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Abstract 

In Southeast Asia, the family Pangasiidae is important for commercial fisheries and 

aquaculture. Pangasianodon hypophthalmus (striped catfish) is the most economically 

important species farmed in Vietnam, with a total export value of 1.7 billion USD in 

2012. Intensive aquaculture can lead to problems with major outbreaks of disease and 

Edwardsiella ictaluri and Aeromonas hydrophila represent two important bacterial 

pathogens in P. hypophthalmus aquaculture. Immunostimulants have proven to be a 

very useful food additive for the aquaculture industry, since they can be easily fed to 

fish to enhance their immune response at times of stress and to improve resistance to 

disease.  

The immune system of pangasius catfish has not been fully described, despite 

the recent growth in aquaculture for this species, and little is known about the effects 

of immunostimulants on disease resistance. Understanding the immune response is 

very important in order to evaluate the health status of the fish and assist in control of 

disease (including prevention) so that production levels by the aquaculture industry 

can be sustained. The aims of this thesis were to develop and standardise methods to 

elucidate and measure immune responses in P. hypophthalmus and then to use these 

with relevant disease models (A. hydrophila and E. ictaluri) and immunomodulators (β-

glucans from different sources and at different doses) to determine if bacterial 

diseases can be controlled, and which functional immune responses and immune 

genes could be correlated with disease resistance.  

As a variety of different species from family Pangasiidae are economically 

important for aquaculture, initial work focused on the characterisation of the 

immunoglobulin IgM molecule in these species, and anti-P. hypophthalmus IgM mAbs 

were tested to determine if they cross-reacted between different Pangasiidae species 

(Chapter 2). Although affinity purification of IgM from the different fish species 

resulted in a purer preparation ammonium sulphate precipitation (14% w/w), the 

latter proved faster and easier to perform. The heavy (H) and light (L) chains of IgM 

from P. hypophthalmus were estimated to be 70-72 kDa and 25-26 kDa, respectively, 

using SDS-PAGE (12.5%). The L chains of IgM in the other Asian fish species examined 

were similar in molecular weight to P. hypophthalmus, while the H chains varied (P. 
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gigas and P. larnaudii 76kDa, P. sanitwongsei 69kDa, H. filamentus 73kDa, P. borcoti 

and H. wyckioides 75kDa, C. bactracus 74kDa, C. macrocephalus 73kDa and C. carpio 

70kDa), as did the native IgM molecules. Sedimentation velocity ultracentrifugation 

was used to determine the molecular weight of the whole IgM molecule from P. 

hypophthalmus as an alternative to the more commonly used native gels that are run 

under non-denaturing conditions, although this technique proved more complex. Anti–

P. hypophthalmus IgM monoclonal antibodies (mAbs) cross reacted with all of the 

Pangasiidae species and were successfully applied in an enzyme-linked 

immunosorbent assay (ELISA) using mAb 23 to measure serum antibody response of P. 

hypoophthalmus following experimental infection with A. hydrophila by 

interperitoneal (I.P.) injection in Chapter 3 and E. ictaluri by immersion in Chapter 4. 

As P. hypophthalmus is a relatively new aquaculture species, there are few 

reports evaluating its immune response to pathogens. Thus, functional assays were 

standardised to evaluate both innate and adaptive immune responses of this species 

and then these assays used to compare immune response following stimulation with 

live and killed A. hydrophila. (Chapter3). Four treatment groups of 40 fish per group 

(53.2 ± 14.8g.) consisting of an untreated control group, a group injected I.P. with 

adjuvant (Montanide ISA 760 VG) only, a group injected with heat-killed A. hydrophila 

(1 x109 cfu ml-1 mixed with adjuvant), and a group injected with a subclinical dose of 

live A. hydrophila 2.7 x105 cfu ml-1 were used in the study. Samples were collected 0, 1, 

3, 7, 14 and 21 days post injection (d.p.i.) to assess the immune response of fish. The 

results indicated that challenge with live or/and dead bacteria stimulated the immune 

response in P. hypophthalmus significantly above control groups with respect to 

specific antibody titre, lysozyme activity, phagocytosis and plasma peroxidase at 7 

or/and 14 d.p.i. Moreover, on 21 d.p.i. total IgM, specific antibody titre and lysozyme 

activity from both live and dead A. hydrophila challenge groups were significantly 

different to the control groups. Differential immune responses between live and dead 

bacterial challenges were also observed as only live A. hydrophila significantly 

stimulated WBC counts and plasma peroxidase at 3 d.p.i. with the greatest increase in 

WBC counts noted at 21 d.p.i. and in phagocytosis at 14 d.p.i. By 21 d.p.i. only the 

macrophages from fish challenged with dead A. hydrophila showed significantly 

stimulated respiratory burst activity.  



Abstract 
 

ix | P a g e  
 

Immunostimulants are food additives used by the aquaculture industry to 

enhance the immune response, and β-glucan is now commonly used for this purpose 

in aquaculture. In Chapter 4 the effect of the prebiotic β-glucan on the immune 

response and disease resistance of P. hypophthalmus was evaluated. The fish (60.3 ± 

11.7 g.) were fed with a basal diet (control) or diets supplemented with fungal derived 

β-glucan at concentrations of 0.05 %, 0.1 %, or 0.2 % g/kg for four weeks. Fish fed 0.1 

% commercial yeast derived β-glucan were also included as a positive control group. 

Samples were collected from fish on Days 0, 1, 3, 7, 14, 21 and 28. The results showed 

that fish fed with the highest two levels of fungal derived β-glucan had enhanced 

immune responses compared to the control group, with respiratory burst activity on 

all days examined and lysozyme activity on 7 days post feeding (d.p.f.) being 

significantly elevated (P<0.05) in the group fed with 0.2 % fungal derived β-glucan, 

while plasma anti-protease activity on 21 d.p.f., natural antibody titre on 3 d.p.f. and 

complement activity 7 d.p.f. and 14 d.p.i. were significantly enhanced (P<0.05) in the 

group fed 0.1 % fungal derived β-glucan. The lowest dose of fungal derived β-glucan 

(0.05 %) appeared insufficient to effectively stimulate the fish’s immune response. 

WBC count, respiratory burst, lysozyme activity and complement were useful as an 

early indication of immunostimulation (1 to 7 days). Four weeks after feeding with the 

different diets, the fish were experimentally infected with E. ictaluri by immersion 

using 8 x104 cfu ml-1 for 1 h and mortalities were monitored for 14 days. There was a 

great deal of variation in the level of mortalities within the four replicate tanks for each 

dietary group. Although the in vivo challenge results showed no statistical differences 

between the groups fed on the different diets, the highest mortalities were observed 

in group fed with the control diet and the lowest mortalities were observed in the 

groups fed with commercial yeast derived β-glucan and 0.2 % fungal derived β glucan. 

Immune gene expression following stimulation with β-glucan and challenge 

with E. ictaluri was investigated in Chapter 5. The P. hypoophthalmus (36 ±0.34 g) were 

fed 0.1% of a fungal-derived β-glucan, a commercial yeast derived β-glucan or a basal 

diet (control). After 14 days, liver, spleen and kidney tissues were collected and 

processed for expression analysis of seven immune genes [acute phase response 

(transferrin, C-reactive protein and precerebellin like protein), complement (C3 and 

factor B), adaptive response (2a MHC class II) and cytokine (interleukin-1β)] by 
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quantitative real time PCR. Translation elongation factor-1α, 18s rRNA and β-actin 

were used as house-keeping reference genes. Twenty-five fish from each of the four 

replicate tanks of the three treatment groups were then either experimentally infected 

with 1 x106 cfu ml-1 of E. ictaluri by immersion for 30 min and the remaining twenty 

five fish per tank were mock infected with the culture medium. At 24 h.p.i., tissue 

samples were again collected for immune gene expression and the challenge 

monitored for 2 weeks. The relative percentage mortality at 14 d.p.i. was statistically 

significantly different between the control diet (30 ±12%), and the 0.1% fungal derived 

β-glucan (17 ±8%) and commercial yeast-derived β-glucan diets (16 ±5 %). There was 

no obvious difference in relative gene expression for the genes examined between the 

different dietary treatments after feeding fish for 14 days, while there were clear 

differences between the infected and uninfected groups at 24 h.p.i. The expression 

pattern of the immune genes in liver, spleen and kidney with respect to the 

immunostimulation and the infection varied with diets. Overall, principal component 

analysis with 11 variables (liver [C-reactive protein, transferrin, complement factor B 

and C3, precerebellin, IL-1β and MHC class II], the kidney [IL-1β and MHC class II] and 

the spleen [IL-1β and MHC class II]) showed significant differences between fish fed 

with control diet and immunostimulant diet in challenged or/and unchallenged with E. 

ictaluri (P_mc<0.05).  

A variety of functional immune assays and gene expression methods for P. 

hypophthalmus were developed and standardised during this study, and these provide 

useful useful tools and basic information on the immune response in striped catfish 

that can be applied for the health control of this species. Furthermore, the 

identification of striped catfish immune genes during this work will be very useful for 

further genomic research relating to disease. Future work on the P. hypophthalmus 

immune system should focus on full immunological transcriptomic analysis to enable a 

more complete understanding of the gene expression and regulatory networks 

involved in the immune response of P. hypophthalmus to disease.  
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1.1 Pangasius aquaculture 

Species of fish belonging to the family Pangasiidae are important for both commercial 

fisheries and aquaculture. Four genera, with a total of 23 different species, are 

reported to be associated with this family worldwide (Pouyaud, et al. 2004). In 

Southeast Asia, twelve species from four different genera have been identified in 

Thailand and the Indochinese region i.e. Helicophagus waandersii; Pteropangasius 

pleurotaenia and P. micronema; Pangasianodon gigas and P. hypophthalmus; 

Pangasius bocourti, P. krempfi, P. larnaudii, P. macronema, P. pangasus, P. 

polyuranodon and P. sanitwongsei (Vidthayanon 1994). Many of these species have 

economic potential for aquaculture including P. bocourti, P. gigas, P. hypophthalmus, 

P. larnaudii and P. sanitwongsei (Kwantong and Bart 2003; Sriphairoj, et al. 2010).  

Pangasianodon hypophthalmus, the most economically important species of these to 

be farmed, has many different common names associated with it (e.g. Iridescent 

Shark-Catfish, Striped Catfish, Suchi Catfish, Thai Catfish in the UK; Pla Sawai in 

Thailand; Cá Tra, and Cá Tra yêu in Vietnam (BayScience Foundation 2013; FAO 2013). 

The natural distribution of this riverine freshwater species is limited to the Mekong 

River, the Chaopraya River and possibly the Mekong basins in Cambodia, Lao People’s 

Democratic Republic, Thailand and Vietnam, the Irrawaddy or Ayeyawady basin of 

Myanmar (within a range of 19oN to 8oN), as shown in Figure 1.1. The fish migrates 

over a long distance (several hundred kilometres) between its spawning habitat 

located upstream and its feeding and nursery habitat downstream. It is omnivorous, 

feeding on algae, higher plants, zooplankton, and insects, while larger individuals are 

also known to eat fruit, crustaceans and fish (FAO 2013). 
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Pangasianodon hypophthalmus is an important aquaculture species in the Mekong 

riparian countries. The culture of this species has developed rapidly in recent years, 

and it is considered to be a valued food fish of economic significance to many 

countries, especially to Vietnam (Nguyen 2009). Recorded production of P. 

hypophthalmus culture was in the region of 683,000 tons in 2007, valued at around 

645 million USD, and represents one of the largest single species - based farming 

systems in the world, restricted to a very small geographical area. Although Vietnam is 

described as one of the most successful primary food production sectors in the world 

Figure 1.1. The distribution of wild P. hypophthalmus in Southeast Asia countries; 

Myanmar in Irrawaddy or Ayeyawady basin, Thailand in Chaopraya river and Mekong 

basins in Cambodia, Lao People’s Democratic Republic, Thailand and Vietnam  
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(Phan, et al. 2009), data from the Vietnam Association of Seafood Exporters and 

Producers for the period from January to December 2012 reported that Vietnam’s 

total export value for pangasius declined to USD 1.7 billion, 3.4 % down from 2011 

(Globefish 2013). This may have been due to a restriction imposed by Europe, Asia and 

Latin America on the import of this species from Vietnam. Nevertheless, Vietnam is still 

the world’s largest producer of pangasius catfish (Globefish 2011). Intensive fish 

culture in Vietnam’s Mekong Delta started in 1960 with P. bocourti in cages and in 

1999 with P. hypophthalmus in ponds. Both species are mostly destined for export to 

international markets. In 2000, the production of fish for export was more than 62,000 

tons from more than 5,000 cages in the Mekong Delta region. Cage sizes vary from 200 

m3 to over 1,500 m3, and have a productivity of 90-150 kg of fish per cubic meter 

during a culture period of 10-12 months. Mass production of P. hypophthalmus 

fingerlings is successful in intensive culture in ponds ranging from 1,000 to 10,000 m2 

and reaches production levels of 300-500 tons/ha/year (Wilder and Phuong 2002; 

Phan, et al. 2009). The product is sold almost totally for export to over 100 different 

countries as frozen fillets, where it is an acceptable alternative to more expensive 

locally sourced white fish. 

Intensive aquaculture can lead to problems with major outbreaks of disease. 

The diseases associated with this species tend to be bacterial in nature caused by the 

Edwardsiella ictaluri, Aeromonas hydrophila and Pseudomonas dermoalba, or parasitic 

caused by Dactylogyrus, Trichodina, Epistylis, Myxobolus, Henneguya and Nematoda 

(Ferguson, et al. 2001; Crumlish, et al. 2002; Vu and Campet 2009). 
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1.1.1 Important diseases  

Two of the most important diseases in intensive Pangasius culture are A. hydrophila 

and E. ictaluri.  

1.1.1.1 Aeromonas hydrophila 

Aeromonas hydrophila is Gram-negative, rod shaped, fermentative bacterium, which 

uses flagella for motility (Austin and Austin 2007). It causes motile aeromonas 

septicemia (MAS) in a variety of aquatic (freshwater and marine) and land animals, and 

can be zoonotic in nature (Aoki 1999; Ye, et al. 2013). It also can be a primary, 

secondary and opportunistic pathogen in both animals and humans (Esteve, et al. 

1993; Lio-Po, et al. 1996; Joice, et al. 2002). The clinical signs in fish infected with MAS 

include ulcerative lesions in the skin (ranging from superficial to deep lesions in the 

skin) tail and fins, and haemorrhagic septicaemia, exophthalmos, distention of the 

abdomen, petechiation and haemorrhaging of the visceral organs, and swollen lower 

intestine, vent, liver and spleen (Inglis, et al. 1993; Noga 2010; Austin and Austin 

2007). A variety of morphological changes can be seen in tissue, including skin lesions 

with dermatitis and myositis, necrosis of the renal and splenic haematopoietic tissue, 

necrotic intestinal mucosa and focal necrosis in the heart, liver, pancreas, and gonads 

(Noga 2010).  

 Many fish species can be affected by MAS, including eel (Esteve, et al. 1993), 

Indian major carp (Chandran, et al. 2002) , goldfish (Viji, et al. 2013), catfish (Griffin, et 

al. 2013), tilapia (Abdel‐Tawwab, et al. 2010), gilthead seabream (Reyes-Becerril, et al. 

2011), rainbow trout (Saavedra, et al. 2010) and striped catfish (Kumar and Ramulu 

2013).  
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The disease can produce significant losses to the aquaculture industry because of 

reduced growth and the unmarketable appearance of infected fish. When virulent 

strains of A. hydrophila become endemic in a fish population, it is difficult to introduce 

new fish into the water body without significant mortalities resulting. The diagnosis of 

MAS is through culture and identification of the bacterium by bacteriology (Noga 

2010), or a variety of other methods e.g. agglutination assays, (Toranzo, et al. 1987), 

fluorescent antibody techniques (De Figueiredo and Plumb 1977), monoclonal 

antibody-based enzyme-linked immunosorbent assay (ELISA) (Austin, et al. 1986), 

quantitative polymerase chain reaction (Griffin, et al. 2013), multiplex polymerase 

chain reaction (m-PCR) (Panangala, et al. 2007; Altinok, et al. 2008), or multiplex 

nested-polymerase chain reaction (m-nested PCR) (Chang, et al. 2009). 

1.1.1.2 Edwardsiella ictaluri 

Edwardsiella ictaluri is a Gram negative, rod shaped, facultative anaerobic bacterium 

that possesses peritrichous flagella (Buller 2004; Austin and Austin 2007). It is the 

causative agent of enteric septicemia of channel catfish (ESC), and is one of the most 

important diseases of channel catfish (Ictalurus punctatus) aquaculture (Wagner, et al. 

2002). The others species reported to be susceptible to E. ictaluri infections include 

striped catfish (P. hypophthalmus)(Ferguson, et al. 2001; Crumlish, et al. 2002; Yuasa, 

et al. 2003), rainbow trout (Oncorhynchus mykiss)(Seçer, et al. 2004), danio (Danio 

devario)(Waltman, et al. 1985), chinook salmon (Oncorhynchus tshawytscha)(Baxa, et 

al. 1990), European catfish (Silurus glanis) (Plumb and Hilge 1987), yellow catfish 

(Pelteobagrus fulvidraco) (Ye, et al. 2013), walking catfish (Clarias batrachus) 

(Kasornchandra, et al. 1987), hybrid catfish (Clarias macrocephalus (Gϋnther) x Clarias 
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gariepinus (Burchell))(Suanyuk, et al. 2013), tadpole madtom (Noturus gyrinus) 

(Klesius, et al. 2003), Southern catfish (Silurus meridionalis) (Geng, et al. 2013), 

zebrafish (Danio rerio) (Hawke, et al. 2013), brown bullheads (Amieurus nebulosus) 

(Iwanowicz, et al. 2006) and Nile tilapia (Oreochromis niloticus) (Soto, et al. 2012; 

2013).  

 The clinical signs vary including listless swimming in a vertical position at the 

surface of the water, or in spiralling circles (Austin and Austin 2007; Inglis, et al. 1993). 

Gross lesions are present as petechial haemorrhages, on the skin area around the jaw, 

the base of all fins, the operculum and the abdomen, the gills appear pale and 

exophthalmia is also evident. The skin lesions appear as small white de-pigmented 

areas (1-3 mm) that can progress into cutaneous ulcers with inflammation. Internally, 

the kidney and spleen appear swollen and the peritoneal cavity can be filled with 

bloody or clear yellow ascites. Haemorrhaging and necrosis can be present in the liver 

and petechial haemorrhages can be seen in internal muscle walls (Noga 2010; Inglis, et 

al. 1993). Reports of P. hypophthalmus infected with E. ictaluri describe multifocal 

irregular white lesions of varying sizes on the internal organs (i.e. liver, spleen and 

kidney). Histopathologically, enteritis, hepatitis, myositis, interstitial nephritis, chronic 

foci, inflammation in the olfactory sac and the telecephalon of the brain 

(meningoencephalitis), were seen together with multifocal areas of necrosis and 

pyogranulomatuous inflammation in liver, kidney and spleen (Noga 2010; Ferguson, et 

al. 2001). Gram-negative bacteria were observed in target tissues. During the acute 

phase of the infection, the kidney is the organ of choice to sample, while during the 

chronic phase the brain is reported the best organ for bacterial isolation. These can be 
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identified using bacteriological methods (Noga 2010; Austin and Austin 2007) and a 

variety of other techniques e.g. Fluorescent Antibody Test (Ainsworth, et al. 1986), 

ELISA, in situ hybridization, the loop-mediated isothermal amplification (LAMP) and 

multiplex PCR (m-PCR) (Yeh, et al. 2005; Austin and Austin 2007; Panangala, et al. 

2007; Noga 2010; Suanyuk, et al. 2013). 

1.2 Interaction between host, pathogen and environment 

The ability of pathogens to infect their host depends on a complex interaction 

between the pathogen, their host and the environment. The virulence of the 

pathogens depends on a variety of factors including the strain, biotype, serotype, and 

genotype, route of entry and duration of the exposure to the agent (Hedrick 1998). 

Various routes of infection by E. ictaluri in fish have been suggested e.g. through the 

olfactory organ via the nasal opening, from where it migrates into the olfactory nerve 

and then to the brain of the fish (Inglis, et al. 1993; Wolfe, et al. 1998); or through 

ingestion, entering the blood via the intestine (Inglis, et al. 1993). The gastrointestinal 

tract of fish has also been reported as the route of infection for A. hydrophila in 

crucian carp (Carassius carassius) (Zhang, et al. 2013). 

 Several parameters have been associated with the host’s risk to developing 

the infection. These factors include the genotype, age, size and developmental stage of 

the host, as well as it’s nutritional, reproductive and behavioural states, in addition to 

general health status (Hedrick 1998).  

 The environment is one of the main factors affecting the interaction between 

host and pathogen, particularly chemical and physical factors of the surrounding water 

body, such as dissolved gases, pH, toxin, temperature, flows, turbidity and water 
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quality (Hedrick 1998) all contributing to increased levels of stress in the fish. Also, 

specific temperature profiles are associated with particular infections (e.g. E. ictaluri is 

20-27oC (Inglis, et al. 1993) and A. hydrophila is between 18–30oC (Camus, et al. 1998). 

A summary of the interactions between the host, pathogen, and environment, which 

can lead to an increased risk of disease outbreaks in striped catfish, is shown in Figure 

1.2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Disease prevention and control 

Chemotherapy to control MAS has included the use of antibiotics such as 

oxytertacycline, sulphamerazine, chloramphenicol and nifurpirinol, while, 

oxytetracycline, sulphonamides (Inglis, et al. 1993), and cefaperazone, cinoxacin, 

Figure 1.2. A web of causative factors increasing the risk of disease in fish, modified 

from Hedrick (1998) 
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kanamycin, moxalactam, neomycin, nitrofurantoin, oxolinic acid, streptomycin, 

ticarcillin and trimethoprim have been used to treat ESC (Austin and Austin 2007). The 

worldwide growth of aquaculture has been rapid, and although use of antibiotics is 

well controlled with restricted application in some countries (e.g. UK and Norway), this 

is not the case for all countries. Therapeutic and prophylactic use of antibiotics to 

control diseases in aquaculture has resulted in the development of plasmid mediated 

resistance to antibiotic compounds in both the fish and the aquatic environment 

(Cabello, et al. 2013). For example, Dung et al.(2008) found 64 Vietnamese isolates of 

E. ictaluri from P. hypophthalmus displaying acquired resistance to streptomycin 

(83%), oxytetracycline (81%), trimethoprim (71%), flumequin (8%) and oxolinic acid 

(6%), while antimicrobial resistance of A. hydrophila has been reported to 

streptomycin (57%), tetracycline (48%) and erythromycin (43 %) (Son, et al. 1997), 

methicillin (100%), rifampicin (100%) and novobiocin (99%) (Vivekanandhan, et al. 

2002).  

Cabello, et al. (2013) reported that genetic elements and resistance 

determinants for quinolones, tetracyclines, and β-lactamases are shared between 

aquatic bacteria, fish pathogens, and human pathogens, which appear to have 

originated in aquatic bacteria. The use of antimicrobials in aquaculture should 

therefore be restricted to reduce drug residues developing further in the aquatic 

environment and potentially threatening animal and human health. Methods for the 

prevention of bacterial diseases in aquatic animals without using antibiotics have/are 

being developed and tested in many species of fish. A holistic approach, which 

considers the pathogen, its host and the environment, would be most suitable in the 
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long term as suggested by Defoirdt et al. (2011) as shown in Figure 1.3. Biological 

control to prevent disease is an important health management strategy that should be 

considered (Subasinghe, et al. 2001). The use of immunostimulants and vaccines has 

become the norm for the prevention of infectious diseases in aquaculture (Dong, et al. 

2013; Evensen and Leong 2013). In addition, the combined use of immunostimulants 

or adjuvants with vaccines has been shown to increase the efficacy of vaccines (Tafalla, 

et al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. The interaction between host, pathogen, and environment that can increase the 

risk of disease outbreaks in fish. Strategies to prevent and control bacterial disease in 

aquaculture should ideally take into account the different aspects of the pathogen-host-

environment continuum, data from Defoirdt, et al. (2011). 
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Immunomodulation is a change in the fish’s immune response so as to enhance or 

reduce its activity. For example, immunostimulants are substances that can stimulate 

the immune response of fish by inducing or increasing immune activity. There are two 

main types of immunostimulants; specific immunostimulants that act via an antigenic 

specific response such as vaccines or via a non-specific action, which increase the 

immune response independent of antigenic recognition, such as adjuvants and non-

specific immunostimulators (Kumar, et al. 2011). For example, β-glucans, chitin, 

lactoferrin, levamisole, vitamins B and C, growth hormone and prolactin have all been 

reported to be immunostimulators in teleost fish (Sakai 1999). Adjuvants are often 

used in conjunction with vaccines, to help generate a stronger protective response to 

the antigens in the vaccine, providing a higher degree of protection against the 

pathogen. Cytokines, produced by the cellular immune system also act as 

immunostimulators and are able to enhance immune function (Kumar, et al. 2011).  

Fish immune cells have been shown to have enhanced phagocytic activity 

following administration of immunostimulants such as β-glucan (Chen and Ainsworth 

1992; Verlhac, et al. 1998; Ai, et al. 2007), vitamin C (Verlhac, et al. 1998; Ortuno, et al. 

1999), lactoferrin (Kamilya, et al. 2006), chitin and chitosan (Esteban, et al. 2001; Lin, 

et al. 2011), nisin (Villamil, et al. 2003) and various kinds of probiotics (Nayak 2010). 

The activities of phagocytic cells can be assessed by examining their phagocytic, killing 

and chemotactic activities. The process of pathogen killing seems to be heightened in 

the macrophages of fish treated with immunostimulants. The mechanism of 

macrophage killing involves both oxygen-dependent and/or oxygen-independent 

processes. The oxygen-dependent killing process, through the production of reactive 
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oxygen species (ROS), can be detected by chemiluminescence or the reduction of 

Nitroblue tetrazolium (NBT) (Lunden, et al. 1999; Vera-Jiménez, et al. 2013). 

Lymphocytes in Nile tilapia have been reported to be activated by immunostimulants 

such as Saccharomyces cerevisiae, β-glucans and laminaran (El-Boshy, et al. 2010), and 

by tuftsin in Indian Major carp (Misra, et al. 2006a). Complement activity is also 

activated by immunostimulants, as shown by Pionnier et al. (2013), who found that 

complement activity was stimulated by β-glucan in common carp. Furthermore, 

lysozyme activity is influenced by treatment with immunostimulants (Yin, et al. 2009; 

Dong, et al. 2013; Paredes, et al. 2013).  

1.4 The teleost immune system  

The immunology of fish has been useful to investigate the evolution of the immune 

response between lower vertebrates and mammals (Corbel 1975; Plouffe, et al. 2005; 

Saurabh and Sahoo 2008). Fish are the first animals in the phylum to possess both an 

innate and adaptive immune system (Magnadottir 2010). The innate response is the 

first line of defence in fish against invading pathogens (Ellis 2001), while the adaptive 

immune response is slower to develop and is important for the specific recognition 

and destruction of pathogens (Cooper and Alder 2006). A comparison of the humoral 

and cellular components of the innate and adaptive immune systems is shown in 

Figure 1.4 (Bayne and Gerwick 2001).  Knowledge of the function of the immune 

system is essential for the successful development of disease prevention strategies for 

fish, such as the development of vaccines, selection for increased disease resistance 

and identification of genes suitable for transgenesis (Watts, et al. 2001). 
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1.4.1 Innate immune response 

The innate immune system is the first line of defence against infectious disease 

(Janeway, et al. 2001). There are three important features associated with the innate 

response; it provides non-specific protection, it responds quickly against pathogens 

over the first few days of the infection; and it is relatively temperature-independent 

(Ellis 2001). It is comprised of physical barriers (i.e. skin, scales and mucus), and cellular 

and humoral components, a summary of which can be found in Figure 1.5.  The mucus 

contains many proteins which help in its ability to prevent pathogens from entering 

e.g. immunoglobulins, pentraxins, lysozyme, complement proteins and antibacterial 

peptides (Rombout, et al. 1993; Aranishi and Nakane 1997). 

Cells of the innate immune system include monocytes/macrophages, 

granulocytes, cytotoxic NK-like cells (Ellis 2001). Phagocytic, cytolytic and anti-

Figure 1.4. Components of the innate and adaptive arms of the fish immune system 

(Modified from Bayne and Gerwick (2001)) 
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microbial properties are the activities associated with the cells of the innate immune 

response (Woods, et al. 1999). Pattern recognition receptors present on the cells bind 

to pathogen-associated molecular patterns (PAMPs) associated with different groups 

of pathogens.  

 

 

 

 

 

 

 

 

 

 

1.4.1.1 Humoral immune response 

The humoral response of the innate immune system has a variety of different types of 

proteins and glycoproteins that are able to inhibit and destroy the pathogen, which it 

does through anti-bacterial peptides (pleurocidin and ceropin), complement, lectins 

(hemagglutinin), pentraxins (serum amyloid protein (SAP) and C-reactive proteins 

(CRP)), lysozymes, bacterial growth inhibitor transferrins, proteases (trypsin-like 

proteases and cathepsin L and B), cytokines, and antiviral interferons (Ellis 2001; 

Figure 1.5. Summary of innate immune response in fish (Modified from Magnadóttir (2006) 

and Ellis (2001)). 
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Magor and Magor 2001; Secombes, et al. 2001; Angeles Esteban, et al. 2006; 

Magnadóttir 2006; Whyte 2007). Other important enzymes included in the innate 

immune response include cyclooxygenase, which is responsible for the production of 

prostaglandins and inducible nitric oxide synthase that generates nitric oxide 

(Secombes, et al. 2001).  

 Anti-microbial peptides have been found in integument secretions of both 

plants and the animals, and are also classified as a component of the innate immune 

response (Whyte 2007). The antimicrobial peptides isolated from fish are a 

heterogenous group, the majority of which are known to form amphipathic α–helices 

(Plouffe, et al. 2005). In teleost fish, a number of antimicrobial peptides have been 

reported, such as cathepsin D in skin mucosa of catfish (Cho, et al. 2002a), hepcidin in 

liver of gilthead seabream (Sparus aurata L.), histone H1 in liver of Atlantic salmon 

(Salmo salar) (Richards, et al. 2001), hipposin in skin mucus of Atlantic halibut 

(Hippoglossus hippoglossus) (Birkemo, et al. 2003) and piscidin in mast cells of striped 

bass (Morone saxatilis) (Campagna, et al. 2007). 

 The functions of complement are many fold; they induced lysis of pathogens, 

opsonise (coat) bacteria to enhance phagocytosis by macrophages and clearance of 

potentially damaging immune complexes (antigen-antibody complex), enhance antigen 

presentation and the production of various peptides involved in vasodilation, 

phagocyte adhesion and phagocyte chemotaxis, and signalling the production of an 

inflammatory response and regulation of complement activation (Mak and Saunders 

2005).  
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 The complement system of bony fish is similar to that of higher vertebrates in 

that it can be activated through three different pathways of activation as detailed in 

Figure 1.6. The first is the classical pathway activated by antigen antibody complexes. 

The alternative complement pathway is activated by surfaces mortifies on bacteria and 

fungi. The lectin binding pathway is mediated by protein complexes containing 

mannose-binding lectins (MBL) binding to carbohydrates on cell surfaces of the 

microorganism, such as mannan, and because it is associated with serine proteases it is 

therefore called MBL-associated serine protease (MASP). There are two types of 

MASPs i.e. MASP-1 and MASP-2. The MBL pathway is activated through MASP1 and 

MASP-2 binding to mannans on the pathogen’s surface. After activation of the C3 

convertase from both the classical and the alternative pathway, C3b is produced and it 

in turn leads to the production of the C5 convertase molecule (C4bC2a). The C5 

convertase is converted to C5a and C5b. The small fragment of C5a is an 

anaphylatoxin, involved in the inflammatory process by phagocytic cells. The large 

fragment of C5b attaches to surface-bound C3b and stimulate the production of the 

membrane attack complex (MAC) by the subsequent binding of C6, C7, C8 and C9. The 

MAC is able to lyse the cell and results in the death of pathogen by creating a channel 

or pore in the cell membrane (Holland and Lambris 2002; Zhou, et al. 2012). There are 

many published studies relating to the complement system in teleosts, and more 

recently examining gene expression of complement components by qRT-PCR 

(Gonzalez, et al. 2007; Pionnier, et al. 2013). 
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Figure 1.6. The three complement activation pathways in mammals (Data from Holland 

and Lambris 2002) 
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Lectins are carbohydrate-binding proteins that interact non-specifically with 

structures on the surface of the pathogen. They act as opsonins to promote 

phagocytosis or are able to activate the complement cascade (Magnadóttir, et al. 

2005). There are two major classes of lectins, C-type (which is an extracellular protein 

with a disulphide-rich Ca2+-binding carbohydrate-recognition domain) and S type 

(which is both and intra- and extracellular protein, with no disulphide bonds and which 

recognizes predominantly galactose) (Ewart, et al. 2001). The C-type lectin has been 

found in oocytes of gibel carp (Carassius auratus gibelio) (Dong, et al. 2004), in serum 

and kidney of Atlantic salmon (Richards et al. 2003) and has been shown to enhance 

Atlantic salmon macrophage anti-A. salmonicida activity (i.e. respiratory burst, 

phagocytic and bactericidal activity, and opsoniszation of bacteria for phagocytosis ), 

and thus can inhibit the growth of A. salmonicida within the fish (Ottinger, et al. 1999). 

 C-reactive protein (CRP) and serum amyloid P component (SAP) are classical 

pentraxins, associated with the acute phase response (Magnadóttir, et al. 2005). They 

are involved in the initiation of the lectin binding complement pathways as shown by 

Cook et al. (2003a) for snapper (Pagrus auratus) (Magnadóttir 2006). They have been 

found in the serum Atlantic salmon and rainbow trout (Jensen, et al. 1995; Lund and 

Olafsen 1999) and common carp (Cartwright, et al. 2004). 

 Lysozyme is a hydrolytic enzyme that cleaves the β-(1,4)-glycosidic bond 

between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, the main 

bacterial cell membrane polymer in Gram positive bacteria (Figure 1.7(A)). In Gram 

negative bacteria its action starts once the outer cell membrane of the bacterium has 
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been destroyed by complement to expose the inner peptidoglycan layer in the 

bacterium (Saurabh and Sahoo 2008) (Figure 1.7(B)). 

 

 

 

 

 

 

 

 

 

There are three types of lysozyme in the animal kingdom. Fish, including Japanese 

flounder, common carp, Atlantic salmon, Atlantic cod, Chinese perch, orange-spotted 

grouper and mandarin fish have goose lysozyme type-g which is also found in birds and 

mammals. Chicken or conventional type (c-type) lysozyme is present in most 

vertebrates, including some fish e.g. Japanese flounder, common carp, turbot, rainbow 

trout and zebrafish, in the phylum Chordata, and different classes of Arthropoda). The 

third type of lysozyme is the invertebrate type (i-type). In teleost fish, lysozyme is one 

of the most important components of the innate immune response. It has been found 

in mucus, ova, lymphoid tissue, plasma and the body fluids of fish, and its activity 

Figure 1.7. Lysozyme activity acts on the peptidoglycan layer of microbial cell walls and 

causes cell lysis. (A) Direct action of lysozyme to peptidoglycan layer of Gram positive 

bacteria. (B) Indirect action of lysozyme on the peptidoglycan, where complement first 

destroys the outer membrane of Gram negative bacteria to allow the action of lysozyme. 

(Modified from (Tort, et al. 2003; Saurabh and Sahoo 2008; Fabia 2013) 
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depends on the age, sex and  size of the fish, and external influences such as season, 

water temperature, pH, toxicants, infections and the degree of stress (Tort, et al. 2003; 

Saurabh and Sahoo 2008).  

 Natural antibodies also play an important role in the innate immune response 

and are linked to the adaptive immune response. They give broad protection against 

invading pathogens (Whyte 2007), and are involved in maintaining homeostasis, 

clearing apoptotic cells, and in tumour defence (Magnadóttir 2006). Variations in 

natural antibody specificity has been reported between different fish species (Whyte 

2007), and Magnadóttir, et al. (1999; 2001) showed high levels of natural antibodies in 

cod with increasing age, environmental temperature and during infection. An 

interesting study by Sinyakov, et al. (2002) showed that the activity of natural 

antibodies of goldfish could divided into two groups; a group with high activity (which 

elicited protection against a virulent strain of A. salmonicida) and a group with low 

activity (resulting in 100 % morbidity in fish with these low levels after challenging 

them with A. salmonicida). 

 Transferrin is a protein that binds iron; iron is important to organisms for as 

an enzyme co-factor involved in DNA replication. Transferrin also has many other 

functions e.g. antimicrobial activity, acts as a growth factor, is involved in 

differentiation activities (myotrophic, embryo morphogenic, proliferative, mitogenic, 

neurotrophic, chemotactic and angiogenic activity) and in cytoprotection (Gomme, et 

al. 2005). This high-affinity iron-binding protein is produced by the host, so that the 

availability of iron to pathogenic bacteria is reduced (Ellis 2001), and the bacteria are 

therefore unable to replicate in the host tissue. However, pathogenic bacteria have 
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evolved several ways of overcoming this defence including the production of high-

affinity iron sequestering mechanisms of their own (Ellis 1999).  

 Proteases are enzymes that catalyze the hydrolysis of proteins, and are 

classified into serine, cysteine, aspartic and metalloproteases, based on the chemical 

nature of their substrate (Hartley 1960; García-Carreño 1992). Fish mucus and/or 

muscle have been found to contain serine proteases, such as trypsin (Hjelmeland, et al. 

1983), cysteine proteases (Cathepsin B and L) (Aranishi 1999), aspartic proteases 

(cathepsin D) (Cho, et al. 2002a) and metalloproteases (Bracho and Haard 1995). 

Protease can also found in other fish tissues such as serum, liver, kidney, spleen, ovary 

and intestine (Goetz and Garczynski 1997; Brooks, et al. 1997; Whang, et al. 2011). 

Proteases have been shown to cleave bacterial proteins by directly damaging the 

bacterium and indirectly activating complement, and through the production of 

immunoglobulins and antimicrobial peptides (Hartley 1960; Aranishi 1999; Cho, et al. 

2002b). 

 Anti-proteases (protease inhibitors) have also been found in fish plasma/ 

serum and other body fluids (Hjelmeland, et al. 1983; Ciereszko, et al. 1998) to restrict 

the ability of bacteria to invade and grow in their host (Rao and Chakrabarti 2004). In 

teleost fish, the main types of anti-protease found are alpha-1-anti-protease (α1-

protease inhibitor), alpha-1-anti-trypsin (α1-trypsin inhibitor) and alpha-2-

macroglobulin (α2-macroglobulin) (Zuo and Woo 1997; Jones 2001).  

1.4.1.2 Cellular immune response 

Innate cellular defence responses of teleost fish involve phagocytic cells (i.e. 

neutrophils, monocyte/macrophages, dendritic cells, epithelial cells and non-specific 
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cytotoxic cells) (Graves, et al. 1984; Press, et al. 1994; Ganassin and Bols 1996; 

Frøystad, et al. 1998; Ernst and Stendahl 2006; Fischer, et al. 2006). Phagocytosis is 

initiated by the binding of pathogens to receptors on the surface of the phagocyte’s 

surface, after which engulfment of the bacterium takes place as shown in Figure 1.8. 

The phagocyte has many receptors on its surface to which the pathogen can bind, such 

as opsonin receptors, scavenger receptor and toll-like receptors (Sompayrac 2008; 

Delves, et al. 2011). The killing mechanism of the phagocyte differs depending on 

pathogen; killing can occur within the phagocyte (intracellular killing) or outside of the 

phagocyte (extracellular killing) (Hampton, et al. 1998; Mak and Saunders 2005; 

Delves, et al. 2011).  

There are two types of oxygen-dependent intracellular killing (Fang 2004). The 

first type is the oxygen-dependent production of a superoxide anion, which is 

bactericidal. The superoxide is converted to hydrogen peroxide and singlet oxygen by 

superoxide dismutase, from which hydroxyl radicals result and assist in the killing 

process (Mak and Saunders 2005). The second type uses myeloperoxidase found in 

neutrophil granules. The granules fuse with the phagosome and myeloperoxidase is 

released into the phagolysosome. The enzyme uses hydrogen peroxide and chlorine to 

create hypochlorite (toxic to bacteria)(Hampton, et al. 1998).  

There are four types of oxygen independent intracellular killing. The first uses 

electrically charged proteins that damage the bacterial membrane. The second type 

uses lysozyme to degrade bacterial cell walls. The third type uses lactoferrins to 

remove essential iron from bacteria and the fourth type uses proteases and hydrolytic 

enzymes to digest the proteins of destroyed bacteria (Delves, et al. 2011)  
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The extracellular killing of phagocyte occurs through the production of nitric 

oxide (NO) stimulated by interferon gamma produced by CD4+ T cell, CD8+ T cells, 

natural killer cells, B cells, natural killer T cells, monocytes, macrophages, or dendritic 

cells) (Schroder, et al. 2004). Nitric oxide is released from the activated macrophage to 

kill the bacteria (Mak and Saunders 2005; Delves, et al. 2011).  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Phagocytosis is mediated by macrophages and polymorphonuclear 

leucocytes and involves the ingestion and digestion of microorganisms, insoluble 

particles, damaged or dead host cells, cell debris and activated clotting factors. The 

stages of phagocytosis include (1) Chemotaxis and adherence of microbe to 

phagocyte, (2) Ingestion of microbe by phagocyte, (3) Formation of a phagosome, (4) 

Fusion of the phagosome with a lysosome to form a phagolysosome, (5) Digestion of 

ingested microbe by enzymes, (6) Formation of residual body containing indigestible 

material and (7) Discharge of waste materials. From Cotter (2006) 
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1.4.2 Adaptive immune response 

The lymphoid system (home to the adaptive response) of teleost fish is different from 

mammals, with fish lacking bone marrow, lymph nodes and Payer’s patches. Fish 

lymphoid tissues include the thymus, anterior kidney, spleen, gut associated lymphoid 

tissue and mucosa-associated lymphoid tissue (Morrison and Nowak 2002).  

The adaptive immune system is specific, selective, has a memory component 

and either repels a second invasion or quickly eliminates the recurrent invader by 

mobilizing a faster and more efficient immune response (Cooper and Alder 2006). It is 

divided in to cellular and humoral components as shown in Figure 1.9. The humoral 

component of the adaptive immune system involves antibodies, or immunoglobulins 

(Ig), while the cellular component, or cell-mediated immunity, in composed of T-cells, 

B-cells and antigen presenting cells (APCs) (Miller, et al. 1998).   

 

 

 

 

 

 

 

 

 

The general components of the adaptive immune system are B-cell and T-cell 

receptors (BCR and TCR), recombination activator genes (RAG1 and RAG2), major 

Figure 1.9. Summary of the components of the fish’s adaptive immune 

response (Modified from Miller, et al. (1998) and Watts, et al. (2001). 
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histocompatibility complex (MHC I and II), and specialized primary and secondary 

lymphoid tissues (Flajnik and Du Pasquier 2004; Watts, et al. 2001). The T-cells and B-

cells circulate throughout the body in search of antigens and use their cell-surface 

receptors to recognize specific antigenic configurations. Binding of antigen triggers 

clonal amplification and cellular differentiation. The B-cells then produce antibodies 

with the same antigen binding specificity (Cooper and Alder 2006). The TCRs recognize 

peptide fragments of antigens presented by other cells within cell-surface molecules 

encoded by the major histocompatibility complex (MHC) class I and class II genes. The 

BCRs are Igs that recognise the intact or macromolecular complexes on the antigen. 

Cytokines orchestrate the events of the immune response by having important 

regulatory roles within the response. Many fish cytokines have been identified based 

on their functional similarity to mammalian cytokine activities (Manning and Nakanishi 

1996), and have been grouped based on general names such as lymphokines, 

monokines, chemokines, interleukins, interferons, tumour necrosis factors and colony 

stimulating factors, on functions such as pro- and anti-inflammatory or innate and 

adaptive immunity-related, on structure such as short and long chain cytokines, and on 

receptors used (immunoglobulin superfamily), hematopoietic growth factor (type 1-

family), interferon family (type 2-family), tumour necrosis factor (type 3-family) and 

chemokine receptors (7 transmembrane helix family) (Aoki, et al. 2008). Interferons 

(IFNs) are secreted proteins, which induce vertebrate cells to produce an anti-viral 

response. There are three families of IFNs (type I IFN, type II IFN and IFN-λ). Type I IFNs 

include the classical IFN-α and IFN-β and are induced by the presence of virus within 

cells, while type II IFN i.e. IFN-γ, is produced by natural killer cells and T lymphocytes in 
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response to interleukin-12 (IL-12), IL-18, mitogens or antigens. The IFNs of fish show 

structural and functional properties similar to mammalian type I IFNs, have been 

cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish (Whyte 2007; 

Robertsen 2006). Interleukins in teleosts, IL-1 (IL-1α, IL-1β and IL-1 receptor (IL-1ra)), 

IL-2, IL-3, IL-4, IL-6, IL-7, IL-10, IL-12, IL-18, IL-21 and IL-25 have been identified in 

rainbow trout, carp, catfish, flounder, tilapia, salmon and fugu (Whyte 2007; Aoki, et 

al. 2008; Randelli, et al. 2008; Wang and Secombes 2013). 

Tumor necrosis factor-α (TNF- α)-like gene has been identified in number of fish 

species such as Japanese flounder, rainbow trout, brook trout, gilthead sea bream, 

carp, channel catfish and zebrafish. Chemokines are a superfamily of cytokines. They 

are produced by a variety of different cell types and their functions include, chemo-

attractant properties stimulating the recruitment, activation, and adhesion of cells to 

sites of infection or injury. Chemokines have been identified in a wide variety of fish 

species, with Interleukin-8 (IL-8) the first chemokine to be identified. This chemokine 

stimulates the activation and migration of neutrophils, T lymphocytes and basophils 

(including their degranulation). 

1.4.2.1 B-cells and antibodies 

The B cells are a group of lymphocytes involved in adaptive immunity. The major 

function of B-cells is the production of antibodies against antigens; they also perform 

the role of antigen-presenting cells (APCs) and evolve into memory B-cells. Each B-cell 

has a unique BCR on its surface, which is specific for one particular antigen. The B-cell 

is activated by a signal from T-helper cells and develops into two types of cells (plasma 

B cells and memory B cells) (Figure 1.10). Activated B lymphocytes differentiate into 
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antibody-producing plasma cells. The plasma cells are characterized by the large 

amounts of intracytoplasmic, immunoglobulins that are rapidly synthesized and 

secreted (Ellis 1977). Memory B cells are formed from activated B cells and are specific 

for the same antigen encountered during the primary immune response (Mak and 

Saunders 2005). The B-cells also possess additional immune functions, including the 

production of cytokines and the ability to function as a secondary antigen presenting 

cells (APCs) (Mizoguchi and Bhan 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. B-cell activation in mammals by antigen binding to the B–cell 

receptor. The B cell internalizes the antigen and presents it with MHC class II 

antigens to a helper T cell which recognizes the MHC class II antigen complex 

and activates the B cell which differentiate into memory B cells and plasma cells 

(Bear and Rintoul 2013a). 
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Immunoglobulins can be found in blood (plasma and serum), skin, gut, gill mucus and 

bile of teleost fish (Morrison and Nowak 2002). Immunoglobulin (Ig) morphology is Y-

shaped and each tip contains a paratroop, which is specific to the epitope of the 

antigen. An antibody is composed of two identical L-chain and H-chains, and the 

specific genes are found in the Variable (V) region and the constant (C) regions. The V-

region in the H-chain has three segments- variable (V), diversity (D) and joining (J) (VDJ 

recombination), and this functions to produce a unique variable domain in the 

immunoglobulin (Figure 1.11.). The V-region in the L-chain has two segments V and J.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Immunoglobulin structure. The antigen binding domain is 

composed of three separate segments, the V (variable) D (diversity) and J 

(joining) segments. Each antibody is made up of two copies each of two 

chains of different sizes, called “heavy” and “light”, and each chain uses its 

own set of gene segments (VDJ for heavy, VJ for light) (Ward 2011). 
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Antibodies can be categorized into different isotypes based on the structure of their 

heavy chain. In mammals, there are five different isotypes present (IgA, IgD, IgE, IgG 

and IgM (Sompayrac 2008; Pier, et al. 2004; Geisberger, et al. 2006). Fish do not have 

IgG, IgA or IgE, and IgM is the main immunoglobulin in fish. Phylogenically, it is the first 

Ig to appear in lower vertebrates. In teleost fish IgM, IgD, IgZ or IgT and IgM-IgZ 

chimera have been reported. In mammals, IgM is pentameric, however in teleost fish, 

IgM is tetrameric in structure, and IgD has been found in catfish, Atlantic cod and 

Atlantic salmon, while IgZ, IgT and IgM-IgZ chimera have been identified from common 

carp, fugu, stickleback (Gasterosteus aculeatus), catfish, medaka (Oyzias latipes), 

rainbow trout and zebrafish (Stenvik and Jørgensen 2000; Savan, et al. 2005; Randelli, 

et al. 2008; Tian, et al. 2009; Gambón-Deza, et al. 2010; Castro, et al. 2013). Some of 

the functional activities of immunoglobulins are highlighted below in Figure 1.12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12(A-C). The function of immunoglobulins (A) preventing the 

antigen from binding its target by neutralising the antigen, (B) tagging a 

pathogen for destruction by macrophages or neutrophils, or (C) 

activating complement (Bear and Rintoul, 2013a) 
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1.4.2.2 T-cells and cytokine 

The T-cells are a type of lymphocyte acting in cell mediated immunity. The T-

lymphocytes are classified into helper T-cells (Th cells), cytotoxic T-cells (CTLs), 

memory T-cells, regulatory T-cells (TREG cells), natural killer T-cells (NKT cells) and 

mucosal associated invariant T-cells (MAITs) (Mak and Saunders 2005). In mammals 

memory CD4+ or CD8 T cells represent a small fraction of antigen-specific T cells 

present in the circulation  

 The Th cells are involved in activation of B-cell proliferation and differentiation, 

known as T-cell-dependent B-cell activation (Noelle and Snow 1992). The Th cells 

express CD4 glycoprotein on their surface and are referred to as CD4+ T-cells. The Th 

cells are activated by the presentation of peptide antigens to the TCR by antigen 

presenting cells (APCs) linked to a MHC class II molecules, as shown in Figure 1.13(A). 

The activated Th cells then rapidly divide and release cytokines, which regulate or 

promote the immune response. The Th cells can differentiate into Th1 or Th2 cells 

which secrete different cytokines profiles. The Th1 cells mediate cellular immunity 

against intracellular bacteria and viruses, whereas the Th2 cells promote humoral 

immunity against extracellular pathogens. The effector functions of Th1 cells are 

exerted in part by production of IFN-γ, IL-2 and lymphotoxin-α (LTα) and those of Th2 

cells by IL-4, IL-5, IL-10 and IL-13. The Th cells can also activate a CTL response, which 

destroy infected cells and tumor cells, and are known as CD8+ T cells because of the 

CD8 glycoprotein they express on their surface membrane. These cells recognize their 

target by binding to antigen associated with MHC class I, which is present on the 

surface of all nucleated cells as shown in Figure 1.13(B). 
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 There are three mechanisms of target cell destruction by CD8+ CTLs, i.e. the 

granule exocytosis pathway, the Fas pathway and the release of cytolytic cytokines 

(TNF, LTα and IFN-γ). In the granule exocytosis pathway, granules containing 

granzymes and perforin are released in close proximity to the target cell membrane. 

Granzymes and perforin enter the cell by an as yet uncharacterised mechanism and 

are captured in endolysosomal vesicles. Then apoptosis is activated by either a 

mitochondrial pathway or an unknown caspase-independent mechanism. Granzymes 

can also access the nucleus to induce DNA fragmentation directly. In the Fas pathway, 

Fas ligand (FasL), expressed on the surface of the activated CTL, binds to Fas expressed 

on the target cell, inducing caspase-8 activation and apoptosis mediated by either the 

mitochondrial pathway or direct caspase-3 cleavage (Mak and Saunders 2005).  

 Regulatory T-cells (TREG cells), also known as suppressor T cells, are involved in 

the secretion of soluble factors including IL-10, TGF-β, fibrinogen-like protein-2 (FLG-

2), granzyme and adenosine. There are two major classes of CD4+ TREG cells, natural 

occurring TREG cells and adaptive TREG cells. Naturally occurring TREG cells (CD4+, CD25+, 

FOXP3+ TREG cells) are thymus-derived. Adaptive TREG cells or inducible TREG cells (Tr1 

cells secrete IL-10; Th3 cells secrete TGF-β and IL-10 and FoxP3+ TREG cells) (Peterson 

2012).  

 Much research has been performed on T-cell activity in teleost fish. CTLs act to 

eliminate virus and are important for anti-viral adaptive immunity in teleost fish; the 

mRNA expression of CTL molecule such as CD8, TCR and MHC class I has been assessed 

in many fish species (Somamoto, et al. 2013). One such example is by Somamoto et. al. 

(2002), who found that cytotoxic cells from crucian carp were activated by crucian carp 
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haematopoietic necrosis virus and showed that virus-specific cytotoxic cells have a 

significant role in controlling the viral infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13(A-B). T–cell activation by antigen presenting cells. (A) CD4 is associated with 

helper and regulatory T cells. An extracellular pathogen is presented in association with the 

CD 4 molecule with antigen displayed in the binding deft of a MHC class II molecule. (B) CD8 

is associated with cytotoxic T cells. An intracellular pathogen is presented by MHC class I 

molecules, which interact by CD8 (Bear and Rintoul 2013b) 

 

1.4.2.3 MHC (response to bacteria and viruses) 

Antigen-presenting proteins, also known as MHC molecules, are cell surface molecules 

and are highly polymorphic heterodimeric glycoproteins (Klein, et al. 1997). Antigen 

processing is a mechanism that enzymatically cleaves the antigen into smaller pieces. 
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The antigen fragments are then brought to the cell’s surface and are associated with a 

specialized type of antigen-presenting protein. In humans, the MHC genes are divided 

into three subgroups, class I, class II and class III. MHC class I includes peptide-binding 

proteins, which select short sequences of amino acids for antigen presentation, one 

chain (α) whose ligands are the CD8 receptor borne by cytotoxic T-cells, and inhibitory 

receptors borne by NK cells. MHC class II is compound extracellular proteins of 

peptide-bindings protein and proteins assisting antigen loading onto MHC class II 

peptide-binding proteins, two chains (α and β), whose ligands are the CD4 receptors 

borne by helper T-cells. MHC class III are the other immune proteins outside antigen 

processing and presentation, such as components of the complement cascade, the 

cytokines of immune signalling and heat shock proteins buffering cells from stresses 

(Mak and Saunders 2005).  

 Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on 

cytotoxic T lymphocytes (CTLs) and target cells. The CTLs kill host cells harbouring 

intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 

to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, 

extracellular antigens are taken up by professional antigen presenting cells such as 

macrophages, dendritic cells and B cells to process those antigens and present the 

resulting peptides in association with MHC class II to CD4+ T helper cells.  

 In teleost fish, the first MHC molecule was identified in 1990 using PCR with 

degenerate primers (Grimholt and Lie 1998). In bony fish MHC class I and class II loci 

form separate linkage groups (Sato, et al. 2000). The activation of MHC depends on the 

pathogen i.e. whether it is an intracellular or extracellular. For example, MHC class I 
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was found to be stimulated following infection with the intracellular bacterium E. 

ictaluri in blue catfish (Peatman, et al. 2008). Moreover, virus infection with infectious 

salmon anemia virus (ISAV) in Atlantic salmon induced expression MHC class I pathway 

genes, but not MHC II-β. It was also found that acute phase infections by infectious 

hematopoietic necrosis virus (IHNV) induced MHC class Ia in rainbow trout (Hansen 

and La Patra 2002). On the other hand, Morrison, et al. (2006) found Neoparamoeba 

sp. associated with amoebic gill disease (AGD) induced MHC class II-β expression in 

Atlantic salmon, indicative of a Th2 type response associated with an antibody 

response. Extracellular bacteria (e.g. A. hydrophila) have also been shown to stimulate 

MHC class II-α production in purse red common carp (Cyprinus carpio Linnaeus) (Liu, et 

al. 2013). During recent years, genes encoding MHC class I and II, TCR and its co-

receptors CD8 and CD4 have been cloned in several fish species and antibodies have 

been developed to study protein expression in morphological and functional contexts 

(Fischer, et al. 2006). 

1.4.3 Cooperation between innate and adaptive immune responses 

 The initial immune response against the invading pathogens is through innate 

immunity, and this provides an early defence until the lymphocytes of the adaptive 

immune response are activated. The advantage of innate immunity is that it acts as the 

first line of defence allowing time for the adaptive immune response to come into 

play. With some infections, the innate immune response can stop the infection before 

the adaptive immune has time to come into play (Mak and Saunders 2005). Pro-

inflammatory cytokines induce the activation of the adaptive immune response, e.g. 

TNFα and IL1β produced by neutrophils and macrophages, to induce the migration of 
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phagocytic cells to the site of infection, which in turn present antigen to cells of the 

adaptive immune response (Secombes, et al. 2001).  

 The adaptive immune response is a more complicated system than the innate 

immune response, and can trigger many of the same effector cells employed by the 

innate system to remove pathogens. The cellular response of the innate immune 

system recognizes certain conserved antigens i.e PAMPs on a wide variety of 

pathogens and having recognised the pathogen then lyses it. However, this action is 

limited to a number of pathways. The development of the adaptive response is though 

the recognition of a pathogen, and which then results in the specific proliferation of 

lymphocytes directed against that particular pathogen. The activation of lymphocytes 

induces differentiation into other types of lymphocytes, such as effector lymphocytes 

for destroying the pathogen, or the secretion of cytokines that stimulate the innate 

response (Mak and Saunders 2005). A summary of cooperation between innate and 

adaptive immunity is shown in Figure 1.14. 

 

 

 

 

 

 

 

 

Figure 1.14. Cooperation between innate and adaptive immune responses 

(From Kaisho, 2007) 



Chapter 1 
 

37 | P a g e  
 

1.5 Aims of the study 

Despite Pangasianodon hypophthalmus being an economically important fish species in 

aquaculture there is little information available on the basic immune response of this 

species. Such information is essential if effective methods are to be developed to prevent 

and control diseases in the farming systems for this species. 

Thus, the specific objectives of this thesis were to:- 

1. Characterize IgM from different species within the family Pangasiidae with respect 

to molecular weight (whole molecule and H and L chains), and to determine if 

monoclonal antibodies developed against Pangasianodon hypophthalmus IgM 

cross reacted with IgM from the other Pangasiidae species. 

2. To develop and standardise functional assays to evaluate both innate and adaptive 

immune responses of P. hypophthalmus, and to use these assays to compare the 

response of P. hypophthalmus to live and killed A. hydrophila. 

3. To evaluate the effects of feeding different levels of fungal derived β-glucan on 

the immune response of P. hypophthalmus and compare this response to that 

obtained with commercial β-glucan derived from yeast. The effect of feeding these 

immunostimulants on the disease resistance of P. hypophthalmus to E. ictaluri was 

also examined. Ultimately, the purpose of this study was to formulate and test β-

glucan-containing diets for use by the Pangasius aquaculture industry. 

4. To identify immune genes and develop primers for immune gene expression in P. 

hypophthalmus, to compare the expression of immune genes in P. hypophthalmus 

fed with the different β-glucan supplemented diets and examine the gene 
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expression profiles in relation to immunostimulation with the β-glucan and their 

disease resistance against Edwardsiella ictaluri. 



Chapter 2 
 

39 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

2 Chapter 2 Characterisation of immunoglobulin M (Ig M) from fish 

within the family Pangasiidae  
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2.1 Introduction 

Fish within the family Pangasiidae are important for both commercial fisheries and 

aquaculture in Southeast Asia, with Pangasius bocourti, P. gigas, P. hypophthalmus, P. 

larnaudii and P. sanitwongsei having particular economic potential for aquaculture 

(Kwantong and Bart 2003; Sriphairoj, et al. 2010). Of these Pangasianodon 

hypophthalmus, in particular, is the most important species for aquaculture, with its 

culture developing rapidly within the Mekong riparian countries. It is considered a 

valued food fish of economic significance, especially in Vietnam (Nguyen 2009). 

Vietnam is currently one of the most successful primary food production sectors 

globally (Phuong and Oanh 2010), however, sever disease outbreaks as a result of 

farming pangasius in intensive culture systems means that a deeper knowledge of fish 

health and immunity is required for the development of methods to control these 

disease outbreaks. For example basic knowledge of their antibody response, a 

component of their humoral immune response, would be useful for vaccine 

development and to examine the host’s response to pathogens. Little is known about 

this response in pangasius or the structure and activity of their immunoglobulins. 

The immunoglobulin molecule itself is a heterodimer composed of two 

immunoglobulin heavy (H) chains and two light (L) chains. There are five different 

isotypes present in mammals based on the composition of the H chain (i.e. IgM (µ), IgD 

(δ), IgG (ɣ), IgA (α) and IgE (Ɛ)) (Zaccone, et al. 2008). The main immunoglobulin in fish 

is IgM (Wilson and Warr 1992). Dooley and Flajnik (2006) found three isotypes in 

cartilaginous fish i.e IgM, IgNAR, IgR in Little skate (Raja erinacea) and Clearnose skate 

(Raja eglanteria), and IgW in Nurse shark (Ginglymostoma cirratum), Sandbar shark 
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(Carcharinus plumbeus) and Horn shark (Heterodontus francisci). In teleost fish, various 

isotypes have been reported, namely IgM in Atlantic salmon, halibut, haddock and cod 

(Magnadóttir 1998), Indian major carp (Bag, et al. 2009) and African catfish (Rathore, 

et al. 2006), IgD in Atlantic salmon (Hordvik, et al. 1999) and rainbow trout (Ramirez-

Gomez, et al. 2012), IgT in rainbow trout (Hansen, et al. 2005) and Atlantic salmon 

(Tadiso, et al. 2011) and IgZ in zebrafish (Danilova, et al. 2005). 

Immunoglobulin M in higher vertebrates and cartilaginous fish is pentameric in 

structure (Kunihiko, et al. 1984), whereas teleost fish have tetrameric IgM (Acton, 

Weinheimer, Hall, et al. 1971; Magnadóttir 1998). In teleost fish, each monomer of 

IgM contains two heavy (H) chains and two light (L) chains with molecular weights 

ranging between 66-77 kDa and 23-26 kDa, respectively (Muiswinkel and Woo 1995), 

depending on the fish species (Table 2.1). The molecular weight of the whole IgM 

molecule of teleost fish is reported to range from 600-870 kDa by (Jurd 1985; Pilström 

and Bengtén 1996) and 608-900 kDa by (Muiswinkel and Woo 1995), again depending 

on the fish species being examined (Table 2.1) 

A variety of techniques have been used to purify and characterize fish IgM. 

Common methods for purification include affinity column chromatography 

(Magnadóttir 1998; Håvarstein, et al. 1988; Palenzuela, et al. 1996; Morrison and 

Nowak 2001; Rathore, et al. 2006; Suresh Babu, et al. 2008; Bag, et al. 2009; 

Choudhury and Prasad 2011; Huong Giang, et al. 2012) and partial purification using 

ammonium sulphate precipitation (Rombout, et al. 1993; Magnadóttir 1998; Uchida, et 

al. 2000; Huong Giang, et al. 2012). 
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Table 2.1. Comparison of the molecular weight of Immunoglobulin M heavy and light chains and whole IgM molecule for a variety of teleost fish 

Species 
Immunoglobulin M (kDa) 

References 
Heavy chain Light chain Total MW 

African catfish (Clarias gariepinus) 74.8 27.2 840 (Rathore, et al. 2006) 

Asian sea bass (Lates calcarifer) 83 27 896 (Choudhury and Prasad 2011) 

Atlantic cod (Gadus morhua L.) 
81 27.5 - (Pilström and Petersson 1991) 

- - 700-832 (Magnadóttir 1998) 

Atlantic salmon (Salmo salar) 
72 27 800 (Håvarstein, et al. 1988) 

- - 850-870 (Magnadóttir 1998) 

Channel catfish (Ictalurus punctatus) 70 23 - (Lobb and Clem 1983) 

Common carp (Cyprinus carpio L.) 70 25 - (Rombout, et al. 1993) 

European sea bass (Dicentrarchus labrax L.) 
78 27.5, 28.5 855 (Palenzuela, et al. 1996) 

- - 883 (Bourmaud, et al. 1995) 

Gilthead sea bream (Sparus aurata) 
70 25 - (Navarro, et al. 1993) 

  830 (Palenzuela, et al. 1996) 

Halibut (Hippoglossus hippoglossus) 72 26.5 830-933 (Magnadóttir 1998) 

Haddock (Melanogrammus aeglefinus) 72 26.5 700-840 (Magnadóttir 1998) 

Indian catfish/Asiatic catfish (Clarias batrachus)   863 (Swain, et al. 2004) 

Indian major carp or rohu (Labeo rohita (Ham.)) 85 23 850 (Suresh Babu, et al. 2008) 

Japanese eel (Anguilla japonica) 72 25 790 (Uchida, et al. 2000) 

Snapper (Pagrus auratus) 67.7-71.8 29-30.2 766 (Morrison and Nowak 2001) 

Striped catfish (Pangasianodon hypophthalmus) 
72 24,26 and/or 28-29 900 (Huong Giang, et al. 2012) 

70.1 26 798 (Sudhagar, et al. 2013) 

Strip trumpeter (Latris lineata) 86 28 926 (Covello, et al. 2009) 

Tilapia (Oreochromis niloticus) 90 30 900 (Rajavarthini, et al. 2000) 

Turbot (Scophthalmus maximus) 78 27 820 (Estevez, et al. 1993) 

White sturgeon (Acipenser transmontanus) 73 27-30 870 (Adkison, et al. 1996) 
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Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) has been 

widely employed to determine the molecular weight of the H chain and L chains and 

the molecular weight of whole IgM using 10-14 % polyacrylamide gels under reducing 

condition, or 3-5 % polyacrylamide, sometimes containing 0.5-0.6% agarose, under 

non-reducing conditions (Håvarstein, et al. 1988; Navarro, et al. 1993; Magnadóttir 

1998; Rajavarthini, et al. 2000; Uchida, et al. 2000; Morrison and Nowak 2001; 

Rathore, et al. 2006; Bag, et al. 2009; Covello, et al. 2009). Gradient gels have also 

been used under both reducing (10-15%) and non-reducing (2-16%) conditions (i.e 

native gels) to determine the molecular weight of H/L chains (Pilström and Petersson 

1991; Bourmaud, et al. 1995; Uchida, et al. 2000; Choudhury and Prasad 2011) and 

whole IgM (Morrison and Nowak 2001; Håvarstein, et al. 1988; Palenzuela, et al. 1996; 

Choudhury and Prasad 2011; Suresh Babu, et al. 2008), respectively. Two-dimensional 

gel electrophoresis (2-DE) has also been used to determine the molecular weight of 

Olive flounder (Paralichthys olivaceus) IgM (Shin, et al. 2007).  

Western blotting of IgM following the SDS-PAGE process, has been used to help 

characterise fish IgM for a variety of fish species using both monoclonal and polyclonal 

antibodies raised against the IgM being investigated (Pilström and Petersson 1991; 

Navarro, et al. 1993; Rombout, et al. 1993; Magnadóttir 1998; Uchida, et al. 2000; Bag, 

et al. 2009; Choudhury and Prasad 2011).  

Determining the molecular weight of the whole IgM molecule accurately can be 

difficult using native gels and therefore a variety of alternative approaches have been 

reported. For example gel filtration chromatography (Acton, Weinheimer, Dupree, et 

al. 1971; Håvarstein, et al. 1988; Bourmaud, et al. 1995; Palenzuela, et al. 1996; 
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Magnadóttir 1998; Rajavarthini, et al. 2000; Morrison and Nowak 2001; Covello, et al. 

2009; Huong Giang, et al. 2012) and sedimentation velocity analytical 

ultracentrifugation (SV) (Acton, et al. 1971; Acton, et al. 1971; Hall, et al. 1973; 

Kunihiko, et al. 1984) have been used. 

Analytical ultracentrifugation (AUC) is used for the quantitative analysis of 

macromolecules in solution and is used to study bio-macromolecules in a wide range 

of solvents and over a wide range of solute concentrations. There are two types of AUC 

(Cole, et al. 2008), sedimentation velocity (SV) and sedimentation equilibrium (SE). The 

former is performed at speeds high enough for the centrifugation of solute away from 

the centre of rotation to be monitored as the rate of movement of a sedimentation 

boundary (Harding and Winzor 2001), and is used to determine the sedimentation 

coefficient - a measure of molecular shape, mass and hydration. The SE generates 

equilibrium concentration gradients at lower centrifugal fields, and these are analysed 

to determine molecular mass, assembly stoichiometry and association constants (Cole, 

et al. 2008). 

The aim of the present study was to purify and fully characterize the IgM 

molecule from the family Pangasiidae with respect to molecular weight (whole 

molecule and H and L chains), and to determine if anti-P. hypophthalmus IgM 

monoclonal antibodies cross reacted with a variety of other Pangasiidae species IgM. 
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2.2 Materials and methods 

2.2.1 Fish and serum collection 

Four serum samples were collected from P. hypophthalmus obtained from a local fish 

farm in Supanburi province, Thailand and a local fish farm in Can Tho province, 

Vietnam, respectively, weighing 73 ±10 g and 55 ±6 g respectively. Serum from P. 

borcoti (105 ±29 g) was also collected in Can Tho Province, Vietnam. The other fish 

species were collected from three local fish farms in Nakornsawan, Supanburi and 

Rachaburi Provinces in Thailand. Four serum samples were collected per species for P. 

gigas (52 ±6 g), P. hypophthalmus cross breed (73 ±10 g), P. larnaudii (30 ±10 g), P. 

sanitwongsei (42 ±8 g), Hamibragus wyckioides (58 ±6 g), Hamibragus filamentus (65 

±8 g), Clarias bactracus (383 ±115 g), Clarias Macrocephalus (21 ±3 g) and Cyprinus 

carpio (51 ±22 g). 

Fish were anesthetized with 100 mg/L benzocaine and blood was collected 

from the caudal vein. After clotting, the blood was centrifuged at 3,000 xg for 5 min 

and the serum was stored at -80oC until used. 

2.2.2 Immunoglobulin purification 

Immunoglobulins were purified from the serum samples by sodium sulphate (Na2SO4) 

precipitation and/or affinity column chromatography.  

2.2.2.1 Sodium sulphate precipitation 

Three different percentages of Na2SO4 (BDH Laboratory supplies, England), 14%, 16% 

and 20%, were used to precipitate the serum of P. hypophthalmus. The serum samples 

were defrosted and warmed to 25oC for 5 min (in a water bath) before adding 14%, 

16% or 20% (w/v) Na2SO4 to the sample. These were incubated with Na2SO4  at 25oC 
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for 5 min, then centrifuged at 17,000 xg for 15 min. The supernatant was removed and 

the precipitate was washed twice with 14%, 16% or 20% of Na2SO4, warmed to 25oC 

and centrifuged, as described above. The precipitate was finally dissolved in phosphate 

buffer saline (PBS; 0.02M Phosphate, 0.15M NaCl, pH 7.2) to its original volume. The 

serum samples from the other species were precipitated with 14% Na2SO4. Samples 

were stored at -20oC until required. 

2.2.2.2 Affinity column chromatography purification 

A HiTrap affinity column (GE Healthcare, UK) was used to purify IgM from the serum of 

P. hypophthalmus, P. hypophthalmus cross breed, P. larnaudii, P. sanitwongsei, P. 

borcoti, Hamibragus filamentus, Hamibragus wyckioides, Clarias bactracus, Clarias 

Macrocephalus and Cyprinus carpio. The procedure was conducted according to the 

manufacturer’s instructions. Binding buffer (20 mM sodium phosphate; BDH 

Laboratory Supplies, 0.8 M ammonium sulphate, pH 7.5), elution buffer (20 mM 

sodium phosphate, pH 7.5) and regeneration buffer (20mM sodium phosphate, 30% 

isopropanol, pH 7.5) were pumped through the column to equilibrate the system. The 

serum samples were diluted 1:50 in binding buffer and passed through a 0.22 µm filter 

(Fisherbrand Inc., Ireland) to remove particulates. The sample was loaded on to the 

column followed by the binding buffer to increase the specificity of binding and the 

IgM was eluted from the column into fractions using the elution buffer (20mM sodium 

phosphate, pH 7.5).The sample fractions containing the IgM were then pooled and 

placed in a 10 kDa centrifuge concentrating tube (Amicon, Millipore Inc., Ireland) and 

washed 3 times with elution buffer by centrifuging at 3,000 xg at 4oC for 20 min. 

Purified samples were frozen at -20oC until required. 



Chapter 2 
 

47 | P a g e  
 

2.2.3 Protein determination 

The protein concentration of the purified IgM was determined using a BCATM Protein 

Assay Kit (Thermo scientific, UK) using the manufacturer’s instructions. A standard 

curve of bovine serum albumin was used as a reference to determine the protein 

concentration (BSA, Sigma, UK).  

2.2.4 Electrophoresis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

determine the molecular weights of the H and L chains of purified IgM, using 12.5% 

Next-GelTM (Amresco Inc., USA), following the basic procedure described by Laemmli 

(1970). Briefly, reservoir buffer was added to the inner and outer chamber of the gel 

electrophoresis apparatus (Mighty small II, Hoefer Inc., USA). Samples (approximately 

1 mg ml-1) were mixed in ratio of 1:1 with 2x sample buffer (0.5 M Tris-HCl; 20% 

glycerol; 4% Sodium dodecyl sulfate (SDS); 0.3% dithiothreitol (DTT); 0.002% (w/v) 

bromophenol blue). The samples were then boiled in a water bath for 4 min and 

centrifuged at 16,000 xg for 2 min. Pre-stained protein molecular weight markers were 

used in a range of 10-250 kD (Bio-Rad Laboratories, USA). Gels were run at 150 V until 

the dye front reached the bottom of the gel, after which the gels were removed from 

the cassettes and stained with Coomassie blue stain (Triple Red Laboratory 

Technology; England) overnight or silver stain (Sigma, UK). Gels were stored in 

BioDesignGelWrapTM membrane (FisherScientific, BioDesign Inc., New York) and 

scanned to determine the molecular weights of the bands. 
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2.2.5 Western blot  

The SDS gels were run as described above and proteins from the gels were transferred 

onto nitrocellulose paper (AmershamTM,GE Healthcare, UK) using trans-blot buffer (0.2 

M glycine; 0.025 M Tris; 20% methanol, pH 8.3). The gels were blotted onto the 

membrane using a trans-blotter (ThermoFisher, UK), following the manufacturer’s 

instructions and blots were run at 60 V for 30 min. The nitrocellulose paper was then 

incubated with 1% w/v bovine serum albumin (BSA; Sigma, UK) in Tris buffered saline 

(TBS; 10 mM Tris, 0.5 M NaCl, pH 7.5) for 60 min to block non-specific binding sites. 

After blocking, the paper was washed three times with 5 min washes of Tris buffered 

saline with Tween 20 (TTBS; 0.1% Tween 20 in TBS). The membrane was then 

incubated with appropriate anti-P. hypophthalmus IgM monoclonal antibodies for 1 h, 

following by biotin anti-mouse IgG (1:250 in PBS; 0.02M Phosphate, 0.15M NaCl pH 

7.2) (Sigma, UK) for 1 h and Neutravidin-HRP (1:250 in PBS) (Sigma, UK) for 1 h, 

washing between steps as described above. Finally, the nitrocellulose paper was 

washed with TBS for 1 min and the 4CN peroxidase substrate kit (KPL, USA) was adding 

until bands were visualized. The reaction was stopped with distilled water for 10 min. 

2.2.6 Monoclonal antibody production 

The hybridoma cells (SP1) producing antibody specific for P. hypophthalmus IgM were 

provided by the Aquatic Vaccine Unit, Institute of Aquaculture and University of 

Stirling. The hybridoma cells were cultured and supernatants screened in this project 

to characterize the antibodies, which were then used in Western blot and ELISA to 

assist in the characterisation of IgM from different fish species.  
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Supernatants were screened by an indirect ELISA, as described below (Section 

2.2.8), and positive hybridoma cells were grown and subcultured every 2-4 days. 

Hybridoma cells were subcloned 3 times and screened by ELISA. Selected clones 

provided for this project were expanded in 150 cm2 cell culture flasks and cultured for 

10 days. Cells and cell debris were removed by centrifugation at 4oC, 2000 xg for 10 

min and supernatant collected. After that, supernatants were concentrated using a Pall 

LV centramate and the anti-P. hypophthalmus IgM monoclonal antibodies were 

purified using a HiTrap Protein G affinity column (GE Healthcare, UK), as described in 

Section 2.2.2.2, but using the following binding buffer (20 mM sodium phosphate; BDH 

Laboratory Supplies, pH7.5) and elution buffer (0.1 M glycine-HCL; Sigma, pH2.7) for 

purification.  

2.2.7 Monoclonal antibody isotyping  

Mouse monoclonal antibody isotype test kits (AbD Serotec, UK) were used to isotype 

the monoclonal antibodies. Anti-P. hypophthalmus IgM monoclonal antibodies were 

diluted in PBS containing 1% w/v bovine serum albumin (BSA; Sigma, UK) to a final 

concentration of 1 µg ml-1. Then 150 µl of the diluted sample was added to the 

development tube and incubated at 22oC for 30 sec. Tubes were vortexed briefly to 

ensure that the coloured microparticle solution was completely re-suspended. One 

isotyping strip was then placed with the solid red end at the bottom, into each 

development tube and incubated to 5-10 min until the positive flow control bands 

appeared. 



Chapter 2 
 

50 | P a g e  
 

2.2.8 Enzyme-Linked Immunosorbent Assay (ELISA) 

An indirect ELISA was used to screen the anti- P. hypophthalmus monoclonal 

antibodies, and to determine if these cross reacted with IgM from the other fish 

species. 

2.2.8.1 Indirect ELISA using P. hypophthalmus IgM and anti-P. hypophthalmus IgM 

monoclonal antibodies  

ELISA plates (Immulon Inc., USA) were coated with 100 µl of purified P. hypophthalmus 

IgM at 10 µg/ml in coating buffer (0.05 M carbonate-bicarbonate, pH 9.6; Sigma, USA). 

The plates were incubated overnight at 4oC and then washed three times with low salt 

wash buffer (LSW; 0.02M Tris base, 0.38 M NaCl, 0.05% v/v Tween-20, pH 7.3). Plates 

were post-coated with 3% w/v Casein (dried milk) in distilled water, 250 µl well-1 to 

block non-specific binding. The ELISA plates were incubated for 2 h at 22oC, and then 

washed 3 times with LSW. After washing, the appropriate anti-P. hypophthalmus IgM 

monoclonal antibody supernatant, together with PBS used as a negative control, were 

added (100 µl well-1) and incubated for 1 h at 22oC. The ELISA plates were washed 5 

times with high salt wash buffer (HSW; 0.02M Tris base, 0.5 M NaCl, 0.1% v/v Tween-

20), incubating for 5 min on the last wash. Goat anti-mouse IgG conjugated with 

horseradish peroxidase (Sigma, UK), diluted 1:4,000 in conjugate buffer, was added to 

the wells (100 µl well-1) for 1 h at RT, and the plate was then washed with HSW as 

previously described. Chromogen (42 mM 3’3’5’5’-tetramethylbenzidine 

dihydrochloride (Sigma, UK), in acetic acid (BDH Laboratory Supplies): distilled water 

(1:2) was added to substrate buffer (0.1 M citric acid; BDH Laboratory Supplies, 0.1 M 

sodium acetate; Sigma,UK, pH 5.4) (150 µl chromogen and 15 ml substrate buffer and 



Chapter 2 
 

51 | P a g e  
 

5 µl H2O2 substrate) was added to the wells of the ELISA plate (100 µl well-1) and 

incubated for 10 min at 22oC. The reaction was stopped with 50 µl well-1 of 2M H2SO4 

(BHD Laboratory Supplies). Finally, the ELISA plate was read at 450 nm using an ELISA 

reader (Dynex Technologies Inc., USA) 

2.2.8.2 Indirect ELISA to determine cross-reaction between anti-P. hypophthalmus 

monoclonal antibodies and IgM from different fish species 

ELISA plates (Immulon Inc., USA) were coated with 100 µl of purified IgM from 

different fish species, using P. hypophthalmus IgM as the positive control. Affinity 

purified IgM from P. hypophthalmus, P. hypophthalmus cross breeding P. gigas, P. 

larnaudii, P. sanitwongsei, P.borcoti, Hamibragus filamentus, Hamibragus wyckioides, 

Clarias bactracus, Clarias Macrocephalus and Cyprinus carpio and 14% Na2SO4 

precipitation IgM from P. hypophthalmus, P. hypophthalmus cross breeding P. gigas, P. 

larnaudii, P. sanitwongsei, P.borcoti, Hamibragus filamentus, Hamibragus wyckioides, 

Clarias bactracus, Clarias Macrocephalus and Cyprinus carpio was used. All other 

procedures were as previously described in Section 2.2.8.1. 

2.2.9 Analytical ultracentrifugation (AUC) 

A number of assumptions and calculations were made during sedimentation velocity 

analytical ultracentrifugation (SV-AUC) to take into account the temperature during 

centrifugation, the buffer composition and amino acid composition of the protein 

molecule being analysed. 

2.2.9.1 Partial specific volume and buffer density and viscosity calculations 

The amino acid sequence (H and L chain) of catfish IgM was used to calculate the 

partial specific volume (v̅) of the IgM protein (Table 2.2), and density (ρ) and viscosity 
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(η) were calculated for the buffer (PBS) at two temperatures using the SENTERP 

program (Laue, et al. 1992), as shown in Table 2.3. 

 

Table 2.2. The amino acid composition of heavy and light chains of channel catfish (Ictalurus 

punctatus) immunoglobulin M (Acton, et al. 1971b). 

Amino acid 
Residues per molecule 

Total 
Heavy chain Light chain 

Lysine 40 11 51 

Histidine 8 3 12 

Arginine 18 5 23 
Aspartic acid 54 18 72 
Threonine 51 20 71 
Serine 62 31 93 
Glutamic acid 67 24 91 
Proline 41 18 59 
Glycine 39 22 61 
Alanine 34 12 46 
Valine 43 18 61 
Methionine 6 1 7 
Isoleucine 25 5 30 
Leucine 43 18 71 
Tyrosine 18 7 25 
Phenylalanine 22 6 28 
S-Carboxy-methyl-cysteine 12 5 17 
Tryptophan 15 3 18 

 

Table 2.3. The partial specific volume, density and viscosity of protein at 4oC and 20oC 

calculated using the SENTERP program’ (Laue, et al. 1992). 

Calculation value 20oC 4oC 

Buffer density (ρ) g ml-1 1.02085  1.02266  

Buffer viscosity (η) Poise 0.010458 0.016355 

Partial specific volume ( ̅) ml g-1 0.7828  0.722  

Partial specific volume with N-Acetylglucosamine ( ̅) ml g-1 0.718  0.725  

Water density (ρ) g ml-1 0.9982   

Water viscosity (η) Poise 0.01002  

*Frictional coefficient 

 
*The equation of frictional coefficient  
 
 
 

= 1.596 
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s20,w = Sedimentation coefficient at 20 oC in water (units Svedberg S = 10-13 s) 

sT,B = Sedimentation coefficient at 4oC in buffer (units Svedberg S = 10-13 s) 

      = Water viscosity at 20oC (Poise) 

     = Buffer viscosity at 4oC (Poise) 

v̅ = Partial specific volume of molecule (ml g-1)  

ρ = Density of solvent (g ml-1)  

 

2.2.9.2 Sedimentation velocity ultracentrifugation (SV) 

Sedimentation velocity ultracentrifugation was performed using IgM prepared by 

Hitrap purification with P. hypophthalmus IgM at 0.74 mg ml-1 and P. borcoti at 3.3 mg 

ml-1. The Beckman Coulter Optima XL-I Analytical Ultracentrifuge (Palo Alto, USA) with 

an An-50 Ti 8 hole rotor was operated at 4oC. Samples were diluted with phosphate 

buffered saline (PBS; 0.02 M sodium phosphate, 0.15 M sodium chloride, pH 7.2) to 

1.0, 0.7, 0.4, 0.2 mg ml-1. Samples were loaded into one side of the double sector (12 

mm path length) centrepiece, made of charcoal-filled Epon, and the other side was 

loaded with PBS. The cells were assembled and weighed to ensure even balancing. The 

rotor with the cells was then placed into the centrifuge and cooled under vacuum for 

several hours until the experimental temperature reached 4oC. The samples were then 

centrifuged at 45,000 rpm (NB rpm is normally used for AUC rather than g force) for 17 

h 44 min. Both absorbance and interference optics were used to record scans over a 

radial range of 6.0-7.25 cm. Each cell was scanned every 8 min and a total of 200 scans 

was taken. 

Data were analysed using SEDFIT version 13 (Schuck 2000; Schuck, et al. 2002; 

Schuck 2003) to determine the number of species in the samples and to obtain their 

sedimentation coefficients using the continuous distributions c(s) Lamm equation 
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𝑆 =
𝑀(1−v̅𝜌)

Ν   f
 

A  

model (Cole, et al. 2008). The non-interacting discrete species model (Schuck 2005) 

was used to obtain the relationship between sedimentation coefficients, molar mass 

and frictional coefficient; this model uses finite element analysis. 

 

 

S = Sedimentation coefficient (units Svedberg S = 10-13 s) 

  = Molar mass (g mol-1) 

v̅ = Partial specific volume of molecule (ml g-1)  

ρ = Density of solvent (g ml-1)  

NA = Avogadro's number (number of molecules in a mole) 

f = frictional coefficient (g s-1) 

 

The sedimentation coefficients (at 4oC) were then standardised to 20°C (s20,w), using 

the frictional coefficient equation (Table 2.3.), and a graph plotted against protein 

concentration to obtain the sedimentation coefficient at infinite dilution (s ) from 

the y intercept. The following equations were used to calculate the sedimentation 

coefficient and standard value concentration at 20oC. 

2.2.9.3 Homology modelling of immunoglobulin M (IgM)  

The protein structure and function prediction used was SOMO modelling (Byron 2008; 

Brookes, et al. 2010) or hydrodynamic bead modelling using SOMO software 

(https://www.ultrascan.uthscsa.edu/SOMO). The L and H chain amino acid sequences 

from Human (Homo Sapia) were used to generate the model of IgM with tetrameric 

structure. 

   

20,w

0
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2.3 Results 

2.3.1 Purification of immunoglobulin M (IgM) from family Pangasiidae and other 

fish species 

Serum (0.5 ml) from fish was purified using Na2SO4 or affinity column chromatography 

(HiTrap). The yield of protein is presented in Table 2.4.  

2.3.2 Characterisation of immunoglobulin M (IgM) from family Pangasiidae 

The protein profiles of P. hypophthalmus IgM, purified by different methods, were 

examined by SDS-PAGE to determine the molecular weight of the H and L chains of the 

IgM molecule. The banding profiles obtained by SDS-PAGE for the 14% and 16% 

Na2SO4 precipitated IgM were very similar, but the intensity and clarity of the banding 

profile obtained for the former was better than either the 16% Na2SO4 or 20% Na2SO4 

precipitated serum as there appeared to be less background staining (Figures 2.1; 

Lanes 6, 7 and 8). The IgM purified using the HiTrap affinity column (Figures 2.1; Lane 

1, 2, 3, 4 and 5) showed the least background staining and the best clarity on the gels. 

It was noted all bands present in the HiTrap purified IgM could be found in the Na2SO4 

precipitated IgM. 

There were difference banding profiles for the IgM protein purified from the 

various pangasiidae family members as well as and the other fish species under 

reduced condition in SDS-PAGE, as shown when stained with Coomassie blue and silver 

staining following Na2SO4 purification (Figure 2.2(A)) and affinity column 

chromatography (Figures 2.2(B and C). For example, as shown for P. sanitwongsei IgM 

(lanes 5 of Figure 2.2), where two bands around 25 kDa were identified by silver 

staining but only one was apparent with Coomassie blue staining. 
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Table 2.4. Protein concentration of immunoglobulin M from Pangasius and other fish 

species following purification by ammonium sulphate precipitation and affinity 

column chromatography 

Fish species 
Concentration (µg/ml) 

14% Na2SO4 HiTrap 

P.hypophthalmus 2,792 1,541 

P.hypophthalmus 3,386* - 

P.hypophthalmus 7,067# - 

P. hypophthalmus x P.gigas 5,229 383 

P. gigas 2,091 464 

P. larnaudii 2,479 652 

P. sanitwongsei 2,823 267 

P.borcoti 4,596 1,450 

Hemibragus filamentus 4,200 322 

Hamibragus wyckioides 1,023 291 

Clarias bactracus 4,829 687 

Clarias Macrocephalus 953 81 

Cyprinus carpio 2,304 2,467 

*16% Na2SO4; 
#20% Na2SO4 

 

The estimated molecular weight of the H chain of IgM from P. hypophthalmus was 70-

72 kDa and L chain was 25-26 kDa. The L chains of IgM from the other fish species 

were similar to P. hypophthalmus (Table 2.5), while the IgM H chains differed with P. 

hypophthalmus x P. gigas 75 kDa, P. gigas and P. larnaudii 76 kDa, P. sanitwongsei 69 

kDa, P. borcoti 75 kDa, Hamibragus wyckioides 75 kDa, Hemibragus filamentus 73 kDa, 

Clarias bactracus 74 kDa, Clarias Macrocephalus 73 kDa, Cyprinus carpio 70kDa. 
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Figure 2.1. SDS-PAGE (12.5%) of Pangasianodon hypophthalmus IgM under reducing 

conditions. The IgM was purified from serum using affinity column chromatography and 

Na2SO4 precipitation (Staining with Coomassie blue). RM=Rainbow marker 10-250 kDa, 

1-5=five serum samples of P. hypophthalmus IgM purified by affinity chromatography 

(HiTrap), 6=20% Na2SO4 precipitation of serum, 7=16% Na2SO4 precipitation of serum and 

8=14% Na2SO4 precipitation of serum 

Table 2.5. Molecular weight of IgM heavy chain and light chain from Family Pangasiidae 

and other fish species, estimated by SDS-polyacrylamide gel electrophoresis 

Species 
Molecular Mass (kDa) 

Heavy chain Light chain 

P. hypophthalmus (Thailand)  70 25 

P. hypophthalmus (Vietnam)  72 26 

P. hypophthalmus x P.gigas 75 26 

P. gigas  76 26 

P. larnaudii  76 27 

P. sanitwongsei  69 25 

P. borcoti 75 23 

Hamibragus wyckioides 75 23 

Hemibragus filamentus  73 25 

Clarias bratracus  74 27 

Clarias macrocephalus  73 24 

Cyprinus carpio  70 25 
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Figure 2.2(A-C). SDS-PAGE (12.5%) of IgM purified by 14% Na2SO4 precipitation of serum with Coomasie blue stain (A) and Hitrap purified IgM from the 

serum with silver stain (B and C) of Family Pangasiidae and other fish species under reducing conditions. Staining with silver stain.  

 (A) PM=Protein marker 10-250 kDa, 1=P. hypophthaplus (Vietnam), 2=P. gigas, 3=P. hypophthalmus (Thailand), 4=P. larnaudii, 5=P. sanitwongsei, 

6=Hemibragus filamentus, 7=Clarias bartracus, 8=Clarias macrocephalus, 9=Cyprinus carpio  

(B) RM=Rainbow marker 10-250 kDa, 1=P. hypophthalmus (Thailand), 2=P. hypophthalmus x P. gigas, 3=P. gigas, 4=P. larnaudii, 5=P. sanitwongsei, 6=P. 

borcoti, 7=Hamibragus wyckioides, 8=Clarias bartracus, 9=Cyprinus carpio  

(C) RM=Rainbow marker 10-250 kDa, 1=P. hypophthalmus (Thailand), 2=P. hypophthalmus x P. gigas, 3=P. gigas, 4=P. larnaudii, 5=P. sanitwongsei, 

6=Hamibragus wyckioides, 7=Clarias bartracus, 8=Clarias macrocephalus, 9=Cyprinus carpio 

(A)                                                                                  (B)                                                                               (C) 
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2.3.3 Characterisation of anti- P. hypophthalmus IgM monoclonal antibodies 

The supernatant of the different hybridoma cell lines provide by the Aquatic Vaccine 

Unit producing anti-P. hypophthalmus mAbs were screened by indirect ELISA to 

determine specificity. The cells were cloned three times to ensure that the antibodies 

being produced were monoclonal. This established that hybridoma cells 1, 2, 7, 18, 23 

and 28 produced positive results against P. hypophthalmus IgM after cloning (Table 

2.6). Thus, six anti- P. hypophthalmus IgM mAbs were produced. These were affinity 

purified and then isotyped and the results indicated that mAbs 1, 2, 7, 18 and 23 were 

IgG1, while mAb 28 was isotype IgG2. In addition, all the mAbs had kappa light chains 

(Table 2.7) 

Table 2.6. Screening of supernatants by indirect ELISA following cloning of hybridoma 

cells producing anti- P. hypophthalmus IgM antibodies 

Anti- P. hypophthalmus IgM 

monoclonal antibodies 
1st Cloning 2nd Cloning 3rd Cloning 

1 √ √ √ 

2 √ √ √ 

3 √ √ - 

5 √ - - 

6 √ √ - 

7 √ √ √ 

15 √ - - 

16 √ √ - 

18 √ √ √ 

23 √ √ √ 

26 √ - - 

28 √ √ √ 
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Table 2.7. Isotyping of anti- P. hypophthalmus IgM monoclonal antibodies 

Anti- P. hypophthalmus IgM 

monoclonal antibodies 
Heavy chain type Light chain type 

1 Ig G1 Kappa 

2 Ig G1 Kappa 

7 Ig G1 Kappa 

18 Ig G1 Kappa 

23 Ig G1 Kappa 

28 Ig G2a Kappa 

 

 

2.3.4 Characterisation of immunoglobulin M (IgM) from family Pangasiidae and 

other fish species using anti-P. hypophthalmus IgM monoclonal antibodies 

2.3.4.1 ELISA 

Six anti-P. hypophthalmus IgM mAbs (1, 2, 7, 18, 23 and 28) were found to react with 

P. hypophthalmus IgM by ELISA (Table 2.8 and 2.9). All of the mAbs also cross-reacted 

with the IgM from the other members of the Pangasiidae family and with the IgM from 

the other fish species tested (P. hypophthalmus, P. hypophthalmus cross breeding P. 

gigas, P. larnaudii, P. Sanitwongsei, Hamibragus filamentus, Hamibragus wyckioides, 

Clarias bactracus, Clarias Macrocephalus and Cyprinus carpio). The antibodies reacted 

with both sodium sulphate precipitated IgM and HiTrap purified IgM. 
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Table 2.8. Screening of anti-Pangasianodon hypophthalmus IgM monoclonal antibodies by ELISA against Na2SO4 purified IgM from different fish 

species (P. hypophthalmus, P. hypophthalmus cross breeding P. gigas, P. larnaudii, P. sanitwongsei, Hamibragus filamentus, Hamibragus 

wyckioides, Clarias bactracus, Clarias Macrocephalus and Cyprinus carpio).  

Fish Species IgM 

(14% Na2SO4 precipitated) 

mAb 1 mAb 2 mAb 7 mAb 18 mAb 23 mAb 28 

P. hypophthalmus 1.616 ± 0.004 1.573 ± 0.037 1.211 ± 0.081 1.656 ± 0.009 1.719 ± 0.004 1.680 ± 0.006 

P. hypophthalmus (16% Na2SO4) 1.705 ± 0.086 1.646 ± 0.039 1.378 ± 0.035 1.756 ± 0.022 1.817 ± 0.030 1.818 ± 0.064 

P. hypophthalmus (20% Na2SO4) 1.644 ± 0.017 1.585 ± 0.015 1.184 ± 0.018 1.694 ± 0.016 1.725 ± 0.006 1.788 ± 0.004 

P. hypophthalmus x P. gigas 1.875 ± 0.011 1.889 ± 0.007 1.635 ± 0.076 1.51 ± 0.061 1.832 ± 0.055 1.776 ± 0.023 

P.  gigas 1.556 ± 0.035 1.526 ± 0.029 1.099 ± 0.021 1.528 ± 0.024 1.621 ± 0.001 1.506 ± 0.042 

P.  larnaudii 1.897 ± 0.008 1.919 ± 0.042 1.419 ± 0.622 1.565 ± 0.025 1.731 ± 0.045 1.907 ± 0.021 

P. Sanitwongsei 2.182 ± 0.083 2.146 ± 0.087 2.112 ± 0.142 1.783 ± 0.132 2.073 ± 0.083 2.156 ± 0.177 

P. borcoti 1.985 ± 0.074 1.859 ± 0.084 1.821 ± 0.063 1.654 ± 0.085 1.995 ± 0.063 1.987 ± 0.097 

Hemibragus filamentus 1.324 ± 0.074 1.304 ± 0.045 1.304 ± 0.056 0.869 ± 0.021 1.814 ± 0.139 1.746 ± 0.007 

Hamibragus wyckioides 1.564 ± 0.085 1.685 ± 0.069 1.589 ± 0.087 1.258 ± 0.074 1.789 ± 0.083 1.657 ± 0.036 

Clarias bactracus 1.922 ± 0.047 1.917 ± 0.006 1.920 ± 0.051 1.713 ± 0.012 1.825 ± 0.014 1.782 ± 0.093 

Clarias Macrocephalus 2.314 ± 0.450 2.326 ± 0.159 2.280 ± 0.531 2.053 ± 0.580 2.231 ± 0.342 2.203 ± 0.556 

Cyprinus carpio 1.472 ± 0.005 1.745 ± 0.148 1.679 ± 0.029 0.699 ± 0.016 0.900 ± 0.035 0.535 ± 0.572 

* Results are expressed as absorbance at 450 nm (Mean ± SD, n=3)  
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Table 2.9. Screening of anti-Pangasianodon hypophthalmus IgM monoclonal antibodies by ELISA against HiTrap affinity column purified IgM from 

different fish species (P. hypophthalmus, P. hypophthalmus cross breeding P. gigas, P. larnaudii, P. sanitwongsei, Hamibragus filamentus, 

Hamibragus wyckioides, Clarias bactracus, Clarias Macrocephalus and Cyprinus carpio).  

Fish Species IgM mAb 1 mAb 2 mAb 7 mAb 18 mAb 23 mAb 28 

HiTrap P. hypophthalmus 1.952 ± 0.034 2.006 ± 0.014 1.903 ± 0.131 2.064 ± 0.307 1.957 ± 0.021 2.104 ± 0.195 

HiTrap P. hypophthalmus cross breeding 1.968 ± 0.049 2.050 ± 0.088 2.034 ± 0.250 2.083 ± 0.060 1.745 ± 0.006 1.944 ± 0.074 

HiTrap P. gigas 1.873 ± 0.198 2.044 ± 0.076 2.161 ± 0.112 2.003 ± 0.120 1.887 ± 0.182 1.934 ± 0.089 

HiTrap P. larnaudii 1.999 ± 0.197 2.07 ± 0.154 2.164 ± 0.296 2.23 ± 0.262 2.114 ± 0.003 2.118 ± 0.054 

HiTrap P. sanitwongsei 1.991 ± 0.164 2.043 ± 0.027 2.012 ± 0.093 2.145 ± 0.049 1.865 ± 0.104 1.872 ± 0.035 

HiTrap P. borcoti 1.998 ± 0.098 1.987 ± 0.065 1.895 ± 0.069 1.965 ± 0.085 1.999 ± 0.086 1.985 ± 0.098 

HiTrap Hamibragus filamentus 1.034 ± 0.047 1.025 ± 0.088 1.882 ± 0.028 1.281 ± 0.189 2.004 ± 0.081 1.983 ± 0.113 

HiTrap Hamibragus wyckioides 1.859 ± 0.098 1.758 ± 0.086 1.897 ± 0.064 1.652 ± 0.075 1.985 ± 0.063 1.906 ± 0.038 

HiTrap Clarias bactracus 1.988 ± 0.099 1.984 ± 0.274 2.015 ± 0.062 1.952 ± 0.012 1.849 ± 0.149 1.685 ± 0.251 

HiTrap Clarias Macrocephalus 1.837 ± 0.048 1.518 ± 0.029 1.796 ± 0.087 1.865 ± 0.061 1.543 ± 0.026 1.803 ± 0.023 

HiTrap Cyprinus carpio 1.654 ± 0.048 1.593 ± 0.018 1.624 ± 0.014 1.736 ± 0.117 1.038 ± 0.024 1.761 ± 0.134 

* Results are expressed as absorbance at 450 nm (Mean ± SD, n=3) 
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2.3.4.2 Western blot analysis 

The mAbs were also tested in western blot to determine if they recognised the H or L 

chains of the IgM molecules. The reaction of the various anti-P. hypophthalmus IgM 

mAbs with the different preparations of P. hypophthalmus IgM (14%, 16%, 20% Na2SO4 

precipitation and HiTrap affinity column chromatography purification) confirmed that 

all six mAbs recognized P. hypophthalmus IgM (Figures 2.3 (A and B)). Western blot 

analysis also confirmed cross reaction of the mAbs the other Pangasiidae species (P. 

gigas, P. larnaudii, P. sanitwongsei and P. borcoti) tested and other fish species IgM 

(Hemibragus filamentus, Clarias bactracus, Clarias Macrocephalus and Cyprinus carpio) 

(Figure 2.4). Four of the mAbs (1, 2, 7 and 18) reacted with L chain of IgM, with the 

exception of mAbs 2 and 7, which did not react with the C. carpio L chains (Table 2.10). 

On the other hands, mAbs 23 and 28 reacted with the H chains of IgM from the 

different fish species (Table 2.10). A commercial product from Aquatic Diagnostics Ltd 

(MAb 12) was used as a positive control. 

Table 2.10. Reaction of anti-P. hypophthalmus IgM monoclonal antibodies (mAbs) with 

Family Pangasiidae  and other species H and L chains  

Species 
Anti- P. hypophthalmus Ig M monoclonal antibodies  

1  2  7  12  18  23  28  

P. hypophthalmus (Vietnam)  L  H  L  H  L  H  L  H  L  H  H  -  H  -  

P. hypophthalmus x P. gigas L  H  L  H  L  H  L  H  L  H  H  -  H  -  

P. gigas  L  H  L  -  L  -  L  -  -  H  H  -  H  -  

P. hypophthalmus (Thai)  L  H  L  H  L  H  L  H  -  H  H  -  H  -  

P. larmaudii  L  H  L  H  L  H  L  H  -  H  H  -  H  -  

P. sanitwongsei L  H  L  H  L  H  L  -  -  H  H  -  H  -  

P. borcoti L  H  L  H  L  H  L  -  -  H  H  -  H  -  

Hemibragus filamentus  L  H  L  H  L  H  L  -  -  H  H  -  H  -  

Hamibragus wyckioides L  H  L  H  L  H  L  -  -  H  H  -  H  -  

Clarias bratracus  L  H  L  H  L  H  L  H  -  H  H  -  H  -  

Clarias macrocephalus  L  H  L  H  L  H  L  H  L  H  H  -  H  -  

Cyprinus carpio  L  H  -  H  -  - L  H  -  H  H  -  H  -  
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Figure 2.3(A-B). Western blotting of P. hypophthalmus  IgM (A) purified using HiTrap affinity chromatography with anti- P. hypophthalmus IgM 

monoclonal antibodies. RM= Rainbow marker 10-250 kDa, 1=P. hypophthalmus No.1, 2=P. hypophthalmus No.2, 3=P. hypophthalmus No.3 and 

4=Trout (HiTrap affinity chromatography) (B) 14%, 16% and 20% Na2SO4 precipitated P. hypophthalmus IgM with anti- P. hypophthalmus 

IgM monoclonal antibodies. RM=Rainbow marker 10-250 kDa, 1=14% Na2SO4 precipitation P. hypophthalmus, 2=16% Na2SO4 precipitation P. 

hypophthalmus, 3=20% Na2SO4 precipitation P. hypophthalmus  and 4 =14% Na2SO4 precipitation Trout 
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Figure 2.4. Western blotting of purified using HiTrap affinity chromatography IgM from 

Family Pangasiidae and other fish species with anti-P. hypophthalmus IgM monoclonal 

antibodies. RM = Rainbow marker 10-250 kDa, 1 = P. hypophthalmus (Vietnam), 2=P. gigas, 

3=P. hypophthalmus (Thailand), 4=P. larnaudii, 5=P. sanitwongsei, 6=Hemibragus filamentus, 

7=Clarias bartracus, 8=Clarias macrocephalus, 9=Cyprinus carpio  
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2.3.5 Analytical ultrancentrifugation: sedimentation velocity 

2.3.5.1 Sedimentation coefficient of IgM  

A concentration range of 0.2-0.7 mg ml-1 P. hypophthalmus IgM and 0.2-1.0 mg ml-1 P. 

borcoti IgM were analysed by SV ultracentrifugation. The reference buffer was PBS, 

and the density and viscosity values used for c(s) distribution analysis using SEDFIT 

(Schuck 2000) were 𝜌     =1.02266 g ml-1 and      =0.016355 Poise, respectively. The 

partial specific volumes (v̅) of P. hypophthalmus IgM and P. borcoti IgM were 0.783 ml 

g-1 at 20oC and 0.722 ml g-1 at 4oC, respectively. The resultant sedimentation 

coefficients for P. hypophthalmus IgM are shown in Table 2.11 and for P. borcoti IgM in 

Table 2.12. 

The P. hypophthalmus IgM seemed to consist of possible species with s20,w in 

the region of 15.5 ±0.1 S as shown in Figure 2.5(A). The P. borcoti IgM consisted of 

possible species with s20,w in the region of 15.9 ±0.2 S, as shown in Figure 2.5(B). 

2.3.5.2 Homology modeling of IgM 

The results from the hydrodynamic calculation from the protein structure of human 

IgM determined using SOMO modelling was computed to be s=13.4 S and the mass of 

the tetramer model was 680 kDa, as shown in Table 2.13. The protein structure of IgM 

is shown in Figure 2.6.  
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Table 2.11. SEDFIT (c(s)) analysis of Pangasianodon hypophthalmus IgM at different concentrations (0.2-0.7 mg ml-1). Scans 1-50 of the absorbance 

dataset (acquired at 280 nm) were analysed with a sedimentation coefficient range of 0 ≤ s ≤ 40 S and a resolution of 200. 

Concentration 
0.7 mg ml-1 

integral (from-to) Loading concentration Weight average Std.deviation s4,w transformed to s20,w conditions 

Peak 5 6.9-12.1 0.32 8.9 0.8 15.5 

Concentration 0.4 mg ml-1 

Peak 5 7.0-12.0 0.17 9.1 1.0 15.6 

Concentration 0.2 mg ml-1 

Peak 5 6.9-12.9 0.09 9.2 1.1 15.5 

 
Table 2.12. SEDFIT (c(s)) analysis of Pangasianodon borcoti IgM at different concentration (0.2-1 mg ml-1). Scans 1-50 of the absorbance dataset (acquired 

at 280 nm) were analysed with a sedimentation coefficient range of 0 ≤ s ≤ 40 S and a resolution of 200. 

Concentration 
1 mg ml-1 

Integral (from-to) Loading concentration Weight average Std.deviation s4,w transformed to s20,w conditions 

Peak 6 7.9-10.6 0.47 9.1 0.3 15.8 

Concentration 0.7 mg ml-1 

Peak 5 8.1-10.9 0.35 9.3 0.4 16.2 

Concentration 0.4 mg ml-1 

Peak 4 6.8-11.4 0.22 9.1 0.6 15.9 

Concentration 0.2 mg ml-1 

Peak 4 6.9-11.6 0.10 9.0 0.8 15.8 
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(A) P. hypophthalmus IgM analysed at concentrations in the range 0.2-0.7 mg ml-1 showing the presence of species with an average s20,w of 15.5 S (B) P. 

borcoti IgM analysed at concentrations in the range 0.2-1.0 mg ml-1 showing the presence of species with an average s20,w of 15.9 S . 

(A)                                                                                                                              (B) 

Figure 2.5(A-B). Distribution analysis for a concentration range of P. hypophthalmus and P. borcoti IgM generated by using the SEDFIT (c(s)) data 

analysis tool. 
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Table 2.13. SOMO Hydrodynamic bead modelling of Human IgM  

Somo Hydrodynamic Bead Modelling of Human IgM* 

Model IgM tetramer-a2b 

Total Beads in Model 1555 
Used Beads in Model 1549 

Molecular Mass 6.7991e+0.5 Da 
Part Specific Volume 0.724 cm^3/g 

Sedimentation Coefficient s 1.34e+01 S 
Tr. Diffusion Coefficient D 1.73e-07 cm/sec^2 

Stokes Radius 1.24e+01 nm 
Frictional Ratio 2.14 

Radius of Gyration 1.45e+01 nm 
Relaxation Time 3.06e+0.3 ns 
Intrinsic viscosity 1.96e+01 cm^3/g 

        *Water at 20oC, Density 1.00194 cP, Viscosity 0.998234 g ml-1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Model of the protein structure of IgM from human where the mass of the 

tetrametic molecule was estimated at 680 kDa. 
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2.4 Discussion 

The IgM from P. hypophthalmus and other species of family pangasiidae was purified 

using affinity column chromatography (HiTrap) and Na2SO4 precipitation, and its 

biochemical structure was then examined by gel electrophoresis and SV 

ultracentrifugation. The molecule was further characterised using anti- P. 

hypophthalmus mAbs in Western blotting.  

The percentage of Na2SO4 used to purify the IgM from P. hypophthalmus and 

other Pangasiidae members influenced the concentration of protein obtained; the 

higher the percentage of Na2SO4 used, the higher the concentration of protein 

obtained. It is likely that proteins other than IgM were precipitated using Na2SO4, while 

the purity obtained with affinity column chromatography should be higher because 

IgM would bind to the column and no other proteins. The results confirm this, showing 

that mainly IgM is extracted from serum samples by HiTrap affinity column 

chromatography, while Na2SO4 precipitation resulted in many other proteins being 

present, as reported by others. For example, Hrubec and Smith (1999) found albumin 

and globulin in both serum and plasma samples purified in this way. This was evident 

from the multiple protein bands observed in the protein profiles obtained in SDS-PAGE 

with Na2SO4 precipitated samples compared with the HiTrap affinity column. However, 

the HiTrap affinity column was not completely successful at purifying only IgM. The 

column is designed to purify human IgM and is pre-packed with a thiophilic adsorption 

medium, 2-mercaptopyridine coupled to sepharose. An additional band between 25-

75 kDa (i.e. not IgM) was found (Figure 2.1) with the HiTrap IgM, which suggests 

something other than IgM was also carried over in the eluting buffer from the column. 
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The results suggest that this column may not be entirely suitable for the purification of 

IgM from fish. 

The molecular weights of IgM from P. hypophthalmus and other family 

pangasiidae members, and its H and L subunits were determined using 

electrophoresis, and found to be comparable with the molecular weights found for 

other teleost fish species (See Table 2.1). These included species such as Atlantic 

salmon, which were reported to have H and L chains of 71.5 and 26.5 kDa, 

respectively, halibut 72 and 26.5 kDa, haddock 72 and 26.5 kDa and cod 72.5 and 26.5 

kDa (Magnadóttir 1998). The results of this study indicated that the H and L of IgM 

from P. hypophthalmus were 70-72 kDa and 25-26 kDa, respectively. The L chains of 

IgM from the other fish species tested were similar to P. hypophthalmus, while the H 

chains varied (i.e. P. gigas and P. larnaudii 76 kDa, P. sanitwongsei 69 kDa, H. 

filamentus 73 kDa, P.borcoti and H.wyckioides 75 kDa, C. bactracus 74 kDa, C. 

macrocephalus 73 kDa and C. carpio 70 kDa), as did the native IgM molecules. 

The molecular weight of the single subunit IgM (two H chains and two L chains) 

are shown in parenthesis: P. hypophthalmus (193 kDa), P.hypophthalmus cross 

breeding P. gigas (202 kDa), P.gigas (204 kDa), P.larnaudii (208 kDa), P.Sanitwongsei 

(188 kDa), P. borcoti (196 kDa), Hamibragus filamentus (196 kDa), Hamibragus 

wyckioides (196 kDa), Clarias bactracus (202 kDa), Clarias Macrocephalus (194 kDa) 

and Cyprinus carpio (190 kDa). Kaattari et. al. (1998) showed structural heterogeneity 

to trout IgM, with the mono-, di-, tri- and tetrameric forms observed by 

electrophoresis and these have also been found in toadfish (Spheroides glaber), 

Atlantic salmon and Channel catfish. 
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Monoclonal antibodies (mAbs) and polyclonal antibodies were used in Western 

blotting to characterise immunoglobulins (IgM) for a variety of fish species, including 

Asian sea bass (Choudhury and Prasad 2011), Carp (Choi, et al. 2002), Striped 

trumpeter (Latris lineata)(Covello, et al. 2009), Channel catfish (Hall, et al. 1973), 

Tilapia (Al-Harbi, et al. 2000), Chum salmon (Oncorhynchus keta) (Fuda, et al. 1992), 

Atlantic salmon, Halibut, Haddock and Cod (Magnadóttir 1998). These studies revealed 

that the molecular weight range of fish IgM molecules range between 610-890 kDa, 

while the H chain is between 51 and 86 kDa and the L chain between 22 and 28 kDa. A 

variety of different methods of purification and charactersation were used in these 

studies, however. There is only one report relating to IgM from P. hypophthalmus, 

where the H chain was reported to be 72 kDa and up to three small L chains reported 

at 24, 26 and/or 28-29 kDa by using SDS-PAGE and Western blotting with mouse 

monoclonal antibodies against P. hypophthalmus IgM (Aquatic Diagnostic Ltd.) (Huong 

Giang, et al. 2012). This is in agreement with the results from the present study where 

P. hypophthalmus IgM H chains were determined to be 70-72 kDa and L chains were 

25-26 kDa. However, to date there are no reports of the comparison of IgM from P. 

hypophthalmus and related species using electrophoresis or western blot, as is 

presented here. A number of the mAbs produced against P. hypohthalmus IgM were 

found to cross-react with the family pangasiidae IgM, and were used to confirm the 

molecular weight of H and L chains. The mAbs were also shown to cross-react with IgM 

form other fish species, including Hamibragus filamentus, Hamibragus wyckioides, 

Clarias bactracus, Clarias Macr ocephalus and Cyprinus carpio. 
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Sedimentation velocity ultracentrifugation was used to determine the molecular 

weight of whole IgM molecule from P. hypophthalmus as an alternative to the more 

commonly used native gels, run under non-denaturing conditions. The latter was 

attempted here but proved complex. The molecular weight of teleost IgM determined 

using SV ultracentrifuagtion has been previously reported in fish , including channel 

catfish 14 S (610 kDa), gar (Lepisosteus osseus) 13.9 S (610 kDa), paddle fish (Polyodon 

sputhula) 14.2 S (630 kDa) where these were reported as tetramers, and as a dimer 

inskate (Raja kenojer) 8.9 S (320 kDa) (Acton, et al. 1971; Acton, et al. 1971; Kunihiko, 

et al. 1984). The present study showed that the sedimentation coefficient of P. 

hypophthalmus was 15.5 S while, P. borcoti was 15.9 S. Hydrodynamic bead modelling 

(SOMO modelling) was performed using the amino acid sequence of human IgM (NB 

without carbohydrate), and the data obtained by SV determined the mass of the 

tetrameric molecule to be 680 kDa (13.4S). The calculation for the molecular weight 

for pangasius IgM, using the human “tetrameric” model, was calculated to be 787 kDa 

(15.5 S) for P. hypophthalmus and 807 kDa (15.9 S) for P. borcoti. However, this 

molecular weight was calculated without including the carbohydrate content of the 

molecule in the model, and as fish IgM contains a lot of carbohydrate, the molecular 

weight presented here represents an under estimate of the true mass of the molecule. 

Magnatdóttir (1998) found that the carbohydrate composition of fish IgM, in terms of 

the oligosaccharide associated with the H chain, varied from 7.8-11.4% in four 

different fish  species (Atlantic salmon, halibut, haddock and cod). If a similar 

carbohydrate contribution is assumed for P. hypophthalmus IgM and P. borcoti IgM the 

molecular weight would be expected to range between 848-876 kDa and 870-899 kDa, 
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respectively. Huong Giang, et al. (2012) used gel filtration to find the molecular mass 

of P. hypophthalmus and determined it to be 900 kDa. However from 

diethylaminoethyl cellulose based ion exchange chromatography and non-reducing 

gradient polyacrylamide gel electrophoresis, the molecular weight of P. 

hypophthalmus IgM was indicated to be 798 kDa (Sudhagar, et al. 2013). When the 

molecular weight was calculated using H and L chains with 7.8-11.4% carbohydrate in 

the present study, the molecular weight for whole IgM: 832-860 kDa (P. 

hypophthalmus), 845-873 kDa (P. borcoti, Hamibragus filamentus and Hamibragus 

filamentus), 871-900 kDa (P. hypophthalmus cross breeding P. gigas and Clarias 

bactracus), 880-909 kDa (P.gigas), 940-971 kDa (P.larnaudii), 811-838 kDa (P. 

sanitwongsei), 837-865 kDa (Clarias macrocephalus) and 819-847 kDa (Cyprinus 

carpio). Calculation of the molecular weights of whole IgM by SV ultracentrifugation 

appeared to give higher molecular weights than those calculating using the molecular 

weights of the H and L chains, but lower than that obtained using gel filtration. 

Magnadóttir (1998) determined the molecular weight of IgM for four fish species 

(Atlantic salmon, halibut, haddock and cod) using gel filtration and reported that these 

were higher than when estimated using H chain and L chain molecular weights.  

Anti-Pangasianodon hypophthalmus IgM mAbs were shown to cross-react with 

family pangasiidae and other species, Hamibragus filamentus, Hamibragus wyckioides, 

Clarias bactracus, Clarias Macrocephalus and Cyprinus c arpio IgM in both ELISA and 

Western blotting. As P. hypophthalmus, P. gigas, P.larnaudii and P. sanitwongsei are 

pangasiidae, and most likely have similar IgM molecules, the mAbs which recognised 

IgM from one species are more likely to recognize those of a related species. The fact 
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that the mAbs specific for P.hypophthalmus IgM crossed reacted with other species is 

interesting. Based on mitochondria DNA of pangasiidae, there is a close phylogenetic 

relationship to Hamibragus filamentus, Hamibragus wyckioides, Clarias bactracus, 

Clarias Macrocephalus and Cyprinus carpio (Wong, et al. 2011; Sriphairoj, et al. 2010; 

Jondeung, et al. 2007). The anti- P. hypophthalmus IgM mAbs that cross-reacted with 

the other species recognized the H chain (mAbs 23 and 28) and the L (mAbs 1, 2 and 

18) of the IgM molecule, and only mAb 7 reacted with both the H and L chains. 

However, the anti- P. hypophthalmus IgM mAbs recognized the heavy chain of the 

molecule (mAbs 23) better than the light chain (mAbs 2 and 18). Higher backgrounds 

were observed in ELISA with Na2SO4 precipitated IgM compared to affinity column 

purified IgM due to the non-specific material binding to the mAbs. 

2.5 Conclusions 

The results indicated that affinity column chromatography and Na2SO4 precipitation 

can both be used for IgM purification from the serum of P. hypophthalmus. Affinity 

chromatography resulted in purer IgM, but Na2SO4 precipitation (14%) reduces the 

cost and time of the purification process. The H and L chains of IgM from P. 

hypophthalmus were estimated to be 70-72 kDa and 25-26 kDa, respectively, using 

SDS-PAGE. The L chains of IgM from other Asian fish species were similar in molecular 

weight to P. hypophthalmus, while the H chains varied between species. The molecular 

weight of whole IgM (the tetramer) form P. hypophthalmus was determined to be 787 

kDa using SV ultracentrifugation. This is a protein-only estimation, and when 7.8-11.4% 

carbohydrate composition was included the molecular weight was estimated to be 

848-876 kDa. This is similar to the estimate made using H and L chains (832-860 kDa) 
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and between the molecular weights calculated using gel filtration (900 kDa) (Huong 

Giang, et al. 2012) and non-reducing gradient polyacrylamide gel electrophoresis (798 

kDa) (Sudhagar, et al. 2013). The six anti- P. hypophthalmus IgM mAbs used reacted 

with other Asian fish species IgM, some reacting with the L chain and others with the H 

chain of the molecule, indicating common epitopes between the L and H chains of IgM 

of family Pangasiidae and other species. These mAbs provide useful tools for detecting 

and quantifying the immune response in these fish species and are used in subsequent 

chapters of this thesis.  
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3.1 Introduction 

Pangasianodon hypophthalmus is the most important fish species currently cultured in 

Vietnam. Aquaculture production of pangasius is also developing in other Asian 

countries such as Bangladesh, India, Indonesia, Malaysia, Myanmar, the Philippines 

and Thailand, however Vietnam still remains the largest supplier of pangasius catfish 

globally (Globefish 2012). 

Outbreaks of bacterial diseases in P. hypophthalmus culture systems have a 

significant impact on production. Two of the main problems reported are bacillary 

necrosis of Pangasianodon (BNP) (Ferguson, et al. 2001) caused by Edwardsiella 

ictaluri, and motile aeromonas septicaemia (MAS)(Subagja, et al. 1999) used by 

Aeromonas hydrophila. The latter is a Gram negative, rod-shaped, motile, facultative 

anaerobe that is widely distributed in the aquatic environment (Banerjee, et al. 2012). 

The clinical signs of MAS include gastroenteritis, endocarditis, septicaemia and red 

sores (Roberts 2012).  

Vaccination is, on economic, environmental and ethical grounds, the most 

appropriate method for controlling disease outbreaks caused by these pathogens. The 

concept behind vaccination is to stimulate the immune response of fish to develop a 

long-lasting immunological memory against the immunising pathogen. The ideal 

vaccine must be immunogenic and be able to stimulate components of the humoral 

and/or the cell-mediated immune response, but which is not pathogenic to the fish. 

There are many types of vaccines available or under development to protect fish 

against disease. Killed or inactivated vaccines made from the whole organism and 

inactivated through heat or chemical treatment such as formalin, are very effective in 
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stimulating a humoral antibody response and have been shown to be safe for this 

application, but are less effective at inducing a strong cell mediated immune response 

compared to live attenuated vaccines. Unlike live vaccines, which replicate in their 

host, killed vaccines often require multiple administration and/or adjuvants, and are 

often not affective against intracellular pathogens (Thompson and Adams 2004; Mak 

and Saunders 2005; Toranzo, et al. 2009; Tafalla, et al. 2013). On the other hand, a live 

attenuated vaccine is a live pathogen that has been rendered non-pathogenic or non-

virulent by physical, chemical, or genetic modification (Shoemaker, et al. 2009), but 

still retains the ability to survive and replicate in its host. A single dose can produce 

long-lasting immunity, and is effective at inducing a strong cellular immune response 

against intracellular organisms. Unlike dead vaccines, in many countries live vaccines 

are not approved for use in aquaculture because of the risk of reversion to virulence by 

the attenuated pathogen (Tafalla, et al. 2013).  

The ability of many different types of vaccine preparations to protect fish 

against infection by A. hydrophila have been tested, based on dead pathogens, killed 

using formalin or heat (i.e. whole bacterial cells) or isolated non-replicating pathogen 

subunits such as outer membrane proteins, lipopolysaccharide (LPS), extra-cellular 

proteins, recombinant S-layer protein, biofilms and or live attenuated vaccines 

(Ruangpan, et al. 1986; Azad, et al. 1999;  Nayak, et al. 2004; Poobalane, et al. 2010; 

Viji, et al. 2013).  

The potential of these different A. hydrophila vaccines has been investigated in 

a variety of fish species. Azad et al. (1999), for example, assessed an A. hydrophila 

biofilm vaccine in three different carp species, i.e. common carp (Cyprinus carpio Lin.), 
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Indian carp (Catla catla Ham.) and rohu (Labeo rohita Ham.), while Nayak, et al. (2004) 

later tested the efficacy of an oral biofilm A. hydrophila vaccine in Asian catfish (Clarias 

batrachus L.). They found that the serum agglutinating antibody titre and the relative 

percentage survival of the vaccinated fish challenged with A. hydrophila, was 

significantly higher than fish immunised orally with free bacterial cells. More recently a 

study was performed with goldfish (Carassius auratus), in which fish were immunised 

with either a whole cell preparation, extracellular products (ECPs), outer membrane 

protein or a biofilm vaccine prepared from a virulent isolate of A. hydrophila (Viji, et al. 

2013b). Nile tilapia (Oreochromis niloticus L.) (Ruangpan, et al. 1986) and channel 

catfish (Ictalurus punctatus)(Schachte 1978) have also been used as model fish species 

to evaluate A. hydrophila vaccines. A more recent study was performed by Dehghani et 

al., (2012) in which they used a bivalent vaccine against A. hydrophila and A. veronei 

bv. sobria consisting of formalin-killed, heat-killed and LPS preparations of the 

bacteria, tested in rainbow trout (Oncorhynchus mykiss). Relative percentage survival 

in the fish vaccinated with the heat-killed vaccine was significantly higher than seen 

with the other two vaccine preparations.  

Early in the 1990s, live bacterial vaccines were trialled against Vibrio 

anguillarum (Norqvist, et al. 1994), A. salmonicida (Thornton, et al. 1991; Thornton, et 

al. 1994), then later against Edwardsiella ictaluri (Wise and Terhune 2001), E. tarda 

(Takano, et al. 2010), Nocardia seriolae (Itano, et al. 2006) and Streptococcus iniae 

(Locke, et al. 2010). Pridgeon and Klesius (2011), found significantly different levels of 

protection and antibody titres between Nile tilapia and channel catfish vaccinated 

intra-peritoneally with A. hydrophila mutants, based on the resistance of A. hydrophila 
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to novobiocin and rifampicin. A number of other live vaccines have been developed for 

other fish pathogens based on antibiotic resistance genes. LaFentz, et al. (2008), for 

example, selected a rifampicin resistant F. psychrophilum isolate that was successfully 

used as a live attenuated vaccine for the prevention of bacterial cold water disease 

(BCWD). A modified live Flavobacterium columnare vaccine was developed by 

repeatedly passaging a virulent strain of the bacterium with increasing concentrations 

of rifampicin. Administration of the vaccine to early life-stage channel catfish (i.e. 10 

days post-hatch) or largemouth bass (Micropterus salmoides) proved safe and reduced 

levels of mortalities were obtained when fish were experimentally infected with F. 

columnare (Shoemaker, et al. 2011), and similarly a live attenuated esrB mutant of E. 

tarda gave significant protection against the wild-type strain of E. tarda in turbot 

(Scophthamus maximus) (Lan, et al. 2007). Shoemaker et al., (1999) and Klesius and 

Shoemaker (1999) found the modified live E. ictaluri RE-33 vaccine stimulated 

protective immunity against enteric septicaemia in channel catfish.  

Several studies examining resistance to infection following administration of 

either live or dead A. hydrophila have been carried out in various fish species e.g. 

rainbow trout (Loghothetis and Austin 1994; Dehghani, et al. 2012), roho (Vasudeva 

Rao, et al. 2006), indian carp i.e. Catla catla, Labeo rohita and Cirrhunas mrigala 

(Karunasagar, et al. 1991), Asian catfish (Kumari and Sahoo 2006a), zebrafish (Danio 

rerio) (Rodriguez, et al. 2008), carp (Selvaraj, et al. 2005) and European eel (Anguilla 

anguilla) (Song‐Lin, et al. 2012), but few of these studies have compared the effect of 

live and dead A. hydrophila on the immune response of fish, and none have used 

striped catfish as their model fish species. Bich Hang, et al. (2012) showed that LPS 
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from outer membrane protein of Gram negative bacteria stimulated a variety of 

immune parameters in striped catfish (i.e. haematology parameters, lysozyme activity, 

the alternative complement pathway and total plasma immunoglobulin levels). 

As P. hypophthalmus is a relatively new aquaculture species, there are few reports 

evaluating their immune response to pathogens, either dead or alive. The aim of this 

study was to standardise functional assays to evaluate both innate and adaptive 

immune responses of P. hypophthalmus and to use these assays to compare their 

immune response to live and dead A. hydrophila. 

3.2 Materials and methods 

3.2.1 Experimental animals  

Pangasianodon hypophthalmus were purchased from a local fish farm in Nakornsawan 

Province, Thailand and transported to the Aquatic Animal Laboratory, Faculty of 

Veterinary Sciences, Mahidol University, Bangkok. The fish were quarantined and 

acclimated to laboratory conditions for two weeks prior to use, and were fed with a 

commercial diet (Inteqc Feed Company, Thailand) at 3 % body weight per day. The 

weight of the fish at the start of the experiment was 53.2 ±14.8 g. 

3.2.2 Experimental design 

The experimental design consisted of four treatment groups, and three replicate tanks 

(40 fish/replicate) were used for each treatment. Fish were maintained in 500 L 

recirculation tanks with a water temperature of 28 ±2oC and a photoperiod consisting 

of a 12:12 h artificial light regime. Water quality parameters i.e. dissolved oxygen, NH3, 

pH and temperature were checked daily, and 20-30% water exchanges were also made 

each day. A. hydrophila, isolate T4 (provided by the Institute of Aquaculture, University 
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of Stirling), was cultured in tryptone soy agar (TSA, Oxoid England) for 18-24 h. Three 

to five colonies of A. hydrophila were picked from the plate and placed into 100 ml of 

sterile tryptic soya broth (TSB). The bacteria were grown to late logarithmic growth in 

a shaking incubator (200 rpm, 28oC) (Incu-shakerTM 10L; Benchmark, USA) for 18-24 h. 

The bacterial concentration was determined using spectrophotometer OD600 nm and 

confirmed using a plate counting method. The fish were injected intraperitoneally (0.1 

ml per fish) with either tryptic soya broth (TSB; Merk-Datmstadt) as negative control 

group, adjuvant (Montanide ISA 760 VG), or heat-killed A. hydrophila 1 x109 cfu ml-1 

mixed with the adjuvant. Another group was injected with a subclinical dose of live A. 

hydrophila (2.7 x105 cfu ml-1). The fish were maintained for 21 days before assessing 

the effect of these treatments on various immune parameters of the fish. Many of 

these methods were not previously described for Pangasius, therefore the assays were 

optimised and standardised for this species prior to use. 

3.2.3 Experimental plan 

Two fish per tank (6 fish per group) were sampled to assess their immune response on 

Day 0, 1, 3, 7, 14 and 21 post-treatment. Blood and head kidney samples were 

collected from these fish for the various haematological and immunological analyses 

outlined in Figure 3.1. 

3.2.4 Haematological and immunological analysis 

Blood samples (1 ml) were taken from the caudal vein of fish using disposable syringes 

(3 ml) flushed with heparin (Sigma, UK). These were divided into two aliquots, one 

sample for white and red blood cell (RBC) counts and different white blood cell (WBC) 

counts, and the other for plasma collection. For the plasma collection, blood was 
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centrifuged at 3,000 x g for 5 min and once separated stored at -70oC for further 

analysis (i.e. lysozyme activity, total plasma IgM, complement activity, plasma 

peroxidase activity and specific antibody titre against A. hydrophila).  

3.2.4.1 Haematological analysis 

3.2.4.1.1 Haematocrit values  

Haematocrit values or red blood cell packed volume were determined according to the 

method of Wells and Weber (2006). Capillary tubes were filled with blood and sealed 

at one end with clay. The filled tubes were then centrifuged at 10,000 to 15,000 x g for 

5 min in a micro-haematocrit centrifuge. The haematocrit values were expressed as a 

percentage of the packed cell volume (Briggs and Bain, 2011), while the Mean 

Corpuscular volumes (MCV) were determined using Equation 3.1. 

Equation 3.1  MCV (fl)  

𝑀              
  

                      
  

3.2.4.1.2 White blood cell and red blood cell counts  

White blood cell and RBC counts were measured as described by Natt and Herrick  

(1952). Blood (20 µl) was added to 4 ml Natt-Herricks’s solution and mixed thoroughly. 

A haemocytometer was filled with the blood suspension (10 µl), which was allowed to 

settle for 2-3 min before counting the RBCs as shown in Figures 3.2(A and B) and the 

WBC in Figures 3.3(A and B). The RBC numbers were determined using Equation 3.2, 

while WBC numbers were determined using Equation 3.3. 

3.2.4.1.3 Differential WBCs counts 

Differential WBC counts were made according to Nussey, et al. (1995). Blood smears 

were prepared and allowed to air dry, before fixing with methanol for 3-5 min. The 
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slides were then stained with Giemsa (IVD, UK) 5 % (v/v) Giemsa’s azure eosin 

methylene blue solution in buffer solution (see Appendix 1) for 30 min (this time giving 

the best staining of blood smears), rinsed two times with buffer solution for 1 min, 

before air drying the slides and mounting them with Pertex® (Cellpath, UK). The cells 

were examined under a light microscope (x100) and the number of different WBCs 

present in 200 cells was counted (Figure 3.4(A-F)). Cells morphology was distinguished 

using the key shown in Table 3.1.  

Table 3.1. Red and white blood cell morphology with Giemsa stain 

Cell type Giemsa stain 

Nuclei red to violet 
Lymphocytes plasma blue 
Monocytes plasma dove-blue 
Neutrophilic granulocytes granules light violet 
Eosinophilic granulocytes granules red to grey-blue 
Basophilic granulocytes granules dark-violet 
Thrombocytes violet 
Erythrocytes reddish 

3.2.4.2 Kidney macrophage activity 

3.2.4.2.1 Isolation of P. hypophthalmus head kidney macrophages  

Macrophages were isolated using the method of Secombes (1990). Fish were overdosed 

using anesthetic (200 mg/l Benzocaine; Sigma, UK) and fish bled to reduce red blood cell 

contamination. The head kidney was isolated aseptically and placed on to a piece of 

sterile 100 μm nylon mesh placed over a small Petri dish containing 3 ml of L-15 medium 

(Leibovitz; Sigma, UK) with 10 µl heparin (Sigma, UK). The head kidney was teased 

through the mesh with the blunt end of the syringe plunger to form a cell suspension. The 

mesh was washed with a further 2-3 ml of L-15 medium. The cell suspension was placed 

into a bjoux and kept on ice until used in the phagocytosis activity and respiratory burst 

activity assays outlined below. 



Chapter 3 
 

86 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The sampling regime and immunological analysis performed with blood and head kidney from Pangasius hypophthalmus 
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(A)                                                                          (B) 

 

 

 

 

 

 

  

 

Equation 3.2 Red blood cell count 

         

                                                                         

  N x 10,000 

(A)                                                                             (B) 

 
 

Figure 3.3(A-B). (A) The WBC counted area (4 squares) in haemocytometer under microscope 

(x4) and (B) the WBC counted area (1 square) in haemocytometer under microscope (x10). 

 

Equation 3.3 White blood cell count 

         

                                                                            

   N x 500  

Figure 3.2(A-B). (A) The RBC counted area (5 squares) in haemocytometer under 

microscope (x4) and (B) the RBC counted area (1 square) in haemocytometer under 

microscope (x40). 
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Figure 3.4(A-F). The morphology of differential WBCs counts (x100); (A) E = Eosinophil; (B) N 

= Neutrophil; (C) M = Monocyte; (D) L = Lymphocyte, Th = Thrombocyte; (E) M = Monocyte, N 

= Neutrophil; (F) Th = Thrombocyte. 

  

(A) (B) 

(C) (D) 

(E) (F) 

E 

N 
N 

M 

L 

Th 

M 

Th 

N 



Chapter 3 
 

89 | P a g e  

3.2.4.2.2  Phagocytosis by P. hypophthalmus head kidney macrophages 

Phagocytosis by head kidney macrophages was performed using the method of 

Thompson (1996). The slides were cleaned with absolute ethanol and two large circles 

drawn on the slide using a Pap Pen (Vector, CA). The cell suspension (100 μl) was 

placed into each circle and the slide placed in a moist incubation chamber for 1 h at 

room temperature (28-30oC) to enable macrophages to attach to the slide. Slides were 

then washed with L-15 to remove non-adherent cells. The yeast was re-suspended in L-

15 medium at 0.5 % (w/v), made up immediately prior to use, and 100 µl placed onto 

one circle of attached cells and L-15 (100 µl) placed onto the second circle. The slide 

was incubated for 1 h at room temperature to allow phagocytosis to take place and 

then washed with L-15 medium. The cells were fixed with 100 % methanol (100 µl) for 

5 min then washed five times with 70 % methanol. The cells were finally stained with 

Giemsa stain, air dried and mounted with Pertex. The cells were examining under oil 

immersion (100) and the number of macrophage cells containing yeast out of 200 

macrophages in total counted. The phagocytic activity (PA), phagocytic index (PI) and 

phagocytic capacity (PC) were determined according to (Findlay and Munday 2000), 

using the equations outlined below. 

Equation 3.4 Phagocytic Activity (PA)  

   
𝑀                                                        

                                          
        

 

Equation 3.5 Phagocytic Index (PI)  
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Equation 3.6 Phagocytic Capacity (PC)  

   
                                                                    

                                                
       

 

3.2.4.2.3 Respiratory burst of head kidney macrophage assessed using Nitroblue 

tetrazolium (NBT) 

Respiratory burst by head kidney macrophages was performed using the method of 

Secombes (1990). The macrophage suspension prepared from head kidney was added 

to a 96 well tissue culture plate (100 μl per well), using at least 8-10 wells per fish. The 

macrophage monolayer was incubated for 2 h at room temperature. During this time 

nitroblue tetrazolium (NBT 1mg ml-1; Sigma, UK) solution with and without phorbol 

myristate acetate (PMA 1µg ml-1; Sigma, UK) were prepared. The non-adherent cells 

were removed by washing the plate three times in L-15 medium, before adding 100 l 

of NBT solution to three replicate wells and 100 l of NBT solution containing PMA to 

another three replicate wells, and 100 l lysis buffer to two remaining wells to 

determine the number of attached cells. The plates were incubated for 1 h at 22oC. 

Meanwhile the number of adherent cells was determined by counting the number of 

released nuclei with a haemocytometer (using the wells containing the lysis buffer), 

incubating with the buffer for at least 2 min. The respiratory burst reaction was 

stopped after 1 h by fixing the cells with 100 % (v/v) methanol. The plates were 

washed three times with 70 % (v/v) methanol and wells allowed to air dry. The 

insoluble formazan in the wells was dissolved by adding 120 l 2 M KOH (BDH, UK) and 

140 l DMSO (Sigma, UK). The content of each well was mixed carefully and air 

bubbles removed with a needle. The absorbance of the wells was measured at 610 nm 
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using a micro-plate reader (Synergy HT; Bio Tek Instruments, Winooski, VT, USA) and 

the results expressed as an absorbance at 610 nm for 105 cells. The reactive oxygen 

species (ROS) stimulation index was also determined according to Vowells, et al. (1995) 

and Skouras (2002) using Equation 3.7. 

Equation 3.7  Stimulation index (SI)  

𝑆  
𝑀     𝑀              𝑆     

𝑀                   𝑆 
  

  

3.2.4.3 Analysis of immunological plasma parameters 

3.2.4.3.1 Lysozyme activity 

Plasma samples collected from the fish were used to measure lysozyme activity using 

the method of Morgan, et al. (2008). Sodium phosphate buffer, pH 5.4 (0.04 M 

NaH2PO4.2H2O (Sigma, UK) and 0.04 M Na2HPO4.2H2O (Sigma, UK) was warmed to 

30C for 30 min. A suspension of 0.2% (w/v) M. lysodeikticus (Sigma, UK) was prepared 

in the sodium phosphate buffer. Sodium phosphate buffer (without bacteria) was 

added to columns 11 and 12 of a microtitre plate (200 l) as a negative background 

control. Plasma samples (10 l) were added to four replicate wells and 190 l of 

sodium phosphate buffer then to the wells. The reduction in absorbance at 540 nm 

was measured at 1 min and 5 min. One unit of lysozyme activity was defined as the 

amount of sample causing a decrease in absorbance at 0.001/min. 

3.2.4.3.2 Total plasma immunoglobulin M assay  

The total immunoglobulin M was measured in plasma using the method of 

Magnadóttir and Gudmundsdottir (1992). The concentration of plasma IgM was 

measured using ELISA. A standard curve of IgM (purified IgM 1.54 mg ml-1) was diluted 
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making two-fold series dilutions (0-0.32 mg ml-1) with coating buffer (Sigma, UK) and 

100 μl of each dilution added to two replicate wells of a 96 well ImmulonTM ELISA plate 

(Thermo Scientific, Maine, USA). Three dilutions of the plasma samples were prepared 

in coating buffer (i.e. 1/6,400, 1/12,800 and 1/25,600) and 100 µl of each dilution 

added to duplicate wells. The ELISA plates were incubated overnight at 4oC, then 

washed five times with low salt water buffer (LSWB; 0.02M Trizma base, 0.38 M NaCl, 

0.05% (v/v) Tween 20, pH 7.2). Plates were post-coated (to block non-specific binding 

sites) with 250 µl well-1 1% (w/v) bovine serum albumin (BSA; Sigma, UK) added and 

incubated for 1-2 h at 25oC or overnight at 4C. The blocker was discarded from the 

wells by tapping of the plates onto paper tissue. Anti-P. hypophthalmus IgM 

monoclonal (mAb 23) supernatant (as described in Chapter 2) was added to the plate 

at 100 μl well-1 and incubated for 1 h at room temperature (25oC). The plates were 

washed five times with high salt water buffer (HSWB; 0.02 M Trizma base, 0.5 M NaCl, 

0.01% (v/v) Tween 20, pH 7.4) incubating for five min on the last wash, before adding 

100 µl well-1 goat anti-mouse IgG-HRP diluted to 2 µg ml-1 in conjugate buffer. The 

plates were incubated for 60 min at 25oC and washed 5 times with high salt buffer, 

incubating for 5 min on the last wash. The reaction was developed with 100 μl well-1 42 

µM 3’3’5’5’-tetramethylbenzidine dihydrochloride (TMB; Sigma, UK) in substrate 

buffer containing 0.1 % hydrogen peroxide (Sigma, UK) for 10 min at 25oC. The assay 

was stopped by the addition of 50 µl 2 M sulphuric acid (H2SO4; BDH, UK) per well. The 

optical density (OD) was read at 450 nm using a microplate reader (Synergy HT; Bio Tek 

Instruments, Winooski, VT, USA), and the unknown IgM concentrations in the plasma 
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samples extrapolated from the straight portion of the standard curve graph of IgM 

against OD450 nm. 

3.2.4.3.3 Alternative complement activity assay  

The alternative complement activity based on spontaneous haemolytic activity was a 

modification of the method outlined by Sakai, (1992) and Langston, et al. (2001). Briefly, 

de-fibrinated sheep red blood cells (SRBC, Oxoid®, UK) were used as target cells at 0.5 % 

(a final concentration of 2.5 x108 cells ml-1). Plasma samples were diluted two fold in 0.1 

% gelatine-complement fixation buffer (0.1 % G-CFB) and 25 µl of each dilution was 

added to duplicate wells of a non-absorbent U-well micro-plate (Sterillin®). The SRBC 

suspension (10 µl) was then added to each well. To the control (100 % lysis) was added 

0.1 % (v/v) anhydrous Na2CO3 (Sigma, UK) instead of plasma, for the 0 % lysis control; G-

CFB was added in place of the plasma sample. Reference wells were set up in duplicate 

wells with the plasma dilutions and G-CFB but no SRBC suspension. Then micro-plates 

were incubated at 28oC for 90 min with constant shaking and the reaction terminated by 

the addition of 140 µl G-CFB with 20 mM EDTA and centrifuged to pellet the remaining 

SRBC. Supernatant from the wells (100 µl) was transferred to a new flat-bottomed 96-

well non-absorbent micro-titre plate (Sterillin®) and read at 450 nm by using a micro-plate 

reader (Synergy HT; Bio Tek Instruments, Winooski, VT, USA). The percentage lysis of 

SRBCs was calculated. The absorbance values of samples were corrected by subtracting 

the absorbance of the sample blank control (0 % haemolysis). A graph of log x (x = 

concentration of plasma) (ordinate axis) vs log y/ (1-y) (y = % SRBC haemolysis) (abscissa 

axis) was drawn and after estimating the volume of plasma giving 50 % haemolysis 
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(SH50%), and the SH50%/ml of plasma calculated by dividing the dilution factor of plasma 

with the estimated plasma volume causing 50 % SRBCs lysis expressed per ml.  

3.2.4.3.4 Plasma peroxidase  

The plasma peroxidase was measured using a modification of the method outlined by 

Quade and Roth (1997) and Sitjà-Bobadilla, et al. (2005) The plasma samples were added 

(15 µl well-1) to wells of a flat bottomed 96 well plate together with 135 µl well-1 HBSS 

without Ca2+ and Mg2+ (Sigma, UK) before adding 50 µl well-1 of 20 mM TMB in substrate 

buffer (40 mM acetic acid) containing 0.1 % hydrogen peroxide (Sigma, UK). The reaction 

was stopped with 50 µl well-1 of 2 M H2SO4 and read with an ELISA reader at 450 nm. 

3.2.4.3.5  Antibody titre against Aeromonas hydrophila  

The specific antibody response of P. hypophthalmus to A. hydrophila was measured 

using a modification of the method by Adams et al. (1995). Briefly, a 96-well ELISA 

plate (Thermo Scientific, Maine, USA) was coated with 50 µl well-1 0.05 % (w/v) poly-L-

lysine (Sigma, UK) in coating buffer (Sigma, UK) for 60 min at 25oC. The plates were 

then washed twice with low salt wash buffer. A bacterial suspension of A. hydrophila at 

a concentration of 1 x108 bacteria ml-1 in PBS was added to the wells at 100 µl well-1. 

The plates were incubated overnight at 4oC, after which 50 µl well-1 of 0.05% (v/v) 

gluteraldehyde (Sigma, UK) in PBS was added to the plate and incubated for 20 min at 

22oC. The plates were washed 3 times with low salt water buffer and post-coated with 

1 % (w/v) BSA in water by adding 250 µl well-1 and incubating for 2 h at 22oC. The 

plates were then washed 3 times with LSWB. Doubling-dilutions of plasma samples 

were prepared in PBS from 1/32 to 1/16,384. Both PBS and pre-immune plasma 

samples from non-vaccinated fish were used as a negative control. Samples were 
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added to wells (100 µl well-1) and incubated overnight at 4oC, and then the plates were 

washed 5 times with HSWB, incubating for 5 min on the last wash. The presence of P. 

hypophthalmus IgM was detected by adding 100 µl well-1 of anti-P. hypophthalmus IgM 

mAb supernatant (mAb 23) and incubating for 60 min at 22oC and the plate was 

washed again as described previously. Goat anti-mouse IgG-HRP (Sigma, UK), diluted 

1/4000 diluted in conjugate buffer was added to the plate at 100 µl well-1 for 60 min at 

22oC. The plates were washed with HSWB as above. The assays were developed with 

100 µl well-1 of chromogen in substrate buffer as described in Section 3.2.4.3.2. After 

incubating for 10 min at 22oC, the reaction was stopped by the addition of 50 µl well-1 

of 2 M H2SO4 and the absorbance measured at 450 nm on a micro-plate reader 

(Synergy HT; Bio Tek Instruments, Winooski, VT, USA). The antibody titre was defined 

as the reciprocal of the highest dilution (1/x dilution) showing an absorbance at least 

two times greater than the negative control. 

3.2.5 Statistical analysis 

Data were examined using a one-way analysis of variance (ANOVA), general linear model, 

and pairwise comparison (Turkey) of means. All statistical tests were performed using 

Minitab software (version 16 © University of Stirling, 2013). Differences were considered 

statistically significant at P<0.05. Statistical differences were examined between groups at 

each sampling point and within groups over time. 

3.3 Results 

Functional assays were optimised and standardised for Pangasianodon hypophthalmus 

and then these were used to measure innate and adaptive immune responses of P. 

hypophthalmus following injection with live and killed A. hydrophila. The haematological 
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parameters examined in the blood of these fish included haematocrit values, RBC and 

WBC counts, differential WBC counts and MCV values, while plasma was used to assess 

lysozyme, complement and plasma peroxidase activity, total IgM concentration and 

specific antibody titres against A. hydrophila. Phagocytic and respiratory burst activities 

were determined for head kidney macrophages. 

3.3.1 Haematological parameters  

Of the haematological parameters measured, no significant differences were seen in 

haematocrit values, total RBC counts or MCV values for any of the time points analysed 

(Figure 3.5(A-C)), while significant differences were seen in total WBC counts between 

fish infected with live A. hydrophila and non-infected fish at 3, 7 and 21 days post 

infection (d.p.i.) (P<0.05) (Figure 3.5(D)). In general, the fish injected with live A. 

hydrophila had the highest WBC counts. 

The differential WBC counts for the four experimental groups are shown in Figure 

3.6. Significant differences in the percentage of monocytes were seen on 0 and 1 d.p.i. 

with the control group having the highest values (Figure 3.6(A)). The levels of neutrophils 

seen at 3 d.p.i. in fish injected with adjuvant were significantly higher than fish injected 

with killed A. hydrophila. At 14 d.p.i. fish injected with live A. hydrophila showed the 

highest level between groups and at 21 d.p.i. fish injected with either adjuvant, killed or 

live A. hydrophila were all higher than the control group (Figure 3.6(B)). At 1 d.p.i. the 

percentages of lymphocytes in the groups injected with adjuvant and both killed and live 

A. hydrophila, were higher than the control fish. On 3 d.p.i. the groups injected with killed 

and live A. hydrophila were higher than fish injected with adjuvant, while on 14 d.p.i the 

control fish had higher levels of lymphocytes than fish injected with live A. hydrophila and 
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by 21 d.p.i. the control group had the highest levels compared to the other three groups 

(Figure 3.6(C)). The percentage of thrombocytes in the blood of fish injected with killed A. 

hydrophila and control fish were higher than the adjuvant group at 1 and 7 d.p.i (Figure 

3.6(D)). 
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(A)                                                                                                                                           (B) 

(C)                                                                                                                                       (D) 

Figure 3.5(A-D). Comparison of (A) blood haematocrit value (%); (B) mean corpuscular volume (MCV) (fl); (C) total red blood cell counts (x106cell 

ml-1); and (D) total white blood cell (x104 cell ml-1) between experimental groups. Different letters indicate significant differences (P<0.05) 

between groups for a given time point (Mean±SD, n=12). 
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Figure 3.6(A-E). Comparison of different white blood cell counts (%) between experimental group (A) monocytes, (B) neutrophils, (C) lymphocytes, 

(D) thrombocytes and (E) eosinophils. Different letters indicate significant differences (P<0.05) between groups (Mean±SD, n=12). 
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3.3.2 Head kidney macrophage activities 

3.3.2.1 Phagocytic activity of head kidney macrophages  

The phagocytic activity of head kidney macrophages was significantly different between 

the control group and fish infected with live A. hydrophila on 7 and 14 d.p.i. (P<0.05) 

(Figure 3.7(A)). By 21 d.p.i. the phagocytic index of this group was also higher than the 

other groups (P<0.05) as shown in Figure 3.7(B). Also, the phagocytic capacity (containing 

of 6 yeast cells and 6+ yeast cells) of live A. hydrophila on 21 d.p.i. was significantly 

different between the control groups (P<0.05) as shown in Figure 3.7(H). 

3.3.2.2 Respiratory burst activity of macrophages  

The respiratory burst activity of macrophages collected from the group of fish infected 

with live A. hydrophila was significantly different (P<0.05) to the control group on 7 d.p.i. 

(Figure 3.8(A)). When PMA was included in the assay the respiratory burst activity with 

PMA was significantly different (P<0.05) between the groups on 3, 7, 14 and 21 d.p.i. 

from the onset of injection (Figure 3.8(B)). The macrophages from fish infected with live 

A. hydrophila had a higher level of respiratory burst activity in the presence of PMA than 

control groups on 3, 7 and 14 d.p.i. However, on 21 d.p.i. the macrophages from fish 

injected with killed A. hydrophila had the highest level of respiratory burst activity with 

PMA. Generally, live A. hydrophila induced the highest level of respiratory burst activity 

both with and without PMA within 2 weeks of injection, followed by the group injected 

with killed A. hydrophila. The reactive oxygen species (ROS) stimulation index displayed 

by macrophages from fish injected with killed and live A. hydrophila were higher than the 

control and the adjuvanted group on 7 d.p.i. 
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Figure 3.7(A-B). Comparison of phagocytic activity (A), phagocytic index (B) between 

experimental groups. Different letters indicate significant differences (P<0.05) 

between groups for a given time point (Mean±SD, n=12). 



Chapter 3 
 

102 | P a g e  

                                                                             

                                                                      

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7(C-H; cont.). Comparison of phagocytic capacity between experimental groups. 

Different letters indicate significant differences (P<0.05) between groups for a given time 

point (Mean±SD, n=12). 
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Figure 3.8(A-C). Comparison of respiratory burst activity by head kidney 

macrophages between experimental groups (A) without PMA, (B) with 

PMA and (C) reactive oxygen species (ROS) stimulation index. Different 

letters indicate significant differences (P<0.05) between groups for a 

given time point (Mean±SD, n=12). 
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3.3.3 Plasma protein activities 

3.3.3.1 Plasma lysozyme activity  

The plasma lysozyme activity was significantly different (P<0.05) between groups on 1 

d.p.i. The values obtained with plasma from fish infected with live A. hydrophila was 

higher than control group at 3, 7, 14 d.p.i. Values obtained with live A. hydrophila, 

killed A. hydrophila and adjuvant were higher than the control group and at 21 d.p.i. 

Values of plasma lysozyme activity in fish injected with killed A. hydrophila were higher 

than fish injected with live A. hydrophila, adjuvant or control fish as shown in Figure 

3.9(A). 

3.3.3.2 Plasma complement activity 

The only time-points where there was a statistical difference between groups was at 7 

d.p.i. when the plasma complement activity was significantly higher (P<0.05) in the 

groups of fish injected with killed or live A. hydrophila (Figure 3.9(B)). 

3.3.3.3 Plasma peroxidase activity 

The plasma peroxidase activity was significantly different (P<0.05) at 3 d.p.i., with fish 

injected with live A. hydrophila having a higher activity than control fish, and at 7, 14 

and 21 d.p.i. for fish injected with either live or killed A. hydrophila having higher levels 

than the group injected with adjuvant or the control group, as shown in Figure 3.9(C). 

3.3.3.4 Total plasma immunoglobulin M 

The total plasma immunoglobulin M levels in fish injected with live or killed A. 

hydrophila or adjuvant were statistically higher to the control group at 1, 3 d.p.i. and at 

21 d.p.i. for the groups injected with live or killed A. hydrophila (Figure 3.9(D)). 
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3.3.3.5 Specific antibody titre against Aeromonas hydrophila  

The antibody (IgM) titre between groups of fish was significantly different (P>0.05). At 

3 and 14 d.p.i. for fish injected with live A. hydrophila compared to the control group), 

at 7 and 21 d.p.i. for fish injected with either live or killed A. hydrophila compared to 

the control and adjuvanted groups, (Figure 3.9(E)). 
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(A)                                                                      (B) 

(C)                                                                      (D) 

(E) 

Figure 3.9(A-E). Comparison of (A) plasma lysozyme activity (units ml-1), (B) plasma 

complement activity (units ml-1), (C) plasma peroxidase activity, (D) total plasma 

immunoglobulin M (mg ml-1) and (E) antibody (IgM) titre against A. hydrophila (-log2+1) 

between the experimental groups. Different letters indicate significant differences (P<0.05) 

between groups for a given time point (Mean±SD, n=12). 
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3.4 Discussion 

The aim of this Chapter was to standardise functional assays to evaluate both innate 

and adaptive immune responses of P. hypophthalmus and to use these assays to 

compare immune response to live and heat killed A. hydrophila. These were used as 

models of infection and vaccination, respectively. 

In the present study, the pre-challenge data (0 d.p.i.) indicated that the normal 

range of blood parameters for P. hypophthalmus were RBC (1.28-1.74 x106 cell ml-1), 

WBC (1.48-3.0 x104 cell ml-1), Hct (41.32-50.76%), MCV (257.68-368.27 fl) monocyte (4-

29%), neutrophil (42-66%), lymphocyte (8-20%), eosinophil (0-3%) and thrombocyte 

(10-17%). The blood parameter results (MCV, Hct, and neutrophil counts) were higher 

than those stated by Breazile, et al. (1982) for channel catfish, while the levels of RBCs, 

Hct, lymphocytes and thrombocytes were lower. Prasad and Charles (2010) found 

similar Hct, RBC and WBC in yellow catfish (Horabagrus brachysoma), although MCV 

levels were higher. When the levels of various blood cells were examined in the 

experimental fish, a significant increase in WBC levels was seen at 3, 7 and 21 d.p.i, 

with both live and killed A. hydrophila stimulating an increase in this response by 3 

d.p.i. However, the level of RBCs and haematocrit values were not up-regulated 

compared to the control group. The level of lymphocytes was significantly increased 

between the vaccinated group and control group on 1 d.p.i.  

Granulocytes, mononuclear and macrophages represent the main cellular 

components of innate immunity in fish (Ellis 2001). In the present study, head kidney 

macrophage function was assessed using phagocytic activity and oxidative burst 

activity as indicators of their activity. These activities were significantly higher in fish 
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injected with live A. hydrophila by 7 d.p.i. compared to the control group. The 

phagocytic cells are involved in eliciting an inflammatory response, phagocytosis and 

bactericidal activity (producing bactericidal reactive oxygen species (ROS) and nitric 

oxide (NO)) for killing pathogens (Ellis 2001). Higher levels of superoxide anion (O2
-) 

and hydrogen peroxide produced during respiratory burst are associated with 

pathogen clearance and tissue healing (Novoa, et al. 1996). The level of macrophage 

activity depends on species of fish, pathogen and type of external stimulant, as seen 

between the responses to live or dead bacteria, and techniques used to measure this 

activity.  

Ainsworth and Dexiang (1990) found the higher phagocytic activity in channel 

catfish neutrophils against Micrococcus luteus than with A. hydrophila, E. ictaluri or E. 

tarda. The incubation time and temperature for optimal macrophage expression also 

differs between fish species. The optimal time to allow the macrophages of striped 

catfish to adhere to the plates, prior to assessing their respiratory burst and phagocytic 

activity was shown to be 2 h. In contrast, the optimal adherence time for Nile tilapia 

was 60 min for peak macrophage phagocytic activity (El-Boshy, et al. 2010).  

The normal range for the phagocytic activity of head kidney macrophages from 

striped catfish was found to be 13-17%, the phagocytic index was 0.18-0.35, and 

respiratory burst (OD610 nm 1 x106 cell ml-1) was 0.10-0.12 (in the presence of NBT) 0.16-

0.23 (in the presence of NBT and PMA). These results are lower than those reported 

for channel catfish (Ainsworth and Dexiang 1990), Atlantic salmon (Salmo salar L.) 

(Thompson, et al. 1996), Asian catfish (Kumari and Sahoo 2006a), Indian carp and Rohu 

(Sahoo, et al. 2005), using similar methods of detection.  
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In the present study, significantly higher levels of phagocytic activity and 

respiratory burst activity (in the presence of PMA), were seen in fish injected with live 

A. hydrophila compared with the other groups at 14 d.p.i. and the control group, 

respectively. In contrast, respiratory burst activity (in the presence of PMA) in fish 

injected with killed A. hydrophila were significantly higher compared with the other 

groups by 21 d.p.i. The innate cellular response of the striped catfish appeared to be 

more rapid against live A. hydrophila than the heat killed bacterium. Kusuda and 

Hamaguchi (1988) similarly found higher phagocytic activity in yellowtail immersed in a 

live attenuated preparation of Pasteurella piscicida (Synonym to Photobacterium 

damselae subsp. piscicida) compared with formalin-killed and heat-killed bacterin.  

The plasma protein activities determined in this study for striped catfish were 

lysozyme, alterative complement, peroxidase and total IgM concentration. Lysozyme 

activity is an important part of innate immune response of fish and is present in 

mucus, plasma, lymphoid organs and other body fluids of fish. The main function of 

this enzyme is its lytic activity against bacteria, but it also opsonises bacteria to 

enhance phagocytosis and activates the complement system (Saurabh and Sahoo 

2008). The lysozyme activity obtained depends on a variety of factors such as the 

concentration of the enzyme in the blood, the organ being analysed, the type of 

pathogens involved in the infection and the concentration of the phosphate buffer 

used in the assay (Fänge, et al. 1976; Grinde 1989). The pH of the buffer used in the 

lysozyme assay is also important to obtain optimal activity and this value appears to 

differ between fish species. For examples the pH used for Nile tilapia (Sarder, et al. 

2001b) and Atlantic salmon (Paulsen, et al. 2003) was pH 5.75, for European sea bass 
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pH 5.8 (Mourente, et al. 2007), for turbot pH 6.24 (Santarem, et al. 1997), for channel 

catfish pH 6.0 (Welker, et al. 2007; Lim, et al. 2009), Jian carp (Cyprinus carpio var. Jian) 

pH 6.4 (Jian and Wu 2004) and rainbow trout pH 6.2 (Kunttu, et al. 2009). The 

optimum pH for pangasius catfish lysozyme activity was determined to be pH 5.4 using 

a turbidometric microplate assay, measuring the activity after 5 min. A similar value 

was used to measure the lysozyme activity in plaice (Pleuronectes platessa L.) serum 

(Fletcher and White 1976). Bich Hang, et al. (2012) determined the lysozyme activity in 

the spleen and plasma of P. hypophthalmus using a pH of 6.2. The normal range for 

plasma lysozyme activity in striped catfish was found to be 207-440 units ml-1.Great 

interspecies variation has been found for lysozyme levels in 12 different fish species 

with 5-10 fold variation in activity reported (Grinde, et al. 1988).  

Lysozyme activity in fish injected with live A. hydrophila was significantly higher 

compared to control fish on 1 d.p.i., while this activity was higher in all three 

experimental groups relative to the control fish on 3, 7 and 14 d.p.i. There was no 

difference in the level of lysozyme activity between fish injected with adjuvant, and 

live or killed A. hydrophila, except at 21 d.p.i when this activity was significantly higher 

in fish injected with killed A. hydrophila compared to those injected with live A. 

hydrophila.  

Complement is another important component of the innate immune system of 

fish, destroying invading bacteria by lysing their cell wall or acting as an opsonin to 

enhance bactieral uptake by phagocytic cells (Holland and Lambris 2002). The 

alternative complement pathway is triggered by a variety of substances, including 

bacterial endotoxins, fungal components, polysaccharides, plant factors and animal 
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venom (D. Sakai 1992). In the present study the optimal assay temperature and 

incubation time to assess alternative complement activity (ACH50%) was determined to 

be 28oC for 90 min. Similar assay conditions were used by Bich Hang, et al. (2012), for 

P. hypophthalmus, using 28oC for 100 min. The normal range of complement activity 

(ACH50%) was found to be 1.35-2.89 units ml-1 and this was lower level than Asian 

catfish (Kumari and Sahoo 2006a), Indian carp and Rohu (Sahoo, et al. 2005). 

Stimulation with killed and live A. hydrophila significantly increased complement 

activity compared with control fish 7 d.p.i. However, there was no significant 

difference in activity between live and killed A. hydrohila. The results presented here 

suggest that the alternative complement pathway can be stimulated by both live and 

dead bacteria in striped catfish.  

Myeloperoxidase (MPO) utilizes oxidative radicals to produce hypochlorous 

acid (HOCl) to kill pathogens during oxidative respiratory burst and is mainly released 

by the azurophilic granules of neutrophils (Mak and Saunders 2005). The normal range 

for plasma peroxidase activity in striped catfish was 0.72-0.78 at OD450 nm, similar to 

the range measured in Asian catfish (Kumari and Sahoo 2006a), but higher than Indian 

carp (Sahoo, et al. 2005). Significantly higher levels of plasma peroxidase activity were 

found in fish injected with live A. hydrophila on 3 d.p.i. compared with control fish, and 

this activity was significantly higher both in fish injected with live or killed A. hydrophila 

compared to the control fish on 7, 14 and 21 d.p.i. However, there was no significant 

difference in the ability of fish injected with live or killed A. hydrophila to stimulate 

MPO activity. Interestingly, there was a correlation between plasma peroxidase level 

and reactive oxygen species from respiratory burst activity. On 7 and 14 d.p.i., the 
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respiratory burst activity of macrophages obtained from fish injected with live A. 

hydrophila was significantly different from the control group. In addition, the plasma 

peroxidase levels of both live and killed A. hydrophila were significantly different from 

the control and adjuvant groups. 

Important plasma proteins involved in the innate immune system include for 

example immunoglobulins, transferrin, and precipitins or agglutinins (Magnadóttir 

2006). In the present study the normal range of total IgM in P. hypophthalmus was 

found to be 14-16 mg ml-1, i.e. higher than in Atlantic salmon (Magnadóttir and 

Gudmundsdottir 1992) and seabream (Hanif, et al. 2004). Levels of total plasma IgM 

were shown to be significantly induced in fish injected with live or killed A. hydrophila 

compared with control fish on 1, 3 and 21 d.p.i. The specific antibody titre against A. 

hydrophila was also shown to differ significantly compared between fish injected with 

live or killed A. hydrphila and control fish at 3, 7, 14 and 21 d.p.i. Furthermore, levels in 

fish injected with adjuvant alone were also significantly different to the control fish at 

21 d.p.i. Specifically-induced antibodies do not always related to protection e.g. 

Cossarini-Dunier (1986) reported circulating antibodies against Yersinia ruckeri were 

not protective; suggesting that protection against Enteric Red Mouth may be because 

of cell-mediated immunity rather than antibodies.  

This present study showed that although intraperitoneal injection with either 

live or killed A. hydrophila significantly stimulated both innate and specific antibody 

responses in P. hypophthalmus, there were some differences in immune response 

between live and killed bacteria. In the first week following injection, the fish injected 

with live A. hydrophila had significantly higher white blood cell count, head kidney 
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phagocytic function (respiratory burst activity and reactive oxygen species stimulation 

index), plasma lysozyme and peroxidase activities, and specific antibody titre against A. 

hydrophila compared with the control fish. It was not until three weeks post-injection 

that the group injected with killed A. hydrophila showed any significant differences in 

their immune response compared to the control group i.e. lysozyme activity, total IgM 

and respiratory burst activity. Live bacteria can stimulate the immune response of fish 

in response to the bacteria’s virulence, increasing T lymphocyte response I i.e. both T-

helper cells (CD4) associated with MHC class II and T-cytotoxic cells (CD8) associated 

with MHC class I, while dead bacteria or inactivated bacteria stimulate mainly T-helper 

cells (Brostoff, et al. 1994; Wong and Fish 2003; Fischer, et al. 2006). Marsden, et al. 

(1996) found an increase in the proliferative response of leucocytes isolated from 

rainbow trout vaccinated intraperitoneally with live or formalin-killed A. salmonicida 

(Brivax II), and re-stimulated with antigen in vitro provides good evidence that a live 

vaccine is a better immunostimulant than a dead vaccine. 

Vaccination with whole cells, ECPs, outer membrane proteins or biofilms of A. 

hydrophila has been shown to stimulate a variety of innate cellular and humoral 

parameters in carp (Kozinska and Guz 2004), and goldfish (Viji, et al. 2013), and 

differences in response were shown between resistant and susceptible families 

(Sahoo, et al. 2008; Z. Jeney, et al. 2009; Ardó, et al. 2010; G. Jeney, et al. 2011). 

Moreover, intraperitoneal injection of viable A. hydrophila and its ECPs resulted in very 

high mortalities after a few hours of infection and caused cell death in zebra fish 

(Rodriguez, et al. 2008), common carp (Ardó, et al. 2010) and Olive barb (Puntius 

sarana) (Das, et al. 2011) due to the cytotoxic, haemolytic activity and release of ROS 
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and nitrogen (NO) reactive free radicals. However, the level of innate and adaptive 

immune parameters depended on the routes of administration, concentration of 

bacteria, adjuvant and environment factors. For example, bath or immersion 

vaccination stimulated immune protection against A. hydrophila more than oral 

administration in common carp (Selvaraj, et al. 2009).  

The concentration of the bacteria is also an important factor for stimulating the 

fish’s immune system. Song-Lin, et al. (2012) found bathing eels with low 

concentrations of A. hydrophila (i.e. 1.0 x107 cfu ml-1) enhanced the proliferation of 

different types of blood cells and the serum titres of anti-A. hydrophila antibody. In 

this present study, the concentration of heat killed A. hydrophila injected into fish was 

1 x109 cfu ml-1 and live A. hydrophila was 2.7 x105 cfu ml-1. Both of these doses were 

shown to enhance the innate and adaptive immune responses of P. hypoophthalmus. 

Previous studies have shown that live and killed A. hydrophila administered by 

injection, immersion or orally can stimulate antibody levels in the serum, bile, skin and 

gut mucus, and skin and muscle extracts of rainbow trout (Loghothetis and Austin 

1994). In the present study, intraperitoneal administration of both live and killed A. 

hydrophila stimulated the production of total and specific IgM in the plasma of 

experimental fish. 

An adjuvant is usually mixed and injected with antigen to enhance the immune 

response and elevate immune activity (Anderson 1992). In the present study, the 

adjuvant used was Montanide ISA 760 VG. It was seen to enhance some innate 

immune parameters within 3 days of injection i.e. lysozyme activity, total IgM, white 

blood cell count were all significantly different to the control group at this time.  
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3.5 Conclusions 

In summary, standardised functional assays for P. hypophthalmus have been 

developed and basic information on the immune response in this species has been 

elucidated following stimulation with live and killed A. hydrophila as models to 

investigate immune response of this fish species. It can be concluded that 

administration of live (at a low dose) and formalin killed A. hydrophila by 

intraperitoneal administration stimulates both the innate and the adaptive immune 

responses of striped catfish. However, live A. hydrophila stimulated the immune 

response earlier than killed A. hydrophila. It appears the most appropriate 

immunoassays for monitoring the health of this species are those examining 

phagocytosis, respiratory burst, complement, lysozyme (pH 5.4), total immunoglobulin 

M, plasma peroxidase and specific antibody (IgM) titre against A. hydrophila. 
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4.1 Introduction 

Immunostimulants have proven to be a very useful food additive for the aquaculture 

industry, since they can be easily fed to fish to enhance their immune response at 

times of stress and to improve their resistance to disease (Sakai 1999; Bairwa, et al. 

2012; Meena, et al. 2012). Derived from either natural or synthetic sources, they are 

known to enhance the non-specific defence mechanisms of fish (Siwicki, et al. 1994; 

Dong, et al. 2013). One of their modes of action is through enhanced macrophage 

function, including increased phagocytosis and bactericidal activities against invading 

pathogens (Ranjan, et al. 2012). Some immunostimulants have been shown to increase 

complement and lysozyme activity and enhance antibody responses in immuno-

stimulated fish (Sakai 1999; Dong, et al. 2013). The most common types of 

immunostimulants used in aquaculture are β-glucans. These are a heterogeneous 

group of glucose polymers, consisting of a backbone of β (1,3)-linked β-D-

glucopyranosyl units with β-(1,6)-linked side chains of varying distribution and length, 

depending on their source. They tend to be derived from the cell wall of different 

plants (including wheat, rye, barley and oats), yeast (Saccharomyces genus), and 

species of the genus Echinacea (Tokunaka, et al. 2000). Other sources of β-glucan 

include seaweed (e.g. Laminaria sp.), various species of mushrooms such as Shiitake 

(Lentinus edodes), Maitake (Grifola frondosa), Reishi (Ganoderma lucidum) (Wasser 

and Weis 1999), Schizophylan (Schizophyllum commune)(Borchers, et al. 1999), other 

fungi (e.g. Agaricus subrufesuns; Pneumocystis carini; Cryptococcus neoformans) 

(Lebron, et al. 2003; Reese, et al. 2007) and some bacteria (e.g. Rhizobiaceae 

family)(Breedveld and Miller 1994). The most common source of β-glucan currently 
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used in aquaculture is derived from the cell wall of baker’s yeast Saccharomyces 

cerevisiae, and is one of the most important sources of β-1,3 and 1,6 glucans. Oats and 

barley β-glucans have linear β (1,4) and (1,3) linkages, while mushroom β-glucans have 

short β (1,6)-linked branches with a β (1,3) backbone. The yeast β-glucans have β (1,3) 

glycosidic linked D-glucose subunits with irregular β (1,6) linked side chains of various 

lengths (Meena, et al. 2012; Auinger, et al. 2013). The β-glucans having β (1,6) and β 

(1,3) linkages in their structure are more immuno-stimulatory than those with only β 

(1,3) linkages (Bohn and BeMiller 1995). Structural differences can affect the extraction 

process of some β-glucans, and in turn, this can affect their immuno-stimulatory 

activity. Larger molecular weight glucans can activate leukocytes, stimulating their 

phagocytic, cytotoxic and antimicrobial activities, and increase their production of 

reactive oxygen species (ROS), while very short, low molecular weight glucans are 

considered to be inactive (Akramiene, et al. 2007). Glucans derived from either 

Schizophyllum commune, Sclerotium glucanicum or Lentinus edodes have been shown 

to enhance the disease resistance of common carp (Cyprinus carpio) to Edwardsiella 

tarda infections (Yano, et al. 1989), while Robertsen et al. (1990) used M-glucan 

isolated from the cell walls of S. cerevisiae to enhance resistance of Atlantic salmon 

(Salmo salar) to Yersinia ruckeri, Vibrio anguillarum and Aeromonas salmonicida. Chen 

and Ainsworth (1992) also found that β-1,3 glucan extracted from the cell wall of 

bakers’ yeast, injected intraperitoneally into channel catfish (Ictalurus punctatus) 

reduced the level of mortality in fish experimental infected with E. ictaluri, while 

Whittington et al (2005) showed that it helped to enhance the innate immune 

response of Nile tilapia (Oreochromis niloticus), enhancing the fish’s response to a 
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Streptococcus iniae vaccine and improving their level of protection against S. iniae 

infection. Duncan and Klesius (1996), on the other hand, found feeding blue green 

algae (Spirulina platensis) to channel catfish enhanced their innate immune responses, 

but did not improve their resistance to E. ictaluri.  

The aims of Chapter 4 were to evaluate the effects of feeding different levels of 

fungal derived β-glucan on the immune response of P. hypophthalmus and compare 

this response to that obtained with commercial β-glucan derived from yeast. The 

effect of feeding these immunostimulants on the disease resistance of P. 

hypophthalmus to E. ictaluri was also examined. Ultimately, the purpose of this study 

was to formulate and test β-glucan-containing diets for use by the Pangasius 

aquaculture industry. 

4.2 Materials and methods 

4.2.1 Experimental animals 

The feeding trial was performed at the Novus Aqua Research Center (NARC), Linh 

Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam. Pangasianodon 

hypophthalmus were purchased from a local fish farm and transported to NARC, where 

the fish were quarantined and acclimated to laboratory conditions for at least 2 weeks 

prior to starting the experiment. During this time they were fed with the basal control 

diet (Diet A) shown in Table 4.1 at 3% body weight per day. The initial body weight of 

the animals was 60.3 ±11.7 g. 

4.2.2 Formulation of experimental diets  

A basal control diet was formulated without β-glucan supplementation (Table 4.1). The 

experimental diets consisted of the basal diet supplemented with 0.05%, 0.1%, 0.2% 
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fungal-derived β-glucan (Supplied by Novus®, USA) or 0.1% commercial yeast-derived 

β-glucan (MacroGard®, USA) as a positive control. To prepare the diets, the macro and 

micro-ingredients (including vitamin and mineral premixes and additives) were mixed 

together for 30 min in a Hobart mixer, then oil was slowly added and the feed mixed 

for a further 15 min. Boiling distilled water was then slowly added to the diets and 

mixed for another 15 min to form a soft dough. The diets were pelleted using a Hobart 

chopper to form pellets with a 3 mm diameter. The pellets were dried at 60oC for 18 h 

using a feed dryer, with the duration of drying depending on the moisture content of 

the pellets, which was checked every 6 h. The dried pellets were stored at 5oC until 

used. 

4.2.3 Experimental design and feeding regimes 

The experiment consisted of five treatment groups with four replicate tanks per group 

(using 42 fish per replicate during the feeding period and 15 fish per replicate for the 

challenge) as shown in Table 4.2. The concentration of β-glucan added to the diet of 

the various groups is shown in Table 4.1. Fish were fed twice daily to satiation, except 

for the 24 h prior to handling or challenging the fish when fish were starved. Fish were 

maintained in square 340 L tanks with re-circulated water at a temperature of 28 ±2oC 

and a photoperiod regime consisting of 12:12 h artificial light. The fish were 

maintained on the experimental diets for 4 weeks before performing the experimental 

infection, which lasted for three weeks. Two fish were sampled per tank to assess their 

immune response on Days 0, 1, 3, 7, 14, 21, 28 post-feeding (i.e. from the onset of 

feeding the immunostimulant diet) (p.f.) and 14 days post-infection (d.p.i). Blood and 
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head kidney samples were collected from these fish for the various haematological and 

immunological analyses outline in Figure 4.1 
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Table 4.1. Feed formulations 

Ingredients (%) of total weight 
weight of ingredients (g) 

Diet A Diet B Diet C Diet D Diet E 

Fungal derived β-glucan - 0 2.5 5.0 10.0 0 

Commercial yeast drived β-glucan - 0 0 0 0 5.0 

Cassava 13.7 685.0 685.0 680.0 675.0 680.0 

 Soybean meal (48%) 46.7 2,335.0 

Rice bran solvent extract 12.2 610.0 

Canola meal 8.0 400.0 

Wheat flour 5.9 295.0 

Fish meal 3.0 150.0 

Soy protein concentrate 2.73 136.51 

Fish oil 2.54 127.0 

Soybean oil 2.53 126.5 

Dicalcium phosphate (DCP) 1.2 60.0 

Mineral premix 0.5 25.0 

Vitamin premix 0.5 25.0 

Methionine Hydoxy Analogue (84%) 0.3 15.0 

Ascorbic phosphate (25%) (Stay C) 0.1 5.0 

Choline Chloride (50%) 0.1 5.0 

Total 100 5,000 
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Table 4.2. Feeding regime and fish numbers for the dietary groups fed with the experimental 

diets 

Treatment (Diets) A B C D E 

Fungal derived β-glucan (g/kg) 0 0.05 0.1 0.2 0 

Commercial yeast derived β-glucan (g/kg) 0 0 0 0 0.1 

Phase 1 – Feeding Continuous 28 days 

Tanks 4 

Total fish/tank 42 

Sample collection/time/tank 2 

Day collection sample 0, 1, 3, 7, 14, 21,28 

Total fish 840 

Phase 2- Challenge with E. ictaluri 14 days for infection period 

Tanks 4 

Total fish/tank 15 

Sample collection/time/tank 2 

Total fish 300 
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Sample collection: Day 0, 1, 3, 7, 14, 21, 28 and post-challenge day 14 

Blood collection 

Blood Smear  

Whole blood 

Haematocrit  

WBC & RBC Counting  

Lysozyme activity 

Complement activity 

Plasma         

Plasma peroxidase 

Total IgM concentration 

Mean Corpuscular 

Volumes (MCV) 

Antibody titre against Edwardsiella ictaluri 

Respiratory Burst Phagocytosis activity 

Isolation head kidney 

Total protein concentration 

Natural antibody response 

Plasma antiprotease 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Sampling regime and immunological analysis performed with blood and head kidney from Pangasianodon hypophthalmus 
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4.2.4 Haematological and Immunological analysis 

4.2.4.1 Haematological analysis 

Blood samples were collected for white blood cell (WBC) and red blood cell (RBC) 

counts by placing the blood in Natt-Herricks’s stain and counting cells using a 

haemocytometer. Blood samples were also used to determine haematocrit and mean 

corpuscular volume (MCV) values, and blood smears were prepared and stained for 

differential white blood cell counts. These analyses were performed using the 

protocols outlined previously in Section 3.2.4.1. 

4.2.4.2 Macrophage activity of head kidney 

Head kidney was collected from the experimental fish and head kidney macrophages 

were extracted to assess phagocytic activity and respiratory burst activity (RBA), using 

the protocols described in Section 3.2.4.2. 

4.2.4.3 Analysis of immunological plasma parameters  

Plasma was prepared by centrifuging the sampled blood at 3,000 x g for 5 min, and this 

was stored at -70oC for further analysis. Plasma lysozyme activity was measured using 

a turbidimetric assay, which plasma complement activity used gelatine-complement 

fixation buffer, and plasma peroxidase activity and total immunoglobulin M (IgM) were 

determined using a direct enzyme linked immunosorbent assay (ELISA). These analyses 

were performed using the protocols described earlier in Section 3.2.4.3. Additional 

methods used to analyse the various plasma parameters are outlined below. 

4.2.4.3.1 Natural antibody response  

The natural antibody response was measured in plasma using modified method of 

Sinyakov, et al. (2002) and Ardó, et al.(2010). An ELISA was used to measure the levels 
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of natural antibody in the plasma of experimental fish. A 96-well ELISA plate was 

coated with 1 % (w/v) bovine serum albumin (BSA; Sigma, UK) in 0.02 M phosphate 

buffer saline (PBS) pH 7.3 by added 250 µl well-1 and incubating for 1-2 hours at room 

(28oC) or overnight at 4C. The plates were then washed with 3 washes of low salt 

water buffer (Appendix 1). Doubling-dilutions of fish serum were prepared in PBS 

starting at a dilution of 1/32 dilution to 1/16,384, adding 100 µl well-1 and incubated 

for 3 h at 22oC or overnight at 4oC. Pre-immune serum or serum from non-vaccinated 

fish and PBS were used as negative controls. The plates were washed 5 times with high 

salt wash buffer, incubated for 5 min on the last wash, before adding 100 µl per well of 

anti-P. hypophthalmus IgM mAb 23 (see Chapter 2 for details on production of 

monoclonal antibody) and incubated for 60 min at room temperature. The plates were 

washed with 5 washes of high salt wash buffer (Appendix 1), incubated for 5 min on 

the last wash and then 100 µl well-1 conjugate (goat anti-mouse IgG-HRP (Sigma, UK) 

diluted 1/4000 in conjugate buffer (1% BSA in low salt wash buffer) was added. Plates 

were incubated for 60 min at room temperature before washing with 5 washes of high 

salt wash buffer, incubating for 5 min on last wash. Finally, 100 µl well-1 

chromogen/substrate (Appendix 1) was added and the reaction incubated for 10 min 

at room temperature before stopping with 2M H2SO4.The plates were read at 450 nm 

in an ELISA reader.  

4.2.4.3.2 Total plasma protein  

Total plasma protein was measured in plasma and analysed using a Bradford assay by 

method of Sharifuzzaman and Austin (2009). A protein standard series (from 0 to 2 mg 

ml-1) was prepared by diluting 6 mg bovine serum albumin (BSA; Sigma, UK) in PBS. 
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Twenty μl of sample or standard were added to the wells of a 96 well plate, to which 

was then added 200 μl of Bradford solution (Sigma, UK) to each well and mixed 

thoroughly on a plate shaker for 30 sec. After 5 min the plates were read at an 

absorbance of 595 nm in a microplate reader. A standard curve of protein 

concentration against absorbance at 595 nm was plotted and the best fit of the data to 

a straight line was determined from the following equation 4.1 “y = ax+b” (y = 

absorbance at 595 nm, x = protein concentration, b = solve from equation total volume 

= 0.22 ml, volume of sample or standard = 0.02 ml).  

Equation 4.1 Protein concentration 

                               
  −   

 
  

         

       
 

4.2.4.3.3 Plasma anti-protease 

Total anti-protease activity was determined from Sharifuzzaman and Austin (2009) the 

ability of plasma to inhibit trypsin activity. Twenty μl plasma was added to 20 μl of 

trypsin solution in an eppendorf tube and incubated at 22oC for 10 min, then 200 μl of 

PBS and 250 μl azocasein (2% w/v; Azocasein (Sigma, UK)) were added and incubated 

for 1 h at 30oC. The positive control consisted of PBS with trypsin and the negative 

control consisted of PBS without serum or plasma and trypsin. The reaction was 

stopped by adding 500 μl of 10% (v/v) trichloroacetic acid (Sigma, UK) incubated for 30 

min at 30oC then centrifuged at 17,000 x g for 5 min. One hundred μl well-1 1 N sodium 

hydroxide was added. Supernatant from the eppendorfs was added to the microtitre 

plate (100 μl well-1) and the plate was then read with an ELISA reader at 450 nm. The 

percentage of trypsin inhibition was determined using Equation 4.2. 

Equation 4.2 Trypsin inhibition (%) 
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           − 𝑆         

          
      

4.2.5 Bacterial challenge with E. ictaluri 

Edwardsiella ictaluri, isolate NLF33 (supplied and previously characterised by Nong 

Lam University, Vietnam), was cultured in tryptone soya agar (TSA, Oxoid England) for 

48 h. Three to five colonies of E. ictaluri were picked from the plate and placed into 

100 ml of sterile brain heart infusion broth. The bacteria were grown to late 

logarithmic growth in a shaking incubator (200 rpm, 28oC) (DaiHan LAB TECH, Korea) 

for 6 h then transferred to 300 ml of fresh TSB medium and incubated in the shaker at 

28oC, 200 rpm for a further 16-18 h. The bacterial concentration was determined using 

a Neubauer’s haemocytometer and cfu confirmed using a plate counting method. Fish 

were immersed in static, well aerated water at a final bacterial concentration of 8 x104 

cfu ml-1 for 60 min before returning the fish to their experimental tanks. Fish were 

observed at least twice daily for two weeks. Moribund or dead fish were removed and 

examined for gross external and internal clinical signs of disease and the kidney 

sampled for bacterial culture to confirm specific mortalities. 

4.2.5.1 Antibody titre against E. ictaluri  

Plasma samples were collected from moribund fish and fish surviving the experimental 

infection with E. ictaluri, and analysed using a direct ELISA for detection of E. ictaluri 

specific antibodies, using the method described in Section 3.2.4.3.5. 

4.2.6 Statistical analysis  

Data were examined using a one-way analysis of variance (ANOVA), general linear 

model, and pairwise comparison (Tukey) of means. All statistical tests were performed 

using Minitab software version 16 and survival analysis by Cox Regression model using 
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SPSS software Version 19 under licence to the University of Stirling, 2013. Differences 

were considered statistically significant when P<0.05. Statistical differences were 

examined between groups at each sampling point and examined within groups over 

time. 

4.3 Results 

4.3.1 Haematological parameters 

A variety of haematological parameters were measured in experimental fish including 

% haematocrit values, total red blood cells counts (RBC), total white blood cells counts 

(WBC) and mean corpuscular volumes (MCV). The haematocrit values over the course 

of the trial are shown in Figure 4.2(A). No change in haematocrit values were observed 

between the experimental groups on Day 1, 3 or 28 p.f., however there were 

statistically significant differences between some groups on 7, 14, 21 p.f. and following 

bacterial challenge on 14 d.p.i (P<0.05). Generally, the fish fed 0.05% β-glucan had the 

lowest haematocrit values over the course of the feeding trial and % haematocrit 

values were seen to decrease in all groups by 14 d.p.i., indicative of anaemia as a result 

of the infection. Significant differences in haematocrit values were seen between 

groups over time (P<0.05).  

No significant differences were observed in total red blood cells counts 

between any of the dietary groups at any of the sampling points, including the 

sampling points post-infection (Figure 4.2(B)). The total white blood cell counts were 

very variable over the course of the trial with the lowest levels seen at Day 0 before 

the onset of feeding with the immunostimulant diets (Figure 4.2(C)). Generally, the 

WBC levels were then seen to increase in the immuno-stimulated groups compared to 
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the control group, with significant differences seen among the experimental groups on 

Day 1, 3, and 7 (P<0.05) p.f., while a decrease in total WBC counts was observed at 14 

d.p.i. compared to the previous time point at Day 28 p.f., just prior to the challenge 

(P<0.05). The group fed 0.2% β glucan had the highest levels of WBC counts post-

infection. However, there were no statistical differences in the mean corpuscular 

volume (MCV) between experimental groups at any of the time points examined 

(Figure 4.2(D)). 
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(A)                          (B)  

(C)                    (D)  

Figure 4.2(A-D). Comparison of (A) haematocrit values (%); (B) total RBC counts (x109 cell ml-1) (C) total WBC counts (x108 cell ml-1); (D) mean 

corpuscular volumes (ft) between groups fed different diets for upto 28 days, after which all groups were challenged with Edwardsiella ictaluri for 

14 days (Mean±SD, n=8). Different letters indicate significant differences (P<0.05) between groups at a given time point. 
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The proportion of different WBC counts, including monocytes (M), lymphocytes (L), 

neutrophils (N) and thrombocytes (Th) in the blood of fish from the different dietary 

groups was determined (Figure 4.3(A-D)). There were no significant differences in the 

proportions of lymphocytes, neutrophils or thrombocytes between the groups at any 

of the time points examined (data not shown), but differences in the proportion of 

monocytes were observed. At Day 1 p.f. the basal control diet and the group fed 0.2% 

β-glucan had the highest proportion of monocytes, while the group fed 0.1% β-glucan 

had the lowest proportion. At 14 d.p.i. the fish fed 0.05% β-glucan had the highest 

proportion of monocytes, while fish fed and 0.1 % β-glucan had the lowest proportion 

(P<0.05). A summary of the differences found with the various haematological 

parameters between groups is shown in Table 4.3. There was also a significant 

difference in the differential WBC counts between the groups over time (P<0.001) (see 

Table 4.8. below in Section 4.3.5). 
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Table 4.3. Summary of significantly different haematocrit and WBC values between days and 

treatments in fish fed different levels of β-glucan and challenged with E. ictaluri 

*p.f.=post feeding, p.i.=post infection, A=Basal control diet, B=0.05% β-glucan, C=0.1% β-
glucan, D=0.2% β-glucan and E=0.1% Commercial yeast derived β-glucan 

Parameters Day Treatment 

Haematocrit values 

7 p.f. 
14 p.f. 
21 p.f. 
14 p.i. 

A=B=D<C=E 
A>B,C=D=E 
A=C>B, E=D 
A<C=D=E,B 

White blood cell (WBC) counts 

1 p.f. 
3 p.f. 
7 p.f. 
14 p.i. 

B>A=D,C=E 
A<E,C,B,D 

C>A=B, D=E 
D>B=E, A=B 

Different WBC counts 
Monocyte 
 
 
Lymphocyte 
Neutrophil 
Thrombocyte 

 
0 p.f. 
1 p.f. 
14 p.i. 

- 
- 
- 

 
C<A=D=E, B 
C<A=D=E, B 
C<B, E=A=D 

- 
- 
- 
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Figure 4.3(A-D). Comparison of differential white blood cell counts (%) between groups fed different diets for upto 28 days, after which all 

groups were challenged with Edwardsiella ictaluri for 14 days (Mean±SD, n=8). Different letters indicate significant differences (P<0.05) 

between groups for a given time point) (A) monocytes; (B) lymphocytes; (C) neutrophils and (D) thrombocytes  

       (C)                                                                                                                (D) 

(A)                                      (B) 
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4.3.2 Head kidney macrophage activities 

4.3.2.1 Respiratory burst activity 

The respiratory burst activity of head kidney macrophages in the 0.2% β-glucan group 

was significantly higher than the level observed for the basal control group on Day 1 

and Day 7 p.f., and the 0.05% β-glucan fed group on Day 7 p.f. (P<0.05) (Figure 4.4(A)). 

However, when PMA was added to the assay, significant differences in activity were 

observed between groups on Days 1, 3, 21 and 28 p.f. (Table 4.4 and Figure 4.4(B)) 

(P<0.05), with fish fed with 0.2% β-glucan showing higher level than the basal control 

group. Generally, the fish fed 0.2% β-glucan had the highest level of respiratory burst 

activity both with and without PMA compared with the basal control group. This group 

of fish also had the highest reactive oxygen species (ROS) stimulation index compared 

to the other groups on Day 3 p.f. (P<0.05) (Table 4.4 and Figure 4.4(C)). However, there 

were no significant differences in the level of respiratory burst activity with and 

without PMA between the groups of fish fed with 0.05%, 0.1% 0.2% β-glucan and 0.1% 

commercial yeast derived β-glucan.  

4.3.2.2 Phagocytic activity of head kidney macrophages  

The phagocytic activity and index of head kidney macrophages was significantly 

greater for all four immuno-stimulated groups compared to the control group on Days 

21 and 28 p.f. (and also 14 d.p.i. for the phagocytic index) from the onset of feeding 

the experimental diets (P<0.05) (Table 4.4 and Figure 4.5(A and B)). The ability of 

macrophages to phagocytise different amounts of yeast are shown in Table 4.4 and 

Figure 4.5(C-J). 
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(B) 

(C) 

(A) 

Figure 4.4(A-C). Respiratory burst activity by head kidney macrophages between groups fed 

different diets for upto 28 days, after which all groups were challenged with Edwardsiella ictaluri 

for 14 days (Mean±SD, n=8). (A) Without PMA (B) With PMA (C) Reactive oxygen species (ROS) 

stimulation index  
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(A) 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

 

 

 

 

 

 

(c) 

(C) 

Figure 4.5(A-B). Comparison of (A) percentage phagocytic activity and (B) percentage of 

phagocytic index of head kidney macrophages between groups fed different diets for upto 28 

days, after which all groups were challenged with Edwardsiella ictaluri for 14 days (Mean±SD, 

n=8). Different letters indicate significant differences (P<0.05) between groups for a given time 

point. 
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Figure 4.5(C-J; cont.). Comparison of phagocytic capacity of head kidney macrophages 

between groups fed different diets for upto 28 days, after which all groups were challenged  

with E.ictaluri for 14 days (Mean±SD, n=8). Different letters indicate significant differences 

(P<0.05) between groups for a given time point. 

(C) (D) 

(E) (F) 

(G) (H) 

(I) (J) 



Chapter 4  
 

139 | P a g e  

Table 4.4. Summary of respiratory burst and phagocytic activities of head kidney 

macrophages between treatments 

*p.f.=post feeding, p.i.=post infection, A=Basal control diet, B=0.05% β-glucan, C=0.1% β-
glucan, D=0.2% β-glucan and E=0.1% Commercial yeast derived β-glucan 
 

4.3.3 Plasma protein activities between experimental groups 

The total plasma protein levels in the 0.1% β-glucan group was significantly different to 

the groups fed the control diet and the diet supplemented with 0.05% β-glucan at Day 

1 p.f., while fish fed the 0.05% β-glucan diet was significantly different to the group fed 

0.1% commercial yeast derived β-glucan at 14 d.p.i. (Figure 4.6(A)). Plasma peroxidase 

activity was significantly different on Day 1 p.f. , with the 0.1% β-glucan group having 

higher peroxidase activity than the 0.2% β-glucan group groups (P<0.05), while the 

0.05 % β-glucan group had statistical significantly different activities to that of the 

control group on 14 d.p.f. (Figure 4.6(B)). Total plasma anti-protease activity in the 

basal control group was significantly different to that of the groups fed 0.1% β-glucan 

and 0.05% β-glucan (P<0.05) at Day 21 (Figure 4.6(C)). The only sampling point where 

Parameters Day Treatment 

Respiratory burst (with 
NBT) 

1 p.f. 
7 p.f. 

A<D, B=C=E 
D>B=A, C=E 

Respiratory burst (with 
NBT+PMA) 

1 p.f. 
3 p.f. 

21 p.f. 
28 p.f. 

D>A=B=C=E 
A<B=D, C=E 
A<D, B=C=E 
A<D, B=C=E 

ROS 3 p.f. D>A=B=C=E 

Phagocytic activity 
21 p.f. 
28 p.f. 

A<B=C=D=E 
A<B=C=D=E 

Phagocytic index 

21 p.f. 
28 p.f. 
14 p.i. 

A<B=C=E=D 
A<B=C=E=D 
A<B=C=E=D 

Phagocytic capacity 

21 p.f. 
 
 

28 p.f. 
 

14 p.i. 

Yeast (1 cell) A>E=D, C=B 
Yeast (6+ cells) A<D, B=C=E 

 
Yeast (6+ cells) A<D, B=C=E 

 
Yeast (6+ cells) A<D, B=C=E 



Chapter 4  
 

140 | P a g e  

there was a statistical difference in the natural antibody titre (-Log2+1) was at Day 3 

p.f. with highest levels recorded in the the groups fed 0.1% β-glucan (P<0.05) 

compared to those fed the 0.1% commercial yeast derived β-glucan or the basal diet 

(Figure 4.6(D)). The levels of natural antibodies clearly increased after infection with E. 

ictaluri. Plasma lysozyme activity of experimental fish were significantly different 

(P<0.05) on Day 7 p.f. in the 0.2% β-glucan group compared with fish fed the basal 

control diet (Figure 4.6(E)). Significant differences in lysozyme activity were evident 

between groups over time (P<0.05). The plasma complement activity, measured as the 

mean number of ACH50 units/ml plasma, was significantly higher at Day 7 p.f. (P<0.05) 

in the 0.1% and 0.2% β-glucan fed-groups compared to fish fed the control diet, while 

the 0.1% β-glucan fed group was also significantly different (P<0.05) to basal control 

fed fish at 14 d.p.i. Generally, the group fed the basal diet had lower ACH50% levels 

than the immunostimulated groups (Figure 4.6(F)).The only time-points where there 

was a statistical difference in the total IgM levels between groups was at Day 28 p.f., 

when the total plasma IgM levels were significantly higher (P<0.05) in 0.1% β-glucan 

fed fish compared to the other three groups (basal control, 0.05% β-glucan and 0.1% 

commercial yeast derived β-glucan) (Figure 4.6(G)). A summary of the differences 

found between the various plasma parameters is shown in Table 4.5. 
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(A)                                                                                                                                (B) 

(C)                                                                                                                               (D) 

Figure 4.6(A-D). Comparison of (A) total plasma protein (mg/ml), (B) plasma peroxidase activity, (C) total plasma anti-protease activity (%) and 

(D) natural antibody levels (-Log2+1) between experimental groups fed different diets for upto 28 days, after which all groups were challenged 

with E.ictaluri for 14 days (Mean±SD, n=8). Different letters indicate significant differences (P<0.05) between groups for a given time point. 
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(E)                                                                                                                           (F) 

   (G)                                                                                 

  

Figure 4.6(E-G; cont.). Comparison of (E) plasma lysozyme activity, (F) plasma complement activity (ACH50% units ml-1) and (G) total 

Immunoglobulin M levels (μg ml-1) between experimental groups fed different diets for upto 28 days, after which all groups were challenged 

with E.ictaluri for 14 days (Mean±SD, n=8). Different letters indicate significant differences (P<0.05) between groups for a given time point. 
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Table 4.5. Summary of the significant differences in plasma peroxidase activity, total protein, 

total anti-protease activity, lysozyme activity, complement activity and total 

immunoglobulin M in plasma among days and treatments 

*p.f.=post feeding, p.i.=post infection, A=Basal control diet, B=0.05% β-glucan, C=0.1% β-
glucan, D=0.2% β-glucan and E=0.1% Commercial yeast derived β-glucan 

 

Parameters Day Treatment 

Plasma peroxidise 1 p.f. 
14 p.f. 

C>D, A=B=E 
B>A, C=D=E 

Total protein 
1 p.f. 
14 p.i. 

C>A=B, D=E 
B>E, A=C=D 

Antiprotease 21 p.f. C>A, B=D=E 

Natural antibody titre 3 p.f. C>A=E, B=D 

Lysozyme 7 p.f. A<D, B=C=E 

Complement 
7 p.f. 
14 p.i. 

A<C=D, B=E 
A<C, B=D=E 

Total IgM 28 p.f. C>A=B=E, D 
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4.3.4 Disease resistance to experimental E. ictaluri infection 

4.3.4.1 Percentage mortality between experimental groups 

The percentage mortality was not significantly different between the five groups 

(Table 4.6) following challenge with E. ictaluri, although the group fed 0.1% 

commercial yeast derived β-glucan had the lowest level of mortalities between the 

dietary groups. The percentage cumulative mortalities are presented in Figure 4.7(A). 

Unfortunately there was a large variation in the percentage mortalities between tanks 

within groups as shown in Figure 4.7(B), and this affected the overall level of mortality 

seen between groups fed the different immunostimulant diets. 

4.3.4.2 Specific antibody titre against E. ictaluri  

The antibody titre (-Log2+1) between fish before and after experimentally infecting 

with E. ictaluri were not significantly different (P<0.05) between the five experimental 

groups, as shown in Table 4.7. However, the level of specific antibody titre against E. 

ictaluri in the post-challenge groups was up regulated to levels prior to-challenge.  
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Table 4.6. Percentage mortality (Mean±SD, n=15) between experimental groups following 

challenge with Edwarsiella ictaluri  

 
(A) Basal 
control 

Fungal derived β-glucan (E) 0.1% 
Commercial 

yeast derived 
β-glucan  

(B) 0.05%  (C) 0.1% (D) 0.2% 

Cumulative 
mortality (%) 

78.3 ± 14.8 81.7 ± 25.2 71.7 ± 28.0 70.0 ± 35.1 63.3 ± 30.1 

 

 

 

Table 4.7. Comparison of average antibody titre (Mean ±SD, n=8) between experimental 

groups before and after infection with Edwardsiella ictalutri 

Antibody titre 
against E.ictaluri 

(-Log2+1) 

(A) Basal 
control 

Fungal derived β-glucan (E) 0.1% 
Commercial 

yeast derived 
β-glucan  

(B) 0.05%  (C) 0.1% (D) 0.2% 

Pre-challenge 
(28 d.p.f.) 

Post-challenge 
(14 d.p.i.) 

6.5 ± 0.8 
 

10.5 ± 1.4 

6.6 ± 1.4 
 

11.1 ± 2.5 

7.0 ± 1.1 
 

10.3 ± 1.6 

6.4 ± 0.5 
 

10.0 ± 2.6 

6.5 ± 0.8 
 

10.5 ± 1.9 

  



Chapter 4  
 

146 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)                                                                                 

  

(A)                                                                                 

  

(B)                                                                                 

  

Figure 4.7(A-B). Comparison of (A) total percentage and (B) percentage cumulative 

mortality of Pangasianodon hypophthalmus between groups fed different diets for up 

to 28 days, after which all groups were challenged with Edwardsiella ictaluri for 14 days. 
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4.3.5 Statistical analysis 

4.3.5.1 Interaction between days  

The overall statistically significant (P<0.05) variation in immunological parameters is 

presented in Table 4.8 and 4.9. The variation between sampling days prior to the 

challenge is shown in Table 4.8 with significant differences (P<0.05) seen in 

haematocrit values (HCT), red blood cell counts (RBC), white blood cell counts (WBC), 

mean corpuscular values (MCV), lysozyme activity, complement activity, natural 

antibody titre, plasma anti-protease activity, respiratory burst, plasma peroxidise 

activity, total protein levels, phagocytic activity, total IgM, and differential white blood 

cell counts. The significant difference (P<0.05) in variation of immunological 

parameters between pre-infected, sampled at Day 28 p.f. and infected fish 14 d.p.i 

with E. ictaluri is shown in Table 4.9, with differences seen in HCT values, RBC counts, 

WBC counts), lysozyme activity, complement activity, natural antibody titres, plasma 

anti-protease activity, respiratory burst activity, phagocytic activity, total IgM and 

antibody titres against E. ictaluri.  

4.3.5.2 Interaction between treatments 

The statically significant (P<0.05) variation in immunological parameters between 

treatments A (basal control), B (0.05% Fungal derived β-glucan), C (0.1% Fungal 

derived β-glucan), D (0.2% Fungal derived β-glucan) and E (0.1% Commercial yeast 

derived β-glucan) in fish sampled at the various time points prior to the challenge (i.e. 

Days 0, 1, 3, 7, 14, 21 and 28 p.f.) is shown in Table 4.8. Significantly differences were 

seen in lysozyme activity, complement activity, natural antibody titre, plasma anti-

protease activity, respiratory burst, total IgM, differential white blood cell counts: 
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percentage of monocytes. The significant differences (P<0.05) in immunological 

parameters between pre-infection and 14 d.p.i with E. ictaluri is shown in Table 4.9. 

Differences were seen in complement activity, respiratory burst activity, total plasma 

IgM, phagocytic activity and differential white blood cell counts.  

4.3.5.3 Interaction between days and treatments 

The significant differences (P<0.05) in variation of immunological parameters between 

Days (0, 1, 3, 7, 14, 21 and 28 p.f.) and Treatment (A, B, C, D, and E) are shown in Table 

4.8 and includes white blood cell counts , plasma peroxidase, total IgM and differential 

white blood cell count with percentage of monocytes. Statistically different variations 

in immunological parameters between pre-infection and 14 d.p.i. with E. ictaluri were 

seen with MCV, total IgM and total plasma protein. 

4.3.5.4 Interaction between tanks 

Significant differences (P<0.05) in immunological parameters between tanks under 

treatment A, B, C, D or E at Days 0, 1, 3, 7, 14, 21 and 28 p.f. was seen in mean 

corpuscular value, haematocrit, phagocytic activity, complement activity, total IgM and 

differential white blood cell count (proportions of monocytes, lymphocytes, 

neutrophils and thrombocytes). Differences in immunological parameters between 

tanks pre and post-infection with E. ictaluri at Day 14 p.f. can be seen with regard to 

differential white blood cell counts (proportions of lymphocytes and thrombocytes).  

4.3.5.5 Survival analysis by Cox Regression model  

There were no statistically significant (P<0.05) differences in survival between 

treatments using a Cox Regression model. The null model -2 Log Likelihood (-2xLL) of 

2318. Including treatment in the null model was not significant (-2xLL = 2309; X4
2 = 
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9.44; P=0.051) in a likelihood ratio test with a pseudo r2 value of 0.0041. There was 

statistically significant variation in survival between tanks (P<0.01). Tanks in the null 

model was significant (-2xLL = 2171; X15
2 = 138.32; P=0.00) in a likelihood ratio test 

with a pseudo r2 value of 0.0597.  
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Table 4.8. Statistical analysis for interaction between Day (0, 1, 3, 7, 14, 21 and 28) post 

feeding), Treatment (A, B, C, D and E), Day-Treatment and Tank (1-4) by using Minitab ver16 

(ANOVA, general linear model, pairwise comparisons Tukey) 

Parameters Day Treatment Day* 
Treatment 

Tank 

HCT P=0.001 P=0.086 P=0.253 P=0.026 

RBC P=0.001 P=0.885 P=0.950 P=0.094 

WBC P=0.001 P=0.026 P=0.001 P=0.112 

MCV P=0.001 P=0.262 P=0.977 P=0.045 

Lysozyme P=0.001 P=0.006 P=0.716 P=0.099 

Complement P=0.001 P=0.031 P=0.792 P=0.019 

Natural antibody titre P=0.001 P=0.006 P=0.232 P=0.497 

Plasma anti-protease  P=0.001 P=0.019 P=0.395 P=0.165 

Respiratory burst :  
NBT 

 
P=0.001 

 
P=0.001 

 
P=0.889 

 
P=0.632 

NBT+PMA P=0.001 P=0.001 P=0.262 P=0.960 

Plasma peroxidase P=0.001 P=0.133 P=0.005 P=0.116 

Total plasma protein P=0.001 P=0.039 P=0.503 P=0.336 

Phagocytic activity P=0.001 P=0.344 P=0.997 P=0.001 

Total IgM P=0.001 P=0.023 P=0.040 P=0.012 

Differential white blood 
cell count : Monocyte P=0.062 P=0.094 P=0.006 P=0.001 
Lymphocyte P=0.001 P=0.074 P=0.961 P=0.001 
Neutrophil P=0.250 P=0.806 P=1.000 P=0.001 
Thrombocyte P=0.035 P=0.302 P=0.626 P=0.001 
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 Table 4.9. Statistical analysis for interaction between Day 28 post-feeding and 14 post-

infection, Treatment (A, B, C, D and E), Day-Treatment and Tank (1-4) by using Minitab ver16 

(ANOVA, general linear model, pairwise comparisons: Tukey) 

Parameters Day Treatment Day* 
Treatment 

Tank 

HCT P=0.001 P=0.167 P=0.408 P=0.303 

RBC P=0.002 P=0.940 P=0.351 P=0.403 

WBC P=0.001 P=0.284 P=0.517 P=0.440 

MCV P=0.537 P=0.646 P=0.035 P=0.299 

Lysozyme P=0.019 P=0.887 P=0.116 P=0.420 

Complement P=0.031 P=0.011 P=0.057 P=0.627 

Natural antibody titre P=0.001 P=0.178 P=0.226 P=0.242 

 Plasma anti-protease P=0.001 P=0.186 P=0.197 P=0.305 

Respiratory burst :  
NBT 
NBT+PMA 

 
P=0.001 
P=0.001 

 
P=0.230 
P=0.001 

 
P=0.700 
P=0.085 

 
P=0.829 
P=0.973 

Plasma peroxidase P=0.280 P=0.375 P=0.517 P=0.463 

Total plasma protein P=0.400 P=0.174 P=0.011 P=0.362 

Phagocytic activity P=0.046 P=0.007 P=0.601 P=0.103 

Antibody titre against E. 
ictaluri 

P=0.001 P=0.824 P=0.845 P=0.421 

Total IgM P=0.001 P=0.016 P=0.001 P=0.093 

Different white blood 
cell count :  
Monocyte 
Lymphocyte 
Neutrophil 
Thrombocyte 

P=0.613 
P=0.929 
P=0.973 
P=0.967 

P=0.049 
P=0.221 
P=0.813 
P=0.279 

P=0.932 
P=1.000 
P=0.988 
P=0.991 

P=0.121 
P=0.001 
P=0.237 
P=0.003 
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4.4 Discussion 

The success of immunostimulants depends on many factors including the duration of 

feeding the immunostimulant, water temperature, fish species, dose fed, and duration 

of the effectiveness of the immunostimulant, circadian rhythms and seasonality. The 

cost of the immunostimulants is also important (Anderson 1992; Maqsood, et al. 

2011). The present study clearly showed that β-glucan can stimulate many different 

immune parameters in pangasius catfish, in line with similar research carried out on 

other fish species (Lin, et al. 2011; Sharifuzzaman and Austin 2009). A range of blood 

parameters were measured in this study to examine the functional activity of various 

blood cells and to determine immune response (Pavlidis, et al. 2007). Haematocrit 

value is an indicator of the health status of the fish; the haematocrit values obtained 

indicated that there were were no significant differences between the treatment 

groups for the first 3 d.p.f., however, the values for the 0.1% β-glucan-fed groups 

increased at 7 and 21 d.p.f. Leukocytes and thrombocyte are also used to indicate the 

health status of the fish and can be used to evaluate their immune response (Tavares‐

Dias and Moraes 2007). The numbers of WBCs increased in the groups fed the β-

glucan-supplemented diet compared to the basal control group within the first day of 

feeding the experimental diets. However, the differential white blood cell counts of 

these fish indicated it was only the percentage of monocytes that changed as a result 

of being fed the diets. Harikrishnan et. al. (2011) showed a significant increase in 

haematocrit values and WBC counts (with changes in the proportions of monocytes, 

lymphocytes and neutrophils) in Oplegnathus fasciatus 1-6 weeks after having fed 
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them diets containing an immunostimulant from the herb Baical skullcap (Scutellaria 

baicalensis). 

Macrophages and neutrophils produce bactericidal ROS during respiratory 

burst when stimulated by foreign substances as a result of phagocytosis (Ellis 2001). 

Respiratory burst activity of phagocytes is increased in the presence of PMA. After 

feeding the pangasius with β-glucan it was found that their respiratory burst activity 

increased within one week of being fed the diets with the highest respiratory burst 

activity seen at Day 7 after feeding, similar to what was seen in Koi carp fed with either 

β-1,3-glucan, chitosan or raffinose in the research by Lin, et. al (2011). Phagocytic 

activity by head kidney macrophages was also higher in the fish fed β-glucan compared 

to the basal control group, although no difference was seen between the four 

immunostimulated groups. They did find a significant difference in the phagocytic 

activities between four immunostimulated groups and basal control group after Day 21 

and 28 of feeding.  

The total plasma protein levels analysed in the present study show that the 

major plasma proteins are involved in the immune response of the fish (Harikrishnan, 

et al. 2011); it was found that these levels were higher in fish fed with the 0.1% β-

glucan supplemented diets compared to the basal control group and 0.05% β-glucan 

on 1 d.p.f. There was, however, no difference in these levels between 0.1% β-glucan, 

0.2% β-glucan and 0.1% commercial yeast-derived β-glucan fed fish after one day of 

feeding the diets. The total plasma protein levels were shown to be higher 6 weeks 

after feeding the immunostimulant supplement in the study of Harikrishnan et. al. 

(2011).  
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Lysozyme is an important protein found in the plasma of fish, and is an enzyme 

which degrades the peptidoglycan layer of bacterial cell walls, causing lysis of the 

bacterial cell, and in turn, activation of the complement system and phagocytosis by 

head kidney macrophages (Ellis 2001). In this study, lysozyme activity was significantly 

higher in the 0.2% β-glucan fed fish compared to the basal control group at Day 7 of 

the trial, after which the trend in enzyme activity decreased. However, there was no 

significant difference between any of the treatment groups. In contrast, lysozyme 

activity measured in rainbow trout fed with a probiotic (Kocuria) was higher at Week 2 

of feeding in the study by Sharifuzzaman and Austin (2009).  

Complement activity in fish can be activated by lipopolysaccharide (LPS), which 

is a major constituent of the cell wall of Gram-negative bacteria (Ellis 2001). In the 

present study β-glucan was found to increase complement activity via the alternative 

pathway after 7 day of feeding and the highest activity was detected in fish after they 

were infected with E. ictaluri. This differs from the results of Cook et. al. (2003b), who 

found nodifferences in the alternate complement activity in fish fed with commercial 

β-glucan-based immunostimulant preparation (EcoActiva™). 

Fish plasma also contains a number of protease inhibitors, principally α1-anti-

protease, α2-anti-plasmin and α2-macroglobulin (α2M), which restricts the ability of 

bacteria to invade and grow within fish by acting against the proteases produced by 

the invading pathogens (Ellis 2001). In the present study administration of 0.05% and 

0.1% β-glucan diets significantly enhanced plasma anti-protease activity on Day 21 of 

feeding. This is agreement with the observation made by Harikrishnan et. al. (2011) 

who found significantly enhanced serum anti-protease activity on Weeks 3 or 6 of 
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feeding O. fasciatus with diets supplemented with a probiotic or the herb (Baical 

skullcap; S. baicalensis).  

Peroxidase in the plasma of fish reflects the levels of peroxidase produced by 

macrophages (Sitjà-Bobadilla, et al. 2005). In the present study, the 0.05% β-glucan fed 

groups had higher plasma peroxidase levels than the basal control group on 14 d.p.i., 

but there were no differences between the β-glucan groups. Sitja-Bobadilla et. al., 

(2005) studied the effect of meal replacement with different concentrations of plant 

proteins on innate defence mechanisms and oxidative stress in gilthead sea bream 

(Sparus aurata). Their data showed there was no significant effect of the diets on the 

myeloperoxidase activity produced by their head kidney macrophages. However, 

significant differences in myeloperoxidase activity were observed in the plasma of fish 

fed the diet with 100% plant protein replacement (PP100) compared to fish meal diet 

and 50% plant protein replacement (PP50). Sharifuzzaman and Austin (2009) found 

macrophage peroxidase content to be more pronounced in rainbow trout fed Kocuria-

supplemented diets after two weeks of feeding the probiotic. 

Immunoglobulin M (IgM) is the major immunoglobulin class in teleost fish 

(Morrison and Nowak 2002). In this study, the total IgM and natural antibody titres 

were found to be at higher levels in fish fed with the 0.1% β-glucan supplemented 

diets compared to the basal control group, the natural antibody titres were 

significantly different at 3 d.p.f. and total IgM at 28 d.p.f. Higher levels of plasma IgM 

were seen 14 days in all fish after infecting them with E. ictaluri. However, there was 

no significant difference between the treatment groups. 
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There was considerable variation in the results between fish and between time 

points for all of the assays performed; and this may reflect whether statistical 

differences could be detected between groups. More fish may need to be used per 

group to establish significant differences for some of the assays. A clear effect of 

immunostimulation was seen with many assays; however, this appeared to be dose 

dependent with regard to β-glucan. Generally, the greatest immunostimuation was 

seen with 0.2% β glucan with higher respiratory burst activity on all days examined and 

higher plasma lysozyme activity on Day 7 of feeding, although the 0.1% β-glucan 

groups had the greatest immuostimulation with regard to plasma anti-protease activity 

on Day 21, natural antibody titre on Day 3 and complement activity Day 7 and 14 p.i. A 

dose of 0.05% β-glucan appeared insufficient to effectively stimulate the fish’s immune 

response. 

Not all assays appeared useful for studying the effects of immunostimulation. 

Some assays were useful as an early indication of immunostimulation e.g. white blood 

cell count, respiratory burst, lysozyme activity and complement activity, showing 

stimulation from the first day of feeding the experimental diets. Immunology 

parameters which appeared useful for comparing between the treatment groups 

included respiratory burst activity, lysozyme activity, complement activity, plasma anti-

protease, natural antibody titre and total protein. 

No statistical differences were seen in the fish’s resistance to the experimental 

infection between the different dietary groups. There was, however, a great deal of 

variation in the level of mortalities within the four replicate tanks for each dietary 

group, which affected the mean mortality obtained per group. The mortality levels 
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recorded were high reflecting a substantial challenge. For future challenges, the 

addition of a lower dose (aimed at reaching 40% mortality, for example) may allow 

more subtle effects of the immunostimulants to be seen. In addition, fish should be 

pre-screened for the presence of anti-E. ictaluri antibodies to confirm that fish are not 

infected with this pathogen before starting the experiment.The results here indicated 

that  E. ictaluri-specific antibody response of fish was relatively low prior to challenge 

i.e. 1/32, suggesting that the fish were not infected prior to starting the challenge. 

In conclusion, these studies clearly indicate that both the non-specific humoral 

and cellular immune responses of pangsius, measured in this study, were differentially 

stimulated by different concentrations of the immunostimulant β-glucan with doses of 

0.1 or 0.2% fungal derived β-glucan obtaining optimal immunostimulation. 
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5.1 Introduction 

Previously in Chapter 4 the effects of feeding β-glucan on the immune function of P. 

hypophthalmus was examined using functional assays (haematocrit (Hct), mean 

corpuscular volume (MCV), WBC and RBC counts, differential WBC counts, phagocytic 

activity, respiratory burst activity, plasma lysozyme activity, complement activity, 

plasma peroxidase activity, total immunoglobulin M, natural antibody titre, total 

plasma protein and plasma anti-protease) to assess this response, and it was clearly 

shown that both the humoral and cellular responses of the innate immune response of 

fish were differentially stimulated by different concentrations of fungal-derived β-

glucan. The percentage of cumulative mortalities after experimentally infecting the 

stimulated fish with E. ictaluri, by immersion, were not significantly different between 

the dietary groups (i.e between fish fed 0.05%, 0.1%, 0.2% fungal derived β-glucan, 

0.1% commercial yeast derived β-glucan or a basal control diet with no glucans), 

possibly due to the large variation in mortalities between tanks within groups.  

The immunostimulant activity of β-glucans is mediated through the modulation 

of gene expression of pro-inflammatory cytokines and chemokines (Biswas, et al. 2012; 

Falco, et al. 2012). For example, it has been shown that injection of β-glucan induces 

the expression of interleukin (IL) 1β genes in head kidney macrophages of carp 

(Selvaraj, et al. 2005), or expression of complement factors (i.e. C3 and factor B), and 

acute phase proteins (i.e. hepcidin, precerebellin and transferrin) 24 h after 

stimulation of rainbow trout (Oncorhynchus mykiss) fry with β-glucans (Chettri, et al. 

2012). Falco, et al., (2012) found that diets supplemented with β-glucans reduced the 

inflammatory response of common carp during Aeromonas salmonicida infection using 
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a quantitative PCR (qPCR) to assess the gene expression patterns of tumour necrosis 

factor-α1 (TNF-α1), tumour necrosis factor-α2 (TNF-α2), interleukin-1β (IL-1β), 

interleukin-6 (IL-6) and interleukin-10 (IL-10). A significant reduction in the level of 

mortalities was observed in zebrafish (Danio rerio) experimentally infected with A. 

hydrophila after they had been injected intraperitoneally with β-glucan, derived from 

Saccharomyces cerevisiae, at 5 mg ml-1 (Rodríguez, et al. 2009). However, the β-glucan 

used in the study did not appear to affect the expression of tnfα or IL-1β, but did 

modulate interferon-γ (IFN-γ) and chemokine expression in the kidney. Kim, Ke and 

Zhang (2009) showed that when grass carp (Ctenopharyngodon idella) were injected 

intraperitoneally with β-glucan derived from the mycelia of Poria cocos 85 at 10 mg kg-

1, the fish exhibited enhanced anti-viral activity against grass carp haemorrhage virus 

through an increased Mx expression. Diets containing 0.5 or 1 g kg-1 of β-1, 3-glucan 

derived from Laminaria digitata fed to white shrimp (Litopenaeus vannamei) resulted 

in significantly higher level of hemocyanin, lipopolysaccharide (LPS), β-glucan binding 

protein (LGBP), serine proteinase, prophenoloxidase (proPO) and superoxide 

dismutase (SOD) expression in stimulated shrimp exposed to 120 h of nitrite stress 

compared to unstimulated shrimp (Zhao, et al. 2012).  

There are only a few studies examining the expression of immune genes in P. 

hypophthalmus. Huong Giang, et al. (2010) examined serum amyloid P component 

(SAP) and C-reactive protein (CRP) genes in P. hypophthamus, while Sinha, et al. (2010) 

monitored heat shock protein 70 (HSP70), growth hormone, acetylcholinesterase 

(AChE), trypsinogen, cytochrome P4501B (CYP1B) and cytochrome oxidase submit-1 

(COI) expression as potential biomarkers after exposure to trichlorfon. 



Chapter 5  
 

161 | P a g e  
 

The aim of the present Chapter was to identify sequences (through the use of 

an EST library) that matched P. hypophthalmus immune genes so that these could be 

utilised to assess gene expression following β-glucan stimulation and infection with E. 

ictaluri. Thus, after, designing suitable primers for the specific genes identified, qPCR 

assays were used to assess their level of expression in P. hypophthalmus-fed diets 

supplemented with β-glucans from two different sources (0.1% fungal derived β-

glucan and 0.1% commercial yeast derived β-glucan). Ultimately the effect of feeding 

the β-glucan supplemented diets on the fish’s resistance to E. ictaluri was examined by 

experimentally infecting the fish with the bacterium using an immersion challenge. 

5.2 Materials and methods 

The work presented in this chapter is divided into two sections. It was first section 

immune genes were identified from P. hypophthalmus based on the identity of EST 

sequences. Having identified appropriate sequences for the genes, primers were 

designed for analysis of their expression in qPCR. In the second part of this chapter the 

effects of β-glucan on the expression of these immune genes prior to and after 

exposure to E. ictaluri was examined.  

5.2.1 Identification of immune genes, primer design and optimization of qPCR 

assays 

5.2.1.1 Expressed sequence tags (ESTs) 

Expressed Sequence Tags (ESTs) were kindly provided by Ei Lin Ooi from Novus Aqua 

Research Center (NARC), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam 

(unpublished data). Briefly, an EST library was prepared from 500g striped catfish 

challenged with E. ictaluri for 24 h; tissues (intestine, head kidney, liver and muscle) 
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were collected, RNA extracted and a cDNA library sequenced by pyrosequencing. The 

resulting sequences were processed to produce four EST data-sets (intestine 2,532 

ESTs; head kidney 3,179 ESTs; liver 1,314 ESTs and muscle 1,070 ESTs). 

5.2.1.2 Identification of immune gene sequences from EST sets 

An overview of the process involved in the identification of immune sequences and 

qPCR development is shown in Figure 5.1. A list of immune genes of interest to 

examine the effect of β-glucan stimulation was first compiled from the various sources 

shown in Table 7.1 (Appendix 2). Using this list, all the homologous genes present in 

the NCBI RefSeq databases (genome, RNA and EST) were identified using BLASTN 

(Altschul, et al. 1990); their gene IDs were retrieved to make the reference list of 

genes. In parallel, all 8,095 EST sequences (despite their high redundancy) were also 

compared with the same NCBI RefSeq databases (genome, RNA and EST) using 

BLASTN; the gene ID of each best match was retrieved. 

The list of best matches and reference list of genes were compared; if the best 

match of an EST was found in the reference list of genes, the EST was considered to be 

an acceptable homolog to this gene. This procedure maximised the likelihood that the 

EST was a fragment of an immune gene of interest. A more direct approach, i.e. 

comparing the ESTs to the reference list of immune genes only, would identify EST 

exhibited sequences similar to one of the immune gene selected, but would not ensure 

that this similarity was not exceeded by the non-immune gene sharing only a sequence 

motif. 

All BLASTN searches were used with default parameters; the similarity 

thresholds used to filter the results were: expectation-value (e-value) lowers than 5 
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x10-5, total coverage over 33% of the query sequence and for over 100 nucleotides in 

length (i.e. aliment longer than 100). 

5.2.1.3 Design of RT-qPCR primers 

The sequences of immune related genes of interest obtained in Section 5.2.1.2 were 

used to design the RT-qPCR primers using The NCBI Primer-Blast software 

[http://www.ncbi.nlm.nih.gov/tools/primer-blast/] (Ye, et al. 2012). The criteria for 

good primer design was 3’ self-complementarity less than 1, a melting temperature of 

60oC, an amplified region of less than 200 base pairs, which was located in the middle 

part of the sequence region, 50-60 % GC content and length of 18-24 nucleotides. 

5.2.1.4 Optimisation of RT-qPCR assays  

A master mix containing both the forward and the reverse primer pairs for a2 MHC 

class II integral membrane protein alpha chain 2, complement (C3 and factor B/C2A), 

transferrin, C-reactive protein 2, precerebellin-like protein (cerebellin 14), interleukin-

1β and interferon γ 2a and 2b, translation elongation factor-1α mRNA, 18S rRNA gene 

and β-actin mRNA were prepared (i.e. a stock primer solution at a final concentration 

of 10 µmol). The master mix was added to the wells of a 96 well qPCR plate (4 µL well-

1) together with 1 µl cDNA, prepared from normal P. hypophthalmus liver and kidney 

tissue as described in Section 5.2.5 and 5.2.6, and 5 µL SYBR green (Bioline, UK). The 

plates were sealed with a plate sealer and centrifuged with 258 xg for 30 s. The plates 

were placed into the qPCR machine (Eppendrof® realplex AG, USA), and the following 

programme used to run the assay (preheating to 95oC then pause, activation 95oC for 

10 min, denaturing 95oC for 15 sec, gradient annealing temperature 55-65oC for 15 sec 
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and extension at 72oC for 20 sec). The quality of RT-qPCR products were checked by gel 

electrophoresis using a 1.5% agarose gel. 

5.2.1.5 RT-qPCR standard curve 

Samples of cDNA i.e. normal liver and kidney tissue of P. hypophthalmus) (see Section 

5.2.2.5 and 5.2.2.6) were diluted with cDNA dilution solution (lamda DNA 5 ng/µl, 2 

mmol/L Tris pH 8.0) at concentrations of 1x, 5x, 50x, 500x and 5,000x. The synthesised 

cDNA was added into the wells of a 96 well qPCR plate (2 µl well-1). A master mix of the 

primers was prepared (forward primer 0.25 µl, reward primer 0.25 µl, SYBR (Bioline, 

UK) 5 µl and Nano-pure water 3.5 µl per reaction) and 9 µL of this mix was added into 

the plate, which were then sealed with a plate sealer and centrifuged at 258 xg for 30 

sec. The qPCR reaction used consisted of preheating for 95oC, activation for 95oC for 10 

min, denaturing 95oC for 15 sec, annealing at 57oC for 15 sec and extension at 72oC for 

20 sec. 

5.2.2 Analysis of P. hypophthalmus immune genes stimulated with fungal derived 

β-glucan 

5.2.2.1 Experimental animals 

Pangasianodon hypophthalmus were purchased from a local fish farm and transported 

to the Novus Aqua Research Center (NARC), Linh Trung Ward, Thu Duc District, Ho Chi 

Minh City, Vietnam. The fish were quarantined and acclimated to laboratory conditions 

for at least 2 weeks prior to starting the experiment and were fed with control feed at 

3 % body weight per day. The weight of the animals was 36 ±0.34 g at the start of the 

experiment. 
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5.2.2.2 Formulation of experimental diets and feeding regimes 

Three dietary groups were prepared using the same β-glucan supplements as used in 

the dietary trial performed in Chapter 4 i.e. a basal control group; 0.1 % w/w fungal 

derived β-glucan and 0.1 % w/w commercial yeast drived β-glucan. The standard basal 

diet was prepared using the formulation showed in Table 5.1, and was supplemented 

with the fungal-derived β-glucan or the commercial yeast-derived β-glucan to prepare 

the experimental diets. The details about the procedure used to make these feeds are 

detailed in Chapter 4 section 4.2.2. Fish received the basal control diet at 3% body 

weight per day for 14 days during the acclimation period prior to starting the 

experiment. 

5.2.2.3 Experimental plan 

5.2.2.3.1 Experimental design 

The experimental design consisted of the three dietary groups outlined above. All 

treatment groups were maintained in four replicate 340 L fibre tanks (75 fish per tank). 

After acclimation for 14 days, fish were fed with the experimental feeds at 3% body 

weight per day for 14 days. Two fish per tank per time point were collected, from 

which spleen, head kidney and liver were collected at 14 days post-feeding (d.p.f.) and 

24 h post-infection (h.p.i.). Samples were stored in RNA later at -80oC for analysis of 

immune genes. 

5.2.2.3.2 Challenge with E. ictaluri  

Pangasianodon hypophthalmus were challenged by immersion exposure for 30 min 

with a freshly prepared culture of E. ictaluri (NLF33). The procedure for preparing the 

bacteria is described in Chapter 4 section 4.2.5. For the challenge, 1 x106 cfu ml-1 E. 
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ictaluri was added to the tank (10 L), while bacterial culture medium was added to the 

uninfected group. Fish were separated into two sets, the first set was transferred to 30 

L fibre tanks to monitor immune gene expression in response to the infection, and the 

second set was transferred to 80 L fibre tanks to determine the level of specific 

cumulative mortalities and the temperature was maintained at 26 ±1oC during the 

infection trial. Tissue samples were collected from the fish in the 30 L fibre tanks at 24 

h. The mortality in the infected and uninfected groups in the 80 L fibre tanks was 

recorded up to 14 d.p.i. and specific cumulative mortalities determined. 
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qPCR protocol for P. hypophthalmus gene expression 

Step I : Using gene of interest to find all homologous sequences (BLASTN) 

Identification of immune genes 

Step II : Using EST sequences versus database (BLASTN) 

Step III : Cross matching the lists of step I and II 

Result : name of EST sequence matched with homologous sequences 

Primer design : using Primer-Blast from NCBI 

Primer testing with cDNA P. hypophthalmus and set up standard curve of primer 

Set up suitable condition for qPCR  

Gene expression analysis of sample 

RNA extraction 

Checking quality of RNA extraction 

cDNA synthesis 

cDNA dilution and making standard cDNA 

qPCR 

Figure 5.1. Identification of immune genes and gene expression analysis of Pangasianodon hypophthalmus 
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Table 5.1. Feed formulation 

Ingredients (%) of total weight 
Weight of ingredients (g) 

Basal control 
0.1% Fungal derived β-

glucan 
0.1% Commercial yeast 

derived β-glucan 

Fungal derived β-glucan - 0 2.5 5.0 

Commercial yeast drived β-glucan - 0 0 0 

Cassava 13.7 479.5 476.0 476.0 

 Soybean meal (48%) 46.7 1,634.5 

Rice bran solvent extract 12.2 427.0 

Canola meal 8.0 280.0 

Wheat flour 5.9 206.5 

Fish meal 3.0 105.0 

Soy protein concentrate 2.73 95.55 

Fish oil 2.54 88.9 

Soybean oil 2.53 88.55 

Dicalcium phosphate (DCP) 1.2 42.0 

Mineral premix 0.5 17.5 

Vitamin premix 0.5 17.5 

Methionine Hydoxy Analogue (84%) 0.3 10.5 

Ascorbic phosphate (25%) (Stay C) 0.1 3.5 

Choline Chloride (50%) 0.1 3.5 

Total 100 3,500 
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5.2.2.3.3 Sample collection 

Tissues were collected from head kidney, liver and spleen into RNAonshore (0.5 M 

Na2EDTA, 1 M sodium citrate, ammonium sulphate and nuclease free H2O) (Dr John 

Taggart, Institute of Aquaculture, University of Stirling, personal communication), and 

stored at -20oC until analysed. The samples were collected at 14 d.p.f. and 24 h.p.i for 

immune gene analysed.  

5.2.2.4 RNA isolation  

Tissue samples were weighed (< 100 mg) and 1 ml of TRI reagent® added (Sigma, UK) 

and incubated on ice for 45 min. The samples were then homogenised with a bead 

beater (Mini-Beadbeater 24, USA) for 45 sec or until tissue was disrupted.  

The homogenized samples were incubated at 20oC for 5 min, then 50 µl of 1-

bromo-3-chloropropane (Sigma, UK) was added and the tube was shaken vigorously 

for 15 sec. The samples were incubated at 20oC for 15 min and centrifuged (Centrifuge, 

Sigma, UK) at 20,000 xg for 15 min at 4oC. The aqueous (upper) phase i.e. 200 µl was 

remove from the transparent phase using a wide-bore pipette tip and transferred into 

a new tube and 100 µl of RNA precipitation solution (1.2M NaCl, 0.8M Sodium citrate 

sequinhydrate (C6H6Na2O7.1.5H2O), nuclease-free water 100 ml) added, together with 

100 µl of isopropanol (Fluka, UK). The tubes were gently inverted 4-6 times. The 

samples were incubated for 10 min at 20oC and centrifuged at 20,000 xg for 10 min at 

4oC. 

The supernatant was removed and the pelleted washed with 1 ml of 75 % 

ethanol, for 15 min at 20oC. They were then flicked to detach the pellet from the 

bottom of the tube, inverted a few times and centrifuged at 20,000 xg for 5 min at 



Chapter 5 

  

170 | P a g e  
 

20oC. Finally the RNA pellet was air dried at 20oC for 3-5 min until all visible traces of 

ethanol were removed. 

The samples were suspended in 100 µl of RNAase free-water and incubated at 

20oC for 30-60 min with gentle flicking of the tubes every 10 min to aid re-suspension. 

The concentration of samples were measured using a nanodrop spectrophotometer 

(ND-100; USA) and adjusted to a final concentration 500 ng µl-1 for liver and kidney 

tissue samples, and 300 ng µl-1 for spleen using RNAase-free water. The samples were 

finally stored at -70oC. 

The quality of RNA extracted was checked on a 1.5% agarose gel (Sigma, UK). 

Samples were prepared by using 2 µl of 2x loading dye (Biolabs; UK) and mixed with 2 

µl of sample. The aliquots of RNA with the loading buffer were heated for 5 min at 

75oC, chilled on ice and run on a 1.5% agarose gel using a gel electrophoresis system 

(BIO-RAD® HU13; USA) at 75V for 30 min. 

5.2.2.5 cDNA synthesis 

Pooled RNA samples (two fish per pool) were used for cDNA synthesis using a high 

capacity cDNA reverse transcription kit (Applied biosystem, UK). A master mix was 

prepared containing 10 xRT buffer 2 µl, 25 xdNTPs 0.8 µl, 10x Random primer 2.0 µl, 

multiscribeTM reverse transcriptase 1 µl and RNAase free water 10.2 µl. The pooled 

RNA samples (4 µl well-1) together with the master mixed (16 µl well-1) were added to 

the wells of a 96 well qPCR plate, which was sealed with a plate seal and centrifuged at 

258 xg for 30 sec. The plate was placed into the PCR machine (Biometra® T-gradient, 

USA) with a thermoregulation programme set as preheat at 25oC, activation for 10 min 
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at 25oC, denaturing for 120 min at 37oC, annealing for 15 sec at 85oC and extension at 

4oC for ∞). The synthesised cDNA samples were stored at -70oC until used. 

The cDNA prepared from the liver and kidney of each group was pooled and a 

series dilution of this was prepared (1x, 5x, 500x and 5,000x) by diluting the pooled 

cDNA in cDNA dilution solution (lamda DNA (Biolabs, UK) 5 ng µl-1, 2 mM Tris pH 8.0), 

and 50 µl aliquots of each dilution was placed in tubes and stored at -70oC.  

5.2.2.6 RT-qPCR 

The cDNA standards prepared in Section 5.5.2.5 and cDNA prepared from samples 

being analysed were added to 96 well qPCR plates at 2 µl well-1. A master mix 

containing primers (forward primer 0.04 µl, reverse primer 0.04 µl, SYBR 5 µl and Nano 

pure water 292 µl reaction-1) was prepared and 8 µl of this was added into the wells of 

the plate, which was subsequently sealed with a plate sealer and centrifuged at 258 xg 

for 30 sec. The running conditions of the qPCR (preheating at 95oC with a pause step, 

activation at 95oC for 10 min, denaturing at 95oC for 15 sec, annealing at 57oC for 15 

sec and extension at 72oC for 20 sec) and was carried out in a real time qPCR machine 

(Eppendrof® realplex AG, USA). Standard curves were generated for relative 

quantitation of gene expression on each assay plate using the serial dilutions of a 

reference cDNA described in Section 5.2.1.5. Each dilution of the standard curve was 

run in duplicate. Two time points for each treatment i.e. 14 d.p.f. and 24 h.p.i., were 

evaluated per tissue. The relative concentration of each total mRNA sample for each 

gene was calculated from the respective standard curve by iCycler iQ Real-Time PCR 

Detection System software version 3.0a (Bio-Rad). Data normalization was carried out 

by dividing the value obtained for each gene sample by the respective value obtained 
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for the αtranslation elongation factor-1α mRNA, 18S rRNA gene and Beta-actin mRNA. 

The resulting ratios were used to compare expression of the genes of interest in 

different tissues over a period of time. 

5.2.3 Statistical analysis 

The gene expression data were log10 transformed, to provide normal distribution for 

analysis and were normalised against a reference set of these immune genes by using 

three reference genes. Each sample represents the mean ratio of three replicates 

where each replicate is derived from a sample pool of two fish from each relevant 

treatment group. The level of expression observed within the control condition is 

designated a value of “1” and thereby the expression observed in the treatments is 

expressed as a ratio in relation to the control. Significant differences in expression 

between the basal control and the immunostimulant diet-fed groups on 14 d.p.f. and 

in the groups infected or not infected with E. ictaluri, at 24 h.p.i. were analysed using 

an analysis of variance (ANOVA) general linear model in Minitab (Version 16 © 

University of Stirling, 2013). Survival analysis with cox regression within SPSS (Version 

19 © University of Stirling, 2013) was used to assess differences in survival. Differences 

were considered significant when the p-value < 0.05. Statistica (version 8.0 ©Statsoft, 

Inc., 1984-2008, Tulsa, Oklahoma, USA) was used to conduct the multivariate test 

principal component analysis (PCA) on square root transformed data. PCA was used to 

look for data clusters within the dataset and to obtain the factor scores for the first 

three principal components, which as a data reduction method summarises the 

variation between specimens. A Permanova (version 1.6; M.J. Anderson, Department 

of Statistical, University of Auckland, 2005) i.e. a non-parametric with linear ANOVA 
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model test was then applied to the factor scores from the first three principal 

components to test for significance between the groups of fish. Differences were 

considered significant when the Monte Carlo (p_mc) < 0.05. 

5.3 Results 

5.3.1 Identification of immune genes, primer design and optimization of qPCR 

assays 

5.3.1.1 Identification of immune gene sequences from EST sets 

The initial list of 33 immune genes of interest is provided in Table 7.1 (Appendix 2). The 

procedure identified 24 ESTs covering 9 unique genes (Appendix 2, Table 7.2); 

Intestine: 5 ESTs (2 genes); Head Kidney: 4 ESTs, 2 genes); Liver: 15 ESTs, 7 genes), 

Muscle: nothing. The sequences obtained from the ESTs are shown in Table 5.2; they 

were used for designing the RT-qPCR primers. 

5.3.1.2 Primer design for immune gene expression 

Primers were designed for the immune related genes obtained from EST sequences 

Primer-Blast (Ye, et al. 2012). Suitable primers were identified for various P. 

hypophthalmus immune genes including genes of the adaptive response (a2 MHC class 

II integral membrane protein alpha chain 2), the innate response, including 

complement (C3 and factor B/C2A), the acute phase response proteins (transferrin, C-

reactive protein 2, precerebellin-like protein [cerebellin 14]), and cytokines (IL-1β and 

INF-γ 2a and 2b). Primers were also designed for housekeeping genes (translation 

elongation factor-1α mRNA, 18S rRNA gene and β-actin mRNA) for normalizing the 

data (Table 5.3).  
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The only genes which did not show expression in RT-qPCR were the IFN-γ 2a 

and 2b genes, in both normal and infected E. ictaluri liver and kidney tissues. 

5.3.1.3 Effect of β-glucan supplemented diets on the expression of selected immune 

genes 

There were no statistical differences between the 0.1% commercial yeast derived β-

glucan, 0.1% fungal derived β-glucan and basal control diet (P<0.05) in the relative 

gene expression for MHC II, transferrin, c-reactive protein, precerebellin, IL-β, or 

complement (C3 and factor B) in liver tissue or IL-1β and MHC II in spleen and kidney 

from after feeding for 14 days, as shown in Figure 5.2. The group fed with the 0.1% 

fungal derived β-glucan showed a higher trend in the expression of IL-1β and MHC II 

genes in their spleen and liver (Figure 5.2(A and B)) when compared with the other 

dietary group, but this was not statistically different, while the IL-1β and MHC II genes 

expressed in kidney showed a higher trend in the 0.1% commercial yeast derived β-

glucan fed fish than in the other two dietary groups, but again these levels were not 

statistically different (Figure 5.2(C)). 
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Table 5.2. Suggested immune-related genes from final cross matching between P. hypophthalmus EST sequences and list of homologous immune 

gene sequences from the NCBI database 

Activity Gene name Target tissue EST ID Ref Seq_Description 
Ref 
Seq_gene ID 

Ref Seq_Species 

Adaptive 
response 

a2 MHC class II integral 
membrane protein 
alpha chain 2 

 Spleen 

HEADKIDNEY00000404 [3 - 737] 
HEADKIDNEY00000405 [3 - 737] 

majmajor histocompatibility  
complex class II 
integral 
 membrane alpha 
chain  
gene 

30783 
 

Danio rerio 
 

Complement 

C3 

Liver INTESTINE00000802 [1 - 771] 
LIVER00000045 [25 - 4365] 
LIVER00000046 [25 - 4365] 
LIVER00000047 [25 - 4665] 
LIVER00000048 [25 - 4665] 

complement C3-H2-
like 
complement 
component c3a 

100331492 
321046 

Danio rerio 

Factor B/C2A 
Liver LIVER00000028 [11 - 1858] 

LIVER00000029 [11 - 1495] 
complement factor 
B/C2A 

100862742 
Ictalurus 
punctatus 

Acute phase 
response 

Transferrin 
Liver LIVER00000118 [911 - 2050] 

LIVER00000119 [1 - 1041] 
Transferring 

100335020 
 

Ictalurus 
punctatus 

C-reactive protein Liver LIVER00000908 [6 - 542] C-reactive protein 2 327615 Danio rerio 
precerebellin-like 
protein 

Liver 
LIVER00000631 [3 - 581] cerebellin 14 100007164 Danio rerio 

Cytokines 

Interleukin-1β 
Spleen 

LIVER00000992 [3 - 503] interleukin 1, beta 100304696 
Ictalurus 
punctatus 

Inferferon γ 2a Spleen Partial sequence from GenBank: JN185453  
Interferon γ 2b Spleen Partial sequence from GenBank: JN185454 
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Table 5.3.  Primers used for P. hypophthalmus immune gene expression 

Activity Gene name Primer Sequence (5'->3') Length EST ID 
Ref 
Seq_gene ID 

Ref Seq_Species 

Adaptive 
response 

a2 MHC class II integral 
membrane protein alpha 
chain 2 

Pair 2 
FWD: GAGCTCAACACTCAGCCAGT 
REV: CACACCAGGAAGCTCCACAT 
 

172 HEADKIDNEY00000405 [3 - 737] 

30783 
Danio rerio 
 

Complement 

C3 

Pair 1 
FWD: TCCACCAGAGCCATCCCATA 
REV: CACAACTTGAACGCCACCAG 
 

198 
         
          
 
 

LIVER00000048 [25 - 4665] 

100331492 
321046 

Danio rerio 

Factor B/C2A 

Pair 1 
FWD: 
CAAAGTGCGTGTGTGTCAGG 
REV: AACTGCTAAAAGCCTCCGCT 
 

110 
 
 
 

LIVER00000028 [11 - 1858] 

100862742 Ictalurus punctatus 

Acute phase 
response 

Transferrin 

Pair 1 
FWD: CACCCCATAACCTTCACCCC 
REV: CGCAGTTTTCCCCAAACCAG 
 

149 
 
 
 

LIVER00000118 [911 - 2050] 

100335020 Ictalurus punctatus 

C-reactive protein 2 

Pair 1 
FWD: AGGAGTCCGACACTGCCTAT 
REV: CCCGCTGCTTCTCAGGTAAA 
 

200 
 
 
 

LIVER00000908 [6 - 542] 

327615 Danio rerio 

Precerebellin-like protein 
(Cerebellin 14) 

Pair 1 
FWD: GGCATTCTGGGCCATACCTT 
REV: CCAGTTGCAAGGGAGTTTGC 
 

195 
 
 

LIVER00000631 [3 - 581] 

100007164 Danio rerio 
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Table 5.3(cont.). Primers used for immune P. hypophthalmus genes expression 

Activity Gene name Primer Sequence (5'->3') Length EST ID 
Ref 
Seq_gene ID 

Ref Seq_Species 

Cytokine 

Interleukin-1β 

Pair 1 
FWD: 
CAGAGGCTGAAGCACACTCA 
REV: CCTTGTCCTGCCTGCTGTAA 
 

148 
 
 
 

LIVER00000992 [3 - 503] 

100304696 Ictalurus punctatus 

Interferon γ 2a and 2b 

Pair 1 
FWD: TATGTCACTGAGCTGCTGGC 
REV: TTAGCTTGACGTCGTCTCCG 
Pair 2 
FWD: TCCCAACCCTGCCAAATTGT 
REV: GCCTCATTCTCCATCCAGGT 
 

143 
 
 
150 - 

864669643 
 
 
864669649 

Pangasianodon 
hyphthalmus 

Housekeeping 
gene 

(Reference 
gene) 

Translation elongation factor-
1α mRNA 

Pair 3 
FWD:TGAAATTGCCGCACTGGTTG 
REV: CTGGGCCTCATCACCAACAT 

 
 
169 

HEADKIDNEY00000687 [53-1444] 
30516 

Danio rerio 

18S rRNA gene, 5.8S rRNA 
gene, 28S rRNA gene 

Pair 2 
FWD: GGTCGGCGTCCAACTTCTTA 
REV: GCAATCCCCAGTCCCAATCA 

 
 
 
192 

- 384643886 
Pangasianodon 
hyphthalmus 

 β-actin mRNA 

 
Pair 3 
FWD: ATTGATGCCCCTGGACACAG 
REV:GGGTCTGTCCGTTCTTGGAG 

 
 
 
133 

HEADKIDNEY00000644 [227-
1459] 

57934 
 
100534412 

Danio rerio 
 
Oreochromis niloticus 
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Principal component analysis (PCA) was used to investigate immune gene 

expression in the three different tissues (liver, kidney and spleen). A total of 11 

variables, detailing the relative expression of each target gene in the liver (C-reactive 

protein, transferrin, complement factor B and C3, precerebellin, IL-1β and MHC class 

II), the kidney (IL-1β and MHC class II) and in the spleen (IL-1β and MHC class II) were 

used as input data and were derived from a total population of 24 fish. The 

experimental samples were derived from three pools of fish sampled at 14 d.p.f., one 

pool of eight fish receiving a basal control diet, a second pool of eight fish receiving a 

0.1% commercial yeast derived β-glucan diet and a third pool receiving a 0.1% fungal 

derived β-glucan diet. A summary of the derived data are shown in Table 5.4. The 

coefficient of variation (CV) for each variable was determined to ascertain the amount 

of variation about the mean and whether the variable should be included within the 

PCA analysis. The CVs determined using the raw data was large and so a series of data 

transformations were explored, with a square root transformation decreasing the size 

of all CVs except for the two kidney variables which remained over 30 %. The 

component loadings for each variable and the percentage of the variance explained by 

each principal component (“factor”) were determined for each successive round of 

principal components analysis and are presented. The first round of PCA considered all 

11 measured variables using the square root transformed data whilst, the second 

round of PCA considered only those variables with a coefficient of variation (CV) below 

on arbitrarily set level of ≤ 33% (i.e. the two kidney variables with CV values exceeding 

this were excluded prior to analysis); the output from these analyses are shown in 

Table 5.5. The plot of the first two principal components (i.e. Factor 1 vs. Factor 2) is 
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shown in Figure 5.3, and these two factors account for 43.9% of the variation between 

specimens. The plot shows that there is a high degree of overlap between each of the 

diets at 14 d.p.f., suggesting that the diets do not effect a significant shift in the 

expression of all immune genes. The two kidney variables were then removed from the 

dataset and a second PCA analysis based on nine square root transformed variables at 

14 d.p.f. was run. The plots for the second PCA analysis show two projections of the 

first three principal components with a high degree of overlap between diets as shown 

in Figure 5.4(A and B).   



Chapter 5 

  

180 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(C) 

(B) 

(A) 

Figure 5.2(A-C). Relative gene expression between the immunostimulant diets (0.1% 

commercial yeast derived β-glucan and 0.1% fungal derived β-glucan) and basal control 

diet at 14 d.p.f (Mean±SD, n=8). (A) in liver tissue, (B) in spleen tissue and (C) in kidney 

tissue. 
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Table 5.4. Univariate statistics for 11 variables representing the immune gene expression in 

three different tissues, namely the liver (C-reactive protein, transferrin, complement factor B 

and C3, precerebellin, IL-1β and MHC class II), the kidney (IL-1β and MHC class II) and the 

spleen (IL-1β and MHC class II). The experimental samples were derived from three pools of 

fish sampled at 14 d.p.f., one pool of fish receiving a basal control diet (n=8), a second pool 

receiving a 0.1% commercial yeast derived β-glucan diet (n=8), and, a third pool receiving a 

0.1% fungal derived β-glucan diet (n=8). 

Tissue Variable Mean ± SD 
Range % CV 

(Raw) 
% CV 
(Sqrt) Minimum Maximum 

Liver 

Precerebellin 3.03 ± 1.88 1.11 8.25 62.01 28.78 
Transferrin 2.06 ± 0.47 1.13 2.80 22.92 11.98 
C-reactive 
protein 

6.39 ± 3.34 1.66 15.34 52.34 25.98 

IL-1β 2.10 ± 1.35 0.63 7.85 64.43 26.43 
MHC class II 3.85 ± 2.75 1.04 13.28 71.45 32.74 
Complement 
factor B 

1.02 ± 0.39 2.13 0.40 39.08 20.02 

Complement 
C3 

2.15 ± 1.15 0.95 6.40 53.67 23.54 

Spleen 
IL-1β 2.45 ± 1.72 0.65 8.96 70.34 31.12 
MHC class II 8.95 ± 3.22 1.99 14.34 35.95 20.42 

Kidney 
IL-1β 34.94 ± 48.71 9.45 230.60 139.24 53.55 
MHC class II 0.24 ± 0.34 0.07 1.39 141.58 60.40 

The coefficient of variation (CV) given here is expressed as a percentage and is given by the 

standard deviation divided by the mean. Coefficient of variations for both the raw data and 

square root transformed data are given.   
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Table 5.5. The component loadings and the percentage of the variance explained by each 

variable for each successive round of principal components analysis. The first round of PCA 

(PCA 1; n=24) considers all measured variables (square root transformed data) whilst, the 

second round of PCA (PCA 2; n=24) considers only those variables with a coefficient of 

variation (CV) below on arbitrary set level of ≤ 33% (i.e. the two kidney variables with CV 

values exceeding this were excluded prior to analysis). Values above ±0.70 are shown in a 

bold font. 

Tissue Variable 
PCA 1 PCA 2 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Liver 

Precerebellin -0.38 -0.61 -0.07 -0.69 -0.06 0.07 
Transferrin 0.25 0.44 0.64 -0.07 -0.79 -0.23 
C-reactive 
protein 

0.17 -0.29 0.71 -0.03 -0.80 0.34 

IL-1 -0.45 0.30 0.59 -0.12 -0.32 -0.35 
MHC class II -0.48 -0.55 -0.30 -0.74 0.20 0.44 
Complement 
factor B 

-0.53 -0.64 0.33 -0.80 -0.40 0.10 

Complement 
C3 

-0.69 -0.32 -0.08 -0.73 0.15 -0.27 

Spleen 
IL-1 -0.03 -0.07 0.22 -0.07 -0.19 -0.84 
MHC class II -0.50 0.06 0.46 -0.44 0.53 -0.35 

Kidney 
IL-1 -0.64 0.55 0.21 - - - 
MHC class II -0.66 0.66 0.25 - - - 

Total variance (%) 22.91 20.98 16.71 26.83 21.02 15.44 

Cumulative (%) 22.91 43.89 60.60 26.83 47.85 63.29 
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Figure 5.3. Principal component analysis (PCA) of all 11 selected variables based on 

square root transformed variables. Only the first two principal components are 

shown (i.e. Factor 1 vs. Factor 2) which accounts for 43.89% of the variation 

between specimens. The graph shows that there is a high degree of overlap 

between each of the diets at 14 d.p.f. 
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Figure 5.4(A-B). Principal component analysis (PCA) based on nine square root 

transformed variables at 14 d.p.f. No variables from the kidney were included because of 

their high coefficient of variation values (i.e. ≥ 33%). The graph shows two projections of 

the first three principal components i.e. Factor 1 vs. Factor 2 (A) and Factor 1 vs. Factor 3 

(B). The plot shows a high degree of overlap between diets. 
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5.3.2 Inflammatory-related immune gene expression 24 hours after challenging 

with E. ictaluri  

The effect of E. ictaluri challenge on immune gene expression was determined at only 

24 h.p.i. The relative gene expression (acute phase response genes, MHC II and 

complement factor B) in liver tissue, in the spleen (MHC II) and in the kidney (IL-1β) 

were shown to be statistically different between the infected and uninfected groups 

(p<0.05). The expression of precerebellin, C-reactive protein, MHC class II, complement 

factor B in the liver and IL-1β in the kidney were up-regulated in the E. ictaluri-infected 

group as shown in Figures 5.5(A, C, E and F) and 5.7(A). There was no significant 

difference, however, in the expression of IL-1β in the liver and spleen, complement C3 

in the liver or the MHC class II gene in the kidney between the uninfected and the E. 

ictaluri-infected groups as shown in Figures 5.5(D and G), 5.6(A) and 5.7(B), 

respectively. Using ANOVA, there were no significant differences between the group 

fed immunostimulant and the control group. Only the level of expression of the 

transferrin gene in basal control diet in the uninfected group was significantly higher 

than the 0.1 % fungal-derived β-glucan group (p<0.05) as shown in Figure 5.5(B).  

Principal component analysis (PCA) was then used to investigate the immune 

gene expression in the three different tissues (i.e. liver, kidney and spleen), sampled 

from fish fed three different experimental diets that were then subsequently 

challenged with E. ictaluri or not. The same 11 variables relating to gene expression in 

the liver (C-reactive protein, transferrin, complement factor B and C3, precerebellin, IL-

1β and MHC class II), the kidney (IL-1β and MHC class II), and the spleen (IL-1β and 

MHC class II) were used. A total of 48 experimental fish were divided into six pools of 



Chapter 5 

  

186 | P a g e  
 

fish sampled at 24 h.p.i., with one pool receiving a basal control diet without 

challenging with E. ictaluri, a second pool receiving a 0.1% commercial yeast derived β-

glucan diet without challenging with E. ictaluri, a third pool receiving a 0.1% fungal 

derived β-glucan diet without challenging with E. ictaluri, a fourth receiving basal 

control diet followed by a challenge with E. ictaluri, a fifth pool receiving a 0.1% 

commercial yeast derived β-glucan diet challenged with E. ictaluri, and, a sixth pool of 

fish receiving a 0.1% fungal derived β-glucan diet before being challenged with E. 

ictaluri. A summary of the data is shown in Table 5.6. The component loadings of each 

variable and the percentage of the variance explained by each principal component 

(i.e. “factor”) on the square root transformed data) determined by the first principal 

components analysis which considered all six pools of fish (i.e. both uninfected and E. 

ictaluri-infected fish) is shown in Table 5.7. The plot of the first two principal 

components, which accounts for 51.01% of the variation between fish, shows a clear 

separation between the uninfected and infected E. ictaluri groups (Figure 5.8.). A 

permanova test on the factor scores of the first three principal components analysis 

confirmed that there was a statistical significant difference in the levels of gene 

expression (based all on 11 variables) between the group of uninfected fish and those 

groups of fish that were infected with E. ictaluri (p = 0.0002). The genes having the 

strongest influence within the PCA were the liver precerebellin, C-reactive protein, 

complement factor B and transferrin through Factor 1 and IL-1 from both the liver and 

the spleen acting through Factor 2. The three projections of the first three principal 

components (i.e. Factors 1-3) representing all six different groups of fish (uninfected; 

basal control, 0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-glucan 
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and infected; basal control, 0.1% commercial yeast derived β-glucan and 0.1% fungal 

derived β-glucan) are shown in Figure 5.9 (A-C). The plot shows there is some overlap 

between the groups, however, the PCA plot of Factor 1 vs. Factor 3 (see Figure 5.9 (B)) 

shows that the group of eight uninfected fish receiving the basal control diet could be 

separated from the uninfected fish receiving either a 0.1% commercial yeast derived β-

glucan and / or 0.1% fungal derived β-glucan diet. This separation and its significance 

was assessed through further rounds of PCA and permanova tests. The genes having a 

major influence through Factor 1 were precerebellin, C-reactive protein and 

complement factor B in the liver, and MHC class II through Factor 2 in the kidney.  

Following the first PCA of all fish groups, two further PCAs were conducted, 

which considered first the uninfected (i.e. non-E. ictaluri challenged fish) three groups 

of fish alone and then in a second PCA, the infected (i.e. E. ictaluri challenged fish) 

groups of fish to look for further structuring within the data. The PCA analysis and plot 

of the uninfected fish, which is based on all 11 variables, is shown in Table 5.8 and in 

Figure 5.10(A-C). The PCA plots show three projections of the first three principal 

components. Figure 5.10(A) of Factor 1 vs. Factor 2 shows that the uninfected fish 

receiving the 0.1% fungal derived β-glucan diet is separated and is significantly 

different (permanova p_mc = 0.013) from the other two pools of uninfected fish 

receiving different diets. The main genes having a major effect on this separation are 

the liver C-reactive protein through Factor 1 and the liver precerebellin acting through 

Factor 2. Figures 5.10(B and C) look at these groups in two different projections and 

show that there is some overlap between all three groups. Table 5.9 and Figure 5.11 

(A-C) explore the structuring between the three groups of E. ictaluri challenged fish. 
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The component loadings for each variable and the percentage of the variance 

explained by each factor within the principal components analysis based on the square 

root transformed are shown in Table 5.9. The PCA plots presented in Figures 5.11(A-C) 

show that there is some overlap between all three groups of challenged fish and that 

there are statistically significant differences in expression between the control group 

and the group receiving the 0.1% commercial yeast derived β-glucan diet (permanova 

p_mc = 0.0008) and also between the control group and the group receiving the 0.1% 

fungal derived β-glucan diet (permanova p_mc = 0.005). There was no statistically 

significant difference, however, between the groups of fish receiving the 0.1% 

commercial yeast derived β-glucan diet and the 0.1% fungal derived β-glucan diet 

(permanova p_mc = 0.183). The results suggest that the immunostimulant diets have a 

significant effect on the total immune gene expression in the liver, kidney and spleen 

of fish challenged with E. ictaluri when compared to fish receiving a standard (control) 

diet. 
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(A) 

(B) 

(C) 

Figure 5.5(A-C). The relative gene expression in liver tissue between the experimental 

diets (0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-glucan and basal 

control) with uninfected and infected with E. ictaluri at 24 h.p.i (Mean±SD, n=8). Acute 

phase responses (A) Precerebellin gene, (B) Transferrin gene and (C) C-reactive protein. 

Different letters indicate significant differences (P<0.05) between groups of 

experimental diets (a,b,c) or infected and uninfected with E. ictaluri (x,y). A significant 

interaction between experimental diets and infection was found only in Transferrin 

gene (B) 
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Figure 5.5(D-E; cont.). The relative gene expression in liver tissue between the experimental 

diets (0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-glucan and basal 

control) with uninfected and infected with E. ictaluri at 24 h.p.i (Mean±SD, n=8). Cytokine 

and adaptive immune response (D) cytokine was IL-1β and (E) adaptive immune response 

was a2 MHC class II integral membrane protein alpha chain 2. Different letters indicate 

significant differences (P<0.05) between groups of experimental diets (a,b,c) or infected and 

uninfected with E. ictaluri (x,y). 

(D) 

(E) 
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Figure 5.5(F-G; cont.). The relative gene expression in liver tissue compared between the 

experimental diets (0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-glucan 

and basal control) with uninfected and infected with E. ictaluri at 24 h.p.i (Mean±SD, n=8). 

Complement (F) factor B and (G) C3. Different letters indicate significant differences (P<0.05) 

between groups of experimental diets (a,b,c) or infected and uninfected with E. ictaluri (x,y). 

(F) 

(G) 
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(A) 

(B) 

Figure 5.6(A-B). The relative gene expression in spleen compared between the experimental 

diets (0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-glucan and basal 

control) with uninfected and infected with E. ictaluri at 24 h.p.i. (A) IL-1β and (B) a2 MHC 

class II integral membrane protein alpha chain 2 (Mean±SD, n=8). Different letters indicate 

significant differences (P<0.05) between groups of experimental diets (a,b,c) or infected and 

uninfected with E. ictaluri (x,y). 
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(A) 

(B) 

Figure 5.7(A-B). The relative gene expression in kidney compared between the 

experimental diets (0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-

glucan and basal control) with uninfected and infected with E. ictaluri at 24 h.p.i. (A) IL-

1β and (B) a2 MHC class II integral membrane protein alpha chain 2 (Mean±SD, n=8). 

Different letters indicate significant differences (P<0.05) between groups of experimental 

diets (a,b,c) or infected and uninfected with E. ictaluri (x,y). 



Chapter 5 

  

194 | P a g e  
 

Table 5.6. Univariate statistics for 11 variables representing the immune gene expression in 

three different tissues, namely the liver (C-reactive protein, transferrin, complement factor B 

and C3, precerebellin, IL-1β and MHC class II), the kidney (IL-1β and MHC class II), and, the 

spleen (IL-1β and MHC class II). The experimental samples were divided from six pools of fish 

sampled at 24 h.p.i. with one pool receiving a basal control diet without challenging with E. 

ictaluri (n=8), a second pool receiving a 0.1% commercial yeast derived β-glucan diet without 

challenging with E. ictaluri (n=8), a third pool receiving a 0.1% fungal derived β-glucan diet 

without challenging with E. ictaluri (n=8), a fourth receiving basal control diet followed by a 

challenge with E. ictaluri (n=8), a fifth pool receiving a 0.1% commercial yeast derived β-

glucan diet challenged with E. ictaluri (n=8), and, a sixth pool receiving a 0.1% fungal derived 

β-glucan diet before being challenged with E. ictaluri (n=8). 

Tissue Variable Mean ± SD 
Range % CV 

(Raw) 
% CV 
(Sqrt) Min. Max. 

Liver 

Precerebellin 1.39 ± 0.82 0.37 4.12 59.45 28.62 

Transferrin 2.83 ± 2.79 0.40 13.23 98.71 47.29 
C-reactive protein 1.60 ± 1.24 0.43 6.13 77.79 36.63 
IL-1β 1.33 ± 0.79 0.46 4.06 59.28 27.85 
MHC class II 3.73 ±2 .24 0.80 12.12 60.05 27.89 
Complement factor B 4.36 ± 5.10 0.73 24.62 116.84 52.50 
Complement C3 2.20 ± 0.90 0.60 4.40 41.18 20.35 

Spleen 
IL-1β 10.7 ± 7.0 3.45 34.85 67.62 30.41 
MHC class II 7.81 ± 3.91 2.58 26.46 50.00 22.84 

Kidney 
IL-1β 58.37 ± 75.52 2.06 297.57 129.38 60.58 
MHC class II 0.42 ± 0.82 0.02 4.28 189.24 90.98 

The coefficient of variation (CV) given here is expressed as a percentage and is given by the 

standard deviation divided by the mean. Coefficient of variations for both the raw data and 

square root transformed data are given. 
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Table 5.7. The component loadings and the percentage of the variance explained by each 

variable within the principal components analysis applied to all six groups of fish. The first 

round of PCA (uninfected with E. ictaluri; n=24, and infected with E. ictaluri; n=24) considers 

all variables, the data of which have been square root transformed. Values above ±0.70 are 

shown in a bold font. 

Tissue Variable 
PCA  

Factor 1 Factor 2 Factor 3 

Liver 

Precerebellin -0.82 0.10 -0.20 
Transferrin 0.70 -0.05 -0.11 
C-reactive protein -0.88 0.17 -0.17 
IL-1β -0.04 -0.80 -0.38 
MHC class II -0.62 0.20 -0.42 
Complement factor B -0.81 -0.15 -0.03 
Complement C3 -0.58 -0.22 -0.18 

Spleen 
IL-1β 0.30 -0.77 -0.15 
MHC class II 0.25 0.32 0.16 

Kidney 
IL-1β -0.60 -0.26 0.57 
MHC class II -0.37 -0.28 0.82 

Total variance (%) 36.24 14.77 13.37 
Cumulative (%) 36.24 51.01 64.38 
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Figure 5.8. Principal component analysis (PCA) of all 11 selected variables based on 

square root transformed data at 24 h.p.i. Only the first two principal components are 

shown (i.e. Factor 1 vs. Factor 2) which accounts for 51.01% of the variation between 

specimens. The graph shows that there is a degree of separation between the 

uninfected and infected E. ictaluri groups indicating that infection elicits a change in 

gene expression. 
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(C) 

Figure 5.9(A-C). Principal component analysis (PCA) of all 11 selected variables based on 

square root transformed data at 24 h.p.i. derived from all six pools of fish (i.e. uninfected and 

those challenged with E. ictaluri). The graph shows three projections of the first three principal 

components i.e. Factor 1 vs. Factor 2 (A), Factor 1 vs. Factor 3 (B) and Factor 2 vs. Factor 3 (C). 
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Table 5.8. The component loadings and the percentage of the variance explained by each 

factor within a principal components analysis which considers only the three uninfected 

groups of fish (i.e. those not challenged with E. ictaluri; n=24). The analysis considers all 11 

variables, the data of which have been square root transformed. Values above ±0.70 are 

shown in a bold font. 

Tissue Variable 
PCA  

Factor 1 Factor 2 Factor 3 

Liver 

Precerebellin -0.37 0.72 0.07 

Transferrin 0.56 0.17 0.10 

C-reactive protein -0.80 0.16 0.16 

IL-1 0.065 -0.015 0.85 

MHC class II -0.60 0.27 -0.35 

Complement factor B -0.46 0.56 0.21 

Complement C3 -0.46 0.13 0.73 

Spleen 
IL-1 0.53 -0.11 0.49 
MHC class II -0.57 -0.33 -0.18 

Kidney 
IL-1 -0.56 -0.66 0.07 
MHC class II -0.34 -0.82 0.20 

Total variance (%) 26.55 19.97 16.04 

Cumulative (%) 26.55 46.52 62.56 
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(C) 

Figure 5.10(A-C). Principal component analysis (PCA) of all 11 selected variables based 

on square root transformed uninfected data at 24 h.p.i. The graph shows three 

projections of the first three principal components i.e. Factor 1 vs. Factor 2 (A), Factor 

1 vs. Factor 3 (B) and Factor 2 vs. Factor 3 (C). 
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Table 5.9. The component loadings and the percentage of the variance explained by each 

factor within the principal components analysis which explores sub-structuring in the three 

pools of E. ictaluri challenged fish. The PCA (infected with E. ictaluri; n=24) considers all 

variables, the data of which have been square root transformed. Values above ±0.70 are 

shown in a bold font. 

Tissue Variable 
PCA  

Factor 1 Factor 2 Factor 3 

Liver 

Precerebellin -0.71 0.18 -0.075 

Transferrin -0.28 0.20 -0.24 

C-reactive protein -0.84 0.25 -0.02 

IL-1 0.38 -0.06 -0.84 

MHC class II -0.10 0.62 -0.22 

Complement factor B -0.70 -0.37 -0.35 

Complement C3 -0.73 -0.004 -0.35 

Spleen 
IL-1 0.47 -0.17 -0.71 
MHC class II 0.16 0.52 0.16 

Kidney 
IL-1 0.01 -0.77 0.07 
MHC class II -0.28 -0.81 0.15 

Total variance (%) 25.41 20.01 14.78 
Cumulative (%) 25.41 45.42 60.20 
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(C) 

Figure 5.11(A-C). Principal component analysis (PCA) of all 11 selected variables based 

on square root transformed infected data at 24 h.p.i. The graph shows three projections 

of the first three principal components i.e. Factor 1 vs. Factor 2 (A), Factor 1 vs. Factor 3 

(B) and Factor 2 vs. Factor 3 (C). 
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5.3.3 Survival post-challenge with E. ictaluri 

Mortalities of P. hypophthalmus exposed to E. ictaluri were shown in Figure 5.12(A). 

Average cumulative mortality was 30 ±12% in the group fed the basal control diet, 17 

±8% in group fed fungal-derived β-glucan 0.1 % and 16 ±5% in the group fed 

commercial yeast-derived β-glucan 0.%. The data showed that the fish in 0.1% fungal-

derived β-glucan and 0.1% commercial yeast-derived β-glucan group had a significantly 

lower levels of cumulative mortality (P<0.05) than the fish fed the basal control diet. 

The variation between the tanks 14 d.p.i is shown in Figure 5.12(B). The survival 

between treatments was statistically significant (P<0.05) using Cox Regression model 

i.e the null model -2 Log Likelihood (-2xLL) was 685.674. Including treatment in the null 

model was significant (-2xLL = 678.807; X2
2 = 6.867; P=0.32) in a likelihood ratio test 

with a pseudo r2 value of 0.010. There was statistically significant variation in survival 

between tanks (P<0.01). Additionally, including tank variation between the group of 

treatment was not significant (-2xLL = 669.334; X9
2 = 9.473; P=0.395) in a likelihood 

ratio test with a pseudo r2 value of 0.024.  
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(A) 

(B) 

Figure 5.12(A-B). (A) The percentage cumulative mortality between experimental 

groups (0.1% commercial yeast derived β-glucan, 0.1% fungal derived β-glucan and 

basal control), (B) the variation between the tanks of experiment groups. Different 

letters indicate significant differences (P<0.05) between groups of fish fed 

experimental diets (a,b,c). 
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5.4 Discussion 

In the previous chapter, the effect of β-glucans on the immune function of P. 

hypophthalmus and their resistance to E. ictaluri infection was examined. The results 

clearly indicated that both the humoral and cellular immune responses of P. 

hypophthalmus were differentially stimulated by different concentrations of the β-

glucan, with increased immune responses observed within two weeks of feeding P. 

hypophthalmus the β-glucan-supplemented diets. Some immune parameters such as 

respiratory burst activity, WBC counts, total plasma protein and plasma peroxidase 

activity were stimulated after only one day of feeding fish the immunostimulant diets. 

Doses of 0.1 or 0.2% fungal-derived β-glucan appeared to give optimal 

immunostimulation, both the 0.1 and 0.2% fungal-derived β-glucan increased the fish’s 

resistance to E. ictaluri infection. Although doses of both 0.1 and 0.2% fungal-derived 

β-glucan were found to stimulate the immune response of P. hypophthalmus, a dose of 

0.1 % is economically more suitable for a commercial application in aquaculture. The 

effect of feeding the same β glucan-supplemented diets (at the optimal doses of 0.1%), 

on the immune genes in P. hypophthalmus, together with their resistance to E. ictaluri 

was investigated in the present study. 

Samples for analysis were collected after 14 days of feeding fish the 

immunostimulant diets, and then again 24 h. after infecting the fish with E. ictaluri. 

Although the sequences for a few immune genes had already been identified for P. 

hypophthalmus from the NCBI database (unpublished data) i.e. interferon γ 2a 

(JN185453) and 2b (JN185454) and immunoglobulin heavy chain (JN106388), attempts 

were made in this study to find sequences for additional immune genes using EST 
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sequences provided by Novus International. This process first involved compiling a list 

of immune genes of interest, taken from the literature, to examine the effects of β-

glucan stimulation on the P. hypophthalmus immune gene response. Then, all the 

homologous genes in NCBI RefSeq databases relating of the genes of interest were 

identified so as to prepare list of reference genes. In parallel, all 8,095 EST sequences 

were compared with genes contained in the NCBI RefSeq databases. Finally, the list of 

best matches between these and the list of reference genes were compared. As a 

result of this selection seven immune genes (C-reactive protein, precerebellin, 

transferrin, IL-1, MHC class II, complement factor B and C3) and three reference genes 

(translation elongation factor-1α mRNA, 18S rRNA and Beta-actin mRNA genes) were 

identified and used to design primers for studying the expression of these genes by 

qPCR analysis. Partial cds sequences were also found in GeneBank of NCBI RefSeq 

databases for P. hypophthalmus IFN-γ 2a (JN185453) and 2b (JN185454) mRNA, which 

were used to design primers for studying the expression of these immune genes. 

However, testing of the chosen primer sequences for IFN-γ 2a and 2b did not result in 

any expression of these genes in RT-qPCR using normal liver or kidney tissue or liver 

sampled for E. ictaluri infected fish. Interferon tends to expressed during virus 

infections rather than bacterial infections (Robertsen, et al. 1990), although IFN-γ has 

been shown to be activated during the expression of bactericidal activity by 

macrophages (Schroder, et al. 2004). Furnes, et al. (2009) found IFN-γ gene expression 

to be up-regulated in kidney and spleen of cod injected with the dsRNA polyinosinic: 

polycytidylic acid (poly I:C), which is a strong inducer of type I IFNs. Also, IFN-γ 

expression was up regulated in kidney of cod injected with formalin-killed Vibrio 
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anguillarum, but this expression was lower than seen with poly I:C stimulation, 

suggesting that IFN-γ is involved in the innate immune response against both viral and 

bacterial infections in Atlantic cod. 

Suitable qRT-PCR assays were developed to analysis the expression of the seven 

immune genes (C-reactive protein, precerebellin, transferrin, IL-1, MHC class II, 

complement factor B and C3) selected from the ESTs prepared from striped catfish. 

These assays were used to characterize the differential expression of those genes in 

liver, spleen or head kidney after 14 d.p.f. and also 24 h.p.i. with E. ictaluri. Translation 

elongation factor-1-alpha mRNA, 18S rRNA and Beta-actin mRNA genes were used as 

constitutively expressed gene for normalization of the RT-qPCR results. After 14 days 

of feeding the β-glucan supplemented diets, there appeared to be no statistically 

significant differences in the levels of expression in genes encoding IL-1β, MHC class II, 

complement factor B and C3, transferrin, precerebellin and C -reactive protein 

between dietary groups and between tissues. Falco, et.al. (2012) examined a number 

inflammatory genes in common carp fed with a 0.1% β-glucan supplemented diet 

(MacroGard®) for 14 days, after which the fish were infected with A. salmonicida by 

intraperitoneal injection. They found that after feeding the fish with glucan-

supplemented diets for 14 days only tumor necrosis factor-1α (tnf1α) and IL-10 in the 

gut and tumor necrosis factor-2α (tnf2α) in head kidney were significantly down-

regulated compared to fish fed the basal control diet. However, there are no 

significant differences in IL-1β, IL-6 and IL-10 expression in either the gut or the kidney 

between the groups fed the supplemented diets and those fed the control diets. β-

glucan from algae (Euglena gracilis) was also found to stimulate the expression of 
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complement factors (C3 and factor B) and acute phase proteins (hepcidin, 

precerebellin and transferrin) in rainbow trout bathed with the β-glucan at 100 μg ml-1 

for 24 h (Chettri, et al. 2012), while Kadowaki, et al. (2013) showed that orally 

administered of lipopolysaccharide from Pantoea agglomerans for 60 days stimulated 

an up-regulation in the expression of IL-1β and TNF -α ), but down-regulated the 

expression of IL-6 in the head kidney of common carp. 

An effect of feeding β-glucans on the immune genes expressed during E. ictaluri 

infection was clearly shown in this study. In addition, the expression of genes in fish 

experimentally infected with E. ictaluri after feeding them for 14 days with the 

immunostimulant diets were statistically significant different to the genes expressed in 

the uninfected groups.  

The acute phase response is described as a group of proteins that react in the 

host in response to infection or injury, and together they are one of the components of 

the innate immune response (Bayne and Gerwick 2001). In this present study, the 

expression of acute phase genes precerebellin and C-reactive protein, present in the 

liver, showed a statistically significant up-regulation between the infected and the 

uninfected groups of fish, while the expression of transferrin was significantly down-

regulated. There was also a down-regulation in transferrin expression in the uninfected 

group fed with 0.1% fungal derived β-glucan compared to the basal group prior to 

infection.  

Transferrin is associated with a negative acute phase response in reaction to 

stress or inflammation, but can also act as a positive acute phase protein (Neves, et al. 

2009). Transferrin is important in iron metabolism and is involved in the defense 
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response of the host against bacterial infections. The regulation of iron homeostasis is 

an important aspect of the acute phase response in catfish (Peatman, et al. 2007). Liu, 

et al (2010) found the transferrin gene to be highly expressed in the liver of channel 

catfish, while it’s expression was low in most other tissues tested examined (i.e. blood, 

brain, gill, heart, head kidney, trunk kidney, intestine, muscle, skin, spleen, stomach 

and ovary). They also showed that it was significantly up-regulated on 3 and 7 days 

after infection with E. ictaluri. Transferrin appears to act as a positive acute phase 

protein in channel catfish in order to increase iron storage to make it unavailable for 

bacterial growth (Liu, et al. 2010). On the other hand, in this study it appeared as a 

negative acute phase protein in striped catfish during the early stages of infection with 

E. ictaluri. Only one time point was used in this present for the analysis i.e. 24 h.p.i., 

although, it would have been useful to analyze further time points later in the 

infection. 

There was no significant difference between uninfected and infected groups 

with regard to the levels of IL-1β and complement C3 gene expression in the liver, but 

there was a trend for increased levels in the infected groups fed with the 

immunostimulant diets (i.e. 0.1% fungal derived β-glucan and 0.1% commercial yeast 

derived β-glucan). Peatman, et al. (2007) found an up-regulation in the expression of 

the acute phase response, i.e. transferrin, intelectin, toll-like receptor 5, complement 

C3, ceruloplasmin and fibrinogen in the liver of channel catfish infected with a Gram 

negative bacterium at 3 d.p.i. 

A significant down–regulation in MHC class II expression was found in the 

spleen of fish infected with E. ictauri at 24 h.p.i. compared with the uninfected fish, 
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and a significant up-regulation of IL-1β was shown in the kidney. However, the 

expression of these genes was not significantly different between fish fed with the 

immunostimulant diets and the control diet. The higher level of expression in the 

anterior kidney of infected fish was probably the result of higher concentrations of 

macrophages and neutrophils in this tissue than found in the liver or spleen. Elibol-

Flemming, et al. (2009) reported that the level of IL-1β and end-binding protein-1 

expression were significant higher in head kidney and spleen than that measured in 

the gut or liver of channel catfish during infection with E. ictaluri, while the level of 

heat shock protein 70 expression was significant higher in head kidney and liver than 

that of gut and spleen.  

MHC class I molecules bind to and present a large number of different peptides 

to cytotoxic T cells, that specialize in displaying proteins that are manufactured within 

the cell. On the other hand, MHC class II molecules are designed to present peptides to 

T-helper cells (Sompayrac 2008). In this present study, only MHC class II gene 

expression was examined after challenging with E. ictaluri because it was not possible 

to identify the MHC class I gene sequence from the EST sequence data base. MHC class 

II expression was significantly up-regulated in the liver and down-regulated in the 

spleen of infected groups, with a clear cut difference in expression between tissues. 

Bao, et al (2005) reported that the channel catfish hepcidin gene (an antimicrobial 

peptide gene) was up-regulated in the spleen and head kidney of fish 1-3 d.p.i. with E. 

ictaluri, but not in their liver. Jaafar, et al. (2011) found liver to be a good tissue for 

studying the expression of immune genes in response to β-glucan absorbed through 

the intestine, after feeding the immunostimulant to rainbow trout. Using a murine 
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model, it was shown that oral administration of particulate beta-1,3-glucan was 

absorbed by intestinal macrophages and transported to the spleen, lymph nodes and 

bone marrow (Hong, et al. 2004). They found that effect of the β-glucan, the infection 

or both, was dependent on the organ, the time and targeted gene being examined.  

The PCA was used to investigate the immune gene in the three different tissues 

(i.e. liver, kidney and spleen) using a total of 11 variables (liver 7 variables (C-reactive 

protein, transferrin, complement factor B and C3, precerebellin, IL-1β and MHC class 

II), kidney 2 variables (IL-1β and MHC class II) and spleen 2 variables (IL-1β and MHC 

class II), sampled from fish fed the three different immunostimulant diets on 14 d.p.f. 

and 24 h.p.i. with E. ictaluri. At 14 d.p.f., the PCA analysis showed a high degree of 

overlap between each of the diets, suggesting that the experimental diet did not cause 

a significant shift in the expression of all immune genes between the dietary groups. 

However, at 24 h.p.i., the PCA analysis shows a statistically significant differences 

between 0.1 % fungal derived β-glucan diet from basal control diet and 0.1 % 

commercial yeast derived β-glucan in the uninfected group. Moreover, the infected 

group, which had been fed the immunostimulant diet containing 0.1% fungal, derived 

β-glucan diet and 0.1% commercial yeast derived β-glucan diet showed a statistically 

significant effect on the overall expression of immune genes in the liver, kidney and 

spleen of fish challenged with E. ictaluri when compared to fish receiving a basal 

control diet.  

There are many published studies relating to the effect of β-glucan on the 

immune response of fish and the effect that these have on improving the fishes 

resistance against different pathogens and their survival during infection (Jørgensen 
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and Robertsen 1995; Selvaraj, et al. 2005; Whittington, et al. 2005; Misra, et al. 2006b; 

Welker, et al. 2007; El-Boshy, et al. 2010; Gopalakannan and Arul 2010; Chettri, et al. 

2012; Falco, et al. 2012; Pionnier, et al. 2013).  

The present investigation showed that dietary β-glucan significantly improved 

the survival rate of P. hypophthalmus to E. ictaluri infection. The percentage mortality 

in the fish fed either 0.1% fungal derived β-glucan and 0.1% commercial yeast derived 

β-glucan was 16 ±5% and 17 ±8% respectively, compared to basal the control diet (30 

±12%). Furthermore, the data from the challenge experiment and the overall gene 

expression at 24 h.p.i. in P. hypophthalmus confirm that 0.1% fungal derived β-glucan 

diet and 0.1% commercial yeast derived β-glucan diet had an effect on the immune 

response of the fish in response to the E. ictaluri infectiion. Chen and Ainsworth (1992) 

reported that yeast glucan administered to channel catfish by intraperitoneal injection 

increased the fish’s resistance against E. ictaluri. The relative percentage survival of 

common carp fed dietary β-(1,3) glucan or whole cell yeast (Sacharomyces uvarum) 

then infected with A. hydrophila was 75-80 % and 54-60 % respectively (Gopalakannan 

and Arul 2010). Nile tilapia fed on a diet supplemented with Saccharomyces cerevisiae, 

β-glucans and laminaran, then experimentally infected with A. hydrophila by 

interperitoneal injection resulted in a significant difference in the relative percentage 

survival between the fish fed the supplemented diet and the control group (Boshy, et 

al. 2010). The present study revealed that the β-glucan from fungal and yeast can 

improve the relative percentage survival P. hypophthalmus to E. ictaluri infection, 

although some other authors have found them to have a limited effect on the disease 
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resistance of channel catfish against an E. ictaluri infection (Welker, et al. 2007; 

Peterson, et al. 2010) and carp against A. hydrophila (Selvaraj, et al. 2005).  

The ability of an immunostimulant to increase immune gene expression and 

improve disease resistance to various pathogens depends on a variety of factors such 

as the composition and concentration of the active ingredients present in the 

immunostimulant, the fish species being examined, the route of administration (oral, 

immersion or injection), the target pathogen (viral, bacterial and parasite), 

concentration of pathogen used for the experimental infection, and duration of 

stimulation. For example, Chettri et al. (2012) reported significant up-regulation of 

immune genes of rainbow trout fry (i.e. complement C3 and factor B and acute phase 

proteins hepcidin, precerebellin and transferrin) after 24 h bath stimulation with β-

glucan at 100 mg ml-1. Also, common carp, fed 0.1% β-glucan diet (MacroGard®) for 14 

days and then injected intraperitoneally with A. salmonicida (1 x108 cfu ml-1) had 

significantly higher levels of both C-reactive protein and alternative complement 

profiles in their serum after infection compared with the control fish not fed the 

immunostimulant-supplemented diet. A distinct organ and time-dependent expression 

profile pattern was detected in carp for all the genes selected; a peak in gene 

expression first occurred in the head kidney (6 h.p.i. or 12 h.p.i.), then an up-regulation 

was observed in the liver several hours later (24 h.p.i.) and finally up- or down-

regulation of genes was observed in the mid-gut 24 h.p.i. and 72 h.p.i. (Pionnier, et al. 

2013). 
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5.5 Conclusions 

It may be concluded from the results obtained from this work that dietary 

administration of β-glucan to P. hypophthalmus enhanced their resistance to infection 

by E. ictaluri, and there were significant differences in immune gene expression (IL-1β, 

MHC class II, complement factor B and C3, transferrin, precerebellin and C-reactive 

protein) between uninfected and infected groups. In addition, 0.1% fungal derived β-

glucan diet and 0.1% commercial yeast derived β-glucan diets stimulated the overall 

expression of immune genes in the liver, kidney and spleen of fish infected with E. 

ictaluri compared with groups fed the basal control diet, at 24 h.p.i. Although the 

immunostimulant diets did not induce any change in the gene expression at 14 day 

post-feeding, the fish fed with 0.1% fungal derived β-glucan diet in the uninfected 

group at 24 h.p.i. displayed a significantly different pattern of expression for the 

immune genes examined compared to the other dietary groups.  
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6.1 General discussion 

Aquaculture of striped catfish, P. hypophthalmus, began in Vietnam in early 1960 in 

small scale extensive farms (Phuong and Oanh 2010), and they have been bred in 

Thailand since 1967 (Boonbrahm, et al. 1967). The main growth in the culture of this 

species, principally for export, has occurred in Vietnam (Bui, et al. 2010; De Silva and 

Phuong 2011), although it is also considered to be an economically important 

freshwater species in Thailand (Lin and Kaewpaitoon 2000; Menasveta 2000), 

Bangladesh (Ali, et al. 2012) and India (Singh and Lakra 2012). This species is ideal for 

aquaculture as it is fast-growing and can tolerate poor water quality (Paripatananont 

2002).  

Knowledge of the immune system of striped catfish is limited. Understanding 

the immune response is very important in order to evaluate the health status of the 

fish and assist in control of disease (including prevention), so that production levels 

can be sustained in the aquaculture industry. The aims of this thesis were to develop 

and standardise methods to elucidate and measure the immune responses in P. 

hypophthalmus and then to use these with relevant disease models (A. hydrophila and 

E. ictaluri) and immunodoulators (β-glucans from different sources and at different 

doses) to determine if bacterial diseases can be controlled, and which functional 

immune responses and immune genes could be correlated with disease resistance.  

As a variety of different species from family Pangasiidae are economically 

important for aquaculture initial work focused on the characterisation of IgM in these 

species and anti-P. hypophthalmus IgM mAbs were tested to determine if these cross 

reacted between species (Chapter 2). Although affinity purification of the IgM from the 

different fish species resulted in a purer preparation, ammonium sulphate 
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precipitation (14 % w/w) was shown to be faster and easier to perform. Recently 

Sudhagar, et al. (2013) used ion exchange chromatography with diethylaminoethly 

(DEAE) cellulose following ammonium sulphate precipitation to purify pangasius IgM. 

This method, however, involves many steps and is therefore more complicated to 

perform and more expensive than the two methods reported above, although it may 

provide the purest IgM. 

Estimation of the molecular weights of the H and L chains of IgM is 

straightforward and can be accomplished using SDS-PAGE (12.5%), while determining 

the molecular weight of whole IgM is difficult. The H and L chains of IgM from P. 

hypophthalmus were estimated to be 70-72 kDa and 25-26 kDa, respectively, with the 

L chains in the other Asian fish species having a similar molecular weight to that of P. 

hypophthalmus, while the H chains varied between the species. The molecular weights 

of both the H and L chains of P. hypophthamus have been previously reported by 

Sudhagar, et al. (2013) i.e. H chain 70.1 kDa and L chain 26 kDa, using reducing SDS-

PAGE for analysis of the components, and Huong Giang, et. al. (2012) i.e. H chain 72 

kDa and L chain 24, 26 and/or 28-29 kDa using the same method but a different 

percentage of polyacrylamide. It can clearly be seen that use of different techniques 

leads to different values being obtained for the molecular weight (MW) of pangasius 

IgM, but overall it would appear that the MW of H chain of the molecule is around 70-

72 kDa and L chain was around 24-26 kDa. In contrast, determination of the molecular 

weight of whole IgM molecules by different methods has led to large variations in the 

molecular weight. In Chapter 2 SV-AUC was used to determine the molecular weight of 

the whole IgM molecule (the tetramer) from P. hypophthalmus as an alternative to the 

more commonly used native gels that are run under non-denaturing conditions, and 
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was estimated to be 848-876 kDa. This is similar to the estimate made using H and L 

chains to calculate the molecular weight (832-860 kDa) and lies between the molecular 

weights determined using gel filtration (900 kDa) by Huong Giang, et. al. (2012) and 

non-reducing gradient polyacrylamide gel electrophoresis (798 kDa) performed by 

Sudhagar, et al. (2013). These two methods can be used to quickly estimate the MW of 

proteins and nucleic acids (Ralston 1993), but they are empirical techniques that 

require calibration, and protein standards, and therefore rely on a series of 

assumptions that are often invalid (Ralston 1993; Rhodes, et al. 2009). For example, 

the MW of the reference standards for electrophoresis and chromatography are 

determined originally by means of using standards (Ralston 1993). In addition, one of 

the main errors when using gel filtration chromatography for size determination 

comes from not using molecules of a similar shape and density for the protein 

standards to that of the molecule of interest (Rhodes, et al. 2009). Analytical 

ultracentrifugation, on the other hand, is a direct measurement of the molecular 

weights of a solute in the native state and as they exist in solution, without having to 

rely on calibration and without having to make assumptions concerning their shape 

(Ralston 1993). One limitation of SV-AUC analysis, however, is that a sufficient quantity 

of a highly purified protein is needed for the analysis (Rhodes, et al. 2009). 

Nevertheless, this method provides the only primary method (i.e. not requiring 

standards) available to molecular biologists for the determination of hydrodynamic 

parameters. As it is based on first principles, sedimentation analysis can be applied to 

systems that cannot be analysed by any other means (Rhodes, et al. 2009). The 

interpretation of hydrodynamic data from sedimentation velocity uses bead modelling, 

with programs such as SOlution MOdeller (SOMO) (Brookes, et al. 2010). One 
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limitation using SOMO is that it is necessary to know the amino acid sequence of the 

target protein and this is not always possible. In addition, as IgM has a high 

carbohydrate composition the MW needs to be adjusted to take this into account. It is 

clear that a single technique cannot provide all the answers and some methods are 

very complex, including SV-AUC. Yoo and Jane (2002) used a combination of high-

performance size-exclusion chromatography (HPSEC) with multi-angle laser-light 

scattering to determine weight-average MW of amylopectin from selected starches.  

In terms of applying this work to investigate the health status of fish, it was 

established (in Chapter 3 and 4) that antibodies developed against the IgM molecule of 

P. hypophthalmus will provide useful tools to elucidate the immune response to 

pathogens and to assist in vaccine development. There are two previous reports in 

which polyclonal anti-P. hypophthalmus IgM or monoclonal anti-P. hypophthalmus IgM 

have been prepared and used to characterize the IgM molecule from P. 

hypophthalmus (Huong Giang, et al. 2012; Sudhagar, et al. 2013). In the present study, 

six anti- P. hypophthalmus IgM mAbs were shown to react with the IgM of other Asian 

fish species, some reacting with the L chain and others with the H chain of the 

molecule, indicating common epitopes between the L chain and H chains of IgM of 

family Pangasiidae and other fish species by Western blot. A standardised ELISA was 

developed using these mAbs (Chapter 2).  

A series of functional immune assays was also standardised and optimised for 

use in P. hypophthalmus in Chapter 3 to enable both innate and adaptive immune 

responses to be elucidated following bacterial challenge and vaccination (Chapter3), 

and following immunomodulation by β-glucans and bacterial challenge (Chapter 4).  
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The intensification of culture practices has resulted in an increase in disease 

outbreaks in striped catfish farms associated with fungi, parasites as well as bacteria. 

Among the infectious diseases reported, bacterial agents have been responsible for 

the major epizootics affecting striped catfish farming (Phuong and Oanh 2010). The 

clinical signs caused by bacterial diseases in striped catfish farming include white spots 

on the internal organs caused by E. ictaluri (Ferguson, et al. 2001; Crumlish, et al. 

2002), haemorrhagic symptoms caused by A. hydrophila (Subagja, et al. 1999; Roberts 

2012), columnaris infection caused by Flavobacterium columnare (Tien, et al. 2012) 

and reddish lesions near the pectoral fin and belly regions caused by Enterobacter 

cloacae (Kumar, et al. 2013). The outbreaks of disease have been primarily caused by 

stress-induced factors such as poor water quality, pollution from agricultural activities, 

poor husbandry practices, high stocking densities, and low seed quality, making the 

stock susceptible to infectious pathogens. Due to the disease outbreaks, the use of 

drugs and chemicals is commonplace in catfish farms to treat the infection (Phuong 

and Oanh 2010). However, only a few antibiotics are permitted to be used because 

drug resistance has become a major problem in fish culture (Björklund, et al. 1991; 

Aoki 1992; Phuong and Oanh 2010). Thus, other methods of control are sought. 

Vaccination is one of the methods of choice for preventing infectious diseases 

on farms, with a variety of commercial vaccines already available for a number of 

diseases e.g. vibriosis, furunculosis, and infectious pancreatic necrosis (IPN) in 

salmonids (Gudding, et al. 1999). Commercial vaccines are available in various parts of 

the world, such as for Yersiniosis (Europe, Chile, Canada and USA), Piscirickettsiosis 

(Chile), Flavobacteriosis (Chile, Canada and USA), Columnaris (Chile and USA), Enteric 

septicaemia of catfish (USA), Bacterial kidney disease (Chile, Canada and USA), 
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Lactococciosis (Italy, France, UK and Japan), Pasteurellosis (Mediterranean), 

Streptococciosis (Asia), Pancreas disease (PDV; UK, Ireland and Norway), Infectious 

salmon anaemia (ISAV; Canada, East of USA, Norway and UK), Infectious 

haematopoietic necrosis (IHNV; Canada and West of USA), Iridoviral disease (RSIV; 

Asia) and Grass carp haemorrhage disease (GCHDV; China)(Sommerset, et al. 2005; 

Toranzo, et al. 2005; Brudeseth, et al. 2013). Several hurdles have to be overcome for 

the successful application of vaccination prophylaxis for infectious disease in 

aquaculture, especially regarding the production of cheap but effective antigens and 

adjuvants, while bearing in mind environmental issues such as water quality and 

temperature, dissolve oxygen and associated regulatory concerns (Sommerset, et al. 

2005). The use of vaccination in fish has significantly reduced specific disease-related 

losses, resulting, in turn, in a reduction in the use of antibiotics and thus their impact 

on the environment and issues relating to food safety because of antibiotic residues in 

fish products (Vinitantharat, et al. 1999). Due to the wide variety of fish species and 

limited knowledge on their immune response, the development of the vaccines has 

been based largely on non-empirical strategies (Sommerset, et al. 2005). Recently the 

first vaccine for striped catfish was licensed in Vietnam against E. ictaluri, but 

functional immune and gene assays require development and optimisation for this fish 

species. 

In Chapter 3 a bacterial (A. hydrophila) challenge model was used in 

conjunction with the standardised functional assays developed to elucidate and 

compare the immune response to infection versus vaccination i.e. live versus dead 

bacterial challenge. Live (a sub-clinical dose) and killed A. hydrophila were injected 

intraperitoneally into P. hypophthalmus and both the innate and adaptive immune 
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response were measured. It was shown that both live and killed A. hydrophila 

administrated via this route stimulated both their innate and adaptive immune 

responses, with the live A. hydrophila stimulating these responses earlier than the 

killed bacteria. It appeared that the best immunoassays for monitoring the effect of 

this stimulation are phagocytic and respiratory burst assays (i.e. to monitor cellular 

responses), and complement assay, lysozyme assay (at pH 5.4), total Ig M, plasma 

peroxidase assay and specific antibody titre against A. hydrophila (for monitoring the 

humoral responses). Overall, the basic responses expected were seen in P. 

hypophthalmus following vaccination with a live or killed extracellular bacterium. This 

study also provided basic information on P. hypophthalmus that could be used for 

developing more targeted vaccines for this species, such as recombinant subunit or 

DNA vaccines, and tools for investigating the immune response after vaccination. Most 

licensed vaccines currently used on commercial fish farms are based on inactivated 

products (Biering, et al. 2004; Håstein, et al. 2005). Sun, et al. (2011) compared the use 

of a recombinant subunit vaccine and DNA vaccine for Edwardsiellosis (E. tarda) in 

Japanese flounder (P. olivaceus) by intramuscular injection. Their results showed that 

both recombinant subunit and DNA vaccines were able to induce innate and adaptive 

immune response in this fish. On the one hand, DNA vaccines can stimulate both B cell 

and T cell response, while recombinant subunit vaccines mainly show activation of the 

humoral immune response. DNA vaccines are thought to be particularly useful against 

viral and intracellular bacterium, by inducing cell-mediated antigen presentation 

(Brudeseth, et al. 2013). For example, an IHNV DNA vaccine was developed to protect 

fish from IHN virus and has been licensed for use in Canada (Alonso and C Leong 2013). 

Also, a VHSV DNA vaccine has been shown to protect fish against VHS virus 
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(McLauchlan, et al. 2003; Pereiro, et al. 2012). In the future, DNA vaccinated fish will 

have to be labelled as genetically modified organisms (GMO) in some countries 

(Brudeseth, et al. 2013). The application of live attenuated vaccines is not a new idea 

(Gudding and Van Muiswinkel 2013). The advantages of modified live vaccines is that 

they offer better immunity against intracellular pathogens compared with inactivated 

vaccines (Brudeseth, et al. 2013), as shown with a live E. ictaluri attenuated vaccine 

against enteric septicaemia of channel catfish (ESC) (Shoemaker, et al. 1999) and a 

modified live Flavobacterium columnare vaccine against columnaris disease in channel 

catfish (Shoemaker, et al. 2011). A live attenuated vaccine enables the bacteria to 

survive, replicate and activate the cellular immune response, and antibody and 

mucosal immunity. The disadvantages of the using a modified live vaccine are the 

concerns mainly for their safety in the animal and in the environment in case they 

revert back to being virulent (Shoemaker, et al. 2009). Both biological safety 

assessments and genetic modification are the factors that have to be paid attention to 

when using GMOs in live vaccines. However, their use in the terms of biological safety 

can be better controlled and safety assessed than the random use of unknown 

mutations in conventional live attenuated vaccines (Frey 2007). 

The use of immunostimulants as dietary supplements as an alternative 

approach to that of drugs, chemicals, antibiotics or vaccines is currently being adopted 

by the aquaculture industry to help prevent and control diseases by enhancing the 

immune defence mechanisms of the fish, and thereby increasing immunocompetency 

and disease resistance (Bricknell and Dalmo 2005; Bairwa, et al. 2012). However, the 

development of immunostimulants is complicated due to the limited knowledge on 

their mode of action (Djordjevic, et al. 2009), and also β-glucan from different sources 
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have differences in their structure and activity (Meena, et al. 2012). Furthermore, their 

dose and route of administration are important for successful stimulation of fish’s 

immunity (Meena, et al. 2012). For example, short term feeding a pellets diet 

containing 0.1% β-1,3 glucan from yeast, Saccharomyces cerevisiae to Asian catfish 

(Clarias batrachus) daily for a week and then challenging them with an intraperitoneal 

injection of A. hydrophila showed lysozyme levels, superoxide production, 

haemagglutination titre and level of protection against A. hydrophila challenge, though 

enhanced innate immune function and improved disease resistance (Kumari and 

Sahoo 2006). Moreover, long term administration 250 mg of (1,3)-β-D-glucan from 

barley fed daily to roho (Labeo rohita) for 56 days and then challenged by immersing 

the fingerling fish into A. hydrophila and E. tarda showed enhancement the immune 

response (superoxide anion production, phagocytosis, lysozyme activity, haemolytic 

complement activity and serum bactericidal activity), growth (specific growth rate and 

food conversion ratio) and survival rate (Misra, et al. 2006c). Limited studies have been 

conducted on the application of immunostimulants in P. hypophthalmus (Prasad and 

Priyanka 2011; Bich Hang, et al. 2012). In this present study (Chapter 4) different 

concentrations of β-glucan were used in the diets of striped catfish for 28 days. The 

optimal dose of fungal-derived β-glucan for enhancing the immune function of P. 

hypophthalmus was 1.0 and 2.0 g per kg diet, while the lowest dose used (0.5 g per kg 

diet) appeared insufficient to effectively stimulate the fish’s immune response. WBC 

counts, respiratory burst of head kidney macrophages, and serum lysozyme and 

complement activity proved useful indictors of early immunostimulation, the first day 

after starting to feed immunostimulant diets. After 28 d.p.f., fish were experimentally 

infected with E. ictaluri (8 x104 cfu ml-1) by immersion and although no statistical 
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differences were seen in the fish’s resistance to the experimental infection between 

the different dietary groups in the first trial performed, differences were observed in a 

subsequent trial where the challenge dose used was lower (1 x106 cfu ml-1). In the later 

trial significant differences were shown between immunostimulant groups (0.1% 

fungal derived β-glucan and 0.1% commercial yeast derived β-glucan) and the basal 

control diet group. The lower challenge regime aimed for a 40 % mortality level, which 

enabled the differences between dietary groups to be detected. Many challenge 

models have been developed to investigate pathogenesis and to investigate the health 

status of the fish. There are a few reported studies relating to challenge with E. ictaluri 

in P. hypophthalmus. Crumlish, et al. (2010) performed experimental challenges with E. 

ictaluri and/or A. hydrophila in P. hypophthalmus. Immersion infection with E. ictaluri 

using 1 x108 cfu ml-1 for 60 min at 28 ±2oC, gave cumulative level of mortalities of 80%, 

while intraperitoneal injection with 1 x106 cfu ml-1 resulted in 95% cumulative 

mortalities. However, a co-infection with E. ictaluri and A. hydrophila resulted in 

cumulative mortalities of 95% by immersion when E. ictaluri was added at 1 x108 cfu 

ml-1 and A. hydrophila at 2 x107 cfu ml-1, and 100 % cumulative mortalities by 

intraperitoneal injection (E. ictaluri at 1 x106 cfu ml-1 and A. hydrophila 2.5 x103 cfu ml-

1). 

Immunostimulants are widely used in aquaculture, but there are few reports on 

the immune genes that are expressed by their stimulation in P. hypophthalmus. In 

Chapter 5 EST data from pyrosequencing was used to find sequences of P. 

hypophthalmus immune genes. Seven immune gene sequences were identified and 

primers were designed for these to use in qRT-PCR. Another approach for identifying 

genes sequences is next-generation sequencing (NGS), such as the use of Illumina 
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sequencing by synthesis of single-molecule arrays with reversible terminators, 

massively parallel sequencing by hybridization–ligation, implemented in the Supported 

Oligonucleotide Ligation and Detection system (SOLiD) from Applied Biosystems 

(Morozova and Marra 2008), Ion Torrent Personal Genome (PGM), a system based on 

semiconductor detection and Pacific Biosciences (PacBio) have developed a process 

enabling single molecule real time (SMRT) sequencing (Quail, et al. 2012). The most 

valuable features of the NGS technology include higher sequencing capacity, clonal 

sequencing of single molecules, ability to multiplex samples, higher diagnostic 

sensitivity, workflow miniaturization, and cost benefits (Morozova and Marra 2008). 

However, errors in NGS data may arise from incorrect genome mapping, failures in 

base calling, or contamination with extrinsic DNA (Grumbt, et al. 2013).  

The primers designed in Chapter 5 were used to develop new qRT-PCR assays 

for various the immune genes (interleukin-1-beta, MHC class II, complement factor B 

and C3, transferrin, precerebellin, C-reactive protein) and housekeeping genes 

(translation elongation factor-1α mRNA, 18S rRNA gene and β-actin mRNA) identified 

for P. hypophthalmus. These were used to compare the expression of the immune 

genes in response to the P. hypophthalmus fed with the different β-glucan 

supplemented diets and also the gene expression profiles in relation to E. ictaluri 

infection in P. hypophthalmus after being fed the diets. Although immunostimulant 

diets did not induce any change in the gene expression at this time point 14 days post 

feeding, differences were shown in total gene expression between the β-glucan 

supplemented diets and the basal control diet after challenge with E. ictaluri at 24 

h.p.i. Gene expression and the relative survival rate ultimately depends on many 

factors such as β-glucan composition and concentration, species of fish, administration 
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routes (oral, immersion and injection), target pathogen (viral, bacterial and parasite), 

concentration of pathogen, and timing of glucan stimulation and timing of expose 

pathogen.  

6.2 Final conclusions 

Standardised and optimised functional immune assays and methods for measuring the 

expression of various immune genes were developed for P. hypophthalmus in the 

current study. These techniques were then applied to examine the immune response 

of P. hypophthalmus to live and killed A. hydrophila, elucidate response to β-glucan 

immunostimulant diets and their resistance to E. ictaluri using both functional 

immunological assays and gene expression assays. The results indicated that fungal 

derived β-glucan diets stimulated both of humoral and cellular immune response in P. 

hypophthalmus when levels were at or above 0.1% glucan, and that such diets 

protected against E. ictaluri infection if the experimental dose of the bacterium was 

carefully controlled (40% mortality). Experimental disease challenges enable 

differences in diets to be established, while measuring gene expression alone after 

feeding did not (or at least at the time point measured). Successful disease models 

depend on the concentration of bacteria, time and route of exposure and 

environmental factors such as water quality and temperature, and it is important that 

the challenge protocol is standardised, and for testing immustimulants it is 

recommended that the dose should be lower than that normally used to test vaccine 

efficacy. Further work is clearly required with regard to gene expression as only seven 

immune genes were identified in this study. Furthermore, this gene expression 

experiment only covered one time point post-feeding and one time point after 

challenging with E. ictaluri. Future studies are therefore needed to analyse what is 
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happening with these genes at different time points during immunodulation and 

infection to determine gene expression over time. It is also important in future work to 

try to relate immune gene expression with functional immune response. This was not 

possible in the present study due to variation between the experimental groups and 

the fact that immune gene expression did not cover with all immune functional assays 

that were performed. Ultimately, further work on the P. hypoophthalmus immune 

system should focus on full immunological transcriptomic analysis to enable a more 

complete understanding of the gene expression and regulatory networks involved in 

the immune response of P. hypophthalmus to disease. 
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Appendix I 

General buffer 
 
Phosphate buffered saline, pH 7.2 (PBS) 

 (0.02M Phosphate, 0.15M NaCl, pH adjusted to 7.2 with conc. HCl) 
 NaH2PO4.2H2O (BDH)     0.876g/l 
 Na2HPO4.2H2O (BDH)     2.56g/l 
 NaCl (Sigma)     8.77g/l  

 
Sodium sulphate precipitation 

 Soduim sulphate buffer 
14 % (w/v) 16 % (w/v) 20 % (w/v) 

Na2SO4  (Sigma) 1.4 g  1.6 g  2.0 g 
Distilled water  10 ml  10 ml  10 ml 
 
Anesthetic  

Benzocaine solution  
Benzocaine (Sigma, UK)   10 g 
95% Ethanol     100 ml 
 
Anticoagulant  

Heparin solution 
Heparin (Sigma)    25 IU  
L-15 medium (Leiboritz, Sigma)  10 ml 
 
Affinity chromatography purification (IgM purification) 

Binding buffer (20mM sodium phosphate; 0.8 M ammonium sulphate, pH 7.5) 
NaH2PO4.2H2O (BDH)   0.876 g 
Na2HPO4.2H2O (BDH)   2.56 g 
(NH4)2SO4 (Sigma)   105.712 g 
Distilled water    1 liter 

Elution buffer (20 mM sodium phosphate, pH 7.5)  
NaH2PO4.2H2O (BDH)   0.876 g 
Na2HPO4.2H2O (BDH)   2.560 g 
Distilled water    1 liter 

Regeneration buffer (20mM sodium phosphate, 30% isopropanol, pH 7.5)  
NaH2PO4.2H2O (BDH)   0.3066 g 
Na2HPO4.2H2O (BDH)   0.8960 g 
Distilled water    350 ml 
Isopropanol (Sigma)   150 ml 
 



Appendix I 
 

 

275 | P a g e  
 

Affinity chromatography purification (anti- P. hypophthalmus IgM monoclonal 
antibodies; Protein G affinity column) 

Binding buffer (20 mM sodium phosphate, pH 7.5)  
NaH2PO4.2H2O (BDH)   0.876 g 
Na2HPO4.2H2O (BDH)   2.560 g 
Distilled water    1 liter 

Elution buffer (0.1 M glycine-HCL; Sigma, pH 2.7) 
NaH2PO4.2H2O (BDH)   0.876 g 
Na2HPO4.2H2O (BDH)   2.56 g 
Glycine (Sigma)   7.507 g 
Distilled water    to 1 liter 

Adjust pH to 2.7 with HCL 
    

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)  

2x sample buffer  
0.5 M Tris-HCl pH 6.8    2.5 ml 
Glycerol (Sigma)    2.0 ml 
10% Sodium dodecyl sulfate (SDS; Sigma) 4.0 ml 
Dithiothreitol (DTT; Sigma)   0.31 g 
Bromophenol blue (BDH)   2.0 mg 
Distilled water     to 10 ml 
 
Western blot  

Transblot buffer (0.2 M glycine; 0.025 M Tris; 20% methanol, pH 8.3)  
Glycine (Sigma)    14.4 g 
Trisma base (Sigma)    3.03 g 
Methanol      200 ml 
Distilled water     to 1 litre 

 Tris buffered saline (TBS; 10 mM Tris, 0.5 M NaCl, pH 7.5)  
Trisma base (Sigma)    2.42 g 
NaCl (Sigma)     29.24 g 
Distilled water     to 1 litre 

Tris buffered saline with Tween 20 (TTBS; 0.1% Tween 20 in TBS, pH 7.5)   
Trisma base (Sigma)    2.42 g 
NaCl (Sigma)     29.24 g 
Tween-20 (Sigma)    0.5 ml 
Distilled water     to 1 litre 
 

Enzyme-Linked Immunosorbent Assay (ELISA) 

Coating buffer (Carbonate-bicarbonate solution) 
Na2CO3  (Sigma)    1.59 g Dissolved in 1 L distilled water 
NaHCO3  (Sigma)     2.93 g Adjusted to pH 9.6 and freshly make  
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Or  buffer tablets (Sigma)  
1 tablet in 100ml distilled H2O          Prepare fresh. Do not store. 

 Post-coat buffer 
3 % (w/v) Casein (dried milk) 
Casein       3 g 
Distilled water     100 ml 
Or    1% (w/v) Bovine serum albumin (BSA) 
BSA      1 g 
Distilled water     100 ml 

Low salt wash buffer x10  
(LSW; 0.02M Tris base, 0.38 M NaCl, 0.05% v/v Tween-20, pH 7.3) 
Trisma base (Sigma)     24.2 g Dissolved in 1 L distilled water 
NaCl (Sigma)      222.2 g  pH adjusted to 7.3 with conc. HCl 
Tween 20 (Sigma)      5 ml  
Dilute 1:10 before use  

High salt wash buffer x10  
(HSW; 0.02M Tris base, 0.5 M Nacl, 0.1% v/v Tween-20, pH 7.7)  
Trisma base (Sigma)     24.2 g Dissolved in 1 L distilled water 
NaCl (Sigma)      292.2 g  pH adjusted to 7.7 with conc. HCl 
Tween 20 (Sigma)      10 ml  
Dilute 1:10 before use 

Antibody buffer 
Bovine serum albumin (Sigma)  1 g 
Phosphate buffer saline (Sigma)  100 ml 

 Substrate buffer (Sodium acetate/ citric acid buffer) 
Citric acid (Sigma)   21.0 g  Dissolve in approx 900mls distilled water 
Sodium acetate (Sigma)  8.2 g      adjust pH to 5.4 using 1M NaOH  

 Make up to final volume of 1 litre    Store at 4C 

Conjugate buffer 
Bovine serum albumin (Sigma)  1 g 
Low salt wash buffer (1X)   100 ml 

Substrate 
3’3’5’5’-Tetramethylbenzidine dihydrochloride (TMB) (42 mM) was added to 1:2 acetic 

acid: distilled water. 
Prepare Acetic acid solution by adding 2mls of glacial acetic acid to 4mls water 
42mM TMB dihydrochloride – 0.07896g/6mls (0.01316/ml). 

Cover in foil and store at 4C   

150 l of this solution was added to 15 ml substrate buffer and 5l H2O2 

Stop reagent (2M H2SO4) 
H2SO4 (conc.) (Sigma)    10 ml 
Distilled water     70 ml Once cooled make up to 90 ml. 
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White blood cell and red blood cell counts 

Natt-Herricks’s stain 
Sodium chloride (NaCl; Sigma)   3.88 g  
Sodium sulphate (Na2SO4; Sigma)  2.50 g 
Sodium phosphate (Na2HPO4; Sigma)  1.74 g 
Potassium phosphate (KH2PO4; Sigma) 0.25 g 
Distilled water     1,000 ml 
Methyl violet (Sigma)    0.1 g 
Formaldehyde (VWR)    7.5 ml 

Filter with 0.45 µm paper 2-3 times. Keep away from light and store at 20oC. *N.B. 
This solution should be stirred overnight and filtered before use. 
 
Differential white blood cell count 

Giemsa’s solution (IVD) 
Giemsa’s azure eosin methylene blue solution  10 ml 
Buffer solution     190 ml  

Mix well, leave to stand for 10 min and filter if necessary 
 
Respiratory burst of head kidney macrophage assessed using Nitroblue tetrazolium 

Lysis buffer     
0.1 M citric acid (Sigma)   2.1014 g 
1.0 % Tween 20 (Sigma)   1 ml 
0.05 % (w/v) crystal violet (Sigma)  0.05 g 
Distilled water     100 ml 

70% (v/v) Methanol     
Methanol  (Sigma)   350 ml 
Distilled water     150 ml 

2M Potassium hydroxide (KOH)   
2M of KOH (Sigma)    11.222 g 
Distilled water      100 ml  

NBT solution 
NBT (Sigma)     10 mg/ tablet  
Distilled water     0.5 ml 
L-15 medium (Sigma)    9.5 ml  

Make up fresh and store in 4oC  

PMA stock solution (1µg/ml) 
PMA (Sigma)     1 mg 
Ethanol (Sigma)    1 ml 

PMA + NBT solution 
PMA 1µg/ml       10 µl 
NBT                 9ml 
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Lysozyme activity 

Sodium phosphate buffer (SPB) 
Stock A : 0.04 M solution of NaH2PO4.2H2O  
NaH2PO4.2H2O (Sigma)   6.24 g  
Distilled water     1 litre 
Stock B : 0.04 M solution of Na2HPO4.2H2O  
Na2HPO4.2H2O (Sigma)   7.12 g  
Distilled water     1 litre 

Mix the following amounts of each solution to achieve the desired pH: 
Stock A (ml)  Stock B (ml)        pH 
0.66      250            5.4 

 
Plasma peroxidase activity 

HBSS-plus solution 
HBSS without Ca2+ and Mg2+ (Sigma) 100 ml 

Substrate buffer (Sodium acetate/ citric acid buffer) 
Citric acid (Sigma)    21.0 g Dissolve in approx 900 ml distilled water 
Sodium acetate   8.2 g adjust pH to 5.4 using 1 M NaOH  

 Make up to final volume of 1 litre. Store at 4C 

Substrate 
TMB (20 mM; Sigma) was added to 1:2 acetic acid: distilled water.  
Prepare 50 % Acetic acid solution (40 mM; Sigma) by adding 2 ml of glacial acetic acid 
to 4 ml water Prepare 20mM TMB hydrochloride – 0.063 g/5 ml (0.012/ml) 

Cover in foil and store at 4C  

Add to 200 l H2O2 to 3 ml of substrate buffer and 3ml of (TMB + Acetic acid) 

Stop reagent (2M H2SO4) 
H2SO4 (conc.) (Sigma)    10 ml 
Distilled water     70 ml Once cooled make up to 90 ml. 

 
Complement activity  

0.1% Gelatin-complement fixation (G-CF) buffer 
Barbitone complement fixation test diluent tablet (Oxoid) 1 tablet 
Gelatin (Sigma)      0.1 g  
Distilled water (warmed)     100 ml 
Stir until the tablet dissolves and gelatin creates froth on the top of the mixture. 
Pour the buffer into 100 ml glass container and shake vigorously and store in the fridge 
at 4oC 

0.1% G-CF Buffer / 20 mM EDTA 
Barbitone complement fixation test diluent tablet (Oxoid) 1 tablet 
Gelatin (Sigma)      0.1 g  
Distilled water (warmed)     80 ml 
Stir until the tablet dissolves and gelatin creates froth on the top of the mixture. 
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Pour the buffer into 100 ml glass container and shake vigorously and store in the fridge 
at 4oC 
Prior to using the mixture add 20 ml of 0.1 M EDTA.  

0.1M EDTA solution (Molar mass of EDTA: 292.24 g/mol) 
0.1 M EDTA     2.92 g  
Distilled water     100 ml 
The solubility of EDTA increases with increasing pH. Increase pH to 8.5 by adding drops 
of 10 M NaOH. Pour the EDTA solution into an 100 ml glass container, shake vigorously 
and store in fridge at 4oC.  

0.1 % (v/v) anhydrous Na2CO3 
Na2CO3 (Sigma)    0.1 g 
Distilled water     100 ml 
 
Plasma antiprotease activity 

 2% (w/v) Azocasein 
Azocasein (Sigma)    0.1 g 
Phosphate buffer saline, pH 7.2  5 ml  

10% (v/v) Trichloracetic acid  
Trichloracetic acid (Sigma)   1 g 
Distilled water     10 ml  

1N Sodium hydroxide (NaOH) 
Sodium hydroxide (Merck)   20 g 
Distilled water     500 ml 

Trypsin standard (5mg/ml) 
Trypsin  (Sigma)    0.005 g 
Distilled water     1 ml 
 
RNA extraction using TRI-Reagent and BCP 

RNA precipitation solution 
1.2 M NaCl (Sigma)    7 g 
0.8 M C6H6Na2O7-1.5H2O (Sigma)  21.05 g 
Nuclease free H2O    100 ml 

Dissolve the NaCl in 50 ml of nuclease-free H2O into sterile glass bottle and add 
the sodium citrate sesquihydrate. Using magnetic stirrer and slight heat to dissolve. Make 
up to 100 ml with nuclease free H2O in measuring cylinder (which has been rinsed several 
times with nuclease-free-H2O). Filter-sterilised the solution using a 0.2 µ syringe filter in 
to another sterile glass bottle. Store at 4oC  

50x TAE buffer 
Trisbase      24.2 g 
0.5 M  Glacial acetic acid  (Sigma)  5.71 ml 
Na2EDTA (pH 8.0) (Sigma)   10 ml 
H2O      up to 1,000 ml 
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0.5 M Na2EDTA 
Disodium ethylenediaminetetra acetate.2H2O  (Sigma) 186.1 g 
H2O        800 ml 
 Stir vigorously and adjust the pH to 8.0 with NaOH and sterilize by autoclaving 

 

Agarose Gel electrophoresis  

 50xTAE buffer 
Trisbase     242g 
Glacial acetic acid (Sigma)   57.1 ml 
0.5 M Na2EDTA (pH 8)  (Sigma)  100 ml 
H2O     up to 1,000 ml 
 Prepare before use : 1X TAE buffer ( 50xTAE buffer 5 ml + Nuclease free H2O 250 
ml) the dilution titre 1:50 

0.5 M Na2EDTA (pH8) 
Disodium ethylenediaminetetraacetate (Na2EDTA).2 H2O (Sigma) 186.1 g 
Nuclease free H2O        800 ml 

Stir vigorously and adjust the pH with NaOH and sterilize by autoclaving 
 

Preservation of RNA in field collected samples 

0.5 M Na2EDTA (pH 8) 
Na2EDTA     18.61 g 
Nuclease free H2O   80 ml 
 Stir vigorously and adjust the pH with NaOH  and add distilled water to 100 ml 

1 M Sodium citrate tribasic dehydrate 
Sodium citrate    29.41 g 
Nuclease free H2O   100 ml 

RNA onshore 
0.5 M Na2EDTA (Sigma)  4 ml 
1 M Sodium citrate (Sigma)  2.5 ml 
Ammonium sulphate (Sigma)  65 g 
Nuclease free H2O   93.5 ml 
Final volume (approximate)  120 ml 

Warm the water on a heater/stirrer to more quickly dissolve the chemicals. Add 
chemicals slowly. When fully dissolved – allow to cool to room temperature. Adjust pH 
to 5.2 with sulphuric acid. Vacuum filter through glass fibre filter. Store room 
temperature  
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Appendix II 

Table 7.1. The list of reference genes-immune genes from closer relative of P. hypophthalmus (four species : Ictalurus punctatus, Danio rerio, 

Oncorhynchus mykiss and Salmo salar) 

Parameters Genes Genes ID Species 

Complement 
  
  
  

C3 100305089 Ictalurus punctatus 
C5 565774 Danio rerio 

factor B/C2B 100862743 Ictalurus punctatus 
factor B/C2A 100862742 Ictalurus punctatus 

Mononuclear phagocytes iNOS 100136358 Salmo salar 
Enzyme 
  

Lysozyme C 100528519 Ictalurus punctatus 
serine proteases-like 100034638 Danio rerio 

Acute phase response 
  
  
  
  
  

Hepcidin 
  

100304640 Ictalurus punctatus 

100335017 Ictalurus punctatus 
precerebellin-like protein 100135893 Oncorhynchus mykiss 
CRPc-reactive protein, pentraxin-related  
  

751795 Danio rerio 
100136779 Oncorhynchus mykiss 

Serum amyloid P-component precursor (SAP) 570524 Danio rerio 
transferrin 100335020 Ictalurus punctatus 

T-cell 

CD8 alpha 100415908 Ictalurus punctatus 
CD4-like protein 1 100304978 Ictalurus punctatus 
CD4-like protein 2 100304979 Ictalurus punctatus 
a2 MHC class II integral membrane protein alpha chain 2 64691 Danio rerio 

novel MHC class I antigen 565768 Danio rerio 

    

    

http://www.ncbi.nlm.nih.gov/gene/100034638
http://www.ncbi.nlm.nih.gov/gene/64691
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Table 7.1(cont.). The list of reference genes-immune genes from closer relative of P. hypophthalmus (4species : Ictalurus punctatus, Danio rerio, 

Oncorhynchus mykiss and Salmo salar) 

Parameters Genes Genes ID Species 

Cytokine 

il-6 interleukin-6 100136689 Oncorhynchus mykiss 

interleukin-1-beta 100136024 Oncorhynchus mykiss 

tnf-alpha tumour necrosis factor alpha-like 100136034 Oncorhynchus mykiss 
chemokine-like (IL-8) 100136039 Oncorhynchus mykiss 

interleukin 8 100002946 Danio rerio 

interleukin 10 553957 Danio rerio 

tgfbr1b transforming growth factor, beta receptor 1 b 792928 Danio rerio 

tgfbr2 transforming growth factor, beta receptor II 30739 Danio rerio 

tgfb3 transforming growth factor, beta 3 369195 Danio rerio 

Antimicrobial peptide 

cathelicidin antimicrobial peptide 100136187 Oncorhynchus mykiss 

cathelicidin antimicrobial peptide defbl1 defensin, beta-like 1 
100136453 Salmo salar 

100009619 Danio rerio 

defbl2 defensin, beta-like 2 100009620 Danio rerio 

defbl3 defensin, beta-like 3 100009621 Danio rerio 

mbl-2 C-type MBL-2 protein 100136132 Oncorhynchus mykiss 

hbl3 hexose-binding lectin 3 100008009 Danio rerio 

mbl-1 C-type mannose-binding lectin 100136623 Oncorhynchus mykiss 

Housekeeping Genes 

Translation elongation factor-1α mRNA 68161044 Ictalurus punctatus 

18S rRNA gene, 5.8S rRNA gene, 28S rRNA gene  836268556 Pangasianodon hyphthalmus 

β-actin mRNA 325152389 Clarias batrachus 
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Table 7.2. The list of identical immune related genes in P. hypophthalmus ESTs 

GeneID GeneName RefSeq_ID 
RefSeq_ 
length 

EST_ID 
EST_ 
length 

Match_ 
length 

e-
value 

Score 
RefSeq_ 
name 

RefSeq_ 
Description 

RefSeq_ 
geneID 

RefSeq_ 
Species 

64691 

a2 MHC class 
II integral 
membrane 
protein alpha 
chain 2 

gi|18858227|ref| 
NP_571565.1| 

243 
HEADKIDNEY00000404 
[3 - 737] 

245 236 
3.11E-
65 

643 mhc2a 

major 
histocompatibility 
complex class II 
integral 
membrane alpha 
chain gene 

30783 Danio rerio 

64691 

a2 MHC class 
II integral 
membrane 
protein alpha 
chain 2 

gi|18858227|ref| 
NP_571565.1| 

243 
HEADKIDNEY00000405 
[3 - 737] 

245 236 
3.11E-
65 

643 mhc2a 

major 
histocompatibility 
complex class II 
integral 
membrane alpha 
chain gene 

30783 Danio rerio 

64691 

a2 MHC class 
II integral 
membrane 
protein alpha 
chain 2 

gi|52218920|ref| 
NP_001004534.1| 

236 
HEADKIDNEY00000933 
[178 - 768] 

197 197 
7.92E-
58 

578 
si:busm1-
194e12.11 

si:busm1-
194e12.11 

368993 Danio rerio 

100136132 
mbl-2 C-type 
MBL-2 
protein 

gi|292609496|ref| 
XP_002660413.1| 

161 
HEADKIDNEY00001665 
[6 - 569] 

188 159 
1.09E-
40 

429 
si:dkeyp-
75b4.10 

si:dkeyp-75b4.10 100320899 Danio rerio 

64691 

a2 MHC class 
II integral 
membrane 
protein alpha 
chain 2 

gi|52218920|ref| 
NP_001004534.1| 

236 
INTESTINE00000221 
[308 - 1045] 

246 236 
1.78E-
61 

611 
si:busm1-
194e12.11 

si:busm1-
194e12.11 

368993 Danio rerio 
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Table 7.2(cont.). The list of identical immune related genes in P. hypophthalmus ESTs 

GeneID GeneName RefSeq_ID 
RefSeq_ 
length 

EST_ID 
EST_ 
length 

Match_ 
length 

e-
value 

Score 
RefSeq_ 
name 

RefSeq_ 
Description 

RefSeq_ 
geneID 

RefSeq_ 
Species 

64691 

a2 MHC class 
II integral 
membrane 
protein alpha 
chain 2 

gi|55742394|ref| 
NP_001007206.1| 

236 
INTESTINE00000222 
[308 - 1045] 

246 236 
8.05E-
62 

614 
si:busm1-
48c11.3 

si:busm1-48c11.3 368614 
Danio 
rerio 

100305089 C3 
gi|326664400|ref| 
XP_002660624.2| 

1644 
INTESTINE00000802 [1 
- 771] 

257 255 
1.29E-
80 

776 LOC100331492 
complement C3-H2-
like 

100331492 
Danio 
rerio 

64691 

a2 MHC class 
II integral 
membrane 
protein alpha 
chain 2 

gi|52218920|ref| 
NP_001004534.1| 

236 
INTESTINE00001787 
[30 - 539] 

170 159 
6.60E-
38 

404 
si:busm1-
194e12.11 

si:busm1-194e12.11 368993 
Danio 
rerio 

100305089 C3 
gi|323422944|ref| 
NP_001008582.3| 

1640 
INTESTINE00001919 [1 
- 507] 

169 168 
5.12E-
53 

534 zgc:103710 zgc:103710 494039 
Danio 
rerio 

100862742  factor B/C2A 
gi|380036064|ref| 
NP_001244043.1| 

749 
LIVER00000028 [11 - 
1858] 

616 595 0 2473 LOC100862742 
complement factor 
B/C2A 

100862742 
Ictalurus 
punctatus 

100862742  factor B/C2A 
gi|380036064|ref| 
NP_001244043.1| 

749 
LIVER00000029 [11 - 
1495] 

495 454 0 1967 LOC100862742 
complement factor 
B/C2A 

100862742 
Ictalurus 
punctatus 

100862742  factor B/C2A 
gi|380036064|ref| 
NP_001244043.1| 

749 
LIVER00000030 [581 - 
979] 

133 117 
3.32E-
35 

381 LOC100862742 
complement factor 
B/C2A 

100862742 
Ictalurus 
punctatus 

100862742  factor B/C2A 
gi|380036064|ref| 
NP_001244043.1| 

749 
LIVER00000031 [81 - 
530] 

150 104 
1.40E-
30 

341 LOC100862742 
complement factor 
B/C2A 

100862742 
Ictalurus 
punctatus 

100305089 C3 
gi|363807314|ref| 
NP_571317.1| 

1643 
LIVER00000045 [25 - 
4365] 

1447 1421 0 4612 c3a 
complement 
component c3a 

321046 
Danio 
rerio 

100305089 C3 
gi|363807314|ref| 
NP_571317.1| 

1643 
LIVER00000046 [25 - 
4365] 

1447 1423 0 4623 c3a 
complement 
component c3a 

321046 
Danio 
rerio 

100305089 C3 
gi|363807314|ref| 
NP_571317.1| 

1643 
LIVER00000047 [25 - 
4665] 

1547 1508 0 4907 c3a 
complement 
component c3a 

321046 
Danio 
rerio 

100305089 C3 
gi|363807314|ref| 
NP_571317.1| 

1643 
LIVER00000048 [25 - 
4665] 

1547 1510 0 4914 c3a 
complement 
component c3a 

321046 
Danio 
rerio 
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Table 7.2(cont.). The list of identical immune related genes in P. hypophthalmus ESTs 

GeneID GeneName RefSeq_ID 
RefSeq_ 
length 

EST_ID 
EST_ 
length 

Match_ 
length 

e-
value 

Score 
RefSeq_ 
name 

RefSeq_ 
Description 

RefSeq_ 
geneID 

RefSeq_ 
Species 

100305089 C3 
gi|363807314|ref| 
NP_571317.1| 

1643 
LIVER00000049 [39 - 
551] 

171 102 
8.01E-
28 

317 c3a 
complement 
component c3a 

321046 
Danio 
rerio 

100335020 transferrin 
gi|318067980|ref| 
NP_001187249.1| 

679 
LIVER00000118 [911 - 
2050] 

380 648 
8.42E-
156 

1427 LOC100335020 transferrin 100335020 
Ictalurus 
punctatus 

100335020 transferrin 
gi|318067980|ref| 
NP_001187249.1| 

679 
LIVER00000119 [1 - 
1041] 

347 696 
6.71E-
145 

1333 LOC100335020 transferrin 100335020 
Ictalurus 
punctatus 

100008009 
hbl3 hexose-
binding lectin 
3 

gi|68356570|ref| 
XP_695347.1| 

253 
LIVER00000432 [81 - 
851] 

257 148 
5.72E-
25 

297 LOC566971 

pulmonary 
surfactant-
associated protein D-
like 

566971 
Danio 
rerio 

100135893 
precerebellin-
like protein 

gi|169234619|ref| 
NP_001076456.2| 

225 
LIVER00000631 [3 - 
581] 

193 158 
8.48E-
41 

431 cbln14 cerebellin 14 100007164 
Danio 
rerio 

570524 

Serum 
amyloid P-
component 
precursor 
(SAP) 

gi|70778934|ref| 
NP_001020468.1| 

222 
LIVER00000908 [6 - 
542] 

179 156 
1.61E-
55 

557 crp2 C-reactive protein 2 327615 
Danio 
rerio 

100136024 
interleukin-1-
beta 

gi|317574215|ref| 
NP_001187148.1| 

280 
LIVER00000992 [3 - 
503] 

167 149 
1.58E-
53 

539 il1b interleukin 1, beta 100304696 
Ictalurus 
punctatus 

 

 

 

 

 


