ON INDUCED MATCHINGS AS STAR COMPLEMENTS IN REGULAR GRAPHS

Peter Rowlinson¹ Mathematics and Statistics Group Department of Computing Science and Mathematics University of Stirling Scotland FK9 4LA

Abstract

We determine all the finite regular graphs which have an induced matching or a cocktail party graph as a star complement.

AMS Classification: 05C50

Keywords: regular graph, eigenvalue, matching, star complement.

¹Tel.:+44 1786 467468; fax +44 1786 464551; email: p.rowlinson@stirling.ac.uk

1 Introduction

Let G be a finite simple graph of order n with μ as an eigenvalue of multiplicity k. (Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0,1)-adjacency matrix of G has dimension k.) A star set for μ in G is a subset X of the vertex-set V(G) such that |X| = k and the induced subgraph G - X does not have μ as an eigenvalue. In this situation, G - X is called a *star complement* for μ in G. The fundamental properties of star sets and star complements are established in [5, Chapter 5]. A survey of star complements in regular graphs may be found in [9], along with a description of the regular graphs with a star or windmill as a star complement. Here we first determine all the regular graphs with an induced matching as a star complement. It turns out that in each case, the star set X and its complement \overline{X} form an equitable bipartition of the vertex set V(G); equivalently, X and \bar{X} are regular sets in the sense of [3, 6]. The motivation for our investigation is the example of the Petersen graph, which has $3K_2$ as a star complement for the eigenvalue -2. This example was noted in the context of regular sets by Cardoso [10, Problem AWG12], and in the context of star complements by the author [7, Example 6]. We shall see in Section 2 that the only other connected examples are a 3-cycle and the complete bipartite graphs $K_{r,r}$. In Section 3, we use our results to find the regular graphs with a cocktail party graph as a star complement.

We use the terminology of [5]. We write \overline{G} for the complement of G, G_X for the subgraph of G induced by X, and $u \sim v$ to mean that vertices u and v are adjacent. We shall require the following result.

Theorem 1.1 [5, Theorem 5.1.7] Let X be a set of k vertices in the graph G and suppose that G has adjacency matrix $\begin{pmatrix} A_X & B^T \\ B & C \end{pmatrix}$, where A_X is the adjacency matrix of G_X . Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$\mu I - A_X = B^{\top} (\mu I - C)^{-1} B.$$
(1)

In this situation, $\mathcal{E}(\mu)$ consists of the vectors $\begin{pmatrix} \mathbf{x} \\ (\mu I - C)^{-1} B \mathbf{x} \end{pmatrix}$ $(\mathbf{x} \in \mathbb{R}^k)$.

If H = G - X, the columns \mathbf{b}_u $(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_H(u) = \{v \in V(H) : u \sim v\}$ $(u \in X)$.

We define a bilinear form on $I\!\!R^{n-k}$ by:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} (\mu I - C)^{-1} \mathbf{y} \quad (\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n-k}).$$

By equating entries in (1) we see that X is a star set for μ if and only if μ is not an eigenvalue of G - X and the following conditions hold:

$$\langle \mathbf{b}_u, \mathbf{b}_u \rangle = \mu, \text{ for all } u \in X,$$
 (2)

and for distinct $u, v \in X$,

$$\langle \mathbf{b}_u, \mathbf{b}_v \rangle = -1 \text{ if } u \sim v, \ \langle \mathbf{b}_u, \mathbf{b}_v \rangle = 0 \text{ if } u \not\sim v.$$
 (3)

In view of Equations (2) and (3), we have:

Proposition 1.2 [5, Proposition 5.1.4] Let X be a star set for μ in G and let H = G - X.

(i) If $\mu \neq 0$ then the H-neighbourhoods of vertices in X are non-empty.

(ii) If $\mu \neq -1, 0$ then the *H*-neighbourhoods of vertices in *X* are distinct and non-empty.

If G is r-regular and $\mu \neq r$ then the all-1 vector \mathbf{j}_n is orthogonal to $\mathcal{E}(\mu)$; in other words, μ is a non-main eigenvalue (see [8], for example). From the description of $\mathcal{E}(\mu)$ in Theorem 1.1, we have the following result, where we write \mathbf{j} for \mathbf{j}_{n-k} .

Proposition 1.3 [4, Proposition 0.3] With the notation above, μ is a nonmain eigenvalue if and only if

$$\langle \mathbf{b}_u, \mathbf{j} \rangle = -1 \text{ for all } u \in X.$$
 (4)

2 Induced matchings

We suppose first that G is a connected r-regular graph with a star complement H for μ of the form hK_2 ($h \in \mathbb{N}$). Note that $\mu \neq \pm 1$. If $\mu = r$ then k = 1 since G is connected (see [5, Corollary1.3.8]). Since a vertex of H is adjacent to the unique vertex in X, we have r = 2 and then G is a 3-cycle. Accordingly, we suppose that $\mu \neq r$, and invoke Proposition 1.3.

We retain the notation of Section 1 and consider $\Delta_H(u)$ for arbitrary fixed $u \in X$. We may take C to be block-diagonal with each block equal to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. The subgraph of H induced by $\Delta_H(u)$ has the form $aK_2 \cup bK_1$. Since $(\mu I - C)^{-1} = (\mu^2 - 1)^{-1}(\mu I + C)$, equations (2) and (4) yield:

$$\mu = \frac{1}{\mu^2 - 1} \{ \mu(2a + b) + 2a \}, \tag{5}$$

$$-1 = \frac{1}{\mu^2 - 1} \{ \mu(2a + b) + (2a + b) \}.$$
 (6)

Solving (5) and (6), we find that

$$2a = \mu(\mu - 1)(\mu + 2), \quad b = -(\mu - 1)(\mu + 1)^2.$$
(7)

Since $\mu = 1 - 2a - b$, we see that μ is a non-positive integer.

We deal first with the case $\mu = 0$. Here a = 0, b = 1 and we write u' for the unique neighbour of u in H. If v is a neighbour of u in X then it follows from (3) that the vertices u, v, u', v' induce a 4-cycle. Hence each vertex in the component of G_X containing u is adjacent to u' or v'. (In fact, if w is a vertex of X such that $u \neq w \sim v$, then w' = u' and $w \not\sim u$.) Since G is connected, necessarily h = 1. Then k = n-2 and the spectrum of G has the form $-\lambda$, $0^{(n-2)}$, λ . Hence G is the complete bipartite graph $K_{r,r}$ (cf. [5, Theorem 3.2.4]). Now we may assume that μ is a negative integer. Since $a \ge 0$, it follows from (7) that $\mu = -2$, and hence that a = 0, b = 3, $h \ge 3$. By interlacing [5, Corollary 1.3.12], -2 is the least eigenvalue of G. Now G is not a generalized line graph because the induced subgraph H + u has a component isomorphic to the subdivided star $S(K_{1,3})$ (see [4, Theorem 2.3.18]). Thus G is an exceptional graph, as defined in [4]. The 187 exceptional regular graphs were determined in [2], and they are listed in [4, Table A3.3]. They are partitioned into three 'layers': the graphs in the first, second, third layer have n = 2(r+2), $n = \frac{3}{2}(r+2)$, $n = \frac{4}{3}(r+2)$ respectively (see [1, Theorem 3.12.2] or [4, Theorem 4.1.5]). Any exceptional graph may be represented in the root system E_8 , in the sense of [4, Chapter 3]. In such a representation, h independent edges determine h pairwise orthogonal two-dimensional subspaces of \mathbb{R}^8 , and so $h \le 4$.

Now we count edges between X and \overline{X} . If h = 4 then we have

$$8(r-1) = 3(n-8) \le 6(r+2) - 24 = 6r - 12,$$

a contradiction. If h = 3 and G lies in the second or third layer, then

$$6(r-1) = 3(n-6) \le \frac{9}{2}(r+2) - 18 = \frac{9}{2} - 9,$$

another contradiction. Hence G lies in the first layer and has -2 as an eigenvalue of multiplicity n - 6. The only such graph is the Petersen graph (numbered 5 in [4, Table A3.3]). Gathering together our conclusions in the cases $\mu = r$, $\mu = 0$, $\mu \notin \{r, 0\}$, we have the following result.

Theorem 2.1 If G is a connected r-regular graph (r > 0) with hK_2 (h > 0)as a star complement for the eigenvalue μ , then one of the following holds: (a) r = 2, h = 1, $\mu = 2$ and G is a 3-cycle; (b) h = 1, $\mu = 0$ and $G = K_{r,r}$;

(c) r = 3, h = 3, $\mu = -2$ and G is the Petersen graph.

Conversely, each of the graphs in (a),(b),(c) satisfies the hypotheses of Theorem 2.1. Finally, we drop the requirement that G is connected. Suppose that G is *r*-regular with components G_1, \ldots, G_m , where G_i contains h_i of the components of H ($i = 1, \ldots, m$). Since r > 0, G_i is *r*-regular with $h_i K_2$ ($h_i > 0$) as a star complement for μ . The cases (a), (b), (c) of Theorem 2.1 are distinguished by the value of μ , and so we have the following.

Corollary 2.2 Let μ be an eigenvalue of the r-regular graph G (r > 0). Then G has hK_2 (h > 0) as a star complement for μ if and only if one of the following holds:

(a) r = 2, $\mu = 2$ and $G = hK_3$;

(b)
$$\mu = 0 \text{ and } G = hK_{r,r};$$

(c) r = 3, $\mu = -2$, h = 3m ($m \in \mathbb{N}$) and G = mP, where P denotes the Petersen graph.

3 Cocktail party graphs

Here we suppose that G is an r-regular graph with a star complement H for μ of the form $\overline{hK_2}$ $(h \in \mathbb{N})$. Note that H has spectrum $-2^{(h-1)}, 0^{(h)}, 2h-2$. Moreover, if h > 1 then H is connected and so G is connected by Proposition 1.2(i). It is feasible to use the method of Section 2 to determine the possible graphs G, but the calculations are cumbersome and it is more efficient to use the following observation.

Proposition 3.1 Let G be an r-regular graph with an s-regular graph H of order t as a star complement for the eigenvalue μ . If $\mu \notin \{s-t,r\}$ then \overline{H} is a star complement for $-1 - \mu$ in \overline{G} .

Proof. Here, μ is a non-main eigenvalue of G, and so if μ has multiplicity k in G then $-1 - \mu$ has multiplicity at least k in \overline{G} .

Suppose by way of contradiction that $-1 - \mu$ is an eigenvalue of \overline{H} . We have $-1 - \mu \neq t - s - 1$, and so $-1 - \mu$ is a non-main eigenvalue of \overline{H} . Then μ is an eigenvalue of H, a contradiction.

Since $-1 - \mu$ is not an eigenvalue of \overline{H} , the multiplicity of $-1 - \mu$ as an eigenvalue of \overline{G} is exactly k, by interlacing. Hence \overline{H} is a star complement for $-1 - \mu$ in \overline{G} .

Theorem 3.2 Let μ be an eigenvalue of the r-regular graph G (r > 0). Then G has $\overline{hK_2}$ (h > 0) as a star complement for μ if and only if one of the following holds:

(a) $\mu = 1$, h = 1, $G = 2K_2$ and r = 1;

- (b) $\mu = -1$, $G = \overline{hK_{q,q}}$ and r = 2qh q 1;
- (c) $\mu = 1, h = 3m \ (m \in \mathbb{N}), G = \overline{mP} \ (where P is the Petersen graph)$ and r = 10m - 4.

Proof. Let H be a star complement for μ in G, with $\overline{H} = hK_2$. Suppose first that h > 1; then $\mu \neq -2$. If also $\mu \neq r$ then by Proposition 3.1, \overline{H} is a star complement for $-1 - \mu$ in \overline{G} , and we apply Corollary 2.2 to \overline{G} . Thus G has one of the forms $\overline{hK_3}$, $\overline{hK_{q,q}}$, \overline{mP} , with $\mu = -3, -1, 1$ respectively. Only the second and third possibilities arise here, and they feature in cases (b) and (c) of the Theorem. If $\mu = r$ then μ is a simple eigenvalue of Gbecause G is connected, and so G has order 2h + 1, with r > 2h - 2. In this situation, $G = K_{r+1}$, a contradiction.

It remains to consider the case h = 1. Let H = G - X, and fix $u \in X$. Since $\mu \neq 0$, we know from Proposition 1.2(i) that either (1) $\mu = \pm \sqrt{2}$ and $H + u = K_{1,2}$, or (2) $\mu = \pm 1$ and $H + u = K_2 \cup K_1$. Now either (1) holds for all $u \in X$, or (2) holds for all $u \in X$. In the first case, we obtain the contradiction $G = K_{1,2}$ from Proposition 1.2(ii). In the second case, non-adjacent vertices u, v of X cannot have a common neighbour in H (for otherwise H + u + v does not have ± 1 as an eigenvalue). Thus each component containing a vertex of H is complete, and we have $G = 2K_{r+1} = \overline{K_{r+1,r+1}}$. Two possibilities arise: either $\mu = 1$ and r = 1, or $\mu = -1$ and ris arbitrary. These possibilities appear in cases (a) and (b) of the Theorem.

References

- A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag (Berlin), 1989.
- F. C. Bussemaker, D. Cvetković and J. J. Seidel, *Graphs Related to Exceptional Root Systems*, Technological University of Eindhoven, T. H. Report 76-WSK-05, 1976.
- [3] D. M. Cardoso and P. Rama, Equitable bipartitions of graphs and related results, J. Math. Sci. (N. Y.) 120 (2004), 869-880.
- [4] D. Cvetković, P. Rowlinson and S. K. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press (Cambridge), 2004.
- [5] D. Cvetković, P. Rowlinson and S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2009.
- [6] A. Neumaier, Regular sets and quasi-symmetric 2-designs, *Lecture Notes in Math.* 969, Springer-Verlag (Berlin), 1982, pp.258-275.
- [7] P. Rowlinson, Star partitions and regularity in graphs, *Linear Algebra Appl.* 226-228 (1995), 247-265.
- [8] P. Rowlinson, The main eigenvalues of a graph: a survey, *Appl. Anal. Discrete Math.* 1 (2007), 455-471.
- [9] P. Rowlinson and B. Tayfeh-Rezaie, Star complements in regular graphs: old and new results, *Linear Algebra Appl.* 432 (2010), 2230-2242.
- [10] D. Stevanović (Ed.), Research problems from the Aveiro workshop on graph spectra, *Linear Algebra Appl.* 423 (2007), 172-181.