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Abstract. Let G be a simple graph with least eigenvalue λ, and let S be a
set of vertices in G which induce a subgraph with mean degree k. We use
a quadratic programming technique in conjunction with the main angles of
G to establish an upper bound of the form |S| ≤ inf{(k + t)qG(t) : t > −λ},
where qG is a rational function determined by the spectra of G and its com-
plement. In the case k = 0 we obtain improved bounds for the independence
number of various benchmark graphs.
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1 Introduction

Let G be a simple graph of order n with (0, 1)-adjacency matrix A and
characteristic polynomial PG(x) = det(xI −A). The i-th largest eigenvalue
of A is denoted by λi(G), and we write λi = λi(G), λi = λi(G), where G
denotes the complement of G.

Let S be a set of vertices in G which induce a subgraph with mean degree
k. We use a quadratic programming technique [2, 3] in conjunction with the
main angles of G [8, Section 4.5] to prove that

|S| ≤ inf{hG
k (t) : t > −λn(G)}, (1)

where

hG
k (t) = (k + t)

{
1−

PG(t− 1)
(−1)nPG(−t)

}
.

Thus if we write HG(t) for the walk-generating function of G (see [4] or [14])
then

hG
k (t) =

(
1 +

k

t

)
HG

(
−1

t

)
.

We give computational results which demonstrate that the bound (1) is
superior to previous bounds. We make use of the functions fA

k,t : IRn → IR
defined for t > 0 by

fA
k,t(x) = 2j>x− 1

k + t
x>(A + tI)x,

where j denotes the all-1 vector in IRn. These functions were constructed in
[3] to determine upper bounds for the order of a k-regular induced subgraph
in terms of eigenvalues. The problem of finding the largest order of such
a subgraph is NP-complete [2, Section 2], whereas spectral upper bounds
can be computed in polynomial time. We too state our results in terms of
k-regular induced subgraphs, but they apply equally to induced graphs with
mean degree k (for example, induced unicyclic graphs, with mean degree 2).
When k = 0 we obtain an upper bound for the independence number α(G);
a spectral lower bound for α(G), in terms of n, λn and the mean degree of
G, is derived in [13].

We shall first summarize the basic argument in [3]. Recall that the eigen-
value λ of G is a main eigenvalue if the eigenspace EA(λ) is not orthogonal
to j. In particular, λ1 is a main eigenvalue because the Perron-Frobenius
theory ensures that A has a corresponding eigenvector whose entries are all
non-negative.

If t ≥ −λn then fA
k,t is concave, that is,

fA
k,t(θx + (1− θ)y) ≥ θfA

k,t(x) + (1− θ)fA
k,t(y)

whenever 0 ≤ θ ≤ 1. (To see this, express x,y as sums of eigenvectors of A;
alternatively, note that the Hessian matrix of fA

k,t(t) is −2
k+t(A + tI), which

is negative semi-definite when t ≥ −λn.) Accordingly, fA
k,t has a global

maximum at x∗ if and only if ∇fA
k,t(x

∗) = 0, that is,

j− 1
k + t

(A + tI)x∗ = 0.
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Then fA
k,t(x

∗) = j>x∗. If xS is the characteristic vector of S then x>S AxS =
k|S| and so |S| = fA

k,t(xS) ≤ fA
k,t(x

∗). Note that fA
k,t(xS) = fA

k,t(x
∗) if and

only if (A + tI)xS = (k + t)j, equivalently S is a (k, k + t)-regular set (that
is, S induces a k-regular subgraph, while each vertex outside S is adjacent
to k + t vertices inside S).

Let J denote an all-1 matrix. If G 6= Kn and λ is a main eigenvalue of
G such that λ ≥ −λn − 1, then we may take t = λ + 1 and

x∗ =
k + t

j>u
u,

where u is an eigenvector of J−I−A corresponding to λ such that j>u 6= 0.
(Note that then (A + tI)u = Ju = j j>u.) The Courant - Weyl inequalities
imply that

λ2(G) + λn(G) ≤ λ2(Kn) = −1 = λn(Kn) ≤ λ1(G) + λn(G).

Thus we may always take λ = λ1, and the remaining possibility is λ =
−λn−1 when −λn−1 is a main eigenvalue of G. Since fA

k,t(x
∗) = λ+k +1,

we obtain:

Theorem 1.1 (cf. [3, Section 3]). Let G be a graph of order n, and let S be
a set of vertices which induces a k-regular subgraph of G (0 ≤ k ≤ n − 1).
Then

|S| ≤ λ1 + k + 1. (2)

If −λn − 1 is a main eigenvalue of G then

|S| ≤ −λn + k (3)

Two remarks are in order:

(i) When k = 0 we obtain from (2) the well-known upper bound λ1+1 for
the independence number α(G). This bound is attained when, for example,
G is a complete graph or a complete bipartite graph.

(ii) If −λn−1 is a main eigenvalue of G then λn is a non-main eigenvalue
of G, and −λn− 1 is a multiple eigenvalue of G. This is a particular case of
the following observation, essentially Theorem 2.12 of [5], for which we give
a direct proof.

Proposition 1.2. If λ is an eigenvalue of G such that −λ − 1 is a main
eigenvalue of G, then λ is a non-main eigenvalue of G; moreover, if λ has
multiplicity d as an eigenvalue of G then −λ − 1 has multiplicity d + 1 as
an eigenvalue of G.

Proof. Let (J − I − A)y = (−λ − 1)y, where j>y 6= 0. Let x ∈ EA(λ).
Then (J −A)y = −λy and x>A = λx>. Hence x>(J −A)y = −λx>y and
x>Ay = λx>y. Adding, we have x>Jy = 0, that is, x>j j>y = 0. Hence
x>j = 0 for all x ∈ EA(λ); in other words, λ is a non-main eigenvalue of G.
Now EJ−I−A(−λ− 1) ∩ j⊥ = EA(λ), and the second assertion follows. 2
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2 Further bounds

Here we introduce improved bounds by involving the main angles of G. We
write µ1, . . . , µs for the main eigenvalues of G in decreasing order. Then j
is expressible as

j = u1 + · · ·+ us (ui ∈ EA(µi)).

Thus µ1 = λ1, and the non-zero main angles of G are β1, . . . , βs where√
nβi = ‖ui‖ (i = 1, . . . , s).

Theorem 2.1. Let G be a graph of order n, and let S be a set of vertices
which induces a k-regular subgraph of G (0 ≤ k ≤ n− 1). If t > −λn then

|S| ≤ n
s∑

i=1

t + k

t + µi
β2

i ; (4)

equivalently,
|S| ≤ hG

k (t), (5)

where

hG
k (t) = (k + t)

{
1−

PG(t− 1)
(−1)nPG(−t)

}
. (6)

Proof. If t > −λ1 then the function fA
k,t is concave and attains its maximum

at

x∗ =
s∑

i=1

k + t

µi + t
ui.

Hence

|S| = fA
k,t(xS) ≤ j>x∗ = n

m∑
i=1

t + k

t + µi
β2

i .

The equivalent bound (5) is obtained by setting x = t − 1 in the formula
[7, p.90]

PG(x) = (−1)nPG(−x− 1)

{
1−

s∑
i=1

nβ2
i

x + 1 + µi

}
. (7)

2

When λn is a main eigenvalue of G, the graph of y = hG
k (t) has t = −λn

as an asymptote, and so we state our main result as follows. Here the second
assertion follows from our remarks in Section 1.

Corollary 2.2. If S induces a k-regular subgraph of G then

|S| ≤ inf{hG
k (t) : t > −λn(G)}.

We have |S| = hG
k (t0) if and only if S is a (k, k + t0)-regular set.

When λn is a non-main eigenvalue of G, we have G 6= Kn and we may
take t = −λn to obtain the following reformulation of [3, Theorem 3.4]:

Theorem 2.3. Let G be a graph of order n, and let S be a set of vertices
which induces a k-regular subgraph of G (0 ≤ k ≤ n−1). If λn is a non-main
eigenvalue of G then

|S| ≤ n
s∑

i=1

−λn + k

−λn + µi
β2

i . (8)

3



In Equation (5) we should cancel factors common to PG(t − 1) and
PG(−t). To this end, let MG(x) = (x − µ1) · · · (x − µs), and MG(x) =
(x−µ1) · · · (x−µs), where µ1, . . . , µs are the main eigenvalues of G (cf. [14]).
By Proposition 1.2 applied to G and G, or by Equation (8) of [14], we have

PG(t− 1)
(−1)nPG(−t)

=
MG(t− 1)

(−1)sMG(−t)
; (9)

moreover, MG(t − 1) and MG(−t) have no common factors. Thus hG
k (t) =

k + t if and only if t − 1 is a main eigenvalue of G. In particular, we may
take t = 1 + λ1 to obtain the bound (1). In the case that −1− λn is a main
eigenvalue of G, we take t = −λn in (4) and (6) to deduce:

Proposition 2.4. When −λn − 1 is a main eigenvalue of G, the upper
bounds (3) and (8) coincide.

To discuss the improvements on (2) afforded by Corollary 2.2, we write
hk(t) for hG

k (t). If either

−λn < λ1 + 1 and h′k(1 + λ1) 6= 0

or
−λn = λ1 + 1 and h′k(1 + λ1) < 0,

then an improvement on (1) is assured in a neighbourhood of 1 + λ1. We
have

h′k(1 + λ1) = 1− (k + 1 + λ1)(−1)s

{
M ′

G
(λ1)

MG(−1− λ1)

}
,

but it is more revealing to inspect two small examples.

Example 2.5. Let G = 3K1∪̇K2∪̇K3. Then PG(x) = (x−2)(x−1)x3(x+1)3.
Using the computer package GRAPH, we find that PG(x)=(x3−2x2−21x−24)
x3(x + 1)2; moreover, 0 (= −λ8 − 1) is not a main eigenvalue of G.
We have λ1 ≈ 6.0930, and so the bound (1) yields |S| ≤ 7 when k = 0.
Here µs = 0 = k and y = h0(t) does not have t = 0 as an asymptote. We
have

h0(t) =
2(2t + 3)(2t + 1)

(t + 1)(t + 2)
,

a function which increases monotonically on [−λ8,∞). Whenever hk(t) has
this property, and µs > λn, the best bound arises when t = −λn, giving a
formula that coincides with (8). In this example, we obtain |S| ≤ 5 (a sharp
upper bound since α(G) = 5). 2

Example 2.6. Let G be the graph on 6 vertices numbered 50 in the table [6],
where characteristic polynomials are listed and main angles are identified;
the complement of G is numbered 100 in [6]. We have s = 4, µ4 = λ6 ≈
−2.508 and λ1 ≈ 2.228. We take k = 0 again, and then the upper bound
(1) for |S| is 3.228. In this case y = h0(t) has t = −λ6 as an asymptote.
Explicitly,

h0(t) =
2t(3t3 − 9t2 + t + 7)

t4 − 9t2 + 4t + 7
.

This function has a unique local minimum on (−λ6,∞). Using Mathematica,
we find that this minimum is 3.132 at t = 2.834 (to three places of decimals).
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This new upper bound is smaller, but of course both bounds yield |S| ≤ 3
(a sharp inequality since α(G) = 3). 2

These examples are provided to illustrate differences in the behaviour of
hk. To demonstrate the superiority of the bound in Corollary 2.2, we should
consider larger graphs, and this we do in the the next section. Here we first
discuss properties of hk in the general case.

Proposition 2.7 The function hk(t) has at most one local minimum in
(−µs,∞).
Proof. The result is immediate if s = 1 (that is, if G is regular), since then
hk(t) is monotonic. Accordingly we suppose that s > 1. We have

hk(t) = n−
s∑

i=1

n(µi − k)β2
i

t + µi
. (10)

Suppose first that k is not a main eigenvalue of G, so that the graph G of
y = hk(t) has asymptotes t = −µi (i = 1, . . . , s). Note also that hk(t) → n
as t →∞ and as t → −∞.

If µs < k then the line y = d cuts G in (at least) s−1 points of (−∞,−µs)
when d > n, and (at least) s−2 points of (−∞,−µs) when d < n. If µs > k
then the line y = d cuts G in (at least) s points of (−∞,−µs) when d > n,
and (at least) s− 1 points of (−∞,−µs) when d < n.

Now suppose that hk(t) has a local minimum at t0 ∈ (−µs,∞). Then
h′k(t) ≥ 0 for all t ≥ t0, for otherwise hk(t) has a local maximum at some
point t1 ∈ (t0,∞). If hk(t1) > n then for some d > n, the line y = d cuts G
in (at least) 3 points in (−µs,∞). If hk(t1) ≤ n then for some d < n, the line
y = d cuts G in (at least) 4 points in (−µs,∞). In any case, the function
hk(t) − d has more than s zeros in IR. This is a contradiction because
hk(t)− d (d 6= n) has the form p(t)/q(t), where p(t), q(t) are polynomials of
degree s.

If k is a main eigenvalue of G, then the same arguments apply to a graph
with s− 1 vertical asymptotes.

It follows that hk(t) has no more than one local minimum in (−µs,∞).
2

Corollary 2.8 For a non-regular graph G, we have:
(i) if µs < 0 then hG

0 (t) has a unique local minimum in (−µs,∞),
(ii) if µs = 0 then hG

0 (t) is increasing on (−µs−1,∞),
(iii) if µs > 0 then hG

0 (t) is increasing on (−µs,∞).

Proof. We have h0(1 + λ1) = 1 + λ1 < n and 1 + λ1 ∈ (−µs,∞). Thus if
µs < 0 then h0(t) has a local minimum on (−µs,∞), and this minimum is
unique by Proposition 2.7. If µs = 0 then from (10) we see that h′0(t) > 0
for all t ∈ (−µs−1,∞), and if µs > 0 then h′0(t) > 0 for all t ∈ (−µs,∞). 2

We conclude this section by deriving sharp upper bounds in two special
cases. First, if G is r-regular, we may apply Theorem 2.3 to obtain

|S| ≤ n(k − λn)
r − λn

.

This bound, known as the Hoffman bound when k = 0, coincides with that
obtained from interlacing (cf. [10, Lemma 9.6.2]). It is attained in some of
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the regular graphs G discussed in Section 3. Other generalizations of the
Hoffman bound may be found in [1, Theorem 7] and [9, Corollary 3.2].

Secondly, consider a connected harmonic graph G, that is, a connected
graph G for which Ad = µ1d, where d is the vector whose entries are the
vertex degrees. We show that if G has e edges then

α(G) ≤ n− e

µ1
. (11)

The main eigenvalues of G are µ1 and 0 [14, Proposition 3.3], and so

α(G) ≤ h0(−λn) = n

{
1− µ1

µ1 − λn
β2

1

}
≤ n(1− 1

2β2
1).

To determine β1 when G is connected, note that

u1 =
1

‖d‖2
(d>j)d, whence nβ2

1 =
4e2

‖d‖2
.

Since d − µ1j ∈ EA(0) ⊆ EA(µ1)⊥ = d⊥, we have ‖d‖2 = 2eµ1, and so
n(1− 1

2β2
1) = n − e

µ1
, proving (11). We note that this bound is attained

in all Grünewald trees [11, 14]: for such a tree T we have λn = −µ1, e =
n− 1 = µ1(µ2

1 − µ1 + 1) and α(T ) = (µ1 − 1)(µ2
1 − µ1 + 1) + 1.

3 Computational results

Here we apply our results to G with k = 0 to obtain bounds on the clique
number ω(G) = α(G). We compare old and new bounds for ω(G) for
graphs G from the Second DIMACS Implementation Challenge [12]: these
are benchmark graphs used for testing algorithms that determine or esti-
mate ω(G). The old bounds in the table are given by 1 + λ1(G), while
the new bounds hG

0 (t∗) are calculated in accordance with Corollary 2.8: if
µs ≥ 0 (in particular, if G is regular) then t∗ = −λn; otherwise hG

0 (t∗) is the
unique local minimum on (−λn,∞). In practice, t∗ is determined to within
a computational error, and so

hG
0 (t∗) ≈ inf{hG

0 (t) : t > −λn(G)}.

Most of the graphs in the table have λn(G) as a main eigenvalue, with
h′0(1 + λ1(G)) > 0, where h0 = hG

0 . Then µs < 0 and we estimate t∗ using
successive bisections of intervals, starting with [−λn(G) + 10−6, λ1(G) + 1],
where the value of h0 at the mid point is less than the value at each end
point. For an interval [a, b] with mid-point c, let x, y be the mid points
of [a, c], [c, b] respectively. If h0(x) and h0(y) are both greater than h0(c)
then we replace [a, b] with [x, y]. Otherwise, [a, b] is replaced with [a, c] if
h0(x) ≤ h0(c), or with [c, b] if h0(x) > h0(c). The process is repeated until
we reach an interval where the values of h0 at the mid point and end points
coincide to within four decimal places.

In the graph c-fat200-1.clq, −λn(G) − 1 is a main eigenvalue of G and
h′0(−λn(G)) > 0; thus the best upper bound is that in (3), attained when
t∗ = h0(t∗) = −λn(G) = 17.2675.
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G n ω(G) λ1(G) + 1 t∗ hḠ
0 (t∗) Notes

brock200-1.clq 200 21 149.5707 12.4952 43.3005 (a)
brock200-2.clq 200 12 100.1963 14.0483 26.4234 (a)
brock200-3.clq 200 15 121.8181 13.9645 32.0650 (a)
brock200-4.clq 200 17 132.2037 13.5104 35.3994 (a)
brock400-1.clq 400 27 299.8496 17.2781 62.8351 (a)
brock400-2.clq 400 29 300.1480 17.4017 62.8164 (a)
brock400-3.clq 400 31 299.6317 17.6204 63.9385 (a)
brock400-4.clq 400 33 300.0543 17.5317 63.3207 (a)
c-fat200-1.clq 200 12 17.8135 17.2675 17.2675
c-fat200-2.clq 200 24 33.6036 32.7001 32.9611 (a)
c-fat200-5.clq 200 58 85.7778 64.7787 72.9051
hamming6-2.clq 64 32 58 32 (b)
hamming6-4.clq 64 4 23 13.5385 (b)
hamming8-2.clq 256 128 248 128 (b)
hamming8-4.clq 256 16 164 72 (b)
johnson8-2-4.clq 28 4 16 4 (b)
johnson8-4-4.clq 70 14 54 14 (b)
johnson16-2-4.clq 120 8 92 8 (b)
johnson32-2-4.clq 496 16 436 16 (b)
MANN-a9.clq 45 16 41.8039 2.3885 19.7076
MANN-a27.clq 378 126 374.3035 6.7405 278.9118
p-hat300-1.clq 300 8 80.7579 16.6554 26.3647 (a)
p-hat300-2.clq 300 25 158.9345 30.3485 78.1328 (a)
p-hat300-3.clq 300 36 225.8307 19.3401 88.3742 (a)
keller4.clq 171 11 111.8552 17.7206 41.1585
san200-0.7-1.clq 200 30 140.5107 51.6650 94.7681 (a)
san200-0.7-2.clq 200 18 143.5080 68.3020 117.1690 (a)
san200-0.9-1.clq 200 70 180.3256 22.8092 118.7377 (a)
san200-0.9-2.clq 200 60 180.1964 17.4725 98.3736 (a)
san200-0.9-3.clq 200 44 180.1697 14.1434 86.5558 (a)
san400-0.5-1.clq 400 13 202.9588 151.2577 179.3039 (a)
san400-0.7-1.clq 400 40 280.4968 102.2726 184.7757 (a)
san400-0.7-2.clq 400 30 280.5105 98.4703 182.4865 (a)
san400-0.7-3.clq 400 22 280.8343 93.7929 183.7393 (a)

Notes: (a) −λn(G) is a main eigenvalue, (b) G is regular.
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[2] D. M. Cardoso, M. Kamiński and V. Lozin, Maximum k-regular
induced subgraphs, J. Comb. Optim. 14 (2007), 455-463.

[3] D. M. Cardoso and S. J. Pinheiro, Spectral upper bounds on the
size of k-regular induced subgraphs, Electronic Notes in Discrete
Mathematics 32 (2009), 3-10.
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