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1 Introduction

Let G be a finite simple graph of order n with µ as an eigenvalue of mul-
tiplicity k. (Thus the corresponding eigenspace E(µ) of a (0, 1)-adjacency
matrix of G has dimension k.) A star set for µ in G is a subset X of the
vertex-set V (G) such that |X| = k and the induced subgraph G−X does not
have µ as an eigenvalue. In this situation, G−X is called a star complement
for µ in G. The fundamental properties of star sets and star complements
are established in [5, Chapter 5]. A survey of star complements in regular
graphs may be found in [9], along with a description of the regular graphs
with a star or windmill as a star complement. Here we first determine all the
regular graphs with an induced matching as a star complement. It turns out
that in each case, the star set X and its complement X̄ form an equitable
bipartition of the vertex set V (G); equivalently, X and X̄ are regular sets
in the sense of [3, 6]. The motivation for our investigation is the example of
the Petersen graph, which has 3K2 as a star complement for the eigenvalue
−2. This example was noted in the context of regular sets by Cardoso [10,
Problem AWG12], and in the context of star complements by the author
[7, Example 6]. We shall see in Section 2 that the only other connected
examples are a 3-cycle and the complete bipartite graphs Kr,r. In Section
3, we use our results to find the regular graphs with a cocktail party graph
as a star complement.

We use the terminology of [5]. We write G for the complement of G, GX

for the subgraph of G induced by X, and ‘u ∼ v’ to mean that vertices u
and v are adjacent. We shall require the following result.

Theorem 1.1 [5, Theorem 5.1.7] Let X be a set of k vertices in the graph

G and suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the

adjacency matrix of GX . Then X is a star set for µ in G if and only if µ is
not an eigenvalue of C and

µI −AX = B>(µI − C)−1B. (1)

In this situation, E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).

If H = G − X, the columns bu (u ∈ X) of B are the characteristic
vectors of the H-neighbourhoods ∆H(u) = {v ∈ V (H) : u ∼ v} (u ∈ X).

We define a bilinear form on IRn−k by:

〈x,y〉 = x>(µI − C)−1y (x,y ∈ IRn−k).

By equating entries in (1) we see that X is a star set for µ if and only if µ
is not an eigenvalue of G−X and the following conditions hold:

〈bu,bu〉 = µ, for all u ∈ X, (2)

and for distinct u, v ∈ X,

〈bu,bv〉 = −1 if u ∼ v, 〈bu,bv〉 = 0 if u 6∼ v. (3)
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In view of Equations (2) and (3), we have:

Proposition 1.2 [5, Proposition 5.1.4] Let X be a star set for µ in G and
let H = G−X.
(i) If µ 6= 0 then the H-neighbourhoods of vertices in X are non-empty.
(ii) If µ 6= −1, 0 then the H-neighbourhoods of vertices in X are distinct and
non-empty.

If G is r-regular and µ 6= r then the all-1 vector jn is orthogonal to E(µ);
in other words, µ is a non-main eigenvalue (see [8], for example). From the
description of E(µ) in Theorem 1.1, we have the following result, where we
write j for jn−k.

Proposition 1.3 [4, Proposition 0.3] With the notation above, µ is a non-
main eigenvalue if and only if

〈bu, j〉 = −1 for all u ∈ X. (4)

2 Induced matchings

We suppose first that G is a connected r-regular graph with a star comple-
ment H for µ of the form hK2 (h ∈ IN). Note that µ 6= ±1. If µ = r then
k = 1 since G is connected (see [5, Corollary1.3.8]). Since a vertex of H is
adjacent to the unique vertex in X, we have r = 2 and then G is a 3-cycle.
Accordingly, we suppose that µ 6= r, and invoke Proposition 1.3.

We retain the notation of Section 1 and consider ∆H(u) for arbitrary
fixed u ∈ X. We may take C to be block-diagonal with each block equal to(

0 1
1 0

)
. The subgraph of H induced by ∆H(u) has the form aK2 ∪̇ bK1.

Since (µI − C)−1 = (µ2 − 1)−1(µI + C), equations (2) and (4) yield:

µ =
1

µ2 − 1
{µ(2a + b) + 2a}, (5)

−1 =
1

µ2 − 1
{µ(2a + b) + (2a + b)}. (6)

Solving (5) and (6), we find that

2a = µ(µ− 1)(µ + 2), b = −(µ− 1)(µ + 1)2. (7)

Since µ = 1− 2a− b, we see that µ is a non-positive integer.
We deal first with the case µ = 0. Here a = 0, b = 1 and we write u′ for

the unique neighbour of u in H. If v is a neighbour of u in X then it follows
from (3) that the vertices u, v, u′, v′ induce a 4-cycle. Hence each vertex in
the component of GX containing u is adjacent to u′ or v′. (In fact, if w is
a vertex of X such that u 6= w ∼ v, then w′ = u′ and w 6∼ u.) Since G is
connected, necessarily h = 1. Then k = n−2 and the spectrum of G has the
form −λ, 0(n−2), λ. Hence G is the complete bipartite graph Kr,r (cf. [5,
Theorem 3.2.4]).
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Now we may assume that µ is a negative integer. Since a ≥ 0, it follows
from (7) that µ = −2, and hence that a = 0, b = 3, h ≥ 3. By interlacing
[5, Corollary 1.3.12], −2 is the least eigenvalue of G. Now G is not a gen-
eralized line graph because the induced subgraph H + u has a component
isomorphic to the subdivided star S(K1,3) (see [4, Theorem 2.3.18]). Thus
G is an exceptional graph, as defined in [4]. The 187 exceptional regular
graphs were determined in [2], and they are listed in [4, Table A3.3]. They
are partitioned into three ‘layers’: the graphs in the first, second, third layer
have n = 2(r + 2), n = 3

2(r + 2), n = 4
3(r + 2) respectively (see [1, Theorem

3.12.2] or [4, Theorem 4.1.5]). Any exceptional graph may be represented
in the root system E8, in the sense of [4, Chapter 3]. In such a representa-
tion, h independent edges determine h pairwise orthogonal two-dimensional
subspaces of IR8, and so h ≤ 4.

Now we count edges between X and X̄. If h = 4 then we have

8(r − 1) = 3(n− 8) ≤ 6(r + 2)− 24 = 6r − 12,

a contradiction. If h = 3 and G lies in the second or third layer, then

6(r − 1) = 3(n− 6) ≤ 9
2
(r + 2)− 18 =

9
2
− 9,

another contradiction. Hence G lies in the first layer and has −2 as an
eigenvalue of multiplicity n− 6. The only such graph is the Petersen graph
(numbered 5 in [4, Table A3.3]). Gathering together our conclusions in the
cases µ = r, µ = 0, µ 6∈ {r, 0}, we have the following result.

Theorem 2.1 If G is a connected r-regular graph (r > 0) with hK2 (h > 0)
as a star complement for the eigenvalue µ, then one of the following holds:
(a) r = 2, h = 1, µ = 2 and G is a 3-cycle;
(b) h = 1, µ = 0 and G = Kr,r;
(c) r = 3, h = 3, µ = −2 and G is the Petersen graph.

Conversely, each of the graphs in (a),(b),(c) satisfies the hypotheses of
Theorem 2.1. Finally, we drop the requirement that G is connected. Suppose
that G is r-regular with components G1, . . . , Gm, where Gi contains hi of
the components of H (i = 1, . . . ,m). Since r > 0, Gi is r-regular with
hiK2 (hi > 0) as a star complement for µ. The cases (a), (b), (c) of Theorem
2.1 are distinguished by the value of µ, and so we have the following.

Corollary 2.2 Let µ be an eigenvalue of the r-regular graph G (r > 0).
Then G has hK2 (h > 0) as a star complement for µ if and only if one of
the following holds:
(a) r = 2, µ = 2 and G = hK3;
(b) µ = 0 and G = hKr,r;
(c) r = 3, µ = −2, h = 3m (m ∈ IN) and G = mP , where P denotes the

Petersen graph.
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3 Cocktail party graphs

Here we suppose that G is an r-regular graph with a star complement H for
µ of the form hK2 (h ∈ IN). Note that H has spectrum −2(h−1), 0(h), 2h−2.
Moreover, if h > 1 then H is connected and so G is connected by Proposition
1.2(i). It is feasible to use the method of Section 2 to determine the possible
graphs G, but the calculations are cumbersome and it is more efficient to
use the following observation.

Proposition 3.1 Let G be an r-regular graph with an s-regular graph H of
order t as a star complement for the eigenvalue µ. If µ 6∈ {s−t, r} then H
is a star complement for −1− µ in G.
Proof. Here, µ is a non-main eigenvalue of G, and so if µ has multiplicity
k in G then −1− µ has multiplicity at least k in G.

Suppose by way of contradiction that −1− µ is an eigenvalue of H. We
have −1−µ 6= t− s−1, and so −1−µ is a non-main eigenvalue of H. Then
µ is an eigenvalue of H, a contradiction.

Since −1− µ is not an eigenvalue of H, the multiplicity of −1− µ as an
eigenvalue of G is exactly k, by interlacing. Hence H is a star complement
for −1− µ in G. 2

Theorem 3.2 Let µ be an eigenvalue of the r-regular graph G (r > 0).
Then G has hK2 (h > 0) as a star complement for µ if and only if one of
the following holds:
(a) µ = 1, h = 1, G = 2K2 and r = 1;
(b) µ = −1, G = hKq,q and r = 2qh− q − 1;
(c) µ = 1, h = 3m (m ∈ IN), G = mP (where P is the Petersen graph)

and r = 10m− 4.
Proof. Let H be a star complement for µ in G, with H = hK2. Suppose
first that h > 1; then µ 6= −2. If also µ 6= r then by Proposition 3.1, H is a
star complement for −1 − µ in G, and we apply Corollary 2.2 to G. Thus
G has one of the forms hK3, hKq,q, mP , with µ = −3,−1, 1 respectively.
Only the second and third possibilities arise here, and they feature in cases
(b) and (c) of the Theorem. If µ = r then µ is a simple eigenvalue of G
because G is connected, and so G has order 2h + 1, with r > 2h− 2. In this
situation, G = Kr+1, a contradiction.

It remains to consider the case h = 1. Let H = G −X, and fix u ∈ X.
Since µ 6= 0, we know from Proposition 1.2(i) that either (1) µ = ±

√
2

and H + u = K1,2, or (2) µ = ±1 and H + u = K2 ∪̇ K1. Now either
(1) holds for all u ∈ X, or (2) holds for all u ∈ X. In the first case, we
obtain the contradiction G = K1,2 from Proposition 1.2(ii). In the second
case, non-adjacent vertices u, v of X cannot have a common neighbour in
H (for otherwise H + u + v does not have ±1 as an eigenvalue). Thus each
component containing a vertex of H is complete, and we have G = 2Kr+1 =
Kr+1,r+1. Two possibilities arise: either µ = 1 and r = 1, or µ = −1 and r
is arbitrary. These possibilities appear in cases (a) and (b) of the Theorem.
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[2] F. C. Bussemaker, D. Cvetković and J. J. Seidel, Graphs Related to
Exceptional Root Systems, Technological University of Eindhoven,
T. H. Report 76-WSK-05, 1976.

[3] D. M. Cardoso and P. Rama, Equitable bipartitions of graphs and
related results, J. Math. Sci. (N. Y.) 120 (2004), 869-880.
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