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Abstract

We prove that, aside from the complete multipartite graphs and graphs
of Steiner type, there are only finitely many connected strongly regular
graphs with a regular star complement of prescribed degree s ∈ IN . We
investigate the possible parameters when s ≤ 5.
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1 Introduction

Let G be a finite simple graph of order n with µ as an eigenvalue of multiplic-
ity k. (Thus the corresponding eigenspace E(µ) of a (0, 1)-adjacency matrix
of G has dimension k.) A star set for µ in G is a subset X of the vertex-set
V (G) such that |X| = k and the induced subgraph G−X does not have µ
as an eigenvalue. In this situation, G−X is called a star complement for µ
in G. The fundamental properties of star sets and star complements are es-
tablished in [8, Chapter 5]. A survey of star complements in regular graphs
may be found in [18], along with a description of the regular graphs with a
star or windmill as a star complement. The cubic graphs with a regular star
complement are determined in [15], and the regular graphs with a 1-regular
star complement are determined in [17]. As the following examples show,
it can happen that a strongly regular graph has a regular star complement.
We use the notation of [8].

Examples 1.1 (i) The Petersen graph has 3K2 as a 1-regular star comple-
ment for the eigenvalue −2.
(ii) The Petersen graph has C5 as a 2-regular star complement for the eigen-
value 1.
(iii) The Gewirtz graph [10] has the Sylvester graph [2, p.223] as a 5-regular
star complement for −4. (The Gewirtz graph has spectrum 10, 2(35),−4(20),
and the Sylvester graph has spectrum 5, 2(16),−1(10),−3(9).)
(iv) The complete multipartite graph (s + 1)Ku (u ∈ IN) has Ks+1 as an
s-regular star complement for the eigenvalue 0.
(v) The line graph L(Ku) (u > 4) has a union of disjoint odd cycles, of order
u, as a 2-regular star complement for the eigenvalue −2.

We say that a strongly regular graph is of Steiner type S(2, k̃, ṽ) if its pa-
rameters n, r, e, f coincide with those of the block graph of a Steiner system
S(2, k̃, ṽ), that is (see [11, Section 9]),

n =
ṽ(ṽ − 1)
k̃(k̃ − 1)

, r = k̃
ṽ − k̃

k̃ − 1
, e = (k̃ − 1)2 +

ṽ − 1
k̃ − 1

− 2, f = k̃2. (1)

Recall that strongly regular graphs have the same parameters if and only
if they are cospectral [8, Section 3.6]. For example, the Chang graphs [8,
Example 1.2.6] are of Steiner type because they are cospectral with L(K8),
while L(Kq) is the block graph of the unique design S(2, 2, q). We show in
Section 2 that, aside from the complete multipartite graphs and graphs of
Steiner type, there are only finitely many connected strongly regular graphs
with a regular star complement of prescribed degree s ∈ IN . Note that com-
plete graphs are excluded from our considerations, and so the case s = 0
does not arise (see Proposition 1.6). In Section 3, we investigate the cases
s = 1, 2, 3, 4, 5. The results are of potential interest in relation to the con-
struction of strongly regular graphs from star complements (cf. Examples
1.3). For instance, the existence of a strongly regular graph with parame-
ters (85, 14, 3, 2) remains open, but the parameters are consistent with the
presence of a 4-regular graph of order 35 as a star complement for −3.
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Here we first recall the required properties of star complements. For
X ⊆ V (G), we write GX for the subgraph of G induced by X, and ‘u ∼ v’
to mean that vertices u and v are adjacent.

Theorem 1.2 [8, Theorem 5.1.7] Let X be a set of k vertices in the graph

G and suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the

adjacency matrix of GX . Then X is a star set for µ in G if and only if µ is
not an eigenvalue of C and

µI −AX = B>(µI − C)−1B. (2)

In this situation, E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).

Writing H = G −X, we see that the columns bu (u ∈ X) of B are the
characteristic vectors of the H-neighbourhoods ∆H(u)={v ∈ V (H) : u ∼ v}
(u ∈ X). Thus G is determined by µ, a star complement H for µ, and the
H-neighbourhoods ∆H(u) (u ∈ X).

Examples 1.3 (i) The Petersen graph can be constructed from a 5-cycle
as a star complement H for 1 by adding 5 vertices whose H-neighbourhoods
are the singleton subsets of V (H). It follows from (2) that if u, v are added,
with neighbours u′, v′ ∈ V (H), then u ∼ v if and only if u′ 6∼ v′ [8, Example
5.2.3] .
(ii) For odd n ≥ 5, the line graph L(Kn) can be constructed from an n-
cycle as a star complement H for −2 by adding 1

2n(n − 3) vertices whose
H-neighbourhoods have the form {u1, u2, u3, u4} with u1 ∼ u2 and u3 ∼ u4.
It follows from (2) that if u, v are added, then u ∼ v if and only if ∆H(u),
∆H(v) intersect in two adjacent vertices of H (cf. [1, Theorem 2.4]).

If G is r-regular and µ 6= r then the all-1 vector jn is orthogonal to E(µ);
in other words, µ is a non-main eigenvalue (see [16], for example). From the
description of E(µ) in Theorem 1.1, we have the following result, where we
write j for jn−k.

Proposition 1.4 [7, Proposition 0.3] With the notation above, µ is a non-
main eigenvalue if and only if

b>u (µI − C)−1j = −1 for all u ∈ X. (3)

Proposition 1.5 Let G be an r-regular graph with an s-regular subgraph
H = G − X as a star complement for the eigenvalue µ 6= r. If µ has
multiplicity k then |∆H(u)| = s− µ for all u ∈ X and

k(r − µ) = n(r − s). (4)

Proof. By Proposition 1.4, we have −1 = b>u (µ−s)−1j, whence b>u j = s−µ
for each u ∈ X. Counting edges between X and its complement X̄, we see
that k(s− µ) = (n− k)(r − s), equivalently k(r − µ) = n(r − s). 2
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It follows that, in the situation of Proposition 1.5, µ is an integer, while
X and X̄ form an equitable bipartition of V (G); equivalently, X and X̄ are
regular sets in the sense of [5, 13]. The following observation disposes of the
case s = 0.

Proposition 1.6 If G is an r-regular graph (r > 0) with Kt as a star
complement for the eigenvalue µ then either
(a) µ = −1 and G = tKr+1, or
(b) µ = 1 and G = tK2.
Proof. Let X be a star set for µ, with H = G−X = Kt. Suppose first that
µ 6= r. Then from Equation (3) we have b>u j = −µ for each u ∈ X. On
the other hand, Equation (2) yields b>u bu = µ2, and so µ2 = −µ. Since µ
is not an eigenvalue of Kt, we have µ = −1; moreover, each neighbourhood
∆H(u) (u ∈ X) is a singleton. For distinct vertices u, v in X, we see from
Equation (2) that u ∼ v if and only if b>u bv = 1, equivalently ∆H(u) =
∆H(v). It follows that each component of G is complete, and we have case
(a).

If µ = r let v ∈ X, and let C be the component C of G containing v.
Then C − v is a star complement for µ in C, necessarily a star K1,r. Since
G is r-regular and r > 0, it follows that r = 1, µ = 1, and we have case (b).

2

2 Arithmetic

Let G be a connected strongly regular graph with parameters n, r, e, f
(2 ≤ r ≤ n− 2). In particular (see [4, 3] for example),

(n− r − 1)f = r(r − e− 1) (5)

and
2(r + 1) ≤ n + f. (6)

Suppose that G has an s-regular star complement H = G − X for the
eigenvalue µ, where µ has multiplicity k. Note that k 6= 1 (since G is not
complete) and so µ 6= r. Hence µ is a non-main eigenvalue. Since µ is an
integer, G is not a 5-cycle, and so r ≥ 3. Moreover (see [4, Chapter 2]),

µ = 1
2(e− f + ∆), k = 1

2{n− 1 + (n−1)(f−e)−2r
∆ }, (7)

where
∆2 = (e− f)2 + 4(r − f). (8)

We do not specify a sign for ∆. Substituting for µ, k and n in Equation (4),
we obtain:

(2s− r)∆ = r(e− f + 2). (9)

Taking squares and using Equation (8) again, we obtain

r2(r − e− 1) = s(r − s)∆2. (10)
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Now let m be the greatest common divisor of r and s, say r = pm and
s = qm, where p and q are coprime. Then p2(r − e − 1) = q(p − q)∆2,
whence p2 divides ∆2, say ∆2 = a2p2, where a > 0.

Lemma 2.1 If f < r then a ≤ m, with strict inequality when s > 2.
Proof. Since 0 < f < r, we have ∆2 ≤ (r − 1)2 + 4(r − 1) < (r + 1)2,
whence a2p2 ≤ r2 and a ≤ m. If a = m then Equation (10) becomes
r− e− 1 = s(r− s), whence e = (1− s)(r− 1− s). In this situation, if s > 1
then s = r − 1, e = 0 and Equation (8) becomes (r − f)(r + f − 4) = 0.
From this it follows that r + f = 4, and hence that r = 3, f = 1, s = 2 (cf.
Example 1.1(ii)). 2

We are now in a position to prove our finiteness result:

Theorem 2.2 For each s ∈ IN , there exists a finite family Rs of strongly
regular graphs with the following property. If G is a connected strongly
regular graph with an s-regular star complement for the eigenvalue µ then
exactly one of the following holds:
(a) µ = 0 and G = (s + 1)Kq (q ∈ IN),
(b) µ = −1 − v, s = v(v + 1) and G is of Steiner type S(2, v + 1, vw + 1)

(v, w ∈ IN),
(c) G ∈ Rs.
Proof. If f = r then G is a complete multipartite graph (with parts of
size n − r), say G = (s + 1)Kq (q ∈ IN), with spectrum qs, 0((q−1)(s+1)),
−s(q). If r 6= 2s then by Equations (7) and (9), there is a unique solution
for µ, necessarily µ = 0. If r = 2s then q = 2, and to verify (a) we must
eliminate the possibility µ = −2. In this case, a star complement for −2 has
order s + 2, and so is a cocktail party graph (of order at least 4): this is a
contradiction because such a graph has −2 as an eigenvalue. Thus (a) holds
when f = r, and we now assume that f < r.

We write α = a
m , so that Equation (10) becomes

e = s2α2 − 1− r(sα2 − 1). (11)

Substituting for e and ∆2 in Equation (8), and solving the resulting quadratic
in f , we obtain:

f = s2α2 + 1− r(sα2 − 1)± α(r − 2s). (12)

We have

r(r − e− 1)
f

=
rs(r − s)α2

s2α2 + 1− r(sα2 − 1)± α(r − 2s)
,

and this is an integer by Equation (5). It is expressible as the quotient
(Jp2 + Kp)/(Lp + M), where

J = qma2, K = −q2ma2, L = m− qa2 ± a, M = q2a2 + 1∓ 2aq.

Now L2(Jp2 +Kp) = J(Lp+M)2 +(Lp+M)(LK−2JM)+M(JM −KL)
and so Lp + M divides M(JM −KL). This enables us to bound Lp + M
when M(JM −KL) 6= 0.
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Consider the first choice of sign, and note that the argument in this
case embraces the case r = 2s. We have M 6= 0 for otherwise qa = 1
and then a = 1, s = m,α = 1

s , whence f = r, contrary to assumption.
Also JM −KL = qma2(mq − qa + 1), and this is non-zero by Lemma 2.1.
Consequently M(JM − KL) 6= 0. From Lemma 2.1 we see also that, for
given s, there are only finitely many possibilities m,a, q. If L = 0 then
m = a(qa− 1) and Equation (11) yields

s2α2 − e− 1 = r(sα2 − 1) =
ra

m
, (13)

whence r < s2a/m. Then there are only finitely many possibilities for r,
and (since n ≤ r2 + 1) only finitely many possibilities for n. On the other
hand, if L 6= 0 then the relation |Lp + M | ≤ |M(JM − KL)| shows that
p (and hence r and hence n) is bounded in terms of m,a, q (and hence in
terms of s).

Now consider the second choice of sign, with r 6= 2s. Here M = (qa+1)2

6= 0, and JM −KL = qma2(1 + qa + qm) 6= 0. Thus M(JM −KL) 6= 0,
and if L 6= 0 then n is bounded as before. If L = 0 then m = a(qa + 1) and
so r = pa(qa+1). From Equations (11) and (12), we have e = q2a2 +pa−1,
f = (qa + 1)2. It follows that n = (pa + 1)(pqa2 + qa + 1)/(qa + 1). Com-
paring these parameters with those in (1), we see that G is of Steiner type
S(2, v+1, vw+1), where v = qa and w = pa+1. In this situation, Equation
(9) yields ∆ = r(e − f + 2)/(2s − r) = −qa and so µ = 1

2(e − f + ∆) =
−1− qa = −1− v. Finally, s = qa(qa + 1) = v(v + 1), and so we have case
(b) of the Theorem. 2

Note thatR1 contains the Petersen graph, and in view of [17, Proposition
3.1], Rs contains the graph L(Ks+3) whenever s > 1: if H is a 2-regular star
complement for −2 in L(Ks+3) then H is an s-regular star complement for
1 in L(Ks+3). Example 1.1(iii) shows that R5 contains the Gewirtz graph,
and that a strongly regular graph with a regular star complement is not
necessarily of the form L(Kq) or L(Kq).

3 Regular star complements of small degree

In this section we investigate the parameters of G that arise when s ≤ 5.
We retain the notation of Section 2, and exclude the complete multipar-
tite graphs by taking f < r. The possibilities for the parameters of a
graph in Rs (s ≤ 5) are listed in the accompanying table; information on
the existence and uniqueness of the corresponding graphs may be found
at http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html, courtesy of
A. E. Brouwer. There are at least 32649 strongly regular graphs whose pa-
rameters appear in the table, and the graphs themselves are not investigated
here.
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s 1 2 3 4 4 4 4 4 5 5 5 5
µ -2 1 1 1 1 -3 -3 -3 1 -3 -3 -4
n 10 10 15 10 21 26 45 85 28 36 126 56
r 3 3 6 6 10 10 12 14 15 15 25 10
e 0 0 1 3 3 3 3 3 6 6 8 0
f 1 1 3 4 6 4 3 2 10 6 4 2

With minor variations, the parameters are found as follows. For pre-
scribed s, a,m we use Equation (10) to find e in terms of r, and Equation
(8) to determine the (one or two) possibilities for f before imposing the con-
dition that f divides r(r−e−1). When r 6= 2s we find ∆ from Equation (9),
µ from Equation (7). We give just an outline of the calculations, together
with a description of the graphs involved where appropriate.

The case s = 1. Here r2(r − e − 1) = (r − 1)∆2, whence ∆2 = r2, e = 0
and Equation (8) becomes (r − f)(r + f − 4) = 0. Thus r + f = 4 and
so (n, r, e, f) = (10, 3, 0, 1). From Equation (9), we have ∆ = −3 and so
µ = −2. In this case, G is the Petersen graph, arising as in Example 1.1(i).
This result is just a special case of [17, Theorem 3.2].

The case s = 2. Here r2(r − e− 1) = 2(r − 2)∆2. If r is odd then r2 = ∆2

and r + e = 3. Hence r = 3, e = 0 and we find in turn that f = 1, n = 10,
∆ = 3, µ = 1. Thus G is the Petersen graph, arising as in Example 1.1(ii).

If r is even then r2 6= ∆2 (by the argument above) and so r2 = 4∆2

by Lemma 2.1. It follows that r = 2e, and then Equation (8) becomes
(f − 4)(f − 2e) = 0. Hence f = 4, e 6= 2 and n = 1

2(e + 1)(e + 2). From
Equation (9), we have ∆ = −e, and so µ = −2. The parameters of G are
those of L(Ku), where u = e + 2, and so G is cospectral with L(Ku). Thus
either G = L(Ku) or u = 8 and G is a Chang graph (see [7, Chapter 4]).
All three Chang graphs arise in case (b) of Theorem 2.2 because each has
C3 ∪̇ C5 as a star complement for −2.

The case s = 3. Here r2(r− e− 1) = 3(r− 3)∆2, and by Lemma 2.1, either
∆2 = 1

9r2 or ∆2 = 4
9r2.

If ∆2 = 1
9r2 then e = 2

3r, f = 1
3r + 4 and

n− r − 1 =
r(r − e− 1)

f
=

r(r − 3)
r + 12

.

It follows that r + 12 divides 180. Since f 6= r > 3 and r is divisible by 3,
we have r ∈ {18, 24, 33, 48, 78, 168}. The cases r = 24, 48, 168 do not arise
because they lead to non-integer values of k in (7). The cases r = 18, 33, 78
are ruled out by the ‘absolute bound’: n ≤ 1

2k′(k′ + 3), where k′ is the
multiplicity of either multiple eigenvalue (see [19, Section 6] or [8, Theorem
3.6.7]).

If ∆2 = 4
9r2 then 1

3r = 3 − e. Here the possibilities for (n, r, e, f)
are (28, 9, 0, 4) and (15, 6, 1, 3), with associated spectra 28, 1(21),−5(6) and
5, 1(9),−3(5) respectively. The absolute bound is violated in the first case.
In the second case, by considering G we see that G = L(K6), an example
noted in Section 2. Here µ = 1 because a star complement H for µ has even
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order; thus H is a 3-regular graph of order 6. Since 1 is an eigenvalue of C6,
necessarily H = 2K3.

The case s = 4. Here r2(r − e − 1) = 4(r − 4)∆2, and by Lemma 2.1,
∆2 ∈ { 1

16r2, 1
4r2, 9

16r2}.
If ∆2 = 1

16r2 then e = 3
4r and Equation (8) yields f = 1

2 + 4. Writing
r = 4p, we see that

r(r − e− 1)
f

=
2p(p− 1)

p + 2
,

whence p + 2 divides 12. Since f < r, we deduce that either (n, r, e, f) =
(21, 16, 12, 12) or (n, r, e, f) = (56, 40, 30, 24). In both cases, condition (6) is
violated.

If ∆2 = 1
4r2 then e = 3 and f ∈ {1

2r + 1, 9 − 1
2r}. If f = 1

2r + 1 then
(n, r, e, f) ∈ {(10, 6, 3, 4), (21, 10, 3, 6), (56, 22, 3, 12)}. Here the third possi-
bility is ruled out by the absolute bound. If (n, r, e, f) = (10, 6, 3, 4) then
G = L(K5), µ = 1 and H = 3K2, an example complementary to Example
1.1(i). If (n, r, e, f) = (21, 10, 3, 6) then G = L(K7). Secondly, suppose
that f = 9 − 1

2r. Then (n, r, e, f) ∈ {(17, 8, 3, 5), (26, 10, 3, 4), (45, 12, 3, 3),
(85, 14, 3, 2), (209, 16, 3, 1)}. The first possibility is excluded by the require-
ment that f | r(r − e − 1), and the last by the condition: if f = 1 then
r ≥ (e+1)(e+5) [9, Theorem 4.2]. The graphs with (n, r, e, f) = (26, 10, 3, 4)
are complements of graphs of Steiner type S(2, 3, 13), and there are 10 of
them (see [14]). There are 78 graphs with (n, r, e, f) = (45, 12, 3, 3) [6]. The
existence of a strongly regular graph with parameters (85, 14, 3, 2) remains
an open question.

If ∆2 = 9
16r2 then 5r = 32− 4e, impossible since r ≥ 5.

The case s=5. Here r2(r− e− 1) = 5(r− 5)∆2, and by Lemma 2.1, r = 5p
for some integer p > 1. Moreover, ∆2 ∈ { 1

25r2, 4
25r2, 9

25r2, 16
25r2}.

If ∆2 = 1
25r2 then e = 4

5r and f = 3
5r + 4. Since r(r − e − 1)/f =

5p(p − 1)/3p + 4 and f < r, we have p ∈ {8, 22}. Then (n, r, e, f) =
(51, 40, 32, 28) or (144, 110, 88, 70), and in both cases condition (6) is vio-
lated.

If ∆2 = 4
25r2 then r = 5(e − 3) and f ∈ {3e−8, 12−e}. We find that

(n, r, e, f) = (28, 15, 6, 10) or (144, 65, 16, 40). In the first case, µ = 1 and
G is either L(K8) or a Chang graph. The second case is ruled out by the
absolute bound. When f = 12 − e we find that r = 5p, where 1 < p < 9
and 9− p divides 5p(4p− 3). Hence p ∈ {3, 5} and (n, r, e, f) = (36, 15, 6, 6)
or (126, 25, 8, 4). In both cases, µ = −3. There are 32548 strongly regular
graphs with parameters (36, 15, 6, 60) [12], while a strongly regular graph
with parameters (126, 25, 8, 4) is described in [3].

If ∆2 = 9
25r2 then r = 5p, e = 8−4p and necessarily r = 10, e = 0. Then

(n, r, e, f) = (56, 10, 0, 2) and G is the Gewirtz graph [10]. Here µ = −4
because a 5-regular star complement has even order (cf. Example 1.1(iii)).

If ∆2 = 16
25r2 then r = 5p and e = −11p + 15, impossible since p > 1.
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