ERRATUM

Graphs for which the least eigenvalue is minimal, II

F. K. Bell, D. Cvetković, P. Rowlinson and S. K. Simić ${ }^{1}$

Volume 429, pages 2168-2179

The authors are indebted to Miroslav Petrović for pointing out an error in the proof of Proposition 4.2. Consider the graphs H_{m} as m increases from $t(n-t)+1$ to $(t+1)(n-t-1)$. It is necessary to admit the possibility that all H_{m} are bipartite. In the contrary situation, it remains the case that H_{m} is first non-bipartite and then bipartite, with either possibility admitted at the point of transition. However, the point of transition is not necessarily at $t(n-t)+1$. Accordingly, Theorem 4.1 should be reformulated as follows:

Theorem 4.1. Let G be a graph whose least eigenvalue is minimal among the connected graphs of order n and size m. Then
(i) if $m=t(n-t)$ for $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, then $G=K_{t, n-t}$;
(ii) if $t(n-t)<m<(t+1)(n-t-1)$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$, then there exists an integer s such that $t(n-t)<s<(t+1)(n-t-1), G$ is non-bipartite whenever $t(n-t)<m<s$, and G is bipartite whenever $s<m<(t+1)(n-t-1)$;
(iii) if $\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil<m<\binom{m}{2}$ then G is non-bipartite and hence the join of two nested split graphs.

The following accounts for the phenomenon detailed in Theorem 4.1(ii).
Proposition 4.2. Suppose that $t(n-t)<m<(t+1)(n-t-1)$ for some $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$. If some graph H_{m} is bipartite then every graph H_{m+1} is bipartite.
Proof. Suppose by way of contradiction that H_{m} is bipartite and H_{m+1} is non-bipartite. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit eigenvector of $H=H_{m+1}$ corresponding to $\lambda(H)$. From Proposition 1.2, we know that H contains an edge $e=v w$ such that $x_{v} x_{w} \geq 0$ and $H-e$ is connected. Writing $H^{*}=H-e$, we have

$$
\lambda\left(H^{*}\right) \leq \mathbf{x}^{T} A_{H^{*}} \mathbf{x}=\mathbf{x}^{T} A_{H} \mathbf{x}-2 x_{v} x_{w} \leq \mathbf{x}^{T} A_{H} \mathbf{x}=\lambda(H) .
$$

Since H_{m} is bipartite we have

$$
\lambda\left(G_{m}\right)=\lambda\left(H_{m}\right) \leq \lambda\left(H^{*}\right) \leq \lambda\left(H_{m+1}\right) \leq \lambda\left(G_{m+1}\right) .
$$

[^0]On the other hand we have $\lambda\left(G_{m+1}\right)<\lambda\left(G_{m}\right)$ by Lemma 3.2. This contradiction completes the proof.

Fig. 2 shows the behaviour of $\lambda\left(H_{m}\right)$ when $n=9$. Finally, Proposition 4.4 should be recast as follows, with essentially the same proof.

Proposition 4.4. If H_{m} is non-bipartite and $m=t(n-t)+1$ where $t \in\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1\right\}$ then $H_{m}=K_{t, n-t}+e$, where e is an edge joining two vertices of degree t in $K_{t, n-t}$.

[^0]: ${ }^{1}$ Corresponding author; Mathematical Institute SANU, Kneza Mihailova 35, 11001 Belgrade, Serbia. Email: sksimic@turing.mi.sanu.ac.yu

