ON INDUCED MATCHINGS AS STAR COMPLEMENTS IN REGULAR GRAPHS

Peter Rowlinson ${ }^{1}$
Mathematics and Statistics Group
Department of Computing Science and Mathematics
University of Stirling
Scotland FK9 4LA

Abstract

We determine all the finite regular graphs which have an induced matching or a cocktail party graph as a star complement.

AMS Classification: 05C50
Keywords: regular graph, eigenvalue, matching, star complement.

[^0]
1 Introduction

Let G be a finite simple graph of order n with μ as an eigenvalue of multiplicity k. (Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0,1)-adjacency matrix of G has dimension k.) A star set for μ in G is a subset X of the vertex-set $V(G)$ such that $|X|=k$ and the induced subgraph $G-X$ does not have μ as an eigenvalue. In this situation, $G-X$ is called a star complement for μ in G. The fundamental properties of star sets and star complements are established in [5, Chapter 5]. A survey of star complements in regular graphs may be found in [9], along with a description of the regular graphs with a star or windmill as a star complement. Here we first determine all the regular graphs with an induced matching as a star complement. It turns out that in each case, the star set X and its complement \bar{X} form an equitable bipartition of the vertex set $V(G)$; equivalently, X and \bar{X} are regular sets in the sense of $[3,6]$. The motivation for our investigation is the example of the Petersen graph, which has $3 K_{2}$ as a star complement for the eigenvalue -2 . This example was noted in the context of regular sets by Cardoso [10, Problem AWG12], and in the context of star complements by the author [7, Example 6]. We shall see in Section 2 that the only other connected examples are a 3 -cycle and the complete bipartite graphs $K_{r, r}$. In Section 3 , we use our results to find the regular graphs with a cocktail party graph as a star complement.

We use the terminology of [5]. We write \bar{G} for the complement of G, G_{X} for the subgraph of G induced by X, and ' $u \sim v$ ' to mean that vertices u and v are adjacent. We shall require the following result.
Theorem 1.1 [5, Theorem 5.1.7] Let X be a set of k vertices in the graph G and suppose that G has adjacency matrix $\left(\begin{array}{cc}A_{X} & B^{\top} \\ B & C\end{array}\right)$, where A_{X} is the adjacency matrix of G_{X}. Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{\top}(\mu I-C)^{-1} B . \tag{1}
\end{equation*}
$$

In this situation, $\mathcal{E}(\mu)$ consists of the vectors $\binom{\mathbf{x}}{(\mu I-C)^{-1} B \mathbf{x}}\left(\mathbf{x} \in \mathbb{R}^{k}\right)$.
If $H=G-X$, the columns $\mathbf{b}_{u}(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_{H}(u)=\{v \in V(H): u \sim v\}(u \in X)$.

We define a bilinear form on \mathbb{R}^{n-k} by:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\top}(\mu I-C)^{-1} \mathbf{y} \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n-k}\right) .
$$

By equating entries in (1) we see that X is a star set for μ if and only if μ is not an eigenvalue of $G-X$ and the following conditions hold:

$$
\begin{equation*}
\left\langle\mathbf{b}_{u}, \mathbf{b}_{u}\right\rangle=\mu, \text { for all } u \in X, \tag{2}
\end{equation*}
$$

and for distinct $u, v \in X$,

$$
\begin{equation*}
\left\langle\mathbf{b}_{u}, \mathbf{b}_{v}\right\rangle=-1 \text { if } u \sim v,\left\langle\mathbf{b}_{u}, \mathbf{b}_{v}\right\rangle=0 \text { if } u \nsim v . \tag{3}
\end{equation*}
$$

In view of Equations (2) and (3), we have:
Proposition 1.2 [5, Proposition 5.1.4] Let X be a star set for μ in G and let $H=G-X$.
(i) If $\mu \neq 0$ then the H-neighbourhoods of vertices in X are non-empty.
(ii) If $\mu \neq-1,0$ then the H-neighbourhoods of vertices in X are distinct and non-empty.

If G is r-regular and $\mu \neq r$ then the all- 1 vector \mathbf{j}_{n} is orthogonal to $\mathcal{E}(\mu)$; in other words, μ is a non-main eigenvalue (see [8], for example). From the description of $\mathcal{E}(\mu)$ in Theorem 1.1, we have the following result, where we write \mathbf{j} for \mathbf{j}_{n-k}.
Proposition 1.3 [4, Proposition 0.3] With the notation above, μ is a nonmain eigenvalue if and only if

$$
\begin{equation*}
\left\langle\mathbf{b}_{u}, \mathbf{j}\right\rangle=-1 \text { for all } u \in X \tag{4}
\end{equation*}
$$

2 Induced matchings

We suppose first that G is a connected r-regular graph with a star complement H for μ of the form $h K_{2}(h \in \mathbb{N})$. Note that $\mu \neq \pm 1$. If $\mu=r$ then $k=1$ since G is connected (see [5, Corollary1.3.8]). Since a vertex of H is adjacent to the unique vertex in X, we have $r=2$ and then G is a 3-cycle. Accordingly, we suppose that $\mu \neq r$, and invoke Proposition 1.3.

We retain the notation of Section 1 and consider $\Delta_{H}(u)$ for arbitrary fixed $u \in X$. We may take C to be block-diagonal with each block equal to $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The subgraph of H induced by $\Delta_{H}(u)$ has the form $a K_{2} \dot{\cup} b K_{1}$. Since $(\mu I-C)^{-1}=\left(\mu^{2}-1\right)^{-1}(\mu I+C)$, equations (2) and (4) yield:

$$
\begin{gather*}
\mu=\frac{1}{\mu^{2}-1}\{\mu(2 a+b)+2 a\} \tag{5}\\
-1=\frac{1}{\mu^{2}-1}\{\mu(2 a+b)+(2 a+b)\} \tag{6}
\end{gather*}
$$

Solving (5) and (6), we find that

$$
\begin{equation*}
2 a=\mu(\mu-1)(\mu+2), \quad b=-(\mu-1)(\mu+1)^{2} \tag{7}
\end{equation*}
$$

Since $\mu=1-2 a-b$, we see that μ is a non-positive integer.
We deal first with the case $\mu=0$. Here $a=0, b=1$ and we write u^{\prime} for the unique neighbour of u in H. If v is a neighbour of u in X then it follows from (3) that the vertices $u, v, u^{\prime}, v^{\prime}$ induce a 4 -cycle. Hence each vertex in the component of G_{X} containing u is adjacent to u^{\prime} or v^{\prime}. (In fact, if w is a vertex of X such that $u \neq w \sim v$, then $w^{\prime}=u^{\prime}$ and $w \nsim u$.) Since G is connected, necessarily $h=1$. Then $k=n-2$ and the spectrum of G has the form $-\lambda, 0^{(n-2)}, \lambda$. Hence G is the complete bipartite graph $K_{r, r}$ (cf. [5, Theorem 3.2.4]).

Now we may assume that μ is a negative integer. Since $a \geq 0$, it follows from (7) that $\mu=-2$, and hence that $a=0, b=3, h \geq 3$. By interlacing [5, Corollary 1.3.12], -2 is the least eigenvalue of G. Now G is not a generalized line graph because the induced subgraph $H+u$ has a component isomorphic to the subdivided star $S\left(K_{1,3}\right)$ (see [4, Theorem 2.3.18]). Thus G is an exceptional graph, as defined in [4]. The 187 exceptional regular graphs were determined in [2], and they are listed in [4, Table A3.3]. They are partitioned into three 'layers': the graphs in the first, second, third layer have $n=2(r+2), n=\frac{3}{2}(r+2), n=\frac{4}{3}(r+2)$ respectively (see [1, Theorem 3.12.2] or [4, Theorem 4.1.5]). Any exceptional graph may be represented in the root system E_{8}, in the sense of [4, Chapter 3]. In such a representation, h independent edges determine h pairwise orthogonal two-dimensional subspaces of \mathbb{R}^{8}, and so $h \leq 4$.

Now we count edges between X and \bar{X}. If $h=4$ then we have

$$
8(r-1)=3(n-8) \leq 6(r+2)-24=6 r-12,
$$

a contradiction. If $h=3$ and G lies in the second or third layer, then

$$
6(r-1)=3(n-6) \leq \frac{9}{2}(r+2)-18=\frac{9}{2}-9,
$$

another contradiction. Hence G lies in the first layer and has -2 as an eigenvalue of multiplicity $n-6$. The only such graph is the Petersen graph (numbered 5 in [4, Table A3.3]). Gathering together our conclusions in the cases $\mu=r, \mu=0, \mu \notin\{r, 0\}$, we have the following result.
Theorem 2.1 If G is a connected r-regular graph $(r>0)$ with $h K_{2}(h>0)$ as a star complement for the eigenvalue μ, then one of the following holds:
(a) $r=2, h=1, \mu=2$ and G is a 3 -cycle;
(b) $h=1, \mu=0$ and $G=K_{r, r}$;
(c) $r=3, h=3, \mu=-2$ and G is the Petersen graph.

Conversely, each of the graphs in (a),(b),(c) satisfies the hypotheses of Theorem 2.1. Finally, we drop the requirement that G is connected. Suppose that G is r-regular with components G_{1}, \ldots, G_{m}, where G_{i} contains h_{i} of the components of $H(i=1, \ldots, m)$. Since $r>0, G_{i}$ is r-regular with $h_{i} K_{2}\left(h_{i}>0\right)$ as a star complement for μ. The cases (a), (b), (c) of Theorem 2.1 are distinguished by the value of μ, and so we have the following.

Corollary 2.2 Let μ be an eigenvalue of the r-regular graph $G(r>0)$. Then G has $h K_{2}(h>0)$ as a star complement for μ if and only if one of the following holds:
(a) $r=2, \mu=2$ and $G=h K_{3}$;
(b) $\mu=0$ and $G=h K_{r, r}$;
(c) $r=3, \mu=-2, h=3 m(m \in \mathbb{N})$ and $G=m P$, where P denotes the Petersen graph.

3 Cocktail party graphs

Here we suppose that G is an r-regular graph with a star complement H for μ of the form $\overline{h K_{2}}(h \in I N)$. Note that H has spectrum $-2^{(h-1)}, 0^{(h)}, 2 h-2$. Moreover, if $h>1$ then H is connected and so G is connected by Proposition $1.2(\mathrm{i})$. It is feasible to use the method of Section 2 to determine the possible graphs G, but the calculations are cumbersome and it is more efficient to use the following observation.
Proposition 3.1 Let G be an r-regular graph with an s-regular graph H of order t as a star complement for the eigenvalue μ. If $\mu \notin\{s-t, r\}$ then \bar{H} is a star complement for $-1-\mu$ in \bar{G}.
Proof. Here, μ is a non-main eigenvalue of G, and so if μ has multiplicity k in G then $-1-\mu$ has multiplicity at least k in \bar{G}.

Suppose by way of contradiction that $-1-\mu$ is an eigenvalue of \bar{H}. We have $-1-\mu \neq t-s-1$, and so $-1-\mu$ is a non-main eigenvalue of \bar{H}. Then μ is an eigenvalue of H, a contradiction.

Since $-1-\mu$ is not an eigenvalue of \bar{H}, the multiplicity of $-1-\mu$ as an eigenvalue of \bar{G} is exactly k, by interlacing. Hence \bar{H} is a star complement for $-1-\mu$ in \bar{G}.
Theorem 3.2 Let μ be an eigenvalue of the r-regular graph $G(r>0)$. Then G has $\overline{h K_{2}}(h>0)$ as a star complement for μ if and only if one of the following holds:
(a) $\mu=1, h=1, G=2 K_{2}$ and $r=1$;
(b) $\mu=-1, G=\overline{h K_{q, q}}$ and $r=2 q h-q-1$;
(c) $\mu=1, h=3 m(m \in I N), G=\overline{m P}$ (where P is the Petersen graph) and $r=10 m-4$.
Proof. Let H be a star complement for μ in G, with $\bar{H}=h K_{2}$. Suppose first that $h>1$; then $\mu \neq-2$. If also $\mu \neq r$ then by Proposition $3.1, \bar{H}$ is a star complement for $-1-\mu$ in \bar{G}, and we apply Corollary 2.2 to \bar{G}. Thus G has one of the forms $\overline{h K_{3}}, \overline{h K_{q, q}}, \overline{m P}$, with $\mu=-3,-1,1$ respectively. Only the second and third possibilities arise here, and they feature in cases (b) and (c) of the Theorem. If $\mu=r$ then μ is a simple eigenvalue of G because G is connected, and so G has order $2 h+1$, with $r>2 h-2$. In this situation, $G=K_{r+1}$, a contradiction.

It remains to consider the case $h=1$. Let $H=G-X$, and fix $u \in X$. Since $\mu \neq 0$, we know from Proposition 1.2(i) that either (1) $\mu= \pm \sqrt{2}$ and $H+u=K_{1,2}$, or (2) $\mu= \pm 1$ and $H+u=K_{2} \dot{\cup} K_{1}$. Now either (1) holds for all $u \in X$, or (2) holds for all $u \in X$. In the first case, we obtain the contradiction $G=K_{1,2}$ from Proposition 1.2(ii). In the second case, non-adjacent vertices u, v of X cannot have a common neighbour in H (for otherwise $H+u+v$ does not have ± 1 as an eigenvalue). Thus each component containing a vertex of H is complete, and we have $G=2 K_{r+1}=$ $\overline{K_{r+1, r+1}}$. Two possibilities arise: either $\mu=1$ and $r=1$, or $\mu=-1$ and r is arbitrary. These possibilities appear in cases (a) and (b) of the Theorem.

References

[1] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag (Berlin), 1989.
[2] F. C. Bussemaker, D. Cvetković and J. J. Seidel, Graphs Related to Exceptional Root Systems, Technological University of Eindhoven, T. H. Report 76-WSK-05, 1976.
[3] D. M. Cardoso and P. Rama, Equitable bipartitions of graphs and related results, J. Math. Sci. (N. Y.) 120 (2004), 869-880.
[4] D. Cvetković, P. Rowlinson and S. K. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press (Cambridge), 2004.
[5] D. Cvetković, P. Rowlinson and S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2009.
[6] A. Neumaier, Regular sets and quasi-symmetric 2-designs, Lecture Notes in Math. 969, Springer-Verlag (Berlin), 1982, pp.258-275.
[7] P. Rowlinson, Star partitions and regularity in graphs, Linear Algebra Appl. 226-228 (1995), 247-265.
[8] P. Rowlinson, The main eigenvalues of a graph: a survey, Appl. Anal. Discrete Math. 1 (2007), 455-471.
[9] P. Rowlinson and B. Tayfeh-Rezaie, Star complements in regular graphs: old and new results, Linear Algebra Appl. 432 (2010), 22302242.
[10] D. Stevanović (Ed.), Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 423 (2007), 172-181.

[^0]: ${ }^{1}$ Tel.: +441786 467468; fax +441786 464551; email: p.rowlinson@stirling.ac.uk

