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Summary 

Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential in important 

physiological processes, many of which are particularly vital during embryonic 

development. This study investigated the expression of genes encoding enzymes 

involved in LC-PUFA biosynthesis, namely fatty acyl desaturase (Fad) and Elovl5- 

and Elovl2-like elongases, during early embryonic development of zebrafish. Firstly, 

zebrafish elovl2 cDNA was isolated and functionally characterised in yeast, showing 

high specificity towards C20 and C22 PUFAs, compared to C18 substrates. Secondly, 

spatial-temporal expression for elovl2 and the previously cloned fad and elovl5 were 

studied during zebrafish early embryonic development. Temporal expression shows 

that all three genes are expressed from the beginning of embryogenesis (zygote), 

suggesting maternal mRNA transfer to the embryo. However, a complete activation of 

the biosynthetic pathway seems to be delayed until 12 hpf, when noticeable increases 

of fad and elovl2 transcripts were observed, in parallel with high docosahexaenoic 

acid levels in the embryo. Spatial expression was studied by whole-mount in situ 

hybridization in 24 hpf embryos, showing that fad and elovl2 are highly expressed in 

the head area where neuronal tissues are developing. Interestingly, elovl5 shows 

specific expression in the pronephric ducts, suggesting an as yet unknown role in fatty 

acid metabolism during zebrafish early embryonic development. The yolk syncytial 

layer also expressed all three genes, suggesting an important role in remodelling of 

yolk fatty acids during zebrafish early embryogenesis. Tissue distribution in zebrafish 

adults demonstrates that the target genes are expressed in all tissues analysed, with 

liver, intestine and brain showing the highest expression. 
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Introduction 

Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential compounds that 

play key roles in numerous metabolic and physiological processes ensuring normal 

cellular function. Some LC-PUFAs, including arachidonic (20:4n-6, ARA) and 

eicosapentaenoic (20:5n-3, EPA) acids, are precursors of eicosanoids, biologically 

active compounds that modulate physiological processes including inflammation, 

reproduction and hemostasis [1]. Increased dietary levels of n-3 LC-PUFAs including 

EPA and docosahexaenoic acid (DHA, 22:6n-3) have being described as health 

promoters related to cardiovascular, immune, and inflammatory conditions [2,3]. 

Additionally LC-PUFAs are constituents of cell membrane phospholipids, 

determining in part fluidity, and activity of membrane proteins and enzymes involved 

in transport and signal transduction [4]. This is critical in neuronal tissues where a 

unique degree of fluidity and compressibility of cell membranes is provided by DHA-

rich phospholipids that enable rapid conformational changes required for 

neurotransmission and photoreception [5]. 

    The biosynthesis of LC-PUFAs in vertebrates involves consecutive desaturation 

and elongation reactions that convert the essential fatty acids (EFAs) 18:3n-3 (α-

linolenic acid) and 18:2n-6 (linoleic acid) to longer-chain, more unsaturated fatty 

acids (FAs) of the same series, including EPA, DHA and ARA (Fig. 1, [6,7]). Two 

types of enzymes are responsible for these conversions, namely fatty acyl desaturases 

(Fad) and elongases of very long fatty acids (Elovl). The former introduce a double 

bond in the fatty acyl chain at C6 (Δ6 Fad) or C5 (Δ5 Fad) from the carboxyl group. 

On the other hand, Elovl account for the condensation of activated FAs with malonyl-

CoA in the FA elongation pathway. Several members of the Elovl family are involved 

in PUFA biosynthesis in mammals, those being Elovl5 with substrate specificity for 
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C18 FAs and Elovl2 for C20 and C22 [8,9]. Additionally, Elovl4 has been speculated 

to participate in the elongation steps required for synthesis of DHA in mammalian 

retina [9]. 

    The importance of LC-PUFA in developing organisms is illustrated by their 

accretion in neuronal tissues during embryogenesis [10-15]. Additionally, deficient 

production of LC-PUFAs during development can cause neuromuscular defects, 

cuticle abnormalities, reduced brood size, and altered biological rhythms in 

Caenorhabditis elegans mutants that lack fat-3, the gene for Δ6 desaturase [16]. In 

mammals, it has been suggested that LC-PUFAs are preferentially delivered from the 

mother to the fetus by transfer across the placenta since fetal LC-PUFA biosynthetic 

capacity appears to be limited [12,17]. In oviparous organisms such as avians, FAs 

present in yolk in the form of triacylglycerol or phospholipid molecules are absorbed 

into the yolk sac membrane for delivery into the embryonic circulation and utilisation 

for energy, membrane biogenesis, and fat deposition [18]. Amounts of LC-PUFAs 

deposited by the hen are insufficient to fulfil the requirements of the embryo, and 

therefore biosynthesis of LC-PUFA by the chicken embryo is, contrary to human 

fetus, very active in order to compensate such a deficiency [19,20]. 

    In fish, studies have demonstrated that supply of LC-PUFAs to embryos is greatly 

influenced by the diet of broodstock [21,22], and that suboptimal levels of LC-PUFA 

delivered to larvae may compromise ability to capture prey in herring (Clupea 

harengus) [23], delay response to visual stimuli in gilthead sea bream (Sparus aurata) 

[24], and impair schooling behaviour in yellowtail (Seriola quiqueradiata) [25,26] 

and Pacific threadfin (Polydactylus sexfilis) [27]. Despite the known importance of 

LC-PUFA supply during embryonic development and their proven selective 

accumulation in certain lipid classes [28], little is known about the capability of fish 
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embryos for endogenous biosynthesis to supplement preformed LC-PUFA present in 

the yolk. 

    Significant progress has been made in characterising the desaturases and elongases 

involved in LC-PUFA synthesis in fish including freshwater [29-33] and marine 

species [34-38]. Zebrafish (Danio rerio), a popular model organism in vertebrate 

developmental biology, has recently been used to study aspects of lipid metabolism 

[39-42]. Two enzymes involved in LC-PUFA biosynthesis have been characterised in 

zebrafish, a Fad with dual Δ5/Δ6 activity unique among vertebrates [43], and an 

elongase with high specificity towards C18 and, to a lesser extent, C20 PUFA [30], 

similar to elongases found in several other fish species [31-32]. Recently, a cDNA for 

a second elongase was isolated from salmon and shown to have high specificity 

towards C20 and C22 PUFA [33].  

    The present study aimed to investigate the expression of Fad and Elovl enzymes 

involved in LC-PUFA biosynthesis during early development of zebrafish. Firstly, we 

isolated and functionally characterised a second zebrafish elongase cDNA important 

in the biosynthesis of DHA. Secondly, the spatial-temporal expression pattern of the 

newly cloned elongase, together with the previously isolated Fad [43] and elongase 

[30], was investigated during zebrafish embryogenesis. Expression of these three 

enzymes enable zebrafish to synthesise all LC-PUFA from C18 EFA, and therefore 

zebrafish are an excellent model to study early developmental regulation of LC-PUFA 

synthesis in vertebrates. 

 

Materials and methods 

 

Fish maintenance 
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Adult AB wild-type zebrafish strain were maintained at the facilities of the Instituto 

de Investigaciones Marinas (IIM-CSIC) as described previously [44]. Zebrafish 

embryos collected from mating of single broodstock couples were isolated and raised 

at 28.5ºC and staged according to the number of hours post-fertilization (hpf) [43]. 

For whole-mount in situ hybridization analyses, dechorionated embryos were fixed 

overnight at 4 ºC in 4 % paraformaldehyde in 1xPBS, washed in PBS, and dehydrated 

through a methanol series, and stored at -20 ºC in 100 % methanol. To inhibit embryo 

pigmentation, embryo medium was supplemented with 0.003 % 1-phenyl-2-thiourea 

(PTU, Sigma, Alcobendas, Spain) [44].  

 

Zebrafish Elovl2: cloning and functional characterization by heterologous expression 

in Saccharomyces cerevisiae 

PCR fragments corresponding to the ORF of the putative Elovl2 elongase 

(gb|NP_001035452|) were amplified from zebrafish liver cDNA using specific 

primers containing restriction sites (underlined) – Elovl2VF 

(CCCAAGCTTAGGATGGAATCATATGAAAAAATTGATAAG; HindIII) and 

Elovl2VR (CCGCTCGAGTCACTGTAGCTTCTGTTTGGAG; XhoI). PCR was 

performed using the high fidelity PfuTurbo® DNA polymerase (Stratagene, Agilent 

Technologies, Cheshire, UK), with an initial denaturing step at 95 ºC for 2 min, 

followed by 35 cycles of denaturation at 95ºC for 30 s, annealing at 57 ºC for 30 s, 

extension at 72 ºC for 1 min 10 s, followed by a final extension at 72 ºC for 5 min. 

The DNA fragments were then digested with the corresponding restriction 

endonucleases (New England BioLabs, Herts, UK) and ligated into a similarly 

restricted pYES2 yeast expression vector (Invitrogen, Paisley, UK). The purified 

plasmids (GenElute™ Plasmid Miniprep Kit, Sigma) containing the putative Elovl2 
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ORF were then used to transform S. cerevisiae competent cells (S.c. EasyComp 

Transformation Kit, Invitrogen). Transformation and selection of yeast with 

recombinant pYES2-elovl2 plasmids, yeast culture and FA analysis was performed as 

described in detail previously [28,41,44]. Briefly, cultures of recombinant yeast were 

grown in S. cerevisiae minimal medium-uracil supplemented with one of the following 

FA substrates: stearidonic acid (18:4n-3), γ-linolenic acid (18:3n-6), EPA (20:5n-3), 

ARA (20:4n-6), docosapentaenoic acid (22:5n-3) or docosatetraenoic acid (22:4n-6). 

Docosapentaenoic and docosatetraenoic acids (>98-99% pure) were purchased from 

Cayman Chemical Co. (Ann Arbor, USA) and the remaining FA substrates (>99% 

pure) and chemicals used to prepare the S. cerevisiae minimal medium-uracil were from 

Sigma Chemical Co. Ltd. (Dorset, UK). FAs were added to the yeast cultures at final 

concentrations of 0.5 (C18), 0.75 (C20) and 1.0 (C22) mM. After 2-days, yeast were 

harvested and washed, and lipid extracted by homogenization in chloroform/methanol 

(2:1, v/v) containing 0.01% BHT as antioxidant. FA methyl esters were prepared, 

extracted, purified, and analysed by GC in order to calculate the proportion of 

substrate FA converted to elongated FA product as [product area/(product area 

+substrate area)] x 100. Identities of FA peaks were based on GC retention times and 

confirmed by GC-MS as described previously [30,43]. 

 

Sequence and phylogenetic analysis of Elovl2 

The amino acid (AA) sequence deduced from the zebrafish Elovl2 cDNA 

(gb|NP_001035452|) was compared with human (gb|NP_060240|), mouse 

(gb|NP_062296|) and rat (gb|NP_001102588|) ELOVL2s, amphibian Xenopus laevis 

(gb|NP_001087564|) and X. tropicalis (gb|NP_001016159|) Elovl2s, bird Taenopygia 

guttata (gb|XP_002186815.1|) and Gallus gallus (gb|XP_418947|) predicted Elovl2-
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like proteins, and salmon Elovl2 (gb|FJ237532|) using the EMBOSS Pairwise 

Alignment Algorithms tool (http://www.ebi.ac.uk/Tools/emboss/align/). A 

phylogenetic tree was constructed on the basis of the AA sequence alignments 

between the putative zebrafish Elovl2, Elovl2 orthologs and Elvol5 proteins, and 

using the Neighbour Joining method [47]. Confidence in the resulting phylogenetic 

tree branch topology was measured by bootstrapping through 1000 iterations. 

 

Temporal expression of fad, elovl5, elovl2 during zebrafish ontogeny 

To study the expression of the target genes during the embryonic development of 

zebrafish, total RNA was extracted from pools of 20-30 embryos collected at 0, 3, 6, 

9, 12, 14, 24, 48, and 72 hpf using Tri Reagent (Sigma) according to manufacturer’s 

protocol. Five µg of total RNA was reverse transcribed into cDNA using M-MLV 

reverse transcriptase first strand cDNA synthesis kit (Promega, Madison, USA). 

Qualitative expression of fad, elovl5 and elovl2 transcripts during embryonic 

development was determined by reverse transcriptase PCR (RT-PCR) on cDNA 

samples, with an initial denaturing step at 95 ºC for 2 min, followed by 35 cycles of 

denaturation at 95 ºC for 30 s, annealing at 60 ºC for 30 s, and extension at 72 ºC for 1 

min 40 s, followed by a final extension at 72 ºC for 5 min. Expression of β-actin was 

also determined as reference gene [48]. Primers used for RT-PCR on embryos cDNA 

samples are shown in Table 1. 

 

Spatial expression of fad, elovl5, elovl2, whole-mount in situ hybridization 

To examine the spatial expression of zebrafish fad, elovl5 and elovl2, whole-mount in 

situ hybridization (WISH) was performed on 24 hpf zebrafish embryos using 

digoxygenin (DIG)-labelled antisense riboprobes as previously described [49]. 
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Antisense riboprobes were made from linerarised full length Danio rerio fad, elovl5 

and elovl2 cDNAs. 

 

Tissue distribution of fad, elovl5 and elovl2 mRNA transcripts in zebrafish adults 

Expression of the target genes was also measured in adult tissues by quantitative real-

time PCR (qPCR). Total RNA from eye, gill, liver, brain, ovary, testis, kidney, 

muscle, intestine and adipose tissue was extracted as described above, and 1 µg of 

total RNA reverse transcribed into cDNA (M-MLV reverse transcriptase, Promega). 

The qPCR was performed using primers shown in Table 1. Copy numbers of target 

genes were normalised with copy number of the reference gene 18s rRNA [48]. PCR 

amplicons of each gene were cloned into pBluescript II KS (Stratagene) that was then 

linearised, quantified spectrophotometrically (NanoDrop ND-1000, Thermo 

Scientific, Wilmington, USA), and serial-diluted to generate a standard curve of 

known copy numbers. The qPCR amplifications were carried out in triplicate using a 

Quantica machine (Techne, Cambridge, UK) in a final volume of 20 µl containing 5 

µl diluted (1/10) cDNA, 0.5 µM of each primer and 10 µl AbsoluteTM QPCR 

SYBR® Green mix (ABgene, Epsom, UK). Amplifications were carried out with a 

systematic negative control (NTC - no template control, containing no cDNA). The 

qPCR profiles contained an initial activation step at 95 °C for 15 min, followed by 40 

cycles: 15 s at 95 °C, 15 s at the specific primer pair annealing Tm (Table 1) and 10-

15 s at 72 °C. After the amplification phase, a dissociation curve of 0.5 ºC increments 

from 75 ºC to 90 °C was performed, enabling confirmation of the amplification of a 

single product in each reaction. The qPCR product sizes were checked by agarose gel 

electrophoresis and their identity confirmed by sequencing. No primer-dimer 

formation occurred in the NTC. All reactions were carried out in triplicate and a linear 
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standard curve was drawn, and absolute copy number of the targeted gene in each 

sample was calculated. 

 

Fatty acid analyses of zebrafish embryos 

In order to monitor the FA changes during embryogenesis, pools of 150-200 embryos 

were sampled at different stages (0, 9, 24, 48 and 72 hpf) and total lipid extracted, FA 

methyl esters prepared and analysed as described above. 

 

Statistics 

For tissue expression profiles, results expressed as mean normalised values (± SE) 

corresponding to the ratio between the copy numbers of fad, elovl5 and elovl2 

transcripts and the copy numbers of the reference gene, 18s rRNA. A one-way 

analysis of variance (ANOVA) followed by Tukey HSD test (P<0.05) was performed 

to compare the expression level among tissue samples (SPSS, Chicago, USA).  

 

Results 

 

Zebrafish elongase (Elovl2) sequence and phylogenetics 

The new zebrafish elongase ORF encodes a protein of 295 AA, sharing 73.6 % 

identity in AA sequence to the salmon Elovl2, 65.8 - 68.1 % AA identity to 

mammalian homologues, and 66.9 - 68.4 % identity with predicted Elovl2 sequences 

from amphibians and birds. The phylogenetic tree (Fig. 2) shows that zebrafish Elovl2 

elongase clusters most closely with salmon Elovl2, the only Elovl2 elongase cloned 

and characterised in fish so far. The fish Elovl2 elongases cluster with the 
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mammalian, amphibian and bird Elovl2-like elongases, and more distantly from 

Elovl5-like elongases from mammals and fish. 

 

Functional characterisation 

The zebrafish putative Elovl2 elongase was functionally characterised by determining 

the FA profiles of S. cerevisiae transformed with pYES2 containing elovl2 cDNA 

ORF insert and grown in the presence of potential FA substrates. The FA composition 

of the wild yeast consists essentially of 16:0, 16:1n-7, 18:0 and 18:1n-9 [43]. Control 

treatments consisting of yeast transformed with pYES2 vector without elongase insert 

contained these FA together with whichever exogenous FA was added as substrate 

(data not shown), this result being consistent with the well established lack of PUFA 

elongase activity in S. cerevisiae [30,32]. Zebrafish Elovl2 shows activity towards FA 

substrates from 18 to 22 carbons, with the highest specificity on C20 and C22 

substrates (Table 2). The traces show the major endogenous FA (16:0. 16:1n-7, 18:0 

and 18:1n-9) and additional peaks corresponding to the substrate and elongation 

products (Fig. 3). Thus exogenously added 18:4n-3 (Fig. 3A) and 18:3n-6 (Fig. 3B) 

were elongated to their corresponding C20, C22 and C24 elongation products 20:4n-

3, 22:4n-3 and 24:4n-3 (from 18:4n-3) and 20:3n-6, 22:3n-6 and 24:3n-6 (from 18:3n-

6). Total conversion of C18 substrates ranged from 20.1 - 23.0 % (Table 2). Higher 

elongation rates were observed for C20 substrates 20:5n-3 (78.4 %) and 20:4n-6 (65.3 

%), being elongated to C22, C24 and C26 products (Fig. 3C-D). Elovl2 also elongated 

C22 FA substrates to C24 and C26 elongation products. Thus, yeast transformed with 

pYES2-elovl2 converted 22:5n-3 to 24:5n-3 and 26:5n-3 (Fig. 3E), and 22:4n-6 was 

elongated to 24:4n-6 and 26:4n-6 (Fig. 3F). Comparison of peak areas of the 

endogenous fatty acids in yeast indicates Elovl2 shows some capability to elongate 
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monounsaturated fatty acids such as 16:1n-7 to 18:1n-7 (5.2 - 7.0 %) and 18:1n-9 to 

20:1n-9 (1.5 - 3.1 %). No evidence for elongation of saturated FAs was observed with 

the zebrafish Elovl2. 

 

Spatial-temporal expression of fad, elovl5 and elovl2 in zebrafish 

Temporal expression of fad, elvol5 and elovl2 was studied by RT-PCR on cDNA 

samples obtained from embryos at different developmental stages from 0 to 72 hpf 

(Fig. 4). Results reveal that all three genes are expressed from the zygote stage (0 

hpf), with transcripts detected throughout embryonic development. Although 

comparisons of transcript levels from RT-PCR analyses have to be made cautiously, 

some temporal patterns can be observed in the expression of fad, with a noticeable 

increasing expression from 12 hpf onwards. Also obvious was the pattern shown by 

elovl2, which showed low expression until 9 hpf, with evident increased expression 

during 12 to 72 hpf. Changes in expression of elovl5 with development were less 

obvious, and β-actin reference gene expression was constant during development of 

zebrafish embryos. 

    To examine the spatial expression of zebrafish fad, elovl5 and elovl2, WISH was 

performed on 24 hpf zebrafish embryos (Fig. 5). Zebrafish fad (Fig. 5B) and elovl2 

transcripts (Fig. 5F) were widely distributed in the head region and specifically in the 

yolk syncytial layer (YSL) (Fig. 5B, F insets). Similar to the expression patterns of 

zebrafish fad and elovl2, zebrafish elovl5 was also uniformly expressed in the YSL 

(Fig. 5D inset). However, unlike fad and elovl2, elovl5 was specifically expressed in 

the pronephric ducts of 24 hpf embryos (Fig. 6D). Embryos treated with control sense 

probes did not show any signal (Fig. 5A, C, E). 
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    Adult tissue distribution of fad, elvol5 and elovl2 mRNA transcripts was analysed 

by qPCR (Fig. 6). Results indicate that these genes are expressed in all tissues 

analysed, with significantly higher levels of these transcripts found in liver than any 

other tissue. Although no significant differences were found, intestine and brain also 

showed high levels of transcripts, especially fad and elovl2. Muscle and gill appear to 

be tissues with very low expression of the three genes. Generally speaking, expression 

of zebrafish fad gene was higher than those of elongase genes.  

 

Fatty acid composition of zebrafish embryos 

Activity of the enzymes involved in LC-PUFA biosynthesis during zebrafish 

embryogenesis was estimated by comparing levels of C18 substrates (18:3n-3 and 

18:2n-6) with levels of all potential desaturation/elongation products (Fig. 7). Total 

amount of C18 precursors decreased by around 50% over the time-course of 

embryogenesis, and the levels of products of the biosynthetic pathway showed a 

steady increase as development proceeded (Fig. 7). Contents of DHA, the most 

abundant PUFA in zebrafish embryos, initially decreased until 9 hpf, and then 

increased until the end of embryonic development. The fatty acid profiles (µg of fatty 

acid per mg of total lipid) of zebrafish embryos at different stages of development are 

shown in Table 3. 

 

Discussion 

Our overall objective is to elucidate the molecular mechanisms controlling LC-PUFA 

synthesis in vertebrates. Using zebrafish as a model species, the specific aim of the 

present study was to determine the ontogenic changes in expression of genes of the 

LC-PUFA synthesis pathway during development. In order to do this, we examined 
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all the key genes of LC-PUFA synthesis pathway. Previously, we cloned a Fad cDNA 

from zebrafish that was unique among vertebrate Fads in showing dual Δ6/Δ5 activity 

[43]. The enzyme product displayed all the fatty acyl desaturation activities required 

for the synthesis of EPA and DHA [50]. Subsequently, a PUFA elongase cDNA was 

also isolated from zebrafish [30]. In mammals, ELOVL2 and ELOVL5 have been 

shown to participate in LC-PUFA biosynthesis [8,9,51,52]. Mammalian ELOVL5 is 

predominantly involved in the elongation of C18 and C20 PUFA, whereas ELOVL2 

has greatest activity in the elongation of C20 and C22 PUFA and, therefore, appears 

to be a critical enzyme for the synthesis of C22 and C24 LC-PUFAs [6,8, 51,52]. 

Functional characterisation showed the first cloned zebrafish PUFA elongase [28] to 

be similar to elongases found in several other fish species [31,32,38], now all 

designated as Elovl5 [33]. In contrast to mammalian Elovl5s, fish Elovl5s displayed 

C22 elongation activity, albeit low, and so it was speculated that Δ6/Δ5 Fad and 

Elovl5 were the only desaturase and elongase necessary for LC-PUFA synthesis in 

zebrafish [50]. However, whereas sequence similarity searches against the zebrafish 

draft genome assembly (Zv7) revealed no further Fad genes, a further elongase-like 

gene was present in chromosome 24 that, if expressed, could potentially participate in 

LC-PUFA production. We now report the cDNA cloning and functional 

characterisation of this second zebrafish elongase (gb|NP_001035452|). 

    The AA sequence of the newly cloned zebrafish elongase shows high identity to the 

recently cloned salmon elongase cDNA, which has been shown to be an Elovl2 

orthologue [33], and relatively high identity to mammalian ELOVL2s. Phylogenetic 

analysis groups the zebrafish elongase into a cluster with greatest similarity to salmon 

Elovl2 and other Elovl2-like genes from mammals, amphibians and birds, and more 

distantly from Elovl5 elongases. Functional characterisation of the zebrafish cDNA 
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confirms that the encoded protein elongated C20 and C22 PUFA and so the elongase 

is designated as an Elovl2. Recombinant yeast containing zebrafish Elovl2 cDNA also 

produced C26 PUFA from their corresponding C20 and C22 substrates, although 

these conversions are unlikely to occur in vivo because of competition with ∆6 Fad 

for intermediate C24 PUFAs [6]. As described for mouse and salmon, zebrafish 

elovl2 cDNA encodes an enzyme that also has C18-20 elongase activity [8,33]. This 

is in contrast to human ELOVL2, which is only active towards C20 and C22 

substrates [8]. Importantly, the major difference in comparison to zebrafish Elovl5 

[30] and other fish Elovl5s, is the high activity towards C22 PUFA shown by 

zebrafish Elovl2. Therefore, Elovl2 is a key component in the biosynthesis of DHA, 

where two consecutive elongation steps from 20:5n-3 to 22:5n-3 and 22:5n-3 to 

24:5n-3 are required, followed by ∆6 desaturation and chain-shortening [6,53]. These 

results prove that zebrafish possess all the enzymatic activities required for LC-PUFA 

synthesis [6], with Δ6 and Δ5 desaturation performed by a single protein [43], and 

elongation of PUFAs ranging from C18 to 22 catalysed by Elovl5 [30] and the herein 

characterised Elovl2. The capability of zebrafish for LC-PUFA biosynthesis was 

previously assessed in isotopic studies with primary hepatocytes showing that the 

pathway for EPA and DHA synthesis was fully functional [54]. This conclusion is 

supported by the molecular cloning of the Δ6/Δ5 Fad [43], Elovl5 [30], and the newly 

characterised Elovl2.  

    Expression of all Fad and Elovl activities required for LC-PUFA biosynthesis, 

presents zebrafish as an excellent model to study relationships between expression of 

these genes and important developmental events where high demands for LC-PUFA 

are required, especially the formation of neuronal tissues critical for the viability of 

the embryo [10,16]. In humans, such high requirements for LC-PUFAs are mostly 
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delivered to the fetus by transfer across the placenta, since fetus LC-PUFA 

biosynthesis capability has been suggested to be insufficient [17]. Similar to avians, 

where embryos have been demonstrated to biosynthesise LC-PUFA [55], our results 

suggest that LC-PUFA biosynthesis occurs in zebrafish embryos, as supported by the 

presence of fad, elovl5 and elovl2 transcripts during embryogenesis, and the dynamic 

FA composition of embryos denoting endogenous production of LC-PUFA. 

    Temporal expression patterns show that genes of LC-PUFA biosynthesis enzymes 

in zebrafish are detected at the zygote stage (0 hpf). The only explanation for this is 

that maternal transfer of the target gene mRNA takes place in zebrafish, since zygotic 

gene activation is delayed until midblastula transition, which begins at the 512 cell 

stage at 2.75 hpf [45]. This highlights that the maternal role in LC-PUFA supply to 

fish embryos is not only transfer of preformed LC-PUFA [21,22], but also transfer of 

mRNA transcripts that can potentially be translated to active proteins. Expression of 

fad, elovl5 and elovl2 genes continues to the end of embryogenesis (72 hpf), and so 

the pathway could be active throughout to assure the high demands of forming tissues 

such as brain and retina for LC-PUFAs. 

    Beyond maternal mRNA transfer and its potential role in LC-PUFA biosynthesis in 

early stage embryos, the results raise the question of when the embryo itself begins to 

activate the pathway. Despite the steady increase in total LC-PUFA content during 

embryogenesis, DHA initially decreases from 0 to 9 hpf. This could indicate that, 

although mRNA transcripts of fad, elovl5 and elovl2 were detected during the early 

developmental stages (0-9 hpf), the biosynthesis pathway is not fully active, at least 

for producing C22 PUFAs. Supporting this idea is the fact that elovl2 mRNA 

transcripts are very low until 9 hpf, possibly limiting biosynthesis of specifically 

DHA during early embryogenesis [8]. From 9 hpf onwards de novo transcription of 
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embryonic genes likely occurs as indicated by increased levels of fad and elovl2 

transcripts from 12 hpf. We may speculate that the increase in expression of fad and 

elovl2 is due to the development of the central nervous system and retina, occurring in 

zebrafish at gastrula:bud (10.0 - 10.33 hpf) and 5-9 somites (11.66 - 14.0 hpf), 

respectively [45]. The spatial expression of fad and elovl2 in zebrafish embryos 

supports this hypothesis. 

    Spatial expression patterns of FA metabolism enzymes in zebrafish was first 

studied by Hsieh and co-workers [56], who determined that stearoyl-CoA desaturase, 

the enzyme responsible for the synthesis of 18:1n-9 from 18:0, is evenly expressed in 

all embryo tissues. A more specific expression has now been observed for genes 

encoding enzymes of the LC-PUFA biosynthesis pathway, with fad and elovl2 genes 

highly expressed in the head area of zebrafish embryos, probably related to the 

requirement for ARA and DHA in developing neuronal tissues [10-17]. Interestingly, 

the Elovl5 elongase was specifically expressed in the pronephric ducts of 24 hpf 

embryos. Although Elovl5 elongase has been reported to be expressed in kidney of 

adult fish [33,36,46], there is no obvious explanation for such a specific expression in 

the pronephric ducts of the embryonic kidney, and further investigations are required 

to elucidate these findings. 

    The spatial gene expression data also reveals that the yolk syncytial layer (YSL) 

may also be an important tissue for embryonic LC-PUFA biosynthesis in zebrafish. 

The YSL, a structure unique to teleosts, forms a boundary layer between the embryo 

and the yolk mass. Consequently, all nutrients contained in the yolk must pass 

through the YSL before being utilised by the developing tissues in the embryo [57]. 

Indeed the presence of proteolytic enzyme activities in teleost YSL has been reported 

previously, in agreement with an active role in resorption of yolk lipoproteins [58,59]. 
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Our results show that YSL is likely also to be active in remodelling PUFA during 

zebrafish embryogenesis. Thus, in addition to hydrolysis of the abundant lipids 

contained in the yolk [60], the YSL may also influence the composition of the 

hydrolysed and absorbed FA in a number of ways including conversion of C18 FA 

and alteration of EPA/DHA ratio prior to transfer to the developing embryonic 

tissues. As aforementioned, retinal membranes are composed by DHA-rich 

phospholipids [61,62], and therefore LC-PUFA biosynthetic activity could be 

expected in developing eye. However, no clear expression of fad, elvol5 and elovl2 

genes in retina was detected in the present study. Previously, zebrafish embryo 

retina/eye tissue was found to express Elovl4 elongase [63], speculated to be a 

photoreceptor-specific component of the LC-PUFA biosynthesis pathway [9]. 

Recently it was shown that Elovl4 was required for the production of C28-C38 very 

long chain PUFA in retina, brain and sperm [64], and is implicated in the synthesis of 

very long chain omega-hydroxylated fatty acids present in ceramides of the epidermal 

permeability barrier in mammals [65]. 

    The present study also demonstrates that adult zebrafish expressed Δ6/Δ5 fad, 

elovl5 and elovl2 genes in all tissues analysed. In agreement with previous studies on 

freshwater fish, our results show that the genes in zebrafish are predominantly 

expressed in liver, intestine and brain implicating these tissues as the most active in 

LC-PUFA biosynthesis [33,46]. This is consistent with liver and intestine being the 

major sites of lipid synthesis and distribution. Furthermore, liver and intestine have 

been described to be the primary tissues for LC-PUFA synthesis in salmonids [66,67]. 

Comparison of transcript levels indicates that fad expression is consistently higher 

than that of both elongases. This could be related to the fact that zebrafish Fad, having 
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dual ∆6/∆5 activity, is required for all desaturation steps necessary in LC-PUFA 

biosynthesis [43]. 

    In conclusion the present study demonstrates that zebrafish Elovl2 shows substrate 

specificity towards C20- and C22-PUFA, indicating its important role in synthesis of 

LC-PUFA, particularly DHA. All three genes, fad, elovl5 and elovl2, are ubiquitously 

expressed in adult zebrafish tissues with highest expression levels in liver, intestine 

and brain. Our results demonstrate the presence of fad, elovl5 and elovl2 transcripts 

from the zygote stage indicating that maternal transfer of mRNA occurs in zebrafish. 

Subsequent increases of fad and elovl2 transcript levels however, suggest endogenous 

embryonic expression is activated at later stages when required for neuronal tissues 

development. DHA levels during zebrafish embryogenesis and spatial expression of 

fad and elovl2 support this hypothesis. The WISH data also indicated that other 

tissues such as YSL and the pronephric ducts have roles in LC-PUFA metabolism in 

early embryogenesis in D. rerio. Whereas the role of YSL appears obvious in 

remodelling of yolk FA, the role of the pronephric ducts is both intriguing and 

obscure and requires further investigation. 
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Legends to Figures 

Fig. 1. Biosynthesis pathways of long-chain polyunsaturated fatty acids from C18 

precursors, 18:3n-3 and 18:2n-6 [6]. 

 

Fig. 2. Phylogenetic tree comparing the putative zebrafish Elovl2, Elovl2 orthologs 

and Elvol5 proteins The tree was constructed using the Neighbour Joining method 

[47] using MEGA4. The horizontal branch length is proportional to amino acid 

substitution rate per site. The numbers represent the frequencies (%) with which the 

tree topology presented was replicated after 1000 iterations. 

*Predicted proteins (GenBank). 

 

Fig. 3. Functional characterisation of the zebrafish putative elongase Elovl2 in 

transgenic yeast (Saccharomyces cerevisiae) grown in the presence of fatty acid 

substrates 18:4n-3 (A), 18:3n-6 (B), 20:5n-3 (C), 20:4n-6 (D), 22:5n-3 (E) and 22:4n-

6 (F). Fatty acids were extracted from yeast transformed with pYES2 vector 

containing the ORF of the putative elongase cDNA as an insert. Peaks 1-4 represent 

the main endogenous FAs of S. cerevisiae, namely 16:0 (1), 16:1n-7 (2), 18:0 (3) and 

18:1n-9 (4). Substrates (“*”) and their corresponding elongated products are indicated 

accordingly in panels A-F. Vertical axis, FID response; horizontal axis, retention 

time. 

 

Fig. 4. RT-PCR analyses of the temporal expression patterns of fad, elvol5, and elovl2 

during zebrafish Danio rerio embryogenesis (0 to 72 hpf at 28.5 ºC). Expression of 

the housekeeping gene β-actin is also shown. hpf, hours post-fertilization; NTC, no 

template control. 
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Fig. 5. Whole mount in situ hybridization showing the expression of fad (A, B), 

elovl5 (C, D), and elovl2 (E, F) in 24 hpf embryos. Embryos were hybridised with 

either sense (A, C, D) or antisense probes (B, D, F). Strong signal was observed in the 

head region and yolk syncytial layer (B, F inset) of 24-hpf embryos when antisense 

fad and elovl2 probes were used (A), but no signal was observed for sense probe (E). 

Similar results were observed for elovl5 (C, D), however, its expression was 

specifically localised in the pronephric ducts (D) and the yolk syncytial layer (D 

inset). Lateral views, dorsal upward, anterior to the left (A-F). YSL, yolk syncytial 

layer; PD, pronephric ducts; H, head; e, eye. Scale bars: 100 µm.  

 

Fig. 6. Tissue distribution of the fad, elovl5 and elovl2 transcripts (mRNA) in 

zebrafish adults. Absolute copy numbers were quantified for each transcript and were 

normalised by absolute levels of 18s RNA. Results are means ± S.E. (n = 3). L, liver; 

I, intestine; B, brain; E, eye; K, kidney; A, adipose; M, muscle; O, ovary; T, testis; G, 

gill. * P < 0.05 as determined by one-way ANOVA and Tukey’s test. 

 

Fig. 7. Fatty acid contents during zebrafish embryogenesis. Contents (µg of fatty acid 

per mg of total lipid) of substrates (sum of 18:3n-3 and 18:2n-6) and potential 

products (sum of 18:4n-3, 18:3n-6, 20:3n-3, 20:4n-3, 20:2n-6, 20:3n-6, 20:5n-3, 

20:4n-6, 22:4n-3, 22:5n-3, 22:6n-3, 22:4n-6, 24:5n-3, 24:4n-6, 24:6n-3 and 24:5n-6) 

of long-chain polyunsaturated fatty acid biosynthesis enzymes Fad, Elovl5 and 

Elovl2. Levels of docosahexaenoic acid (DHA; 22:6n-3) are also shown. 
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Tables 

 

Table 1. Sequence and annealing temperature (Tm) of the primer pairs used, size of 

the fragment produced and accession number of the sequence used as reference for 

primer design, for Elovl2 ORF cloning, reverse transcriptase PCR (RT-PCR) 

performed in embryo samples, and quantitative real time PCR (qPCR) determinations 

of transcripts in adult tissues.  

Aim Transcript Primer Primer sequence Fragment  Tm Accession No1. 
       

ORF cloning elovl2 Elovl2VF 5’-CCCAAGCTTAGGATGGAATCATATGAAAAAATTGATAAG-3’ 184 bp 60ºC NM_001040362 
  Elovl2VR 5’-CCGCTCGAGTCACTGTAGCTTCTGTTTGGAG-3’    
       

RT-PCR fad FadF1 5’-AGGAGGTGCAGAAACACACC-3’ 1264 bp 60ºC AF309556 
  FadR1 5’-CTCGCCAGATTTCTCCAAAG -3’    
 elovl5 Elovl5F1 5’-CTCAGGGTCACAGGATGGTT-3’ 768 bp 60ºC NM_200453 
  Elovl5R1 5’-CTCCATTAGTGTGGCCGTTT-3’    
 elovl2 Elovl2F1 5’-AAAGAGATACCCGCGTGAGA-3’ 810 bp 60ºC NM_001040362 
  Elovl2R1 5’-TTGGAGTTGGCTCCGTTTAG-3’    
 β-actin β-ActinF1 5’-CTCTTCCAGCCTTCCTTCCT-3’ 246 bp 60ºC NM_131031 
  β-ActinR1 5’-CACCGATCCAGACGGAGTAT-3’    
       

qPCR fad FadF2 5’-CATCACGCTAAACCCAACA-3’ 158 bp 60ºC AF309556 
  FadR2 5’-GGGAGGACCAATGAAGAAGA-3’    
 elovl5 Elovl5F2 5’-TGGATGGGACCGAAATACAT-3’ 173 bp 60ºC NM_200453 
  Elovl5FR2 5’-GTCTCCTCCACTGTGGGTGT-3’    
 elovl2 Elovl2F2 5’-CACTGGACGAAGTTGGTGAA-3’ 184 bp 60ºC NM_001040362 
  Elovl2R2 5’-GTTGAGGACACACCACCAGA-3’    
 18s 18sF1 5’-CCGCTATTAAGGGTGTTGGA-3’ 134 bp 62ºC NM_173234 
  18sR1 5’- GGCGAGGGTTCTGCATAATA-3’    
       

1 GenBank (http://www.ncbi.nlm.nih.gov/) 
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Table 2. Functional characterisation of the newly characterised Elovl2 elongase. 

Results are expressed as a percentage of total fatty acid (FA) substrate converted to 

elongated product. Percentage of stepwise conversion into intermediary products of 

the elongation pathway is also shown. 

FA Substrate Product  % Conversion Activity 
18:4n-3 20:4n-3  6.0 C18→20 

 22:4n-3  7.0 C20→22 
 24:4n-3  10.0 C22→24 
 26:4n-3  0.0 C24→26 
   Total: 23.0  
     

18:3n-6 20:3n-6  7.1 C18→20 
 22:3n-6  4.2 C20→22 
 24:3n-6  8.8 C22→24 
 26:3n-6  0.0 C24→26 
   Total: 20.1  
     

20:5n-3 22:5n-3  7.7 C20→22 
 24:5n-3  63.1 C22→24 
 26:5n-3  7.6 C24→26 
   Total: 78.4  
     

20:4n-6 22:4n-6  3.9 C20→22 
 24:4n-6  52.2 C22→24 
 26:4n-6  9.2 C24→26 
   Total: 65.3  
     

22:5n-3 24:5n-3  43.2 C22→24 
 26:5n-3  11.0 C24→26 
   Total: 54.2  
     

22:4n-6 24:4n-6  34.1 C22→24 
 26:4n-6  9.3 C24→26 
   Total: 43.4  
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Table 3. Fatty acid composition of zebrafish embryos at different stages of 

development. Results are expressed in µg of fatty acid per mg of total lipid.  

        
 Fatty acid 0 hpf 9 hpf 24 hpf 48 hpf 72 hpf  
        
 14:0 2.3 5.1 5.1 4.4 3.2  
 15:0 1.2 2.0 2.1 1.4 1.7  
 16:0 141.2 130.8 120.7 121.4 122.8  
 18:0 53.6 47.3 42.5 41.4 42.2  
 20:0 0.0 0.5 0.6 1.0 1.2  
 Total saturated 198.4 185.6 171.1 169.6 171.0  
        
 16:1n-9 3.5 3.4 3.4 3.3 3.7  
 16:1n-7 8.2 18.6 18.0 14.1 12.2  
 18:1n-9 87.6 93.1 85.5 80.1 81.8  
 18:1n-7 18.9 24.8 24.3 21.6 19.6  
 20:11 3.0 5.3 6.8 4.3 3.2  
 22:12 0.0 3.1 3.8 0.0 0.0  
 24:1n-9 0.0 0.4 0.5 0.3 0.3  
 Total monounsaturated 121.3 148.7 142.4 123.8 120.8  
        
 18:2n-6 41.5 21.8 22.7 23.5 17.6  
 18:3n-6 0.0 0.7 0.8 0.8 0.6  
 20:2n-6 2.5 1.5 1.8 1.7 1.9  
 20:3n-6 4.9 3.5 3.9 4.1 4.8  
 20:4n-6 11.7 14.2 15.6 16.3 16.3  
 22:4n-6 1.5 0.9 0.9 1.0 1.3  
 22:5n-6 1.0 4.1 4.2 5.1 5.1  
 Total n-6 PUFA 63.0 46.7 50.0 52.4 47.6  
        
 18:3n-3 3.2 4.5 3.4 3.1 2.6  
 18:4n-3 0.0 0.8 1.0 0.0 0.6  
 20:3n-3 0.0 1.0 0.9 0.8 0.9  
 20:4n-3 1.1 3.1 2.5 2.5 2.1  
 20:5n-3 19.3 44.4 43.4 41.3 42.9  
 22:5n-3 5.9 13.0 15.9 11.9 13.3  
 22:6n-3 91.5 63.1 74.4 86.1 89.7  
 Total n-3 PUFA 121.0 129.9 141.4 145.7 152.1  
        
 C16 PUFA 0.0 4.2 3.0 3.8 3.6  
        
 Total PUFA 184.1 180.8 194.4 201.9 203.3  
        

1 predominantly n-9 isomer; 2 predominantly n-11 isomer;  
PUFA, polyunsaturated fatty acid; hpf, hours post-fertilization 
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