Graphs for which the least eigenvalue is minimal, II^{\star}

Francis K. Bell ${ }^{\text {a, }}$, Dragoš Cvetković ${ }^{\text {b }}$, Peter Rowlinson ${ }^{\text {a }}$, Slobodan K. Simić ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Electrical Engineering, University of Belgrade, P.O. Box 35-54, 11120 Belgrade, Serbia
${ }^{\text {c }}$ Mathematical Institute SANU, Knez Mihailova 35, 11001 Belgrade, Serbia

Received 14 November 2007; accepted 9 June 2008
Available online 8 August 2008
Submitted by R.A. Brualdi
Dedicated to Michael Doob on his 65th birthday.

Abstract

We continue our investigation of graphs G for which the least eigenvalue $\lambda(G)$ is minimal among the connected graphs of prescribed order and size. We provide structural details of the bipartite graphs that arise, and study the behaviour of $\lambda(G)$ as the size increases while the order remains constant. The non-bipartite graphs that arise were investigated in a previous paper [F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which the least eigenvalue is minimal, I, Linear Algebra Appl. (2008), doi:10.1016/j.laa.2008.02.032]; here we distinguish the cases of bipartite and non-bipartite graphs in terms of size.

© 2008 Elsevier Inc. All rights reserved.

AMS classification: 05C50

Keywords: Bipartite graph; Graph spectrum; Largest eigenvalue; Least eigenvalue

[^0]
1. Introduction

Let $G=\left(V_{G}, E_{G}\right)$ be a simple graph, with vertex set V_{G} and edge set E_{G}. Its order is $\left|V_{G}\right|$, denoted by n, and its size is $\left|E_{G}\right|$, denoted by m. We write $u \sim v$ to indicate that vertices u and v are adjacent, and we write A_{G} for the $(0,1)$-adjacency matrix of G. The characteristic polynomial $\operatorname{det}\left(x I-A_{G}\right)$ is denoted by $\phi_{G}(x)$. The zeros of $\phi_{G}(x)$ are called the eigenvalues of G; recall that they are real since A_{G} is symmetric. We write $\lambda(G)$ for the least eigenvalue of G, $\rho(G)$ for the largest eigenvalue (the index) of G, and $\lambda_{i}(G)$ for the i th largest eigenvalue of G $(i=1,2, \ldots, n)$. The degree of a vertex v is denoted by $\operatorname{deg}(v)$.

In a previous paper [1] we investigated the graphs G for which $\lambda(G)$ is minimal among the connected graphs of prescribed order and size. We showed that if G is not complete then $\lambda(G)$ is a simple eigenvalue and G is either bipartite or a join of two graphs of a simple form. In this paper, we provide structural details of the bipartite graphs that arise, and study the behaviour of $\lambda(G)$ as the size increases while the order remains constant.

The main structural result in [1] is Theorem 3.7 which reads:

Theorem 1.1. Let G be a connected graph whose least eigenvalue is minimal among the connected graphs of order n and size $m\left(0<m<\binom{n}{2}\right)$. Then G is either
(i) a bipartite graph, or
(ii) a join of two nested split graphs (not both totally disconnected).

A graph G is called a nested split graph if its vertices can be ordered so that $j q \in E_{G}$ implies $i p \in E_{G}$ whenever $i \leqslant j$ and $p \leqslant q$. The nested split graphs are the graphs without $2 K_{2}, P_{4}$ or C_{4} as an induced subgraph (cf. [5]); they are precisely the graphs with a stepwise adjacency matrix (see [4, Section 3.3]). For subsequent reference we provide further details from [1] of the graphs that arise in case (ii) of Theorem 1.1. Here, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ be an eigenvector corresponding to $\lambda(G)$, and let $V^{-}=\left\{u \in V_{G}: x_{u}<0\right\}, V^{0}=\left\{u \in V_{G}: x_{u}=0\right\}, V^{+}=\left\{u \in V_{G}: x_{u}>0\right\}$. Let H^{-}, H^{+}be the subgraphs of G induced by V^{-}, V^{+}, respectively. By [1, Proposition 3.5], if H^{-}, H^{+}are not both totally disconnected then every vertex in V^{-}is adjacent to every vertex in V^{+}. Otherwise, $V_{0} \neq \emptyset$ (since G is non-bipartite), and each vertex v in $V^{-} \cup V^{+}$has a neighbour outside V_{0} (by consideration of the corresponding eigenvalue equation $\lambda(G) x_{v}=\sum_{u \sim v} x_{u}$). Recall also that each vertex in V^{0} is adjacent to all other vertices [1, Lemma 3.1]. Accordingly we can deduce the following:

Proposition 1.2. In case (ii) of Theorem 1.1, G has an edge $e=v w$ such that $x_{v} x_{w} \geqslant 0, x_{v} \neq 0$ and $G-e$ is connected.

For a bipartite graph G, we have $\lambda(G)=-\rho(G)$, and so in Section 2 we determine the structure of connected bipartite graphs with maximal index for prescribed n and m. Here, $m \leqslant\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$, with equality if and only if $G=K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$. In Section 3, we investigate how the minimal least eigenvalue of bipartite graphs varies with m when n is fixed, while in Section 4 we use these results to study the same question for all connected graphs; in particular, we are in a position to distinguish cases (i) and (ii) of Theorem 1.1 when m varies.

2. The structure of extremal bipartite graphs

Before we state our main result in this section we need a definition.
Let G be a bipartite graph with colour classes U and V. We say that G is a double nested graph if there exist partitions $U=U_{1} \dot{U} U_{2} \dot{U} \ldots \dot{U} U_{h}$ and $V=V_{1} \dot{U} V_{2} \dot{U} \ldots \dot{U} V_{h}$, such that the neighbourhood of each vertex in U_{1} is $V_{1} \dot{\cup} V_{2} \dot{U} \ldots \dot{U} V_{h}$, the neighbourhood of each vertex in U_{2} is $V_{1} \dot{\cup} \ldots \dot{\cup} V_{h-1}$, and so on. If $\left|U_{i}\right|=m_{i}(i=1,2, \ldots, h)$ and $\left|V_{i}\right|=n_{i}(i=1,2, \ldots, h)$ then G is denoted by $D\left(m_{1}, m_{2}, \ldots, m_{h} ; n_{1}, n_{2}, \ldots, n_{h}\right)$.

Theorem 2.1. If G is a graph for which $\lambda(G)$ is minimal (equivalently, $\rho(G)$ is maximal) among all connected bipartite graphs of order n and size m, then G is a double nested graph.

Thus double nested graphs play the same role among bipartite graphs (with respect to the index) as nested split graphs among non-bipartite graphs. The proof of Theorem 2.1 is based on the following lemmas, the first of which is taken from [6]. Recall that the index ρ of a connected graph G is a simple eigenvalue, and that there exists a unique unit eigenvector corresponding to ρ having only positive entries; this eigenvector is called the Perron eigenvector of G.

Lemma 2.2. Let G^{\prime} be the graph obtained from a connected graph G by rotating the edge $r_{i} s$ around r_{i} to the non-edge position r_{i} t for each $i \in\{1, \ldots, k\}$. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ be the Perron eigenvector of G. If $x_{t} \geqslant x_{s}$ then $\rho\left(G^{\prime}\right)>\rho(G)$.

The next lemma will be very helpful when we encounter a bridge in a graph whose index is assumed to be maximal. Given two rooted graphs $P\left(=P_{u}\right)$ and $Q\left(=Q_{v}\right)$ with u and v as roots, let G be the graph obtained from the disjoint union $P \cup Q$ by adding the edge $u v$. Let G^{\prime} be the graph obtained from the coalescence of P_{u} and Q_{v} by attaching a pendant edge at the vertex identified with u and v.

Lemma 2.3. With the above notation, if P and Q are two non-trivial connected graphs then $\rho(G)<\rho\left(G^{\prime}\right)$.

Proof. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ be the Perron eigenvector of G. Without loss of generality, we may suppose that $x_{u} \leqslant x_{v}$. Let Δ be the neigbourhood of u in P; since P is non-trivial, $\Delta \neq \emptyset$. Now G^{\prime} is obtained from G by replacing the edges $u w(w \in \Delta)$ by the edges $v w(w \in \Delta)$, and so $\rho(G)<\rho\left(G^{\prime}\right)$ by Lemma 2.2, as required.

In what follows we assume that G has maximal index among the connected bipartite graphs of fixed order and size.

Lemma 2.4. Let G be a graph satisfying the above assumptions, and let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ be the Perron eigenvector of G. If v, w are vertices in the same colour class such that $x_{v} \geqslant x_{w}$ then $\operatorname{deg}(v) \geqslant \operatorname{deg}(w)$.

Proof. Let U, V be the colour classes of G and suppose, by way of contradiction, that v, w are vertices in V such that $x_{v} \geqslant x_{w}$ and $\operatorname{deg}(v)<\operatorname{deg}(w)$. Then $\operatorname{deg}(w)>1$ and there exists
$u \in U$ such that $v \nsim u \sim w$. By Lemma 2.1, we may rotate $u w$ to $u v$ to obtain a graph G^{\prime} such that $\rho\left(G^{\prime}\right)>\rho(G)$. If $u w$ is a bridge then $\operatorname{deg}(u)=1$ by Lemma 2.3, and so G^{\prime} is necessarily connected; but now the maximality of $\rho(G)$ is contradicted, and the proof follows.

From now on we take the colour classes to be $U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$, with $x_{u_{1}} \geqslant x_{u_{2}} \geqslant \cdots \geqslant x_{u_{p}}$ and $x_{v_{1}} \geqslant x_{v_{2}} \geqslant \cdots \geqslant x_{v_{q}}$. By Lemma 2.4, this ordering coincides with the ordering by degrees in each colour class, and in the next lemma we note some consequences.

Lemma 2.5. Let G be a graph satisfying the above assumptions including those on vertex ordering. Then
(i) the vertices u_{1} and v_{1} are adjacent;
(ii) u_{1} is adjacent to every vertex in V, and v_{1} is adjacent to every vertex in U;
(iii) if the vertex u is adjacent to v_{k} then u is adjacent to v_{j} for all $j<k$, and if the vertex v is adjacent to u_{k} then v is adjacent to u_{j} for all $j<k$.

Proof. First we consider bridges in G : by Lemma 2.3, all bridges are pendant edges. By Lemma 2.2, all pendant edges are attached at the same vertex, and this vertex w is such that x_{w} is maximal. Without loss of generality, $x_{u_{1}} \geqslant x_{v_{1}}$ and $w=u_{1}$. It follows that the result holds if G is a tree, for then G is a star. Accordingly, we suppose that G is not a tree.

To prove (i), suppose by way of contradiction that $u_{1} \nsucc v_{1}$. Then v_{1} is adjacent to some vertex $u \in U$, and $u v_{1}$ is not a bridge. By Lemma 2.2, we may rotate $v_{1} u$ to $v_{1} u_{1}$ to obtain a connected bipartite graph G^{\prime} such that $\rho\left(G^{\prime}\right)>\rho(G)$, contradicting the maximality of $\rho(G)$.

To prove (ii), suppose that u is a vertex of U not adjacent to v_{1}. Then $u \neq u_{1}$ by (i), $u v$ is not a bridge, and u is adjacent to some vertex v in V other than v_{1}. Now we can rotate $u v$ to $u v_{1}$ to obtain a contradiction as before. Secondly, suppose that v is a vertex of V not adjacent to u_{1}. Then $v \neq v_{1}$ by (i), again $v u_{1}$ is not a bridge, and a rotation about v yields a contradiction.

To prove (iii), suppose that $u \in U, u \sim v_{k}$ and $u \nsim v_{j}$ for some $j<k$. Now $u \neq u_{1}$ by (ii), and so $u v_{k}$ is not a bridge. Then we can rotate $u v_{k}$ to $u v_{j}$ to obtain a contradiction. Finally, suppose that $v \in V, v \sim v_{k}$ and $v \nsucc u_{j}$ for some $j<k$. In this case, $v u_{k}$ is not a bridge because $k>1$, and the rotation of $v u_{k}$ to $v u_{j}$ yields a contradiction.

This completes the proof.
The proof of Theorem 2.1. follows now directly from Lemma 2.5 and the definition of a double nested split graph.

We conclude this section with two remarks.
First, with the notation of Lemma 2.5, let $d_{i}=\operatorname{deg}\left(u_{i}\right)(i=1, \ldots, p)$ and $e_{j}=\operatorname{deg}\left(v_{j}\right)(j=$ $1, \ldots, q)$. Let Π_{U} be the integer partition $m=d_{1}+d_{2}+\cdots+d_{p}$, and let Π_{V} be the integer partition $m=e_{1}+e_{2}+\cdots+e_{q}$. We have $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{p}$ and $e_{1} \geqslant e_{2} \geqslant \cdots \geqslant e_{q}$; moreover, the structure of a double nested graph ensures that Π_{U} and Π_{V} are conjugate, i.e. the Ferrers diagram for Π_{U} is the transpose of the Ferrers diagram for Π_{V}.

Secondly, we can give an algorithm for constructing the double nested graphs of order n and size m. For each integer partition $\Pi: m=d_{1}+d_{2}+\cdots+d_{p}$ with $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{p}$ and $d_{1}+p=$ n, we can construct the double nested graph with $U=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$, $q=d_{1}$ and $\Pi_{U}=\Pi$ as follows. Considering the vertices $u_{1}, u_{2}, \ldots, u_{p}$ in succession, we join u_{k} to the first d_{k} of the vertices $v_{1}, v_{2}, \ldots, v_{q}$.

3. The behaviour of the least eigenvalue of extremal connected bipartite graphs

We may summarize the results of this section as follows.
Theorem 3.1. For fixed $n \geqslant 7$, let G_{m} be a graph whose least eigenvalue is minimal (equivalently, whose index is maximal) among the connected bipartite graphs of order n and size $m<\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$. Then
(i) if $m \neq t(n-t)$ for all $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ then $\rho\left(G_{m}\right)<\rho\left(G_{m+1}\right)$;
(ii) if $m=t(n-t)$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ then $\rho\left(G_{m}\right)>\rho\left(G_{m+1}\right)$ unless G_{m+1} has the form $D(p, q ; r, s)$, where

$$
\{t, n-t\}=\{p+q, r+s\}, t(n-t)=p r+p s+q r-1 \leqslant p q r s .
$$

The proof follows from sequence of lemmas in which we discuss how $\rho\left(G_{m}\right)$ varies with (for fixed n).

Lemma 3.2. Under the above assumptions we have:
(i) $\rho\left(G_{m}\right) \leqslant \sqrt{m}$, with equality if and only if G_{m} is a complete bipartite graph $K_{t, n-t}$, for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$;
(ii) $\rho\left(G_{m}\right)<\rho\left(G_{m+1}\right)$ whenever $t(n-t)+1 \leqslant m<(t+1)(n-t-1)$, where $t \in\{1$, $\left.2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$.

Proof. Let $\lambda_{1}>\lambda_{2} \geqslant \cdots \geqslant \lambda_{n-1}>\lambda_{n}$ be the eigenvalues of a connected bipartite graph G. Since G is bipartite we have

$$
\begin{equation*}
m=\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \lambda_{i}^{2} \tag{1}
\end{equation*}
$$

It follows that $\rho\left(G_{m}\right) \leqslant \sqrt{m}$, with equality if and only if $\lambda_{1}^{2}=m$ and $\lambda_{2}^{2}=\cdots=\lambda_{\left\lfloor\frac{n}{2}\right\rfloor}=0$. In this case, $G_{m}=K_{t, n-t}$ for some t (see, e.g. [2, Theorem 6.5]), and this completes the proof of (i).

In (ii), $m \neq t(n-t)$ for all t, and so G_{m} is not a complete bipartite graph. Thus G_{m} is a proper spanning subgraph of some complete bipartite graph K (of order n). Accordingly we may add to G some edge of K to obtain a connected bipartite graph G^{\prime} of order n for which $\rho\left(G_{m}\right)<\rho\left(G^{\prime}\right)$. Since $\rho\left(G^{\prime}\right) \leqslant \rho\left(G_{m+1}\right)$, the proof of (ii) is complete.

Remark. Computational data obtained by F. Maric shows that if $m=t(n-t)$ for some $t \in$ $\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ then both possibilities (namely $\rho\left(G_{m}\right)<\rho\left(G_{m+1}\right)$ and $\rho\left(G_{m}\right)>\rho\left(G_{m+1}\right)$) can arise. For $n=9$ we have the situation presented in Fig. 1, where points at which $m=t$ $(n-t)+1$ for some t are indicated by vertical lines.

In considering the situation left unresolved by Lemma 3.2, we let $m=t(n-t)$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. Then $G_{m}=K_{t, n-t}$, while G_{m+1} is a double nested graph $D\left(m_{1}, m_{2}, \ldots\right.$, $\left.m_{h} ; n_{1}, n_{2}, \ldots, n_{h}\right)$.

Fig. 1. The behavior of $\rho\left(G_{m}\right)$ when $n=9$.

In the next two lemmas and Theorem 3.1, we assume that $n \geqslant 7$; when $n<7$, we may refer to the tables of eigenvalues in $[2,3]$.

Lemma 3.3. Suppose that $m=t(n-t)$ and $n \geqslant 7$. If $h \geqslant 3$ then $\rho\left(G_{m}\right)>\rho\left(G_{m+1}\right)$.
Proof. We write $G=G_{m}$ and $G^{\prime}=G_{m+1}$. Let $\lambda_{1}>\lambda_{2} \geqslant \cdots \geqslant \lambda_{n-1}>\lambda_{n}$ and $\lambda_{1}^{\prime}>\lambda_{2}^{\prime} \geqslant$ $\cdots \geqslant \lambda_{n-1}^{\prime}>\lambda_{n}^{\prime}$ be the eigenvalues of G and G^{\prime}, respectively.

From (1) we have immediately:

$$
\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\lambda_{i}^{\prime}\right)^{2}-\lambda_{1}^{2}=1
$$

From this it follows that

$$
\begin{equation*}
\rho(G)^{2}-\rho\left(G^{\prime}\right)^{2}=\sum_{i=2}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(\lambda_{i}^{\prime}\right)^{2}-1 \tag{2}
\end{equation*}
$$

In considering the relation (2), we distinguish two cases.
Case 1: $h \geqslant 4$. In this case, G^{\prime} has an induced subgraph D_{1}, where $D_{1}=D(1,1,1,1 ; 1,1,1,1)$, and we have $\lambda_{2}^{\prime} \geqslant \lambda_{2}\left(D_{1}\right)$. But $\lambda_{2}\left(D_{1}\right)>1$, and so $\rho(G)^{2}>\rho\left(G^{\prime}\right)^{2}$ by (2).
Case 2: $h=3$. In this case, G^{\prime} contains, as an induced subgraph, one of the graphs $D_{2}=$ $D(1,1,1 ; 1,1,2), D_{3}=D(1,1,1 ; 1,2,1)$ and $D_{4}=D(1,1,1 ; 2,1,1)$. Since $\lambda_{2}\left(D_{i}\right)>1(i=$ $2,3,4$), we have $\rho(G)^{2}>\rho\left(G^{\prime}\right)^{2}$ as before.

This completes the proof.
Remark. Note that the graphs $D_{i}(i=1,2,3,4)$ appearing in the above lemma are not the smallest induced subgraphs which can be used to obtain the required inequality.

When $h=1, G_{m+1}$ is itself a complete bipartite graph, $n=2 t+2$ and $\rho\left(G_{m}\right)<\rho\left(G_{m+1}\right)$. The next lemma deals with the remaining case, $h=2$.

Lemma 3.4. Suppose that $m=t(n-t)$ and $G_{m+1}=D(p, q ; r, s)($ so that $m+1=p r+p s+$ qr). Then we have:
(i) $\rho\left(G_{m}\right)<\rho\left(G_{m+1}\right)$ if $m>$ pqrs;
(ii) $\rho\left(G_{m}\right)=\rho\left(G_{m+1}\right)$ if $m=$ pqrs;
(iii) $\rho\left(G_{m}\right)>\rho\left(G_{m+1}\right)$ if $m<$ pqrs.

Proof. We write $G=G_{m}, G^{\prime}=G_{m+1}$ as before, and we use the divisor technique (see [2, Chapter 4]) to compute the eigenvalues of G^{\prime}. Note that $V_{G^{\prime}}$ has $U_{1} \dot{\cup} U_{2} \dot{U} V_{1} \dot{\cup} V_{2}$ as an equitable partition, and the corresponding divisor has adjacency matrix

$$
A_{D}=\left(\begin{array}{llll}
0 & 0 & r & s \\
0 & 0 & r & 0 \\
p & q & 0 & 0 \\
p & 0 & 0 & 0
\end{array}\right)
$$

We find easily that $\phi_{A_{D}^{2}}(x)=\left(x^{2}-m^{\prime} x+p q r s\right)^{2}$, where $m^{\prime}=m+1$.
The vertices in each of the four cells of the equitable partition are duplicate vertices of G^{\prime}, and together they give rise to $n-4$ eigenvalues equal to 0 . We deduce that there are just four non-zero eigenvalues in G^{\prime}, namely $\pm \lambda_{1}^{\prime}, \pm \lambda_{2}^{\prime}$ where

$$
\lambda_{1,2}^{\prime 2}=\frac{1}{2}\left(m^{\prime} \pm \sqrt{m^{\prime 2}-4 p q r s}\right)
$$

Now the result follows from (2).
On the basis of Lemmas 3.3 and 3.4 the proof of Theorem 3.1 readily follows.
In case (ii) of Theorem 3.1, we can use a program written in Mathematica to check, for each 4-tuple (p, q, r, s), whether the corresponding graph exists. If at least one such graph exists then $\rho\left(G_{m}\right) \leqslant \rho\left(G_{m+1}\right)$ by Lemma 3.4. We show that, in this situation, at least two of the parameters p, q, r, s are subject to an absolute bound.

By Lemma 3.4, we have the following basic requirement:

$$
\begin{equation*}
p r+p s+r q \geqslant 1+p q r s \tag{3}
\end{equation*}
$$

In addition to this, we can assume

$$
\begin{equation*}
p+r \geqslant 3, \quad r \geqslant p \tag{4}
\end{equation*}
$$

The first condition in (4) follows from the fact that $D(p, q, r, s)$ is not a tree, while the second follows from the fact that we may interchange U and V if necessary. We consider the following three cases:
(a) $p s=1$ (equivalently, $p=s=1$);
(b) $q s=1$ (equivalently, $q=s=1$);
(c) $p s \neq 1$ and $q s \neq 1$.

Note that $r q \neq 1$, by (4).

In cases (a) and (b), respectively, we obtain immediately:
(a') $p=1, q \geqslant 1, r \geqslant \max \{2, p\}$ and $s=1$;
($\left.\mathrm{b}^{\prime}\right) p \geqslant 1, q=1, r \geqslant \max \{2, p\}$ and $s=1$.
In case (c) we can prove the following:
Proposition 3.5. If (c) holds, then p, q and s are bounded above; indeed, we have
($\left.\mathrm{c}^{\prime}\right) p \leqslant 2, q \leqslant 2, r \geqslant p$ and $s \leqslant 3$.
Additionally, if $s=1$ then $q \leqslant 2$; and if $2 \leqslant s \leqslant 3$ then $q=1$.
Proof. We can rewrite (3) in the form

$$
\begin{equation*}
\frac{1}{q s}+\frac{1}{p s}+\frac{1}{r q} \geqslant 1+\frac{1}{p q r s} . \tag{5}
\end{equation*}
$$

If q is not bounded, then by letting $q \rightarrow+\infty$ we see that $p s \leqslant 1$, a contradiction to (c). Similarly, s is bounded, for otherwise $r q=1$. Next, if p (and hence also r) is unbounded, then by letting $p, r \rightarrow+\infty$ we find that $q s \leqslant 1$, contradicting (c) again.

We now determine the upper bounds for p, q and s. First, if $s=1$ then from (5) we obtain

$$
q \leqslant \frac{1}{r}+\frac{p}{p-1} \leqslant \frac{5}{2}
$$

Here the second inequality holds because $p \geqslant 2$ (by (c)), while $r \geqslant 2$ (by (4)). Thus $q=2$ (by (c)). Now from (4) and (3) (with $q=2$ and $s=1$) we find that $p<3$, and hence that $p=2$.

Secondly, if $s \geqslant 2$, we first use the relation

$$
\begin{equation*}
\frac{1}{q s}+\frac{1}{p s}+\frac{1}{r q}>1 \tag{6}
\end{equation*}
$$

to obtain

$$
s<\frac{1+\frac{1}{p}}{1-\frac{1}{r q}} \leqslant 4
$$

Thus $s \in\{2,3\}$, as required. From (6) we find that

$$
q<\frac{1+\frac{s}{r}}{s-\frac{1}{p}}<2
$$

Thus $q=1$. If $s=2$, then from (4) and (3) (with $q=1, s=2$), we find that $p \leqslant 2$. Similarly, if $s=3$ then we find that $p=1$.

This completes the proof.

4. The behaviour of the least eigenvalue of extremal connected graphs

In this section, we establish several propositions which serve to prove the following theorem.
Theorem 4.1. Let G be a graph whose least eigenvalue is minimal among the connected graphs of order n and size m. Then

Fig. 2. The behavior of $\rho\left(H_{m}\right)$ when $n=9$.
(i) if $n-1 \leqslant m \leqslant\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ and $m \neq t(n-t)+1$ for all $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, then G is bipartite and hence a double nested graph;
(ii) if $m \leqslant\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ and $m=t(n-t)+1$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, then G is either bipartite or the non-bipartite graph $K_{t, n-t}+e$, where e is an edge joining two vertices of degree $\min \{t, n-t\}$ in $K_{t, n-t}$;
(iii) if $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil<m<\binom{n}{2}$ then G is non-bipartite and hence the join of two nested split graphs.

The bipartite graphs which appear in the case (ii) of Theorem 4.1 are more precisely described in Theorem 3.1(ii); see also Lemma 3.4 and Proposition 3.5.

We fix n and take H_{m} to be a graph whose least eigenvalue is minimal among the connected graphs of order n and size m. Fig. 2 shows the behaviour of $\lambda=\lambda\left(H_{m}\right)$ for $n=9$ (obtained by direct calculation).

It was observed that, for $m \leqslant 20, H_{m}$ is always a bipartite graph; of course, for $m>20$ this is impossible. In the following proposition, we give a partial result which explains this phenomenon in a more general setting.

Proposition 4.2. If $m \leqslant\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ and $m \neq t(n-t)+1$, where $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, then H_{m} is a bipartite graph.

Proof. Assume the contrary, and let $H=H_{m}$ where m is the least integer for which the assertion is false. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ be a unit eigenvector of H corresponding to $\lambda(H)$. From Proposition 1.2, we know that H contains an edge $e=v w$ such that $x_{v} x_{w} \geqslant 0$ and $H-e$ is connected. Writing $H^{*}=H-e$, we have

$$
\begin{equation*}
\lambda\left(H^{*}\right) \leqslant \mathbf{x}^{\mathrm{T}} A_{H^{*} \mathbf{x}}=\mathbf{x}^{\mathrm{T}} A_{H} \mathbf{x}-2 x_{v} x_{w} \leqslant \mathbf{x}^{\mathrm{T}} A_{H} \mathbf{x}=\lambda(H) \tag{7}
\end{equation*}
$$

Now H_{m-1} is bipartite (by the choice of m), and so we have

$$
\lambda\left(G_{m-1}\right)=\lambda\left(H_{m-1}\right) \leqslant \lambda\left(H^{*}\right) \leqslant \lambda(H) \leqslant \lambda\left(G_{m}\right)
$$

On the other hand, since $m-1 \geqslant s(n-s)+1$, we have $\lambda\left(G_{m}\right)<\lambda\left(G_{m-1}\right)$ by Lemma 3.2. This contradiction completes the proof.

Remark. Note that the arguments in the above proof cannot always be used when $m=t(n-$ $t)+1$ for some t, since then we may have $\lambda\left(G_{m-1}\right)<\lambda\left(G_{m}\right)$ (see Lemma 3.4).

When $n=9$, we can see that, for $m>20, \lambda\left(H_{m}\right)$ increases strictly with m (up to -1). This property is easily established in the general case:

Proposition 4.3. For fixed n, andfor $m>\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil, \lambda\left(H_{m}\right)$ increases strictly with m (to a maximum of -1).

Proof. We use the notation of Proposition 4.2, with $H=H_{m}, H^{*}=H-e, e=v w$ and \mathbf{x} a unit eigenvector of H corresponding to λ. By Proposition 1.2 we may choose v, w such that $x_{v} x_{w} \geqslant 0$ and $x_{v} \neq 0$. Now Eq. (7) holds, and we deduce that $\lambda\left(H^{*}\right) \leqslant \lambda(H)$. If $\lambda\left(H^{*}\right)=\lambda(H)$ then \mathbf{x} is an eigenvector of H^{*} corresponding to λ; but then the eigenvalue equations for w in H and H^{*} are inconsistent since $x_{v} \neq 0$. Thus $\lambda\left(H^{*}\right)<\lambda(H)$, and since $\lambda\left(H_{m-1}\right) \leqslant \lambda\left(H^{*}\right)$, the proof is complete.

Remark. Let \hat{H}_{m} be a graph whose least eigenvalue is minimal among the connected non-bipartite graphs of order n and size m. If n is fixed and $m \leqslant\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ then $\lambda\left(\hat{H}_{m}\right)$ does not necessarily increase with m.

Finally, we resolve the situation not covered by Proposition 4.2.
Proposition 4.4. If $m \leqslant\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil$ and H_{m} is a non-bipartite graph, then $m=t(n-t)+1$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ and $H_{m}=K_{t, n-t}+e$, where e is an edge joining two vertices of degree $\min \{t, n-t\}$ in $K_{t, n-t}$.

Proof. First, by Proposition 4.2 we have $m=t(n-t)+1$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. On the other hand, from Theorem 1.1 we know that H_{m} has a complete bipartite graph $B=$ $K_{u, n-u}\left(u \leqslant\left\lfloor\frac{n}{2}\right\rfloor\right)$ as a proper spanning subgraph. Thus $u \leqslant t$, and it suffices to show that $u=t$. We suppose by way of contradiction that $u<t$.

Let $H=H_{m}$, and let \mathbf{x} be a unit eigenvector for $\lambda(H)$. Then we have

$$
\lambda(H)=\mathbf{x}^{\mathrm{T}} A_{H} \mathbf{x}=2 \sum_{v w \in E_{H}} x_{v} x_{w} \geqslant 2 \sum_{v w \in E_{B}} x_{v} x_{w} \geqslant \lambda(B)
$$

Now consider a graph $K=K_{t, n-t}+e$, where e is an edge joining two vertices in a colour class. We obtain the contradiction $\lambda(K)<\lambda(H)$ by showing that $\lambda(K)<\lambda(B)$. Note that $\lambda(B) \geqslant-\sqrt{c}$ where $c=(t-1)(n-t+1)$.

First we compute the spectrum of a graph $G=K_{a, b}+e$, where e is added to the colour class of size b. Counting the number of duplicate and co-duplicate vertices of G, we see that at least
$a+b-3$ eigenvalues are equal to 0 or -1 . On the other hand, if $b>2$, three eigenvalues can be determined from the divisor with adjacency matrix

$$
A_{D}=\left(\begin{array}{ccc}
0 & b-2 & 2 \\
a & 0 & 0 \\
a & 0 & 1
\end{array}\right) .
$$

Thus the three remaining eigenvalues are the solutions of $f(x)=0$, where

$$
f(x)=x^{3}-x^{2}-a b x+a(b-2) .
$$

If $b=2$ then $A_{D}=\left(\begin{array}{ll}0 & 2 \\ a & 1\end{array}\right)$, and again the least eigenvalue is a solution of $f(x)=0$.
Taking $a=t, b=n-t$, we have

$$
f(-\sqrt{c})=\sqrt{c}(n-2 t+1)+(n-4 t+1)>(t-1)(n-2 t+1)+(n-4 t+1) \geqslant 0 .
$$

Hence $\lambda(K)<-\sqrt{c} \leqslant \lambda(B)$, and so $\lambda(K)<\lambda(H)$ as required.
Finally, suppose that $a>b$. If we interchange a and b above, $f(x)$ is replaced by $g(x)$, where $g(x)=f(x)+2(a-b)$. Since $g(x)>f(x)$, the smallest root of $g(x)$ is less than the smallest root of $f(x)$. Accordingly, $\lambda(K)$ is minimal when e joins two vertices of smaller degrees.

This completes the proof.
Remark. We give an example due to F. Marić which illustrates Proposition 4.4. If $n=12$ and $m=21$ then $H_{m}=K_{2,10}+e$, where e is an edge joining two vertices of degree 2 in $K_{2,10}$. Actually, now $\lambda\left(H_{m}\right)=-4.38835 \ldots$, while any connected bipartite graph of order 12 and size 21 has all eigenvalues greater than $-4.37228 \ldots$, as required. Among all graphs G of order 12 and size 21 (not necessarily connected), the minimal value of $\lambda(G)$ is not attained by H_{21} because $\lambda\left(K_{3,7} \dot{\cup} 2 K_{1}\right)=-\sqrt{21}=-4.58275 \ldots$.

In view of Theorem 1.1 and Propositions 4.2, 4.4, the proof of Theorem 4.1 clearly follows.
Remark. Let $\mathscr{G}(n, m)$ be the set of graphs of order n and size m, and define

$$
\begin{aligned}
& f(n, m)=\min \{\lambda(G): G \in \mathscr{G}(n, m)\} \\
& g(n, m)=\min \{\lambda(G): G \in \mathscr{G}(n, m) \text { and } G \text { is connected }\} .
\end{aligned}
$$

We noted in [1] that $f(n, m)=\min \{g(k, m): k \leqslant n$ and $\mathscr{G}(k, m)$ contains at least one connected graph $\}$. Since $k-1 \leqslant m \leqslant k(k-1) / 2$, we have

$$
\frac{1}{2}(1+\sqrt{1+8 m}) \leqslant k \leqslant \min \{n, m+1\} .
$$

To find the value of k for which the minimum of $g(k, m)$ is attained, we need to know the behaviour of $\min \{\lambda(G): G \in \mathscr{G}(k, m)\}$ as a function of k when m is constant. In principle, this can be deduced from Theorem 4.1 but we do not attempt an explicit formulation.

Acknowledgement

The authors are grateful to Filip Marić for undertaking some calculations used in the preparation of this paper.

References

[1] F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which the least eigenvalue is minimal, I,Linear Algebra Appl. (2008), doi:10.1016/j.laa.2008.02.032.
[2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, third ed., Johann Ambrosius Barth, Heidelberg, 1995.
[3] D. Cvetković, M. Petrić, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37-49.
[4] D. Cvetković, P. Rowlinson, S. Simić, Eigenspaces of Graphs, Cambridge University Press, Cambridge, 1997.
[5] S.K. Simić, E.M. Li Marzi, F. Belardo, Connected graphs of fixed order and size with maximal index: structural considerations, Le Matematiche LIX (2004) 349-365.
[6] B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395 (2005) 343-349.

[^0]: * Research supported by EPSRC Grant EP/D010748/1 and by the Serbian Ministry for Science Grant 144015G.
 * Corresponding author.

 E-mail addresses: ecvetkod@etf.bg.ac.yu (D. Cvetković), p.rowlinson@stirling.ac.uk (P. Rowlinson), sksimic@mi.sanu.ac.yu (S.K. Simić).
 ${ }^{1}$ Died 19 December 2006.

