
Rowlinson P (2014) Eigenvalue multiplicity in cubic graphs, 

Linear Algebra and Its Applications, 444, pp. 211-218. 
 
 
This is the peer reviewed version of this article 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTICE: this is the author’s version of a work that was accepted for publication in Linear Algebra and its 

Applications resulting from the publishing process, such as peer review, editing, corrections, structural 

formatting, and other quality control mechanisms may not be reflected in this document. Changes may have 

been made to this work since it was submitted for publication. A definitive version was subsequently published 

in Linear Algebra and its Applications, [VOL 444 (2014)] DOI: http://dx.doi.org/10.1016/j.laa.2013.11.036 

   

 

http://dx.doi.org/10.1016/j.laa.2013.11.036
http://dx.doi.org/10.1016/j.laa.2013.11.036


EIGENVALUE MULTIPLICITY IN CUBIC GRAPHS

Peter Rowlinson1

Mathematics and Statistics Group
Institute of Computing Science and Mathematics

University of Stirling
Scotland FK9 4LA

Abstract

Let G be a connected cubic graph of order n with µ as an eigenvalue
of multiplicity k. We show that (i) if µ 6∈ {−1, 0} then k ≤ 1

2n, with
equality if and only if µ = 1 and G is the Petersen graph; (ii) If µ = −1
then k ≤ 1

2n + 1, with equality if and only if G = K4; (iii) If µ = 0

then k ≤ 1
2n+ 1, with equality if and only if G = 2K3.
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1 Introduction

Let G be a regular graph of order n with µ as an eigenvalue of multiplicity
k, and let t = n − k. Thus the corresponding eigenspace E(µ) of a (0, 1)-
adjacency matrix A of G has dimension k and codimension t. From [1,
Theorem 3.1], we know that if µ 6∈ {−1, 0} and t > 2 then k ≤ n− 1

2(−1 +√
8n+ 9), equivalently k ≤ 1

2(t+ 1)(t− 2). For cubic graphs, this quadratic
bound improves an earlier cubic bound noted in [4, p.162]. In fact, when
µ 6= 0 and G is connected, a linear bound follows easily from the equation
tr(A) = 0. To see this, note first that if k ≥ 1

2n then µ is an integer,
for otherwise it has an algebraic conjugate which is a second eigenvalue
of multiplicity 1

2n. It follows that if G is a connected cubic graph then
µ ∈ {−2,−1, 0, 1, 2} (see [3, Sections 1.3 and 3.2]). If k = n − 1 then G is
complete, n = 4 and µ = −1; otherwise let d be the mean of the eigenvalues
other than 3 and µ, so that 3 + kµ+ (n− k− 1)d = 0. We have −3 ≤ d < 3;
moreover, if d = −3 then G is bipartite, k = n − 2 and µ = 0 (see [3,
Theorems 3.2.3 and 3.2.4]). We deduce:

(a) if µ = −2 then k < 3
5n, i.e. k < 3

2 t;
(b) if µ = −1 then k ≤ 3

4n, i.e. k ≤ 3t;
(c) if µ = 0 then k ≤ n− 2;
(d) if µ = 1 then k < 3

4n−
3
2 , i.e. k < 3t− 6;

(e) if µ = 2 then k < 3
5n−

6
5 , i.e. k < 3

2 t− 3.

We use star complements to improve these bounds, and to determine all
the graphs for which the new bounds are attained. Our main result is the
following; here and throughout we use the notation of the monograph [3].

Theorem 1.1. Let G be a connected cubic graph of order n with µ as an
eigenvalue of multiplicity k.
(i) If µ 6∈ {−1, 0} then k ≤ 1

2n, with equality if and only if µ = 1 and G is
the Petersen graph.
(ii) If µ = −1 then k ≤ 1

2n+ 1, with equality if and only if G = K4.
(iii) If µ = 0 then k ≤ 1

2n+ 1, with equality if and only if G = 2K3.

It follows that if G is a connected cubic graph of order n > 10 with µ
as an eigenvalue of multiplicity k then k ≤ 1

2n − 1 when µ 6∈ {−1, 0}, and
k ≤ 1

2n otherwise.

2 Preliminaries

Let G be a graph of order n with µ as an eigenvalue of multiplicity k. A
star set for µ in G is a subset X of the vertex-set V (G) such that |X| = k
and the induced subgraph G−X does not have µ as an eigenvalue. In this
situation, G −X is called a star complement for µ in G. The fundamental
properties of star sets and star complements are established in [3, Chapter
5]. We shall require the following results, where for any X ⊆ V (G), we write
GX for the subgraph of G induced by X. We take V (G) = {1, . . . , n}, and
write u ∼ v to mean that vertices u and v are adjacent.

1



Theorem 2.1. (See [3, Theorem 5.1.7].) Let X be a set of k vertices in G

and suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the

adjacency matrix of GX .
(i) Then X is a star set for µ in G if and only if µ is not an eigenvalue of
C and

µI −AX = B>(µI − C)−1B. (1)

(ii) If X is a star set for µ then E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).

Let H = G −X, where X is a star set for µ. The columns bu (u ∈ X)
of B are the characteristic vectors of the H-neighbourhoods ∆H(u) = {v ∈
V (H) : u ∼ v} (u ∈ X). Eq. (1) shows that

b>u (µI − C)−1bv =


µ if u = v
−1 if u ∼ v

0 otherwise,

and we deduce from Theorem 2.1:

Lemma 2.2. If X is a star set for µ, and µ 6∈ {−1, 0}, then the neighbour-
hoods ∆H(u) (u ∈ X) are non-empty and distinct.

Let P be the matrix of the orthogonal projection of IRn onto E(µ) with
respect to the standard orthonormal basis {e1, e2, . . . , en} of IRn. Since P
is a polynomial in A [3, Equation 1.5] we have µPei = APei = PAei (i =
1, . . . , n), whence:

Lemma 2.3. µPei =
∑

j∼i Pej (i = 1, . . . , n).

The next observation follows from [3, Proposition 5.1.1].

Lemma 2.4. The subset S of V (G) lies in a star set for µ if and only if
the vectors Pei (i ∈ S) are linearly independent.

By interlacing [3, Corollary 1.3.12] we have:

Lemma 2.5. If S is a star set for µ in G and if U is a proper subset of S
then S \ U is a star set for µ in G− U .

We shall also require:

Lemma 2.6. (See [3, Theorem 5.1.6].) Let µ be an eigenvalue of the graph
G. If G is connected then G has a connected star complement for µ.

In the case of connected cubic graphs, we can therefore make use of the
following result.

Proposition 2..7. Let G be a connected cubic graph of order n with µ as
an eigenvalue of multiplicity k ≥ 1

2n. Let H be a connected star complement
for µ, and let H = G −X, X = V (H), |X| = t. Then each vertex in X is
adjacent to some vertex in X, and one of the following holds:
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(a) k = t, |E(X,X)| = t and H is unicyclic,
(b) k = t, |E(X,X)| = t+ 2 and H is a tree,
(c) k = t+ 2, |E(X,X)| = t+ 2, µ ∈ {−1, 0} and H is a tree.

Proof. If u ∈ X then µPeu = Σi∈∆X(u)Pei+Σj∈∆H(u)Pej , where ∆X(u) =

{i ∈ X : i ∼ u}. It now follows from Lemma 2.4 that ∆H(u) 6= ∅. For j ∈ X,
let dj = |∆H(j)|, ej = |∆X(j)|. Then

|E(X,X)| = Σj∈Xej = 3t− Σj∈Xdj = 3t− 2|E(H)|.

Since |E(H)| ≥ t − 1 we deduce that |E(X,X)| ≤ t + 2. Since k ≥ 1
2n and

each vertex in X has a neighbour in X, we have

t ≤ k ≤ |E(X,X)| ≤ t+ 2 and |E(H)| ≤ t.

If |E(H)| = t then H is unicyclic and t = k = |E(X,X)|: this is case (a) of
the Proposition. If |E(H)| = t− 1 then H is a tree and |E(X,X)| = t+ 2;
moreover, k is t or t + 2 because n is even. If k = t we have case (b). If
k = t + 2 then |∆H(i)| = 1 for each i ∈ X and so there are two vertices
in X with a common H-neighbourhood. We deduce from Lemma 2.2 that
µ ∈ {−1, 0} and so we have case (c). 2

It follows that k ≤ 1
2n when µ 6∈ {−1, 0}, and k ≤ 1

2n + 1 when µ ∈
{−1, 0}. In Sections 3 and 4 we determine the graphs in which these bounds
are attained. It is clear from Proposition 2.7 that the edges between X and
X play a crucial role. The authors of [2] have determined all the graphs for
which E(X,X) is a perfect matching, equivalently all the graphs for which
B = I in Eq.(1). Their result is the following.

Theorem 2.8. Let G be a graph with X as a star set for the eigenvalue
µ. If E(X,X) is a perfect matching then one of the following holds: (a)
G = K2 and µ = ±1, (b) G = C4 and µ = 0, (c) G is the Petersen graph
and µ = 1.

We shall see that when E(X,X) is not a perfect matching, and G is a
connected cubic graph with k ≥ 1

2n, it suffices to consider a limited num-
ber of configurations from which we can construct a fragment of G. In
most cases, we invoke Lemmas 2.3 and 2.4 to obtain a contradiction. In
the remaining cases, either the fragment is G itself or we derive a contra-
diction from Theorem 2.1(ii). The configurations that we consider when
µ 6∈ {−1, 0} are illustrated in Fig. 1, labelled in accordance with various
subcases described in Section 3.

3 The case µ 6∈ {−1, 0}
We retain the notation of Section 2. We assume that G is a connected cubic
graph, with µ 6∈ {−1, 0} and k = 1

2n. Thus µ ∈ {−2, 1, 2}. By Lemma
2.6, we know that G has a connected star complement H for µ; accordingly
we have to deal with cases (a) and (b) of Proposition 2.7. In case (a), the
t edges in E(X,X) form a perfect matching (and H is a cycle) because
the vertices in X have distinct H-neighbourhoods. Thus µ = 1 and G is
the Petersen graph, by Theorem 2.8. For the remainder of this section, we
therefore assume that |E(X,X)| = t+ 2 and H is a tree.
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Figure 1: Configurations in the case µ 6∈ {−1, 0}

We take X = {1, 2, . . . , t}, X = {1′, 2′, . . . , t′}, and for each i ∈ X
we denote Σ{Peh : h ∈ ∆X(i)} by vi. We distinguish two cases: (1) X
contains a vertex adjacent to three vertices of H, (2) X contains two vertices
with H-neighbourhoods of size 2. In case (1), we may take |∆H(1)| = 3
and ∆H(i) = {i′} (i = 2, . . . , t). There are two subcases: without loss of
generality, either (1,1) ∆H(1) = {2′, 3′, 4′} or (1,2) ∆H(1) = {1′, 2′, 3′}. In
subcase (1,1), we have

µPe1 = Pe2′ + Pe3′ + Pe4′ = µPe2 − v2 + µPe3 − v3 + µPe4 − v4.

For µ = −2, 1, 2 respectively we obtain :

2Pe1 = 2Pe2 + v2 + 2e3 + v3 + 2Pe4 + v4,

Pe1 + v2 + v3 + v4 = Pe2 + Pe3 + Pv4,

2Pe1 + v2 + v3 + v4 = 2Pe2 + 2Pe3 + 2Pv4.

In each case, the imbalance of summands of the form Pei (i ∈ X) yields a
contradiction to Lemma 2.4.

In subcase (1,2), H has degree sequence 1(2), 2(t−2) and so H is a path; its
endvertices are 2′ and 3′. Note that t > 3 because 2 6∼ 1 6∼ 3. Hence, without
loss of generality, either (1,2,1) ∆H(1′) = {2′, 4′} or (1,2,2) ∆H(1′) = {4′, 5′}.

In subcase (1,2,1), we have µPe1 = Pe1′ + Pe2′ + Pe3′ , whence

µ2Pe1 = Pe1 + Pe2′ + Pe4′ + µPe2′ + µPe3′

that is,

µ2Pe1 = Pe1 + (µ+ 1)(µPe2 − v2) + µ(µPe3 − v3) + µPe4 − v4. (2)
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Now a parity check shows that µ = 1. (If µ = ±2 then Eq.(2) can be written
in the form Σi∈XaiPei = 0 with Σi∈Xai 6≡ 0 mod 2.) Hence

2v2 + v3 + v4 = 2Pe2 + Pe3 + Pe4,

and this too contradicts Lemma 2.4
In subcase (1,2,2), again µPe1 = Pe1′ + Pe2′ + Pe3′ , and now

µ2Pe1 = Pe1 + Pe4′ + Pe5′ + µPe2′ + µPe3′ ,

that is,

µ2Pe1 = Pe1 + µPe4 − v4 + µPe5 − v5 + µ(µPe2 − v2) + µ(µPe3 − v3).

A parity check shows that µ = 1. Hence

v2 + v3 + v4 + v5 = Pe2 + Pe3 + Pe4 + Pe5,

and this contradicts Lemma 2.4.
It remains to consider case (2), where without loss of generality we take

|∆H(1)| = |∆H(2)| = 2 and ∆H(i) = {i′} (i = 3, . . . , t).

Lemma 3.1 In Case (2), neither vertex 1 nor vertex 2 is adjacent to two
vertices in {3′, 4′, . . . , t′}.
Proof. It suffices to rule out the case that ∆H(2) = {3′, 4′}. Here we have
µPe2 = v2 + Pe3′ + Pe4′ = v2 + µPe3 − v3 + µPe4 − v4. A parity check
shows that µ = 1. Hence

Pe2 + v3 + v4 = v2 + Pe3 + Pe4.

and this contradicts Lemma 2.4. 2

In view of Lemma 3.1, we may assume that ∆H(2) = {2′, 3′}. We dis-
tinguish two subcases: (2,1) 1 6∼ 1′, (2,2) 1 ∼ 1′. In subcase (2,1), we
have 1 ∼ 2′ by Lemma 3.1. Moreover, since vertices 1 and 2 have distinct
H-neighbourhoods, we may assume that ∆H(1) = {2′, 4′}. Now we have

µPe1 = v1 + Pe2′ + Pe4′ = v1 + µPe2 − Pe3′ − v2 + µPe4 − v4

= v1 + µPe2 − µPe3 + v3 − v2 + µPe4 − v4.

If µ = 2 then

2Pe1 + 2Pe3 + v2 + v4 = 2Pe2 + 2Pe4 + v1 + v3,

and we obtain a contradiction by equating coefficients of Pe1.
If µ = −2 then

2Pe1 + 2Pe3 + v1 + v3 = 2Pe2 + 2Pe4 + v2 + v4,

whence v2 = Pe1 + Pe3, a contradiction.
Hence µ = 1 and we have

Pe1 + Pe3 + v2 + v4 = Pe2 + Pe4 + v1 + v3.
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It follows that ∆X(1) = {3}, ∆X(2) = {4}, ∆X(3) = {1, h} and ∆X(4) =
{2, h} for some h > 4. Without loss of generality, h = 5. Thus the ver-
tices 1, 2, 3, 4, 5 induce a path which is component of GX , while any other
component of GX is a cycle.

By Theorem 2.1(ii), G has a 1-eigenvector x = (x(i))i∈V (G) such that
x(1) = 1 and x(i) = 0 (i = 2, . . . , t). By Lemma 2.3, we have x(i′) = 0 for
all i ≥ 5. Let x(2′) = a, so that x(3′) = −a and x(4′) = 1−a. For i = 2, 3, 4,
let ∆H(i′) = {i′′}. Then x(2′′) = a − 1, x(3′′) = 0 and x(4′′) = −a. Since
vertices 2′, 3′, 4′ are endvertices of H, they constitute an independent set.
Thus if 3′ ∼ 1′ then x(1′) = 0 and so x(2′′) = x(4′′) = 0, a contradiction.
Hence 3′ ∼ j′ for some j ≥ 5 and we have:

Pe2 = Pe2′ + Pe3′ + Pe4 = Pe1 − Pe4′ − Pe3 + Pe2 + Pe3 + Pej′ + Pe4

= Pe1 − Pe4 + v4 − Pe3 + Pe2 + Pe3 + Pej − vj + Pe4.

Hence vj = Pe1 + Pej + v4, a contradiction.

Now we turn to subcase (2,2), where 1′ ∼ 1 6∼ 3′ and we may assume
that either (2,2,1) 1 ∼ 2′ or (2,2,2) 1 ∼ 4′. In subcase (2,2,1), H has degree
sequence 1(2), 2(t−2), and so H is a path; its endvertices are 2′ and 3′. Since
∆H(2) = {2′, 3′}, the subgraph of G induced by V (H) ∪̇ {2} is a (t + 1)-
cycle. By Lemma 2.5, this subgraph has µ as a simple eigenvalue, and so
µ = ±2.

Since 1′ is not adjacent to both 2′ and 3′, we should consider just three
possibilities: (2,2,1,1) ∆H(1′) = {4′, 5′}, (2,2,1,2) ∆H(1′) = {2′, 4′}, (2,2,1,3)
∆H(1′) = {3′, 4′}.

In subcase (2,2,1,1) we have µPe1 = v1 + Pe1′ + Pe2′ , whence

µ2Pe1 = µv1 + Pe1 + Pe4′ + Pe5′ + µPe2′

= µv1 + Pe1 + µPe4 − v4 + µPe5 − v5 + µ(µPe2 − v2 − Pe3′)

= µv1 + Pe1 + µPe4 − v4 + µPe5 − v5 + µ2Pe2 − µv2 − µ(µPe3 − v3).

Now a parity check gives a contradiction.
In subcase (2,2,1,2), we have µPe1 = v1 + Pe1′ + Pe2′ , and so

µ2Pe1 = µv1+Pe1+Pe2′+Pe4′+µPe2′ = µv1+Pe1+µPe4−v4+(µ+1)Pe2′

= µv1 + Pe1 + µPe4 − v4 + (µ+ 1)(µPe2 − v2 − Pe3′)

= µv1 + Pe1 + µPe4 − v4 + (µ+ 1)(µPe2 − v2 − µPe3 + v3).

If µ = 2 then

3Pe1 + v4 + 3v2 + 6Pe3 = 2v1 + 2Pe4 + 6Pe2 + 3v3.

If µ = −2 then

3Pe1 + 2v1 + 2Pe4 + v4 + 2Pe3 + v3 = 2Pe2 + v2.

For both values of µ, Lemma 2.4 is contradicted.
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In subcase (2,2,1,3), we have µPe1 = v1 + Pe1′ + Pe2′ and so

µ2Pe1 = µv1 + Pe1 + Pe3′ + Pe4′ + µPe2′

= µv1 + Pe1 + µPe3 − v3 + µPe4 − v4 + µPe2′

= µv1 + Pe1 + µPe3 − v3 + µPe4 − v4 + µ(µPe2 − v2 − µPe3 + v3).

Again a parity check gives a contradiction.
Now we consider subcase (2,2,2), where 1 ∼ 4′ and H is a path with end-

vertices 3′ and 4′. By Lemma 2.5 the subgraph ofG induced by V (H) ∪̇ {3, 4}
has µ as a double eigenvalue; hence this subgraph is a (t+2)-cycle, and µ = 1.
Let ∆H(3′) = {i′}, and let Hi be the subgraph induced by V (H) ∪̇ {i}.
Then i ∈ {1, 2} for otherwise Hi is a tree without a 1-eigenvector x such
that x(i) = 1. Similarly, ∆H(4′) = {j′}, where j ∈ {1, 2}. Since t > 3 we
have i 6= j, and so either (2,2,2,1) ∆X(3′) = {2′},∆X(4′) = {1′} or (2,2,2,2)
∆X(3′) = {1′},∆X(4′) = {2′}.

In subcase (2,2,2,1), we have µPe4 = Pe4′ + v4, whence

µ2Pe4 = Pe4 + Pe1 + Pe1′ + µv4 = Pe4 + Pe1 + µPe1 − Pe4′ − v1 + µv4

= Pe4 + Pe1 + µPe1 − µPe4 + v4 − v1 + µv4.

Since µ = 1, we have
Pe4 + v1 = 2Pe1 + 2v4,

contradicting Lemma 2.4.
In subcase (2,2,2,2), we have µPe4 = Pe4′ + v4 and

µ2Pe4 = Pe4 + Pe1 + Pe2′ + µv4 = Pe4 + Pe1 + µPe2 − Pe3′ − v2 + µv4

= Pe4 + Pe1 + µPe2 − µPe3 + v3 − v2 + µv4.

Since µ = 1, we have

Pe3 + v2 = Pe1 + Pe2 + v3 + v4,

contradicting Lemma 2.4.
We have now proved:

Proposition 3.2. Let G be a connected cubic graph of order n with an
eigenvalue µ of multiplicity 1

2n. If µ 6∈ {−1, 0} then µ = 1, n = 10 and G is
the Petersen graph.

4 The case µ ∈ {−1, 0}
In this section we assume that G is a connected cubic graph, with µ ∈
{−1, 0} and k = 1

2n + 1 (that is, k = t + 2). By Lemma 2.6, we know that
G has a connected star complement for µ, say H = G−X. By Proposition
2.7, H is a tree; moreover |∆H(u)| = 1 for all u ∈ X, and so GX is a union
of disjoint cycles. Note that there exist (at least) two vertices in X with a
common neighbour in H.

7



Lemma 4.1. Let G be graph with X as a star set for the eigenvalue µ,
and let H = G −X. Suppose that u, v are distinct vertices in X such that
∆H(u) = ∆H(v).
(i) If µ = −1 then ∆X(u) ∪̇ {u} = ∆X(v) ∪̇ {v} (and so u, v are co-duplicate
vertices).
(ii) If µ = 0 then ∆X(u) = ∆X(v) (and so u, v are duplicate vertices).

Proof. Both (i) and (ii) follow from Lemma 2.4 and the relation

µPeu − Σi∈∆X(u)Pei = µPev − Σj∈∆X(v)Pej .

2

Let X = {1, 2, . . . , t + 2}, X = {1′, 2′, . . . , t′}, with ∆H(1) = ∆H(2) =
{1′}. Suppose first that µ = −1. By Lemma 4.1(i), we have 1 ∼ 2, and we
may take ∆X(1) = {2, 3}, ∆X(2) = {1, 3}. This argument shows that no
vertex of H is adjacent to two vertices in different components of GX

If 3 ∼ 1′ then G = K4, and so we suppose that 3 ∼ 2′. By Theo-
rem 2.1(ii), G has a (−1)-eigenvector x with x(1) = 1 and x(i) = 0 (i =
2, 3, . . . , t + 2). We have x(1′) = x(2′) = −1. Consider an r-cycle C other
than 1231 in GX . If C has two vertices with a common neighbour in H then
r = 3, and by Lemma 2.3, x(i′) = 0 for each neighbour i′ in H of a vertex
of C. The same conclusion holds when C does not have two vertices with
a common neighbour in H. It follows that x(i′) = 0 (i = 3, . . . , t). Thus
the non-zero entries of x are 1,−1,−1, and x is not orthogonal to the all-1
vector j ∈ IRn. This is a contradiction because j is a 3-eigenvector of G.

Next suppose that µ = 0. By Lemma 4.1(ii), we may take ∆X(1) =
∆X(2) = {3, 4}, where 3 6∼ 1′ 6∼ 4; moreover, 3 6∼ 4 because ∆H(4) 6=
∅. Note that again no vertex of H is adjacent to two vertices in different
components of GX . Now let x be a 0-eigenvector with x(1) = 1 and x(i) =
0 (i = 2, . . . , t + 2). Note that x(1′) = 0, and consider an r-cycle C other
than 13241 in GX . If C has two vertices with a common neighbour in H
then r = 4, and by Lemma 2.3, x(i′) = 0 for each neighbour i′ in H of a
vertex in C. The same conclusion holds when C does not have two vertices
with a common neighbour in H.

If vertices 3 and 4 have a common neighbour in H, say 2′, then x(2′) =
−1; moreover if ∆H(1′) = {j′} then x(j′) = −1, while x(i′) = 0 (i =
3, . . . , t). In this case, j = 2 and G = 2K3. If vertices 3 and 4 have different
neighbours in H, say ∆H(3) = {2′} and ∆H(4) = {3′} then x(2′) = x(3′) =
−1, while x(i′) = 0 (i = 4, . . . , t). Now j⊥x 6= 0, a contradiction as before.
We have therefore proved:

Proposition 4.2. Let G be a connected cubic graph of order n with an
eigenvalue µ of multiplicity 1

2n + 1. If µ = −1 then G = K4, and if µ = 0
then G = 2K3.

In view of Lemma 2.6, we can combine Propositions 2.7, 3.2 and 4.2 to
obtain Theorem 1.1.
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