This level declined dramatically after only 4 hpi to 

≤5,000 gen. eq. in skin mucus (from skin swabs and fin base swabs) (Fig. 4.6 A). In contrast, 

the level of KHV DNA in the equivalent mucus samples from the acute KHVD tank (Tank 

B16) increased dramatically from ~10,000 gen. eq. to 50,000 during the first 8 h of infection 

(Fig 4.6 B). 

Mucus from gill swabs contained 1000 gen. eq. after 8 hpi in the peracute KHVD 

tank, despite a substantial initial attachment of virus (80,000 gen. eq). Gill swabs from the 

acute KHVD tank showed an even greater reduction of KHV DNA over the first 8 h of 

infection with 10,000 gen. eq. initially detected after 1 h, and 10 gen. eq. detected at 8 hpi. 

Notably higher levels of KHV DNA were noted in gill mucus of the peracute KHVD tank 

than the acute KHVD tank during the first 8 hpi (Fig. 4.6). There were also high levels of 

KHV DNA measured in gill biopsies, with between 1000-50,000 gen. eq. detected up to 2 hpi 

in the peracute tank (Fig. 4.7 A), however, <10 gen. eq. were found on gills of fish from the 

acute KHVD tank during the same time period (Fig. 4.7 B). Around 1000 gen. eq. were 

detected in skin biopsies of fish after 1 hpi in the peracute tank, however this decreased to 

undetectable levels in the majority of fish sampled during the first dpi (Fig. 4.7 A).  
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Despite fish sampled in the acute KHVD tank having a viral load of 5000 gen. eq. in 

skin samples at 4 hpi, there was no detectable viral DNA in other fish sampled during the first 

day of infection (Fig. 4.7 B).  

Internally, in both the peracute and the acute KHVD tanks, very low levels of KHV 

DNA (< 10 gen. eq.) were detected within gut tissue and leukocytes (< 10 gen. eq.) from only 

4 hpi and 6 hpi, respectively, but all other organs were negative during 1-8 hpi (Fig. 4.7 C, 

D). 

(b) 1-4 dpi: Peracute and acute KHVD 

Despite the decline in KHV DNA in the mucus of infected fish during the first few hours 

post- infection, >1000 gen. eq. could always be detected in skin and fin-base swabs in fish 

from both tanks from 1 - 4 dpi (Fig. 4.6 A-B). Levels of KHV DNA detected in the mucus 

from gills however, were more variable with <10 gen. eq. detected in the peracute KHVD 

tank, but >1000 in the acute KHVD tank (Fig. 4.6 A-B). 

 

Figure 4.6. Koi herpesvirus DNA genomic equivalents measured in the mucus of 

infected fish by real-time qPCR during the first 4 days post infection (dpi). (A) fish from 

the peracute KHVD tank (B15); (B) fish from the acute KHVD tank (B16).  
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Figure 4.7. Koi herpesvirus DNA genomic equivalents measured in external and 

internal tissues and blood of infected fish by real-time qPCR during the first 4 dpi. 

Results are shown for (A, C) fish from the peracute KHVD tank (B15) and (B, D) acute 

KHVD tank (B16). (A) KHV DNA in external tissues of fish from the peracute KHVD tank; 

(B) KHV DNA in external tissues of fish from the acute KHVD tank; (C) KHV DNA in 

blood and internal tissues of fish from the peracute KHVD tank; (D) KHV DNA in blood and 

internal tissues of fish from the acute KHVD tank. Data are presented on logarithmic scales. 

 

 

In the peracute tank, KHV DNA levels were very low in external tissues (gills and 

skin) from 1 - 3 dpi with <10 KHV DNA gen. eq. However, in the acute KHVD tank, much 
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higher concentrations could be detected from 2 - 4 dpi with up to10,000 gen. eq. measured, 

although there was substantial fish to fish variation (Fig. 4.7 A, B). 

The levels of KHV DNA in the peripheral blood leukocytes increased steadily up to 

50,000 gen. eq. by 2 dpi in the acute KHVD tank (Fig. 4.7 D). After 24 h, the dissemination 

of KHV within internal tissues was similar in both tanks with viral DNA detected in the 

kidney, spleen and gut up to 4 dpi, although concentrations were generally low, with the 

exception of a dramatic increase observed in the spleen (10,000 gen. eq.) after 2 dpi in the 

acute KHVD tank (Fig. 4.7 C, D). 

(c) 5-10 dpi: Acute KHVD 

During the course of the challenge, a considerable increase in KHV DNA gen. eq. was 

evident during the later stages of the infection from 5 – 10 dpi compared to the first 4 dpi. 

Between 4 x 10
5
 and 1 x 10

7
 gen. eq. were detected in mucus swabs from skin, fin bases and 

gills during this period with exception to one fish sampled at 9 dpi (Fig. 4.8 A). High levels 

of KHV DNA were also detected in skin and gills, with levels between 5,000 and 8 x 10
5
 gen. 

eq. detected between 5 – 10 dpi, again with the exception of the fish sampled at 9 dpi (Fig. 

4.8 B). All internal tissues and blood leukocytes harboured much higher concentrations of 

KHV DNA during the last 5 days of the challenge with the exception of the fish sampled at 9 

dpi (Fig. 4.8 C). Concentrations as high as 50,000 KHV DNA gen. eq. were observed in 

blood leukocytes, brain, liver and gut, while the kidney and spleen harboured the highest viral 

loads with concentrations between 5,000 – 50,000 in the spleen and 50,000 – 400,000 in the 

kidney (Fig. 4.8 C). This was again with the exception of the fish sampled after 9 dpi, which 

contained a much lower viral load in all tissues and mucus sampled with levels no higher than 

100 KHV DNA gen. eq. (Fig. 4.8 A-C). No viral DNA was detected in any carp from the 

control tank (results not shown) and no positive reactions occurred in NTC wells 
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Figure 4.8. Koi herpesvirus DNA genomic equivalents in mucus, external and internal 

tissues and blood of infected fish from the acute KHVD tank measured by real-time 

qPCR over the 10 day course of the experimental challenge. . KHV DNA in (A) mucus; 

(B) external tissues; (C) blood and internal tissues. Data are presented on logarithmic scale. 
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(d) Comparison of mean viral load between peracute and acute (early and late) infection 

phases 

Since only single fish were analysed per time point within each tank, where fish to fish 

variation can be expected, the mean viral loads were analysed between different infection 

periods, i.e. peracute KHVD and early stage acute KHVD (<5 dpi), and later stage acute 

KHVD (≥ 5 dpi), to gauge the trends in viral load within the various tissues at the different 

stages. A greater mean viral load was observed in gill biopsies of fish from the peracute 

KHVD tank compared to the early stage of acute KHVD, although not significantly different 

(p=0.31), whereas mean viral DNA copies present in skin were higher during the early stage 

of acute KHVD, within the first 4 dpi, but again were not significantly different from copies 

present in peracute fish skin (p=0.67) (Fig. 4.9 A). A fish with particularly high viral loads in 

the spleen (10,000 gen. eq.) of an acute KHVD fish increased the mean value in this tissue, 

but no other fish had high viral loads in the spleen during this period. Significantly higher 

copy numbers were observed in all fish tissues at later stages of infection (gill and gut: 

p<0.05; liver, brain, kidney, spleen and skin: p<0.01), however notably high levels of KHV 

DNA were observed in mucus in fish from both the peracute and acute KHVD tanks in the 

early stages of infection (Fig. 4.9 B). There were no significant differences between viral 

loads in the skin swabs between early acute and peracute stages compared to late stages of 

infection (p>0.05). There was however, significantly higher viral loads in leukocytes at later 

stages of the acute infection compared to peracute infected fish (p<0.015) as well as gill swab 

(p=0.03) and fin base swabs (p=0.03), but not between late stages of acute KHVD and early 

acute stages (leukocytes: p=0.16; gill swab: p=0.053; fin base swab: p=0.059). The mean 

viral load in the mucus from swabs increased markedly from early infection stages (1-4 dpi) 

to the later stages of the challenge (5-10 dpi) (Fig. 4.9 B). 
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Figure 4.9 Koi herpesvirus DNA loads within tissues, mucus and white blood cells 

during experimentally induced peracute and acute KHVD as measured by TaqMan-

qPCR. Data are shown as mean ± SD of n=7 for peracute KHVD tank fish sampled < 5 dpi, 

n=7 for acute (early) KHVD tank fish sampled < 5 dpi and n=6 for acute KHVD tank fish 

sampled ≥ 5 dpi.  

 

4.3.2.2 Detection of viral DNA in tissues by ISH 

(a) PCR of labelled and non-labelled probes 

Probes were successfully labelled with DIG for both the 414 bp probe (Bergmann et al., 

2006) and 517 bp probe (Hutoran et al., 2005), which was evident by comparing the 

molecular weight of unlabelled probes with labelled probes following electrophoresis (Fig. 

4.10). 

(b) Negative and positive control tissues 

No KHV infected cells were found in any gill or kidney sections of negative control fish (Fig. 

4.11 C, F). However, occasionally, there were signals observed externally on gill filaments, 

likely to be associated with non-specifically bound probes inside the mucus of gill samples. 

Positive controls expressed a large number of positive signals associated with respiratory 

epithelial cells of the gill lamellae, particularly at the base of the filaments (Fig. 4.11 B), 
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where inclusion bodies were also observed histologically in H & E staining (Fig. 4.11 A). A 

large number of melanomacrophages was seen in the kidneys of both positive and negative 

control carp, but no signals associated with viral DNA were observed in the latter (Fig. 4.11 

D-F). The kidneys of positive controls also exhibited a high level of staining within the 

interstitium, but not associated with the tubules (Fig. 4.11 E), where inclusion bodies were 

observed in similar locations by H & E staining (Fig. 4.11 D). Probes detecting DNA to a 

heterogenous virus, VHS, were negative in all tissue sections (results not shown). 

 

Figure 4.10. Agarose gel electrophoresis (1.5%) of labelled koi herpesvirus-specific ISH 

probes prepared by PCR. Lanes represent the results of labelled and non-labelled probes 

prepared using different primers sets. Lanes: (M) 100 bp molecular weight ladder; (1) PCR 

with primers KHV 1Fn-1Rn (unlabelled), (2) PCR with primers KHV 1Fn-1Rn (labelled), (3) 

No template control for primers KHV 1Fn-1Rn, (4) PCR with primers KHV NH1-

NH2(unlabelled) (5) PCR with primers KHV NH1-NH2 (labelled) and (6) No template 

control for primers KHV NH1-NH2.  

A scoring system was developed for differentiating the abundance of signals obtained by ISH 

based on comparisons of the signals recorded from sections of positive and negative control 
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carp tissues (n = 15). The scoring system used was similar to that applied in other studies 

using ISH for viral nucleic acid detection (Sano et al., 1994; Alonso et al., 2004; Huang et 

al., 2004; Lopez-Jimena et al., 2011). 

(c) ISH analysis of early KHV pathogenesis 

1-8 hpi: Peracute and acute KHVD 

Both probes (Bergmann et al., 2006 and Hutoran et al., 2005) were used in ISH analysis of 

samples collected during the early stages of the KHV infection, but no observable differences 

were seen in the level of signal obtained between the probes. 

The tissues from the two fish sampled at 0 hpi were negative by ISH, however non-

specific staining was observed in mucus covering the skin. Melano-macrophages were 

observed in tissues such as the kidney, liver and the spleen in H&E stained sections, however 

no positive signals were evident in ISH (results not shown). During the first day of infection 

(1-8 hpi), there were differences noted between fish sampled from the tank exhibiting 

peracute KHVD (Tank B15) compared to fish from the tank exhibiting acute KHVD (Tank 

B16). The gills in fish from the peracute KHVD tank displayed stronger signals in ISH than 

those from the acute KHVD tank after 1 and 4 hpi (Table 4.3), where virus DNA was initially 

detected attached to gill epithelium or mucus from 1 hpi (Fig. 4.12 A), although many gill 

lamellae remained negative (Fig. 4.12 C). 
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Figure 4.11. Detection of Koi herpesvirus in gill and kidney sampled from experimentally infected fish using ISH. (A) H&E 

stained gills from carp with clinical KHVD (Mag. x 50); (B) High mag. (B1) (x 50) and lower mag. (B2) (x 25) of gills from infected 

carp after ISH; (C) Gills from uninfected carp after ISH (Mag. x 25); (D) H&E stained kidney from carp with clinical KHVD. (Mag. x 

25); (E) High mag. (E1) (x 50) and low mag. (E2) (x 25) of kidney from infected carp after ISH;  (F) High mag. of kidney from 

uninfected carp after ISH, Mag. x 50. Scale bar = 100 µm. Black arrows indicate infected cells expressing signals for KHV DNA while 

white arrows indicate melanomacrophages. I = Inclusion body; LF = Secondary lamellar fusion; KT = Kidney tubules. Note that sections 

are not sequential. 
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Figure 4.12. Koi herpesvirus infected carp tissues after ISH, 1 hpi. (A) Positive signals in gill mucus and filament epithelium (Mag. x 

25); (B) Positive signals in gut, possibly associated with crypts (Mag. x 25); (C) Negative region of gill (Mag. x 50); (D) Negative area of 

gut (pyloric caecae) (Mag x 25); (E) Negative area of liver and hepatopancreatic tissue (Mag. x 25); (F) Negative brain tissue, (Mag. x 

25). All tissues from acute KHVD tank. Scale bar = 100 µm. Black arrows indicate infected cells expressing signals for KHV DNA.  C = 

Crypts; HP = Hepatopancreas.  
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However, virus DNA appeared to be located within gill epithelium as early as 2 hpi (Fig. 4.13 

A) and by 6 hpi there were strong signals associated with the base of the gill filaments and in 

close proximity with the central venous sinus (Fig 4.13 D). Positive signals by ISH could 

only be detected in skin after 6 and 8 hpi, from both fish sampled from the tank exhibiting 

acute KHVD (Table 4.3), although it was not possible to analyse the skin of every fish up to 

this point. However, positive signals could be detected in the skin mucus from 1 hpi in every 

section analysed (results not shown). 

The ISH signals obtained from internal organs of fish from the two challenge tanks varied 

during the first day of KHV infection. Viral KHV DNA could be detected in the blood 

vessels of the kidney, spleen and liver as early as 1 hpi from sampled fish of the acute KHVD 

tank only, although these signals were quite focal and the tissue and vessels of these organs 

remained predominantly negative (Fig. 4.12 E). Throughout the first day of the time course 

the positive signals found in the liver were consistently focal and associated with the vessels 

(Fig. 4.13 F; 4.14 D; Table 4.3), although not all hepatic vessels exhibited positive signals 

and some signals were in close association with the hepatopancreas (4.14 B). Similar staining 

of splenic vessels was also apparent until 4 hpi, after which some intracellular staining was 

also evident within the pulp (Fig. 4.14 C; Table 4.3). Apart from the first hpi, there were no 

noticeable differences between the abundance of signals of infected liver and spleen tissues in 

fish from either tank sampled at each time point during the first day of infection (Table 4.3). 

The positive KHV DNA signals observed in the vessels of the kidney after 1 hpi were 

followed by the observation of positive signals in the interstitial tissue after 4 hpi, which were 

not associated with the tubules, however, only one fish kidney from the peracute KHVD tank 

could be analysed at this time point (Table 4.3). After 6 and 8 hpi, again there were signals 

observed in the kidney tissues (Fig. 4.13 E), which were stronger in fish from the peracute 
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KHVD tank than the acute KHVD tank (Table 4.3). Regardless of disease propagation, 

signals in the kidney vessels were consistent during these early stages of infection (Fig.4.13 

B; Table 4.3).  

After 1 hpi, there were also a few positive signals noted in the gut, which seemed to 

be associated with the crypts (Fig. 4.12 B); however this was difficult to confirm due to the 

degraded architecture of the digested tissue. These signals were again very focal and the 

majority of gut and pyloric caecae remained negative (Fig. 4.12 D).  

Table 4.3. Scoring of ISH signals in tissues of carp during the early stages of Koi 

herpesvirus infection in experimentally challenged carp 

Fish 

Time 

post 

infection 

(hpi) 

Gills Skin Spleen Kidney Gut Liver Brain 

         

1 0 - - - - - - - 

2 0 - - - - - - - 

3* 1 ++ - - - + - - 

4 1 + NA + v + v + + v - 

5* 2 ++ NA + v + v + + v - 

6 2 ++ NA + v NA + + v - 

7* 4 ++ - NA + NA + v - 

8 4 + - + NA + + v - 

9* 6 ++ - + ++ - + v - 

10 6 ++ + + + - + v NA 

11* 8 ++ - + ++ - + v NA 

12 8 ++ + + + + + v - 

13* 24 +++ NA + ++ ++ + - 

14 48 ++ + + ++ NA + - 

15* 72 +++ NA + ++ - + - 

16 96 +++ + NA NA + + - 

17 120 +++ - ++ +++ + ++ + v 

18 144 +++ + + +++ NA + - 

19 168 +++ + ++ +++ + + + v 

20 192 ++ NA + ++ + + + v 

21 216 +++ ++ + +++ + + - 

22 240 +++ + + +++ + + + v 

NA = non-applicable (not possible to observe reaction as tissue over-digested); * = fish sampled 

from peracute KHV disease; v = signals only associated with vessels; + = few signals, ++ = 

moderate signals, +++ = many signals, - = negative/no signals  
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Figure 4.13. Koi herpesvirus infected carp tissues after ISH, 2 – 6 hpi. (A) Positive signals in gill filament epithelium (Mag. x 25), 2 

hpi; (B) Positive signals in kidney associated with the vessels (Mag. x 25), 2 hpi; (C) Positive staining of gut contents (Mag. x 50), 2 hpi; 

(D) Positive signals in gill filament epithelial cells, Mag. x 25, 6 hpi; (E) Positive signals throughout interstitial renal tissue in kidney, but 

not tubules. Note close association with vessels, Mag. x 25, 6 hpi; (F) High mag. (F1) (x 50) and low mag. (F2) (x 25) showing positive 

signals in liver vessels, 6 hpi. All tissues are from peracute KHVD tank fish. Scale bar = 100 µm. Black arrows indicate infected cells 

expressing signals for KHV DNA. V = Vessel; KT = Kidney tubules; G C = Gut contents 
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Figure 4.14. Koi herpesvirus infected carp tissues after ISH, 8 hpi. (A) Positive signals in gill epithelium. (Mag. x 25); (B) Positive 

signals in liver vessels and pancreatic tissue (Mag. x 25) (C) Positive signals in spleen pulp (Mag. x 25) (D) Positive signals in liver 

associated with vessels and hepatopancreatic tissue (Mag. x 25); (E) Negative region of gut (pyloric caecae) (Mag. x 25); (F) Negative 

brain (Mag. x 25). Tissues A-C are from peracute KHVD fish; tissues D-F are from acute KHVD fish. Scale bar = 100 µm. Black arrows 

indicate infected cells expressing signals for KHV DNA. HP = Hepatopancreas; V = Vessels. 
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There were no real differences in level of signal observed in the gut of fish from either 

the peracute KHVD tank or the acute KHVD tank throughout the first day of the infection 

(Table 4.3). After 2 hpi there were positive signals within the epithelium of the gut in close 

association with positive stained gut contents (Fig. 4.13 C). 

After 4 hpi there were only a few cells exhibiting positive signals in the gut of fish 

from the acute KHVD tank. Interestingly, there were no signals observed in the gut and 

pyloric caecae of fish sampled at 6 hpi, but after 8 hpi signals were again observed from a 

fish sampled from the acute KHVD tank, although these were still focal and the majority of 

tissue remained negative (Table 4.3; Fig. 4.14 E). No signals were observed in the brain (Fig 

4.12 F; 4.14 F) throughout the first 8 h of infection (Table 4.3). 

1-4 dpi: Peracute and acute KHVD 

After 1 dpi, only a single fish was sampled each day for analysis. The fish sampled at 1 dpi 

was from the tank exhibiting peracute KHVD. There were strong signals in the gills, again 

particularly around the base of the filaments, and numerous signals were associated with the 

blood vessels in the spleen, liver and interstitial tissue of the kidney. Particularly strong 

signals were found in the gut at this stage of infection (Table 4.3). Positive signals were also 

noted for the first time in liver hepatocytes. However, the brain was negative (Table 4.3). 

After 2 dpi, a fish sampled from the tank exhibiting acute KHVD expressed strong signals in 

the gills and kidney (Table 4.3) and there were signals both within the tissue and vessels of 

the spleen. Positive signals were found in the skin accompanied by strong signals in the 

mucus (not shown). After 3 dpi, the fish sampled from the peracute disease tank was found to 

be surprisingly negative in the gut, but the gill, kidney and spleen exhibited relatively strong 

signals. The liver was also positive, but the brain was still negative (Table 4.3). After 4 dpi, a 
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fish sampled from the acute KHVD tank had very strong signals along the gill filaments (Fig. 

4.15 A-C), and there were also signals noted in the skin and gut. Virus could be detected 

within the gut lumen. Hepatocytes of the liver were also still positive and signals were 

observed throughout blood vessels (not shown), but it was not possible to analyse the spleen 

and kidney samples of this fish due to over-digestion of the tissue by proteinase K in the ISH 

procedure.  

5-10 dpi: Acute KHVD 

After 5 dpi, all fish analysed by ISH were from the tank exhibiting acute disease as all fish 

from the peracute infection had died. There were similar signals detected within the gills as 

those noted after 4 dpi, positive signals were observed in the vessels of the brain, and there 

were positive signals in the gut (Table 4.3). Although the abundance of signals fluctuated 

between fish sampled from 5-10 dpi, generally, all fish exhibited positive signals in most 

tissues analysed. Brain was the exception, with occasional positive signals observed only in 

the vessels and never within the tissue (Table. 4.3). The gill filaments consistently exhibited 

strong positive signals (Table 4.3), especially within the respiratory epithelium (Fig. 4.15 D). 

Regions of infection were still focal, whereby some areas of splenic pulp or hepatic tissue 

were positive (Fig. 4.15 E), while elsewhere remained negative for virus (Fig. 4.15 F). Even 

in heavily infected kidneys, areas of negative lymphatic tissue were evident. After 10 dpi 

huge aggregates of viral DNA were found on the skin (not shown). Histologically, it is 

interesting to note that no pathology was observed by H&E staining in any of the tissues 

during the 10 dpi (not shown). The scores for signals obtained from all the challenged carp 

tissues are shown in Table 4.3. 
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Figure 4.15. Koi herpesvirus infected carp tissues after ISH, 4-6 dpi. (A) Positive gills. Note great abundance of infected epithelial 

cells, 4 dpi (Mag. x 25); (B) positive gills with infected epithelial cells of fused filament, 4 dpi (Mag. x 50); (C) gill filaments, 4 dpi 

(Mag. x 50); (D) Gill lamella with high abundance of positive signals throughout the filaments, 6 dpi (Mag. x 25); (E) Liver with infected 

hepatic cells, 6 dpi (Mag. x 25); (F) Negative region of liver tissue and vessel, 6 dpi (Mag. x 50). All tissues are from acute KHVD tank 

fish. Scale bar = 100 µm. Black arrows indicate infected cells expressing signals for KHV DNA. LF = Secondary lamellar fusion  
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4.3.2.3 KHV antigen expression detected by MAbs using IHC and IFAT 

Screening for KHV antigens in situ by IHC was not successful for the majority of MAbs. 

With initial screening using KHV-infected carp tissues, minor signals were observed in the 

kidney, liver and gills with MAb 20F10, detecting a capsid protein, at a concentration of 

60µg mL
-1

 and with MAb 7C6 hybridoma supernatant diluted 1/3 or 7C6 ascites fluid (Asc 

7C6) diluted 1/300, both detecting an antigen of KHV ORF68. However, these signals were 

inconsistent. The greatest signals were obtained using MAb 10D10, detecting a protein of 

ORF62, with both hybridoma supernatant, diluted 1/4, and ascites fluid diluted 1/600. The 

gill epithelium of both infected and non-infected (negative and positive control) fish had a 

large number of positively-stained cells when screened with ascites fluid containing MAb 

10D10, (Fig. 4.16 A, D). No difference was seen in the level of staining between infected and 

non-infected gill samples with this MAb at 6 dpi (Fig. 4.17 A). There was strong staining in 

negative as well as positive kidneys, observed in both tubules and interstitial tissue, which 

must have been due to non-specific staining or endogenous peroxidise activity (Fig. 4.16 B, 

E). Similar staining was observed in the kidneys after 6 dpi when screened with hybridoma 

supernatant containing MAb 10D10 (Fig. 4.17 D). The positive signals in the liver tissue 

appeared more promising, in terms of being specific for the virus, whereby the negative 

controls with PBS had remained negative (Fig. 4.16 F), but focal staining around the vessels 

could be observed with MAb 10D10 (ascites fluid) in infected fish after 7 dpi (Fig. 4.16 C). 

The focal staining in the liver was also evident in fish sampled after 6 dpi with MAb 10D10, 

which appeared to be more associated with hepatocytes of the parenchyma (Fig. 4.17 B-C). 

Although focal signals were also noticed with alternative MAbs such as 7C6, the signals 

obtained differed between each MAb (Fig. 4.17 E), and were very patchy and inconsistent, 
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sometimes appearing negative in the same tissue section (Fig. 4.17 F). The commercial anti-

KHV MAbs were always negative (not shown). 

Due to non-specific staining observed in the kidney tubules, IFAT was undertaken 

with MAbs 7C6 and 10D10 to establish if this was associated with endogenous peroxidase 

activity present in the fish tissue. No staining was observed with MAb 7C6 in the liver, gills, 

gut or the interstitial tissue of the kidney in IFAT (results not shown).  

The gills, liver, kidney and gut of carp undergoing clinically acute KHVD after 5 dpi 

exhibited positive fluorescent signals when screened with ASc. 10D10. Strong signals were 

also observed within endothelial cells of the kidney tubules as well as signals in the 

interstitium (Fig. 4.18 B, C), making it impossible to confirm that the positive signals 

observed were specific for KHV. A large number of positive epithelial cells were also 

observed in the gill filaments and pyloric caecae of infected fish, which appeared too 

abundant to be specific for the virus at this early stage of infection (Fig. 4.18 A, D). Signals 

observed in the liver appeared to be more focal and there was a variation in intensity, which 

could represent specific signals in the parenchyma (Fig. 4.18 E-F). Since the consistency of 

ascites fluid may have contributed to the non-specific staining, hybridoma supernatant 

containing MAb 10D10 was also used, but the detection of the virus was inconsistent over the 

course of infection trial and therefore not all tissues were analysed using IHC and IFAT. All 

tissues screened with PBS were, however, negative (Fig. 4.18 G) and positive tissues were 

negative when screened with other anti-KHV MAbs (Fig, 4.18 H). 
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Figure 4. 16 IHC with MAb 10D10 (ascites fluid) on Koi herpesvirus infected tissues. (A) Positive control gills with strong staining 

(Mag. x 50); Note the fused secondary lamellae (LF); (B) Positive control kidney with strong staining surrounding melanomacrophages 

in the interstitial tissue. The kidney tubules also stained (Mag. x 50); (C) Positive staining associated with the vessels in the liver of 

experimentally infected carp, 7 dpi (Mag. x 25); (D) Negative control gills with non-specific positive signals (Mag. x 25); (E) Negative 

control carp kidney with stained tubules, but also strong sporadic signals throughout the interstitial tissue. (Mag. x 25) (F) Positive 

control carp liver incubated with PBS (Mag. x 25). Scale bar = 100 µm. LF = Lamellar fusion of secondary lamellae; SKT = stained 

kidney tubules; HP = Hepatopancreas; V = vessels. White arrows (M) = melanomacrophages; Black arrows = Focal staining of 

hepatocytes. 
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Figure 4. 17 IHC using MAb 10D10 or MAb 7C6 with Koi herpesvirus infected carp tissues, 6 dpi. (A) High abundance of signals 

in the gill filaments (MAb 10D10 diluted 1/4) (Mag. x 50); (B) Positive liver with staining near hepatopancreas (MAb 10D10 diluted 1/4) 

(Mag. x 50); (C) Positive signals in hepatocytes (MAb 10D10 diluted 1/4) (Mag. x 25); (D) High abundance of signals in the kidney. 

Note tubules are stained as well as interstitium (MAb 10D10 diluted 1/4) (Mag. x 25); (E) Focal staining in the liver parenchyma (MAb 

7C6 diluted 1/3) (Mag. x 25); (F) Negative region of liver tissue (MAb 7C6 diluted 1/3), Mag. x 50. All tissues are from acute KHVD 

fish. Scale bar = 100 µm. Black arrows indicate focal positive signals. HP = Hepatopancreas; SKT = Stained kidney tubules. 
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Figure 4.18 IFAT with Koi herpesvirus infected carp tissues after 5 dpi with MAb 20F10 or MAb 10D10 (As.). (A) Positive gills 

showing a high abundance of signals throughout the filaments (As 10D10 diluted 1/600) (Mag. x 25); (B) Positive kidney showing 

signals within the interstitial tissue, but also kidney tubules (As 10D10 diluted 1/600) (Mag. x 50); (C) 3D imaging of B showing positive 

signals expressed throughout the epithelium, but also endothelial cells of the tubules; (D) Positive pyloric caecae showing high 

abundance of signals observed throughout the epithelium (As. 10D10 diluted 1/600) (Mag. x 25); (E) Positive liver showing focal signals 

with varying degree of intensity within the parenchyma (As 10D10 diluted 1/600) (Mag. x 50); (F) 3D imaging of E showing the 

variation in signal intensity amongst possible infected hepatocytes (Mag. x 50); (G) Positive kidney used as secondary antibody control 

showing no signals (PBS) (Mag. x 25); (H) Negative control kidney showing no signals. (MAb 20F10 used at 60 μg mL
-1

). All tissues are 

from acute KHVD fish. Scale bar = 100 µm. Visual interpretation of C and F require 3D spectacles as indicated by 
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4.3.2.4 Immunological analysis: Detection of anti-KHV antibodies by ELISA and SNT 

All fish were negative for anti-KHV antibodies during the first 10 dpi at serum dilutions of 

1/50 – 1/1600 as measured by indirect antibody ELISA and SNT according to Bergmann et 

al. (2012, pers. comm.). The surviving carp from the acute KHVD tank sampled after 70 dpi 

had a specific KHV antibody titre of 1/10,000 and a neutralising antibody titre of 1/45 

(results not shown).  

4.3.2.5 TEM analysis  

Ultrastructure analysis of tissues and peripheral blood leukocytes did not reveal any KHV 

virus particles at any of the sampling points during acute clinical KHVD (from 5 dpi) when 

internal virus concentrations were > 400,000 gen. eq. (i.e. in the kidney) (Fig. 4. 19).  
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Figure 4.19 TEM micrographs of koi herpesvirus infected carp tissues and blood leukocytes, 10 dpi and 5 dpi, respectively. 

Organs shown contained the high concentrations of viral DNA (A) Gill tissue where no virus particles were observed, 10 dpi (B) Kidney 

tissue where no virus particles were detected (C) Cells of gut tissue with no virus particles; (D) Low mag. of concentrated, pelleted 

peripheral blood leukocytes. The square indicates a putative lymphocyte; (E) High mag. of electron dense spherical structures of interest 

in putative lymphocyte of D; (F) Measurement of electron dense spherical structure of interest. The large (245 μm) diameter of the 

structure and the lack of envelope revealed that these structures were not KHV virions. Scale bars are indicated in micrographs. N = 

Nucleus. The cells were not identified, but the gut cells in C appear to be undifferentiated due to the large chromatin dense nucleolus and 

achromatic nucleus. White box indicates the area magnified for the following micrograph in sequence. 
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4.3.3 Early molecular detection of KHV 

4.3.3.1 Sensitivities of PCR for KHV DNA detection in organs by lethal sampling methods  

There was a vast variation in the detection sensitivity of different PCR assays for amplifying 

KHV DNA in different lethally obtained biopsies during the earliest stages of infection (< 5 

dpi) (Fig. 4.20; Table 4.4). The semi-nested PCR and real-time PCR amplified KHV DNA in 

more samples than any other assay within the first four dpi, although this was still < 50% 

(Table 4.4). This was in contrast to samples from later stages of infection (≥ 5 dpi) where 6/7 

assays were positive for >80% of lethally obtained biopsies (Table 4.4) and all infected fish 

were confirmed as KHV positive with every PCR assay used. The Gilad PCR, however, gave 

<70% positive reactions even at these later stages of infection.  

The large number of false negative results obtained during the early infection stages 

from biopsies of fish from both the peracute KHVD tank and acute KHVD tank, resulted in a 

number of fish falsely diagnosed as negative, where only a total of 3 fish sampled < 5 dpi 

were detected as positive using the Gilad PCR despite a total of 10 fish being positive by 

glycoprotein PCR and semi-nested PCR and 11 by real-time PCR (Table 4.4). A large 

number of false negative results were also obtained with the Gilad nested and TK nested 

PCRs. The OIE recommended TK PCR was positive for only 2 fish (from 7) from the 

peracute KHVD tank and 4 from the acute KHVD tank (Table 4.4). False negative screening 

of these fish at early stages post infection occurred despite 7 different organs being tested 

individually without pooling of samples. 
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Table 4.4 Positive KHV tissues using different PCRs  

 Presentation of 

KHVD  

Time 

(dpi) 

Gilad Gilad 

nest. 

TK TK nest. Glyco. Semi- 

nest 

Real-time 

 
a
% PCR-

pos. samples
 

 

 Peracute (n=49) <5 dpi 4.1 20.4 10.2 16.3 34.7 49 26.5 

 Acute (n=49) <5 dpi 4.1 10.2 14.3 18.4 16.3 32.7 26.5 

 Acute (n=42) ≥5 dpi 66.7 90.5 83.3 85.7 88.1 88.1 90.5 

 Survivor (n=7) 70 dpi 0 0 0 42.9 42.9 0 0 
b
No. pos. 

fish detected
 

 

 Peracute (n=7) <5 dpi 1 5 2 3 6 5 5 

 Acute (n=7) <5 dpi 2 2 4 4 4 5 6 

 Acute (n=6) ≥5 dpi 6 6 6 6 6 6 6 

 Survivor (n=1) 70 dpi 0 0 0 1 1 0 0 

Abbreviated PCR assays used are: Gilad (Gilad et al. 2002); Gilad nest. (Bergmann et al. 2006); TK (Bercovier et al. 2005); TK nest. (CEFAS 

2007 Unpublished); Glycol. (KHV-U, ORF 56) single round (Bergmann et al. 2010b); Semi-nest. (Bergmann et al. 2010a); real-time (Gilad et 

al. 2004; Bergmann et al. 2010a) 
a
Samples screened by PCR include 7 tissues per fish (gill, skin, spleen, kidney, gut, liver, brain) 

b
Fish screened include all peracute KHVD fish (1 hpi – 3 dpi), early acute KHVD fish (1 hpi – 4 dpi) and later acute KHVD fish (5 dpi – 10) 

dpi)
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Figure 4.20 Detection of koi herpesvirus (KHV) DNA by various PCR assays in lethally 

acquired biopsies during peracute, early acute and acute KHVD. (A) gill; (B) spleen; (C) 

kidney; (D) gut. Bars represent the % of fish positive from early or later stage KHVD. 

Peracute = Tank B15 (sampled <5 dpi); Acute early = Tank B16 (sampled <5 dpi); Acute late 

= Tank B16 (sampled ≥ 5 dpi). Abbreviated PCR assays that were used for the same 

extracted DNA template are indicated on the x-axis: Gilad (Gilad et al. 2002); Gilad nest. 

(Bergmann et al. 2006); TK (Bercovier et al. 2005); TK nest (CEFAS 2007 Unpublished); 

Glycol. (KHV-U, ORF 56); (Bergmann et al. 2010b); Semi-nest. (Bergmann et al. 2010a); 

real-time (Gilad et al. 2004; Bergmann et al. 2010a) 
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Investigations undertaken on specific tissue biopsies, namely those recommended by 

the OIE manual for KHV diagnostics (OIE, 2012), revealed that gill samples provided a 

reasonably reliable sampling tissue for early KHV detection, but only if the most sensitive 

assays were employed (Fig. 4.20 A). The semi-nested PCR detected KHV DNA in 57% (4/7) 

of early (< 5 dpi) sampled fish gill biopsies from both the peracute and acute KHVD fish 

while the real-time PCR was able to detect 71% (5/7) in fish from the peracute KHVD tank 

and 85% (6/7) in fish from the acute KHVD tank during the early infection stages (< 5 dpi). 

All other PCR assays were positive for <50% (Fig. 4.20 A). In the other three organs 

recommended by the OIE, the spleen, kidney and gut, even the most sensitive PCR assays 

were unable to detect KHV DNA in the majority of fish (Fig. 4.20 B, C, D). The semi-nested 

PCR was able to detect KHV DNA following early infection, < 5 dpi, more often than any 

other of the assays in these tissues with 43% (3/7) and 29% (2/7) positive spleen tissues, 57% 

(4/7) and 29% (2/7) positive kidney tissues and 57% (4/7) and 29% (2/7) positive gut tissues 

of fish from the peracute KHVD tank and acute KHVD tank, respectively (Fig. 4.20 B, C, D). 

During the early stages of infection (< 5 dpi) in only 36% (5/14) of fish could KHV DNA be 

detected using gut biopsies and 43% (6/14) using spleen and kidney biopsies (not shown). 

Skin biopsies were also investigated to assess their effectiveness as a diagnostic sample for 

early KHV detection. The glycoprotein and semi-nested PCRs detected KHV DNA in 57% 

(4/7) of fish using these samples from the peracute KHVD tank. Interestingly, all other PCRs, 

including the real-time PCR, were only positive for <50% of fish with these same samples. In 

only 29% (2/7) of fish could KHV DNA be detected at early stages (< 5 dpi) in acute KHVD 

fish using any PCR with skin samples (Fig. 4.21).  
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Figure 4.21 Detection of koi herpesvirus (KHV) DNA by various PCR assays in lethally 

acquired skin biopsies during peracute, early acute and acute KHVD. Bars represent the 

% of fish positive from the early or late stage KHVD. Peracute = Tank B15 (sampled <5 dpi); 

Acute early = Tank B16 (sampled <5 dpi); Acute late = Tank B16 (sampled ≥ 5 dpi). 

Abbreviated PCR assays that were used for the same extracted DNA template are indicated 

on the x-axis: Gilad (Gilad et al. 2002); Gilad nest. (Bergmann et al. 2006); TK (Bercovier et 

al. 2005); TK nest (CEFAS 2007 Unpublished); Glycol. (KHV-U, ORF 56); (Bergmann et al. 

2010b); Semi-nest. (Bergmann et al. 2010a); real-time (Gilad et al. 2004; Bergmann et al. 

2010a) 

The thymidine kinase (TK) gene, was of particular interest as it is deemed one of the 

most sensitive and commonly used single round PCR assays and is included in the OIE 

manual for aquatic diseases (OIE, 2012), but could only detect KHV DNA at an early stage in 

28% (2/7) of fish from both challenge tanks using gill biopsies and only from the acute 

KHVD tank using gut samples, whereas all fish were apparently negative using kidney and 

spleen samples (Fig. 4.20 A-D). Samples of liver and brain tissues did not provide a better 

alternative to OIE recommended tissues (gills, spleen, kidney and gut) for detecting KHV 

DNA during these early stages of infection (not shown). At later stages of the infection (5-10 

dpi), most fish were detected positive using all PCR assays in these tissues where 86% of all 

PCR reactions were positive for fish tissues compared to just 33% during the earlier stages of 
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infection (not shown), although a relatively high number of false negatives were still 

observed with the single round Gilad PCR. After 5 dpi all kidney samples and >80% of 

spleen and gills were positive for KHV DNA by all PCRs, apart from the Gilad PCR, where 

<70% of fish were still detected positive in gill samples (Fig. 4.20 A-C). In spite of this, even 

at relatively late stages of infection, i.e. 9 dpi, discrepancies were still observed in OIE 

recommended samples, such as gut biopsies, using highly sensitive nested PCR assays (Fig. 

4.22).  

 

Figure 4.22 Agarose gel electrophoresis (1.5%) of PCR products showing discrepancies 

between PCR diagnostic assays in acute koi herpesvirus infected carp, 9 dpi. Even at late 

stages there were discrepancies in the detection of KHV DNA in the same fish by lethal 

sampling depending on the biopsy sample. (A) Gilad nested PCR detecting a 414 bp product, 

(B) TK nested PCR detecting a 348 bp product. Note the false negative result in the gut by 

the Gilad nested PCR compared to the TK nested PCR (red circle). Headers for lanes: M = 

marker ladder; -G = neg. gill; -S = neg. skin; -S = neg. spleen; +G = pos. gill; +S = pos. skin; 

+S = pos. spleen; +K = pos. kidney; +G = pos. gut; +L = pos. liver; +B = pos. brain; -con 1 = 

neg. control 1; +con = pos. control; -con 2 = neg. control 2; M = marker ladder; + con = pos. 

control 
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Real-time PCR was sometimes negative where other PCR assays, such as Gilad 

nested, TK nested and glycoprotein PCR, were positve in the spleen, kidney and gut (Fig. 

4.20 B, C, D). 

4.3.3.2 Sensitivities of PCR for KHV DNA detection in mucus and white blood cells by 

non-lethal sampling methods 

Using non-lethal samples, > 75% were positive for KHV DNA at the early stages of infection 

(< 5 dpi) with 5/7 of the PCR assays, including the TK PCR (Table 4.5). The Gilad PCR and 

nested PCRs, however, still produced many false-negative results at this stage with the Gilad 

PCR detecting KHV DNA in only 18% and 29% of non-lethally acquired samples from the 

peracute and acute KHVD tanks, respectively. Furthermore, all fish, but 1 from the acute 

KHVD tank, could be detected as KHV-positive by all PCR assays during the first 4 dpi 

using these samples except for the Gilad and nested Gilad PCR assays (Table 4.5).  

All fish tested positive with the real-time PCR using non-lethal mucus swabs, 

regardless of the time post-infection (Fig. 4.23 A, B, C). Glycoprotein gene PCR and semi-

nested PCR, were the most effective for KHV detection in leukocytes, but were still only 

positive for 42% (3/7) and 57% (4/7) of fish from the peracute KHVD tank, respectively and 

71% (5/7) and 43% (3/7) from the acute KHVD tank, respectively, during the early infection 

stages (Fig. 4.23 D). A noteworthy observation was the fewer positive leukocyte samples by 

real-time PCR during the early infection stages compared to conventional PCRs: TK PCR, 

TK nested PCR, glycoprotein PCR and semi-nested PCR (Fig. 4.23 D). At the later stages of 

infection KHV DNA could be detected in >70% of fish leukocytes by all assays except the 

Gilad PCR (Fig. 4.23 D). Detection efficiencies of TK PCR, TK nested PCR, glycoprotein 

PCR and semi-nested PCR were equivalent to real-time PCR for detecting KHV in fish 
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during early stages using mucus swabs of skin, i.e. fin base swab and skin swab and blood 

leukocytes (Fig. 4.23 B - D). 

No inhibition was observed in any of the PCRs including real-time qPCR assays 

according to the internal control used and all negative controls (template controls and 

uninfected fish tissues) were negative suggesting no false-positive results had occurred 

throughout the analysis. 

4.3.3.3 KHV DNA detection in surviving carp by lethal sampling methods using PCR 

Only one fish survived the highly virulent experimental challenge, which appeared 

completely healthy with no signs of disease when sampled at 70 dpi.  

The nested PCR detecting the thymidine kinase gene (CEFAS, unpublished 2007) and 

single round PCR detecting the glycoprotein gene were the only PCR assays able to detect 

KHV DNA in the tissues of this fish. The gill, spleen and kidney were positive by the nested 

TK gene PCR, while the spleen, kidney and gut were positive by the single round 

glycoprotein gene PCR (Table 4.4). 
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Table 4.5 Positive detection of KHV in white blood cells and mucus using different PCRs   

 

 Presentation of 

KHVD  

Time 

(dpi) 

Gilad Gilad 

nest. 

TK TK nest. Glyco. Semi- 

nest 

Real-time 

 
a
% PCR-

pos. samples
 

 

 Peracute (n=28) <5 dpi 17.9 60.7 78.6 78.6 85.7 89.3 78.6 

 Acute (n=28) <5 dpi 28.6 50 75 75 78.6 75 85.7 

 Acute (n=24) ≥5 dpi 66.7 91.7 91.7 91.7 95.8 87.5 95.8 

 Survivor (n=4) 70 dpi 0 0 0 100 100 0 75 
b
No. pos. 

fish detected
 

  b
No. pos. fish detected 

 Peracute (n=7) <5 dpi 2 6 7 7 7 7 7 

 Acute (n=7) <5 dpi 4 4 6 6 6 6 6 

 Acute (n=6) ≥5 dpi 5 6 6 6 6 6 6 

 Survivor (n=1) 70 dpi 0 0 0 1 1 0 1 

Abbreviated PCR assays used are: Gilad (Gilad et al. 2002); Gilad nest. (Bergmann et al. 2006); TK (Bercovier et al. 2005); TK nest. (CEFAS 

2007 Unpublished); Glycol. (KHV-U, ORF 56) single round (Bergmann et al. 2010b); Semi-nest. (Bergmann et al. 2010a); real-time (Gilad et 

al. 2004; Bergmann et al. 2010a) 
a
Samples screened by PCR include 3 mucus swabs per fish (gill swab, skin swab, fin base swab) and separated peripheral blood leukocytes 

b
Fish screened include all peracute KHVD fish (1 hpi – 3 dpi), early acute KHVD fish (1 hpi – 4 dpi) and later acute KHVD fish (5 dpi – 10) 

dpi)
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Figure 4.23 Detection of koi herpesvirus (KHV) DNA by various PCR assays in non-

lethally acquired mucus and blood leukocytes during peracute, early acute and acute 

KHVD. (A) gill swab; (B) skin swab; (C) fin base swab; (D) blood leukocytes. Bars 

represent the % of fish positive from the early and late stages post infection. Peracute = Tank 

B15 (sampled <5 dpi); Acute early = Tank B16 (sampled <5 dpi); Acute late = Tank B16 

(sampled ≥ 5 dpi). Abbreviated PCR assays that were used for the same extracted DNA as 

template are indicated on the x-axis: Gilad (Gilad et al. 2002); Gilad nest. (Bergmann et al. 

2006); TK (Bercovier et al. 2005); TK nest. (CEFAS 2007 Unpublished); Glycol. (KHV-U, 

ORF 56); (Bergmann et al. 2010b); Semi-nest. (Bergmann et al. 2010a); real-time (Gilad et 

al. 2004; Bergmann et al. 2010a) 
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4.3.3.4 KHV DNA detection in surviving carp by non-lethal sampling methods using PCR 

Only a few of the PCR assays provided positive signals from the non-lethally sampled 

surviving and unstressed carp. The nested TK gene PCR and the glycoprotein gene PCR were 

positive for all swab samples and leukocytes. Real-time PCR was only positive for skin 

swabs and fin base swabs while the Gilad nested PCR was positive for a single fin swab 

(Table 4.5). Faeces samples had also been collected, but were only positive by the single 

round glycoprotein gene PCR (data not shown). 

4.4 Discussion 

4.4.1 Pathogenesis of KHV during peracute and acute disease 

A number of studies have previously been undertaken to investigate KHV pathogenesis using 

histological methods (Miyazaki et al., 2008; El-Din, 2011), molecular methods (Gilad et al., 

2004; Pikarsky et al., 2004; Adamek et al., 2013), and bioluminescent imaging (Costes et al., 

2009; Raj et al., 2011; Fournier et al., 2012), which highlighted KHV entry and 

dissemination through the tissues within the first few hours and days of infection. In the 

current study, analysis of KHV pathogenesis was undertaken within a much narrower 

window following virus exposure. The first few hours of infection, i.e. in 10 fish from 1-8 

hpi, as well as the following 10 days were investigated by exposing carp to a highly virulent 

virus isolate by immersion to simulate a natural infection. Detection of viral DNA within the 

tissues was achieved using ISH and the concentration of viral DNA was determined using a 

TaqMan real-time qPCR (Gilad et al., 2004).  

Despite analogous challenge conditions, differential disease progression was observed 

between the 2 tanks of carp infected with KHV, which is not uncommon (Shapira et al. 2005, 
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Fuchs et al. 2011). Considering this, together with the rapid mortality in fish exhibiting 

peracute (100 % mortality in 3-4 dpi, tank B15) and acute (83 % mortality in 7-11 dpi, tank 

B16) KHVD in the current study, which is similar to previous reports of experimental KHV 

infections of carp by cohabitation, ip injection and immersion (Perelberg et al., 2003; 

Pikarsky et al., 2004; Dishon et al., 2005; Antychowicz et al., 2005; Shapira et al. 2005, 

Bergmann et al. 2010b; Dong et al., 2013), emphasises the necessity for reliable diagnostics 

and highlights the need for early detection to control this virus and minimise its unpredictable 

disease transmission. Although clinical KHVD was not observed internally during the early 

stages of the infection, some disease signs were evident in infected fish as early as 3 dpi. 

These included excessive mucus secretion, which may explain the early development of 

disease signs such as enophthalmos and progressive body emaciation as a result of 

dehydration. 

The lack of notable pathognomonic disease signs in infected fish, in spite of the hyper-

virulent nature of the virus isolate, is similar to that described by Perleberg et al. (2003), 

where fish were asymptomatic during the first 5 dpi, but >90% mortality occurred within the 

first 11 days post exposure (dpe) in fish challenged by cohabitation, and mortality rates did 

not differ considerably in fish infected by immersion or ip injection. Clinical signs are also 

often lacking in natural outbreaks of the disease (Sano et al., 2004; Tu et al., 2004). Although 

the early stages of KHVD have been investigated previously, these have only focused on the 

pathogenesis predominantly post 24 hpi, although Costes et al. (2009) did report preliminary 

findings as early as 12 hpi, and most recently Adamek et al. (2013) reported findings focused 

specifically on infected carp skin, from 6 and 12 hpi. In the present study, samples were taken 

from 7 organs, blood leukocytes and mucus during the first 8 hpi, the results of which support 

previous suggestions for the portal of entry of KHV through the gills (Hedrick et al., 2000; 
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Pikarsky et al., 2004; Yasumoto et al., 2006; Miyazaki et al., 2008; El-Din, 2011) or gut 

(Perelberg et al., 2003; Dishon et al., 2005; Lee et al., 2012) questioning whether the skin is 

actually the only portal of entry after infection of the virus by immersion as previously 

suggested (Costes et al., 2009; Fournier et al., 2012).  

Role of gills as portal of virus entry 

High virus copy numbers were found attached to gill and skin mucus within 1 hpi, 

particularly with peracute KHVD fish (80,000 gen. eq.), but also with fish from the acute 

KHVD tank (10,000 gen eq.). Viral DNA in the skin mucus varied between fish and tanks 

during the first dpi, but was always >1,000 gen eq. In contrast, KHV DNA concentrations in 

gill mucus declined from 1 - 8 hpi in both tanks, which was possibly associated with virus 

uptake through the gills. As there was approximately >100-fold more KHV DNA in gill and 

skin tissues of peracute KHVD carp within a very narrow window post exposure, (i.e. 1-2 

hpi), this may reflect the difference in disease progression between the two tanks. Higher 

copy numbers were observed in acute KHVD tank fish at the later time point of 4 hpi (100 

gen. eq.), compared to the peracute KHVD tank after 6-8 hpi when <10 gen eq. were present 

in gill tissue of fish from both tanks. Although it cannot be certain that every fish was 

infected with KHV at 0 hpi, and despite only one fish being sampled at that time point, it can 

only be hypothesised that a much higher intake of virus occurred within the initial 2 hpi in the 

peracute KHVD-fish compared to a progressive accumulation of virus up to 4 hpi that 

resulted in more typical acute KHVD. 

More intensive positive signals were seen in gill sections of peracute KHVD fish 

compared to acute during the first 4 hpi by ISH, which was in agreement with higher viral 

loads in gill mucus and tissue by qPCR. This supports the hypothesis that higher 
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concentrations of attached virus to gill epithelial cells resulted in the peracute infection if 

virus entry was via the gills. The increasing intensity of ISH signals in gill filament tips, 

within the respiratory epithelium and at filament bases in close proximity to the central 

venous sinus, during the first 8 hpi also suggests that gills may be involved in early KHV 

pathogenesis. Although there were signals in the mucus, this occasionally occurred in fish 

sampled at 0 hpi, which may have resulted from the probes sticking non-specifically to the 

mucus. Lee et al. (2012) and Bergmann et al. (2006) also reported strong ISH signals in gill 

epithelial cells and basal mucus cells in KHV-infected carp tissues, and Pikarsky et al. (2004) 

reported extensive gill pathology with a similar KHV experimental infection. They showed a 

loss of lamellae and a mixed inflammatory cell infiltrate after just 2 dpe. Miyazaki et al. 

(2008) showed, by ultrastructural analysis of KHV infected carp gills after a per-gill 

inoculation method, that respiratory epithelial cells contained intranuclear inclusion bodies 

and exhibited vacuolation and nuclear degeneration. They also observed macrophages 

containing intranuclear inclusion bodies within the lumen of the gill lamella capillaries 

(Miyazaki et al., 2008). This may explain viral loads detected internally in blood leukocytes 

in 3/4 fish between 6-8 hpi in the current study, which may be through a similar method used 

by other viruses to cross mucosal epithelial layers where infected macrophages migrate 

across the epithelium (Bergelson, 2003). The resulting viraemia may lead to the rapid 

dissemination of virus that can be detected in multiple internal organs within the first day of 

infection (Gilad et al., 2004; Pikarsky et al., 2004). This is followed by complete effacement 

of gill architecture and severe inflammation characterised by necrosis and sloughing of 

surface epithelium and mucus from 6–10 dpe (Pikarsky et al., 2004; Ilouze et al., 2006a). 

Although viral DNA in the gills of infected fish was not quantified in their study, they 

proposed that the virus enters through the gills where it replicates, resulting in this pathology, 
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which agrees with similar pathological findings of Hedrick et al. (2000). Furthermore, a 

previous challenge model (and subsequent experimental challenges (Yasumoto et al., 2006)) 

for KHV by per-gill inoculation resulted in intensive infection of gill respiratory epithelium 

containing large numbers of virus particles, as well as systemic infection in kidney, spleen, 

liver and blood macrophages observed by light microscopy and TEM (Miyazaki et al., 2008; 

El-Din, 2011). Internal pathology induced by this route of infection occurred within 6-7 dpi 

(El-Din, 2011). No such pathology was noted in the current study, despite high internal viral 

loads. The involvement of the gills in KHV entry is, however, also contested as KHV-

specific transcripts were not found in experimentally infected carp early in the infection (Dr. 

Sven Bergmann pers. com.). Although the detection of KHV DNA in peripheral blood 

leukocytes by 6 hpi is earlier than the expected time interval for completion of KHV DNA 

synthesis of >8 hpi, which has been demonstrated in vitro (Ilouze et al., 2012b). Therefore, 

replication may not have been necessary for entry into the bloodstream. 

Role of skin as portal of virus entry 

Carp skin has recently been proposed as the major portal of entry of KHV using a 

recombinant virus expressing luciferase as the challenge isolate, with subsequent 

bioluminescent imaging (Costes et al., 2009; Fournier et al., 2012). Strong signals were 

recorded in the skin 24 h post challenge with this model by bath immersion and signal 

intensity increased during the challenge, however, no signals were observed internally until 

later infection stages (Fournier et al., 2012). In the current study strong signals were observed 

by ISH in the skin mucus throughout the first day of infection, however, KHV DNA could 

only be detected in gills and not in the skin of fish in the acute KHVD tank during the first 2 

hpi, suggesting no uptake of virus via the skin in these fish. Positive signals by ISH were first 
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associated with skin tissue after 6 hpi. KHV DNA was also detected at low levels in the skin 

of some fish in a recent study after 6 hpi by real-time PCR (Adamek et al., 2013), in 

agreement with the current study where 1000 gen eq. can be detected in skin biopsies after 

only 1 hpi in the peracute KHVD tank, although KHV-specific transcripts of the TK gene 

were not detected until 12 hpi in the previous study (Adamek et al., 2013). In vitro, DNA 

replication of KHV has been shown to occur within 4-8 hpi and the presence of RNA 

transcripts were observed in the same study after only 1 hpi (Ilouze et al., 2012b). 

Furthermore, the TK gene is an early gene and transcripts for this gene are found prior to 

DNA synthesis after only 2 hpi (Ilouze et al., 2012b). Therefore, if KHV replication first 

occurs within the skin, the presence of transcripts would also be expected after 6 hpi in 

synchrony with the presence of viral DNA. However, Adamek et al., (2013) did not detect 

TK transcripts until >6 hpi, which suggests that the skin may be a secondary site of infection, 

at least from these samples. High copy numbers found in skin biopsies at early infection 

stages may constitute residual virus from skin mucus. Detecting the presence of KHV DNA 

within skin epithelium was unsuccessful by ISH, possibly due to over-digestion of some 

sections during processing. There may therefore have been positive epidermal cells that were 

missed during analysis. It is possible that the viral DNA detected at these early stages is due 

to attachment and entry of the virus through the skin. However, based on the detection of 

KHV in blood leukocytes in this study after 6 hpi, it is less likely that KHV replication 

occurred in the skin prior to dissemination through the blood to the internal organs as 

previously proposed (Costes et al., 2009; Fournier et al., 2012). However, considering the 

effective anti-viral properties of the mucus of healthy carp, it is more likely that the skin 

represents a portal of entry following damage to the epidermal and mucosal layers through 

which, as reported by Raj et al. (2011), removal of the protective carp mucus and epidermal 
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cell layers enhances KHV transmission through the skin. Raj et al. (2011) also demonstrated 

the neutralising activity of mucus against KHV and inhibition of KHV attachment to 

epidermal cells. The skin mucosal layer of fish, which has effective anti-microbial properties 

(Nagashima et al., 2003; Esteban, 2012) may not only be able to trap pathogens and 

immobilise them (Cone, 2009; Esteban, 2012), but by doing so pathogens may subsequently 

be removed from the skin by the water current (Mayer, 2003 cited in Esteban, 2012). Mucin 

fibres form a mesh, which often contain pores that are too big to prevent small sized capsid 

viruses from penetrating mucosal barriers (Cone, 2009; Lai et al., 2009). However, larger 

enveloped viruses may be effectively trapped, which was demonstrated for HSV-1, with a 

diameter of ~180 nm (Lai et al., 2009), and this may therefore also constitute an effective 

system of carp mucus against the large 180-230 nm infectious KHV virion (Hedrick et al., 

2000), making the skin a less likely portal of entry. Continuous secretion of mucus during 

KHV infections may result in the skin patches (and sandpaper texture) (Adamek et al., 2013) 

and lesions characteristic of KHVD (Hedrick et al., 2000; Antychowitcz et al., 2005). Such 

lesions may provide ideal secondary sites for virus entry when this effective anti-viral 

mucosal barrier can be breached.  

Infection via the skin does appear to be a realistic route of infection for KHV following 

injury and/or in the absence of mucus as virus replication has been observed in the epidermis 

by TEM after 3 dpi (Costes et al., 2009), although this does not conclude that KHV targets 

skin epithelial cells specifically as the virus is able to use receptors found on many different 

cell types permitting multiple organ tropism, which has also been demonstrated extensively 

in other studies using TEM (Bretzinger et al., 1999; Hedrick et al., 2000; 2005; Perelberg et 

al., 2003; Choi et al., 2004; Miyazaki et al., 2008; Cheng et al., 2011; El-Din, 2011; Matras 

et al., 2012). Although no virus particles were detected by TEM in the current study. The skin 
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may therefore constitute a secondary site of replication following systemic infection through 

the blood. In the study by Fournier et al. (2012), KHV was detected in the skin after 2 dpi in 

fish infected through oral inoculation, thus it is likely that the virus was transported through 

the blood to the skin, although the authors suggest virus particles shed from the infected fish 

entered the skin externally. In similar studies on pathogenesis, mechanically-induced 

wounding resulted in increased bacterial loads at the site of injury in studies using Aeromonas 

hydrophila in crucian carp (Chu and Lu, 2008), similar to the study carried out by Raj et al. 

(2011) for KHV in C. carpio. This was in contrast to the unwounded control group, whereby 

minimal bacterial loads were detected in the muscle and the majority of bacteria were instead 

found in the gills as early as 2 hpi (Chu and Lu, 2008). As the strong signals obtained by 

bioluminescence occurred after 24 hpi (Costes et al., 2009; Fournier et al., 2012), it is 

possible that KHV effectively replicates and is then shed via the skin following systemic 

infection, which based on the results of the current study, can be rapid. Replication in skin 

epithelial cells has been demonstrated after only 12 hpi by molecular methods (Adamek et 

al., 2013). If secondary infection occurs in the epidermis followed by subsequent excretion 

and removal by mucus, this may explain the increased viral loads detected in the skin by 

bioluminescence in previous studies (Costes et al., 2009; Fournier et al., 2012) and by real-

time qPCR by Adamek et al. (2013) and in the current study. This would then also explain 

the significantly greater concentrations of KHV DNA in the mucus at the later stages of the 

acute KHV infection in the current study, i.e. > 5 dpi. Pathogenesis studies with 

alloherpesviruses, e.g. CCV, revealed significantly lower viral loads detected in skin tissue 

and in tank water using isolates with disrupted TK genes compared to the wild type virus 

indicating that the virus was effectively shed via the skin (Kancharla and Hanson, 1996). 

Strong bioluminescence signals associated with the skin have been observed in the early 
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stages of the infection with other fish viruses, most predominantly in the fins (Harmache et 

al., 2006). For example, the rhabdovirus, IHNV, was found to accumulate in the fins after 8 

hpi as well as within mucus of both naturally and experimentally infected rainbow trout (La 

Patra et al., 1989a; b). Since the latter study demonstrated infectious virus in the skin mucus, 

not only after bath exposure to the virus, but also ip challenge, the mucus may contain 

excreted virus from secondary replication within the skin, which may explain the strong 

signals observed in the skin by bioluminescence for IHN-infected trout (Harmache et al., 

2006) and KHV-infected carp (Costes et al., 2009; Fournier et al., 2012) and the high DNA 

viral loads found at later stages in both mucus and skin tissue by Adamek et al. (2013) and in 

the current study. Gilad et al. (2004) did not measure KHV DNA concentrations in the skin, 

but reported high viral loads in the mucus, also at very early stages post infection (> 1 dpi), 

which supports the hypothesis of virus excretion via the skin into the mucus.  

The skin has been shown to be an important organ, and possibly a target organ, during 

early KHV pathogenesis, especially as replication has been demonstrated in skin epithelium 

(Costes et al., 2009; Fournier et al., 2012; Adamek et al., 2013) and once carp are infected, 

the protective mucosal barrier and other aspects of skin immunity are affected, possibly 

immunomodulated by KHV, resulting in increased infection of the skin by secondary 

facultative pathogens (Adamek et al., 2013). This disruption also likely enhances KHV 

infection through which the skin then becomes an ideal portal for the virus, replicating and 

shedding progeny virus into the mucus and surrounding water. 

Role of gut as portal of virus entry 

Low viral loads were initially found in the gut of fish in the acute KHVD tank 4 hpi, and in 

blood leukocytes after 6 hpi in both tanks, while all other organs were negative by real-time 
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qPCR. Using ISH it was possible to detect KHV DNA in the gut and in the blood vessels of 

the spleen, kidney and liver after only 1 hpi, while the brain was negative. Furthermore, KHV 

DNA could be detected in gut contents by ISH in some sections during the first day of 

infection, suggesting that the intestine could represent a possible portal of entry for the virus 

following ingestion of virus contaminated food and/or water. The intestine has previously 

been proposed as a possible portal of entry for KHV (Perelberg et al., 2003; Gilad et al., 

2004; Dishon et al., 2005; Ilouze et al., 2006a; 2011; El-Din, 2011; Lee et al., 2012), and 

transcripts of the KHV TK gene have been detected in the intestinal epithelium (Syakuri et 

al., 2013). Fournier et al. (2012) suggested that the pharyngeal peridontal mucosa is a portal 

of entry following oral inoculation, based the presence of bioluminescence signals, but not in 

the intestines within the first 24 hpi. However, it is likely that the pharyngeal peridonatal 

mucosa represents a site of virus entry following mucosal damage, i.e. by mastication during 

food processing, as the authors discussed (Fournier et al., 2012), similar to the entrance of 

virus through the skin by wounding (Raj et al., 2011). Considering that all other internal 

tissues were negative by ISH during this narrow window of 2 hours following virus exposure, 

and during the first 8 hpi by qPCR, the gut may represent a portal of entry and site of initial 

replication after which the virus is disseminated through the blood by leukocytes. Although 

the early detection of KHV DNA in blood leukocytes after 6 hpi, again suggests that KHV is 

translocated to the blood before DNA synthesis within infected cells has been completed. 

This finding is in agreement with ISH analysis undertaken on archival tissues of KHV 

infected carp in Korea where strong signals were detected particularly in mucus and goblet 

cells of the intestinal epithelium (Lee et al., 2012). Positive detection of KHV DNA in 

macrophages of the intestine and melanomacrophage centres of the spleen and kidney, led 

Lee et al. (2012) to hypothesise that the virus spreads via macrophages after phagocytosis of 
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infected intestinal epithelial cells, which then migrate to the tissues via the blood causing a 

systemic infection. The fact that KHV is detected in the blood vessels of various tissues 

during the first day of infection, may explain the lack of detection by qPCR from DNA 

extractions because of the limited virus copy numbers. Early KHV viraemia and 

dissemination via the blood corroborates earlier findings of DNA detection in blood after 1 

dpi (Pikarsky et al., 2004), and multiple tissue tropism of the virus via the blood after 1 dpi 

(Eide et al. 2011a; Fournier et al. 2012). A number of studies have isolated infectious virus 

from blood of infected fish (Kempter et al., 2009; Eide et al., 2011a; b; Dong et al., 2013; 

Matras et al., 2012). This presence of KHV in blood leukocytes may explain the negative 

results for KHV detection in gills and gut by bioluminescence until much later in the 

infection (i.e. no signals were evident in the gut following oral inoculation until 6 dpi) 

(Fournier et al., 2012). Thus, bioluminescence may lack the sensitivity to detect low levels of 

virus in internal; organs compared with molecular tests, such as the TaqMan real-time PCR 

used in the study by Gilad et al. (2004) and the current study.  

Later stages of KHV infection (> 5 dpi) 

The strong bioluminescent signals detected in tissues later in the infection by Fournier et al. 

(2012), are in agreement with the increased viral loads detected after 4 dpi in the current 

study and in the study of Gilad et al. (2004). After 1 dpi a dramatic reduction in viral DNA 

was seen in gill mucus (<10 gen. eq.) in fish from the peracute KHVD tank, whereas a large 

increase in copy numbers after 4 dpi in gill mucus occurred in fish from the acute KHVD 

tank (>100,000 gen. eq.). Concentrations of viral DNA also increased in the gills of fish from 

the acute KHVD tank, although more gradually with no more than 100 gen. eq. detected 



Chapter 4 – Early pathogenesis and detection  

236 

during the first 4 dpi, which may further explain the negative results reported by Fournier et 

al. (2012) using bioluminescence.  

Within these first 4 dpi ISH signals were still limited in most sections, with gills always 

producing strong signals while the brain remained negative. After 5 dpi there was a massive 

increase in viral DNA observed in all tissues by qPCR, which was significantly higher than 

concentrations in tissues of peracute and early acute (< 5dpi) infection fish. Elevated signal 

abundance in ISH sections was also evident. Positive signals were observed in blood vessels, 

while a large number of gill epithelial cells, interstitial kidney tissue, splenocytes and liver 

hepatocytes, which corresponded to as much as 400,000 KHV gen. eq. in the kidney from 5-

10 dpi and up to 50,000 copy numbers in all other positive tissues. Such findings corroborate 

the TEM results of Miyazaki et al., (2008) with virus particles found throughout all tissues 

and the brain, consisting of expanded blood vessels, possibly resulting in the neurological 

disturbances caused by KHVD. This trend was similar to that reported by Gilad et al. (2004) 

(Fig. 4.24) with higher concentrations of virus in tissues after 6 dpi at water temperatures 

between 18°C - 23°C. High viral loads were found in skin mucus, kidney tissues as well as 

the particularly high concentrations in intestines, in fish challenged in the study by Gilad et 

al. (2004) (Fig. 4.24). This supports the hypothesis of Dishon et al. (2005) that the intestine 

represents a portal of entry for KHV, but also acts as a site for virus excretion (Ilouze et al., 

2006a; 2011). Dishon et al. (2005) reported the presence of KHV DNA, antigen and 

infectious virus particles in the faeces and secreted intestinal products of carp from 5-8 dpi. A 

recent study, where low KHV copy numbers were found in intestinal tissue after just 3 dpi 

and increased with time, reported on the inflammation and up-regulation of claudin proteins 

associated with tight junctions of epithelial cells in the gut mucosa, which was thought to be a 
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carp response to KHV-induced enteritis (Syakuri et al., 2013), possibly at the initial site of 

infection.  

 

Data graphically illustrated is taken from the publication by Gilad et al. (2004) 

Fig. 4.24 Graphical representation of KHV viral DNA concentrations in experimentally 

challenged fish in the study by Gilad et al. (2004). Two of the temperatures used during the 

challenge period of the trial are depicted, which are within the range most commonly 

associated with KHV outbreaks. (A) KHV DNA concentrations reported during the first 10 

dpi at 18°C (B) KHV DNA concentrations reported during the first 10 dpi at 23°C. Graphs 

are presented on a logarithmic scale. 

 

Based on the results of the current and other studies, the skin may not be the major portal 

of entry, as stated by Costes et al. (2009), and the gut, and possibly the gills, may still play a 

part in the early pathogenesis of KHV. Nonetheless, due to their role in pathogenesis, all 

these tissues may represent important sampling targets for KHV diagnostics 

4.4.2 Detection of KHV during the early infection stages 

The sensitivity of a number of diagnostic methods was subsequently investigated to 

determine the influence that KHV pathogenesis has on acute phase diagnostics and what 

sampling techniques and virus targets are most suitable for detection. As fish only harbour a 
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low level viraemia at this stage, the sensitivity of cell culture isolation is limited for KHV 

detection, despite being described as the most sensitive technique for diagnosis and 

surveillance for all other viral fin-fish diseases (OIE, 2012), particularly during potentially 

latent infections. However, even during clinical disease, problems have been reported on the 

isolation of KHV by cell culture (Sano et al., 2004; Matras et al., 2012; Yuasa et al., 2012b), 

which can only be achieved during a short window of KHVD in moribund fish, i.e. between 

7-11 dpi (Matras et al., 2012). For example infectious virus was not detectable in CCB cells 

following inoculation with carp kidney and brain homogenates of infected fish after 3 dpe, 

whereas detectable levels were observed in gill, kidney and brain after 7 dpe (Yuasa et al., 

2012b). In another study infectious virus was not detected from infected carp faeces extracts 

until 7-8 dpe (Dishon et al., 2005). The lack of detection at this very early stage in the 

infection was in spite of the high and rapid mortality rates that were observed (Dishon et al., 

2005; Yuasa et al., 2012b) and as Bergmann et al. (2009a) stated: “isolation of KHV by cell 

culture methods is difficult even during an acute phase of infection”, requiring a high titre for 

successful growth, highlighting the challenges of early KHV diagnosis. In the current study 

difficulties were also experienced with detecting KHV at an early stage of infection despite 

the considerable virulence of the isolate. 

The focal localisation of ISH signals in KHV positive tissues possibly explains the 

false negative PCR results during earlier stages of infection. Despite intense signals in gill 

filaments during the first 4 dpi, relatively low copy numbers were detected and some samples 

were negative. Similar outcomes have been reported for other aquatic herpesvirus infections, 

e.g. in Atlantic cod (Marcos-Lopez et al., 2011) where focal infection of gill filaments 

observed by ISH did not always correspond to positive results by PCR. These erroneous 

negative results from the early stages of infection demonstrated the high sensitivity of the 
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ISH method, even compared to the highly sensitive real-time-qPCR (Gilad et al., 2004). ISH 

has been used in a number of studies to detect KHV DNA in infected tissues and blood 

leukocytes of carp (Bergmann et al., 2006), other potential reservoir fish species (Bergmann 

et al., 2006; Kempter et al., 2009) or in archival material (Lee et al., 2012), and appears 

sensitive enough to detect even minimal copy numbers (i.e. <5) during immediate stages post 

infection making it an effective confirmatory test. An advantage of ISH is the ability to 

examine pathological effects of the infection however the tissue architecture can be lost 

during the digestion process, sometimes making it impossible to distinguish the cell type 

infected. This was apparent in the kidney, spleen, liver and particularly skin tissues in the 

current study despite strong signals on some sections. Gregory (2002), when developing ISH 

for ISAV detection, suggested that different assay conditions may be needed for different 

tissues. 

Antigen detection by IHC was not very successful using fixed tissues from fish 

undergoing acute clinical KHVD (5-7 dpi), despite harbouring high virus loads. Few of the 

MAbs tested provided positive signals, however, three MAbs detecting a capsid antigen 

(20F10), an antigen of ORF62 (10D10) and ORF68 (7C6) provided some promising staining, 

and were thus predominantly used. Ascites fluid (Asc. 10D10) recognising a KHV antigen, 

expressed by ORF62 (Aoki et al., 2011), produced abundant signals by IHC in the gills and 

kidney, although this did not correspond with the focal signals of infected epithelium detected 

by ISH, and the negative control fish also exhibited abundant signals suggesting a lack of 

specificity. However, focal signals, associated with the vessels and hepatocytes of the liver 

parenchyma were observed, while the negative control tissue remained negative. Pikarsky et 

al. (2004) successfully used IHC with rabbit anti-KHV serum to screen fish challenged with 

the virus by immersion. They found specific positive signals in the kidney after only 2 dpi, 
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which were associated with the renal interstitium and increased during the course of the 10 

day challenge, similar to the signals obtained in the current study by ISH. However, cross-

reactive signals with uninfected gill tissues were also reported. It is possible that the MAbs 

generated to the virus are specific for a virus antigen that is conserved with cellular antigen of 

the host. Herpesviruses may present host-like epitopes that assist in immune evasion (Vider-

Shalit et al., 2007). Recent studies have demonstrated that KHV expresses an IL-10-like 

homologue, which it may utilise for evasion of the host immune response (Van Beurden et 

al., 2011a; Sunarto et al., 2012). Therefore viral antigens, such as the one encoding the 

tegument protein of ORF62 (Michel et al., 2010b), containing a cysteine protease region 

recognised by MAb 10D10 (Aoki et al., 2011) may be a conserved epitope with host cell 

proteins. This represents another problem with using KHV antigens for diagnosis. As the 

tegument of herpesviruses may include trace amounts of cellular-derived proteins (Loret et 

al., 2008; Newcomb and Brown, 2009; Michel et al., 2010b; Van Beurden et al., 2011b), they 

may not be ideal protein targets for diagnostic MAb development, which holds true for the 

KHV virion, which harbours at least 18 host cell proteins (Michel et al., 2010b). The highly 

abundant signals remained after IFAT. Thus, extensive staining within kidney tubular 

epithelial cells, which did not correspond with interstitial staining by ISH, were not 

associated with endogenous peroxidases in the host tissue. KHVD-induced nuclear changes 

have been reported in tubular epithelial cells previously (Hedrick et al., 2000), but the 

staining in the current study appeared too sporadic to be specific for infected cells. However, 

differential signal intensity was noted within hepatocytes of the liver. These signals may 

represent genuine expression of KHV ORF62 antigen in these cells during clinical disease, 

which may make the liver a useful target tissue using these MAbs. Extensive pathology and 

the presence of viral particles in the hepatic parenchyma, has been reported in a number of 
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studies (Hedrick et al., 2000; Pikarsky et al., 2004; Miyazaki et al., 2008; Cheng et al., 

2011), thus this may be a useful diagnostic target at later stages of infection. Signals obtained 

with the other 2 MAbs detecting a capsid antigen and an antigen encoded by ORF68, were 

inconsistent and often inconclusive. Despite large concentrations of KHV DNA from 5-7 dpi, 

detection of antigens may still not be a sensitive enough method for early stage diagnostics. 

In vitro studies of KHV induced anti-IFN activity using flow cytometry indicated that KHV 

glycoprotein antigen could not be detected in infected cells until 5 dpi (when 40% of the 

infected cultured cells exhibited virus-associated fluorescence) (Adamek et al., 2012). 

Furthermore, rabbit anti-sera generated against the envelope protein encoded by ORF 81 

enabled detection of KHV in infected gills and kidney after only 8 dpi (Rosenkranz et al., 

2008), thus detection limits, with regards to time post-infection, may also be associated with 

the virus target antigen. The expression of sufficient protein for detection may therefore take 

a number of days after KHV begins to replicate in internal tissues. Highly abundant viral 

proteins in infected cells may be the most effective target.  

Antigen masking may also have affected results from IHC screening, however, 

antigen retrieval procedures were also undertaken, but to no avail, and MAb 7C6 has 

previously been successfully used to detect viral antigen in fixed tissues (Aoki et al., 2011). 

Aoki et al. (2011) suggested that this MAb could be used to detect KHV directly, i.e. through 

the use of lateral flow technology. This could perhaps be used with blood samples, from 

which virus has been successfully isolated through co-cultivation of infected isolated 

leukocytes or infected blood on cell cultures (Kempter et al., 2009; Dong et al., 2013). 

However, as mentioned previously, the lag time before high titre infectious virus is obtained 

from blood or faeces samples (Dishon et al., 2005; Matras et al., 2012) restricts the 
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usefulness of such assays, i.e. diagnosis during clinical KHVD, after which point fish may be 

untreatable, which was highlighted by the peracute disease in the current study.  

Fixed tissue imprints or blood smears may prove useful for detecting virus antigens. 

Tissue imprints of kidney, brain and liver were previously used for detecting KHV antigen 

early after experimental challenge (Pikarsky et al., 2004). Viral DNA was detected in 

leukocytes after only 6 hpi in the current study, and increased viral loads occurred within the 

early stages of infection in the acute KHVD tank, thus replicating virus present in the 

leukocytes may be detectable on smears by IFAT. A number of other studies have detected 

not only viral DNA (Pikarsky et al., 2004; Kempter et al., 2009; Eide et al, 2011a; b), but 

also infectious virus particles (Bergmann et al., 2010c; Dong et al., 2013) in infected carp 

blood. Smears fixed with alternative fixatives to cross-linking formalin, may minimise 

antigen masking, making this non-lethal diagnostic approach more feasible. 

No virus particles were detected by TEM, confirming the difficulty in detecting virus 

particles in infected cells, which requires a virus concentration of 10
6
 (OIE, 2012). TEM is an 

expensive technique, which has been useful for characterising the virus and various infected 

cell types (Hedrick et al., 2000; 2005; Miyazaki et al., 2008), but is not a useful diagnostic 

procedure even for detecting KHV during acute stages of infection.  

Single or low copy numbers of DNA from other herpesviruses have been successfully 

detected using ISH (Teo and Griffin, 1990), which in principle, may be useful for detecting 

KHV DNA in persistent or potentially-latent infections of fish. The carp surviving infection 

in the current study, sampled after 70 dpi, appeared healthy. This fish harboured barely 

detectable levels of KHV-DNA in skin mucus by qPCR, and may have been persistently or 

latently infected. An antibody titre of 1/10,000 and neutralising antibody titre of 1/45 were 
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measured from the surviving carp by serology. The tissues of this individual have not yet 

been analysed by ISH, which could provide clues to where the virus is located during a 

persistent/latent infection. More significantly, detection of KHV DNA in the peripheral blood 

leukocytes of this fish by ISH, similar to the method applied in goldfish by Bergmann et al. 

(2010c), could enable this carp to be diagnosed non-lethally as infected (based on viral 

nucleic acid detection) as well as exposed (based on anti-virus antibody detection). PCR 

remains the method of choice for early stage KHV detection, however, determining the most 

sensitive assay and sampling method is vital.  

4.4.3 KHV PCR diagnostics by lethal and non-lethal sampling 

The present study highlights the importance of molecular methods for KHV detection as 

antibody-based diagnostics on tissue sections does not appear to be reliable, at least during 

the earliest stages of KHV infection. However, a large number of assays gave negative 

reactions within the first 4 dpi. The high viral loads in the mucus detected in the current study 

(up to 80,000 gen. eq.) have been reported previously (Gilad et al., 2004), suggesting that 

mucus may be an effective sample for early KHV detection, at least during acute or clinical 

disease. Early detection of the virus at this stage enables infected individuals to be identified 

and eliminated from the population, or at least may prevent the trade and exportation of sub-

clinically infected fish. However, even when clinical signs, that are non-pathognomonic for 

the virus, such as enophthalmos, had occurred from 3 - 4 dpi, many of the PCRs still lacked 

the sensitivity to detect KHV in tissues. Temperature has recently been shown to influence 

the sensitivity of molecular methods for KHV detection using single round Gilad PCR (Gilad 

et al. 2002) during early infection stages (Matras et al., 2012). In the current study, by using a 
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hyper-virulent isolate of KHV, it was possible to demonstrate the challenges facing reliable 

KHV diagnosis, even by molecular methods, during acute and fatal KHVD. 

A large number of false-negative results were observed between the various tissues using 

the alternative PCRs within the first 4 dpi in fish from both peracute and acute KHVD tanks. 

This suggests that pooling tissue samples, especially from different organs, as practiced in 

some diagnostic laboratories, may result in a dilution of the virus, enhancing the chances of 

false negative results, which is in agreement with previous studies (Bergmann et al. 2010a, 

Matras et al. 2012). Viral loads of < 5 gen eq. were detected in the kidney in the current study 

up to 4 dpi, which is considerably less than the mean loads after 3 dpi measured in kidney 

tissues of KHV-challenged carp in the study performed by Rakus et al. (2012). This 

difference may be associated with the susceptibility of carp to KHV between the studies, and 

this in turn may also influence the results obtained. In contrast, there were fewer false-

negative samples with biopsies used between 5-10 dpi, when a huge increase in viral copy 

numbers (regardless of the PCR used) and abundant ISH signals were observed in all organs. 

All fish from the peracute KHVD tank had died by this time, and all acute KHVD fish 

exhibited morbidity with mortalities occurring from 7 dpi. An exception was the fish sampled 

at 9 dpi, which harboured much lower viral loads in all tissues, possibly representing an early 

survivor or a more resistant individual. Such fish may lead to false negative diagnosis with 

less sensitive PCR methods, even during relatively late stages of infection, as noted with the 

discrepancies between results observed for various tissues using a TK nested (CEFAS, 

Unpublished) and Gilad nested PCR (Bergmann et al., 2006). Due to the expense of testing, 

few fish were analysed per time point in this study, but false negative diagnosis of individual 

carp, such as the fish sampled after 9 dpi, can be detrimental. Indeed, the spread of KHV in 

the past may have been attributed to individual carriers, i.e. through carp shows in which 
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valuable koi from various geographic regions are held together in the same exhibition tank 

prompting efficient disease transmission (Hedrick et al., 2000; Haenen et al., 2004). 

The rapid attachment of virus to carp mucus allowed detection of KHV in swab samples 

prior to the onset of pathology, with 80-100% of mucus swabs testing positive with the TK 

gene PCR (Bercovier et al. 2005), the nested TK gene PCR (CEFAS unpublished 2007), 

single round glycoprotein gene PCR (Bergmann et al. 2010b), semi-nested PCR (Bergmann 

et al. 2010a) and real-time PCR (Gilad et al. 2004) within 1-4 dpi from both peracute and 

acute KHVD tanks. It could be argued that the bath inoculation challenge model resulted in 

high DNA concentrations from the inoculum attaching to the mucus enabling efficient 

detection by PCR. Alternative challenge models should therefore be investigated in the 

future, i.e. by oral intubation or ip, to confirm the effectiveness of non-lethal KHV detection 

using mucus swabs. However, in the field, even detection of attached virus in the mucus 

provides a valuable diagnostic sample regardless of whether virus has been internalised. In 

the current study, not only were there always many viral copy numbers in the mucus, but the 

viral load increased in the mucus during the course of the challenge (reaching up to 1 x 10
7
 

gen. eq.). Excretion of virus via the skin has previously been demonstrated for another 

alloherpesvirus, channel catfish virus (CCV) (Kancharla and Hanson, 1996), so it may be 

possible that KHV is excreted effectively through the skin into the mucous providing a 

valuable sampling target, possibly explaining the increased concentrations from 5000 gen. eq. 

after 8 hpi to > 50,000 gen. eq. in 7/8 fish until 10 dpi. As explained in Section 4.4.1, the 

mucus is important in carp protection against KHV (Raj et al., 2011), thus even detecting 

DNA from neutralised, hence inhibited, non-infectious virus particles provides a useful 

indication of exposure, eliminating the lag phase before replicated virus can be detected in 

internal organs by lethal sampling.  
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Dishon et al. (2005) used faeces from infected carp for DNA extraction, with positive 

results only obtained by 5-7 dpi by their PCR. By this point, the fish may have already 

become sick and died, as these authors reported 96 % mortality within 8-10 dpi. However, 

non-invasive, early detection could provide an opportunity to intervene in the infection cycle 

e.g. by raising the water temperature to levels which inhibit viral replication (Dishon et al. 

2005), which could be applied to fish testing positive for KHV DNA in their mucus but with 

no signs of the disease, similar to that seen in the current study. Early detection could help 

prevent the transfer of infected fish to KHV-free zones, as unregulated fish movements is 

likely to have contributed to the KHV epidemic, as reported for other fish diseases (Hedrick, 

1996). 

The semi-nested PCR produced positive signals at very early stages of infection, even 

from lethally-obtained samples. The one tube semi-nested PCR minimises the risk of 

contamination and, as also noted by Bercovier et al. (2005) for single round PCR, unlike real-

time PCR, no expensive reagents and specialised machinery are required, which are not 

always available in diagnostic labs. Furthermore, this assay has been shown previously 

(Bergmann et al. 2010a) and in the current study to be at least as sensitive as real-time PCR, 

although this has not yet been confirmed statistically. In diagnostic labs that do not require a 

high throughput of samples, semi-nested PCR may therefore be a useful alternative. The 

results obtained from the single round PCR detecting the TK gene were particularly 

noteworthy as this assay is a listed diagnostic method in the OIE manual (OIE 2012), and is 

regarded as one of the most sensitive molecular assays for the detection of KHV DNA during 

acute disease and following recovery (Hedrick et al. 2005). Moreover, TK PCR has been 

successfully used to detect KHV DNA in goldfish (Carassius auratus), a potential 

transmission vector (Bergmann et al. 2010c, El-Matbouli & Soliman 2011). However, this 
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PCR detected KHV DNA in only 4 of the 14 carp gill biopsies from the two tanks during the 

first 4 dpi in the current study, and kidney and spleen samples (other organs recommended 

for sampling by the OIE) were negative. The nested TK gene PCR detected KHV DNA in a 

few instances where the TK PCR without the nested step was negative. However, using non-

lethal sampling, 11/14 gill swabs, 13/14 skin swabs and 12/14 fin base swabs were positive 

for the same fish using the TK PCR. The discrepancy between gill tissue and mucus samples 

during the first 4 dpi was not associated with inhibition of the assay as positive controls were 

successfully amplified and the later stage positive detection from gill samples was obtained 

by the same DNA extraction protocol. This discrepancy may have been associated with the 

intake of KHV through the gills and into the blood. Indeed, despite strong signals observed 

by ISH, these were often focal and infected cells may be missed by DNA extraction 

procedures. Thus, the application of this PCR for diagnostics should be undertaken on mucus 

samples as well as kidney and spleen tissues. Previous studies using the TK gene PCR tend to 

have been carried out on tissue samples taken following the onset of clinical disease, where 

the assay has proved very sensitive (Bercovier et al. 2005, Meyer et al. 2011). In the current 

study gill and kidney tissue, as well as nearly all swabs taken between 5-10 dpi were positive 

for viral DNA. Thus, false-negative results from the earlier stages of infection are likely to be 

associated with the low virus copy numbers in tissues, i.e. during acute viraemia, which were 

below the limit of detection of the TK gene PCR. Although the TK gene encoded by ORF 55 

is specific for KHV (Bercovier et al. 2005), instability of this gene has previously been 

highlighted (Bergmann et al. 2010a, Kielpinski et al., 2010; Meyer et al. 2011, Fuchs et al. 

2011). KHV TK nucleotide sequence variants have been considered to possibly be associated 

with adaptations of the virus to European waters (Kielpinski et al., 2010), which has resulted 

in difficulties in detecting KHV using the TK PCR (Meyer et al., 2011). 
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In a recent study, gill swabs were used for the detection of viral DNA in carp undergoing 

a persistent infection (Bergmann & Kempter 2011). It was possible to re-activate the virus by 

stressing the fish with repeated netting. Between 10-1000 KHV DNA gen. eq. were detected 

by real-time PCR 3 days after netting, suggesting that alternative PCRs with similar detection 

limits, e.g. TK PCR (10-100 gen. eq.; Bercovier et al. 2005, Bergmann et al. 2010a) as well 

as the more sensitive nested, semi-nested and real-time PCRs (1-5 gen. eq.; Bergmann et al. 

2010a) should be able to detect viral DNA in persistently infected, stressed fish, using non-

lethal sampling. The one carp surviving the challenge in the acute KHVD tank tested positive 

for the virus at 70 dpi (even without stress-induction) using mucus swabs and the nested TK 

gene PCR, single round glycoprotein PCR, nested Gilad PCR and real-time PCR, supporting 

the potential of non-lethal sampling for the detection of persistent carriers, which maybe 

continuously shed low levels of virus. 

Although the nested Gilad PCR is a highly sensitive method (Bergmann et al 2006, 

2010a), false negative results have been reported with this assay from samples of 

experimentally challenged and naturally infected carp (Bergmann et al. 2010a; Pokorova et 

al. 2010). The latter may possibly be attributed to fish undergoing an early stage of infection 

(Pokorova et al. 2010). Another problem, which may arise with KHV detection based on the 

region of viral DNA targeted by the Gilad PCR primer sequence (Gilad et al., 2002; 2004; 

Bergmann et al., 2006) is that it is situated in a non-coding region of KHV DNA with no 

defined function, thus may not be conserved in newly emerging strains (Haenen et al. 2004, 

Bercovier et al. 2005). However, all the fish in the current study were infected with the same 

virus isolate and KHV was detected more often using the Gilad primers at later stages of the 

infection. Although variations in genes encoding glycoproteins of KHV have been reported 

between geographically distinct isolates (Han et al., 2013) the target of the glycoprotein gene 
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PCR and semi-nested PCR used in this study, encoded by ORF56, is 100% identical to other 

published glycoprotein sequences (Aoki et al., 2007; Bergmann et al. 2010a) and may be a 

suitably conserved region of the viral genome for KHV diagnostics. 

Viral protein has been detected using immunofluorescence on fixed leukocyte 

preparations (Kempter et al. 2009), but the results of the present study suggest early detection 

of KHV in leukocytes is also very difficult even at a nucleic acid level. According to a 

previous study, 1 mL of blood was required for the detection of KHV in leukocytes of 

potentially latent infected koi (Eide et al. 2011a), making it an unsuitable method for 

sampling small fish, while Kempter et al. (2009) used 200–300 µL of blood from small 

KHV-infected fish for separating leukocytes and subsequently detecting KHV by different 

PCRs, suggesting that this method could be applied for early detection with the most 

sensitive PCRs. 

Carp skin, which has been demonstrated to harbour high levels of KHV by 

bioluminescence after only 1 dpi (Costes et al., 2009) and qPCR after 3 dpi (Adamek et al., 

2013), has also been used as a potential biopsy for non-lethal sampling by fin clipping fish to 

detect both early and latent stages of KHV infections by real-time PCR (Adamek et al. 2011). 

Skin samples may therefore be an additionally useful lethal sample for early KHV detection 

as skin biopsies also enabled detection of KHV-positive fish after 3-6 dpi in a previous study 

(Matras et al., 2012) and more often than OIE recommended spleen, kidney and gut samples 

in the current study, however, screening from skin still produced many false-negative results 

during early infection stages, especially when compared to less destructive mucus swabs. 

Additionally, there was no advantage using lethal samples of liver and brain for early virus 
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detection, which concurs with a recent study demonstrating that the virus is only detected in 

the brain at later stages post infection (Matras et al. 2012). 

4.4.4 Concluding remarks 

In conclusion the results of this study highlight some of the constraints with detecting KHV 

during the early stages of infection, which can be attributed to characteristics of its 

pathogenesis through which high viral loads are not present within internal organs until later 

stages in the infection (i.e. > 5 dpi), but may be present and detectable in the mucus. The gills 

or gut may represent portals of entry, but were still not effective biopsies for early stage 

detection. As isolation of infectious KHV particles is a timely procedure, and can only be 

achieved during clinical disease, alternative approaches are required for early detection. 

Antigen detection does not appear to be a reliable method, even when using highly specific 

MAbs, and detection of virus particles by TEM is not always possible, even during acute 

infection with a highly virulent virus isolate. Serum antibodies are not detectable during these 

early stages, thus highly sensitive molecular based approaches are required, especially 

considering the high mortality rates induced by this ‘short-lived’ disease making serological 

diagnostic approaches more suitable for detecting previously exposed carp. Swabs, 

predominantly from skin, seem to be a useful approach for virus detection at this stage, prior 

to the onset of clinical KHVD, particularly during acute viraemia and acute subclinical 

infections. It may be possible to use non-lethal sampling to detect viral DNA with most of the 

PCR methods currently used by diagnostic laboratories, including the PCR detecting the TK 

gene, as recommended by the OIE. However, the results of this and previous studies indicate 

that the use of more sensitive methods such as the glycoprotein gene PCR (Bergmann et al. 

2010b) and semi-nested PCR (Bergmann et al. 2010a) should also be considered. Although 
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ISH is highly sensitive, a non-lethal and rapid detection system is preferred for detecting 

acute KHV infected fish. 
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5.1- Introduction 

5.1.1 The herpesvirus infectious cycle 

Analysis of herpesviruses during the infectious cycle can provide an insight into the various 

structural proteins of the virus and give indications as to which stages of infection these may 

be important in with regards to virulence and antigenicity. Differences in the characteristics 

of these antigens may be useful for DIVA approaches to vaccination, especially where a 

specific antigen may be indicative of infection. 

The infectious stages of the virus and proteins associated with this have been 

reviewed in detail for mammalian herpesviruses by Mettenleiter et al. (2009), and the virus 

morphogenesis at these stages is similar to that for KHV both in vivo (Miyazaki et al., 2008) 

and in vitro (Miwa et al., 2007), which are illustrated in Fig. 5.1. Some of the proteins 

involved in different stages of replication have also been characterised by immunogold TEM 

staining (Gilbert et al., 1994; Van Drunen Little-van den Hurk et al., 1995; Granzow et al., 

1997; 2001; 2004), enabling these to be linked to their role in herpesvirus maturation. 

Infection of a cell occurs following attachment of an enveloped infectious virion to the cell 

plasma membrane (1) (Rey, 2006), which penetrates the phosopholipid bilayer of the cell 

membrane, i.e. via surface receptor, proteoglycan heparan sulphate (Mocarski et al., 2007) 

(2), recognised by glycoproteins of the virus envelope, which provide a broad cell tropism. 

Viral entry depends on cell type, where envelope glycoprotein B (gB) and a complex of 

glycoprotein L and H (gL-gH) facilitate attachment and penetration of epithelial cells, 

whereas fusion of the virion within an endocytic vesicle initiates infection of B lymphocytes 

via the endocytic pathway (Mocarski et al., 2007). Glycoprotein B (gB) is highly conserved 

amongst herpesviruses (Pereira, 1994), and the gene encoding it has proven useful for 
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assigning herpesviruses to particular sub families (Knipe et al., 2001 cited in Coberley et al., 

2002). The envelope glycoproteins involved in cell attachment and penetration constitute the 

main targets for vaccine development (Pereira, 1994; BenMohamed et al., 2003). In bovine 

herpesvirus-4 (BoHV-4), murid herpesvirus-4 (MuHV-4) and human simplex virus-1 (HSV-

1) exposure of epitopes facilitating fusion to the cell receptor, i.e. glycosaminoglycans 

(GAGs), is thought only to occur at the cell surface and possibly after endocytosis (Spear and 

Longnecker, 2003; Machiels et al., 2011). This strategy masks the epitope from neutralising 

antibodies thus evading the immune response of the host (Machiels et al., 2011).  

 

After Mettenleiter (2008) cited in Mettenleiter et al. (2009) 

Figure 5.1 Schematic diagram of herpesvirus infectious cycle within the infected cell. 

Numbers 1-14 indicate typical herpesvirus infection stages and associated virus 

morphogenesis, which are also presented in TEM micrographs. Stages of infection indicated 

numerically are described in the text. MT = Microtubule; RER = Rough endoplasmic 

reticulum; M = Mitochondrion; NP = Nuclear pore; N = Nucleus; NM = Nuclear membrane; 

TGN = Trans Golgi Network; G = Golgi body 
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The naked nucleocapsid is subsequently released into the cytosol (3), after fusion between the 

virus envelope and the cell membrane via gB, gH-gL, and sometimes gM-gN (Mocarski et 

al., 2007), initiating migration to the cell nucleus via microtubules facilitated by pUL25 

(Kaelin et al., 2000; Ren et al., 2001; Pasdeloup et al., 2009) (4) whereby the capsid 

terminates at a nuclear pore (5) (Newcomb and Brown, 2010; Abaitua et al., 2012). Capsid 

formation, packaging of the viral genome and primary envelopment involve mostly 

conserved proteins of the herpesviridae (Mettenleiter et al., 2009).  

The viral DNA is released through the nuclear pore into the nucleus (6) (Jovasevic et 

al., 2008) where transcription and replication take place (7). The concatemeric replicated 

viral genome is cleaved into unit-length during encapsidation (8) (McVoy et al., 2000), then 

cleaved into a pre-formed capsid (9) (Mettenleiter et al., 2009). Capsid formation occurs after 

a cascade of transcript expression events following the production of immediate early, early 

and late mRNA transcripts. Late proteins are imported back into the nucleus for capsid 

particle assembly surrounding the genomic DNA (Spencer et al., 1998; Mettenleiter, 2004) 

and the scaffolding of the capsid is secured via UL26 and UL26.5 (Dougherty and Semler, 

1993; Yu et al., 2005). 

The mature nucleocapsid buds at the inner nuclear membrane (INM) of the nuclear 

envelope (9) (Campadelli-Fiume and Roizman, 2006) resulting in fusion between the nuclear 

envelope and the primary enveloped virion in the perinuclear space (10) (Klupp et al., 2000; 

Granzow et al., 2001; Skepper et al., 2001; Mettenleiter et al., 2009). Intranuclear movement 

of capsids is thought to facilitate efficient contact with the INM for budding via actin 

filaments (Forest et al., 2005 cited in Mettenleiter et al., 2009) and two major proteins 

involved in primary envelopment, pUL31 and pUL34 (Klupp et al., 2000), work in 

synchrony during primary envelopment forming the nuclear egress complex (NEC) whereby 

the absence of either one prevents successful primary envelopment (Mettenleiter, 2002; 2004; 
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Mettenleiter et al., 2009). The primary enveloped virions then fuse with the outer nuclear 

membrane (ONM) (11) and the nucleocapsid is released into the cytosol for tegumentation 

and final maturation during secondary envelopment (12) (Granzow et al., 2001; 2004; 

Newcomb and Brown, 2009), which involves many proteins that are not conserved within the 

herpesviridae (Mettenleiter, 2002; 2004; Mettenleiter et al., 2009). Secondary envelopment 

occurs by budding of the intracytosolic capsid into a vesicle of the trans-golgi network (TGN) 

(12) (Klupp et al., 2001). Viral glycoproteins present in the TGN are involved in the 

envelopment of the mature virion within the cell vesicle (13), which is then transported to the 

cell membrane. The vesicle carrying the secondary enveloped virion fuses with the plasma 

membrane and releases the mature enveloped virion to the extracellular space (14) 

(Mettenleiter et al., 2009). The variations in conservation of herpesvirus proteins involved in 

the initial nuclear stages of infection and the non-conserved proteins involved in the later 

cytosolic stages of infection are suggested to be associated with differences in ancestry, with 

the large double-stranded DNA bacteriophages (McGeogh et al., 2006), and the envelope 

proteins of the hepesviridae family of mammals, avians and reptilians being considered to be 

much more closely related in terms of evolutionary distance compared to the 

alloherpesviridae of fish (van Beurden et al., 2011b). 

5.1.2 Protein composition of the herpesvirus virion 

Virions of herpesviruses contain more proteins than any other virus group and have large 

genomes (Flint et al., 2009), generally encompassing around 40 genes encoding for structural 

proteins. Some of these proteins execute similar functions in the replication cycle in the 

various families, but with the recent wide application of mass spectrometry in virological 

study, differences have been noted in the constituents of the proteins that make up the capsid, 

tegument and envelope of the virion. The genome of the most well characterised 
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herpesviruses, HSV-1, encodes for 8 capsid proteins, 13 envelope proteins and 23 tegument 

proteins (Loret et al., 2008), although recently the proteome of Pseudorabies virus (PrV) was 

extensively analysed revealing 47 structural proteins (Kramer et al., 2011). Published 

proteomic data on fish herpesviruses has been undertaken for Ictalurid herpesvirus-1 (IcHV-

1) (Davison and Davison, 1995), Anguillid herpesvirus-1 (AngHV-1) (van Beurden et al., 

2011b) as well as KHV (Michel et al., 2010b). However, there are great differences between 

KHV and even the most closely related herpesvirus, AngHV-1, with KHV, according to the 

most recent analysis, consisting of 3 capsid proteins and 13 envelope proteins, but only 2 

tegument proteins (Michel et al., 2010b) compared to 7 capsid proteins, 11 envelope proteins 

and 22 tegument proteins in AngHV-1 (Van Beurden et al., 2011b), while 22 KHV proteins 

are still not allocated to a structural virion role (Michel et al., 2010b). In fact only 9 of the 40 

structural proteins of KHV were found to be homologous to IcHV-1 and the amphibian ranid 

herpeviruses, RaHV-1 and RaHV-2 (Michel et al., 2010b; Van Beurden et al., 2011b). The 

most abundant protein of KHV virions is encoded by ORF92, an orthologue of the major 

capsid protein of IcHV-1, RaHV-1 and RaHV-2. The protein encoded by ORF66, is also 

highly abundant in KHV virions, with a sequence homology similar to that of the capsid 

triplex protein ORF42 of AngHV-1 (Michel et al., 2010b; van Beurden et al., 2011b). The 

largest protein detected in KHV virions is the tegument protein encoded by ORF62 (Michel 

et al., 2010b), which is an ovarian tumor-like cysteine protease domain (Aoki et al., 2009; 

2011), also found in AngHV-1 ORF83 and IcHV-1 ORF65 (Van Beurden et al., 2011b). This 

tegument protein is also considered to be a homologue of the large tegument protein, UL36, 

conserved in all mammalian and avian herpesviruses (Michel et al., 2010b). The major 

envelope protein of KHV is thought to be encoded by ORF99, which is homologous to the 

major envelope glycoproteins of IcHV-1 ORF46, RaHV-1 ORF46 and RaHV-2 ORF72 

(Michel et al., 2010b). To date the most immunogenic of the KHV structural proteins is 
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considered to be another major envelope protein, encoded by ORF81 (Rosenkranz et al., 

2008), which is homologous to the major envelope glycoprotein encoded by ORF59 of IcHV-

1 (Davison and Davison, 1995). Nonetheless, the antigenic characteristics and biological 

function of many of the proteins, with regards to the replicating virus, are yet to be 

elucidated. Molecular applications have enabled characterisation on the basis of gene 

expression (Ilouze et al., 2012a; b); however, use of monoclonal antibodies (MAbs) may 

provide useful information on expression characteristics of the final folded product as they 

focus on specific epitopes of the virus and thus various structural proteins. 

5.1.3 Use of MAbs for studying virus protein characteristics and pathogenesis 

The antigenicity and role of many of the 40 structural proteins (Michel et al., 2010b), from 

the 156 encoded for by KHV (Aoki et al., 2007), have yet to be determined. The envelope 

proteins are the most immunogenic of these for aquatic (Rosenkranz et al., 2008; Hansen et 

al., 2011) mammalian (Pereira, 1994; Franti et al., 2002), reptilian (Coberley et al., 2002) and 

avian herpesviruses (Fuchs et al., 2007). However, alternative structural proteins have been 

found to be immunogenic in their respective hosts such as the tegument (Gibson and Irmiere, 

1984 cited in Van Drunen Little-van den Hurk et al., 1995; Van Drunen Little-van den Hurk 

and Babuik., 1986; Van Drunen Little-van den Hurk et al., 1995), and capsid or nucleocapsid 

proteins (Crabb and Studdert, 1990; Pau et al., 1998; Corchero et al., 2001; Coberley et al., 

2002; Mebatsion et al., 2002; De Paschale and Clerici, 2012) as well as some non-structural 

proteins (Kaashoek et al., 1996). 

MAbs provide a unique specificity for individual viral components recognising a 

single epitope of the protein of interest, and benefiting over the application of polyclonal 

antibodies or antisera, which lack such specificity and may contain sub-populations of 

antibodies of different classes with varying affinity and avidity (Cancel-Tirado et al., 2004; 
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Siddiqui, 2010). MAbs are derived from a single B cell clone (Nelson et al., 2000) and bulk 

stocks can be produced en-mass and utilised for biological analyses of viral antigens, but also 

for developing diagnostic tests, therapeutics, targeted drug delivery systems or even 

treatments (Siddiqui, 2010). The precision of MAbs in detecting a single site, not an average 

of determinants like polyclonal antibodies or anti-sera (Benjamin et al., 1984), enables 

antigenic structures to be delineated in great detail, which has contributed to epitope mapping 

of some fish viruses such as VHSV (Fernandez-Alonso et al., 1998) and Nodavirus (Costa, 

2005; Costa et al., 2007). However, before such advances can be made (on the epitope scale) 

for KHV, determining and characterising the immunogenic antigens of this complex group of 

molecules is required not only of the virus envelope, but also for internal proteins, which may 

comprise properties useful for DIVA strategies. 

 MAbs have been used to identify specific antigenic determinants of different virus 

proteins, which has enabled characterisation of cross-reacting and neutralising antigens of 

viruses that exhibit vast heterogeneity between isolates, including aquatic birnaviruses such 

as infectious pancreatic necrosis virus (IPNV) (Caswell-Reno et al., 1986). In other important 

aquatic viruses, such as ISAV, MAbs have enabled identification and characterisation of the 

vital viral surface protein, haemagglutinin esterase (HE) (Falk et al., 1998; Krossøy et al., 

2001).  

Important characteristics of antigen involvement in infection, serotype cross-

reactivity, replication, neutralisation and antibody-dependent enhancement (ADE) 

mechanisms have also been identified by utilising MAbs binding to various structural and 

non-structural proteins for mammalian viruses: Porcine reproductive and respiratory 

syndrome virus (PRRSV) (Cancel-Tirado et al., 2004), Dengue virus (DV) (Kao et al., 2001), 

Sindbis virus (SBV) (Flynn et al., 1990) and avian viruses, e.g. Avian influenza virus (AIV) 

(Yewdell et al., 1983). The use of MAbs and mono-specific anti-sera has also contributed to 
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the identification of many herpesvirus proteins and their functions by the use of immunogold 

TEM, immunoblotting, immunoprecipitation and immunofluorescence (Giugni et al., 1992; 

Gilbert et al., 1994; Granzow et al., 1997; 2004; Kaelin et al.; 2000; Klupp et al., 2000; 

Skepper et al., 2001; Fuchs et al., 2007; Pasdeloup et al., 2009). However, very few studies 

have utilised MAbs for studies on KHV, and those have focused on diagnostic test 

development (Aoki et al., 2009; 2011), diagnosis (Kempter et al., 2009), major glycoprotein 

characterisation (Rosenkranz et al., 2008), protein affinity purification (Gotesman et al., 

2013) and screening of recombinant mutants (Costes et al., 2008; 2009). There has been no 

emphasis on their application for investigating aspects of the virus biology and pathogenesis. 

Attempts were made in Chapter 4 to analyse the expression of various structural proteins of 

KHV, recognised by MAbs, in the tissues of experimentally infected carp using IHC and 

IFAT. This approach was largely unsuccessful. Therefore, the expression of KHV proteins 

recognised by the same MAbs could be analysed in infected cultured cells in vitro.  

Microtitre plate immunofluorescence (IF) procedures were previously applied for 

IPNV and ISAV to improve the sensitivity of virus titration in cell culture and antigen could 

be detected as early as 16 hpi and 1 dpi, respectively (Falk et al., 1998; Espinoza and Kuznar, 

2002). Kao et al. (2001) used flow cytometry with MAbs to detect DV in infected cell 

cultures which allowed earlier virus antigen detection after only 16 hpi compared to 26 hpi by 

IFAT. A recent method developed for quantifying Rotavirus (RV) infected cells used a 

microtitre plate IF procedure, which enabled determination of minimum inhibitory 

concentrations (MIC) of neutralising substances against this reovirus (Xijier et al., 2011). 

DIVA vaccination strategies can possibly be developed to distinguish fish vaccinated 

with inactivated KHV vaccines by utilising structural proteins of the virus that will only 

induce antibody responses in fish when the virus is replicating, as demonstrated previously 

for inactivated AI vaccines (Lambrecht et al., 2007; Kim et al., 2010; Hemmatzadeh et al., 
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2013). Thus, investigating the expression characteristics of antigens belonging to various 

virus structural proteins may provide valuable information on their cellular localisation and 

abundance. A semi-quantitative immunofluorescent approach mirroring that of Xijier et al. 

(2011) was evaluated in the current study for this purpose. 

5.1.4 Aims 

The aim of this study was to identify structural proteins of KHV with differential expression 

kinetics. Although extensive work is now ongoing to investigate the role of KHV proteins, 

limited information is available regarding the structural and functional roles that many of 

these proteins play in virus infection and pathogenesis. The current study was therefore 

conducted to examine expression properties of different structural protein antigens of KHV, 

which could provide useful information for their application in DIVA diagnostics. Two novel 

IF methods were developed in parallel to quantify intracellular antigen abundance during the 

course of the KHV infectious cycle in vitro. One approach utilised 96 microtitre plates with 

infected cell cultures that could be measured spectrophotometrically. The second approach 

utilised confocal microscopy and image analysis of infected cell cultures grown on cover 

slips. Furthermore, in order to determine any relationships that could be drawn between 

antigen expression and virus morphogenesis or viral DNA loads, TEM and real-time qPCR 

were performed, respectively, on additional synchronous infected cultures. 
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5.2 – Materials and Methods 

5.2.1 Monoclonal antibody (MAb) production and screening 

5.2.1.1 Hybridoma cell lines 

Hybridoma cell lines producing 8 MAbs detecting different antigens of KHV were kindly 

provided by Dr. Malte Dauber (FLI, Germany). Two other hybridoma cell lines producing 

MAbs detecting antigenic proteins encoded by ORF62 and 68 of KHV (Aoki et al., 2011), as 

well as mouse ascites fluid and hybridoma cell culture supernatant also recognising these 

antigens, were kindly supplied by Professor Takashi Aoki (University of Marine Science and 

Technology, Tokyo, Japan) and Dr. Taesung Jung (Aquatic Biotechnology Center, College of 

Veterinary Medicine, Gyeongsang National University, Korea). The hybridoma cell lines 

were cultured and MAbs prepared as described in Section 2.1.1. 

5.2.1.2 Screening MAbs by ELISA 

The eight purified MAbs were concentrated and diluted to the same concentrations in order to 

determine MAbs with highest affinity to purified virus and suitable concentrations for further 

analysis. Hybridoma supernatant and mouse ascites fluid detecting KHV ORF62 and 68 

recombinant proteins were also tested by ELISA using dilutions from 1/10 to 1/10,000. 

Ninety-six well microtitre ELISA plates (Immulon-4 HBX, Thermo Fisher Scientific, 

Germany) were coated with 50 µL well
-1

 of sucrose gradient purified KHV dissolved in TNE 

buffer (Section 2.5.2) or BSA (bovine serum albumin, Sigma-Aldrich, USA) at 0.4 µg well
-1

 

diluted in 0.05M coating buffer (carbonate-bicarbonate, pH 9.6, Sigma-Aldrich, USA) and 

incubated at 4°C overnight. The following day the plates were washed 3 x with low salt wash 

buffer (LSWB, 0.02M Trisma base, 0.38M NaCl, 0.05% Tween 20, pH 7.3) and were post-

coated with 250 µL well
-1

 of 10% skimmed milk powder (SMP) w/v (Marvel, UK) for 3 h at 

room temperature (RT) (i.e.22
o
C) in order to block non-specific binding sites. The plates 
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were washed 3 x again with LSWB before adding 100 µL of purified KHV MAbs at 

concentrations of 10 µg mL
-1

, 5 µg mL
-1

 and 1 µg mL
-1

, diluted in phosphate buffered saline 

(PBS, 0.02M phosphate, 0.15M NaCl, pH 7.2) or mouse ascites fluid and hybridoma cell 

culture supernatant to recombinant proteins of ORF62 and ORF68 of KHV. After 1 h 

incubation with MAbs the plates were washed 5 x with high salt wash buffer (HSWB, 0.02 M 

Trisma base, 0.5 M NaCl, 0.1% Tween-20, pH 7.7) with a 5 min incubation on the last wash 

and 100 µL goat anti-mouse IgG antibodies conjugated to horseradish peroxidase (HRP) 

(Sigma-Aldrich, UK) were added to the wells and incubated for 1 h at RT. The plates were 

washed again with HSWB as described above and the assay was developed by the addition of 

100 uL well
-1

 of chromogen (42mM 3’3’5’5’-Tetramethylbenzidine dihydrochloride) diluted 

1/100 in substrate buffer (0.1 M citric acid, 0.1 M sodium acetate, pH 5.4, 0.033% H2O2). 

The reaction was stopped after 10 min with the addition of 50 µL 2M H2SO4 and the plates 

were read at 450 nm on a spectrophotometer (Bio Tek Synery HT instrument, Gen5 program, 

Fisher Scientific, Leicestershire, UK). 

5.2.1.3 SDS-PAGE (Sodium Dodecyl Sulphate – Polyacrylamide Gel Electrophoresis) 

The SDS-PAGE was undertaken according to the methods described by Laemmli (1970) with 

modifications. Koi herpesvirus that had previously been purified (Section 2.5.2) was diluted 

to 0.1 mg mL
-1

 in TN buffer (10mM Tris, 10mM NaCl, pH 7.4). Uninfected Common Carp 

Brain cells (CCB) that had previously been cultured for 4 days (Section 2.2.2.2) were lysed 

and used as negative controls. One hundred microlitres of both purified KHV and lysed CCB 

cell suspension were combined with 100 µL of 2 x SDS sample buffer (0.5M Tris-HCl, pH 

6.8, 20% glycerol, 4% SDS, 0.2M dithiothreitol, 0.02% bromophenol blue). Reduced proteins 

were boiled for 2 min and then centrifuged (Microlite, Thermo IEC, US) for 2 min at 16,000 

x g to pellet debris from the samples. 
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Two 12.5% polyacrylamide gels were prepared with 10 mL acrylamide solution (Pro-

Pure Next Gel
TM

 12.5 % kit, Amresco, US), 6 μL N,N,N’N’-Tetramethylethylenediamine 

(TEMED) (Fisher, UK) and 10% ammonium persulfate (Sigma-Aldrich, St. Louis, US). The 

amount of sample applied to each gel depended on the size of wells used. One hundred 

microlitres of reduced sample well
-1

 was used for large single well combs while only 10 µL 

well
-1

 was used for small multi-well combs. Precision Plus Protein
TM

 Kaleidoscope
TM

 

Standards (BioRad, US) were included in each gel. Polypeptides were then separated by gel 

electrophoresis using 1 x running buffer (Pro-Pure
TM

 x 20 Running buffer, Amresco, US) at 

175 volts for 75 min using the Hoefer SE250 mini-vertical gel electrophoresis unit (Hoefer, 

US). Gels that were not used for transblotting were stained separately with either Coomassie 

Blue R-250 solution (Fisher Scientific, UK) (0.25 % w/v in 40 % methanol, 10 % acetic acid 

and 50 % dH2O) or were stained with silver using either Silver stain Plus
TM

 (BioRad, US) or 

ProteoSilver
TM

 silver stain kit (Sigma-Aldrich, US) according to the manufacturer’s 

instructions. Silver staining provides increased sensitivity over coomassie blue staining with 

detection limits of 0.1 ng BSA mm2
-1

 (Rabilloud et al., 1994). 

5.2.1.4 Western blot with MAbs 

Western blot was undertaken using 10 MAbs to KHV against purified KHV and CCB cell 

lysate proteins. Polyacrylamide gels containing separated proteins were transferred to nitro-

cellulose membranes (Amersham
TM

 Hybond
TM

 ecl, ge Healthcare, UK) by applying 60 volts 

for 30 min in transblot buffer (25 mM Tris, 192 mM glycine, 20% v/v methanol, pH 8.3) 

using a wet blotting apparatus (Fisher brand, UK) according to the manufacturer’s 

instructions. After blotting, successful transfer was evident from the presence of Precision 

Plus Protein
TM 

rainbow markers and the membranes were blocked overnight at 4°C. Two 

different blocking methods were compared in order to determine differences between specific 

epitopes recognised by the MAbs and non-specific binding. One membrane was blocked with 
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100 mL 1 x RotiBlock in H2O (Roth, Germany) and another was blocked with 2% SMP 

(Marvel, UK) in Tris buffered saline (TBS, 0.02M Trisma base, 0.5M NaCl, pH 7.5) and the 

remainder of the procedure used skimmed milk blocking in the diluent similar to the method 

for screening sera according to Adkison et al. (2005). The following day, membranes were 

washed 3 x with TBST (TBS containing 0.1% Tween-20) for 5 min wash per wash. The 

membrane was cut into strips and each strip was incubated with a different MAb. Purified 

MAbs were diluted to 20 µg mL
-1

 in either TBS or TBS containing 1% SMP and hybridoma 

supernatant or ascites fluid were diluted 1/10 in the same buffers. Eight hundred microlitres 

of each diluted MAb was incubated with membranes containing both purified KHV and CCB 

cell lysate. After 1 h incubation at RT, the membranes were washed 3 x for 5 min with TBST 

and 800 µL goat anti-mouse IgG biotin (Sigma-Aldrich, UK) diluted 1/200 in either TBS or 

TBS +1% SMP. After 1 h incubation at RT the membranes were washed again 3 x 5 min with 

TBST before adding 800 µL streptavidin-horseradish peroxidise (Streptavidin-HRP, Vector 

Labs, US) diluted 1/200 in TBS or TBS 1% casein. After the final incubation, membranes 

were washed 3 x TBST for 5 min per wash, followed by a 1 min wash with TBS without 

Tween. Staining was then developed using the 4 CN peroxidase substrate system (2-C: KPL, 

US) according to the manufacturer’s instructions. The reaction was stopped with ultrapure 

H2O after 5-10 min. 

5.2.1.5 Indirect fluorescent antibody test (IFAT) on tissue culture sections 

(a) Cell culture on glass cover slips and virus inoculation 

Round 1.6 mm
2
 glass cover slips (Fisher Scientific, UK) were sterilised in 70% ethanol then 

flamed over a Bunsen burner before being placed in 12 well tissue culture plates (Nunc, 

Denmark). Koi Fin cells (KF-1) were cultured in 25cm
2
 tissue culture flasks Section 2.2.2.1 

until 100% confluence had been obtained. Cells were typsinised, counted and split as 

described in Section 2.3.2. Approximately 0.4-0.5 x 10
6
 cells well

-1 
were seeded on the cover 
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slips and cultured in 2 mL MEM medium (Invitrogen, UK) containing 10% foetal bovine 

serum (FBS), 2mM L-glutamine (Invitrogen, UK) and 1% non-essential amino acids (NEAA) 

(Invitrogen, UK) in a 22°C incubator containing 4% CO2 for 24-48 h. 

The following day the spent medium was removed and the monolayers were 

inoculated with 0.2 mL of 10
3.84

 TCID50/mL KHV (approximate multiplicity of infection 

(MOI) 0.002) with isolate H361 for 2 h at 20°C. After the absorption period, the cells were 

resupplemented with MEM containing the same supplements but reduced foetal bovine 

serum concentration to 2%. The virus infected cultures were incubated at 22°C for 9 days at 

which point CPE and plaque formation were evident. The medium was removed and the 

monolayers were washed twice with PBS before fixing the cells with cold (-20°C) 100% 

acetone (Fisher Scientific, UK). Cells were fixed for 15 min before removing acetone and air 

drying for 30 min. The fixed infected cultures were stored at -20°C until ready for processing. 

(b) IFAT with MAbs on fixed KHV infected cell cover slips 

Fixed cells were rehydrated for 5 min with 1 mL PBST (0.01M PBS, 0.05% Tween-20). 

Cover slips were removed and placed into fresh 12-well plates and the cells were washed 3 x 

PBST for 2 min. After the last rinse, PBST was completely removed and the cells were 

covered with 1 mL 5% SMP diluted in PBST and incubated for 30 min at 37°C. Cells were 

then washed 4 x PBST for 2 min before the addition of 1 mL of purified MAbs at 20 µg mL
-1

 

or hybridoma supernatant and ascites fluid diluted 1/10 in PBS. The MAb preparations were 

added to both KHV positive and mock infected cells to determine specificity of signals. 

Additionally, non-KHV specific MAbs of the same isotype detecting a different virus (i.e. 

ISAV) and a blank (PBS) were added to KHV positive cells as primary antibody controls. 

The MAb hybridoma supernatants detecting ISAV were kindly provided by the Aquatic 

Vaccine Unit, University of Stirling, Stirling, Scotland. After 1 h incubation at RT, MAbs 

were removed and the cells were washed 4 x PBST for 2 min before the addition of 1 mL 
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1/100 goat anti-mouse IgG conjugated to fluorescein isothyocianate (FITC) (Sigma-Aldrich, 

USA) and incubated for 1 h at RT. Wells were finally washed again with 4 x PBST for 2 min 

and mounted onto slides (Solmedia) with DAPI (Vectashield, Vector, UK) and sealed with 

nail varnish. All slides were kept in the dark until analysis by a fluorescent microscope 

(Olympus BX50, Japan) or confocal microscope (Leica TCS SP2 AOBS confocal laser 

scanning microscope (CLSM, Germany)) using Leica confocal software (version 2.6.1) at 40 

x magnification. 

5.2.2 Expression of antigens detected by MAbs 

IFAT was undertaken on cells cultured on 96-well tissue culture plates in a KHV time trial 

during the first 7 days of infection in order to determine the expression characteristics of 

different KHV antigens in vitro.  

5.2.2.1 Preliminary investigation with cell and viral associated fluorescence  

(a) Cell confluence associated DAPI signal 

In order to determine the most suitable sensitivity setting for DAPI fluorescence emitted from 

cells and to assess the relationship between DAPI fluorescence and monolayer confluence, a 

preliminary investigation was undertaken on a black immunofluorescence 96 well plate 

(Greinar Cellstar®) seeded with increasing number of CCB cells. Cells were seeded from 8 x 

10
3
 cells well

-1
 to 3 x 10

4
 cells well

-1
. The cells were cultured overnight in conditions as 

described in Section 2.2.2.2, washed with DPBS and fixed with cold (-20°C) methanol 

(Fisher Scientific, UK). Fifty microlitres of DAPI mountant diluted at various concentrations 

in PBS was added to the wells and incubated for 10 min at RT. Excess DAPI was removed, 

the plate was washed and then read on a Synergy HT spectrophotometer (Fisher Scientific, 

Leicestershire, UK) at various sensitivity settings using the Gen 51.10 program.  
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(b) Viral antigen expression associated FITC signal 

A second preliminary experiment was undertaken to assess the feasibility of using the anti-

KHV MAbs for analysing and quantifying viral antigen expression using an 

immunofluorescence technique. A 96-well immunofluorescence plate was seeded with 2 x 

10
4
 CCB cells well

-1
 and inoculated with KHV at higher MOI of approximately 0.02. The 

cells were washed and fixed after 3 dpi and 12 dpi and an IFAT procedure was undertaken 

with MAbs 10A9 and 20F10 to determine the change in fluorescent signal. Non-KHV 

specific MAbs detecting ISAV and mock infected cells screened with a pool of 10A9 and 

20F10 were also included. The procedures undertaken were similar to those described in 

Section 5.2.2.2., which follows. 

5.2.2.2 96-well IFAT investigation of KHV antigen expression 

(a) Cell culture and virus inoculation on CCB and KF-1 cells 

Virus MOI was determined independently for each cell line as the seeding density for each 

culture varied for effective KHV virus production. This was achieved by culturing cells in a 

spare 25cm
2
 tissue culture flask seeded with the same number of cells as that of the entire 96-

well plate, trypsinising the cells following the same incubation period as the experimental 

plates, and then performing a cell count (as described in Section 2.2.3). The CCB and KF-1 

cells were cultured as described in Section 2.2.2. Nine x 25cm
2
 culture flasks of CCB and 

KF-1 cells at passage 80 and 110, respectively, were cultured to full confluence. The cells 

from each cell line were pooled together after trypsinisation and subcultured into culture 

vessels prepared for the infection time trial. Cells were seeded at 2 x 10
4
 cells well

-1
 for KF-1 

cells and 1.5 x 10
4
 cells well

-1
 for CCB cells. Both cell lines were inoculated at an MOI of 

approximately 0.1 from a KHV virus stock of 10
4.4

 TCID50 mL
-1

, passage 17. Dilution of 

virus was prepared in HBSS, 2% FBS and mock infected cells received only diluent. 
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(b) Experimental design and fixation time points 

Seven black immunofluorescence 96-well tissue culture plates (Greinar Cellstar®) were 

seeded for each cell line. Three plates were used for analysing KHV antigens expressed 

during the first day of infection (0–24 hours post infection, hpi) and three were used for 

analysis from 2–10 dpi. One plate was mock infected and fixed at various times over the 

course of infection to analyse non-specific binding of MAbs to cell derived proteins. One 

clear 96-well tissue culture plate was also prepared for each cell line for scoring CPE 

progression over the course of infection and for undertaking a back titration assay. One 12-

well plate was also used, seeded with 2 x 10
5
 CCB cells well

-1
 for determining virus titre in 

Plaque Forming Units (PFU) by plaque assay as described in Section 2.4.2. 

The 96-well plates that were to be analysed by IFAT for detection of KHV antigens 

recognised by MAbs, were prepared for mock infection and KHV infection in different 

columns of the plate (Fig 5.2.). 

Columns of the positive wells of the plate were prepared for screening of different 

MAbs including MAbs to other viruses as controls. Columns containing mock infected cells 

were prepared to provide a comparison of DAPI signal of uninfected cells over the course of 

infection and FITC signal of pooled MAbs to uninfected cells over the course of infection.  

Before initiating the time trial, medium was removed from the first row of wells and 

the cells were washed twice with DPBS then fixed with cold (-20°C) methanol. These cells 

were designated as time point ‘0 hpi’ cultures. Medium was then removed from all remaining 

wells on the plate and 100 µL of KHV at an MOI of 0.1 was added to the monolayers of 

positive wells. Mock infection controls in column 1 and 2 received only HBSS, 2% FBS. The 

time trial was initiated from this point on.  
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Figure 5.2 Schematic diagram of 96-well tissue culture plate layout for 

immunofluorescence quantification of koi herpesvirus MAb-antigen binding. Time post 

fixation of wells is indicated on the left of the plates and the MAb screened for those wells is 

indicated above the plates. Note that the MAbs 10A9 and 20F10 were run in duplicate on two 

separate plates for each cell line 
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The cells were incubated at 20°C and after 1 hpi the second row of wells of the first 

set of plates (first day of infection) were cleared of culture medium, washed twice with DPBS 

and fixed with cold methanol. After 2 hpi the procedure was repeated for the third row of 

wells on the same set of plates. 

Cells were washed twice with DPBS and culture medium containing 2 % FBS was 

resupplemented to all other cells after 2 hpi and the plates were returned to 20°C. The wash 

and fixation procedure was repeated for rows 4, 5, 6 and 7 after 4, 6, 8 and 24 hpi, 

respectively, on the same set of plates. After 2 dpi the procedure was repeated for fixation of 

cells on the second set of plates on the second row of wells. Rows 3, 4, 5, 6 and 7 were 

washed and fixed after 3, 4, 5, 6 and 7 dpi, respectively. The final row on each set of plates 

was fixed after 10 dpi so as to ensure that antigen detection by MAbs was similar for both 

sets of plates at an advanced stage of infection. 

The two mock infected plates were prepared for screening by culturing the same 

density of cells as positive plates with fixation of cells at 0 hpi, 4 hpi, 24 hpi, 3 dpi and 7 dpi. 

The same inoculum was also inoculated onto clear 96-well culture plates seeded with 

KF-1 cells and CCB cells. However, this plate was inoculated with 5-fold serial dilutions of 

virus on pre-formed monolayers so as to assess (1) the progression of CPE over the course of 

infection and (2) to check the titre of the original inoculum. A plaque assay was also 

performed on a 12-well plate with CCB cells. The assays were performed and titres 

determined as described in Section 2.4.2. 

(c) IFAT on 96-well tissue culture plates 

In order to quantify the relative fluorescence emitted by MAbs detecting different antigens of 

KHV, IFAT was performed with MAbs at standardised concentrations which had been 
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previously optimised for successful detection of KHV on infected cell cultures under 

fluorescence microscopy (Section 5.3.1.3). 

Plates were thawed from -20°C, rehydrated and washed 4 x 2 min with 300 µL well
-1

 

PBST. The cells were then blocked with 250 µL well
-1

 5% SMP in PBST for 1 h at RT. The 

eight affinity-purified MAbs were diluted in PBS to 20 µg mL
-1

. Mouse ascites fluid 

containing MAbs against recombinant proteins of ORF62 and ORF68 were diluted 1:10 in 

the same diluent. After blocking non-specific binding sites, the plates were washed 4 x 2 min 

with 300 µL PBST. 

One hundred microlitres of the MAbs, ascites fluid and hybridoma supernatant were 

added to the wells as illustrated in the template (Fig 5.2) and incubated for 1 h at RT. The 

plates were washed again 4 x 2 min with PBST and 100 µL Goat anti-mouse IgG FITC-

conjugated MAbs diluted 1/100 in PBS were added to the wells and incubated for 1 h at RT. 

The plates were then washed again with 4 x 2 min with PBST and kept in the dark at 4°C 

until the fluorescence was read spectrophotometrically. 

The FITC was measured using a Synergy HT spectrophotometer (Fisher Scientific, 

Leicestershire, UK) with Gen 51.10 program for data acquisition at a sensitivity setting of 

120 (sensitivity of fluorescence detection). Filter settings were applied at wavelengths of 

485/20 excitation and 528/20 emission. 

Once fluorescence by FITC had been measured on all plates, 50 µL DAPI mountant 

(Vectashield, Vector, UK) diluted 1:10 in PBS was added to all wells and incubated at RT for 

10 min. Excess DAPI was removed from the wells by 4 x 2 min washes with PBST and the 

plate was read a second time spectrophotometrically. The same program was used at a 

sensitivity of 120 but with filter sets of 360/40 excitation and 460/40 emission. 

 



Chapter 5 – Antigen expression and characterisation 

 

 273 

  

(d) FITC: DAPI quantification for determining specific KHV antigen detection 

Initially, analysis was undertaken using FITC to determine the increased antigen expression 

of the MAb target in virus infected cells and DAPI to analyse the increase and/or decrease in 

cell confluence between control cells and virus infected cells. However, high cell densities 

increased autofluorescence, thus it was difficult to distinguish specifically between noise and 

antigen detection between MAbs with fluctuating cell confluence. Therefore a ratio of FITC 

to DAPI signal was used to determine specific virus detection and to establish a method to 

assess relative increase or decrease in viral antigen expression. 

Relative fluorescence intensities were analysed as a ratio of FITC to DAPI to indicate 

infection and the abundance of antigen protein detected. The formula utilised by Xijier et al. 

(2011) for quantifying structural proteins of RV by fluorescent labelling with MAbs was 

applied here as follows: 

V
FITC/DAPI – 

B
FITC/DAPI 

Where 

V = Measurement ratio of the presence of virus 

B = Blank control (0 hpi fixation) 

(After Xijier et al., 2011) 

 

(e) Statistical analysis of MAb-antigen binding of interest 

A number of tests were used to compare significant differences between antigen expression 

by FITC/DAPI fluorescence over time and between different MAbs. Student t-test was used 

for determining significant differences between means of FITC fluorescence of 2 MAbs 

(which were of particular interest) during preliminary trials associated with virus infection 

over time. Non-parametric data obtained during the trial (relative expression) was analysed 

using a Kruskal-Wallis test to determine significant differences by analysis of medians of 
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FITC:DAPI ratios (relative antigen expression) during early infection (1-24 hpi) and late 

infection (2-7 dpi) for MAbs 10A9 and 20F10. Differences between expression measured by 

MAbs 10A9 and 20F10 during the early infection stages and then the later infection stages 

were also evaluated with this test. The Minitab 16 statistical software package was used for 

all analyses and graphical illustrations were compiled from data using Microsoft Excel, 2010. 

5.2.3 Expression of glycoprotein and capsid antigens in vitro 

5.2.3.1 Preparation of CCB and KF-1 cells for KHV inoculation 

Prior to initiating the experiment, suitable cell seeding densities were determined in various 

culture vessels in order to inoculate cells with KHV during active cell growth at the required 

confluence. 

Cells and virus were cultured and maintained as described in Section 2.2.2. A suitable 

MOI was also established prior to the trial for analysing viral morphogenesis and antigen 

expression. A spare culture flask of cells was harvested 24 h after seeding for estimating cell 

density of each monolayer for both cell lines prior to inoculation so that the MOI could be 

determined. All KF-1 cell cultures were inoculated with KHV at an MOI of 0.01 and CCB 

cells at an MOI of 0.02 and inoculations were undertaken as described previously in Section 

2.3.2. 

(a) Culture of cells on 12-well plates for IFAT analysis 

KF-1 cells and CCB cells were seeded onto sterile cover slips in 12-well tissue culture plates 

as described previously (Section 5.2.1.5). A total of 7 x 12-well plates were prepared for both 

cell lines. Suitable seeding densities were determined for each cell line independently in order 

to obtain 50 % confluence for KF-1 cells and 70 % confluence for CCB cells. KF-1 cells 

were seeded with 0.36 x 10
6
 cells well

-1
 and CCB cells with 0.14 x 10

6
 cells well

-1
. The cells 

were cultured for 24 h at 20°C prior to initiation of the time trial. 
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(b) Culture of cells in 25cm
2
 tissue culture flasks for real-time PCR analysis 

Twenty-eight x 25cm
2
 tissue culture flasks for each cell line were required for viral DNA 

quantitation by real-time PCR. Fourteen of these were used for negative controls and fourteen 

for positive KHV infection. KF-1 cultures were seeded at 1.7 x 10
6
 cells flask

-1
 and CCB 

cultures were seeded at 0.7 x 10
6
 cells flask

-1
. Cells were cultured for 24 h at 20°C prior to 

initiating the trial. 

(c) Culture of cells in 75cm
2
 tissue culture flasks for TEM analysis 

Nine x 75cm
2
 tissue culture flasks for each cell line were required for analysis of viral 

morphogenesis by TEM. Two flasks from each cell line were used as controls for the start 

and end of the experiment. KF-1 cultures were seeded at 5 x 10
6
 cells flask

-1
 and CCB 

cultures were seeded at 2 x 10
6
 cells flask

-1
. Cells were cultured for 24 h at 20°C prior to 

initiating the trial. 

Cells were observed for CPE and images captured using an inverted phase-contrast 

ULWCD 0.3 microscope (Olympus, Japan) attached to a Infinity X U-CMAD3 camera 

(Olympus, Japan). 

5.2.3.2 KHV infection, sampling points and fixation of cells 

(a) Infection and sampling of 12-well plates 

Old medium from 12-well tissue culture plates was removed and 6 of the 12 wells were 

inoculated with 0.2 mL KHV while the other 6 were inoculated with diluent only (HBSS, 2% 

FBS) to serve as mock infected controls. The cells were incubated at 20°C for 2 h for viral 

adsorption to the monolayer. After 1 h, the inoculum was removed from 1 plate of each cell 

line, cells were washed twice with 1 mL DPBS and fixed with 500 µL 100% cold acetone (-

20°C). The cells were fixed for 15 min at RT before air drying for 30 min at RT. After 2 x 

washes with DPBS 1.8 mL of MEM media containing 2% FBS was resupplemented to the 



Chapter 5 – Antigen expression and characterisation 

 

 276 

  

monolayers of all other plates after 2 hpi and the plates were incubated at 20°C with 4% CO2. 

The fixation procedure was repeated for randomly selected plates sampled at time points of 4 

and 8 hpi then 1, 3, 5 and 7 dpi. All fixed plates were stored at -20°C until processing. 

(b) Infection and sampling of 25cm
2
 culture flasks 

One 25cm
2
 culture flask was sampled from each cell line at time point 0 to serve as 

experimental negative controls. Following inoculation of 1 mL KHV, the trial was initiated 

and cells were sampled after 1 hpi. Sampling was undertaken by scraping the monolayer into 

suspension and centrifuging at 2,000 x g for 10 min at 4°C in order to pellet the cells. A slow 

speed centrifugation was undertaken so as not to rupture intact infected cells as analysis of 

cell associated virus DNA in pellets and DNA in the supernatant was undertaken separately. 

The supernatant was removed and dispensed in to separate bijoux. The pelleted cells were 

washed by re-dissolving the pellet with 10 mL DPBS then centrifuging a second time at 

2,000 x g for 10 min at 4°C to re-pellet the cells. Excess supernatant was removed by 

inverting the tube over an ethanol wipe for 1-2 min. Both supernatant and pellet were 

subsequently stored at -70°C until DNA extractions were undertaken. The same procedure 

was undertaken for 1 positive and 1 negative randomly sampled 25 cm
2
 culture flask for both 

cell lines at 2, 4, 6 and 8 hpi then 1, 2, 3, 4, 5, 6, 7 and 8 dpi. 

(c) Infection and sampling of 75cm
2
 culture flasks 

Old medium was removed from all flasks and monolayers were inoculated with 3 mL KHV 

for an adsorption period of 2 h at 20°C. After 1 hpi, the inoculum was removed from 1 

positive and 1 negative flask of both cell lines and the monolayers were washed twice with 10 

mL DPBS. Cells were fixed with 6 mL 2.5% glutaraldehyde (Sigma-Aldrich, UK) by 

completely submerging the monolayer with fixative, scraping the cells into suspension using 

a rubber policeman then immediately centrifuging 3 mL of the suspension in 2 x 12 mL 

centrifuge tubes at 2000 x g for 10 min at 4°C to fix cells into a pellet. Slow speed 
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centrifugation was again vital to the procedure to prevent rupture to the cells and thus loss of 

ultrastructural architecture when visualised by TEM. Excess gluteraldehyde was decanted off 

and the fixed pellets were retained. Fresh 2.5% glutaraldehyde was added to the pellets which 

were subsequently fixed for 2-4 h or overnight at 4°C. The fixative was removed and 2 mL 

cacodylate buffer rinse was added to the pellets, which were flicked into suspension using a 

wooden applicator to ensure the pelleted cells had fixed. Fixed pellets were stored at 4°C 

until processed. The procedure was repeated for randomly selected positive flasks at 4 and 8 

hpi then 1, 3, 5 and 7 dpi. A mock infected negative control, from the same original stock of 

cells used for infection, was also sampled for each cell line after 7 dpi. 

5.2.3.3 DNA extraction 

Centrifuge tubes containing virus infected cell pellets and bijoux containing KHV infected 

cell supernatants from the time course were thawed from -70°C at RT. The DNA was 

extracted directly from KHV infected supernatant, but pellets were first processed by re-

dissolving at RT for 1-2 min in fresh MEM media containing 2% FBS. The pellets were then 

sonicated by 4 x 30 sec blasts in ice cold water using a Kerry sonicator (Kerry Ultrasonics 

Ltd., UK). The dissolved, sonicated pellets were centrifuged at 2,500 x g and the supernatant 

was used for DNA extraction. 

 Virus DNA was extracted using the NucleoSpin® RNA Virus, Viral RNA Isolation 

kit (Machery-Nagel, Germany) according to the manufacturer’s instructions with the addition 

of proteinase K for extracting viral DNA. All buffers and reagent used were supplied in the 

kit except for Proteinase K (Machery-Nagal, Germany) and ethanol (96-100%). Briefly, virus 

was lysed by the addition of 600 µL of buffer RAV1 containing carrier RNA to 150 µL of 

each sample in a 1.5 mL Eppendorf tube. Twenty microlitres of Proteinase K (20 µg mg/mL
-1

 

stock) was added to each lysis mixture. The mixture was aspirated then vortexed (Vortex 

Whirlmixer, Fisherbrand, UK) for 10-15 sec. The sample mixture was incubated for 5 min in 
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a 70°C water bath then centrifuged at 11,000 x g. The supernatant was then removed and 

combined with 600 µL ethanol and vortexed for 10-15 sec. 

 For binding viral DNA, silica columns were placed into 2 mL collection tubes and 

loaded with 700 µL of lysed sample. This was centrifuged at 8,000 x g for 1 min. The 

residual solution was loaded onto the virus column and the centrifugation was repeated. The 

flow through was discarded and the Nucleospin virus column was placed into a new 

collection tube. 

 The membrane was then washed and dried by the addition of 500 µL Buffer RAW, to 

the NucleoSpin ® RNA virus column and centrifuged for 1 min at 8,000 x g to remove 

contaminants and PCR inhibitors. A second wash was undertaken with 600 µL buffer RAV3 

to the column which was also centrifuged at 8,000 x g and the flow-through discarded. 

Ethanolic buffer RAV3 was removed completely after a final wash of 200 µL with buffer 

RAV3 followed by centrifugation for 5 min at 11,000 x g. Viral DNA was finally eluted from 

the column after the addition of 50 µL Buffer RE preheated to 70°C. DNA quality was 

checked and quantity measured using a Nanodrop® ND-1000 spectrophotometer (Labtech 

International). All DNA was stored at -20° until used for PCR. 

5.2.3.4 Real-time qPCR 

Real-time TaqMan qPCR was undertaken at the Friedrich Loeffler Institut using the method 

according to Gilad et al. (2004) with modifications according to Bergmann et al. (2010a). 

Real-time PCR was run on all positive and negative samples obtained from the trial from 

both cell lines following the same methods described previously in Section 4.2.2.5.  

5.2.3.5 TEM processing and visualisation 

Glutaraldehyde fixed cell pellets were post-fixed in 1 % osmium in cacodylate buffer in 

closed vials for 1 h at RT. The pellets were then washed for 3 x 10 min in distilled H2O. 
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Thorough rinsing of cacodylate buffer was important at this stage as ‘En-bloc’ staining was 

undertaken with uranyl acetate and sodium cacodylate is incompatible with uranyl salts. ‘En-

bloc’ staining of pellets was undertaken with 2 % uranyl acetate in 30 % acetone in the dark 

for 1 h then the pellets were dehydrated through an acetone series of ascending 

concentrations. Dehydration was undertaken in 60 % acetone for 30 min, 90 % for 30 min, 

100 % for 30 min then incubation in fresh 100 % acetone for 1 h. 

 Pellets were then infiltrated with agar low viscosity resin (ALVR) on a rotator (Taab, 

UK). The pellets were first incubated with ALVR diluted 1:1 in acetone for 45 min followed 

by 100% ALVR for 1 h and then into fresh ALVR for another h. The pellets were finally 

embedded in block moulds and polymerised in an oven at 60°C overnight. Ultrathin sections 

were cut for visualisation under a TEM microscope as described in Section 4.2.5. 

5.2.3.6 IFAT on glass cover slips and confocal microscopy 

The IFAT was conducted in a similar manner to the method described in Section 5.2.1.5.(b). 

Only MAbs 10A9 and 20F10 were subjected to fluorescence quantification by image 

analysis. The KHV infected and mock infected cells of both cell lines received 250 µL of 20 

µg mL
-1

 purified MAbs dissolved in PBS after rehydration and blocking. The cells were then 

incubated with goat anti-mouse IgG conjugated to FITC (Sigma-Aldrich, UK) as described 

previously. The cells on cover slips were finally mounted on to glass slides (Solmedia, 

Shrewsbury, UK) in 20 µg mL
-1

 propidium iodide (Sigma-Aldrich, UK) diluted in PBS and 

sealed with nail varnish (Avon, UK). All slides were kept in the dark at 4°C until visualised. 

 Confocal microscopy and image analysis were performed according to methods 

described previously for measuring apoptosis in Pancreas Disease alphavirus infected 

salmonid cells in vitro (Herath, 2010). Stained cells were observed using a Leica TCS SP2 

AOBS confocal laser scanning microscope (CLSM) (Leica Microsystems, Milton Keynes, 
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UK) coupled to a DM TRE2 inverted microscope (Leica Microsystems, Milton Keynes, UK) 

and employing a X 63 oil/glycerol immersion objective, in conjunction with Leica confocal 

software (v. 621). Images were captured in the grey (transmission), red, green and blue 

channels using the relevant excitation and emission wavelengths for the respective dye, 

depending on the target (Table 5.1). In order to avoid cross-talk between channels, a 

sequential scanning configuration was used with images collected successively rather than 

simultaneously on 3 separate channels. At least 2 replicate images per culture well were 

captured, including positive, negative and control cells from each cell line at each time point 

post-infection. Replicate experimental cultures were taken for the KF-1 cell line, but not the 

CCB cell line. Stacks of 25 serial depth images (z-stacks) were taken from each sample of 

cells by scanning a frame area of 1024 × 1024 pixels (x × y μm) in the x, y plane. The stacks 

of images through cells had a total depth of 25 µm comprising 25 transects of 1 µm moving 

from the basal surface of the cell to the apical surface. Prior to image analysis, the grey 

channel from each image was removed and the stacks were collapsed to give a projection of 

maximal fluorescence intensity for the stack as a single 2-D image (Leica Maximum 

Projection). Where 3D imaging was performed, stacks of 30 images were scanned through 

cells and anaglyph stereo images created using the Leica confocal software. 

Table 5.1 Properties of fluorescent dyes used to detect KHV antigens in infected cells 

Target Probe Channel Excitation 

Min 

Emission 

Max 

Laser line 

KHV  

Antigen 

FITC 

labelled 

MAb 

 

Green 

 

495 

 

519 

 

495 

Nuclei 1 DAPI Blue 405 411 405 

Nuclei 2 Propidium 

iodide 

Red* 535 617 535 

* Images were subsequently converted and displayed as blue.  
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5.2.3.7 Quantification of viral fluorescence by image analysis and statistical significance of 

antigen expression 

The Carl Zeiss KS 300 image analysis platform was used for image analysis employing a 

custom made macro script developed by Dr. James Bron (Institute of Aquaculture, University 

of Stirling, UK), which enables the quantification of a number of morphometric and 

densitometric features of the target fields (i.e. whole image) or individual objects (e.g. 

nuclei). The script gives an output of the measurements of the data for each image and 

processed images for subsequent visual interpretation and quality control. 

 One of the main advantages of the script is that it encodes a fixed series of operations 

with no user-interaction, which ensures consistency between measurements and removes user 

bias. The use of digital analysis in this context is also much faster than manual analysis, more 

accurate and allows improved inter-user repeatability. 

 For quantifying nuclear signal intensity, the nuclei were segmented from the 

background using a HLS colour segmentation function and the adjoining nuclei were 

separated from one another using a grain separation function and subjected to size 

thresholding in order to exclude noise. The final segmented areas were used as a field for 

densitometric measurements of nuclei and nuclear fragments enabling measurements of mean 

total nuclear fluorescence per section, which represented 1 of the 5 parameters used in the 

study. The separation function was used in a similar manner for isolating MAb-associated 

signals, also in the cytoplasm, in order to measure the level of virus antigens through use of 

MAb signal intensity as a proxy. 

Quantification of fluorescence signals associated with nuclear staining (propidium 

iodide) and antibody-antigen complexes of KHV (FITC) was achieved using the macro 

described above to provide 5 parameters measured from the replicate scans (n = 2 per slide) 
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taken from individual sections of infected and non-infected cells. Data from the total cell area 

(CELL), the total nuclear area (NUC), the average intensity of nuclear fluorescence exhibited 

by the MAb (MND), the average intensity of the total cell fluorescence, including cytoplasm, 

exhibited by the MAb (MBD) and the whole field of cell fluorescence above the set 

sensitivity threshold (HIMAB) were used during the study. Three of these parameters: NUC, 

MBD and MND proved useful for quantification of virus-associated signal by allowing 

determination of difference in relative MAb fluorescence (MND or MBD) compared to 

nuclear fluorescence (NUC) (representing cell confluence) and finding the difference 

between infected samples and negative controls. This was similar to the approach used for the 

microtitre IFAT analysis (Section 5.2.2.2 (d)) although it employed the following formula 

with a negative control subtracted at every time point: 

V
MND/NUC – 

C
MND/NUC 

Or 

V
MBD/NUC – 

C
MBD/NUC 

Where 

V = Measurement ratio of the presence of virus in infected cells 

C = Measurement ratio of the presence of autofluorescence signals/noise in uninfected cells 

 

5.3– Results 

5.3.1 Monoclonal antibody characterisation 

5.3.1.1 ELISA screening of MAbs  

Eight monoclonal antibodies (10A9, 11A4, 12C4, 13E10, 16A9, 17A9, 20F10, 21D11) were 

successfully concentrated and purified after growth of the hybridoma in cell culture. 
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However, the original hybridoma supernatant and mouse ascites fluid for MAbs detecting 

recombinant proteins of ORF62 and 68 (10D10 and 7C6, respectively) were used in the 

study. 

Despite 8 of the MAbs being diluted to the same protein concentration there were vast 

differences between mean absorbance when screened in ELISA against whole KHV virus. 

MAbs 10A9, 17A9 and 21D11 produced the highest mean absorbances (OD450nm) against 

purified virus with consistently strong signals at all concentrations. All 8 of the purified 

MAbs successfully detected KHV with OD levels above the sensitivity threshold at 

concentrations as low as 5 µg mL
-1

. However, absorbances produced by MAbs 11A4 and 

20F10 were approximately half that of 10A9, 17A9 and 21D11. MAb 12C4 was the only 

negative MAb at a concentration of 1 µg mL
-1

 (Fig. 5.3 A). Hybridoma supernatant 

containing MAb 7C6 detecting the recombinant protein of ORF68 was only positive at the 

lowest dilution (i.e. 1/10 dilution), however, MAb 10D10 detecting recombinant protein of 

ORF62 was negative (Fig. 5.3 B). The reaction of both mouse ascitic fluid solutions, diluted 

1/100, were below the sensitivity threshold (OD450nm 0.18) of the ELISA (Fig. 5.3 C). 

Negative control PBS wells were also below the sensitivity threshold. MAbs to an alternative 

virus: ISAV had previously tested negative on this ELISA.  

5.3.1.2 Screening of monoclonal antibodies by Western blot 

As only low yields of KHV protein could be obtained from bulk purification of virus from 

cell culture supernatants, viral proteins separated by SDS-PAGE were stained with silver 

staining rather than Coomassie Blue in order to detect low levels of virus protein due to its 

greater sensitivity (i.e. as little as 0.1 ng) (Rabilloud et al., 1994).  
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Figure 5.3 Reaction of MAbs and mouse ascites fluid with purified Koi herpesvirus (KHV) antigen by ELISA. (A) Mean absorbance 

values of purified MAbs produced by mice immunised with whole KHV (B) Absorbance values of hybridoma supernatant of MAbs produced by 

mice immunised with recombinant KHV proteins (C) Absorbance values of ascites fluid from mice immunised with recombinant KHV proteins. 

Bars represent the mean OD of replicates (n=2). Broken black bar indicates sensitivity threshold (cut off). 
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(a) SDS-PAGE separation and staining of purified KHV proteins 

Purified KHV was serially diluted prior to performing SDS-PAGE so that a better contrast 

could be obtained from background staining to allow detection of the most prominent protein 

bands. Proteins from lysed uninfected CCB cells were also separated by SDS-PAGE and 

stained. More bands were obtained on the gel of the CCB cell lysates compared to the 

purified KHV proteins (results not shown). A number of bands associated with the purified 

KHV were not observed in the gel of the lysed CCB cells, however, and between 20 and 22 

bands associated with the virus were detected on the gel (Fig. 5.4 A). A dominant band at 

approximately 130 kDa was noted from the purified KHV gel (indicated by arrowhead on 

Fig. 5.4). 

(b) Western blot analysis of MAbs against purified KHV proteins 

Western blot analysis of MAbs to KHV was replicated with and without intensive blocking in 

an attempt to eliminate non-specific binding and background signal so that the specific 

proteins recognised by different MAbs could be determined. Prior to sample blocking 

(addition of 2 % SMP w/v in the diluent) between 2 - 6 dominant bands were observed after 

incubating MAbs with the membranes containing purified KHV proteins, which were not 

observed with membranes containing uninfected CCB cell lysate (Fig. 5.4 C-D). MAbs 

against recombinant proteins of ORF62 and ORF68 were negative in Western blot analysis 

(result not shown). Proteins of approximately 250 kDa and 130 kDa were evident for all 8 of 

the purified MAbs, whereas proteins of 240 kDa and 150 kDa were distinctive for 6 and 7 of 

the 8 MAbs, respectively. A band of approximately 170 kDa was only present on membranes 

incubated with MAbs 13E10 and 21D11 and a band of 70 kDa was only present for MAbs 

11A4 and 12C4. Notably, a dominant band of approximately 100 kDa was only present for 

MAb 20F10 (Fig. 5.4 C). 
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After additional blocking there was a clear reduction in signal and far fewer bands 

were obtained as a result. However, the highest molecular weight proteins were still clearly 

detected and all 8 purified MAbs produced intense bands at 250 kDa. Most interestingly, a 

dominant band of approximately 100 kDa could still be observed from MAb 20F10. There 

were also noticeable bands of approximately 150 and 75 kDa detected by MAbs 21D11. 

Other bands that could still be distinguished were a band of approximately 30 kDa recognised 

by MAb 16A9 and 150 kDa recognised by MAb 13E10 and MAb 11A4 (Fig. 5.4 B). 

5.3.1.3 IFAT screening of and confocal microscopy of MAbs specific for KHV 

To further verify the MAb recognition of KHV and the cellular localisation of the antigen, 

IFAT was undertaken on KHV infected KF-1 cells grown on coverslips. Cells were fixed at 

7-10 dpi. All MAbs were positive by IFAT, however, different fluorescence intensity and 

localisation within the cell was observed with different MAbs. Most of the MAbs exhibited 

cytoplasmic signals only, which were usually diffuse (Fig 5.5), whereas MAb 10A9 produced 

signals more closely associated with the cell membrane (Fig 5.5 A). However, despite 

exhibiting intensive cytoplasmic staining, MAb 20F10 also produced very specific, diffuse 

nuclear signals (Fig. 5.5 G). MAb 7C6, recognising an antigen of ORF68, also exhibited both 

cytoplasmic and nuclear staining although to a lesser degree and the nuclear signals appeared 

more focal and granular (Fig. 5.5 I). 

Weaker signal was noted with MAbs 10A9 and 13E10 and the most intensive staining 

was observed with MAb 17A9. The MAb 10D10 exhibited relatively weak specific signal 

compared to its negative control. Negative controls (mock infected cells screened with 

MAbs) sometimes displayed minimal sporadic non-specific staining and autofluorescence, 

but were always negative for specific fluorescence when compared to positive infected cells 
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(results not shown). Positive KHV infected cells screened with MAbs to ISAV were always 

negative. 

 

Figure 5.4 SDS-PAGE and Western blot analysis of sucrose gradient purified Koi 

herpesvirus (KHV) and CCB cell lysate using the panel of MAbs. (A) SDS-PAGE of 

sucrose gradient purified KHV, American isolate H361, after 2-fold dilution of viral proteins 

(Lanes 2-5). Lane 1 – Diluent only, 2 – KHV protein of 0.5 mg mL
-1

, 3 - 0.25 mg mL
-1

, 4 -  

0.125 mg mL
-1

, 5 -  0.0625 mg mL
-1

. Arrowhead = dominant KHV protein at 130 kDa; (B) 

Western blot (WB) analysis of 8 purified MAbs screened against purified KHV with diluent 

blocking MAbs: Lane 1 – 21D11, 2 – 20F10, 3 – 17A9,  4 – 16A9, 5 – 13E10, 6 – 12C4, 7 – 

11A4, 8 – 10A9; (C) WB analysis of 8 purified MAbs screened against purified KHV without 

diluent blocking (D) WB analysis of 8 purified MAbs screened against CCB cell lysate 

without diluent blocking. C and D MAbs: Lane 1 – 10A9,  2 – 11A4, 3 – 12C4, 4 – 13E10, 5 

– 16A9, 6 – 17A9, 7 – 20F10, 8 – 21D11  



Chapter 5 – Antigen expression and characterisation 

 

 288 

  

 

Figure 5.5 Confocal micrographs of Koi herpesvirus (KHV) infected KF-1 cells screened by IFAT using different monoclonal antibodies 

to the virus. (A) MAb 10A9 (B) MAb 11A4 (C) MAb 12C4 (D) MAb 13E10 (E) MAb 16A9 (F) MAb 17A9 (G) MAb 20F10 (H) MAb 21D11 

(I) MAb 7C6 (J) MAb 10D10 (K) ISA MAb control (L) PBS control. Images captured by a × 3 zoom. Blue = DAPI (nuclei), Green = FITC 

(KHV) A, B, E-L: 10 dpi; C & D: 7dpi. N = Nuclear staining, C = Cytoplasmic staining. All micrographs show an overlay of green and blue 

channels. 
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Characteristics of all the MAbs are summarised in Table 5.1 including the results 

from other Laboratories on neutralisation testing and antibody isotyping (Friedrich Loeffler 

Institut and IoA, University of Stirling) and characterisation (Aoki et al., 2009; 2011). 

Briefly, MAbs 11A4 and 17A9 have been found to have varying degrees of virus neutralising 

capacity and both recognise virus glycoproteins and MAb 10A9 is known to recognise an 

envelope glycoprotein antigen. MAb 12C4 is a primary envelope antigen and MAb 20F10 a 

capsid antigen (Dr. Sven Bergmann, pers. comm., unpublished data), while MAbs 7C6 and 

10D10 recognise recombinant proteins expressed from sequences of ORF68 and ORF62, 

respectively (Aoki et al., 2009; 2011). 

5.3.2 Early stage antigen expression of KHV in vitro determined by binding of 

MAbs 

The panel of MAbs detecting various antigens of KHV were screened against KHV-infected 

cell cultures through a time course using immunofluorescence in order to evaluate the 

expression of these antigens. The first approach was intended to elucidate the most useful 

MAbs that could detect KHV antigens of interest during the early stages of virus replication. 

As there were a large panel of MAbs to be tested, a 96-well plate IFAT procedure was 

developed on cultured and infected cells, which could enable high throughput analysis of 

antibody-antigen binding, at various stages post-KHV infection.  

5.3.2.1 Preliminary experimental proof of concept 

(a) DAPI fluorescence of cells seeded at varying densities 

As DAPI stains nucleic acids, the relative fluorescence obtained from DAPI stain should 

enable a relative determination of the cell confluence of cultures in the wells. There was a 

positive correlation between cell seeding density and DAPI fluorescence as expected. 
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Table 5.2 Summarised MAb characterisation: Current and previous work 

Anti 

KHV 

MAb 

Ig 

isotype 

Antigen 

recognised 

NT WB 

MW of 

recognised 

peptides 

(kDa) 

IFAT 

Cellular 

locality of 

antigen 

staining 

ELISA 

Mean 

(OD450 nm) 

at 10µg 

mL
-1 

10A9 U Envelope 

glycoprotein 

(a) 

 

U 250, 240, 150, 

130 

Cytoplasm 1.18 

11A4 IgG1κ Envelope – 

capsid (TM) 

(a) 

 

++ 

(a) 

 

 

250, 240, 150, 

140, 130 

Cytoplasm 0.62 

12C4 U Primary 

envelope (a) 

 

U 250, 150, 130, 

70 

Cytoplasm 0.43 

13E10 IgG Unknown - 

(a) 

250, 240, 170, 

150, 130 

 

Cytoplasm 1.10 

16A9 U Unknown U 250, 240, 150, 

130, 40, 30 

 

Cytoplasm 0.89 

17A9 IgG2 κ Glycoprotein + 

(a) 

 

250, 130 Cytoplasm 1.29 

20F10 IgG1κ Capsid (a) - 

(a) 

250, 240, 150, 

130, 100 

 

Nucleus/ 

Cytoplasm 

0.67 

21D11 U Unknown U 250, 240, 170, 

150, 130, 75 

Cytoplasm 1.36 

       

10D10 IgM ORF62 

Tegument (b) 

U - (b) Cytoplasm 0.1** 

0.13* 

(b) 

 

7C6 IgG1 ORF68 

Unknown (b) 

U 140, 72, 70(b) Nucleus/ 

Cytoplasm 

0.29** 

0.17* 

(b) 

MW-molecular weight; NT-neutralisation test; TM – Transmembrane; U-Unknown 

* MAb hybridoma supernatant at 1/10 dilution 

** Ascites fluid at 1/100 dilution 

(a) Research at FLI (Bergmann pers. comm.) 

(b) Aoki et al. (2009; 2011); tegument association of ORF62 reported by Michel et al. (2010b) 
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A higher sensitivity setting provided a greater quantitative range between cells of different 

seeding densities (Fig. 5.6 A). 

(b) FITC fluorescence of cells infected with KHV over different time periods: 3 days and 

12 days post infection 

There was a significant increase in FITC fluorescence observed in cells infected with KHV 

after 12 dpi compared with 3 dpi after screening with anti-KHV MAbs 10A9 (p=0.001) and 

20F10 (p=0.002), but not with the alternative MAb detecting ISAV (p=0.126) or mock 

infected cells screened with pooled anti-KHV MAbs (p=0.651) (Fig.5.6 B). 

5.3.2.2 Relative FITC fluorescence of MAbs on mock infected CCB cells fixed over the 

experimental time course. 

All MAbs were screened on CCB cells that had been mock infected and sampled at 1, 3 and 7 

dpi. The relative FITC:DAPI fluorescent ratio was calculated as described in Section 5.2.2.2 

(d) and most MAbs showed either very little or no positive FITC:DAPI fluorescence on 

uninfected cells compared with infected cells, apart from minor background signals with 

ascitic fluid and major background with MAb 16A9 (results now shown). 

5.3.2.3 Relative FITC fluorescence of MAbs on KHV infected cells over the course of 

infection 

High background fluorescence was noted in KF-1 cells, with some fluorescence present with 

uninfected cells and cells stained with the ISAV MAbs. Fluorescence from controls in CCB 

cells was much lower throughout the time course. Positive fluorescent signals were seen 

towards the end of the trial, 7 dpi, with 6 of the 10 MAbs (11A4, 12C4, 13E10, 17A9, 20F10 

and 21D11) in infected KF-1 cultures and with 8 of the 10 MAbs (11A4, 12C4, 13E10, 16A9, 

17A9, 20F10, 21D11 and ASC 62) in infected CCB cultures at which point there was a high 

CPE with nearly all cells infected. 
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Figure 5.6 Preliminary investigation of cell and virus fluorescence: DAPI (nuclear) 

fluorescence emitted at increasing CCB cell confluence and koi herpesvirus (KHV) 

infected CCB cells with MAbs 10A9 and 20F10. (A) Decreasing volumes of cells seeded 

into wells equivalent to 4 x 10
3
 – 3 x 10

4
 cells well

-1 
(Mean of replicate cell cultures, n = 2). 

Only results of 1/10 DAPI dilution shown. Fluorescence signals obtained at wavelength 

360/460 nm. Relative sensitivity according to spectrophotometric detector thresholds is 

shown in arbitrary units to the right of the figure. (B) Preliminary screening of KHV infected 

CCB cells with MAbs 10A9 and 20F10. Comparison of FITC emission with MAbs 10A9 and 

20F10 recognising KHV and an alternative MAb to ISAV screened at 3 and 12 dpi. Mean 

±SE (n = 6 infected cell cultures). 2-sample t-test (≥95%). Different letters indicate 

significant differences. 
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However, strong signals were only obtained from MAb 20F10 in KF-1 cells and from MAbs 

13E10, 20F10 and ASC62 in CCB cells at this late stage of infection. The specificity of MAb 

binding was more distinguishable in CCB cells as the non-specific binding observed in KF-1 

cells had largely masked specific signals of bound MAbs (results not shown). 

It should be noted that the mock control used in the current study consisted of a 

cocktail of all MAbs screened to uninfected cells, thus is not a direct indication of non-

specific binding activity of every independent MAb and as a result background signals of 

mock infected cells may have been largely influenced by MAb 16A9 in KF-1 cells as noted 

in section 5.3.2.2 (results not shown). 

5.3.2.4 Expression of KHV envelope glycoprotein and capsid protein in KF-1 and CCB 

cells determined by quantitation of MAb binding  

As initial results of the antigen detected by MAb 10A9, a known envelope glycoprotein, and 

the antigen detected by MAb 20F10, a capsid associated antigen (Table 5.2) showed some 

noticeable differences in relative MAb fluorescence, the data for the binding of these MAbs 

to KHV were analysed further. The aim of this was to determine the expression of envelope 

glycoprotein (10A9) compared to capsid (20F10) proteins of KHV during viral infection. 

DAPI fluorescence, and thus cell confluence, was relatively stable during the first day 

of infection in both cell lines with a slight increase noted in CCB cells, however fluctuations 

did occur during the first 2–8 hpi. From 2–10 dpi there was an obvious decline in cell nuclear 

fluorescence, particularly in KF-1 cells but also in CCB cells, which was more progressive 

towards the later stages of viral infection (Fig. 5.7 A-B and 5.8 A-B). However, no significant 

differences between cell nuclear fluorescence from the early stage of KHV infection (1-24 

hpi) and the later stages of KHV infection (2-7 dpi) in either KF-1 cells (p=0.326) or CCB 

cells (p=0.439) was observed. 
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The expression of envelope glycoprotein and capsid antigens, measured by relative 

FITC:DAPI signals of MAbs 10A9 and 20F10, respectively, differed enormously throughout 

the time course of infection. There was a notable decrease in antibody binding of both MAbs 

in both cell lines after 2 hpi. This was followed by an increased binding to capsid antigen 

after only 6 hpi, as detected by MAb 20F10 in CCB cells, which was not observed until after 

24 hpi in KF-1 cells (Fig. 5.7 C and 5.8 C). In contrast, binding to envelope glycoprotein 

antigen, as detected by MAb 10A9, was never observed during the first 24 hpi in CCB cells, 

but there was slight positive signal in KF-1 cells sampled at time point 24 hpi, comparable to 

capsid antigen binding by MAb 20F10 (Fig. 5.7 C and 5.8 C). There were no significant 

differences between glycoprotein and capsid antigen expression during the earlier stages in 

either CCB (p=0.082) or KF-1 cells (p=0.141). 

Between 2–10 dpi there was a vast increase in capsid antigen expression indicated by 

the greater antibody binding of MAb 20F10 (Fig. 5.7 D and 5.8 D). Expression of capsid 

antigen at the later stages (2-7 dpi) was significantly greater in both KF-1 cells (p<0.001) and 

CCB cells (p<0.001) compared to the earlier stages (1-24 hpi). The initial increase occurred 

after 48 hpi in both cell lines but, notably, there was still very little expression of envelope 

glycoprotein antigen as indicated by minimal changes in fluorescence observed from cells 

screened with MAb 10A9. The expression of glycoprotein antigen was significantly greater 

in KF-1 cells (p=0.05), but not CCB cells (p=0.73) at later (2-7 dpi) compared to earlier (1-24 

hpi) stages of infection. Between 4-6 dpi there was a notable plateau in capsid antigen 

binding by MAb 20F10 in KF-1 cells, which was paralleled by a slight decrease in signal 

from 5–6 dpi in CCB cells. After 6 dpi there was another rapid increase in fluorescence from 

MAb 20F10, and thus capsid expression, which decreased slightly again in CCB cells 

sampled after 10 dpi (Fig. 5.7 D and 5.8 D).  
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Figure 5.7 Graphical representation of fluorescence from MAbs 20F10 and 10A9 recognising Koi herpesvirus antigens over the course 

of infection in KF-1 cells. Graphs on the left are of cells analysed during the first day of infection, graphs on the right are of cells analysed over 

the following 2-10 dpi. (A and B) DAPI fluorescence of cells; (C and D) Difference of relative FITC to DAPI stain from blank wells at 0 hpi. 

Mean ± SE (n = 4 individual cell cultures) 
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Figure 5.8 Graphical representation of fluorescence from MAbs 20F10 and 10A9 recognising Koi herpesvirus antigens over the course 

of infection in CCB cells. Graphs on the left are of cells analysed during the first day of infection, graphs on the right are of cells analysed over 

the following 2-10 dpi. (A and B) DAPI fluorescence of cells; (C and D) Difference of relative FITC to DAPI stain from blank wells at 0 hpi. 

Mean ± SE (n = 4 individual cell cultures) 
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There was no detectable increase in binding of MAb 10A9 to envelope glycoprotein 

antigen, suggesting minimal antigen expression or protein abundance, within the detection 

limits of the assay, until the final sampling point at 10 dpi where nearly all cells in all cultures 

were infected (Fig. 5.7 D and 5.8 D). Capsid antigen expression was significantly greater than 

glycoprotein expression in both KF-1 cells (p<0.001) and CCB cells (p<0.001) during the 

later (2-7dpi) stages of infection. 

5.3.3 KHV morphogenesis and image analysis of envelope glycoprotein and 

capsid antigen expression during infection  

Stages of virus morphogenesis were analysed by TEM in parallel to envelope glycoprotein 

and capsid antigen expression using a second novel IF approach with MAbs 10A9 and 20F10 

by confocal microscopy and image analysis. This was achieved by infecting cell cultures on 

coverslips fixed at the same time points used in the time trial presented previously (Section 

5.3.2.4). In an attempt to evaluate any relationships between virion formation, antigen 

expression and viral DNA load, real-time TaqMan qPCR (Gilad et al., 2004) was also 

performed on cell cultures infected simultaneously with the same virus isolate. The IF 

approach used in this experiment would also enable a degree of verification of the antigen 

expression trends observed using the 96-well microtitre plate procedure, where difficulties in 

interpretation of specific antibody binding were experienced due to non-specific binding of 

MAbs in the mock infected wells, particularly in the KF-1 cell line. 

5.3.3.1 Cytopathic effect and viral DNA load 

(a) Cytopathic effect of infected cells 

A rapid cytopathic effect was obtained following inoculation with KHV, which began at 3 

dpi, at which stage small plaques were evident particularly within CCB cell monolayers. By 4 

dpi both CCB and KF-1 cultures exhibited cytoplasmic vacuolation and increased plaque 
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abundance. After 5 dpi there were many vacuolated cells as well as formation of syncytia and 

most cell nuclei appeared condensed and presented marginated chromatin. Cells became 

rounded and, after death, detached from the monolayer. After 5 dpi CPE progressed rapidly 

and more than 50% of cells from both cell lines were infected by 6 dpi with CPE becoming 

even more pronounced by 7 and 8 dpi (see Fig. 5.9, Table 5.3). 

(b) Quantification of KHV DNA in cell pellets and supernatant 

Real-time qPCR was undertaken according to the methods of Gilad et al. (2004) with 

modifications according to Bergmann et al. (2010a) from DNA extracted from cell culture 

supernatant and pelleted infected cells. Cycle threshold (Ct) values of positive controls from 

dilutions of plasmids bearing a KHV DNA insert of 484 bp derived from ORF89-90 (Gilad et 

al., 2002), in which the plasmid concentrations and fragment copy numbers were previously 

known (Bergmann et al., 2010a), were relatively consistent for all runs. 

In the trial Cts ranging from were 22-23 for 1 ng KHV DNA and 29-30 for 10 pg 

KHV DNA. Subsequent to inoculation, there was a rapid absorption of virus to cells whereby 

the quantity of viral DNA obtained from cell pellets was equivalent to that of the original 

inoculum for both cell lines after only 1 hpi (Fig. 5.10). 

Although an increase in viral DNA occurred in the supernatant from both CCB and 

KF-1 infected cell cultures, this was not detectable until 4 dpi. Infected KF-1 cell supernatant 

contained more viral DNA than CCB cells after 8 dpi. In CCB cells 500-fold less DNA 

copies (1 x 10
7
) were measured from the supernatant after 8 dpi compared to that obtained 

from cell pellets (5 x 10
9
), whereas 20-fold less was observed in KF-1 cell supernatant (5 x 

10
7
) compared to pellets (1 x 10

9
) (Fig 5.10). 
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Figure 5.9. Cytopathic effect of Koi herpesvirus infected CCB cells and KF-1 cells 

during the 7 day time trial. A-D – CCB infected and mock control cells after (A) 1dpi, (B) 

3dpi, (C) 5dpi and (D) 6dpi. E-H –KF-1infected and mock control cells after (E) 1dpi, (F) 

4dpi, (G) 6dpi and (H) 7dpi.(I & J) High magnification of CCB cells after 7dpi, arrows show 

vacuolation in the cytoplasm (I) and formation of syncytia (J). Mag. x 25 Scale bar = 500 µm; 

Mag. x 10 Scale bar = 200 µm 
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Table 5.3 Scoring of cytopathic effect of Koi herpesvirus infected KF-1 and CCB cells 

during the first 10 dpi 

CELL LINE DPI 

  

KF-1 0 1 2 3 4 5 6 7 10 

          

CPE - - - (+) (++) (+++) +(+++) ++ ++(++) 

 

CCB 0 1 2 3 4 5 6 7 10 

          

CPE - - - (+) (+++) +(+) ++ ++(+) ++(++) 

 

CPE scoring from (+) weakest to +++ severe 

 

 

Figure 5.10. Real-time TaqMan qPCR results of Koi herpesvirus (KHV) DNA measured 

in KF-1 and CCB cells during the first 8 dpi. The results are expressed as KHV DNA 

genomic equivalents per sample DNA template extracted from pellets and supernatant of 

infected KF-1 and CCB cell cultures 
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In contrast to supernatant samples, viral DNA within the cell pellets increased 

dramatically after 3 dpi in both cell lines, particularly in CCB cells, whereby >800-fold 

increase in KHV DNA copy numbers were observed after 8 dpi (Fig. 5.10). Mock infected 

cell cultures were always negative (Not shown). 

5.3.3.2 TEM analysis of KHV morphogenesis in infected cells 

TEM micrographs of KHV morphogenesis were obtained from the in vitro time trial as well 

as from the preliminary TEM experiment (6 dpi). Virus particle sizes differed depending on 

the stage of morphogenesis. The mean sizes were as follows: immature capsids = 97.56 nm 

(SD 8.78), nucleocapsids = 114.12 nm (SD 12.13), primary enveloped virions = 138.32 nm 

(SD 18.43) and secondary enveloped mature virions = 167.97 nm (SD 31.38), which are all 

within the range of KHV particles reported in the literature. 

(a) KHV in infected cells during the first 24 h post infection 

One of the most notable observations was the presence of viral capsids within the nucleus of 

a number of infected cells after only 1 hpi. The capsids were either empty or consisted of a 

double arc structure (Fig. 5.11 A-B) and these were occasionally distributed throughout the 

nucleus (Fig. 5.11 D), but there were no mature capsids with electron dense cores. No capsids 

were observed in the nuclear membrane at this stage, and particles in the cytoplasm had not 

yet budded into cytoplasmic vesicles. Although no actual fusion to, or endocytosis at, the cell 

membrane was observed, empty coated pits were evident, extending intracellularly from the 

plasma membrane (Fig. 5.11 C) and putative cytoplasmic nucleocapsids could be observed in 

close proximity to these, possibly migrating towards the nuclear pores, however, no 

microtubules were observed near these structures (Fig. 5.11 C) and there were no capsids 

seen docked at the nuclear pores. Occasionally, empty and electron dense capsid-like 

structures were observed in a linear distribution in the cytoplasm (Fig. 5.11 E). By 4 hpi, 
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virus capsids were observed throughout the nucleus at various stages of maturation, often 

located at the periphery by the inner nuclear envelope (Fig. 5.11 F).  
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Figure 5.11 TEM micrographs of CCB and KF-1 cells infected with Koi herpesvirus 1 hpi – 4 hpi. (A) Infected KF-1 cell 1 hpi (B) High 

magnification of nucleus shown in square of A (C) Cell membrane of infected KF-1 cells 1 hpi (D) Nucleus of infected CCB cells 1 hpi (E) 

Naked capsids within the nucleus of infected KF-1 cells after 1 dpi (E) Empty and electron-dense structures in a linear array of infected KF-1 

cells. Note the close proximity to secondary lysosomes (F) 2 infected CCB cells in close proximity 4 hpi. Note the accumulation of capsids 

towards the periphery of the diffuse cell nucleus with varying degree of maturation. Primary envelope virions can also be observed. N = Nucleus; 

C = capsids; CP = Coated pit; MNC = putative migrating nucleocapsid; EC = Empty capsid-like structures; DC = Electron dense structures 
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Although many cells were uninfected and remained healthy (Fig. 5.12 A) the formation of 

paracrystalline arrays of capsids were found in both CCB and KF-1 cells and the nuclei of 

some cells had begun to express transluscent characteristics and chromatin margination (Fig. 

5.12 B and C). Very seldom capsid particles could be seen within the nuclear envelope (Fig. 

5.11 F). Naked nucleocapsids (without a secondary envelope) in the cytoplasm of infected 

cells had formed by 1 dpi, some were electron dense while others were empty (Fig. 5.12 D). 

Secondary enveloped particles could also be seen in the cytoplasm of some cells by 1 dpi, 

which still harboured large numbers of capsids in the nucleus (Fig 5.12 E). 

(b) KHV virus in infected cells after 3-7 dpi 

After 3dpi, although the number of infected cells had increased, there were still relatively few 

virus particles noted and many cells remained uninfected. Extracellular virions were observed 

at this stage from KF-1 cells but not CCB cells (Fig.5.13 C). Primary envelopment was 

clearly seen with up to three or four nucleocapsids contained within the perinuclear cisterna 

at one time (Fig. 5.13 D-E). Mature virions were observed in intracytoplasmic vesicles of 

CCB cells (Fig. 5.13 A-B) and capsids were observed at various stages of maturation, 

including more para-crystalline-like arrays in the nucleus of KF-1 cells (Fig. 5.13.F).  

After 5-7dpi there were large numbers of virus particles in both cell lines at various stages of 

morphogenesis. After 5 dpi there were a greater abundance of cytopathic vacuoles with some 

containing internalised mature enveloped virus particles, while other virions had budded into 

cytoplasmic vesicles (Fig. 5.14 A). Mature virions were often observed associated with, and 

budding within, vesicles from the Golgi apparatus (Fig. 5.14 B) or from the cell membrane, 

which were sometimes in clumped extracellular aggregates (Fig. 5.14 C-D). The large 

vacuoles observed in the cytoplasm of infected cells of both cell lines (Fig. 5.15 A and C) 

often contained virus particles or lysed virus-like capsid structures. 
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Figure 5.12 TEM micrographs of CCB and KF-1 cells infected with Koi herpesvirus 4 hpi – 1 dpi. (A) Uninfected CCB cell (B) Infected 

KF-1 cells 4 hpi with paracrystalline formation of capsids in the nucleus (C) High mag. of capsids shown in square of B (D) Naked capsids 

within the cytoplasm of infected KF-1 cells after 1 dpi. Some capsids are mature (electron dense), while others are empty (E) Infected CCB cells 

after 1 dpi showing the formation of capsids within the nucleus and mature virions that have a acquired a secondary envelope in the cytoplasm 

(F) High mag. of the mature secondary enveloped virion of square shown in E. N = nucleus; PCA = Paracrystalline array of capsids; NC = Naked 

capsids; C = Capsids. Scale bars are not shown in B, C, D and E because of technical fault 
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Figure 5.13 TEM micrographs of CCB and KF-1 cells infected with Koi herpesvirus 3 dpi. (A) Infected CCB cells with mature secondary 

enveloped virions (B) High magnification of mature secondary enveloped virion (shown in square of A) within a vesicle in the cytoplasm (C) 

Infected KF-1 cells with budding infectious enveloped mature virion on cell membrane (D) Infected CCB cells containing capsids at various 

maturational stages in the nucleus and nucleocapsids budding through the nuclear envelope and acquiring a primary envelope (E) High 

magnification of square in D showing 3 primary enveloped virions within the nuclear envelope while smaller immature and mature capsids 

remain in the nucleus. (F) Infected KF-1 cell with paracrystalline array of capsids formed within the nucleus. N = Nucleus; SE = Secondary 

enveloped virion; V = Vacuole; PCA = Paracrystalline array of capsids; CPV = Cytopathic vacuole; M = Cell membrane. IC = Immature capsid; 

MC = Mature capsid; PE = Primary enveloped virion; NE = Nuclear envelope; M = cell membrane 
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Figure 5.14 TEM micrographs of CCB and KF-1 cells infected with Koi herpesvirus 5-7 dpi. (A) Low magnification of infected CCB cells 

6 dpi with a number of cytopathic vacuoles and secondary enveloped mature virions budding from various membranous organelles. The red star 

(*) indicates secondary enveloped virion within a cytopathic vacuole. (B) Mature secondary enveloped virion within the cell cytoplasm, budding 

from golgi apparatus derived vesicle in CCB cells, 7 dpi (C) Infected KF-1 cells, 6 dpi with many mature secondary enveloped virions budding 

through the cell membrane (D) High mag. of square in C showing aggregates of extracellular, mature, infectious secondary enveloped virions (E) 

N = Nucleus; SE = Secondary enveloped mature virion; M = Cell membrane; GB = Golgi body 
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Figure 5.15 TEM micrographs of CCB and KF-1 cells infected with Koi herpesvirus 5-7 dpi. (A) Large vacuoles in the cytoplasm of 

infected KF-1 cells, 6 dpi – note the presence of several electron dense virus particles (B) High magnification of mature secondary enveloped 

virion in infected CCB cells, 6 dpi – note the defined layers: glycoprotein envelope with surface projections, tegument layer, capsid and electron 

dense core (C) Infected KF-1 cells, 7 dpi, containing secondary enveloped mature virions within cytoplasmic vesicles. Large cytopathic vacuoles 

are also evident containing cell debris (D) Clusters of naked/unenveloped capsids in the cytoplasm of infected CCB cells after 7 dpi Note the 

protruding core into the cytoplasm (E) Intranuclear folds of the inner nuclear membrane in CCB cells surrounded by capsids of various 

morphogenic stages after 7 dpi. (F) Infected CCB cell, 7 dpi exhibiting proliferation of the inner membrane of the nuclear envelope with vesicles 

containing virus particles forming within the nucleus N = Nucleus; NC = Naked capsids (Arrows showing mature nucleocapsids); PC = 

Protruding core; CPV = Cytopathic vacuole; SE = Secondary enveloped virions; INF = Intranuclear folds; INV = Intranuclear vesicle. 
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Clusters of naked nucleocapsids were often found in close proximity to these 

vacuoles, sometimes with protruding cores (Fig. 5. 15 A and D), and secondary enveloped 

mature virions within intracytoplasmic vesicles (Fig. 5.15 B and C). By this stage the 

compartments of the mature herpesvirus virion were clearly defined, including the projections 

of the glycoprotein envelope, amorphous tegument layer, capsid and dense core (Fig. 5.15 B). 

The nuclei were often deformed at late infection stages exhibiting a thickening and even re-

duplication of the nuclear membrane giving rise to a number or irregular formations (Fig. 

5.15 E-F). Some of the irregular nuclei consisted of inner nuclear vesicles (Fig. 5.15 F) or 

even folds, which were surrounded by nucleocapsids at various stages of maturation (Fig. 

5.15 E). 

5.3.3.3 Confocal analysis of capsid and glycoprotein antigen expression using MAbs 

through image analysis 

(a) Confocal microscopy of KHV antigen expression during the course of infection 

The fluorescence signal emitted from the MAbs detecting KHV envelope glycoprotein (MAb 

10A9) and KHV capsid protein (MAb 20F10) indicated differences in the expression of these 

2 virus epitopes as observed by confocal microscopy, which corresponded with results 

obtained in Section 5.3.2 using a 96-well IFAT procedure. Very weak signals were first noted 

from MAb 10A9 in KF-1 cells after 8 hpi (Fig. 5.16). Staining increased dramatically after 5 

dpi with nearly all cells in analysed sections exhibiting cytoplasmic signals. In contrast, no 

obvious signals were observed visually for MAb 10A9 until 1 dpi in CCB cells when weak 

fluorescence was first observed. Intensive staining with MAb 10A9 could be observed only 

after 7 dpi in CCB cells (Fig. 5.17). 

Early antibody binding was evident at a very early stage of infection, 4 hpi, in KF-1 

cells when screened with MAbs detecting KHV capsid protein (MAb 20F10) (Fig. 5.16). 

However, the signal often appeared cytoplasmic despite initial characterisation of the MAb as 
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producing nuclear signals. The intensity of signals in KF-1 cells increased from 24 hpi and 

very obvious signals were observed after 1 dpi, which advanced further after 3 dpi (Fig. 

5.16). CCB cells revealed a much lower degree of staining until 1 dpi, but by 3 dpi most cells 

expressed a high level of cytoplasmic fluorescence, this increase continuing in intensity to 

after 5 and 7 dpi (Fig. 5.17). 

Despite initial attempts to seed all wells with the same density of cells, many cells did 

not adhere well to the glass cover slips used in the trial resulting in a variation in cell 

confluence during the course of infection. Negative controls, including an ISA MAb and cells 

screened only with diluent, were always negative although some obvious non-specific signal 

was occasionally observed, likely associated with debris and artefacts (i.e. autofluorescing 

cover slip adhesive) from processing. 
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Figure 5.16 Confocal micrographs of FITC fluorescence signals from Koi herpesvirus 

infected KF-1 cells screened with MAbs 10A9 and 20F10 during infection. The time of 

sampling is indicated left of the micrographs. The filter channels used during scanning the 

sections is indicated above the micrographs, i.e. the green channel only shows virus signals 

for glycoprotein (MAb 10A9) or capsid (MAb 20F10) antigens and blue/green merge shows 

virus signal in relation to the cell nuclei (blue) 
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Figure 5.17 Confocal micrographs of FITC fluorescence signals from Koi herpesvirus 

infected CCB cells screened with MAbs 10A9 and 20F10 during infection. The time of 

sampling is indicated left of the micrographs. The filter channels used during scanning the 

sections is indicated above the micrographs, i.e. the green channel only shows virus signals 

for glycoprotein (MAb 10A9) or capsid (MAb 20F10) antigens and blue/green merge shows 

virus signal in relation to the cell nuclei (blue) 
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(b) Quantification and statistical differentiation of glycoprotein and capsid antigen 

expression through image analysis 

(i) Transformation and separation of fluorescence into quantifiable data 

Different parameters were successfully obtained from cultures scanned by confocal 

microscopy, which were subsequently transformed from DAPI and FITC fluorescence signals 

and utilised for image analysis (Fig. 5.18). The two parameters, HIMAB and CELL revealed 

a large degree of background autofluorescence of monolayers, i.e. signal above the set 

threshold of HIMAB or the total cell area fluorescence, in a number of sections caused by 

either contaminating debris or artefacts from processing such as the adhesive used during 

cover slipping. Therefore only NUC, MND and MBD were used to determine the relative 

specific fluorescence from anti-KHV MAbs detecting KHV antigens. 

(ii) KHV glycoprotein and capsid antigen expression measured by image analysis 

Capsid antigen expression was observed as early as 8 hpi in CCB cells and 4 hpi in KF-1 

cells (Fig. 5.19 A and C) and an increase in expression was noted after 24 hpi in CCB and 

KF-1 cells. After 3 dpi there was a dramatic increase in capsid antigen expression of >10 fold 

in KF-1 cells (Fig. 5.19 D), which was more gradual in CCB cells up to 7 dpi (Fig. 5.19 B). 

The nuclear associated capsid expression and antigen abundance was much greater than that 

associated with the cytoplasm after 24 hpi (Fig. 5.19 A-D). Envelope glycoprotein antigen 

expression was also detectable after only 8 hpi in CCB cells and 4 hpi in KF-1 cells (Fig. 5.19 

A and C), although no substantial increase was noted until 5 dpi in both cell lines. After this 

point there was high abundance within CCB cells, after 7 dpi, but the levels dropped in KF-1 

cells after 5 dpi, possibly as a result of many cells having lysed by this stage in the KF-1 cell 

line (Fig. 9 H2). Notably, the levels of glycoprotein antigen at the later stage of infection in 

CCB cells had surpassed those of the cytoplasm-associated capsid antigen (Fig. 5.19 B). 
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Figure 5.18. Transformation of confocal microscopy fluorescence for image analysis in 

Koi herpesvirus (KHV) infected KF-1 and CCB cells screened with MAbs 10A9 and 

20F10. (A) Example for KHV infected CCB cells after 3 and 7 dpi screened with MAb 

20F10 .The parameter converted for image analysis is indicated above each column. Top row 

= confocal micrographs, bottom row = image utilised for image analysis subsequent to 

transformation (B) Images of quantification parameters utilised by the image analysis macro. 

The parameter measured for image analysis is above the micrographs and above this is the 

cell line used. Time post infection is indicated on the right of each row as well as the MAb 

used for screening. 
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Figure 5.19 Koi herpesvirus antigen expression by differential fluorescence of control and infected cells in vitro using image analysis of 

capsid and envelope glycoprotein MAb binding. (A) KHV Infected CCB cells first 24 hpi (n = 1 cell culture); (B) KHV Infected CCB cells 1-

7 dpi (n = 1 cell culture); (C) KHV infected KF-1 cells first 24 hpi (Mean n = 2 cell cultures); (D) KHV infected KF-1 cells 1-7 dpi (Mean n = 2 

cell cultures). 
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As the same inoculum of virus was used to simultaneously inoculate all monolayers in 

the various vessels prepared later for TEM, real time qPCR, microtitre plate and confocal 

IFAT analysis, only limited replicates could be prepared due to logistical constraints. 

Therefore analyses of variance of medians between early (1-24 hpi) and later stage (2-7 dpi) 

nuclear (MND) and cytoplasmic (MBD) antigen expression were only attempted in infected 

KF-1 cells after pooling data from early infection stages (2-24 hpi) and later infection stages 

(2-7 dpi) (n=6) by using the Kruskal-Wallis test. There were no significant differences in 

nuclear signal (NUC) between early and later stages of KHV infection in either KF-1 

(p=0.252) or CCB cells (p=0.509). There was significantly greater expression of both 

glycoprotein (MAb 10A9) (p=0.05) and capsid (MAb 20F10) (p=0.016) antigens at later 

stages of KHV infection compared to early stage infection in KF-1 cells. There were no 

significant differences, however, in antigen expression between the MAbs 10A9 or 20F10 at 

either an early or late stage of infection in KF-1 cells. 

(iii) Differential antigen localisation and infected cell abnormalities highlighted by 

confocal microscopy 

At later stages of infection, a high abundance of capsid antigen associated with both the 

nucleus and cytoplasm was observed, particularly in highly confluent areas of the cell 

monolayer (Fig. 5.20 A1). In contrast, the glycoprotein antigen was never expressed within 

the nucleus, but signals were often intense around the cell membrane (Fig. 5.20 C). In some 

cells capsid antigen signals were associated solely with the nucleus (Fig. 5.20 A2-A3). Strong 

signals with MAb 10A9 also revealed associated binding around the periphery of the nucleus 

and plasma membrane (Fig. 5.20 C2-C3) and the formation of giant cells (Fig. 5.20 C4-C5). 

Screening with other anti-KHV MAbs at this later stage of infection showed the extent of 

syncytium formation with some giant cells containing up to 20 nuclei (Fig. 5.20 B), and 

differential nuclear signals, to those expressed by the capsid antigen (Fig. 5.20 D).
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Figure 5.20 Confocal micrographs of Koi herpesvirus (KHV) infected KF-1 and CCB 

cells in vitro labelled with monoclonal antibodies (MAbs) to different virus antigens. 

(A1-A3) KHV infected cells labelled with MAb 20F10 detecting virus capsid (A1) Confluent 

region of KF-1 cell monolayer with cytoplasmic and concentrated nuclear signals of KHV, 7 

dpi; (A2) High magnification overlay of capsid antigen signals in the nucleus; (A3) Virus 

signal only of cells shown in A2; (B1) Virus signal of multinucleated giant (mgc): infected 

CCB cells labelled by MAb 11A4 recognising KHV glycoprotein; (B2) Nuclei of cells shown 

in B1 - dashed ring indicates nuclei of giant cell (C1-C5) KHV infected cells labelled with 

MAb 10A9 detecting virus envelope glycoprotein (C1) A clump of infected blebbing (bc) 

CCB cells exhibiting abundant glycoprotein antigen signals in the plasma membrane; (C2) 

Signals associated with the periphery of the nucleus (pn) and plasma membrane (m); (C3) 

nucleus stained by propidium iodide of same infected cell as C2 – curved arrow showing 

viral signal around periphery of nucleus; (C4) giant cell (gc) formation exhibiting 

glycoprotein staining around the plasma membrane. Note the concave distribution of 

fluorescence around the nucleus indicated by red star; (D) 3D image of contrasting nuclear 

staining by MAb 7C6 compared to 20F10. Cytoplasmic signals are also prominent. Blue = 

DAPI/propidium iodide stained nuclei (in overlay micrographs) apart from C3; Green = FITC 

staining of virus; Visual interpretation of D requires 3D spectacles as indicated by . 

Thin arrows = nuclear associated antigen; Thick arrows = membrane associated antigen; 

Arrow heads = cytoplasmic associated antigen.  
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5.4 – Discussion 

5.4.1 KHV protein profiling and binding characteristics of MAbs 

Initial screening of all MAbs by ELISA, using sucrose purified whole KHV virus as antigen, 

demonstrated the extent to which recognition of the whole virion differs depending on the 

epitope target of the MAb. The concentration of antibodies for 8 MAb hybridoma cell lines 

was standardised, thus differences in binding cannot be explained simply by variations in the 

number of antibodies present to recognise virus epitopes of the soluble antigen in the wells. 

Where MAbs were not concentrated and purified, very low absorbance values were obtained, 

e.g. with MAb 7C6, which has previously been shown to work very well in ELISA (Aoki et 

al., 2009), thus the hybridoma supernatant and ascites fluid were likely too dilute to give 

strong positive signals. Therefore the high level of antibody binding of MAb 10A9, for 

example, compared to MAbs 11A4, 12C4 and 20F10, may correspond to the fact that the 

envelope glycoprotein epitope is recognised by MAb 10A9 and an internal glycoprotein, 

primary envelope and capsid epitopes are recognised by MAbs 11A4, 12C4 and 20F10, 

respectively. It is therefore possible that the differences observed between antibody-antigen 

binding complexes were associated with envelope glycoprotein epitopes being more abundant 

and exposed in whole purified, concentrated KHV virions than epitopes associated with 

internal glycoproteins, primary envelope proteins and capsid proteins. Internal virus proteins, 

including capsid, and certain primary envelope proteins are not found in extracellular virions 

of alphaherpeviruses such as PrV and HSV-1, i.e. UL31, UL34 and gD (Klupp et al., 2000; 

Skepper et al., 2001; Mettenleiter, 2002; Loret et al., 2008). Thus, their presence in the 

purified KHV stock may have derived from co-purification of disrupted virions, albeit 

relatively few compared to intact virions, during ultracentrifugation, resulting in exposure to 
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and recognition by their respective MAbs. Co-purification of internal virion proteins in 

apparently isolated membranes, including those associated with capsids, has been reported 

from HSV-1 infected cells (Gibson and Roizman, 1972). 

In the present study, 20-22 bands were observed after silver staining SDS-PAGE gels 

containing purified KHV virions. This is similar to the 21 bands found in Coomassie blue 

stained gels by Adkison et al. (2005), but is less than the 31 polypeptides reported by Gilad et 

al. (2002) and 25 bands by Michel et al. (2010b). Dong et al. (2011) recently reported at least 

30 visible bands from the first isolated KHV virus from China. Although variations between 

geographically-associated virus genotypes has been reported for KHV isolates (Kurita et al., 

2009; Han et al., 2013), homogeneity of the KHV proteome has been demonstrated (Gilad et 

al., 2002; 2003), thus the geographic origin of KHV isolates is unlikely to be a factor in 

protein profile variations. Instead, this perhaps highlights differences in the purification 

process and the subsequent SDS-PAGE. This also highlights limitations in using Western 

blotting to examine the immunogenic proteins of KHV, as important polypeptides may go 

undetected or may not be successfully transferred to the membrane for immunoblotting. The 

high proportion of KHV protein retained within the host cell, as demonstrated by both 

immunofluorescence approaches for determining antigen expression, i.e. the high levels of 

capsid antigen still associated with the nucleus after 7 dpi (Fig. 5.19 A and B), and the high 

copy numbers of viral DNA retained in cell pellets during infection (Fig. 5.10), may also help 

to explain the loss of some virus proteins, following purification of the virions by sucrose 

gradient ultracentrifugation, as the antigens remain associated with cellular compartments. 

Michel et al. (2010b) reported that there were a number of bands specific for KHV in 

infected cell lysates that were either absent or less intense following purification, thus 

indicating that a lot of the KHV antigen formed in cell culture is retained with cellular 
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membranous organelles, even after lysis. The dominant band was observed at 130 kDa, which 

has previously been identified as the dominant KHV polypeptide by several authors (Gilad et 

al., 2002; 2003; Adkison et al., 2005; Michel et al., 2010b; Dong et al., 2011). Interestingly, 

all the MAbs reacted with this 130 kDa band, as well as a high molecular weight protein at 

250 kDa. Despite some conserved antigen-recognition by certain MAbs, differences were 

observed between the MAbs in the proteins they recognised, which was expected since they 

were raised to different KHV structural proteins, e.g. 10A9 recognising an envelope 

glycoprotein and 20F10 recognising a capsid antigen. A number of cellular proteins were still 

identified with the same MW as purified virion lysates indicating there could be some cellular 

proteins present either retained within the mature virion, or contaminants from lysed cells 

during harvest and purification. This is possible as extracellular virions were harvested after 

extensive cell lysis (full CPE, 10-14 dpi), whereby cell protein contamination was minimised 

in another study by harvesting virus at the peak of the virus growth curve (i.e. 4 dpi) (Michel 

et al., 2010b). It is known that host cell proteins are associated with KHV virus particles both 

in vitro (Michel et al., 2010b) and in vivo (Gotesman et al., 2013). 

All concentrated MAbs detected KHV antigens in Western blotting and IFAT, while 

MAbs to rORF62 and rORF68 proteins (Aoki et al., 2011) were presumably too dilute to 

produce bands. Positive staining was, however, obtained using these MAbs in IFAT during a 

later stage of the infection, when copious viral antigen was present within infected cultured 

cells. The negative results in Western blotting may be associated with a low abundance of 

proteins encoded by ORF62 and 68 being transferred onto the membrane. 

The multiple bands observed in immunoblots, were not expected as each MAb should 

be monospecific and recognise only a single epitope, however, previous characterisation of 



Chapter 5 – Antigen expression and characterisation 

 

 321 

  

MAb 7C6, detecting rORF68 resulted in 3 bands (Aoki et al., 2011). These findings were 

thought to be the result of ORF68 endcoding a polyprotein and thus the 3 proteins detected 

were either a result of cleavage products by proteases, or alternative splicing or glycosylation 

of the protein after cleavage (Aoki et al., 2011). Although no bands were observed using 

MAb 7C6 in the current study, due to the low concentration as mentioned earlier, all MAbs 

used at 20 µg mL
-1

 did show similar multiple banding by Western blot. In herpesviruses, 

protease precursors that undergo autoprocessing and cleavage in order to achieve cleavage of 

subsequent polyproteins during capsid maturation and shell assembly (Yu et al., 2005), can 

also exhibit multiple bands when screened by MAbs, e.g. the scaffold protein and protease 

noted for Marek’s disease virus (MDV) (Laurent et al., 2007) and Lung-eye-trachea disease 

virus (LETV) (Coberley et al., 2002). Alternatively, MAbs detecting glycoproteins may also 

recognise the antigen at multiple molecular weights due to a larger molecule being 

synthesised following glycosylation and other post-translational modifications resulting in the 

addition of oligosaccharides, and/or glycosylation intermediates, which were shown 

previously for Feline herpesvirus (Mijnes et al., 1996) and Bovine herpesvirus-4 (Machiels et 

al., 2011), respectively. Protein processing and modifications during KHV infection could 

perhaps explain the bands observed for at least some of the MAbs that are known to detect 

KHV capsid antigens and glycoproteins. Following intensive blocking many of the multiple 

bands were eliminated, except for intense bands at 250 kDa, which may be associated with 

large glycosylated proteins with carbohydrate moieties that did not migrate quickly through 

the gel and may not have separated sufficiently. Part of the reason for reduced mobility can 

be the lack of binding of SDS to large carbohydrates reducing the charge to mass ratio of 

protein-SDS complexes resulting in aberrant migration and increased apparent molecular 

weights (Hames and Rickwood, 1990). However, an intensively stained band was still 
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evident at approximately 100 kDa, recognised only by MAb 20F10. MAb 20F10 was also the 

only MAb known to recognise a capsid-associated antigen, thus it could be hypothesised that 

this ~100 kDa protein is a non-glycosylated capsid antigen for which electrophoretic 

migration through the gel is not inhibited by large carbohydrate moieties. However, further 

analysis on detergent extracts of purified KHV virions, i.e. with Triton-X, similar to the 

methods used for envelope protein characterisation of other alloherpesviruses, e.g. CCV or 

AngHV-1 (Liu et al., 2011; Van Beurden et al., 2011b), using immunogold TEM or 

immunoprecipitation, should be undertaken to confirm this. 

Due to the large panel of MAbs tested, high throughput analysis of their expression 

characteristics was deemed desirable to elucidate which of the recognised antigens play vital 

roles in KHV replication and virion formation, i.e. is abundantly expressed and/or associated 

with a specific stage during virion assembly. 

5.4.2 Variation of KHV antigen expression detected by MAbs using microtitre 

plate immunofluorescence (IF) 

The 96-well microtitre plate, semi-quantitative, IF approach developed for analysing KHV 

antigens in the present study provided a number of benefits over conventional methods that 

apply anti-viral MAbs for determining levels of infection in cells. These methods rely on 

manual counting of infected (fluorescently stained) and non-infected cells without any 

consideration to the amount of intracellular antigen (detected by the MAb) being produced 

within the cells during infection (Kao et al., 2001; Espinoza and Kuznar, 2002; Abaitua et al., 

2012). Furthermore, as the approach designed in the current study employed a 96-well 

microtitre plate, high throughput analyses of various MAbs to the antigens of interest could 

also be undertaken on the same infection of the same batch population of sub-cultured cells. 
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The approach in this study followed a similar methodology to the microtitre plate 

assay developed for measuring the inhibitory effects of various reagents against Rotavirus 

(Xijier et al., 2011), except for the fact that the emphasis here was to determine KHV antigen 

expression characteristics during the course of infection, thus taking into consideration 

different stages of the virus replication and maturation. However, problems were encountered 

following attempts to screen the panel of anti-KHV MAbs against virus antigens expressed at 

different stages post infection due to background fluorescence, particularly in KF-1 cells, 

which was evident by the high level of non-specific binding of the MAb cocktail against 

mock infected cells. Despite this affecting the interpretation of relative antigen expression, 

there were still clear differences observed between the MAbs. Less background was observed 

with CCB cells, and the expression trends of antigens mirrored those seen with KF-1 cells at 

the later stages of the infection. Interestingly, elevated protein abundance was not detected by 

MAbs 10A9, 17A9 or 21D11, until the most advanced stages of virus infection, despite these 

producing the greatest recognition of whole purified KHV virions by ELISA (not shown). In 

contrast, progressively greater levels of protein were recognised by MAb 20F10 throughout 

the trial, despite this MAb producing much lower absorbance signals by whole virus ELISA. 

These results may support the previous hypothesis in Section 5.4.1 that the ELISA 

absorbance values were influenced by the virus structural protein detected by the MAb. 

Previous developments of quantitative assays for aquatic viral pathogens, i.e. IPNV, VHSV 

and IHNV, using microtitre plate immunofluorescence have also provided variable results 

(Falk et al., 1998), which may be due to low viral abundance of the target antigen in the 

infected cells. Thus, quantification of the protein abundance of different MAbs detecting 

various structural or non-structural proteins of the virus should perhaps be performed to 

reveal the most sensitive MAb for that application, especially for an assay designed for live 
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virus titration. This proposal is supported further, not only by the results of current 

investigation, but from studies relating to mammalian virus using immunofluorescence, e.g. 

the variation in sensitivity of the test developed for detecting the mammalian virus DV, 

where the MAb detecting the nucleoprotein, NS1, was, as expected, the most sensitive at an 

early stage of infection (Kao et al., 2001). Recently, a clinical shell vial immunofluorescence 

assay was used to determine the sensitivity of an improved ISAV culture technique, which 

was able to detect viral antigens after only 2 dpi in the absence of CPE, although quantitation 

relied on manual infected cell counts (Molloy et al., 2013). Better validation could perhaps be 

achieved by spectrophotometric quantitation of fluorescence. 

Antigen expression of both the envelope glycoprotein and capsid protein was detected 

after only 24 hpi, but only capsid expression continued to increase considerably and at 

significantly greater levels than those of the envelope protein between 2-7 dpi. These 

differences could affect the sensitivity of MAb-based diagnostic assays such as those 

mentioned above. A recent study on IFN I responses to KHV in vitro using flow cytometry 

did not successfully detect KHV infected CCB cells until 4 dpi with a MAb detecting a KHV 

glycoprotein despite high viral virulence with 90% of cells positive by 6 dpi (Adamek et al., 

2012). Thus spectrophotometric quantification of KHV infected cell immunofluorescence 

could be more, or at least as, sensitive as that determined by flow cytometry, especially if an 

internal virus capsid antigen is utilised. There was also only minimal detection of the 

envelope glycoprotein antigen investigated in the current study until later stages of infection. 

There were a number of limitations to the microtitre method including the inability to 

(1) determine the percentage of cells infected, (2) assess virus induced cell abnormalities and 

(3) localise recognised antigen in infected cells. Non-specific binding of certain MAbs within 
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the control MAb cocktail, e.g. MAb 16A9 also made interpretation of the data difficult. An 

alternative approach was therefore sought to enable antigen quantitation by 

immunofluorescence while providing an opportunity for visual and qualitative analysis of 

virus induced cell deformation during the course of infection. 

5.4.3 Kinetics of KHV morphogenesis and expression of capsid and envelope 

antigens 

The morphogenesis of KHV has been described in cultured cyprinid cells, CCB, NGF-2 and 

NGF-3 (Miwa et al., 2007), however, analysis was only undertaken after 7 dpi. In the current 

study attempts were made to (1) determine the sequence of morphological changes of the 

KHV virion following initial infection within two of the most commonly used cell lines for 

KHV propagation, CCB and KF-1, and (2) relate this to the expression of antigens of 

different structural proteins recognised by MAbs. 

One of the most notable findings of the current investigation was the presence of 

capsids within the cell nucleus after only 1 hpi. This finding was unexpected as DNA 

replication of other herpesviruses is not initiated until 3 hpi (Ben-Porat and Veach, 1980) and 

recently Ilouze et al. (2012b) demonstrated that KHV DNA synthesis occurs between 4-8 hpi 

in infected CCB cells. Capsid assembly would therefore not be expected until late mRNAs 

have been translated and the structural proteins incorporated into the nucleus, and 

furthermore, the finding is in contrast to previous reports of cultured cells infected with other 

alloherpesviruses and mammalian herpesviruses. Pseudorabies virus and channel catfish virus 

capsids for example were not detected in the nucleus of infected cells until 4 hpi (Wolf and 

Darlington, 1971; Granzow et al., 1997). This may therefore constitute an artefact caused by 

contaminating infected cells from the inoculum as a result of insufficient monolayer washing 
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following virus absorption. However, no evidence of later stages of virion maturation were 

observed at this stage of infection and, as expected, no discernible antigen (late structural 

proteins) expression was detected by either MAb 10A9 or 20F10 at this stage. Although high 

viral DNA loads were also detected within cell pellets and tissue culture supernatant at very 

early stages, viral DNA concentrations of KHV infected cells has previously been reported to 

be indistinguishable from the original inoculum after just 1 hpi (Dishon et al., 2007), which is 

not dissimilar to other herpesviruses (Ahlqvist et al., 2005). Thus there appears to be a rapid 

absorption of infectious virions to the cells following inoculation. Shifting of PrV infected 

cells from non-permissive to permissive temperatures results in virion attachment to the cell 

membrane within 1 minute and intracellular importation of virions after only 5 minutes 

(Granzow et al., 1997). Imported PrV nucleocapsids are found in close proximity to 

microtubules, sometimes already docked at the nuclear pore within 30 minutes (Granzow et 

al., 1997; Kaelin et al., 2000). In the current study, one particular cell was observed with a 

nucleocapsid-like particle in close proximity to a coated pit, e.g. possibly clathrin coated for 

receptor mediated endocytosis (Cross and Mercer, 1993), which extended intracellularly from 

the plasma membrane. Similar findings have been associated with viropexis (entry of virus to 

the cell via coated pits) in early infection stages of PrV (Granzow et al., 1997) and possibly 

HSV-1 (Nicola et al., 2003). Although no microtubules could be easily distinguished, this 

may have been a de-enveloped nucleocapsid migrating to the nucleus. In contrast, other cells 

contained electron dense and electron lucent capsid-like structures of approximately 100 nm 

that resembled early stage empty capsids of HSV-1 degraded particles and revertant mutants 

(Campadelli-Fiume et al., 1988; Abaitua et al., 2012). In the study by Abaitua et al., (2012) 

these capsids were situated around the nuclear envelope, unlike the cytoplasmic distribution 

in the current study. Nonetheless, one empty capsid was found less than 100 nm from a 
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potential nuclear pore potentiating its possible role in viral DNA release into the nucleus of 

that cell. Granzow et al. (1997) reported ‘oddities’ in the early infection stages of PrV where 

virions were found within coated pits, contained in coated vesicles and inside structures 

resembling secondary lysosomes within 20 minutes post infection, which did not affect virion 

structure, however, the large putative secondary lysosomes (distinguished by the lucent 

appearance and presence of degraded material in contrast to the homogenous electron density 

of primary lysosomes (Cross and Mercer, 1993)) that were also in close association with the 

early cytoplasmic capsids in the current study, may have released these unenveloped, empty 

capsids as disrupted virions. If these unusual virion formations are the result of receptor-

mediated endocytosis, which is thought to result in a dead-end pathway of penetration in 

other herpesviruses (Campadelli-Fiume et al., 1988), they would not be expected to result in 

productive infection. 

The capsids that were observed in the nucleus at this very early stage were always 

immature and devoid of DNA, and no later stages of capsid maturation were observed, thus 

they may be pre-formed capsids (procapsids) associated with ‘early’ late (γ-1) major 

structural proteins, which may be synthesised prior to DNA replication, e.g. VP5, the major 

capsid protein of HSV-1 (Ginsberg, 1988; Spencer et al., 1998). Structural protein transcripts 

of KHV have been detected in infected CCB cells as early as 2 hpi, prior to DNA replication 

(Ilouze et al., 2012b). Other structural proteins have also been found incorporated into 

herpesvirus infected nuclei during the early stages. ‘Early’ late tegument proteins derived 

from inoculum have previously been reported in the nucleus after 2 hpi, e.g. VP8 of BoHV-1 

and pp65 of human cytomegalovirus (Grefte et al., 1992; Van Drunen Little-van den Hurk et 

al., 1995). However, further studies would have to be undertaken to determine the underlying 

factors associated with the empty cytoplasmic capsids and ‘immediate’ nuclear capsid 
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formations within KHV infected KF-1 and CCB cells observed after 1 hpi in the current 

study. Analysis of the processes involved in cell entry of herpesviruses, which are rapid, have 

been achieved previously by cold temperature manipulation after initial inoculation (Granzow 

et al., 1997; Klupp et al., 2000; Nicola et al., 2003; Abaitua et al., 2012).  

Within the first day of infection cytopathic changes were observed including nuclear 

hypertrophy and margination of chromatin. This is similar, although not as rapid as the 

chromatin margination and initiation of syncytia after only 2 hpi reported in CCV infected 

cells (Wolf and Darlington, 1971). This is not surprising as infectious progeny virus can be 

isolated from CCV infected catfish after only 1 dpi (Kancharla and Hanson, 1996) compared 

to the lag time of KHV infected carp (Dishon et al., 2005; Matras et al., 2012; Dong et al., 

2013), which may correspond to differences in viral replication kinetics. By 4 hpi capsids 

were found within the nucleus at all stages of maturation, which is similar to findings for 

other herpesviruses (Nii et al., 1968; Wolf and Darlington, 1971; Nii, 1991; Granzow et al., 

1997). These exhibited 3 forms; the most abundant of which contained a circular sphere 

within the capsid composed of concentric circles with the inner containing heterogenous 

material, thought to be capsomers and scaffolding protein in PrV (Granzow et al., 1997). The 

other two types were either electron dense with varied morphology or empty with low 

electron density similar to those described previously for KHV and other herpesviruses 

(Granzow et al., 1997; Fuchs et al., 2007; Miwa et al., 2007; Miyazaki et al., 2008). Primary 

envelopment of nucleocapsids was also observed at this stage, but not in the cytoplasm, 

unlike the nucleocapsids reported for CCV (Wolf and Darlington, 1971), which indicates an 

eclipse stage of the infection was still ensuing (i.e. no production of infectious particles (Flint 

et al., 2009)) as mature infectious enveloped virions were absent until analysis after 1 dpi. 
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The envelope glycoprotein antigen was detected by IF after just 4 and 8 hpi in KF-1 

and CCB cells, respectively, using the more sensitive confocal laser microscope image 

analysis technique, compared to the spectrophotometric microtitre plate technique where the 

antigen was not detected until 24 hpi. The KHV antigen recognised by the envelope 

glycoprotein MAb 10A9 was recently identified as the product of ORF56 (Gotesman et al., 

2013) and transcripts of this ORF have previously been detected as early as 2 hpi in KHV 

infected CCB cells (Ilouze et al., 2012b). Herpesvirus envelope glycoproteins, such gB of 

HSV-1, are synthesised prior to DNA replication, albeit in small amounts (Ramachandran et 

al., 2010), thus the early detection of the KHV envelope glycoprotein antigen may be prior to 

DNA synthesis, glycosylation, and other post translational modifications. Furthermore, as this 

early expression is also associated with the nucleus, the protein may be present in the nuclear 

envelope as well as being abundant in extracellular virions, similar to the major glycoprotein, 

gB as well as gD, which are found in both primary and secondary enveloped virions (Gilbert 

and Ghosh, 1993; Gilbert et al., 1994; Campadelli-Fiume and Roizman, 2006). This would 

correspond to the nucleocapsids first found fused with the inner nuclear lamella and within 

the peri-nuclear cisterna after 4 hpi by TEM. The capsid antigen was also first detected 4-8 

hpi by confocal microscopy and image analysis, the cytoplasmic and nuclear associated 

protein abundance of which was similar, but slightly more to that of the envelope antigen at 

this stage. Not until after 24 hpi was there a pronounced difference in the expression and 

abundance of capsid antigen to envelope glycoprotein, which may be associated with the 

subsequent infection of neighbouring cells and the high proportion of non-infectious 

immature virions (i.e. with capsid protein) compared to mature infectious enveloped virions 

containing envelope glycoproteins. 
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Some of the intranuclear capsids had formed paracrystalline-like arrays after just 4 

hpi, which have previously been reported within infected carp gill epithelial cell nuclei 

(Hedrick et al., 2000), and in the cytoplasm of a newly developed koi caudal fin cell line 

(KCF-1) (Dong et al., 2011), however this formation, which is considered a rare sighting in 

KHV infected cell cultures (Dong et al., 2011), is typical of other herpesviruses (Nii et al., 

1968; Granzow et al., 1997). The inclusions were clearly seen by light microscopy, and may 

be associated with the intra-nuclear inclusion bodies (IIB) presented as one of the more 

characteristic histopathological signs of fish tissues with KHVD (Hedrick et al., 2005; 

Miyazaki et al., 2008; El-Din, 2011). In the current study many cells exhibited these capsid 

formations, which may be associated with the virulence of the isolate. These have been 

described as pseudocrystals in PrV infected cells, which are hypothesised to dissolve during 

replication and release individual capsids as they are not found in necrotic cells following 

replication (Granzow et al., 1997). The current study supports this as these capsid formations 

were no longer observed after 3 dpi, despite being found in numerous cells prior to this. 

Although fluorescence signals of MAb 10A9 detecting the envelope glycoprotein was 

localised to the nucleus following densitometric measurements by image analysis, this was 

never seen by confocal microscopy and synthesis of this protein de novo would not be 

expected in the nucleus. Further examination of the envelope glycoprotein localisation by 

stereo imaging at later stages of infection revealed compartmentalised signals at the periphery 

of the nucleus and around the plasma membrane, but not within the nucleus. This may be 

explained by protein synthesis of the antigen being recognised before post-translational 

modification, i.e. synthesis at the endoplasmic reticulum (peripheral nuclear staining) prior to 

its translocation to the golgi apparatus for glycosylation. The concurrent plasma membrane 

signals could represent the integration of viral glycoprotein into the viral envelope for later 
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budding events of the infectious virions at the cell membrane. Similar distributions of the 

highly conserved and immuno-dominant gB in HSV-1 (Pereira, 1994; Mocarski et al., 2007) 

have been demonstrated (Gilbert and Ghosh, 1993; Gilbert et al., 1994). This supports the 

earlier hypotheses for the multiple protein bands observed by Western blot (Section 5.4.1) as 

the MAb may recognise the same protein epitope prior to glycosylation, which is similar to 

the radio-immunoprecipitation and immunofluorescence studies undertaken on gE and gI of 

Feline herpesvirus (Mijnes et al., 1996). The antigen recognised by MAb 10A9 has been 

detected in peripheral blood leukocytes of potential reservoir fish for KHV such as sturgeon 

and goldfish (Kempter et al., 2009; Bergmann et al., 2010c), thus the antigen is not easily 

degraded in vivo. Furthermore, MAb 10A9 was recently utilised for affinity purification of 

KHV viral proteins in infected carp tissues, which successfully yielded 5 KHV proteins and a 

large number of host proteins (Gotesman et al., 2013). The antigen was subsequently 

identified as a glycoprotein encoded by ORF56 by electron ionisation coupled to mass 

spectrometry (ESI-MS) (Gotesman et al., 2013), although the expected molecular mass 

differed from that observed by Western blot analysis in the current study, this could be a 

result of modifications in vitro compared to in vivo. 

In contrast to the rapid production of progeny virus within 10-12 hours of the 

alloherpesvirus, CCV (Wolf and Darlington, 1971), extracellular infectious virion release 

appears much slower for KHV and other herpesviruses (i.e. 3-5 dpi) identified by growth 

curves (Ahlqvist et al., 2005; Dishon et al., 2007; Costes et al., 2008; 2009; Dong et al., 

2011). This was similar in the current study and corresponding real-time qPCR indicated 

elevated viral DNA concentrations from 3 dpi in cell pellets and 4 dpi in the media. Previous 

studies have indicated an increase in KHV viral DNA from 2 hpi – 4 dpi (Dishon et al., 2007; 

Ilouze et al., 2012b), which was not observed in the current study, but an increased 
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production of infectious secondary enveloped virions and glycoprotein antigen expression 

was seen after 3 dpi, in accordance with increased intracellular viral DNA. At later stages of 

infection all stages of virus morphogenesis could be observed and the sizes of capsids, 

nucleocapsids, primary enveloped and secondary enveloped virions were in agreement with 

other studies on KHV and other allopherpesviruses (Wolf and Darlington, 1971; Hedrick et 

al., 2000; 2005; Miwa et al., 2007; Miyazaki et al., 2008). There was a notable increase in 

expression and abundance of capsid protein after 1 dpi compared to envelope glycoprotein, 

which corresponds with the much fewer enveloped mature virions, i.e. containing envelope 

glycoproteins, until the later stages of infection, compared to the masses of non-enveloped 

capsids and nucleocapsids of various stages of maturation observed throughout the infection. 

Even these aberrant particles are able to leave the cell through exocytosis in other 

herpesviruses (Granzow et al., 1997), thus they may increase the production of non-infectious 

particles. Some non-infectious herpesvirus particles may be formed by the absence of a 

‘primary envelopment – secondary envelopment’ step pathway, e.g. in HSV-1 mutants where 

gD is retained to the ER, the production of extracellular virions with rare gD positive 

particles is still evident, which are derived directly from the cytoplasmic compartments 

during viral egress, either by possible cell lysis or a secretory pathway that bypasses the golgi 

apparatus (Skepper et al., 2001). Production of infectious KHV particles in cell cultures 

appears to be similar to other herpesviruses for which only ~100 virus particles may be 

infectious from ~10
4
-10

5
 total particles (Ginsberg, 1988). 

A high competition between nucleocapsids for budding, via the perinuclear envelope 

and intracytoplasmic vesicles of the TGN, may have contributed not only to the irregular 

formations found within the nuclear envelope, but also to the formation of syncytia. Re-

duplication of the nuclear envelope, intranuclear folds and incorporated vesicles may occur in 
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herpesvirus infected cells through the accumulation of virus-derived antigens within the 

cisternae, which corresponds to the intense perinuclear signals obtained with MAb 10A9 at 

later stages of KHV infection. Similar formations are found in alphaherpesviruses, where 

primary enveloped virions accumulate in the perinuclear region in the absence of proteins 

that are required for successful egress and further maturation (Granzow et al., 2004). This can 

result in thickening (Ghadially, 1997) leading to nuclear envelope proliferations, fusions and 

subsequent abnormal concentric lamellar structures (Nii, et al., 1968). These are 

characteristic cytopathologies observed in KHV and other herpesviruses (Nii et al., 1968; 

Wolf and Darlington, 1971; Nii, 1991; Ghadially, 1997; Miwa et al., 2007). Formation of 

syncytia on the other hand, is thought to result from mutations in glycoprotein genes (Pereira, 

1994), with an extensive production of intracellular mature and immature virus particles, 

which occurred more often in CCB cells than KF-1 cells, the latter of which were more prone 

to lysis. Syncytial formation has previously been described in KHV infected CCB cells 

(Adamek et al., 2012), which also occurred in the current study. Where giant cells had 

formed, concave formations around the nucleus were apparent with abundant glycoprotein 

staining (MAb 10A9) as well as number of multinucleated cells. This may explain not only 

the reduction in antigen abundance towards the end of the trial in KF-1 cells, but also the 

progressive increase in CCB cells, as viral particles may have been released gradually 

through budding instead of cell lysis. As a result of cell lysis there appeared to be a greater 

loss of virus from KF-1 cells. This may explain the higher copy numbers of viral DNA in the 

KF-1 cell supernatant, but greater copy numbers in CCB cell pellets at the latest stages of 

infection. The overall high viral DNA concentrations and expressed antigen, do not, however, 

directly correlate with the number of virus particles as, noted from HSV-1, as only about 25% 

of viral DNA and protein is considered to be assembled into virions (Ginsberg, 1988). 
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The increased number of cytopathic vacuoles at later stages, often containing 

infectious virus particles, may also be associated with vacuolation (i.e. CPE) at this time. 

which have also been associated with competitive budding processes in high infection 

experiments. This is due to either fusion of a large number of secretory vesicles, or many 

virions budding through limited golgi-derived vesicles (Granzow et al., 1997), and also 

corresponded with the greater expression of glycoprotein antigen at the later stages of 

infection. Elevated expression of the capsid antigen was localised to the nucleus, but was also 

highly abundant in the cytoplasm, which is comparable to nucleocytoplasmic shuttling 

proteins such as VP19C of HSV-1, which has been suggested to function for anchoring viral 

DNA to the capsid and facilitating transport of competent proteins to the site of capsid 

assembly (Zhao and Zheng, 2012). Thus the capsid antigen in the current study may play a 

similar role. The associations between stages of KHV morphogenesis and the abundance and 

expression of capsid and glycoprotein antigens are illustrated schematically in Fig. 5.21. 
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After Granzow et al. (1997) for illustration of Pseudorabies virus infection cycle 

Figure 5.21 Schematic diagram representing putative relationships between koi 

herpesvirus morphogenic development and capsid and envelope glycoprotein antigen 

expression. Different time divisions for the period when the respective virus particle are 

observed in infected cell cultures (CCB and KF-1) are represented by broken and stable red 

lines. The antigen expression determined by image analysis of confocal microscope derived z 

stacks are indicated below the illustrated cell. N = nucleus; C = cytoplasm; CV = coated pit; 

RER = Rough endoplasmic reticulum; E = endosome; Mt = Microtubule; TGN = Trans-golgi 

network; V = vesicle; Pa = paracrystalline array; vDNA = Viral DNA; En = enveloped 

glycoprotein; Ca = Capsid; RAE = Relative antigen expression 
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Although image analysis was only undertaken for MAb 10A9 and 20F10, focal 

nuclear signals, unlike those observed for the capsid antigen, were seen for the protein 

encoded by ORF68, which was also previously reported in KHV infected cells (Aoki et al., 

2011). These signals may be associated with tegumentation of the capsid prior to primary 

envelopment, similar to early stage intranuclear tegumentation in BoHV-1 reported by Van 

Drunen Little-van den Hurk et al., (1995). However, although the role of the protein encoded 

by ORF68 is unknown from proteomic analysis (Michel et al., 2010b), the recombinant 

antigen to which this MAb was raised is an N-terminal region of a myosin-like protein with a 

trans-membrane region (Aoki et al., 2009; 2011), thus is exposed through the viral envelope 

and is more likely to represent an uncharacterised envelope glycoprotein, which may be 

similar to gB of HSV-1, which is also found at the nuclear membrane and cell plasma 

membrane (Gilbert et al., 1994). Transcripts of KHV ORF68 were, however, not previously 

detected in infected CCB cells until 8 hpi, categorising the product of ORF68 as a γ (late) 

protein (Ilouze et al., 2012b), whereas gB is synthesised prior to DNA replication in HSV-1 

(Ramachandran et al., 2010). Further characterisation of the antigen detected by anti-ORF68 

MAbs would be necessary to elucidate its role in KHV maturation and pathogenesis. 

5.4.4 Sensitivity limits, advantages and disadvantages of immunofluorescence for 

antigen quantitation 

Image analysis appeared marginally more sensitive than the microtitre procedure, as relative 

antigen expression of the envelope and capsid proteins (compared to mock infected cells) 

could be determined much earlier and in greater abundance, especially when compared to a 

corresponding mock-infected control at each time point, to help eliminate non-specific 

background labelling. 
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Although cell counts were not undertaken, this is possible using the designed macro, 

which could then be used to validate the results compared to other highly sensitive and 

specific methods like flow cytometry. Finally this approach provides an opportunity to 

analyse cytopathology of infected cells in detail. The expression of viral proteins involved in 

pathogenesis often revolves around the use of gene expression studies, i.e. by measurements 

of the levels of transcripts over the course of infection (Øster and Höllsberg, 2002; Dishon et 

al., 2007; Ilouze et al., 2012a; b). However, such measurements do not take into account 

post-transcriptional processing such as translation initiation, elongation and termination 

(Plotkin, 2010) and up to 60% of the variation in protein concentration may be unexplained 

by measurement of mRNAs alone (Vogel and Marcotte, 2012). By utilising MAbs for antigen 

quantification in the current study, it was possible to elucidate characteristics of protein 

abundance associated solely with the final folded protein epitope. The image analysis 

approach is limited by minimal cell coverage, the time lag of processing of z stacks and the 

requirement of specialist technical input, and as a result it is difficult to analyse a large panel 

of MAbs through a time course of viral infection. The 96 well plate procedure, adapted from 

previous studies on ISAV (Falk et al., 1998) and RV (Xijier et al., 2011), provides a very 

convenient, simple approach with high throughput, and having an infection procedure that 

can be accompanied by typical virus titration experiments. The microtitre IF technique could 

provide an alternative diagnostic virus titration method, not only for KHV, but for other 

viruses, e.g. ISAV, where the development of CPE can be slow, especially in low titre 

samples, and by utilising an anti-capsid MAb the sensitivity may be improved enabling 

antigen detection after only 1 dpi. The immunofluorescent tests should be validated with 

different MOI of KHV to gauge the sensitivity of these assays. A greater number of analysed 

fields under confocal microscopy would also be required to accurately assess the expression 
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of antigens over the whole monolayer, which is an advantage of the microtitre plate technique 

that can screen the whole monolayer in each well. 

5.4.5 Concluding remarks 

Much greater capsid antigen expression and abundance were observed over envelope 

glycoprotein production using the novel semi-quantitative 96-well microtitre plate and 

confocal microscopy-image analysis immunofluorescence approaches: In contrast, greater 

antibody binding to the envelope glycoprotein by MAb 10A9 in a whole virus KHV ELISA, 

indicated that a higher abundance of this protein is present on released whole virions, 

whereas a greater proportion of capsid antigen is produced and retained within the cell. A 

large number of unenveloped capsids were also found within infected cells at an 

ultrastructural level compared to secondary enveloped infectious virions. Following cell lysis, 

the release of these abundant capsid antigens may therefore be exposed to carp B cells and 

thus the production of specific antibodies against them. Further characterisation of these, and 

the other MAbs from the panel, should be undertaken. The application of the 

immunofluorescence approaches developed in the current study may contribute to this, as 

knowledge of the biologic and antigenic role of KHV proteins is still limited. Determining 

the antigenicity of the epitopes recognised by the MAbs in carp could provide invaluable 

information of their potential application in diagnostics and/or vaccination. Such information 

is vital for development of DIVA strategies. 
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6.1 Introduction 

6.1.1 Problems encountered with diagnosis of ‘latently’ Koi herpesvirus (KHV) 

infected fish  

The rapid spread of KHV worldwide has partly been attributed to the limited sensitivity of 

molecular diagnostics for detecting KHV DNA in subclinically infected, and infected fish 

with a possible latent infection (Bergmann et al., 2010a; Pokorova et al., 2010; Matras et al., 

2012). This may result in false negative results following screening of carp and subsequent 

transmission of the virus. Not only have cultured carp, i.e. for both food and the live 

ornamental carp trade, been affected (Haenen et al., 2004; Pokorova et al., 2005; Ilouze et al., 

2006a), but several reports of KHV detection and outbreaks in fisheries and wild stocks 

(Grimmett et al., 2006; Taylor et al., 2010, 2011; Uchii et al., 2009; 2011; Garver et al., 

2010) have raised concerns over the spread of KHV beyond the confines of fish farms. The 

presence of KHV in natural waters (Takashima et al., 2005; Shimizu et al., 2006; Matsui et 

al., 2008; Murwantoko, 2009; Minamoto et al., 2011; 2012) and wild non-KHVD susceptible 

fish species may also have accelerated the spread of KHV among cultured stocks (Fabian et 

al., 2012).  

Following recovery from an outbreak, decreased virus expression occurs while the virus 

resides within the host. A number of studies have demonstrated latent-like infection 

characteristics of KHV both in vitro (Dishon et al., 2007; Ilouze et al., 2012a) and in vivo 

(Gilad et al., 2003; 2004; St-Hilaire et al., 2005; 2009; Eide et al., 2011a) that occur 

especially at non-permissive water temperatures. Other aquatic herpesviruses such as carp 

pox, Cyprinid herpesvirus-1 (CyHV-1) (Sano et al., 1993), channel catfish virus (Ictalurid 

herpesvirus-1) (Gray et al., 1999) and eel herpesvirus (Anguillid herpesvirus) (Rijsewijk et 

al., 2005) also establish apparent latent infections, which can be reactivated. This has made 
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detection of apparently latently infected, clinically healthy fish, by molecular diagnostic 

methods a challenge, as noted for KHV in experimentally challenged carp (Gilad, et al., 

2003; St-Hilaire et al., 2005). Pooling organs from as little as two fish for real-time PCR has 

compromised the detection of such carp or koi (Bergmann et al. 2010a). Little is known 

about where the virus resides in the fish when latent, although Yuasa et al. (2007) showed 

that KHV DNA could only be detected in the brain of common carp 3 months to 1 year 

following an experimental challenge, but not in other organs. More recently, Eide et al. 

(2011a) demonstrated that KHV may become latent in leukocytes as well as other organs. 

Clinically normal carrier koi were also shown to shed KHV for a longer duration and take 

longer to express clinical signs of KHV disease (KHVD) at lower water temperatures (Yuasa 

et al., 2008). 

Exposure of carrier koi to permissive water temperature or certain stressors causes 

reactivation of KHV (Gilad et al. 2004; St-Hilaire et al., 2005; Eide et al. 2011a; Bergmann 

and Kempter, 2011), and koi could be held at these temperatures before testing to increase 

virus expression and improve detection rates (Gilad et al. 2003; Yuasa et al. 2008; Eide et al., 

2011a). In temperate countries, on-farm collection of fish for KHV screening is seasonal and 

timed to coincide with rising water temperatures in spring (Yuasa et al. 2008; Taylor et al., 

2010), which are optimal for virus expression. In tropical climates where water temperatures 

remain around 28
o
C all year round, clinical signs of KHVD usually manifest in carrier fish 

following transport stress or during periods of heavy rain when water temperatures are lower. 

Holding koi at lower water temperatures before testing them by real-time PCR would be very 

costly as it involves chilling the water and the quarantine area (Diana Chee, pers. comm.). A 

more sensitive and precise method of identifying these carrier fish is required. This can be 

achieved by indirect detection of serum antibodies with specific affinity for the virus.  
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6.1.2 Serological approaches for KHV: successes and challenges 

The use of serological tests for disease monitoring in aquatic animals is rare compared to 

terrestrial animals (LaPatra 1996; Denzin and Staak, 2000; Kibenge et al., 2002), and 

requirements for health certification and screening for disease freedom of source farms based 

on OIE guidelines for KHV (OIE, 2012) currently place more emphasis on molecular tests 

due to difficulties in validation of serological methods. Serological methods are indirect tests 

as they detect the host response to the pathogen rather than direct detection of the pathogen. 

Serology methods (e.g. ELISA) have, however, been developed (Ronen et al., 2003; Adkison 

et al., 2005; St-Hilaire et al., 2005; 2009) and some are described in the OIE manual (OIE, 

2012). Serology is a useful tool for screening koi as the presence of specific anti-KHV 

antibodies indicates that koi have been exposed to the virus and could be carriers. Current 

tests however, are not completely specific for KHV, especially at serum dilutions of 1/400 

and below (Adkison et al., 2005; St-Hilaire et al., 2009). This limits the usefulness of this test 

in detecting previously infected populations of koi where antibody titres might have dropped 

to below a 1/400 dilution. The use of real time PCR to detect KHV DNA together with a 

specific, sensitive serological test for detection of koi antibodies to KHV, could improve 

identification of persistently or latently infected batches of koi. The common bottlenecks in 

the development of a serological test is (1) the process of culturing, purifying and quantifying 

the virus to coat the ELISA plates (Dixon et al., 1994) and, in the case of pathogens like 

KHV that harbour cross-reactive epitopes (Adkison et al., 2005), is (2) the specificity of the 

assay. However, another problem encountered with serological diagnostics for this virus, due 

to its notifiable status, is that fish antibodies induced to infection cannot be distinguished 

from those induced by vaccination. This complicates the potential of vaccination programmes 

as it cannot be determined whether fish have been vaccinated or infected, and whether those 

vaccinated fish are subsequent carriers of infectious virus. Consequently, vaccinated carp 
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may transmit fatal KHVD to naïve unvaccinated carp. This may have contributed to the 

spread of wild type virus in vaccinated carp where apparently ‘protected’ carp have been 

imported (Peeler et al., 2009). An ELISA test that can detect antibodies to the virus 

specifically and enable differentiation between antibodies induced to the infectious virus and 

to a protective vaccine strain would be highly desirable for KHV. 

6.1.3 DIVA approaches based on various antigens of the pathogenic agent  

Although ELISAs have been developed for KHV based on whole virus antigen (Ronen et al., 

2003; Adkison et al., 2005; St-Hilaire et al., 2009), the application of recombinant proteins in 

assays can provide many advantages with respect to their safety, stability and cost-

effectiveness as highlighted in previous developments for mammalian and avian viruses 

(Mohan et al., 2006; Pérez-Filgueira et al., 2006; Muller et al., 2010; van der Wal et al., 

2012). Recombinant ELISAs utilising various structural (Makkay et al., 1999; Suarez, 2005; 

Mohan et al., 2006; van der Wal et al., 2012) and non-structural (Birch-Machin et al., 1997; 

Tumpey et al., 2005; Barros et al., 2009) proteins of viruses have been used in the 

development of serological diagnostic tests for mammals and avians, especially to enable the 

differentiation of antibodies induced to the vaccine and to infection (Suarez, 2005; Barros et 

al., 2009). Serological tests, and especially DIVA diagnostic assays for herpesviruses, are 

usually targeted against envelope glycoproteins of the virus (van Zijl et al., 1991; Van 

Oirschot et al., 1996; Gómez-Sebastián et al., 2008), although the internal capsid antigens 

have been found to provide a useful target for detection of viral induced antibodies (Coberley 

et al., 2002). Recombinant protein ELISAs have also been applied, with varying success, for 

detecting anti-virus antibodies in fish, e.g. against nodavirus (Huang et al., 2001) and 

rhabdoviruses, e.g. VHS (Encinas et al., 2011a; b). 
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The antigenicity of KHV proteins is largely unknown apart from a characterised 

glycoprotein, considered to be the major envelope protein encoded by ORF81 (Rosenkranz et 

al., 2008). A membrane protein encoded by ORF2 was also reported to possess putative B 

and T cell epitopes using bioinformatics (Murwantoko, 2009). Two antigenic peptides of 

KHV encoded by ORF62 and ORF68 were recently identified using a phage display library 

and expressed as recombinant proteins to generate anti-sera, and ultimately monoclonal 

antibodies (MAbs), specific for KHV (CyHV-3) preventing cross-reactions with the closely 

related CyHV-1 (Aoki et al., 2011). These MAbs subsequently provided a foundation for 

developing a diagnostic test to detect KHV antigen specifically, i.e. through lateral flow 

technology, as suggested by the authors (Aoki et al., 2011), although such a test has yet to be 

developed for KHV using these MAbs. However, the specificity of these antigens for KHV 

also makes them ideal candidates for developing recombinant protein ELISAs to detect anti-

KHV antibodies in the serum of carp and koi. The proteins were previously characterised 

(Table 6.1) as a cysteine protease (recombinant protein of ORF62; rORF62) and myosin like 

protein or lipoprotein (recombinant protein of ORF68; rORF68) and are expressed as γ (late) 

proteins (Aoki et al., 2009; 2011; Ilouze et al., 2012a; b). Preliminary data has previously 

been reported indicating that rORF68 was recognised by infected carp IgM (Aoki et al., 

2009), which supports its application in a serological test. Since ORF62 and ORF68 express 

different structural proteins of KHV, ORF62 expresses an internal tegument protein (Michel 

et al., 2010b), while ORF68 expresses an unknown protein with a transmembrane domain 

(Aoki et al., 2009; 2011), the recombinant antigens derived from these ORFs may also 

constitute properties for developing a DIVA strategy for a KHV vaccine. The expression 

kinetics of these antigens, among others, was previously investigated in vitro in Chapter 5, 

and determining their antigenicity with infected carp sera could provide further information 

on their role in host-pathogen interactions. 
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6.1.4 Aims 

The aim of this chapter was to improve the sensitivity and specificity of KHV serological 

diagnostics and enable the implementation of DIVA strategies using recombinant proteins of 

KHV. 

The antibody response of carp and koi to KHV proteins was compared using ELISAs 

in which the plates had been coated with either whole virus or recombinant proteins of 

ORF62 and ORF68, with the aim of improving the specificity and sensitivity of KHV 

serological diagnostics. Western blot analysis was subsequently carried out on select sera 

samples in order to determine the most immunogenic antigens of KHV for application in 

diagnostics and vaccine development. Assessing the recognition of antibodies against 

rORF62 and rORF68 was also intended to highlight the feasibility of exploiting carp and koi 

antibody responses for implementing a DIVA strategy. Since rORF62 constitutes an internal 

structural protein of KHV and rORF68 an N terminal extracellular region of a protein with a 

transmembrane domain, they may induce differential antibody responses in infected fish. If 

immunogenic in infected fish, but absent or not presented to the host immune system to the 

same extent in vaccinated fish, such recombinant proteins could potentially permit 

discriminatory diagnosis between infected and vaccinated carp. 

 

6.2. Materials and Methods 

6.2.1 Control sera 

High titre (1/1600) anti-KHV anti-sera pooled from experimentally infected Koi, kindly 

provided by Dr. Keith Way (Centre for Environment, Fisheries and Aquaculture Science 

(CEFAS), UK), was used as a positive control for ELISA screening. Mirror carp, originally 

obtained from a farm with no previous history of KHVD (Hampshire Carp Hatcheries, UK), 



Chapter 6 – Serological diagnostics and DIVA strategy 

346 

were maintained in a recirculation system at the ARF, Institute of Aquaculture, Stirling, and 

sera from these fish used as negative control sera. 

Table 6.1 Koi herpesvirus (KHV) antigenic recombinant protein characteristics 

KHV 

ORF* 

Protein 

family* 

Primers used to amplify 

antigen gene nucleic acid 

sequences * 

Amino 

acid 

(aa) 

length* 

Trans-

membrane 

domain* 

Localisation 

of protein in 

KHV 

virion** 

 

62 

 

OUT-like 

cysteine 

protease domain 

 

ORF62-F: 

AAGGATCCCATATGGATCA

GATTCCCCCCGTCCCAT, 

ORF62-R: 

TTGAATTCTCACATCGCGG

TGGCGTCAAACTT 

 

 

570 aa 

 

No 

 

Tegument 

 

68 

 

Similar to 

myosin 

 

ORF68-F: 

AAGGATCCCATATGGATCA

GTTCAAGCAGACCACGG, 

ORF68-R: 

TTGAATTCTCACTGCGACT

CGAGCCTGGAGTT 

 

 

501 aa 

 

Yes 

 

Unknown 

*Characterisation and information of KHV recombinant antigens according to Aoki et al. 

(2009; 2011) 

** Putative localisation of proteins following mass spectrometric analysis according to Michel et 

al. (2010b)  

 

6.2.2 Virus and cell propagation 

CCB cells were cultured at 20ºC for propagation and purification of KHV, as described in 

Sections 2.2.2 and 2.3.2, respectively.  

6.2.3 Carp serum samples 

A total of 224 serum samples were analysed during the study. This included 162 serum 

samples collected from individual koi submitted as part of the national KHV surveillance 

programme in Singapore, 11 serum samples from a KHV infection trial conducted in 

Singapore, 25 serum samples from a KHV vaccination and challenge trial using a live 

attenuated vaccine conducted in Israel, 25 serum samples from a KHV vaccination trial using 
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an inactivated vaccine conducted in Scotland (Section 3.2.5) and the 1 positive control 

sample pooled from fish with high antibody titres to KHV (Section 6.2.1). 

Blood was sampled from the caudal vein of fish and allowed to clot overnight at 4ºC 

before collecting serum as described in Section 3.2.4.2(a). 

6.2.3.1 Field case serum samples from Asia 

Serum was taken from live Koi that had been submitted to the Animal and Plant Health 

Laboratories, Agri-Food and Veterinary Authority of Singapore, as part of a KHV 

surveillance programme on imported Koi between December 2008 and December 2010, 

kindly provided by Ms. Yahui Wang (Agri-Food and Veterinary Authority of Singapore 

(AVFA), Lorong Chencharu, Singapore). A minimum of 30 fish were randomly collected 

from 1 import consignment or 1 premise in China, Japan, Malaysia and Singapore from each 

of the cases reported (Table A1, Appendix 1). Six organ pools from each submitted case, 

consisting of brain, gill, kidney, intestine, liver and spleen from 5 fish, were tested for KHV 

using the PCR described by Yuasa et al., (2005) and Bercovier et al, (2005). The cases were 

divided into 2 groups depending on their KHV status. Group 1 consisted of samples taken 

from fish where KHV DNA had been detected in tissues by either conventional PCR (Yuasa 

et al., 2005; Bercovier et al., 2005) or real-time PCR (Gilad et al., 2004) or where the 

sampled fish had been associated with KHV infected fish. Group 2 consisted of fish sampled 

from regions with no association with KHV and where no KHV DNA had been detected in 

tissues by PCR. The source of country, clinical signs of koi and PCR results from all the 

cases were recorded (Table A1, Appendix 1). 

6.2.3.2 Singapore KHV experimental challenge 

An experimental KHV challenge was carried out in Singapore by the Animal and Plant 

Health Laboratories, Agri-Food and Veterinary Authority of Singapore as part of a 
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collaboration with Mrs. Diana Chee (AVFA). Koi sourced from a farm where KHV had 

never been detected, were prophylactically treated to remove external parasites, moved to a 

containment facility for aquatic animals and acclimatised in 25ºC ozone-treated water in 2 x 1 

tonne circular tanks on a recirculation system with daily 50% water changes. All the 

discarded water was ozone-treated and all biological waste was autoclaved prior to disposal. 

Post mortem, parasitological and bacteriological examination was carried out on 5 fish, while 

gill biopsies were taken from 130 anaesthetised fish from the population to pre-screen for 

KHV DNA by PCR (Yuasa et al., 2005; Bercovier et al., 2005). After acclimatising fish for 1 

week, 3 groups of 12 carp were exposed to KHV that had been propagated in KF-1 cells with 

minimum essential medium (MEM), similar to that described in Section 2.3.2., with 2% 

foetal calf serum at different infectious doses by bath immersion for 1 h at 20ºC. The 3 

positive groups received doses of 1.2 (high dose), 0.12 (moderate dose) and 0.012 TCID50 

mL
-1

 (low dose) by the titration method according to Reed and Muench (1938) with a fourth 

group exposed to MEM media alone, which were used as a control group. The differential 

virus doses were used in order to enable comparisons to be made on antibody responses of 

carp to KHV following different onsets of clinical and subclinical disease. The fish were held 

in 4 separate 120 L glass tanks for 4 weeks and monitored daily for any clinical signs 

associated with KHVD. Fish expressing signs of distress or dyspnoea, lethargy or excessive 

skin ulceration were euthanized and individually screened for KHV by real-time TaqMan 

PCR (Gilad et al., 2004). Serum samples were collected from the first 2 groups 16 and 18 

days post infection (dpi), and from the third group and control group 29 dpi (Table 6.2). The 

serum samples from this trial were sent to IoA, University of Stirling for analysis. 

6.2.3.3 Israeli KHV vaccination (live attenuated) and experimental challenge 

A vaccination/challenge trial was conducted in Israel by Dr. Ofer Ashoulin at the commercial 

Koi farm Magnoy, Maadan, Ma’agan Michael, Israel using 14 month old koi with an average 
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bodyweight of 135 g. The fish were fed a diet of commercial koi pellets at 1% body weight 

per day and were held in brackish well water with an average temperature of 23 to 24ºC. 

Fourteen Koi were vaccinated by immersion with KV3 vaccine (KoVax Ltd, Israel), which is 

a live attenuated KHV vaccine (Ronen et al., 2003; Perelberg at al., 2005), by immersion for 

45 min at 22ºC with 10 plaque forming units (PFU) per mL
-1 

water. Fourteen other koi were 

vaccinated with 0.1 mL ip of the same vaccine following anaesthesia in phenoxyethanol. 

Control groups were transferred to similar 20 L tanks as the treated groups and held at 22ºC 

water for 45 min without vaccination. The serum samples from this trial were sent to IoA, 

University of Stirling for analysis. 

 

Table 6.2 Challenge dose, clinical signs, DNA and serum sampling of koi experimentally 

infected with Koi herpesvirus (KHV) in Singapore  

Experimental 

group 

KHV 

inoculation 

dose by 

immersion 

(TCID50 mL
-1

) 

Clinical signs PCR results and 

primers used 

Time of 

serum 

collection 

High dose 1.2  Diseased, 

moribund with 

acute mortality 

seen. 

+ve real-time 

TaqMan PCR. 

16 dpi 

Moderate 

dose 

0.12  Diseased +ve real-time 

TaqMan PCR. 

18 dpi 

Low dose 0.012  Healthy -ve real-time 

TaqMan PCR. 

29 dpi 

Control 0  Healthy -ve real-time 

TaqMan PCR. 

29 dpi 

 

Fish were subsequently held in separate 100 L flow-through tanks each for the immersion 

vaccination, ip vaccination or control groups. The 2 vaccinated groups were challenged by 

cohabitation with 8 infected koi per tank 26 days following immunisation. Sera from 5 fish 
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were sampled 25 days post vaccination (dpv) and from the challenged groups at 14 days post 

challenge (dpc) (Table 6.3). 

6.2.3.4 United Kingdom KHV vaccination (inactivated) 

Mirror carp were vaccinated with formalin inactivated KHV vaccine containing an 

aluminium hydroxide adjuvant (Henderson Morley Ltd., 2009) as described in Section 

3.2.5.1(b). 

Table 6.3 Collection points of koi serum from KV3 vaccinated and experimentally 

challenged koi with Koi herpesvirus in Israel 

Experimental 

Group ID 

Description Sampling for serum  

IP Intraperitoneal vaccinated fish Day 25 

IPC Intraperitoneal Vaccinated and Challenged fish Day 40 

IM Immersion Vaccinated fish Day 25 

IMC Immersion Vaccinated and Challenged fish Day 40 

C Control fish Day 25 

IP = Intraperitoneal vaccinated; IPC = Intraperitoneal vaccinated then challenged; IM = 

Immersion vaccinated; IMC = Immersion vaccinated then challenged; C = Control 

 

6.2.4 Whole KHV ELISA 

A sucrose gradient purified KHV ELISA, developed as described in Section 3.2.5.3(c) was 

used for detection of serum antibodies to whole virus antigens. 

6.2.5 KHV MAbs and ascites fluid  

Hybridoma supernatant, from MAb 10D10 and MAb 7C6 recognising recombinant protein 

antigens of KHV ORF62 and ORF68, respectively, ascitic fluid from mice immunised with 
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either rORF62 or rORF68 (Asc10D10 and Asc7C6) were obtained, cultured and maintained 

as described in Sections 2.1.1 and 5.2.1.1.  

6.2.6 KHV recombinant protein antigens  

Transformed Escherichia coli BL21 cells containing plasmids of rORF62 and rORF8 (Aoki 

et al., 2011) were a kind gift from Dr. Tae Sung Jung, Aquatic Biotechnology Center, 

College of Veterinary Medicine, Gyeongsang National University, Korea and Professor 

Takashi Aoki, Laboratory of Genome Science, Tokyo University of Marine Science and 

Technology, Tokyo, Japan. 

6.2.6.1 Recombinant protein expression 

(a) Pre-trial expression and characterisation 

Antigenic recombinant proteins of KHV ORF62 (rORF62) and ORF68 (rORF68) were 

produced and characterised as described by Aoki et al. (2009; 2011) information for which is 

shown in Table 6.1. Initially a preliminary culture was grown and products were 

characterised to ensure that the proteins could be successfully expressed from the plasmids. 

The transformed BL21 E.coli cells (DE3) from the pET-28a system (pET-28a KHV-

ORF62/68) were cultured on LB agar (1.5% w/v agar, 1% tryptone, 0.5% yeast extract, 1% 

NaCl, pH 7) containing 50µg mL
-1

 kanamycin at 37°C for 18 h. Ten colonies were picked 

from 2 strains of bacteria, each one containing a plasmid expressing either rORF62 or 

rORF68, and inoculated into 20 mL LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl, 

pH, 7) broth containing 50µg mL
-1

 kanamycin in a 50 mL centrifuge tube and incubated at 

37°C on a shaking platform. The cultures were incubated for 14-18 h before adding 50 µL of 

culture to 5 mL of fresh LB medium and shaken for 3 h, after which the absorbance was 

measured at OD450nm on a portable spectrophotometer, using LB medium as a zero reference. 

The bacterial culture was adjusted to an absorbance of 0.4-0.6 and 3 mL of culture was split 
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between two 15 mL polypropylene tubes (1.5 mL each). Six microliters of 0.1M isopropyl-D-

thiogalactopyranoside (IPTG) (Quigen) was added to induce one of the tubes (at a final 

concentration of 0.4 – 0.8mM), before culturing both tubes for 3-6 h at 37°C with shaking. A 

300-500 µL aliquot of each bacterial culture (in suspension) was harvested after 1-3 h and 

mixed 1:1 v/v with 2 x SDS sample buffer for soluble protein analysis. After 6 h the cultures 

were harvested by centrifuging at 3000 x g. The pellets were re-suspended in PBS and mixed 

with 2 x SDS sample buffer, as described above, as was the supernatant, for insoluble and 

soluble protein analysis, respectively. 

The samples were subsequently tested by SDS-PAGE to determine protein expression and 

Western Blot to determine epitope conservation using MAbs 10D10 and 7C6 to recognise 

their respective recombinant proteins. 

(b) Transformed E.coli glycerol stocks 

Once recombinant proteins had been successfully produced, glycerol stocks of transformed 

bacteria were made by mixing broth cultures of transformed E.coli bacterial suspensions in 

15% v/v glycerol to provide bacterial stocks (8.5 mL bacterial suspension, 1.5 mL glycerol), 

which were stored at -70°C until use. The stocks were always thawed quickly on dry ice with 

ethanol prior to growing new cultures.  

(c) Large scale recombinant protein production 

The protocol for large scale production of KHV recombinant proteins, were similar to that 

described above for the pre-trial expression and characterisation (Section 6.2.6.1(a)). An 

aliquot of transformed BL21 E.coli was thawed as described in section 6.2.6.1(b) cultured at 

37°C in LB broth for 18 h and 5 mL was inoculated into 2 x 500 mL of 2 x YT broth (1.6% 

bacto tryptone, 1% yeast extract, 0.5% NaCl) containing 50 µg mL
-1

 kanamycin. The bacteria 

broths were then induced with 1M IPTG 3 h after inoculation when an OD600nm 0.8 was 



Chapter 6 – Serological diagnostics and DIVA strategy 

353 

obtained. The induced bacteria were cultured for a further 4 h at 37°C with shaking after 

which the broths were pooled and centrifuged at 3000 x g for 15 min at RT. The supernatant 

was discarded and the pellets (containing the insoluble recombinant proteins) were stored at -

20°C until used for protein extraction. 

6.2.6.2 Bacterial lysis and protein extraction 

Recombinant proteins of KHV were extracted from inclusion bodies of lysed, transformed 

E.coli BL21 (pET 28a) cells using the CelLytic B II bacterial cell lysis extraction reagent kit 

(Sigma-Aldrich) according to the manufacturer’s instructions with modifications. Briefly, 

bacterial pellets were freeze thawed 3 times prior to initiating the extraction procedure in a 

warm water bath. The bacterial pellet was then weighed by comparing to a zeroed centrifuge 

tube on a balance. The wet cell paste was reconstituted by adding 5 mL working lysis 

solution (CelLytic B II) to 1 g of wet cell paste. Benzonase (Sigma-Aldrich) was added to a 

final concentration of 5µg mL
-1

 in order to reduce the viscosity of the solution and yield a 

solid pellet. Lysozyme (Sigma-Aldrich), required to break down the bacterial cell wall, was 

then added at a final concentration of 0.4 mg mL
-1

. The extraction suspension was incubated 

for 10 - 15 min at RT to fully extract soluble proteins from cells and then centrifuged at 

25,000 x g for 15 min to pellet the insoluble material. The majority of the soluble protein 

(approximately 90-95%) was now contained within the suspension fraction. The cell pellet 

was then resuspended in the required volume of CelLytic B II, vortexed for 1 – 2 min to 

completely resuspend the cell pellet and was incubated with 0.4 mg mL
-1

 lysozyme at RT for 

5 – 10 min with shaking to allow the lysozyme to fragment the cell bacterial wall. A 1:20 

solution of CelLytic B 2 was prepared in dH2O (Lysis wash buffer) and 30 mL was added to 

the sample mixture and mixed well before centrifuging the sample again at 25,000 x g for 15 

min to pellet the cell debris. The pellet was again reconstituted in 40 mL Lysis wash buffer 

and vortexed for 1 – 2 min to completely remove the remaining cell debris after 
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centrifugation again for 15 min at 25,000 x g. These steps were repeated 2 more times to 

completely remove any soluble proteins and cell wall from the inclusion bodies. The pellets 

were finally resuspended in 40 mL phosphate buffer (0.5M NaCl, 20mM NaPO4, pH 7.4) by 

vortexing again for 1-2 min and centrifuged at 25,000 x g for 10 min. The washed inclusion 

bodies (pellets) were then solubilised in urea buffer (8M urea, 20mM NaPO4, 0.5M NaCl, 

10mM imidazole, pH 8), vortexed and shook at 37°C for 1 h in order to maximise 

solubilisation of proteins. The samples were left to incubate at 4°C overnight prior to 

purification. Samples from fractions were taken at each stage of the procedure and placed 1:1 

v/v in 2 x SDS sample buffer, which were subsequently tested by SDS-PAGE following 

protein purification described in Section 6.2.6.4.  

6.2.6.3 Recombinant protein purification and quantitation 

The ionised metal affinity chromatography (IMAC) system was used for purification of 

solubilised recombinant proteins using the same ÄKTA prime liquid affinity chromatography 

system (Amersham Biosciences) used for purifying MAbs (Section 2.1.1.3). 

The solubilised inclusion bodies were brought to RT then centrifuged at 10,000 x g 

for 10 min and the pellet retained. The samples were prepared through filtration via 0.45 µm 

then 0.2 µm filters (GE Healthcare, UK) using a vacuum. A Hi-Trap chelating HP 1 mL 

column, previously charged with Nickel (Ni
2+

) by loading 0.5 mL of 0.1M NiSO4, was used 

for binding His-tagged proteins. All buffers contained 8M urea and were filtered through 0.45 

µm filters and the column was washed thoroughly with binding buffer (8M urea, 20mM 

imidazole, 50mM Na2PO4, 300mM NaCl, pH 8) to elute non-specifically bound metal ions 

that could otherwise be eluted during the desorption process.  

After washing and equilibration of the ÄKTA prime affinity chromatography system, 

the sample in binding buffer was applied to the Hi-Trap chelating HP 1 mL column. The 



Chapter 6 – Serological diagnostics and DIVA strategy 

355 

sample was passed through the system at a rate of 1 mL min
-1

 and the bound (HIS)6-tagged 

proteins of interest were eluted with the addition of elution buffer (8M urea, 250mM 

imidazole, 50mM Na2PO4, 300mM NaCl, pH 8.5). The absorbance of collected fractions 

were analysed spectrophotometrically after zeroing the system with buffer containing 500mM 

imidazole. The purified proteins were subsequently concentrated through a Millipore 10 kDa 

centrifuge tube (Millipore, Cork, Ireland) with PBS buffer, and dialysed against PBS through 

a 12 kDa cut off dialysis membrane similar to that described for MAbs in Section 2.1.1.3. 

6.2.6.4 Recombinant protein validation 

(a) SDS-PAGE 

Bacterial lysates of IPTG induced and non-induced E. coli, as well as extracted and purified 

recombinant proteins were subjected to SDS-PAGE (stained with both Coomassie blue or 

Silver stain) as described Section 5.2.1.3.  

(b) Western Blot with anti-rORF62 and anti-rORF68 MAbs 

Western Blot screening of recombinant proteins of ORF62 and ORF68 with specific MAbs 

developed against the proteins (Aoki et al., 2011) was undertaken as described in Section 

5.2.1.4. 

6.2.7 Recombinant protein ELISA development 

6.2.7.1 Recombinant KHV ELISA optimisation 

The recombinant ELISAs for screening carp serum antibodies were developed through a 

series of optimisation steps involving the use of various types of 96-well microtitre ELISA 

plates including Immulon-4 HBX (Dynax Technologies Inc., Fisher Scientific, UK), Polysorb 

(Nunc) and Multisorb (Nunc). Different reagent blockers were also compared for blocking 

non-specific binding including 10 % and 5% casein (Marvel, Ireland), 1 % BSA (Fisher 
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Scientific, UK) and 1x Rotiblock (Roth, Germany). Addition of blockers to the diluent was 

also attempted, including E. coli lysate and casein, and different concentrations of mouse 

anti-carp IgM MAbs (Aquatic Diagnostics Ltd, Stirling, Scotland), goat anti-mouse HRP-

conjugated IgG MAbs (Sigma-Aldrich) and different concentrations of positive and negative 

control carp sera. The final assay was determined by end-point checkerboard assays. 

6.2.7.2 Final established recombinant KHV ELISA protocol 

Following numerous optimisation assays, a final protocol was established that resulted in the 

greatest positive to negative ratio from control test sera. The developed assay was similar to 

that used for screening carp anti-sera to KHV whole virus antigens described in Section 

3.2.5.3(c), but with modifications. The differences of these assays compared to whole KHV 

ELISA were as follows: 100 µL of antigen, either 20 µg mL
-1 

recombinant protein (rORF62 

or rORF68) or BSA diluted in 0.05M carbonate-bicarbonate buffer, were coated to the plate. 

Non-specific binding sites were blocked with 250 µL of 5 % casein in dH2O for 5 h at RT. 

One hundred microliters of Mouse anti-carp IgM (Aquatic Diagnostics Ltd, Stirling, 

Scotland) diluted 1:55 in 0.1 % BSA in PBS (100 µl well
-1

) was added to each well and 

incubated for 1 h.  

From the surveillance programme and Singapore experimental trial, strong responders 

were re-tested at doubling dilutions from 1/100 to 1/400, moderate responders at doubling 

dilutions from 1/50 to 1/200, and weak responders at doubling dilutions from 1/20 to 1/80. 

Strong responders from the Israel experimental trial were re-tested at doubling dilutions from 

1/100 and 1/200, moderate responders at 1/50 to 1/100 and weak responders at 1/20 to 1/40. 

All serum samples from carp immunised with the inactivated KHV vaccine (K and GK) and 

the control group from the GFP marker vaccine trial (Section 3.2.5) were re-tested at 

doubling dilutions from 1/200 – 1/3200. Serum screening was also repeated with 5 % casein 

in PBS as a serum diluent instead of PBS only.  
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A total of 71 serum samples were re-screened using the recombinant ELISAs and 32 

of these samples were selected for screening by Western Blot, performed as described below 

in Section 6.2.8. Screening of some samples was repeated on different blots. 

6.2.8 Western Blot screening of serum 

SDS-PAGE was undertaken as described in Section 5.2.1.3, with rORF62, rORF68, bovine 

serum albumin (BSA) and whole KHV polypeptides electrophoresed in a polyacrylamide gel. 

The gels were then transferred to nitrocellulose membranes as described in Section 5.2.1.4. 

For screening sera against the various proteins, the membranes were divided into strips. A 

strip from each membrane was stained with 0.1% amido black solution (0.1% amido black 

v/v in 40% methanol, 10% acetic acid) and incubated for 1 h RT in order to visualise 

separated protein bands. Unstained membrane strips were blocked overnight with 5% casein 

in Tris buffered saline (TBS: 0.02M Trisma base, 0.5 M NaCl, pH 7.5). The membranes were 

then washed 3 x TBS-Tween (TBST: TBS with 0.1% v/v Tween-20) with 5 min incubation 

per wash, and then cut into strips for which each strip was incubated with test sera diluted 

1/50 in 2% casein in TBST for 3 h. Control strips were incubated with TBS only (negative 

control), KHV negative Mirror carp sera, KHV positive Koi sera (CEFAS) and anti-KHV 

MAbs 10D10 and 7C6. Anti-carp IgM MAbs (ADL, Stirling, Scotland) were then added to 

membranes incubated with carp anti-sera diluted 1/50 in TBST for 1 h, followed by 1 h 

incubation with goat anti-mouse IgG biotin-conjugated MAbs (Sigma-Aldrich, UK) diluted 

1/250 in TBST. After a final incubation with streptavidin-conjugated HRP (Vector 

Laboratories Ltd, UK) diluted 1/250 in TBST, the membranes were washed 3 x 5 min with 

TBST followed by a 1 min wash with TBS without tween. The reactions were developed with 

the 4 CN peroxidase substrate system (2-C: KPL, US) according to the manufacturer’s 

instructions. All incubations were carried out at RT, with the TBST wash steps described 

above.  
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6.2.9 MALDI-TOF/TOF MS - Mass spectrometry 

After Western blotting, selected protein bands that were recognised by infected and 

vaccinated fish were excised from stained (Bio-Safe Coomassie G-250 stain, Bio-Rad, US) 

SDS-PAGE gels and in gel digestion was performed with trypsin as previously described for 

2-D gel electrophoresis of Streptococcus iniae (Shin et al., 2006). As part of a collaboration, 

MALDI TOF/TOF MS analysis was carried out at the Aquatic Biotechnology Center, 

College of Veterinary Medicine, Gyeongsang National University, Korea, by Dr. Taesung 

Jung as described previously for identification and characterisation of ranavirus-1 antigens 

(Kim et al., 2011) using a Voyager-DE-STR mass spectrophotometer (Applied Biosystems, 

Framingham, MA). Mass spectra were subsequently obtained in the reflection/delayed 

extraction mode. Accumulated data was analysed by using SequazymeTM Peptide Mass 

Standard Kit (Calibration 1, Applied Biosystems). Screening of Monoisotopic peptide masses 

was achieved using MoverZ (http://www.proteomics.com) and searching of the NCBInr 

database was undertaken using MASCOT software (http://www.matrixscience.com). The 

parameters used in the database searches were as follows: mass tolerance of 50 ppm, one 

missed cleavage, oxidation of methionine permitted, and cysteine modification by 

iodoacetamide allowed.  

 Identification of proteins by MS and MS/MS analyses was undertaken on an ABI 

4800 Plus TOF-TOF MS Spectrophotometer (Applied Biosystems) using a 200 Hz ND: YAG 

laser operating at 355 nm. Subsequent MS/MS analysis in the 1 kV mode using 800-1000 

consecutive laser shots was undertaken for the 10 most and 10 least intense ions per MALDI 

spot, with signal/noise ratios >25. Air served as the collision gas. The output data were then 

subject to analysis using Mass Standard Kit for the 4700 Proteomics Analyser (Calibration 

Mixture 1, catalogue number 4333604, Applied Biosystems). Searches were then performed 

to find matches to the MS/MS spectra on the NCBInr database using ProteinPilot v 3.0, and 

http://www.proteomics.com/
http://www.matrixscience.com/
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MASCOT was applied as the database search engine, with peptide and fragment ion mass 

tolerances of 50 ppm. During the peptide searches allowances were made for 

carbamidomethylation of cysteines and oxidation of methionines.  

6.2.10 Statistical analysis 

Antibody values (absorbance OD450nm) were tested for statistically significant differences in 

responses to different antigens. Data was tested for normality and homogeneity of variance as 

described in Section 3.2.6. Non-parametric testing was subsequently carried out using 

Kruskal-Wallis one-way ANOVA by ranks and median test. Pairwise comparisons of 

medians were made between carp antibody responses using the Mann Whitney-U test (CI = 

95%). Minitab (Minitab 16) was employed for performing all statistical analyses.  

6.3 Results 

6.3.1 Detection and assessment of anti-KHV antibody responses of carp from 

case studies in Asia 

Of all the serum samples screened from field cases using the whole KHV ELISA, 54.9% 

(89/162) of the samples were seronegative, while 45.1% (74/162) were seropositive at ≥1/200 

dilution. Of the seropositive samples, 6.2% were categorised as strong (≥1/800) responders, 

22.2% were moderate (1/400) responders and 16.7% were weak (1/200) responding fish. 

After dividing responders into groups based on PCR results and associations with KHV-

positive sites, 35.8% (58/162) were allocated to Group 1 (KHV +ve by PCR and associated 

with infected farms/sites), and 64.2% (104/162) were allocated to Group 2 (KHV –ve by PCR 

and no association with infected farms/sites). Only 31% of carp from Group 1 were 

seropositive (Fig. 6.1 A). In contrast, as many as 52.9% of Group 2 carp were seropositive for 
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KHV antigen, although these had previously been reported negative for the presence of KHV 

DNA by PCR (Fig. 6.1 B).  

 Of the seropositive fish from Group 1, 12.1% were strong responders, 8.6% were 

moderate responders and 10.3% were weak responders (Fig. 6.1.A). The majority of 

seropositive fish from Group 2 were moderate (29.8%) and weak responders (20.1%) (Fig. 

6.1 B), although a number moderate responders from this group had much higher absorbance 

values (OD450nm) than the cut-off when initially tested at a 1/400 dilution, which were found 

to be strong seropositive responders when rescreened up to a dilution of 1/1600 (fish 47, 48, 

51, 61, 63, 66, 68, 72, 73). Furthermore, a number of fish had absorbance values greater than 

2x the cut-off at a dilution of 1/400 (fish 78, 106, 140, 143, 163 and 167), that were not 

titrated further, thus may also have constituted strong responders (results not shown).  

The presence of anti-KHV antibodies was found in a large proportion of the cases 

(69%) by ELISA where PCR to detect KHV DNA was negative (Table 6.4). Very few cases 

(9%), and even fewer fish within these cases, were positive by both PCR and ELISA (Table 

6.4). 

6.3.2 Anti-KHV antibody responses in koi vaccinated with a live attenuated KHV 

vaccine and experimentally challenged with KHV 

All four fish from the high dose and moderate dose virus challenges in Singapore, two 

fish from each group, were strongly seropositive, whereas there were no antibody responses 

induced in koi challenged with the low dose of virus (Fig. 6.2 A; Table 6.5). All five fish 

from both the IP and IM vaccinated groups from the Israel experimental trial were 

seropositive. 
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Figure 6.1 Variation of koi antibody responses to koi herpesvirus (KHV) from field 

cases of a KHV surveillance programme in Asia (2008-2010). (A) Antibody responses of 

koi in group 1 (KHV +ve by PCR and associated with infected farms/sites) (n=58); (B) 

Antibody responses of koi in group 2 (KHV –ve by PCR and no association with infected 

farms/sites) (n=103). Bars represent different categories depending on antibody titre of 

responders designated as: strong (≥1/800), moderate (1/400), weak (1/200), or negative at a 

1/200 dilution. 

 

Table 6.4 Results of PCR and ELISA screening of carp from a koi herpesvirus 

surveillance programme in Asia 

 PCR+ ELISA + PCR+ ELISA - PCR- ELISA+ PCR-ELISA- 

     

Cases (n=35) 3 0 24 8 

     

Fish (n=162) 6* 18* 62 76 

*Cases that were positive by both ELISA and PCR, although some individual fish were only 

positive by PCR and negative by ELISA 

 

These were all strong responders to the virus, however, only 4/5 ip vaccinated and challenged 

(IPC) fish and 3/5 immersion vaccinated and challenged (IMC) fish were strongly 
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seropositive (Fig. 6.2 B; Table 6.5). One fish from the IPC group (IPC1) was seronegative 

resulting in a lower mean antibody response compared to the IMC group fish (Fig. 6.2 B). 

There were 2/5 fish from the control group that were seropositive, one weak and 1 moderate 

responder (Table 6.5). 

The majority of experimentally challenged and/or vaccinated fish were strong 

antibody responders (Fig. 6.3). Of these responders, the antibody responses to the high and 

moderate doses of virus used for challenging fish with KHV in Singapore (which were 

sufficient to induce disease in these fish) were greater than the responses seen in fish from 

Israel, which had been vaccinated with the attenuated vaccine and subsequently challenged 

with KHV (Fig. 6.2).  

 

Figure 6.2 Mean antibody responses in serum of koi to koi herpesvirus following an 

experimental challenge and vaccination challenge trial in Singapore and Israel. (A) 

Experimentally challenged koi in Singapore with different doses of virus. (B) Koi vaccinated 

by ip (IP vacc.) and immersion (Imm. vac.) with an attenuated live vaccine (KV3) then 

subsequently challenged by cohabitation (IP vac. chal; Imm. vac. chal., respectively). Sera 

screened at 1/200 from individual fish. Data are mean ± SD (for A: n=2: high dose 16 dpi and 

moderate dose 18 dpi; n=4: low dose 29 dpi; n = 3: control 29 dpi; for B n=5 for all groups). 

Dashed black line = positive threshold for ELISA 
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Figure 6.3 Variation of antibody responses to koi herpesvirus in serum from 

experimentally challenged and vaccinated koi. Categorised antibody responders of koi 

immunised by attenuated vaccine and experimental infection are shown from the Singapore 

and Israeli trials (n=36). Bars represent different categories depending on antibody titre of 

responders designated as: strong (≥1/800), moderate (1/400), weak (1/200), or negative at a 

1/200 dilution. 

 

The results obtained in the current study were validated at the 1/1600 cutoff serum dilution 

employed by CEFAS Weymouth laboratory (St-Hilaire et al., 2009) according to their 

criteria. Thus, for this validation a fish was considered positive when the OD at 1/1600 was 

greater than the average for the negative control, at all dilutions tested from 1/400-1/3200, 

plus 3x the standard deviation with all other lower dilutions exhibiting higher OD readings 

than the previous one (St-Hilaire et al., 2009). This enabled verification that the ELISA 

developed in the current study provided results that would be comparable if utilising 

previously published protocols. The results obtained were not dissimilar when the 

experimental fish sera from the Singapore and Israeli trials were assessed using the St-Hilaire 

et al. (2009) method in parallel to the current protocol (Table 6.5). Therefore the results in the 

current study were considered to be reliable and in accordance with published methodology. 
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However, the 1/200 serum dilution was applied here, rather than the 1/1600 dilution of 

CEFAS, in order to improve assay sensitivity and avoid false negative screening of fish with 

low antibody titres. Furthermore, the specificity at this dilution could be compared with that 

of a KHV-specific recombinant protein ELISA in Section 6.3.3. 

Table 6.5 Comparison of positive threshold cutoff applied in the current study to that 

employed by the CEFAS Weymouth Laboratory for developing a specific KHV ELISA 

(St-Hilaire et al., 2009) 

KHV Trial No. pos. >1/200 by 

current ELISA 

No. pos. at 1/1600 

by current ELISA 

No. pos. by St-

Hilaire et al. (2009) 

ELISA 

    
Sing. High dose chal. 2/2 2/2 2/2 

Sing. Mod dose chal. 2/2 2/2 2/2 

Sing. Low dose chal. 0/4 0/4 0/4 

Sing. Control 1/3 0/3 0/3 

    

Israel control 2/5 0/5 0/5 

Israel IP vacc. 5/5 3/5 3/5 

Israel IM vacc. 5/5 4/5 4/5 

Israel IP vacc/chal. 5/5 3/5 3/5 

Israel IM vacc/chal. 5/5 3/5 4/5 

    

Sing. = Singapore; chal. = challenge; IP = intraperitoneal; IM = Immersion; vac. = vaccination 

CEFAS ELISA cutoff: A fish is considered positive if OD reading at 1/1600 dilution was greater 

than the average for the negative control (at all dilutions tested from 1/400-1/3200 for duplicate 

negative controls) plus 3x standard deviation, and if all dilution have a higher OD than the 

previous dilution. (St-Hilaire et al., 2009) 

 

6.3.3 Recombinant ELISA development for detection of specific anti-KHV 

antibodies 

A number of selected fish serum samples (n=45) from those designated as strong, moderate, 

weak and negative responders to KHV were screened further by the recombinant protein 

ELISAs to assess if improved serological assay sensitivity (i.e. <1/1600) could be achieved 

with KHV (CyHV-3) specific antigens, rather than using whole virus to coat the ELISA 

plates. 
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6.3.3.1 Expression, extraction and purification of KHV recombinant proteins rORF62 and 

rORF68 through transformed E.coli BL21 cells (pETLys system) 

Both rORF62 and rORF68 were successfully over-expressed in transformed E. coli producing 

high yields of protein, which increased over time post-induction and both proteins were 

identified at expected molecular weights in Coomassie blue stained SDS-PAGE gels (not 

shown).  

The recombinant proteins were both highly expressed within inclusion bodies of E. 

coli and during protein extraction no discernible recombinant protein was observed in soluble 

fractions by SDS-PAGE (Fig. 6.4 A-B). The majority of both rORF62 and rORF68 were 

retained after IMAC purification, but rORF62 had a number of breakdown products, which 

may have been associated with the protein precipitating after dialysis into PBS (Fig. 6.4 A). 

Analysis of the final proteins revealed a high degree of purity (Fig. 6.4 C), and these were of 

the correct approximate molecular weights (MW) of 60 kDa for rORF62 and 56 kDa for 

rORF68 (Aoki et al., 2011).  

6.3.3.2 Antigenicity of purified and concentrated rORF62 and rORF68 

Both recombinant proteins were recognised by KHV positive anti-sera (fish 12) on Western 

blot, which also recognised purified KHV polypeptides of 100 kDa and 250 kDa (Fig. 6.5 A-

C). Negative sera also produced a faint band to the highest molecular weight (70 kDa) 

polypeptide from the breakdown product of rORF62. MAb 10D10 produced intense bands 

against rORF62 and all its breakdown products, but no band was observed against rORF62 

by MAb 7C6, while there were some faint background bands observed with PBS (Fig. 6.5 B). 

Recombinant protein rORF68 was recognised by MAb 7C6 and positive anti-sera, but not 

negative anti-sera and only a faint band was observed with MAb 10D10 (Fig. 6.5. C). A very 
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faint non-specific band was observed against BSA when incubated with serum and MAb 

10D10, but not 7C6 or PBS (Fig. 6.5 D). 

6.3.3.3 Recombinant protein ELISA optimisation  

Sera from fish 6 and fish 12 were selected as negative and positive control anti-sera, 

respectively, for optimising the recombinant ELISA, as well as the pooled positive koi sera 

supplied by CEFAS and the naïve mirror carp sera from stock fish of the previous marker 

vaccine trial (Section 3.2.5).  

The optimal positive:negative signal ratio for the recombinant KHV protein ELISAs 

was obtained when no diluent blocking was applied to serum and when the concentration of 

casein for post-coat blocking was reduced to 5% from the original 10% applied for whole 

virus ELISA plates (Section 3.2.5.3(c)). It was only possible to screen a selected number 

(n=71) of carp serum samples with the recombinant proteins. The serum samples screened in 

the recombinant ELISA included fish of the Asian group 1 (n=8), Asian group 2 (n=10), the 

Israeli vaccination/challenge (n=22), the Singapore experimental challenge (n=5) and the 

marker vaccine trial using an inactivated KHV vaccine (Chapter 3, Section 3.2.5 (n=25)) as 

well as pooled high titre anti-KHV koi serum from CEFAS (n=1). 
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Figure 6.4 Coomassie blue stained polyacrylamide gels showing insoluble and soluble protein products of koi herpesvirus (KHV) 

recombinant proteins, rORF62 and rORF68 during protein extraction and purification compared to polypeptides of KHV. Extraction 

process of (A) rORF62 and (B) rORF68 from lysed BL21 bacterial cells; (C) Purified rORF 62 and 68, pKHV and BSA . M = molecular weight 

markers (kDa) ; Lanes 1-9 in (A) and (B) : (1) Thawed Escherichia coli cell in lysis buffer, (2) Soluble fraction of protein, (3) Second 

centrifugation with lysis buffer, (4) third and fourth centrifugation without lysozyme (1/20 LB), (5) fifth and sixth centrifugation without 

lysozyme (1/20 LB), (6) Solubilised pellet after incubation in urea binding buffer, (7) Purified protein before concentrating, (8) Purified protein 

after concentrating, (9) purified KHV polypeptides for comparison. rORF62 = purified rORF62; rORF68 = purified rORF68; pKHV = purified 

KHV; BSA = bovine serum albumin. Note the more efficient purification of rORF68 compared to rORF62. Arrow indicates putative major 

capsid protein. 
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Figure 6.5 Validation of expressed koi herpesvirus (KHV) recombinant proteins by 

Western blot. (A) Separated polypeptides of purified KHV; (B) rORF62; (C) rORF68; (D) 

BSA. Strips of membrane were incubated independently with MAbs or sera as follows: N 

1/50 = neg. sera (fish 34) 1/50; N 1/200 = neg. sera 1/200; P 1/50 = pos. sera (fish 12) 1/50; P 

1/200 = pos sera 1/200; PBS = Phosphate buffered saline control; 68 = ASc. 68; 62 = ASc. 

62. Red stars indicate protein bands detected by ASc. 62 (MAb 10D10) and blue stars 

indicate protein bands detected by ASc. 68 (MAb 7C6). Note faint bands were observed to 

BSA and rORF68 by MAb 10D10. Light blue underline indicates sera with diluent blocking.  
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6.3.3.4 Antibody recognition of recombinant KHV antigens rORF62 and rORF68 by 

infected/exposed fish 

Many of the carp that had produced moderate or strong antibody responses to whole KHV 

antigen also produced high antibody values to both rORF62 and rORF68 when rescreened 

using a 1/200 serum dilution (Fig. 6.6). However, there were large variations between 

individual fish to the two recombinant antigens. This was reflected in the number of positive 

fish to rORF62 and rORF68 when screened at serum dilutions from 1/50–1/200. All moderate 

responders were positive for rORF62 (11/11), while 73 % (8/11) were positive for rORF68 at 

dilutions ≤1/200. Of the fish categorised as strong responders, 71 % (5/7) were positive for 

both recombinant antigens. There were no significant differences between antibody values 

produced to rORF62 and rORF68 by strong (p=0.16) and moderate (p=0.13) responders of 

KHV infected and/or exposed carp at a serum dilution of 1/200 (Fig. 6.6).  

Two of the five serum samples of fish from field cases that had tested positive by 

PCR were seropositive on both recombinant ELISAs, while 3/5 were seronegative on both 

(results not shown). Eight of the 13 serum samples of fish from field cases that had 

previously tested negative by PCR were seropositive on both recombinant protein ELISAs, 

four were seropositive on the rORF62 ELISA alone, while one was seronegative on both 

ELISAs (results not shown). 
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Figure 6.6 Mean antibody response of koi herpesvirus infected/exposed carp. Antibody 

responses to rORF62 and rORF68 ELISA. Sera screened at 1/200 from individual fish. Data 

are mean ± SD (n=11 moderate responders; n=7 strong responders). Different letters above error bars 

indicate significant differences between medians (Mann Whitney-U pairwise comparison test; p<0.05 

[95% CI]). Broken black line = cut-off OD 

 

6.3.3.5 Antibody recognition of recombinant antigens rORF62 and rORF68 in vaccinated 

fish 

Mean antibody values to KHV recombinant antigens at a serum dilution 1/200 differed 

considerably between fish groups vaccinated with an inactivated vaccine and those 

vaccinated with a live attenuated vaccine (Fig. 6.7). The mean antibody response of fish 

vaccinated with the attenuated vaccine against rORF62 were comparable to their response 

with whole KHV antigen, whereas their response to rORF68 was lower (Fig. 6.7), however 

no significant differences in responses to the two recombinant antigens were found (p>0.05). 

In contrast, fish vaccinated with an inactivated vaccine had weak mean antibody responses to 

rORF62, but interestingly, had much greater mean antibody values to rORF68. The mean 
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responses to rORF68 in fish vaccinated with the inactivated vaccine were comparable to 

responses to whole KHV antigen (Fig. 6.7).  

 

 

Figure 6.7 Mean antibody responses to recombinant proteins of koi herpesvirus (KHV) 

in uninfected carp vaccinated with an inactivated and live attenuated KHV vaccine. 

Antibody responses to rORF62 and rORF68 ELISA from the same serum samples of 

individual fish. Sera diluted 1/200. Data are mean ± SD: Inactivated vaccinated control fish 

(PBS injected) n = 8; inactivated vaccine immunised fish n = 15; attenuated vaccine control 

fish n = 1; attenuated vaccine immunised fish n =7. Different letters above error bars indicate 

significant differences between medians (Mann Whitney-U pairwise comparison test; p<0.05 [95% 

CI]) 

 

6.3.3.6 Differential antibody recognition of recombinant antigens rORF62 and rORF68 by 

fish vaccinated with an inactivated vaccine 

Mean antibody responses of inactivated vaccinated fish were ~2.5 times greater to rORF68 

than to rORF62 at a 1/200 dilution. The greater antibody response to rORF68 than rORF62 

was highly significant (p<0.001). Mean antibody values of inactivated vaccinated fish 
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recognising rORF62 were low (<OD 0.25) at all dilutions, whereas, even at a dilution of 

1/800, antibody values to rORF68 were higher than to rORF62 at a 1/200 dilution (Fig. 6.8). 

However, antibody values to both recombinant antigens at a 1/200 dilution were significantly 

higher than antibody values measured from control fish (i.e. injected with PBS and 

montanide adjuvant) screened against rORF68 (p<0.01) and rORF62 (p=0.02) (Fig. 6.8). 

Although antibody values were much lower to rORF62 than rORF68, a number of inactivated 

vaccinated fish were above the cut-off value for positive antibody detection at low serum 

dilutions. However, at a serum dilution of 1/800, when background was eliminated and all 

negative fish were below the cut-off, only 1/15 vaccinated fish were positive for rORF62, 

which was a particularly strong responder (fish GK5, 1/1600 titre to whole virus, Table 6.6), 

whereas 7/15 were positive for rORF68 and 12/15 were positive by whole KHV ELISA (Fig. 

6.9). 
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Figure 6.8 Mean antibody responses at 2-fold serum dilutions to different recombinant proteins of koi herpesvirus (KHV) in uninfected 

carp vaccinated with an inactivated KHV vaccine. Antibody responses to rORF62 and rORF68 ELISA from the same serum samples of 

individual fish. Data are mean ± SD (n=8 Control fish (PBS injected); n=15 Vaccinated fish). Different letters above error bars indicate 

significant differences between medians (Mann Whitney-U pairwise comparison test; p<0.05 [95% CI]). Dashed black line = cut-off OD 
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Figure 6.9 Number of fish vaccinated with an inactivated koi herpesvirus (KHV) 

vaccine positive by whole virus or recombinant KHV antigen ELISA at 1/800 serum 

dilution. Bars indicate number of fish positive after screening serum from vaccinated (n=15) 

and control (n=8) fish. 

 

6.3.3.7 Variable antibody recognition of infected and/or exposed fish to antigens rORF62 

and rORF68 

Some carp appeared to produce much stronger antibody responses against rORF62 than 

rORF68, (e.g. fish 32) whereas others had much stronger responses to rORF68 than rORF62 

(e.g. fish 12, 68 and 78) (Fig. 6.10 A-B), regardless of whether fish were strong or moderate 

antibody responders to whole KHV antigen. Non-responders to both antigens were also 

evident, despite being categorised as strong responders to whole KHV antigen (e.g. fish 21 

and 23) (Fig. 6.10 A). 
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Figure 6.10 Strong and moderate antibody responses of koi herpesvirus (KHV) infected and/or exposed carp from field cases in Asia 

positive by recombinant KHV antigen ELISA at 1/200 serum dilution. Bars indicate antibody response (absorbance value OD450nm) of 

individual vaccinated (n=15) and control (n=8) fish to the two recombinant ELISAs. (A) Strong antibody responders to whole KHV antigen; (B) 

Moderate responders to whole KHV antigens. Numbers on the x axis indicate the identity of serum samples from individual carp. 
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6.3.4 KHV antigen characterisation 

6.3.4.1 Western blot analysis of sera from KHV infected, vaccinated and exposed carp 

Despite only a maximum of 18 bands being detected by amido black staining, a total of 19 

different molecular weight protein bands were detected following screening by carp sera in 

Western blot. Individual fish recognised as few as 1 protein band to as many as 12 from the 

sera of strong responders (e.g. fish 61 which had a titre of 1/1600; Fig. 6.11; Table 6.6). 

However, the number of protein bands recognised by individual serum samples was not 

directly correlated with the antibody titre to whole virus antigen by ELISA, where titres of 

1/6400 recognised between 2-4 protein bands and 1/800 recognised between 1-6 bands (Table 

6.6).  

A high molecular weight protein band of approximately 250 kDa was the most 

frequently recognised protein by all of the fish that were screened (n=21). Responders to this 

protein included infected and vaccinated carp with faint staining also obtained with negative 

sera (Table 6.7). The next most recognised protein band (53 %) was of 130 kDa. 

Interestingly, this band was not recognised by fish vaccinated with an inactivated vaccine, but 

was recognised by infected fish, vaccinated fish with a live attenuated vaccine and 2/4 

apparently negative fish (Fig. 6.11; Table 6.7). A band of 170 kDa was recognised by half of 

all serum samples screened including infected/exposed fish and both groups of vaccinated 

fish, but not negative fish (Table 6.7).  

A band of approximately 100 kDa was recognised by 28% of all screened fish serum 

including infected/exposed carp and carp vaccinated with an attenuated vaccine, but similar 

to the 130 kDa band, this protein was not recognised by carp immunised with an inactivated 
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vaccine. Negative carp sera did not produce any bands of this molecular weight (Fig. 6.11; 

Table. 6.7). A 40 kDa band was recognised by 16% of screened immunised carp sera, the 

majority of which were fish that had been vaccinated with an inactivated vaccine (Table 6.7). 

 

Figure 6.11 Immunoblots of purified koi herpesvirus screened with specific monoclonal 

antibodies and carp sera. Each membrane strip (lane) was incubated individually with 

MAbs and carp sera  Lanes: Mabs and controls: - = TBS; N= neg. mirror carp sera; M62 = 

MAb 10D10; M68 = MAb 7C6; Asia experimental Challenge and natural cases; infected 

fish: 1, 12, 61, 63, 68, 106, 140, 167, 88, 142; Israel Vaccination/challenge trials; vaccinated 

fish: IP1, IP2, IP4, IM3; challenged vaccinated fish: IPC1, IMC3, IMC5, IMC1, IPC4; 

Control C4; AB = Amido black. Red stars = 100 kDa protein recognised by fish; white stars = 

130 kDa recognised by fish; arrows indicate other immunodominant bands.  

 

A number of other low molecular weight protein bands of 50, 37, 30 and 25 kDa, were also 

only observed on immunoblots screened with anti-sera from carp vaccinated with the 
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inactivated vaccine (Table 6.7). Other protein bands that were commonly recognised by carp 

anti-sera were of 230, 150, 140 and 60 kDa (Table 6.6; Table 6.7).  
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Table 6.6 Koi herpesvirus (KHV) polypeptides recognised by the sera from individual 

carp and their antibody titre to whole KHV antigen 

Fish ID (case origin) Whole KHV 

ELISA titre 

Polypeptides recognised by Western blot 

(kDa) 

   

1 (St) 1/12800 250, 230, 170, 150, 140, 130, 100, 60, 40 

12 (M) 1/12800 250, 100, 130 

61 (M) 1/1600 250, 230, 170, 150, 140, 130, 110, 100, 80, 75, 

60, 55 

63 (M) 1/800 250, 170, 130 

IP1 (I t) 1/6400 130, 60 

IP2 (I t) 1/1600 250, 230, 170, 100, 45 

IP4 (I t) 1/6400 250, 170, 100, 40 

IPC1 (I t) 1/3200 170, 140 

IM3 (I t) 1/6400 250, 100, 75 

IMC3 (I t) 1/800 130 

68 (S) 1/400 250, 100 

106 (S) 1/400 130 

140 (S) 1/400 250, 170, 130, 120 

167 (J) 1/400 250, 130 

C4 (I t) 1/400 250, 130 

IMC5 (I t) 1/400 250, 130 

88 (J) 1/200 130 

142 (M) 1/200 130 

IMC1 (I t) 1/200 250, 230, 130, 100 

IPC4 (I t) - 130 

NCMC1 (U t) - 250, 130 

C10 (U t) 1/200 - 

K1 (U t) 1/3200 170 

K3 (U t) 1/1600 250, 170, 140, 40 

K7 (U t) 1/3200 250, 170, 140, 50, 40 

GK3 (U t) 1/800 250, 170, 40, 37, 30, 25 

GK4 (U t) 1/800 250, 170 

GK5 (U t) 1/1600 250, 170, 60 

32 (M) 1/400 170, 150, 100 

CEFAS (A) 1/1600 250, 130 

GK6 (U t) 

34 (M) 

1/1600 

- 

250, 170, 40 

- 

   

Case origin is indicated in brackets (more details are given in Appendix 1, Table A1) 

A = Archival material; I t = Israel trial; J = Japan; M = Malaysia; S = Singapore; S t = 

Singapore trial; U t = UK trial  
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Table 6.7 Consistency of koi herpesvirus polypeptide recognition by carp antisera 

Protein approx. 

MW (kDa) 

No. fish pos. % of pos. fish Inf. 

(17) 

At. V 

(4) 

In. V 

(7) 

Neg 

(4) 

       

250 21 66 10 3 6 2 

230 4 13 4 0 0 0 

170 16 50 6 2 7 0 

150 3 9 3 0 0 0 

140 6 19 3 1 2 0 

130 17 53 14 1 0 2 

120 1 3 1 0 0 0 

110 1 3 1 0 0 0 

100 9 28 6 3 0 0 

80 1 3 1 0 0 0 

75 2 6 1 1 0 0 

60 4 13 2 1 1 0 

55 1 3 1 0 0 0 

50 1 3 0 0 1 0 

45 1 3 0 1 0 0 

40 5 16 1 0 4 0 

37 1 3 0 0 1 0 

30 1 3 0 0 1 0 

25 1 3 0 0 1 0 

       

Abbreviations of source of immunisation are denoted as: Inf. = infected; At. V = attenuated 

vaccine; In. V = inactivated vaccine; Neg. = negative fish. Brackets under these are no. of fish 

screened  

 

 

6.3.4.2 Characterisation of antigenic proteins by mass spectrometry 

As the protein bands of 130 and 100 kDa were recognised by a relatively large proportion of 

the screened sera of infected fish and fish vaccinated with a live attenuated vaccine, for which 

3/4 fish detected the 100 kDa protein (Fig. 6.11; Table 6.7), but not an inactivated vaccine, 

these were further characterised by mass spectrometry. Furthermore, a 120 kDa protein was 

characterised as it was difficult to distinguish the precise molecular weight of the 130 kDa 

band. The lower molecular weight protein of 40 kDa was included in the mass spectrometric 

analysis as it was recognised by 4/7 inactivated vaccinated fish (Table 6.7). 
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MALDI-TOF/TOF analysis confirmed that the antigenic protein bands of 130, 120 

and 100 kDa were KHV specific, but identification of the 40 kDa band was unsuccessful 

(Fig. 6.12). The 120 and 130 kDa bands were identified as both constituting the major capsid 

protein encoded by ORF92 with an estimated molecular weight of 140 kDa (Fig. 6.12; see 

Fig. A1 appendix 1). The 100 kDa protein band was identified as an uncharacterised KHV-

specific protein encoded by ORF84 with an estimated molecular weight of 86 kDa (Fig. 6.12; 

Fig. A2 see appendix 1). Both KHV proteins were identified from the full KHV genomic 

sequence (Aoki et al., 2007). 

 

Figure 6.12 SDS-PAGE gel containing separated koi herpesvirus polypeptides for 

extraction and characterisation by mass spectrometry and the subsequent identification 

of virion proteins. Red arrows indicate the protein bands eluted from the gel and the attached 

text box indicates the identity of the proteins following MALDI-TOF/TOF analysis. 
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6.4 Discussion 

6.4.1 Challenges of sensitive and specific detection of antibodies to KHV  

Avoidance of false positive antibody detection during sero-surveillance is important for 

notifiable diseases (Pérez-Filgueira et al., 2006), which has been a barrier for development of 

sensitive serology testing for KHV. Until serology can be fully validated, confirmation of 

KHV by the OIE in the absence of clinical disease or mortalities is still only accepted by 

virus detection methods using a combination of ISH, PCR and IFAT on carp tissues (OIE, 

2012). However, 45% of all koi sera screened by whole KHV ELISA, from cases in Asia, 

were seropositive in the current study at a 1/200 dilution, despite a lack of clinical signs in the 

majority of these cases (Table A1, Appendix 1). Many of these fish would otherwise have 

been diagnosed as sero-negative by the published ELISA protocols available, which employ 

high cut-off dilutions in order to prevent detection of cross-reacting antibodies with closely 

related aquatic herpesviruses such as CyHV-1 (carp pox) (Adkison et al., 2005; St-Hilaire et 

al., 2005; 2009; Taylor et al., 2010). This represents a high level of risk regarding 

misdiagnosis of carrier, possibly latently infected fish, with low antibody titres, although the 

dilemma of false positives was also apparent in the current study. Negative control fish were 

seropositive at a 1/400 dilution highlighting the difficulties in detecting only antibodies 

specific for KHV at low serum dilutions. Such cross-reactions from naïve fish may also be a 

result of natural antibodies that are particularly abundant in cyprinids (Dixon et al., 1994; 

Kachamakova et al., 2006; Sinyakov and Avtalion, 2009), which is why stringent blocking 

steps were included in the assay. Nonetheless, serological detection of KHV antigen can be 

highly specific as Perelberg et al. (2008) reported increased antibody titre and affinity to 

KHV following inoculation with attenuated virus and repeated exposure to infectious virus.  
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Differences between putative anti-KHV specific antibody responses of Group 1 and 2 

fish from the Asia cases, based on previous association with KHV or presence of KHV DNA 

in carp tissues, highlighted the extent to which carp are insufficiently screened for KHV 

using molecular methods in isolation. As much as 69% of cases from different regions/farms 

in Asia were PCR negative, but seropositive for KHV by ELISA at a dilution of 1/200, 

whereas only 9% were positive by both PCR and ELISA. This emphasises the necessity to 

accompany molecular diagnostics with serology for control and surveillance of KHV. 

Negative cases by real-time PCR may have resulted from dilution of viral DNA after pooling 

of tissue samples from infected koi, as some tissues will harbour lower concentrations of 

virus DNA, especially during potential latent infections (Gilad et al., 2004; Bergmann et al., 

2010a; Eide et al., 2011a). However, variable detection sensitivities of PCR may also depend 

on water temperatures during clinical KHVD (Matras et al., 2012). Nonetheless, serology 

appeared more sensitive than molecular methods for detecting KHV positive cases in the 

current study (i.e. not just individual fish) and similarly has also proved useful for 

epidemiological screening of carp populations in fisheries and farms (Taylor et al.; 2010; 

2011; Azila et al., 2012). Previous studies of naturally exposed fish to KHV have also 

demonstrated greater numbers of KHV seropositive fish compared to PCR positive fish 

(Uchii et al., 2009), which indicates that persistent infections (with low viral loads) can be 

present that are undetected by PCR. Alternatively, periodic reactivation of latent virus may 

continuously boost antibody responses. This may explain the high antibody titres > 1 year 

following transfer of infected fish to virus-free water, as reported by Adkison et al. (2005), 

and the variation in antibody titres in the current study between fish from various cases. 

Variations in virus dose, exposure periods, temperature and natural antibody abundance may 

have contributed considerably to long term antibodies detected in previously exposed fish. 
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Such long term detectable antibody titres to KHV have also been reported in experimentally 

infected (Ronen et al., 2003; Adkison et al., 2005; St-Hilaire et al., 2009; Taylor et al. 2010) 

and naturally infected (Uchii et al., 2009) fish. The high titre antibody responses of a number 

of healthy fish from Group 2 cases are therefore likely to be long term responders that have 

recovered from KHVD.  

Fish from cases associated with areas where KHVD outbreaks were present and/or 

molecular methods were positive, were often seronegative, thus these fish may have been 

experiencing an acute KHV outbreak prior to sero-conversion, similar to findings from 

experimental bath inoculation challenges (Matras et al., 2012). However, following recovery, 

detectable antibodies are usually evident, i.e. 3-6 weeks post infection/vaccination (Ronen et 

al., 2003; Adkison et al., 2005; Perelberg et al., 2008; Matras et al., 2012). Matras et al., 

(2012) showed that a rise in detectable KHV-specific antibody titres occurs following 

cessation of clinical KHVD in experimentally infected fish using SNT. This suggests that 

neutralisation and clearance of the virus occurs, thus reducing viral loads resulting in negative 

PCR results (Matras et al., 2012). This also corroborates earlier findings by Perelberg et al. 

(2008) where mortality of recently challenged and/or vaccinated carp is inversely correlated 

with rising antibody titres, and where KHV DNA could not be detected in carp surviving 

experimental challenge (Gilad et al., 2004). However, other studies have demonstrated that 

antibodies are only partially protective (Adkison et al., 2005) and cellular immunity plays an 

important role in protection (Adkison et al., 2005; Perelberg et al., 2008; Rakus et al., 2012). 

Strongly seropositive Group 2 fish that originated from cases in Japan (C15), China 

(C16), and Singapore (C20) were largely asymptomatic (Table A1, Appendix 1). Therefore, 

regular screening of carp, preferably by non-lethal methods, such as blood sampling for both 
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molecular detection in blood leukocytes (Eide et al., 2011a, b; Bergmann and Kempter, 

2011), gill swabs (Eide et al., 2011a; Bergmann et al., 2010a) and antibody detection in 

serum (Adkison et al., 2005; St-Hilaire et al., 2005; 2009; Taylor et al., 2010; Azila et al., 

2012; Matras et al., 2012) should be carried out regardless of reported disease outbreaks. 

A dose-dependent induction of antibodies to KHV was observed with higher 

challenge doses in experimentally infected fish in Singapore. Vaccination with a live 

attenuated vaccine also generally induced strong responses with antibody kinetics comparable 

to previous studies (Ronen et al., 2003; Perelberg et al., 2008; Matras et al., 2012), but slow 

or absent sero-conversion was apparent in carp receiving a low dose infection, i.e. after 29 

dpi. This presents a major problem for KHV serological diagnostics, and DIVA strategies, 

and emphasises the need for improved sensitivity of current whole KHV ELISA protocols 

that require high serum dilutions (Adkison et al., 2005; St-Hilaire et al., 2009). 

6.4.2 Potential for improved sensitivity and specificity of KHV serology utilising 

recombinant proteins 

The expressed and purified recombinant proteins from transformed E. coli were validated 

according to molecular weight (Aoki et al., 2009; 2011) (60 and 56 kDa for rORF62 and 

rORF68, respectively), purity and antigenicity by screening with their respective MAbs, or 

carp sera on immunoblots. Apart from breakdown products observed for rORF62, serum 

antibodies still recognised these, which suggested that the proteins were correctly folded and 

that the positive recombinant ELISA results represented the presence of anti-KHV carp 

antibodies specific for rORF62. Breakdown products of recombinant proteins are commonly 

observed following harvesting and purification procedures of the product, e.g., precipitation 

of insoluble products at physiological pH as reported after purification of recombinant protein 
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G of VHSV (Encinas et al., 2011b). This may be associated particularly with proteolysis 

(Gómez-Sebastián et al., 2008), possibly explaining the greater presence of rORF62 

breakdown products, which is itself a protease (Aoki et al., 2009; 2011). The degraded 

products did not affect the epitopes, which were still recognised by MAb10D10 and carp 

anti-sera. Recombinant protein, rORF68 was also recognised by infected carp sera. 

Recombinant antigens of aquatic viruses produced through prokaryotic expression systems 

such as E. coli have previously been successfully utilised for fish serology, e.g. for detection 

of nodavirus (Huang et al., 2001), iridovirus (Kim et al., 2007b) and VHSV (Encinas et al., 

2011b) and appears to be an effective and simple expression system for recombinant ELISA 

development for KHV.  

Some strong responders to whole KHV antigen were negative for both rORF62 and 

rORF68 highlighting that alternative epitopes are involved in humoral immunity to KHV and 

expressed products of ORF62 and ORF68 may not generate a high proportion of specific 

antibodies by all infected individuals, which may be associated with the restricted antibody 

repertoire of fish (Du Pasquier, 1982), especially to a complex virus like KHV. Therefore, 

alternative antigens may be needed to enhance the reliability of these recombinant anti-KHV 

antibody ELISAs. A 1/200 single serum dilution was employed to provide greater sensitivity 

than the ELISA screening methods developed to date (Adkison et al., 2005; St-Hilaire et al., 

2009) while aiming to retain assay specificity. Furthermore, this screening approach is highly 

cost-effective and provides high sample throughput with reduced plate-plate variations 

among fish (Alcorn and Pascho, 2000). Although no cross-reactivity of MAbs raised against 

the recombinant antigens (MAb 10D10 and MAb 7C6) was previously observed to CyHV-1 

and CyHV-2 (Aoki et al., 2009; 2011), anti-CyHV-1 serum that is free of anti-CyHV-3 

(KHV) antibodies would need to be screened on the recombinant ELISAs developed in the 
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current study to validate the specificity of these assays for KHV. This would also enable the 

determination of minimum working dilutions of carp serum required for these assays to 

detect anti-KHV antibodies specifically, while remaining negative for antibodies to CyHV-1. 

A number of known negative fish were positive by recombinant ELISAs, despite 

these recombinant proteins being antigenically specific for KHV (CyHV-3) and have been 

shown not be recognised by cross reacting antibodies, i.e. to closely related herpesviruses 

such as CyHV-1 (Aoki et al., 2009; 2011). These negative fish gave false positive results 

especially at dilutions of ≤1/200. At these lower dilutions false positives are likely to be 

associated with natural antibodies (Kachamakova et al., 2006; Sinyakov and Avtalion, 2009). 

However, the inclusion of high titre anti-sera to CyHV-1, that is negative for antibodies to 

CyHV-3, as a heterologous antibody control on the plate, would confirm this and could 

enable a distinction between natural antibody, cross-reactivity and anti-CyHV-3 antibodies. 

Cyprinids expressing high levels of natural antibody are thought to be less capable of 

expressing specific IgM following immunisation, whereas fish with low natural antibody 

levels tend to produce higher specific antibody titres (Sinyakov and Avtalion, 2009). This 

presents another challenge for improving the sensitivity of KHV diagnostic serology. Fish 

that do not produce high titres of specific antibody may alternatively synthesise high levels of 

innate, non-specific natural antibodies, which are characteristically cross-reactive. Thus 

determining the specificity of antibodies to KHV is problematic. High backgrounds have 

been previously reported in ELISAs using recombinant proteins, for which Encinas et al., 

(2011a; b) used solid-phase antibody captured virus to enable a better distinction between 

specific and non-specific antibody binding. Alternatively, antibody responses directed to 

bacterial derived antigen, i.e. E. coli lysate, may have contributed to background signals. This 

is a common problem encountered with recombinant ELISA assays that are coated with E. 



Chapter 6 – Serological diagnostics and DIVA strategy 

388 

coli-derived expression products (Villinger et al., 1989; Hemmatzadeh et al., 2013), which 

can be reduced by blocking with E. coli lysate in the serum diluent (De Diego et al., 1997). 

However, during optimisation of the assay in the current study, these approaches were 

attempted, but no discernible differences in ELISA signals were noticed between sera with 

and without E. coli lysate.  

Interestingly, variations in response to rORF62 and rORF68 were evident between 

carp vaccinated with a live attenuated vaccine (rORF62 < rORF68) and those vaccinated with 

an inactivated vaccine (rORF62 > rORF68). It could be that B cell clonal expansion against 

rORF68 occurs more in inactivated vaccinated fish compared to attenuated vaccinated fish. 

Stronger antibody responses to rORF62 in attenuated vaccinated fish than inactivated 

vaccinated fish, suggests that this antigen is exposed to fish more abundantly within a 

replicating virus. Therefore because of the higher diversity of antibodies induced by the live 

attenuated vaccine, i.e. from a larger number of expressed proteins, there may be a limited 

repository of specific anti- rORF68 antibodies compared to the inactivated vaccine, which 

was evident in the current study, as this vaccine lacks active expression. Different antibody 

responses between fish to the same viral protein, but to different fragments of that protein, 

have been demonstrated for VHSV (Encinas et al., 2011b). This may be associated with 

disulphide-dependent conformational epitopes (Einer-Jensen et al., 1998). Thus, such 

antigenic epitopes of the protein, i.e. of ORF62, may be masked by cross-linking during 

formalin inactivation of the virus when developing the inactivated vaccine and the native 

form is subsequently not recognised by these immunised fish. However, altered conformation 

of virus epitopes or incorrect protein folding following expression through E.coli, can also 

affect antibody detection on the diagnostic test. This is particularly true when the proteins 
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form aggregated inclusion bodies within the bacterial cell, as is the case for rORF62 and 

rORF68 (Aoki et al., 2011). Proteins expressed as inclusion bodies are generally mis-folded 

and often biologically inactive (Sørensen and Mortensen, 2005). However, this can be 

reduced by culturing the transformed E. coli at lower temperatures (Sørensen and Mortensen, 

2005), e.g. as with VHSV recombinant proteins ELISA (Encinas et al., 2011b). Utilising 

eukaryotic expression pathways have been shown to have a number of advantages over 

prokaryotic systems like E. coli including a lower permissible temperature for culture 

(Macauley-Patrick et al., 2005).  

Vast variations in immunoreactivity to rORF62 and rORF68 were also noted in 

experimentally infected or naturally exposed carp. As KHV encodes a vast number of 

proteins, including at least 13 envelope proteins (Michel et al., 2010b), many may induce 

strong antibody responses to various epitopes, which may complicate the development of 

highly specific, convenient and cost-effective recombinant protein ELISAs (Gómez-

Sebastián et al., 2008). Variation in antibody response to the recombinant proteins in the 

ELISA can be related to antigenic drift of virus strains alternating their epitope binding site 

(Jacobs and Kimman, 1994; Pérez-Filgueira et al., 2006). Although little variation between 

protein profiles is noted between KHV strains (Gilad et al., 2002; 2003), differences may be 

present in antigenic determinants of certain proteins in field strains, which may result in the 

variation in antibody responses seen in the current study. Similar antibody responses have 

been observed with field strains of African Swine Fever Virus (ASFV) p30 (Pérez-Filgueira 

et al., 2006) or PRV glycoprotein E (gE) (Gómez-Sebastián et al., 2008) in pigs. The ELISA 

may require a cocktail of KHV-specific antigens to overcome this.  
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The 19 KHV protein bands detected by various fish in western blot analysis is greater 

than the predicted number of envelope proteins of KHV, considered to be the most 

immunogenic proteins (Rosenkranz et al., 2008; Michel et al., 2010b). Therefore, alternative 

KHV structural (and non-structural) proteins must also induce antibody responses. Large 

variations in immunoreactivity between individual animals have been reported for 

mammalian herpesviruses, e.g. bovine herpesvirus, equine herpesvirus and asinine 

herpesvirus (Van Drunen Little-van den Hurk and Babiuk, 1986; Crabb and Studdert, 1990). 

Variable neutralising and non-neutralising antibody responses can arise from exogenous 

antigens recognised by B cells or antigen presenting cells (APCs) that are presented to CD4
+
 

T helper cells via the MHCII pathway (Hangartner et al., 2006). However, endogenous 

antigens can also be processed via the MHCII pathway, and stimulate the production of IFN 

γ, and the subsequent production of non-neutralising antibodies (Hedge et al., 2003). Non-

neutralising antibodies may be highly abundant and long-lived in fish surviving infection, e.g. 

to rhabdoviruses (Olesen et al., 1991; Enzmann and Konrad, 1993; Lorenzo et al., 1995). 

Thus, in the interest of diagnostics, antigens other than the neutralising epitopes of envelope 

glycoproteins should be investigated.  

The most commonly recognised KHV antigens in western blot analysis had molecular 

weights of 250, 170, 130 and 100 kDa. These were recognised by more than a quarter of all 

the sera analysed, while a protein band of approximately 40 kDa was recognised by 16 % of 

all the sera. Adkison et al. (2005) also reported a band of 97 kDa to be recognised by the 

majority of KHV infected carp, suggesting it too is potentially immunodominant. The authors 

also suggested that protein bands of 170, 130 and 56 kDa are potentially cross-reactive with 

CyHV-1 polypeptides. The protein band of ~100kDa in the current study, which is likely to 

represent the same 97 kDa protein reported by Adkison et al. (2005), was identified as an 
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unknown CyHV-3 specific protein product of ORF84 by mass spectrometry. This protein was 

recognised by 6/17 naturally exposed or infected carp and 3/4 fish vaccinated with the 

attenuated vaccine, but not by uninfected or inactivated vaccinated fish. Thus, this protein 

could represent a useful alternative recombinant antigen for screening for anti-KHV 

antibodies. Fish 68 and IMMC1, the only fish screened on the recombinant protein ELISAs 

that were classified as moderate-weak responders in whole virus ELISA, possessed 

antibodies recognising the KHV specific rORF62 and the 100 kDa protein, indicating that it 

may be a useful antigen for improving the sensitivity and specificity of KHV serology. 

In the current study, KHV protein bands of 250 kDa and 130 kDa were detected from 

healthy, uninfected carp sera. Thus, the 130 kDa band does appear to constitute a cross-

reactive protein. This band was consistently detected as a dominant band on SDS-PAGE gels 

and an immuno-dominant band by Western blot, and was confirmed as the major capsid 

protein (MCP) of KHV encoded by ORF92 by mass spectrometry, in accordance with other 

studies (Gilad et al., 2002; 2003; Michel et al., 2010b; Dong et al., 2011). Fish 88, IP1 and 

142 recognised the 130 kDa protein, but neither of the recombinant proteins possibly 

suggesting that their antibody titres detected on whole KHV ELISA were associated with 

cross-reactivity to the MCP, which appears to be highly conserved among the cyprinivirus 

genus. Indeed the MCP encoded by KHV (CyHV-3) ORF92 is homologous to the MCP of 

AngHV-1, IcHV-1, RaHV-1 and RaHV-2 (Aoki et al., 2007; Michel et al., 2010b; Van 

Beurden et al., 2011b). This supports previous suggestions that low dilution antibody 

responses of carp to whole KHV antigen is often due to this cross reactivity (Adkison et al., 

2005; St-Hilaire et al., 2009), for which this antigen may play a major role. This finding is 

useful as the apparently healthy status of fish 88 and 142 can be confirmed as KHV 

seronegative. Fish 142 was associated with a case including a fish with a high anti-KHV 
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antibody titre (Fish 143), thus is an example of the risks involved in pooling of serum 

samples for antibody detection. This has been proposed for studies on KHV prevalence in 

carp populations (St-Hilaire et al., 2009; Taylor et al., 2010; 2011), but pooling of sera from 

each case in this study would have resulted in Fish 142 diluting the high titre antibodies of 

Fish 143 leading to potentially false negative diagnosis of that carp population. However, this 

finding also demonstrates complications in detecting antibodies in vaccinated fish, such as 

IP1, which produced strong antibody responses to the 130 kDa MCP, but not rORF62 or 

rORF68, making it difficult to determine if that response is induced to the KHV vaccine 

specifically. This is even more problematic with non-responding fish such as IPC4, which 

had been vaccinated with an attenuated live vaccine in the trial in Israel, and subsequently 

challenged with a virulent KHV isolate, but was negative by all ELISAs. This fish was only 

positive by Western blot to the 130 kDa MCP band. Thus low level KHV-specific antibodies 

may be induced to this highly conserved antigen, which could only be used reliably for 

diagnostics if the KHV-specific epitopes were determined, i.e. by epitope mapping, similar to 

that undertaken for the G protein of rhabdoviruses, IHNV and VHSV (Encinas et al., 2011b). 

Virus protein bands of 250 and 170 kDa were detected by 67% and 52% of screened fish. 

Further investigation into the role of these polypeptides would be worthwhile as the former 

represented another major cross-reactive antigen and the latter was detected by infected and 

vaccinated fish with both vaccines. 

Some fish that were positive by PCR, were negative by both recombinant protein 

ELISAs at 1/200 serum dilution, while others were negative by PCR, but seropositive on both 

recombinant protein ELISAs. A capsid antigen-based recombinant protein ELISA was 

previously shown to successfully detect antibodies to nodavirus in barramundi after only 6 

dpi, while brain and eye tissues were positive by RT-PCR after only 3 dpi (Huang et al., 
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2001). The majority of anti-KHV antibodies are not detected until ~3 wpi (Ronen et al., 

2003; Perelberg et al., 2008). Thus even with improved sensitivity and specificity, the 

application of such tests for the control of KHVD need to be undertaken in conjunction with 

molecular methods both for early and late stage diagnostics. However, the advantages of 

utilising KHV (CyHV-3)-specific antigens was made clear with 12/13 fish positive for 

antibodies to rORF62 and 8/13 positive for rORF68 at a low (1/200) serum dilution from 

cases that had previously tested negative by PCR.  

As there were a number of moderate and weak responders from the whole KHV 

ELISA that were positive for the recombinant protein ELISAs, these fish would have been 

considered seronegative using the current conventional ELISA protocols (Adkison et al., 

2005; St-Hilaire et al., 2009). Thus retesting serum with antibody titres of 1/400 or lower 

from the KHV whole virus ELISA on KHV recombinant protein ELISAs may lead to the 

detection of more seropositive fish and decrease the number of false negatives. However, the 

characteristics of carp immunoglobulins must be taken into account when enhancing the 

sensitivity of KHV antibody ELISAs, due to the problems with non-specific binding and 

natural antibody activity (Sinyakov and Avtalion, 2009) particularly for DIVA diagnostic test 

development.  

6.4.3 DIVA vaccination strategy using an inactivated KHV vaccine 

The differential antibody responses to rORF62 and rORF68 may pave the way for potential 

DIVA strategies, i.e. where vaccinated fish produce antibodies to rORF68 and not rORF62, 

whereas infected/exposed fish recognise both recombinant proteins. The principle behind 

such a DIVA strategy is explained in Section 1.6.6 and illustrated in Figure 1.6 C-D. 

Differential antibody responses have been reported previously in fish vaccinated with 
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formalin inactivated Lymphocytivirus compared to infected fish (Jang et al., 2011), where 

fewer antigens were recognised by the former. Such differences are considered to be related 

to viral replication kinetics. Viral protein is produced and presented to the immune system in 

abundance during replication with subsequent induction of specific antibodies to each 

antigenic viral protein (Flint et al., 2004), including non-neutralising antibodies (Olsen et al., 

1991; Adkison et al., 2005; Encinas et al., 2011a) e.g. to KHV. In contrast, formalin 

inactivated virus does not induce the production of new antibody responses to all the viral 

proteins. This can be related to cross-linking of viral proteins and nucleic acids, which 

eliminates viral infectivity (Jang et al., 2011). However, KHV is a herpesvirus and the virion 

possesses a glycoprotein envelope (Hedrick et al., 2000; 2005; Miwa et al., 2007; Miyazaki 

et al., 2008). Therefore, the cysteine protease, which is a late protein, encoded by ORF62 

(Aoki et al., 2007; 2009; 2011; Ilouze et al., 2012b), characterised as a tegument protein of 

the virion (Michel et al., 2010b) would not be expected to be exposed on the surface of the 

virion as it is an internal viral structural protein. The fact that the protein encoded by ORF68 

possesses a transmembrane domain, but not ORF62 (Aoki et al., 2009; 2011), may support 

the hypothesis that the protein encoded by ORF62 is not exposed to the immune system, at 

least not to the same extent, as that encoded by ORF68. Thus no/or limited specific 

antibodies are produced to this protein in fish vaccinated with whole, formalin inactivated 

KHV. However, even external viral structural proteins can induce differential antibody 

responses following formalin inactivation during vaccine development. This was observed by 

Kwon et al. (2009) when developing a marker vaccine and DIVA system for avian influenza. 

In that study, birds did not respond to the N2 (neuramindase) envelope protein, despite being 

vaccinated with an inactivated H9N2 vaccine (Kwon et al., 2009), until they were challenged 
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with wild-type H9N2 AIV. This was suggested to be a result of formalin-induced 

conformational changes of the recognised NA epitopes. 

 Previous recombinant protein ELISA developments for diagnostics against VHSV, 

another notifiable fish pathogen, highlighted that lower absorbance values observed from 

hyper immunised trout to recombinant G protein epitopes were molecular size dependent 

(Encinas et al., 2011a). The VHSV G protein constitutes a major immunogenic structural 

protein of rhabdoviruses (Gaudin et al., 1999). Due to the larger size of the recombinant 

protein G21-465 (445 aa) compared to small peptide fragments of the same protein (55 - 199 

aa) on coated ELISA plates, a greater number of molecules of smaller fragments per surface 

unit, increases epitopic density and exposure (Encinas et al., 2011a) resulting in a greater 

number of antibody-antigen complexes. The recombinant protein of ORF62 is also larger 

(570 aa) than that of ORF68 (501 aa) (Aoki et al., 2009; 2011). Despite this, significantly 

greater antibody responses to rORF68 compared to rORF62 were only observed in sera from 

inactivated vaccinated fish, but not the live attenuated or infected/exposed fish. This suggests 

that poorer antibody responses to rORF62 appear to be specific to uninfected fish vaccinated 

with this inactivated vaccine. There were however, significantly higher antibody responses to 

rORF62, compared to control fish, detected in fish vaccinated with the inactivated vaccine. 

This would suggest that there is some, albeit minimal, recognition of this protein in these 

vaccinated fish prior to infection. Thus, this would limit the effectiveness of this antigen for 

DIVA strategies. However, differences in the adjuvant administered to vaccinates and control 

fish should also be considered. Vaccinated fish were immunised with aluminium hydroxide 

adjuvant, which stimulates a potent Th2 response (Cox and Coulter, 1997; Kool et al., 2008), 

and this may have influenced the greater production of antibodies to rORF62 compared to the 

controls, which received only montanide. This may therefore also have resulted in greater 
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antibody levels in general and perhaps non-specific reactivity with rORF62. Control fish 

would need to be immunised with the same adjuvant to determine if this had an influence on 

the DIVA serology test.  

Complications with fish IgM cross-reactivity can occur even when small antigens are 

coated onto solid phase ELISA plates, such as the ELISA plates coated with rORF62 and 

rORF68 in the current study. This is due to the solid phase resembling the surface of complex 

antigen when it is densely coated (Denzin and Staak, 2000). The coated antigen may 

subsequently be displayed to IgM as repetitive epitopes, to which the ‘starshaped’ multivalent 

fish IgM binds by adopting a ‘crab-like’ structure (Roitt, 1997). This may have resulted in 

non-specific binding on the recombinant ELISAs, possibly affecting the DIVA compatibility 

of rORF62 to distinguish inactivated vaccinated fish as uninfected. Competitive ELISA using 

suspended antigen can prevent artefactual binding like this, as demonstrated previously to 

whole KHV antigen (Perelberg et al., 2008). It is possible to improve the specificity, and thus 

sensitivity, of recombinant protein based ELISAs, which is critical for DIVA diagnostics, by 

employing competitive assays. Such assays have also proved effective for carp serology with 

other viruses, e.g. Spring Viraemia of Carp Virus (SVCV), by including high affinity 

mammalian IgG (Dixon et al., 1994; Denzin and Staak, 2000). Competitive recombinant 

ELISAs have been utilised for a number of DIVA diagnostic tests (van Oirschot et al., 1988; 

1996; Bosch et al., 1997; Floegel-Niesmann, 2001; Kirkland and Delbridge, 2011) and could 

be developed for the current DIVA diagnostic tests utilising specific MAbs for rORF62 and 

rORF68, (i.e. 10D10 and 7C6, respectively). However, the epitopes recognised by the MAbs 

and antigenic determinants recognised by carp IgM are as yet unknown. A competitive 

ELISA using these MAbs may lack the ability to inhibit carp serum antibodies if carp 

antibodies recognise alternative epitopes of the recombinant proteins, thus limiting the 
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validity of the assay. Furthermore, this impairs the possibility to engineer the ELISA into a 

rapid diagnostic test using lateral flow technology that would subsequently be used for in-

field testing.  

Recombinant ELISAs against different viral structural proteins have been utilised in a 

number of studies to differentiate infected animals, i.e. producing antibodies to both 

‘external’ membrane glycoproteins and ‘internal’ nucleoproteins, from vaccinated uninfected 

animals, which produce antibodies only to the external membrane glycoproteins (Makkay et 

al., 1999; van der Wal et al., 2012). Such DIVA strategies usually comprise the 

administration of subunit and recombinant vaccines lacking the internal, usually non-

protective, viral proteins in conjunction with recombinant ELISAs. These DIVA assays 

employ plates coated with (1) the vaccine antigen and (2) a viral antigen absent in the 

vaccine. However, whole virus inactivated vaccines have also been utilised for DIVA 

strategies, which are usually based on accompanying ELISA testing of serum antibodies to 

non-structural virus proteins, i.e. only exposed to the host when the virus is replicating 

(Birch-Machin et al., 1997; Tumpey et al., 2005; Barros et al., 2009; Avellaneda et al., 

2010). In spite of promising results, this strategy has proved difficult and often unreliable for 

some viruses, such as AIV, as a lack of sero-converting birds results in false negative 

diagnosis of infected birds (Avellaneda et al., 2010). Structural viral proteins, as utilised for 

KHV in the current study, may prove more reliable by inducing stronger antibody responses. 

A structural protein of AI, the M2e membrane protein, has proved an effective antigen for 

DIVA strategies using inactivated AI vaccines (Lambrecht et al., 2007; Kim et al., 2010; 

Hemmatzadeh et al., 2013). As this protein is not abundant in the virion, but is highly 

abundant in infected cells, it induces strong antibody responses in infected, but not vaccinated 

birds. Therefore rORF62, an internal tegument protein of KHV, which is also not vastly 
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abundant in whole virus particles (Michel et al., 2010b), was utilised for a similar purpose in 

the current study, and although promising results were obtained with regards to a DIVA 

potential, the protein was still recognised by 1 fish at 1/800 serum dilution. Problems were 

also encountered with the number of false negatives (5/12) to rORF68 compared to whole 

virus. Nonetheless, differential responses were observed, but the problems encountered, 

including non-responsiveness and lack of sero-conversion, typical of DIVA vaccination 

(Uttenthal et al., 2010) make it difficult to incorporate this strategy for individual fish, even if 

the serological tests were optimised.  

The highly immunogenic envelope glycoproteins have proved to be the most effective 

target antigens for DIVA vaccination development for mammalian and avian herpesviruses 

(Heffner et al., 1993; Jacobs and Kimman, 1994; Bosch et al., 1997; Shil et al., 2012). 

However, after screening the KHV sero-positive carp by Western blot, only 1 fish appeared 

to possess antibodies to a low molecular weight antigen of approximately 26kDa, which 

would correspond to the size of the putative immunodominant envelope protein, the product 

of ORF81 (Aoki et al., 2007; Rosenkranz et al., 2008, Michel et al., 2010a; b). This may 

have been due to low concentrations of this protein transferred to the membrane. However, 

other highly antigenic structural proteins could be utilised for serological diagnostics and 

DIVA strategies. Recognition of the internal MCP of KHV by the sera screened in the current 

study indicates that it is exposed to the immune system during a lytic infection. However, as 

the 130 kDa protein may represent a cross-reactive antigen with closely related herpesviruses, 

alternative capsid antigens could provide a more specific alternative for detection of 

antibodies induced by infection, i.e. to internal KHV antigens, compared to a non-replicating 

inactivated vaccine virus strain. The other antigenic protein of 100 kDa (that may be 

analogous to the immunodominant 97 kDa protein described by Adkison et al. (2005)) is 
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encoded by ORF84 with no known role in KHV assembly or antigenicity (Michel et al., 

2010b), but may be a suitable candidate for this purpose. 

6.4.4 Concluding remarks 

Results from the KHV whole virus ELISA showed that negative PCR results from pooled 

organs of a population of clinically healthy fish does not indicate KHV-free status alone and 

should be accompanied by serological testing from individual koi. The recombinant proteins 

of ORF62 and ORF68 can be useful for this purpose as they encode for KHV-specific 

antigens and the sequences of these are nearly identical among KHV isolates from USA, 

Europe and Japan (Aoki et al., 2007; 2011), which may alleviate problems of serological 

cross-reactivity with closely related aquatic herpesviruses. Both recombinant protein ELISAs 

have shown promising results for detection of anti-KHV antibodies in potentially latent 

infected koi with low antibody titres, which would otherwise be considered negative using a 

whole KHV ELISA employing a high dilution cut-off and PCR testing. Differential antibody 

responses to the two recombinant proteins, which are antigens derived from internal and 

exposed viral structural proteins, appeared to occur between uninfected fish vaccinated with 

an inactivated vaccine and fish that are infected, suggesting the feasibility of DIVA 

vaccination strategies in carp to KHV. A DIVA approach could be implemented by 

determining positive detection of only anti-rORF68 responses in uninfected vaccinated fish 

but responses to both antigens in infected fish. However, further optimisation and testing of 

these ELISAs would be required before they could be reliably used as serological assays for 

KHV screening of carp and koi, and/or DIVA diagnostic tests for an inactivated KHV 

vaccine, especially as differential responses were mostly limited to a serum dilution of 1/800. 

The variation in reactivity of carp antibodies to KHV needs to be taken into account for 
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optimised reproducibility of recombinant protein ELISA testing, and perhaps alternative 

KHV antigens may be useful for sensitive diagnostics and DIVA strategies, such as that 

encoded by ORF84.  
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7.1 A series of investigations to find a suitable marker/DIVA vaccine 

approach for an aquatic virus 

Although aquatic animal production differs from that of terrestrial animals, lessons can be 

learned from the design and implementation of disease control and eradication programmes 

used in the meat and poultry industries, for use in the aquaculture industry (Moennig, 2005). 

The successful approach of DIVA vaccination, discussed in detail in Chapter 1, has 

facilitated eradication programmes for Aujeszky’s Disease (AD), bovine herpesvirus type-1 

(BoHV-1) and rinderpest (RP), and has improved control of foot-and-mouth disease (FMD), 

avian influenza (AI) and classical swine fever (CSF) (Van Oirschot et al., 1996; Van 

Oirschot, 1999; Suarez, 2005; 2012; Beer et al., 2007; Meeusen et al., 2007; Uttenthal et al., 

2010). These successes highlight the potential for control programmes for notifiable diseases 

affecting aquaculture to be more ethical and cost-effective. The vast array of vaccines and 

companion diagnostic tests designed to make DIVA vaccination strategies feasible for 

mammals and birds (see Table 1.1 and 1.2) have varied considerably depending on the 

disease agent. Assessing the feasibility of different approaches for DIVA vaccination in fish 

has been the focus of the current thesis. In this regard, two notifiable diseases, infectious 

salmon anaemia (ISA) and koi herpesvirus disease (KHVD) were used as they represent two 

of the most important threats to the global Atlantic salmon and common carp/koi industries, 

respectively (Kibenge et al., 2004; Ilouze et al., 2011; Michel et al., 2010a). 

Inactivated ISA and KHV vaccines were used for marker and DIVA vaccination in 

the current study. Inactivated vaccines have been effective for a number of fish viral diseases, 

and they are commercially available for use in the field (Dhar and Allnutt, 2011; Gomez-

Casado et al., 2011). The initial approach, using an exogenous marker vaccine (Chapter 3), 

was intended to elucidate (1) whether the inclusion of foreign antigens to the vaccine could 
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induce an additional antibody response in vaccinated fish and might thus be utilised as a 

‘positive marker’; (2) whether the vaccine could induce a reliable and detectable antibody 

response, which is a prerequisite for DIVA vaccination (Van Oirschot et al., 1996; Van 

Oirschot, 1999). A number of challenges facing exogenous marker and DIVA vaccination 

strategies for fish were highlighted by these initial studies. 

The conditions within the aquatic environment of poikilothermic animals may affect 

the induction of detectable marker-specific antibodies and thus the potential success of 

marker vaccination. The cold temperatures that were experienced during the majority of the 

experimental period for vaccinated Atlantic salmon (<6ºC; Fig. 3.9) are known to inhibit 

antibody responses to the thymus dependent (TD) antigen, but not to the thymus independent 

(TI) antigen, which could be attributed to the temperature sensitivity of T cells (Bly and 

Clem, 1992; Secombes et al., 1996; Le Morvan et al., 1998). Where antibody responses were 

induced to one of the marker antigens (KLH) the greatest number of responders was <50% at 

any one time point, despite the very low serum dilutions used (Table 3.2; Fig. 3.6 C). Thus, 

none of these immunogens (TT, KLH, or FITC) are suitable for use as markers for ISAV 

vaccines in salmon. Therefore, alternative DIVA strategies were considered such as by 

exploiting structural proteins of ISAV that are absent in ISA vaccines. 

Vaccines developed so far for ISA have included a recombinant subunit protein 

vaccine (Pharmaq, Norway; Dhar and Allnut, 2011), a DNA vaccine (Mikalsen et al., 2005) 

and a salmon alphavirus replicon vaccine (Wolf et al., 2013), which have all been developed 

specifically to express the protective surface haemagglutinin esterase (HE) protein, but not 

other ISAV proteins. Since internal structural proteins of ISAV, i.e. the nucleoproteins (NP), 

has been reported to be highly antigenic for anti-ISAV Atlantic salmon sera (Dr. Kim 

Thompson pers. comm.; Falk pers. comm. cited in Wolf et al., 2013) this protein holds 

potential for use in a DIVA strategy. The application of ISAV NP and HE protein on a 
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companion serology test could enable differentiation between infection and vaccination if 

detectable antibodies from vaccinated fish could be detected by a HE-specific ELISA and 

infected fish detected by an NP-specific ELISA. Similar approaches have been applied for 

DIVA strategies for other orthomyxoviruses, such as equine influenza virus (EIV) (Minke et 

al., 2004; Kirkland and Delbridge, 2011) and have been considered for avian influenza virus 

(AIV) (Suarez, 2005). However, poor antibody responses were also observed to the 

inactivated ISA vaccine used in Chapter 3. This is commonly reported in ISA vaccination 

studies prior to challenge (Brown et al., 2000; Mikalsen et al., 2005; Lauscher et al., 2011; 

Wolf et al., 2013), although following challenge protection and antibody production are 

usually reported (Jones et al., 1999b; Brown et al., 2000; Mikalsen et al., 2005; Lauscher et 

al., 2011; Wolf et al., 2013). Regardless of protection, however, a specific antibody response 

must be detectable prior to infection for the DIVA strategy to be feasible, which clearly does 

not appear to be possible in the field for Atlantic salmon, at least with regards to ISA. Thus, 

despite some of the antigens used in this study having previously been established as 

immunogenic in salmonids, temperature may be a major influential factor as these studies 

were carried out in warmer water (>10ºC) (Jones et al., 1999a; Cain et al., 2002; Swan et al., 

2008; Valdenegro-Vega et al., 2013). The vaccination regime used in the current study 

followed that used for vaccination of commercially farmed stock fish. This study therefore 

highlighted the fact that inevitable temperature fluctuation in the field would be detrimental 

for DIVA vaccination programmes for ISA. 

Despite the effectiveness of exogenous marker vaccination being demonstrated in 

mammals and birds (Walsh et al., 2000a; b; James et al., 2007; 2008; Fang et al., 2008), the 

same approach has not so far been successful for fish using the same antigens, i.e. TT, in 

Atlantic salmon, or GFP in carp. The lack of response to TT and GFP was not considered to 

be associated with antigenic competition as has been reported in teleost fish (Taussig, 1977; 
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Killie and Jørgensen, 1994; 1995), thus, the lack of recognition may be associated with 

immunological differences between fish and higher vertebrates. The immunogenicity of 

molecules in mammals often leads to inconsistent results when administered to fish (Alcorn 

and Pascho, 2002) and the high titre and high affinity of IgG and IgY noted in horses and 

chickens, respectively, is lacking in fish, as antibody isotype switching does not occur for 

circulating antibodies (Kaattari, 1994; Cain et al., 2002). Furthermore, the ISA vaccination 

studies undertaken previously were performed in pre-smolt Atlantic salmon (Mikalsen et al., 

2005; Lauscher et al., 2011; Wolf et al., 2013). Therefore, the possible immunosuppressive 

effects during smoltification, i.e. reduced total immunoglobulin levels (Melingen et al., 

1995b) should perhaps also be noted with regards to ISA vaccination strategies, especially 

where sensitive and specific sero-diagnostics is vital. These immunological differences 

between higher vertebrates and teleosts must be taken into consideration for DIVA 

vaccination and diagnostics. The difficulties in obtaining protective responses and high 

antibody titres with inactivated ISA vaccines have been previously demonstrated (Lauscher et 

al., 2011). It appears to be very much dose-dependent, and culturing of high yields of virus in 

ISAV-susceptible cell lines was also found to be very challenging during this thesis (Chapter 

2). This is not to say DIVA vaccination is unfeasible in all teleost fish, as the antibody titres 

detected from carp to an inactivated KHV vaccine were very encouraging 6 wpv following 

the successful optimisation of a whole-KHV ELISA (Fig. 3.12). Subsequently, the majority 

of the project focused on approaches for establishing a DIVA strategy, and its potential 

application, for Cyprinus carpio against KHVD. 

Despite the high antibody titres obtained to the inactivated KHV vaccine, anti-KHV 

antibodies induced after infection have not been not reliably detected until 3-6 weeks post 

infection (Ronen et al., 2003; Adkison et al., 2005; Perelberg et al., 2008; Matras et al., 

2012), which leaves a broad window for misdiagnosing fish as uninfected/exposed, e.g. 
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during a sero-surveillance programme. An experimental challenge was therefore designed 

(Chapter 4) to induce an acute KHVD propagation using a virulent isolate to investigate KHV 

pathogenesis and determine the most sensitive diagnostic approach to detect KHV directly in 

fish immediately post infection. Various conclusions have been drawn regarding the portal of 

entry of KHV (Gilad et al., 2004; Pikarsky et al., 2004; Miyazaki et al., 2008; Costes et al., 

2009; El-Din, 2011; Raj et al., 2011; Fournier and Vanderplasschen, 2011; Fournier et al., 

2012; Lee et al. 2012; Adamek et al., 2013), and strong evidence has recently demonstrated 

the skin to be an important tissue during the early infection stages, and a possible point of 

entry (Costes et al., 2009; Fournier and Vanderplasschen, 2011; Fournier et al., 2012; 

Adamek et al., 2013). However, the findings in the current study by ISH and real-time qPCR 

indicated that the gills and gut may still represent points of virus entry (Fig.4.7 & Fig. 4.12). 

Variations in experimental design and analytical approaches often lead to contrasting results 

regarding the portal of entry of pathogens, which has also been observed with other 

intensively studied notifiable aquatic viruses such as the rhabdoviruses IHNV and VHSV 

(Yamamoto and Clermont, 1990; Yamamoto et al., 1990; Harmache et al., 2006; Montero et 

al., 2011). Indeed, the initial infection site of an important human pathogen, poliovirus, was 

still unconfirmed for 50 years following contrasting proposals for the initial infection site 

(Bergelson, 2003). Nonetheless, such studies on viral infection and pathogenesis provide an 

amalgamation of important information for developing effective diagnostic approaches 

critical for surveillance programmes. 

The results obtained from studies on VHSV pathogenesis have contributed markedly 

to optimising diagnostic methodology for its detection (Cornwell et al., 2013). This is 

particularly important for different pathogens that have different courses of infection as non-

lethal sampling methods for VHSV diagnostics using gill and skin biopsies were shown to be 

less sensitive compared to pooled internal organ samples (Cornwell et al., 2013). This is in 
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contrast to KHV diagnostics where use of pooled internal organs can be detrimental to 

detection of the virus, resulting in false negative reporting for some fish (Bergmann et al., 

2010a), thus the same diagnostic approaches applied for VHSV could not be used for KHV. 

It was clear from the study carried out in Chapter 4 that pooling of internal tissues during an 

early stage of infection would be particularly unfavourable for KHV detection. An apparent 

eclipse period of infection, i.e. < 5 dpi, noted in this study corroborates previous findings 

(Costes et al., 2009; Fournier et al., 2012) characterised by low and undetectable viral loads 

within internal organs. This resulted in many false negative results using molecular methods, 

but highlighted the most sensitive PCR assays and suitable sampling tissue, the gill (Table 

4.4; Fig. 4.20). Although the skin was not deemed to be a tissue of KHV entry based on 

results of the current study, the significance of this tissue in KHV pathogenesis highlighted in 

previous studies (Costes et al., 2009; Fournier et al., 2012; Adamek et al., 2013) and in the 

current study, perhaps makes it a useful biopsy for early KHV detection. As suggested by 

Adamek et al. (2011), skin biopsies could be obtained non-lethally, i.e. by fin clipping. 

However, such invasive approaches are undesirable for high value koi, and damage to the 

skin may actually facilitate an enhanced KHV infection following any encounter with the 

virus as demonstrated previously (Raj et al., 2011). Non-lethal skin mucus swabs proved to 

be the most effective method to detect KHV (Table 4.5; Fig. 4.23) as the virus appears to be 

shed via the skin at very early stages of infection, similar to other alloherpesviruses such as 

CCV (Kancharla and Hanson, 1996). Such a sampling approach could complement blood 

sampling for DIVA sero-surveillance strategies enabling both a direct and indirect approach 

to detecting KHV infected carp. 

Although numerous in situ diagnostic methods were assessed in the study including 

IHC, TEM, IFAT and ISH, only DNA detection by ISH proved to be sensitive and reliable 

during early KHV infection stages. Information regarding the expression kinetics of various 
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KHV proteins could be very useful for devising DIVA diagnostic tests with specific viral 

structural proteins. DIVA approaches for inactivated AIV vaccines have recently 

demonstrated the effective application of structural proteins that are expressed in abundance 

in infected cells inducing strong antibody responses, but not in uninfected vaccinated birds 

(Lambrecht et al., 2007; Kim et al., 2010; Hemmatzadeh et al., 2013). Attempts were 

therefore made to analyse the expression of proteins on fixed tissues from experimentally 

challenged carp using IHC and IFAT. However, this was often inconclusive using MAbs 

against a tegument protein (ORF62) (Aoki et al., 2009; 2011), a lipoprotein with a 

transmembrane domain (ORF68) (Aoki et al., 2011; Ilouze et al., 2012a; b) and a capsid 

associated-protein (ORF84; Chapter 6). The majority of signals obtained were over-abundant 

and did not correspond with localisation of KHV DNA by ISH (Fig. 4.18). An exception was 

the MAb of the tegument protein, which produced focal signals in liver sections, but further 

validation is required to confirm these were specific (Fig. 4.16-4.18). Furthermore, no 

antibody responses were detected in any fish from this trial (during the first 10 dpi) except for 

a surviving fish, which had a high specific antibody titre of 1/10,000, but a neutralising 

antibody titre of only 1/45 (Sven Bergmann pers. comm.). 

Subsequent studies therefore investigated differential expression kinetics of KHV 

proteins in vitro using MAbs (Chapter 5) and the application of recombinant proteins coated 

onto ELISA plates for improved sensitivity and specificity of KHV serology (Chapter 6). 

Ultimately the four approaches from the various studies of this thesis could complement each 

other to (1) allow detection of antibodies to exogenous ‘positive’ markers (Chapter 3); (2) 

enable direct virus detection by non-lethal sampling at early stages post infection with a 

highly sensitive PCR-based assay (Chapter 4); (3) provide further information of KHV 

antigens during replication (Chapter 5) and (4) enable detection of specific KHV antibodies 
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at low serum dilutions with the possibility of differentiating between infected and vaccinated 

carp (Chapter 6). 

 The development of two novel immunofluorescence (IF) techniques in Chapter 5 

facilitated antigen expression studies in vitro. These techniques enabled comparisons of the 

relative quantification of KHV antigen expressed in infected cells. This was determined 

through antibody-antigen complexing of MAbs to their epitopes from various virus structural 

proteins during a time course of KHV infection in cultured cells. Two MAbs from a panel of 

10 were screened using both a microtitre plate IF procedure and confocal microscopy 

followed by image analysis. These MAbs were of particular interest as they indicated 

significantly different expression kinetics for the antigens they recognised (5.7 & 5.8) and 

targeted two different viral structural proteins (Table 5.2). The same trends in antigen 

expression were evident with both approaches (Fig. 5.19) whereby much greater capsid 

antigen (ORF84) abundance was detected in infected cells compared to envelope 

glycoprotein (ORF56, Gotesman et al., 2013). The findings from these assays may not only 

have provided useful information for the purpose of the current study, but also suggest that 

the application of capsid antigen for IF diagnostic testing for KHV may also be useful. The 

OIE (2012) accepts confirmation of KHV infection in the absence of mortalities based on 

ISH, PCR and IFAT, but there is no definition of which MAbs should be used for IFAT. 

Often MAbs are screened by ELISA to determine which are the most suitable for diagnostics, 

but from the current study it appears that the sensitivity of antibody-based assays can differ 

depending on the MAb applied for that specific assay. Despite the capsid MAb (20F10) 

producing stronger signals to fixed infected cells, weaker signals were obtained compared to 

the glycoprotein MAb (10A9) after screening on whole KHV ELISA (Fig. 5.3). Perhaps 

alternative MAbs, such as the capsid MAb, may improve the sensitivity of KHV titration 

procedures in cell cultures when CPE is lacking, similar to that undertaken for ISAV using IF 
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(Falk et al., 1998). IFAT carried out with capsid MAbs may also improve KHV detection 

sensitivity in isolated leukocytes (Bergmann et al., 2009a) as infected cells harbour higher 

levels of capsid antigen compared to other viral antigens according to the results from this 

study. 

 The antigen kinetics were not investigated for the other MAbs in Chapter 5 due to 

time and consumables constraints, which also limited the number of replicates used in the 

experiments. Further investigations using these techniques are however planned for MAb 

10D10 and MAb 7C6. These MAbs recognise a tegument protein encoded by ORF62 and 

lipoprotein of ORF68 (Aoki et al., 2009; 2011; Ilouze et al., 2012b). The MAb recognising 

ORF62 exhibited positive signals in the liver of experimentally infected carp after screening 

by IHC and IFAT in Chapter 4 (Fig. 4.16 - 4.18), and the MAb recognising ORF68 exhibited 

both focal nuclear and cytoplasmic staining in Chapter 5 (Fig. 5.20). Both of these antigens 

are known to be antigenic (Aoki et al., 2009; 2011) and were utilised for developing sensitive 

and specific recombinant ELISAs in Chapter 6. Initially, however, koi serum taken from field 

cases of a surveillance programme in Singapore (Agri-Food and Veterinary Authority of 

Singapore) were screened using the KHV whole virus ELISA developed in Chapter 3. The 

necessity for serological diagnostics was accentuated from these results where 45% of koi 

were seropositive at a serum dilution of 1/200 (Fig. 6.1), which would otherwise be 

misdiagnosed as sero-negative because of high cut-off dilutions utilised in published ELISA 

protocols (Adkison et al., 2005; St-Hilaire et al., 2009). As many as 69% of the cases that 

were PCR negative were positive for anti-KHV antibodies at low serum dilutions. There were 

also seropositive ‘negative control’ fish at a 1/400 dilution, however, emphasising the need 

for a more KHV-specific ELISA test. Such a test would be capable of improving the 

sensitivity of KHV serology without false screening of fish as a result cross reactive 

antibodies with carp pox virus antigens, which has been reported in a number of studies 
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(Ronen et al., 2003; Adkison et al., 2005). Such cross-reactions would be detrimental for 

DIVA strategies. 

 The recombinant protein ELISAs developed in Chapter 6 performed well using sera 

diluted at a 1/200 dilution, with 12/13 of the screened fish being reported as positive for 

rORF62 and 8/13 positive for rORF68 that had otherwise tested negative for PCR. 

Furthermore, the recombinant protein ELISAs enabled differentiation between infected and 

vaccinated carp (Fig. 6.7), using the sera from carp vaccinated with an inactivated vaccine in 

Chapter 3. Importantly, many infected/exposed fish recognised rORF62 (Fig. 6.6) as did fish 

that were vaccinated with an attenuated vaccine (Fig. 6.7). Therefore a DIVA strategy 

appears feasible for KHV, using both of these recombinant proteins in ELISA, although at 

this stage the assay needs further optimisation as a 1/800 dilution was required to indicate the 

differential antibody responses above the cutoff (Fig. 6.9). Moreover, a particularly strong 

responder was positive for both proteins, which may limit the application of this assay to the 

population level. Previously, the majority of marker vaccines that have been developed for 

herpesviruses, e.g. PrV and BoHV-1, have been based on envelope glycoprotein deletions 

(Van Oirschot et al., 1986; 1988; 1990; 1991; 1996; Kaashoek et al., 1994; 1995; 1996; 

1998; Van Oirschot, 1999) and some DIVA approaches have applied companion serology 

tests for subunit vaccines (Van Drunen Little-van den Hurk et al., 1994; 1997; Van Drunen 

Little-van den Hurk, 2006). However, the application of internal structural proteins of 

herpesviruses may also be an effective approach for DIVA strategies, similar to those applied 

for AIV, as noted in the current study. Van Drunen Little-van den Hurk and Babiuk, (1986) 

observed that polypeptides of BoHV-1 confined to the internal surface of virions and infected 

cells are only recognised by the immune system following repeated exposure and destruction 

of infected cells after which, an antibody response to that antigen will be mounted. Based on 
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this model, an inactivated vaccine cannot infect cells and thus only after exposure to infection 

should that antigen be recognised, making a DIVA approach possible. 

The rORF62 protein produced many breakdown products following dialysis out of 

urea detergent (Fig. 6.4 & 6.5), but was still detected by the majority of naturally infected and 

exposed koi that had produced strong and moderate antibody responses to the virus (Fig. 6.6). 

Therefore this cannot be considered a reason for lack of detection by carp with an inactivated 

vaccine. Instead the characteristics of the protein encoded by ORF62 in KHV infected fish 

needs to be considered. The protein encoded by ORF62 is a putative tegument protein with 

possible homology to the major tegument protein, UL36, of HSV-1 (Michel et al., 2010b; 

Van Beurden et al., 2011). The UL36 protein, like that encoded by ORF62 in KHV, is a 

cysteine protease and during infection of human cells, it is recruited to the capsid and retained 

following entry into the cell and migration to the nuclear pore via microfilaments (Newcomb 

and Brown, 2010). The protein is thought to possibly undergo autocleavage in order to 

release viral DNA into the nucleus by causing conformational changes of the capsid 

(Jovasevic et al., 2008; Pasdeloup et al., 2009). The products of autocleavage would only be 

exposed to fish following cell lysis during viral replication, thus would not be detected by 

uninfected fish vaccinated with inactivated vaccines. However, the application of such a 

DIVA system would require highly purified virions as a vaccine strain and the recombinant 

protein ELISA test to be highly sensitive and specific. At this stage, although promising, the 

rORF62 and rORF68 recombinant ELISAs do not offer such reliability, which may be 

attributed to the expression system (E. coli) used for their production. 

The yeast Pichia pastoris has been utilised for the production of antigens for recombinant 

protein ELISAs for mammalian herpesviruses (Ao et al., 2003) as proteins can be expressed 

with correct folding, disulphide bond formation and post translational modifications such as 

glycosylation (Macauley-Patrick et al., 2005). Other studies developing recombinant ELISAs 
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for VHSV used P. pastoris for generating highly specific fragments of the major antigenic 

‘G’ protein of the virus (Encinas et al., 2011a; b). Alternatively, a baculovirus expression 

system has been used in a number of studies for sensitive detection of notifiable mammalian 

viral diseases including herpesviruses (Hulst et al., 1993; Kimman et al., 1996; Oviedo et al., 

1997; Gut et al., 1999; Barderas et al., 2000; Chung et al., 2002; Pérez-Filgueira et al., 2006; 

Gómez-Sebastián et al., 2008) and may prove useful for fish serology. 

The advantages of expressing recombinant antigens of interest within baculoviruses in 

infected insect (e.g. Lepidoptera) larvae, such as Trichoplusia ni, is that it enables improved 

folding and processing of proteins, even over the yeast expression (P. pastoris) system. 

Furthermore, the antigenic, immunogenic and biological characteristics of the native protein 

have been shown to be reproduced in this expression system for other herpesviruses (Gómez-

Sebastián et al., 2008; Thomas et al., 2009). Thus expression of KHV rORF62 and rORF68 

through such a system might reveal more epitopes, associated with the native viral proteins 

that are conformationally altered through E. coli, thus possibly improving the sensitivity of 

the assay. Differences were noted between recognition of non-structural proteins of FMDV 

expressed through a baculovirus system compared to recombinant proteins obtained through 

E.coli, expression, which ultimately demonstrated that an alternative antigen was more 

effective for detecting infected as opposed to vaccinated pigs (Chung et al., 2002). As very 

high yields of protein can be obtained from a single insect larva within 3 days (Pérez-

Filgueira et al., 2006; Gómez-Sebastián et al., 2008) diagnostic test development is also more 

cost-effective. Expensive tissue culture facilities and high biosecurity measures associated 

with culturing high profile pathogens is also eliminated from the production line when using 

baculovirus-insect larvae expression systems (Barderas et al., 2000). This makes such 

diagnostic testing for important pathogens like KHV more broadly available. Recombinant 
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production systems like this also provide the basis for developing effective and pure subunit 

vaccines that are useful for DIVA strategies (Pérez-Filgueira et al., 2007). 

However, alternative internal structural proteins of KHV could perhaps enable a more 

reliable DIVA approach. The antigen recognised by MAb 20F10 was identified as an 

uncharacterised KHV protein encoded by ORF84 (Chapter 6; Fig. 6.12). Earlier Western blot 

analysis had revealed a dominant ~100kDa purified KHV band recognised by this MAb 

(Chapter 5; Fig. 5.4), which was subsequently found to be antigenic, as it was recognised by 

>25% of exposed/infected and vaccinated carp (Table 6.7; Fig. 6.11). Interestingly, so far 

none of the inactivated vaccinated fish were shown to recognise this protein by Western blot, 

only attenuated vaccinated fish. A 97kDa band of KHV has previously been reported as an 

immunodominant band from Western blot analysis of experimentally KHV infected carp 

(Adkison et al., 2005), which may constitute the same protein. This protein is expressed to 

high levels in infected cells (Chapter 5; Fig. 5.7; 5.8; 5.19) and perhaps could provide an 

effective DIVA approach for an inactivated vaccine similar to the ME2 protein of AIV 

(Lambrecht et al., 2007; Kim et al., 2010; Hemmatzadeh et al., 2013). The transcript 

expression of this capsid protein mirrors the expression of the major capsid protein encoded 

by ORF92 (Ilouze et al., 2012a; b). The antibody responses to KHV infection are, however, 

fundamentally the most important factor to consider for feasible DIVA strategies. 

The distinct differences in properties associated with the flexible multimeric IgM of 

fish (Kaattari et al., 1998; 1999) may enable more effective complement fixing activity, as 

discussed in Chapter 1. As carp possess a high level of natural antibodies (Sinyakov et al., 

2002; 2006; Sinyakov and Avtalion, 2009), and these are considered an important aspect of 

fish immunity, these may be very active during KHV infection at an early stage. The 

importance of natural antibody induced virus neutralisation via complement fixation has been 

described previously (Bernet et al., 2003; Hook et al., 2006). As reported by Rakus et al. 
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(2012) the up-regulation of complement associated transcripts and complement activity from 

sera after only 3 dpi, perhaps implies that both alternative and classical complement pathways 

are active, resulting in membrane attack complex (MAC) associated lysis of infected cells. 

Furthermore, proteins involved in the complement host defence pathway (C3-S, C4-1 and 

C42) have recently been found to be associated with KHV antigens from infected carp tissues 

after affinity purification (Gotesman et al., 2013). The rapid anti-viral activity of natural 

antibodies immediately post infection may explain the reduced antibody levels reported in 

experimentally KHV infected carp after 7 dpi (Ronen et al., 2003). This may result in the 

release of abundant capsid antigen, that is expressed to high abundance in infected cells 

(Chapter 5; Fig. 5.7; 5.8; 5.19) and which is subsequently recognised by MAbs and infected 

fish sera (Chapter 6; Fig. 5.4; 6.5; 6.11). However, these antibodies were not detectable, even 

after a highly virulent challenge (Chapter 4) until late stages of infection. Even after 10 wpi 

the antibody titre of infected fish may be high (1/10,000; Chapter 4), but the level of 

neutralising antibodies low (1/45; Chapter 4) emphasising the high level of non-neutralising 

antibodies. Non-neutralising antibodies are thought to represent the majority of antibodies 

produced to a number of fish viruses and are longer lasting than neutralising antibodies, e.g. 

SVCV and VHSV (Olesen et al., 1991; Dixon et al., 1994; Encinas et al., 2011a; b). These 

antibodies may recognise internal viral proteins, e.g. capsid-associated antigens, or tegument-

associated antigens (Chapter 6). Therefore, as these appear to be detected predominantly by 

infected fish, but not vaccinated fish with an inactivated vaccine (Chapter 6; Fig. 6.7 & 6.8) 

they may constitute useful antigens for serological diagnostics for KHV and DIVA strategies. 

As capsid antigens constitute TI antigens (Flint et al., 2009), they may alleviate issues 

regarding temperature induced T cell suppression that is characteristic of fish immune 

responses at low temperatures (Bly and Clem, 1992; Secombes et al., 1996). Applying a more 

immunogenic exogenous marker antigen, than those used in Chapter 3 may enable the 
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induction of detectable antibodies in vaccinated fish. This could perhaps be applied with plant 

based protein antigens developed using the synthetic biomarker approach described by Root-

Bernstein (2005), which would then possibly allow safe and licensable marker vaccination 

strategies for food carp as well as ornamental koi. The application of semi-nested PCR or 

real-time PCR (Gilad et al., 2004; Bergmann et al., 2010a) on mucus samples enables 

sensitive detection of KHV DNA in the absence of antibodies during early stages of KHV 

infection (Chapter 4). Furthermore, Eide et al. (2011a) described approaches for utilising the 

blood leukocytes of latently infected carp for the detection of KHV DNA. Thus, fish with 

marginal antibody titres on recombinant based ELISA could still be tested non-lethally for 

viral DNA in mucus. Moreover, blood leukocytes could enable detection of latent stage 

infection where antibody levels have fallen below the level of detection of the ELISA. Such 

screening could perhaps be carried out with highly sensitive PCR assays (conventional or 

semi-nested) detecting the glycoprotein gene of ORF56, (Bergmann et al, 2010b) as well as 

real-time PCR (Gilad et al., 2004) (Chapter 4). 

7.2 Concluding remarks 

In conclusion, DIVA strategies may be feasible for the control of KHVD in carp, but not ISA 

in Atlantic salmon. Genetic DIVA approaches may be applied for ISAV (Kibenge et al., 

2009b), although this may not be sensitive enough to detect carrier fish. Utilising non-

neutralising antigens of KHV and thus detection of non-neutralising antibodies may enhance 

the sensitivity of serological tests for KHV, but perhaps not the specificity as carp harbour 

high levels of natural antibodies. Application of a DNA vaccine that expresses protective 

envelope glycoproteins, which has been developed (Aoki and Hirono, 2009; 2011), could 

enable a DIVA approach by applying internal virus antigens of ORF62 or ORF84 to a 

companion serological diagnostic test. While natural antibodies appear to be important in 
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carp immunity, they will continue to present a challenge to reliable KHV serology, and thus 

DIVA strategies against KHVD. 
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Appendix I 

 
Figure A. 1 Mascot search results of the gel band excised from Fig. 6.12. The red bar on the right 

represents KHV ORF92 (KHV major capsid protein) and is significant. Protein scores greater than 

84 are significant (p<0.05). 

Figure A. 2. Mascot search results of the gel band excised from Fig. 6.12 The red bar on the right 

represents KHV ORF84 (KHV capsid protein) and is significant.  Protein scores greater than 84 are 

significant (p<0.05). 

Figure A1 

 

Figure A2 
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Table A1 

Source country, clinical signs of koi and PCR results of cases from Singapore Koi herpesvirus 

(KHV) Surveillance Program used in study. Cases from Singapore surveillance programme 

described in Section 6.2.3. 

Case 
ID 

Clinical signs 
Source 
country 

PCR results and primers used 
KHV 

exposure 
group 

Fish id 

Group 1 

C1 Clinically healthy koi. Malaysia 
Positive by IQ2000 test kit & 

Bercovier TK primers. 
1 12-14 

C2 

Diseased koi. Reddened skin 
and loose scales with 

ulcerated body, pale gills and 
cloudy eyes. 

Malaysia Positive by IQ2000 test kit 1 15-18 

C3 
Clinically healthy koi 

associated with C1 and C2. 
Malaysia Negative by Bercovier TK primers. 1 19-26 

C4 
Diseased. Koi were thin with 
reddened, dry skin, cloudy 

and sunken eye. 
Malaysia Positive by Bercovier TK primers. 1 27-38 

C5 Clinically healthy koi. Malaysia 
Positive by IQ2000 test kit and 

Yuasa-Grey Sph primers. 
1 39-40 

C6 
Diseased koi with reddened 
skin, loose scales and pale 

gills. 
Malaysia 

Positive by IQ2000 test kit and 
Yuasa-Grey Sph primers. 

1 41-42 

C7 Diseased koi. Unknown 
Positive by Bercovier TK and 

Yuasa-Grey Sph primers. 
1 43-47 

C8 

Clinically healthy when 
sampled but all 30 koi were 

dead on arrival. Pale gills and 
ascitic fluid in abdomen. 

Malaysia 
Positive by Bercovier TK and 

Yuasa-Grey Sph primers. 
1 48-52 

C9 
Clinically healthy koi, 2 out 
of 30 koi dead on arrival. 

Malaysia 
Positive by Bercovier TK and 

Yuasa-Grey Sph primers. 
1 53-57 

C10 Clinically healthy koi. Malaysia Positive by Bercovier TK primers. 1 58-63 

C11 Clinically healthy koi. Malaysia Positive by Bercovier TK primers. 1 64 

C27 

Diseased koi with abnormal 
swimming, showing 

respiratory distress and pale 
gills. Reddening of the body 

and mouth seen. 

Singapore 
Positive by real-time TaqMan 

PCR. 
1 144-146 

C31 Diseased koi. Singapore 
Positive by real-time TaqMan 

PCR. 
1 156-158 

2 

C12 Clinically healthy koi. Malaysia 
Negative by IQ2000 test kit and 

Yuasa-Grey Sph primers. 
2 65-74 
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C13 Clinically healthy koi. Malaysia Negative by Bercovier TK primers. 2 75-76 

C14 Clinically healthy koi. Japan Negative by Bercovier TK primers. 2 77-80 

C15 Clinically healthy koi. Japan Negative by Bercovier TK primers. 2 81-90 

C16 Clinically healthy koi. China Negative by Bercovier TK primers. 2 91 

C17 Clinically healthy koi. Japan Negative by Bercovier TK primers. 2 92-97 

C18 Clinically healthy koi with 
pale gills. 

Malaysia Negative by Bercovier TK primers. 2 98 

C19 Clinically healthy koi. Malaysia Negative by Bercovier TK primers. 2 99-105 

C20 Clinically healthy koi. Singapore Negative by Bercovier TK primers. 2 106-109 

C21 Clinically healthy koi. Japan Negative by Bercovier TK primers. 2 110-112 

C22 Clinically healthy koi. Japan Negative by Bercovier TK primers. 2 113-120 

C23 Clinically healthy koi. Japan Negative by Bercovier TK primers. 2 121-129 

C24 Clinically healthy koi. Malaysia Negative by Bercovier TK primers. 2 130-138 

C25 Clinically healthy koi. Malaysia Negative by Bercovier TK primers. 2 139-140 

C26 Clinically healthy koi. Malaysia Negative by Bercovier TK primers. 2 141-143 

C28 Clinically healthy koi. Singapore Negative by Bercovier TK primers. 2 147-149 

C29 Clinically healthy koi. Singapore Negative by Bercovier TK primers. 2 150-152 

C30 Clinically healthy koi. Singapore Negative by Bercovier TK primers. 2 153-155 

C32 Clinically healthy koi. Malaysia 
Negative by real-time TaqMan 

PCR. 
2 159-161 

C33 Clinically healthy koi. Singapore 
Negative by real-time TaqMan 

PCR. 
2 162-163 

C34 Clinically healthy koi. Malaysia 
Negative by real-time TaqMan 

PCR. 
2 164-165 

C35 Clinically healthy koi. Japan 
Negative by real-time TaqMan 

PCR. 
2 166-173 
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