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Abstract. Suppose that G is a connected graph of order n and girth g < n. Let k be the
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1 Introduction

Let G be a connected graph of order n with an eigenvalue µ of multiplicity k. (Thus the corre-
sponding eigenspace of a (0, 1)-adjacency matrix of G has dimension k.) If G has girth g then by
interlacing, applied to an induced g-cycle, we have k ≤ n− g +2 (see [6, Corollary 1.3.12]). When
µ = −1 this bound is attained in complete graphs, and when µ = 0 it is attained in most complete
bipartite graphs. However, as we show below, the values −1 and 0 are (as usual) exceptional, and
k ≤ n− g when µ 6= −1 or 0. Two remarks are in order: (i) the inequality k ≤ n− g improves the

inequality k ≤ n + 1
2
−

√
2n + 1

4
implicit in [1, Theorem 2.3] precisely when g(g + 1) > 2n, (ii) the

relation between k and g is tenuous in that large changes in girth may be accompanied by small
changes in k. For (ii), note that by adding an appropriate edge to a graph with large girth g, we
can reduce the girth to 3, while the multiplicity of any eigenvalue changes by two at most. (Thus
it can be advantageous to apply the bound n−g after deleting suitable edges.) We investigate the
extremal situation in which µ 6= −1 or 0 and k = n− g. In this case, n ≤ 1

2
g(g + 1) by [1], and we

show that g ≤ 5 or k ≤ 2 (or both). Then we can describe all the graphs that arise. Immediate
examples of such a graph G are the Petersen graph (with n = 10, g = 5, µ = 1, k = 5) and the
graphs obtained from a cycle by adding a pendant edge. In the latter case, n = g + 1 while k = 1
for any eigenvalue of G. The proof divides naturally into two parts, according as µ is or is not an
eigenvalue of the cycle Cg, and the problem reduces to the question of how k pendant edges can
be added to a g-cycle to obtain a graph with an eigenvalue of multiplicity k. The notation follows
[6], and we make implicit use of the formula [6, Theorem 2.2.3] for the characteristic polynomial
of the coalescence of two graphs. In dealing with small graphs (n ≤ 7) the tables of graph spectra
in [2, 3, 4] are helpful.

2 Preliminaries

We assume throughout that g < n: this simply excludes the case that G is itself a g-cycle (for
which any eigenvalue other than ±2 has multiplicity 2 = n − g + 2). We write ct(x) for the
characteristic polynomial of Ct (t ≥ 3) and pt(x) for the characteristic polynomial of the path Pt

(of length t − 1 ≥ 0). Additionally, we define p0(x) = 1. Thus ct(2 cos θ) = 2 cos(tθ) − 2, and
pt(2 cos θ) = sin(t + 1)θ/ sin θ when sin θ 6= 0 (see [3, p.73]). We take H to be an induced g-cycle,
say H = G − X, and we write ∆H(u) for the H-neighbourhood of a vertex u ∈ X. We write
dH(v, w) for the distance in H between vertices v, w of H.

We denote by Ut+1 the graph obtained from Ct by adding a pendant edge. Note that neither
Pt nor Ut+1, with characteristic polynomial xct(x)− pt−1(x), has a repeated eigenvalue.

Lemma 2.1 If X contains a vertex u such that |∆H(u)| > 1 then g ≤ 4 and H + u is one of the
graphs shown in Fig. 1.

Proof. Let v, w be distinct vertices in ∆H(u). Since dH(v, w) ≤ 1
2
g, G has a cycle of length at

most 1
2
g + 2, and so g ≤ 4. If g = 4 then H + u is the graph shown in Fig. 1(a), and if g = 3 then

we have the two possibilities shown in Figs. 1(b)(c). 2
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Lemma 2.2 If u, v are adjacent vertices of X such that |∆H(u)| = |∆H(v)| = 1 then g ≤ 6 and
H + u + v is one of the graphs shown in Fig. 2.

Proof. Let ∆H(u) = {u′}, ∆H(v) = {v′}. If u′ = v′ then g = 3 and H + u + v is the graph shown
in Fig. 2(f). If u′ 6= v′ then 0 < dH(u′, v′) ≤ 1

2
g, and so G has a cycle of length at most 1

2
g + 3.

Hence g ≤ 6 in this case, and Figs. 2(a), 2(b), 2(c)(d), 2(e) show the possibilities for H + u + v
when g = 6, 5, 4, 3 respectively. 2
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Figure 1: The graphs from Lemma 2.1.
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Figure 2: The graphs from Lemma 2.2.

Proposition 2.3 Let µ be an eigenvalue of multiplicity k in a connected graph G of order n and
girth g < n. Then k = n− g + 2 if and only if either
(a) g = 3, G = Kn (n > 3), µ = −1 or
(b) g = 4, G = Kr,s (n = r + s > 4, r > 1, s > 1), µ = 0.

Proof. Suppose that k = n− g + 2, and let u be a vertex of X such that H + u is connected. By
interlacing, µ is a double eigenvalue of H, and the addition to H of any k′ vertices in X increases
the multiplicity of µ by k′. Since µ has multiplicity 3 in H + u, u has at least two neighbours in
H, and so g ≤ 4 by Lemma 2.1. If g = 3 then k = n−1 and (a) holds. If g = 4 then H +u = K2,3

(Fig. 1(a)) and µ = 0. In this case, the spectrum of G has the form −λ, 0(n−2), λ and so (b) holds
(see [6, Theorem 3.2.4]). Conversely, k = n− g + 2 in cases (a) and (b). 2
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Proposition 2.4 Let µ be an eigenvalue of multiplicity k in a connected graph G of order n and
girth g < n. If µ 6= −1 or 0 then k ≤ n− g.

Proof. In view of Proposition 2.3 it suffices to exclude the case k = n − g + 1. Suppose that
k = n − g + 1 and let u be a vertex of X such that H + u is connected. Since µ is a multiple
eigenvalue of H + u, u has at least two neighbours in H. By Lemma 2.1, g ≤ 4. If g = 3 then
µ = 2, but the graphs in Figs. 1(b)(c) do not have 2 as an eigenvalue. If g = 4 then µ = ±2, but
K2,3 (Fig. 1(a)) does not have 2 or −2 as an eigenvalue. 2

To investigate the graphs with k = n− g when µ 6= −1 or 0, we distinguish two cases (I) and
(II) according as µ is or is not an eigenvalue of Cg.

3 Case I

In this section we assume that k = n− g > 0, µ 6= −1 or 0, and µ is an eigenvalue of the induced
g-cycle H = G−X. If |∆H(u)| > 1 for some u ∈ X then by Lemma 2.1 either g = 4 and µ = ±2
or g = 3 and µ = 2. In either case, we have a contradiction to the fact that (by interlacing) µ is
an eigenvalue of H + u. If X contains a vertex with no neighbour in H then X contains vertices
u, v such that H +u+v has the form shown in Fig. 3(a). Now H +u has no repeated roots, and so
by interlacing, the addition to H +u of each successive vertex in X increases the multiplicity of µ
by 1. Hence H + u + v has µ as a double eigenvalue. But H + u + v has characteristic polynomial
cg(x)(x2 − 1)− xpg−1(x), and this is not divisible by (x− µ)2. We conclude that each vertex u of
X has a unique neighbour u′ in H.

The vertices u′ (u ∈ X) are distinct, for otherwise X contains vertices u, v such that H +u+ v
has the form shown in Fig. 3(b) or 3(c). In the former case, H+u+v has characteristic polynomial
x2cg(x)− 2xpg−1(x), which is not divisible by (x− µ)2. In the latter case, g = 3 and H + u + v is
the graph shown in Fig. 2(f), for which −1 is the only repeated eigenvalue.
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Figure 3: Configurations for Case I.

If X is not independent then we may apply Lemma 2.2 to adjacent vertices u, v of X. Of the
graphs in Fig. 2, only (a) and (b) have a double eigenvalue µ 6∈ {−1, 0}, and µ = 1 in both cases.
Since 1 is not an eigenvalue of C5, we have g = 6, with H + u + v the graph in Fig. 2(a). Since
g = 6 and w′ 6= u′, v′, there is just one way to add a vertex w to H + u + v, and we find that 1 is
not a triple eigenvalue of H + u + v + w. Thus only one graph arises when the edges uu′ (u ∈ X)
are not independent.

It remains to consider the case in which G consists of the g-cycle H and k independent pendant
edges. When k > 1 we consider a graph H + u + v, and let r, s be the lengths of the two u′-v′
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paths in H. Then r + s = g and H + u + v has characteristic polynomial

x2cg(x)− 2xpg−1(x) + pr−1(x)ps−1(x).

Since µ is an eigenvalue of both H and H +u, we have µ = 2 cos α where α = 2πh
g

for some integer

h, 0 < h < 1
2
g. Without loss of generality, x − µ divides pr−1(x), equivalently sin rα = 0. Then

sin sα = 0, equivalently x − µ divides ps−1(x). Since also (x − µ)2 divides cg(x), we deduce that
(x− µ)2 divides pg−1(x), a contradiction. We summarize our results as follows.

Theorem 3.1 Let µ be an eigenvalue of multiplicity k in a connected graph G of order n and
girth g < n. Suppose that µ 6= −1 or 0, and that µ is an eigenvalue of Cg. Then k = n− g if and
only if either
(a) k = 2, g = 6, µ = 1 and G is the graph in Fig. 2(a), or
(b) k = 1, µ = cos 2πh

g
(h = 1, 2, . . . , b1

2
(g − 1)c) and G = Ug+1.

4 Case II

In this section we assume that k = n − g > 0, µ 6= −1 or 0, and µ is not an eigenvalue of the
induced g-cycle H = G − X. Thus H is a star complement for µ and the H-neighbourhoods
∆H(u) (u ∈ X) are distinct and non-empty [6, Proposition 5.1.4]. Moreover, G has µ-eigenvectors
xu = (xui) (u ∈ X) such that xuv = δuv (u, v ∈ X) [5, Theorem 7.2.6]. By interlacing, the addition
to H of k′ vertices of X results in a graph with µ as an eigenvalue of multiplicity k′.

If X contains a vertex u such that |∆H(u)| > 1 then g ≤ 4 by Lemma 2.1. If g = 4 then
H + u = K2,3 (Fig. 1(a)) and µ = ±

√
6, while no extension H + u + v has µ as an eigenvalue.

(The five possibilities yield four different graphs, those numbered 52, 74, 90, 91 in [4].) If g = 3
then H + u is as shown in Fig. 1(b) or (c). In the latter case, µ = 3 while no extension of K4 by
a single vertex has 3 as an eigenvalue, and so G = K4. In the former case, µ2 − µ− 4 = 0 and no
extension H + u + v can have µ as an eigenvalue of multiplicity two. To see this, let µ∗ be the
algebraic conjugate of µ and let λ be the largest eigenvalue of H + u + v; then H + u + v has an
eigenvalue −2µ− 2µ∗ − λ with absolute value greater than λ, a contradiction. Thus k = 1 when
X contains a vertex u such that |∆H(u)| > 1, and Fig. 1 shows the three possibilities for G.
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Figure 4: A configuration for Case II.

Now suppose that |∆H(u)| = 1 for all u ∈ X. If X contains adjacent vertices u, v then by
Lemma 2.2, H +u+ v is one of the graphs shown in Fig. 2. Of these, the first is excluded because
the double eigenvalue 1 is an eigenvalue of H, and the last four are excluded because none has a
double eigenvalue µ 6∈ {−1, 0}. Thus H + u + v is the graph shown in Fig. 2(b), and then µ = 1,
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g = 5. The graphs with C5 as a star complement for 1 are determined in [6, Example 5.2.3], and
those with girth 5 are induced subgraphs of the Petersen graph.

It remains to consider the case in which G consists of the g-cycle H and k independent pendant
edges uu′ (u ∈ X). We show that k ≤ 2. Suppose by way of contradiction that µ is a triple
eigenvalue of H + u + v + w, where u′, v′, w′ are separated by q, r, s edges of H as shown in Fig. 4.
Thus q + r + s = g. Note that g > 3 (by [4] for example). Since µ is a double eigenvalue of each
of H + v + w, H + u + w, H + u + v, we know that (x− µ)2 divides each of

x2cg(x)− 2xpg−1(x) + pq−1(x)pr+s−1(x), (1)

x2cg(x)− 2xpg−1(x) + pr−1(x)ps+q−1(x), (2)

x2cg(x)− 2xpg−1(x) + ps−1(x)pq+r−1(x). (3)

On subtracting (2) from (1), we see that (x− µ)2 divides f(x), where

f(x) = pq−1(x)pr+s−1(x)− pr−1(x)ps+q−1(x).

With some trigonometric manipulation when x = 2 cos θ, we find that

f(x) =

{
ps−1(x)pq−r−1(x) if q > r,

−ps−1(x)pr−q−1(x) if q < r.

Thus if q 6= r then x−µ divides ps−1(x). From (3) we see that x−µ divides xcg(x)−2pg−1(x). Since
x−µ divides xcg(x)−pg−1(x), we deduce that cg(µ) = 0, contrary to hypothesis. Therefore, q = r,
and similarly r = s. Thus the vertices of H may be labelled 1, 2, . . . , 3r, with u′ = 3r, v′ = r and
w′ = 2r. Now H + u + v + w has a µ-eigenvector x = (xi) with xu = 1, xv = 0 and xw = 0. Then
x3r = µ (6= 0). Let xr−1 = c. Then c 6= 0, for otherwise the eigenvalue equations for µ force x = 0.
There exist polynomials f0, f1, f2, . . . , f2r such that xr+i = cfi(µ) (i = 0, 1, . . . , 2r). (Applying
the eigenvalue equations along the path r, r + 1, . . . 3r, we find that f0(µ) = 0, f1(µ) = −1 and
fi(µ) = µfi−1(µ) − fi−2(µ) (i > 1).) Now fr(µ) = 0 and we let m be the least positive integer i
such that fi(µ) = 0. Note that m > 1, and let c′ = fm−1(µ) (6= 0). Then xr+m+i = c′fi(µ) (i =
0, 1, . . . ,m−1) and we see that xr+j = 0 if and only if m divides j. Thus m divides r and x3r = 0,
a contradiction.

We summarize our results as follows.

Theorem 4.1 Let µ be an eigenvalue of multiplicity k in a connected graph G of order n and
girth g < n. Suppose that µ 6= −1 or 0 and µ is not an eigenvalue of Cg. If k = n − g then one
of the following holds:
(a) k = 1, µ = 3 and G = K4,
(b) k = 1, µ = 1

2
(1±

√
17) and G is obtained from K4 by deleting an edge,

(c) k = 1, µ = ±
√

6 and G = K2,3,
(d) 3 ≤ k ≤ 5, µ = 1 and G is an induced subgraph of the Petersen graph,
(e) k = 1, G = Ug+1 and µ 6= cos 2πh

g
(h = 1, 2, . . . , b1

2
(g − 1)c),

(f) k = 2 and G consists of a g-cycle and two independent pendant edges.
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5 Case II revisited

It remains to investigate the graphs that arise in case (f) of Theorem 4.1. For positive integers
r, s, we write Cr,s for the graph H + u + v consisting of a g-cycle H and pendant edges uu′, vv′

with r, s the lengths of the two u′-v′ paths in H.

Lemma 5.1 No graph Cr,r (r > 1) has C2r as a star complement for an eigenvalue µ 6= 0.

Proof. We use the notation above. If H is a star complement for µ then Cr,r has a µ-eigenvector
x with xu = 1, xv = 0. Then xv′ = 0, and if we apply the eigenvalue equations along each v′-u′

path in H, we find that xu′ = −xu′ . It follows that µ = 0, contrary to assumption. 2

Lemma 5.2 The graph C1,g−1 has Cg as a star complement for an eigenvalue µ 6∈ {−1, 0} if and
only if µ = 1 and g ≡ −1 mod 6.

Proof. In this case, H + u + v has characteristic polynomial

x(xcg(x)− pg−1(x))− pg(x). (4)

Suppose that H is a star complement for µ. Since µ is an eigenvalue of H + u and H + u + v, it
follows that pg(µ) = 0. Hence µ = 2 cos α where α = aπ

g+1
for some integer a, 1 ≤ a ≤ g. If a is

odd and we evaluate (4) at 2 cos α, we find that (2 cos α + 1)2 = 0, whence µ = −1, contrary to
hypothesis. Hence a is even, and then we have (2 cos α− 1)2 = 0. Thus µ = 1, α = π

3
, g + 1 = 3a

and g ≡ −1 mod 6.
Suppose that the vertices of H are labelled 1, 2, . . . , g in sequence, with u′ = 1, v′ = 2. Let x

be a 1-eigenvector of H + u + v with xu = 1, xv = 0. Then x1 = 1, x2 = 0 and hence xg = 0.
Now the sequence x1, x2, x3, . . . , xg−1, xg, x1 consists of recurrent subsequences 1, 0,−1,−1, 0, 1.
Conversely, if g ≡ −1 mod 6 then 1 is not an eigenvalue of H and we can construct two linearly
independent 1-eigenvectors using these subsequences; hence H is a star complement for µ. 2

Proposition 5.3 Let G = Cr,s, where r > 1, s > 1 and r 6= s. Suppose that µ 6∈ {−1, 0}, and
that µ is not an eigenvalue of Cr+s. Then µ is a double eigenvalue of G if and only if

(*) µ = 2 cos α, α = hπ
r−s

(h an odd integer) and tan sα = 2 sin 2α.

[Note that tan rα = tan sα when α = hπ
r−s

.]

Proof. We may assume that r > s. Suppose that µ is a double eigenvalue of G = H + u + v. If
we delete in turn the neighbours of u′ in H, we see that x− µ divides each of

xpr+s(x)− ps+1(x)pr−2(x), xpr+s(x)− pr+1(x)ps−2(x),

Hence x− µ divides
pr+1(x)ps−2(x)− ps+1(x)pr−2(x),

which is equal to (x2 − 1)pr−s−1(x). Thus µ = 1 or pr−s−1(µ) = 0 (or both).
If µ = 1 then we consider a 1-eigenvector x of H +u+v with xu′ = 1 and xv′ = 0. Applying the

eigenvalue equations along both u′-v′ paths in H, we find that r ≡ s ≡ 1 mod 3 and r 6≡ s mod 6.
Hence r − s is an odd multiple of 3, and (*) holds with α = π

3
.

If pr−s−1(µ) = 0 then µ = 2 cos α where α = hπ
r−s

for some integer h strictly between 0 and
r − s. (Thus sin α 6= 0.) Now G has characteristic polynomial

fr,s(x) = x2cr+s(x)− 2xpr+s−1(x) + pr−1(x)ps−1(x)

6



and so x− µ divides
fr,s(x)− 2x(xcr+s(x)− pr+s−1(x)). (5)

If x = 2 cos α the expression (5) becomes

1

sin2 α
× {16 sin2 α cos2 α sin2 r + s

2
α + (−1)h sin2 sα}.

Since cos α 6= 0, it follows that if h is even then sin r+s
2

α = 0 and hence sin(r + s)α = 0. But then
x− µ divides pr+s−1(x) and hence also cr+s(x), a contradiction. Therefore h is odd.

Again if x = 2 cos α then

xcr+s(x)− pr+s−1(x) =
2 cos sα

sin α
{sin sα− 2 sin 2α cos sα}.

Now cos sα 6= 0 for otherwise sin(r + s)α = − sin 2sα = 0, leading to a contradiction as before.
Hence sin sα− 2 sin 2α cos sα = 0, and condition (*) holds.

Conversely, if (*) holds then µ is a double eigenvalue of Cr,s because it is a root of both fr,s(x)
and f ′

r,s(x). To see this, note that

fr,s(2 cos θ) sin2 θ = (2 sin 2θ cos rθ − sin rθ)(2 sin 2θ cos sθ − sin sθ)− 2 sin2 2θ(1 + cos(r − s)θ).

2

For n > 10, we may summarize our results as follows. Note that the graphs in Lemma 5.2
satisfy condition (*) with α = π

3
, r = g − 1, s = 1, h = a− 1.

Theorem 5.4 let G be a connected graph of order n > 10 and girth g < n. Suppose that G has
an eigenvalue µ of multiplicity k.

(1) If µ ∈ {−1, 0} then k ≤ n− g + 2 with equality if and only if either
(a) k = n− 1, g = 3, G = Kn, µ = −1 or
(b) k = n− 2, g = 4, G = Kr,s (n = r + s, r > 1, s > 1), µ = 0.

(2) If µ 6∈ {−1, 0} then k ≤ n− g with equality if and only if either
(a) k = 1, G = Ug+1 and µ is an eigenvalue of Ug+1 other than −1 or 0, or
(b) k = 2, G = Cr,s (r + s = g, r 6= s), µ satisfies (*) and µ is not an eigenvalue of Cg.

We conclude with some examples of graphs that arise in case (2)(b) of Theorem 5.4 If r ≡
8 mod 12 and s ≡ 2 mod 12 then (*) is satisfied with α ∈ {π

6
, 5π

6
}, and we have µ = ±

√
3. If

r ≡ 15 mod 24 and s ≡ 3 mod 24 then (*) is satisfied with α ∈ { π
12

, 5π
12

, 7π
12

, 11π
12
}, and we have

µ = ±
√

2±
√

3. If r ≡ 4 mod 6 and s ≡ 1 mod 6 then (*) is satisfied with α = π
3

and µ = 1 (as
in Lemma 5.2).
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