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Abstract 

Caligid copepods, also called sea lice, are ectoparasites of marine fish, with 

Lepeophtheirus salmonis (Krøyer, 1837) emerging as a problem for mariculture of 

Atlantic salmon (Salmo salar Linnaeus, 1758) in the northern hemisphere. Annual costs 

of sea lice to global salmon farming was estimated to be in excess of €300 million in 

2006, with the majority of this accounted for through expenses accrued from chemical 

treatments. Only a limited range of anti-sea louse drugs are available and licensed for 

the treatment of fish, and the continued use of only a few compounds creates a situation 

potentially favouring the development of drug resistance. Emamectin benzoate (EMB) 

is currently used as a salmon delousing agent, being employed as a 0.2 % in-feed pre-

mix (SLICE
®
). Atlantic salmon farmers have reported increased incidence of reduced L. 

salmonis sensitivity to SLICE
®
, which has highlighted the requirement for further 

research into the molecular mechanisms controlling salmon louse resistance to EMB. 

Genomic and transcriptomic research concerning L. salmonis drug resistance 

mechanisms has not often been reported, with previous transcriptomic studies using 

candidate gene approaches and genetic studies focussing on population genetics. Drug 

resistance in ecdysozoan invertebrates is associated with a variety of molecular 

mechanisms including target site mutations and changes in the expression of 

components in drug detoxification pathways. The research reported in this thesis was 

aimed at the exploration of mechanisms employed by L. salmonis to reduce the toxicity 

of EMB exposure, following a transcriptomic approach that utilised custom 

oligonucleotide (oligo) microarrays and a genetic approach that utilised Restriction-site 

associated DNA sequencing (RAD-seq) to identify Single Nucleotide Polymorphism 

(SNP) markers. An EMB-resistant (PT) and drug-susceptible (S) L. salmonis 

laboratory-maintained strain were to be used as a model for this research, as these two 
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strains differ in EMB susceptibility (~ 7-fold) and show stable susceptibility profiles 

through multiple generations, suggesting that this drug resistance phenotype may be a 

heritable trait. 

Sequence resources available for salmon lice are limited as an annotated L. 

salmonis genome is currently under construction. Therefore, a significant amount of 

this study involved creating new resources to facilitate the analysis of EMB 

susceptibility. Suppression subtractive hybridisation (SSH) was used to enrich for 

transcripts that were differentially expressed between strains PT and S, which provided 

sufficient target sequence for the development of 15K oligo microarrays when 

combined with sequences assembled from existing L. salmonis ESTs. Additionally, 

transcripts were generated through sequencing a pooled sample representing key 

developmental stages of the L. salmonis life cycle, which were later used in the 

construction of a 44K oligo microarray. 

The toxicity of EMB and other avermectins (AVMs) against ecdysozoan 

invertebrates is reported to be based mainly on their interaction with ligand-gated ion 

channels (LGIC), specifically glutamate-gated chloride channels (GluCl). However, -

aminobutyric acid (GABA)-gated chloride channels (GABA-Cls) are also believed to 

be targeted by AVMs and neuronal acetylcholine receptors (nAChRs) can be 

allosterically modulated by the AVM compound ivermectin. Transcriptional responses 

in PT and S salmon lice were investigated using custom 15K L. salmonis oligo 

microarrays. In the absence of EMB exposure, 359 targets differed in transcript 

abundance between the two strains. GABA-Cl and nAChR subunits showed 

significantly lower transcript levels in PT compared to S lice, which was estimated at 

~1.4-fold for GABA-Cl and ~2.8-fold for nAChR using RT-qPCR, suggesting their 

involvement in AVM toxicity in caligids. Although, salmon lice from the PT strain 
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showed few transcriptional responses following acute exposure (1 or 3 h) to 200 µg L
-1

 

of EMB, a drug concentration tolerated by PT lice, but toxic for S lice. 

RAD-seq analysis of both genders from L. salmonis strains S and PT identified 15 

RAD-markers that show complete association with salmon louse strain, although these 

preliminary results will need further analysis to confirm marker association with 

reduced EMB susceptibility. Additionally, RAD marker Lsa101901 showed complete 

association with sex for all individuals analysed, being heterozygous in females and 

homozygous in males. Using an allele-specific PCR assay, this SNP association pattern 

was further confirmed for three unrelated salmon louse strains. Marker Lsa101901 was 

located in the coding region of the prohibitin-2 gene, which showed a sex-

dependent differential expression, with mRNA levels determined by RT-qPCR 

about 1.8-fold higher in adult female than adult male salmon lice.  

In conclusion, the identification of decreased transcript abundances for LGIC 

subunits in EMB-resistant salmon lice, and polymorphic SNP markers showing 

complete association with L. salmonis strains S or PT, provides suitable candidates for 

further investigation into their association with reduced EMB susceptibility. Further 

analysis will also be required to confirm whether EMB-induced mechanisms are not 

associated with reduced EMB susceptibility in L. salmonis. Additionally, the 

identification of sex-linked SNP Lsa101901 suggests that sex determination in the 

salmon louse is genetic and follows a female heterozygous system, with marker 

Lsa101901 providing a tool to determine the genetic sex of salmon lice. Improved 

knowledge of L. salmonis biology and the mechanisms potentially involved in EMB 

resistance, obtained during this study, may provide molecular markers that contribute to 

successful monitoring and management of this commercially important parasite of 

Atlantic salmon. 
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This thesis investigates „the molecular determinants of salmon louse 

(Lepeophtheirus salmonis (Krøyer, 1837)) susceptibility to the antiparasitic drug 

emamectin benzoate‟. The following provides some background context for this 

parasitic copepod, providing an overview of its impact on Atlantic salmon aquaculture 

and the control methods employed by the industry to manage this group of parasites. In 

consideration of the molecular mechanisms that may be involved in reduced 

susceptibility of L. salmonis to emamectin benzoate (EMB), several mechanisms will 

be discussed in respect to their association with previous incidences of reduced 

ecdysozoan susceptibility to antiparasitic agents. The current situation regarding 

reduced susceptibility of L. salmonis to various medicinal agents and the present 

understanding of the molecular mechanisms suggested to be associated with this 

reduction in L. salmonis will then be presented to highlight the importance of both this 

research area and the current work, which employs a global transcriptomic and genomic 

analysis strategy in the identification of candidate genes or markers putatively 

associated with reduced EMB susceptibility in L. salmonis. 

1.1 Sea lice and marine fish 

Sea lice are parasitic copepods belonging to the family Caligidae. This family 

comprises approximately 63 genera and 549 species (Chad and Boxshall, 2013a), 

including 263 and 125 species from the genera Caligus (Boxshall, 2013) and 

Lepeophtheirus (Chad and Boxshall, 2013b) respectively. Caligids are predominantly 

ectoparasites of marine fish that parasitise a wide range of hosts and feed on host 

mucus, skin and underlying tissues (Pike and Wadsworth, 1999). The principal subject 

of this thesis, Lepeophtheirus salmonis (Krøyer, 1837) (see Table 1.1 for full 

classification), is thought to be restricted to oceans of the northern hemisphere and is 

often referred to as the salmon louse as it mainly parasitises salmonids, particularly 
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from the genera Salmo, Oncorhynchus and Salvelinus (Kabata, 1979). Caligus species, 

including C. elongatus von Nordmann 1832, have a much wider host range and are 

distributed throughout the northern and southern hemispheres (Kabata, 1979). Intensive 

Atlantic salmon (Salmo salar Linnaeus, 1758) mariculture operations have experienced 

considerable problems with sea lice infection, with L. salmonis being responsible for 

the majority of farmed Atlantic salmon infections in Norway, Scotland and Ireland, and 

on the Pacific and Atlantic coasts of Canada and USA (Pike and Wadsworth, 1999). C. 

elongatus also parasitises farmed and wild salmonids in the northern hemisphere but is 

not considered to be as problematic as L. salmonis, probably due to its wider host range 

(Costello, 2006) and smaller size. Although C. rogercresseyi has a similarly wide host 

range to C. elongatus (Costello, 2006), it has emerged as a serious problem for Atlantic 

salmon production in Chile where production was restricted to a small region of 

southern Chile (Bravo et al., 2008). In 2010, following the crash of the Chilean salmon 

industry due to a combination of infectious salmon anaemia (ISA) and sea louse 

infection, 65 % of global Atlantic salmon biomass from aquaculture (1.4 M tonnes) was 

produced in Norway and 11 %, 9 % and 7 % was produced in Scotland, Chile and 

Canada respectively (FAO, 2012a). Of the family Caligidae, the salmon louse (L. 

salmonis) has received by far the most intensive study as it is the most problematic and 

thus economically important species for global Atlantic salmon production, with an 

estimated global cost in 2006 of €305 million per annum (Costello, 2009). 
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Table 1.1 Full taxonomic classification of L. salmonis. 

Kingdom Animalia 

Phylum Arthropoda 

Subphylum Crustacea Brünnich, 1772 

Class Maxillopoda Dahl, 1956 

Subclass Copepoda Milne-Edwards, 1840 

Infraclass Neocopepoda Huys & Boxshall, 1991 

Superorder Podoplea Giesbrecht, 1882 

Order Siphonostomatoida Thorell, 1859 

Family Caligidae Burmeister, 1834 

Genus Lepeophtheirus von Nordmann, 1832 

Species salmonis (Krøyer, 1837) 

ITIS Taxonomic serial number: 89113 (ITIS, 2013). 

Apia ID: 135782 (Boxshall, 2012). 

Salmon louse infection of wild salmonids is assured by dispersal of planktonic 

louse stages in high salinity water during periods of optimal host density (Torrissen et 

al., 2013). The development of commercial Atlantic salmon aquaculture gave rise to 

production sites that can often be close to wild salmonid migration routes, and which 

maintain captive salmonids at high densities for 12 - 24 months and potentially provide 

a continual host source for maintenance of the salmon louse life cycle in addition to 

wild sea trout that are also found in these areas (Torrissen et al., 2013). Atlantic salmon 

farming began in the 1970s with the establishment of production sites for growth and 

maturation of Atlantic salmon. Global Atlantic salmon production has increased largely 

continuously since then, and was calculated at 1.4 million tonnes in 2010 with a value 

of US $7.8 billion (FAO, 2012b). Atlantic salmon is therefore the world‟s leading 

farmed marine species, with this growth in production projected to continue due to 

increasing demand for this food fish. Soon after the establishment of Atlantic salmon 

production sites it was found that cultured smolts were being infected by salmon lice. 

Pest control measures were then implemented for sea louse control, mainly consisting 

of chemical intervention, with additional general farm management practises used to 

break the sea louse infection cycle. 
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1.2 L. salmonis biology and life cycle 

The L. salmonis life cycle includes planktonic and host-associated phases (Figure 

1.1). The planktonic phase begins with hatching of nauplii from egg strings carried by 

gravid adult female lice, and comprises two non-parasitic nauplius stages and an 

infective copepodid stage that requires host-attachment for further development. The 

host-associated phase begins with the settlement of infective copepodids on the surface 

of host fish and continues through two permanently attached chalimus stages, two 

mobile preadult stages and one final mature and reproductively active adult stage 

(Johnson and Albright, 1991a). Nauplii and free-living copepodids are primarily 

passively dispersed by water currents, although these planktonic stages often display 

positive phototactic responses and also a limited amount of vertical swimming that 

allows diel vertical migration, enabling positioning in upper layers of the ocean during 

the day and sinking to lower strata at night, which is thought to increase host-parasite 

interactions (Bron et al., 1993a; Heuch et al., 1995). Planktonic sea lice have also been 

shown to display positive rheotaxis behaviour and additional movement in the 

avoidance of lower (< 29 %) salinity waters (Bricknell et al., 2006) or during host 

semiochemical attraction (Bailey et al., 2006). Nauplii and free-living copepodids are 

non-feeding stages that are limited by maternally deposited endogenous lipid reserves, 

with duration of the latter stage being 3-7 days depending on water temperature (Tucker 

et al., 2000). Once copepodids locate and settle on a suitable host they secure 

attachment to the host by means of a frontal filament and feed on host mucus and skin. 

It was originally considered that attached copepodids undergo a major metamorphosis 

into chalimus I (Pike and Wadsworth, 1999) then repeat frontal filament attachment and 

continue feeding through three successive chalimus stages, facilitating gradual changes 

in body shape until chalimus IV closely resemble preadult I morphology (Bron et al., 
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1991). More recently however, it has been recognised that the chalimus phase 

comprises only two stages, with a chalimus I stage comprising the chalimus stages 

previously described as chalimus I and II, and a chalimus II stage that comprises the 

stages formerly described as chalimus III and IV (Hamre et al., 2013). The chalimus 

stages are non-mobile and feed at the point of attachment, whereas preadult and mature 

adults actively move across the surface of host fish but continue to graze on host mucus, 

skin and underlying tissues (Brandal et al., 1979). These latter mobile salmon lice 

stages ensure attachment to the host through suction of the cephalothorax and gripping 

with antennae and maxilliped appendages. In addition, early preadults attach to the host 

using a chalimus-like filament during moult steps (Wagner et al., 2008). The 

development time of the salmon louse is highly temperature dependent (Johnson and 

Albright, 1991b), with males developing substantially faster than females. As a 

consequence of the differences in developmental speed between the sexes, the timing of 

moulting to adult male and second preadult female lice is similar, which provides time 

for males to locate an immature mate and guard her until full female maturation when 

mating can proceed (Bron et al., 1993b). After the final female moult, adult males 

attach and cement spermatophores to the female genital complex in an effort to prevent 

successful mating with other males (Ritchie et al., 1996). The adult male mate-

searching, pre-copula mate-guarding and polygamous mating behaviour is believed to 

have evolved under conditions of restricted female availability where reduced energy 

investment in mate searching improves fitness and reproductive success (Ritchie et al., 

1996). The female salmon louse produces two egg strings that can each contain 100 – 

1000 eggs, depending on a range of factors including water temperature, time of year 

and female abdomen size (Costello, 2006). Gravid female lice can produce between 6 

and 11 pairs of egg strings during a reproductive lifespan (Heuch et al., 2000). An egg-
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bearing female salmon louse can therefore release high numbers of planktonic nauplius 

stages and cause subsequent parasite transmission to farmed and wild salmonid hosts. 

For this reason, ovigerous female louse numbers are used as the key indicator for the 

infection levels at many production sites, and are the prime target for disruption of the 

salmon louse reproductive lifecycle. 

 

 

Figure 1.1 The life cycle of Lepeophtheirus salmonis.  
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1.3 Host-parasite interactions 

In an era where there is a limited number of effective chemotherapeutants for 

control of L. salmonis on Atlantic salmon farms (see section 1.5.8 onwards), there is an 

urgent need for the development of non-chemical based salmon louse control methods. 

The development of such methods first requires detailed knowledge of the intimate 

relationship between parasite and host to identify aspects of these interactions that could 

be manipulated. 

1.3.1 L. salmonis hosts 

The host range of L. salmonis is mainly restricted to salmonids from the genera 

Salmo, Oncorhynchus and Salvelinus (Kabata, 1979). In the North Atlantic there are 

two main L. salmonis hosts; Atlantic salmon (S. salar) and sea trout (Salmo trutta 

Linnaeus, 1758), although the arctic charr (Salvelinus alpinus (Linnaeus, 1758)) is also 

known to host the salmon louse. However, in the Pacific ocean L. salmonis commonly 

parasitises Oncorhynchus species, particularly rainbow trout (O. mykiss (Walbaum, 

1792)), pink salmon (O. gorbuscha (Walbaum, 1792)) and chum salmon (O. keta 

(Walbaum, 1792)). Additionally, L. salmonis have been reported on non-salmonid 

species including white sturgeon (Acipenser transmontanus Richardson, 1836), sand 

lance (Ammodytes hexapterus Pallas, 1814) (Kabata, 1979), saithe (Pollachius virens 

(Linnaeus, 1758)) (Bruno and Stone, 1990), sea bass (Dicentrarchus labrax (Linnaeus, 

1758)) (Pert et al., 2009) and three-spine stickleback (Gasterosteus aculeatus Linnaeus, 

1758) (Jones et al., 2006a). In the latter case, L. salmonis is considered to be able to 

reach pre-adult stage on G. aculeatus, with explanations for this reduced numbers of 

adults including mobilisation of mature L. salmonis from G. aculeatus to a salmonid 

host (Jones et al., 2006b) or predation by other three-spine sticklebacks (Pert et al., 

2012). 
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Two L. salmonis sub-species are now considered to exist, located respectively in 

the Atlantic and Pacific oceans, with comparisons of ESTs, the mitochondrial genome, 

16S rRNA and Cytochrome oxidase subunit I (COI) DNA sequences between the 

Pacific and Atlantic L. salmonis populations showing several differences between the 

lineages and a lower genetic diversity in Pacific populations (Yazawa et al., 2008). This 

genetic divergence suggests the beginning of speciation between Pacific and Atlantic L. 

salmonis populations that may have co-evolved with their respective hosts (Yazawa et 

al., 2008). Opening of the Bering Strait ~5 million years ago created the first 

continuous connection that allowed migration of fish and associated parasites between 

the Pacific and Atlantic oceans (Marincovich and Gladenkov, 1999), whereas L. 

salmonis and host co-evolution is thought to have occurred over the last 2.5 to 11 

million years (Yazawa et al., 2008). The COI gene was used in the identification of 

differences in L. salmonis population genetic structure in the Pacific ocean (Boulding et 

al., 2009), however, previous studies were unable to identify such genetic structure and 

these authors concluded that L. salmonis populations must be homogeneous in the 

Pacific due to high levels of host salmonid migration (Messmer et al., 2011). A weak 

but statistically significant population genetic structure was identified in L. salmonis 

from the Atlantic ocean (Glover et al., 2011), although previous studies had failed to 

find significant difference between samples throughout the North Atlantic (Scotland, 

Norway and Canada), between different host species (Atlantic salmon and Brown trout) 

or between wild and farmed salmonids (Shinn et al., 2000; Dixon et al., 2004; Todd et 

al., 2004) other than significant but low differentiation between small groups of L. 

salmonis in Ireland (Nolan and Powel, 2009). It is unclear from any of these studies 

whether there is significant population genetic structure in either the Atlantic or Pacific 

L. salmonis lineages but these populations do seem to be distinct from each other. This 
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thesis will mainly address the problems associated with Atlantic L. salmonis infection 

of salmonids in the North Atlantic with references being made to the situation with 

Pacific L. salmonis for comparative purposes. 

1.3.2 Atlantic salmon 

The Atlantic salmon is an andromous salmonid species that is indigenous to the 

North Atlantic (Verspoor et al., 2007); particularly Western Europe and the east coast 

of North America. It has further been introduced as a farmed species to the west coast 

of North America, Chile and Tasmania (Seear et al., 2010a). S. salar is a member of the 

teleost family Salmonidae within the Protacanthopterygii subgroup that diverged from a 

common ancestor and went through a tetraploidization event 25 to 100 million years 

ago; meaning that extant salmonids are now considered to be pseudo-tetraploid as they 

are in the later stages of reverting to a more stable diploid state (Koop et al., 2008). The 

life cycle of Atlantic salmon begins with spawning in fresh water, usually between 

autumn and spring. Subsequently alevins (yolk-sac fry) hatch and become juvenile fry 

after 3 – 6 weeks then develop into parr during the autumn. The parr may remain in 

fresh water for a period of 1 to 6 years until they have grown sufficiently (Verspoor et 

al., 2007), when a programmed physiological adaptation takes place in spring/early 

summer called „smoltification‟ that allows migration to the open ocean for rapid growth 

and development of mature salmon in a saltwater environment (Hoar, 1988). Adult 

Atlantic salmon feed and develop in the ocean for 1 to 4 years before returning to 

spawn in the river they originated from, when physiological adaptations are again 

required to allow transition back from the saltwater to freshwater environment 

(Verspoor et al., 2007). The Atlantic salmon life cycle is now routinely manipulated for 

aquaculture, through optimisation of spawning time and maturation using intensive 

hatcheries and sea cages to ensure continuous production of food fish with uniform size 
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and quality (Bromage et al., 2001). Production cycles used for commercial Atlantic 

salmon farming involve intensive fresh water rearing of smolts and then transfer of 

these smolts to sea water after 8 - 9 months (0 + smolts) or 16 - 17 months (1 + smolts) 

post-hatching, for growth and maturation until mature fish reach market size (3 – 6 kg) 

(Duncan et al., 1998; Marine Harvest, 2012). Out-of season smolt release strategies 

ensure that market size Atlantic salmon can be produced throughout the year (Duncan 

et al., 1998). As salmon are stocked in relatively high densities during the marine stage 

of commercial aquaculture production, an ideal environment is created for salmon louse 

infection of susceptible fishes. 

1.3.3 Salmon louse attachment and host response 

1.3.3.1 Salmon louse host location and attachment 

Free-living L. salmonis copepodids are thought to use mechanoreceptors to detect 

a number of physical and chemical cues in the process of host location (Mordue and 

Birkett, 2009), including positive reaction to reflective patterns of fish scales (Browman 

et al., 2004) and currents produced by swimming fish (Heuch and Karlsen, 1997). It is 

also suggested that L. salmonis possess dedicated chemoreceptors (Hull et al., 1998) 

that are used in the recognition of host specific odours (Fields et al., 2007) or salmon 

louse pheromones, released for mate location and social aggregation (Mordue and 

Birkett, 2009). Electrophysiological studies of adult salmon louse responses to whole 

fish extract indicated greater levels of response to low molecular weight (LMW) soluble 

compounds from salmon flesh compared to controls (Fields et al., 2007). Further 

investigations demonstrated that salmon lice were attracted to salmonid-conditioned 

water, suggesting the involvement of semiochemicals in the host-parasite interactions 

(Devine et al., 2000; Pino-Marambio et al., 2007). The recognition of a potential host 

by a copepodid initiates bursts of high speed swimming and more frequent turning 
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behaviour, termed „circle attacks‟ (Heuch and Karlsen, 1997). This behaviour may have 

evolved to ensure that the copepodid remains in the vicinity of salmonid hosts which 

will increase the frequency of host-parasite encounters, and circle attack behaviour aids 

in the physical attachment to the host (Heuch and Karlsen, 1997). 

1.3.3.2 Salmonid host responses to salmon louse infection 

All host-attached salmon lice are considered to feed on host mucus, skin and 

underlying tissues with mature adults, especially adult females, also ingesting blood as 

a result of damage to epidermal capillaries during the feeding process (Brandal et al., 

1979; Pike and Wadsworth, 1999). The first line of defence against parasites and 

infectious disease for Atlantic salmon is a layer of mucus that coats the epithelia of the 

gills, skin and gut (Easy and Ross, 2009). Infection of Atlantic salmon post-smolts (200 

– 250 g) with L. salmonis under normal ocean conditions usually results in low parasite 

abundances (< 0.01 L. salmonis g
-1

 host fish) that may cause initial stress-related 

reductions in host feeding and feed conversion efficiency (Nolan et al., 1999; Wagner 

et al. 2008). Host infection with higher parasite abundances (0.3 – 0.5 adults g
-1

 host 

fish) may result in tissue damage, bleeding, increased mucus discharge (Wagner et al. 

2008) and altered mucus protein composition (Easy and Ross, 2009). Large skin lesions 

often form on salmonids with high levels of mobile salmon lice infection (> 0.5 – 0.75 

adults g
-1

 host fish), which leads to complications such as anaemia, secondary infection, 

loss of osmotic and hydromineral balance and chronic stress responses, although tissue 

necrosis and mortality may occur in the most severe cases (Wagner et al., 2008). 

Catecholamines and cortisol are major hormones involved in the teleost stress response, 

which is a conserved adaptive physiological mechanism to perceived or real threats to 

normal homeostasis that is generally characterised by directing metabolic energy away 

from growth and reproduction and towards physiological mechanisms contributing to 
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the maintenance of normal homeostasis (Barton and Iwama, 1991; Wendelaar Bonga, 

1997). In addition to effects on growth and reproduction the endocrine stress responses 

in teleosts has also been implicated in a reduction of non-specific immunity and 

increased susceptibility to secondary infections (Barton and Iwama, 1991; Wendelaar 

Bonga, 1997). Krasnov et al. studied the effects of chalimus infection (18 days post 

infection (dpi)) and cortisol administration on gene expression in Atlantic salmon skin 

(Krasnov et al., 2012). The authors demonstrated that cortisol administration was 

implicated in the suppression of host immune and tissue repair gene expression 

responses and also potentially influences the host response to salmon louse damage. 

Salmonid host species have been found to possess differing levels of susceptibility to L. 

salmonis, with Atlantic salmon and sea trout (S. trutta) showing the greatest 

susceptibility and very little inflammatory response to salmon louse infection (Fast et 

al., 2002); whereas the most resistant pink salmon (O. gorbuscha) rapidly rejects L. 

salmonis through development of systemic and attachment site specific inflammatory 

response (Jones et al., 2007). Atlantic salmon are known to have a thinner epidermal 

layer, with fewer mucus cells that are more sparsely distributed and possess lower 

proteolytic activity than more resistant salmon species, which may help to explain these 

differences in susceptibility as Atlantic salmon do not possess as robust an immune 

system as pink salmon (Fast et al., 2002). Genetic variability in the susceptibility of 

Atlantic salmon to L. salmonis has been shown to exist in spawning stocks and full-sib 

families (Glover et al., 2004; Glover et al., 2005; Kolstad et al., 2005; Gjerde et al., 

2011; Torrissen et al., 2013) with a heritability of lice counts of 0.07 - 0.33 (Torrissen 

et al., 2013). Quantitative Trait Locus (QTL) regions were identified on Atlantic 

salmon linkage group (LG) 6, that were associated with increased salmon louse 

abundance. This linkage group was shown to contain MHC II genes, although it was 
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suggested by Gharbi et al. that the QTL region associated with L. salmonis 

susceptibility may include regulatory elements that control MHC II gene expression 

(Glover et al., 2007; Gharbi et al., 2009). When considering the striking difference in L. 

salmonis susceptibilities between Atlantic salmon and Pink salmon that also differ 

considerably with respect to immune responses to L. salmonis infection, it seems that 

the host inflammatory response is an important factor in these complex host parasite 

interactions that influences susceptibility level. 

1.3.3.3 L. salmonis immunomodulation of Atlantic salmon 

Pro-inflammatory and anti-inflammatory components, including trypsin-like 

enzymes and prostaglandin E2 (PGE2), have been identified in L. salmonis 

secretory/excretory products (SEP), with clear changes in SEP constituents throughout 

parasite development suggesting that each component has different immunomodulatory 

effects on the host (Fast et al., 2003; Fast et al., 2004; Fast et al., 2007). Salmon louse 

host immunomodulation may therefore have evolved to provide favourable conditions 

for parasite feeding and survival, depending on specific developmental requirements of 

the parasite throughout host-associated stages (Fast et al., 2007), with PGE2 thought to 

stimulate vasodilation and reduce host cellular responses at feeding sites (Fast et al., 

2007). Transcriptomic responses were analysed in Atlantic salmon during L. salmonis 

infection, throughout the attached copepodid and chalimus parasite stages (Tadiso et al., 

2011). These authors found two distinct phases of host immune response, an initial 

innate immune response at 1 dpi and a second response at 5 – 10 dpi that coincided with 

the salmon louse transition from copepodid to chalimus stage which suggests changes 

in host-parasite interactions throughout the L. salmonis life cycle (Tadiso et al., 2011). 

It has also been hypothesised that L. salmonis shows host preferences through the 

release of different enzymes on „unsuitable hosts‟, such as Coho salmon 
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(Oncorhynchus. kisutch), with respect to more susceptible hosts such as Atlantic salmon 

(S. salar) (Fast et al., 2003). The current evidence therefore suggests that L. salmonis 

have developed mechanisms to promote parasitism through the release of compounds 

with a limited effect that is localised to the site of attachment. These mechanisms do not 

seem to elicit organism-wide immunomodulation and some salmonid hosts have the 

ability to counter these effects to varying degrees. Further characterisation of L. 

salmonis host immunomodulatory mechanisms and host responses may uncover 

mechanisms that could potentially be manipulated in the control of L. salmonis 

populations on Atlantic salmon production sites. 

1.4 Interactions of salmon louse populations originating from 

farmed and wild salmonid populations 

Atlantic salmon and sea trout population abundances have been falling 

dramatically over many years and in the former case this has often been associated with 

reduced marine survival of migrating salmon (Todd, 2008). Wild Atlantic salmon 

nominal catches have declined from 7,237 tonnes in 1960 to 1,539 tonnes in 2010 

(ICES, 2011), while Atlantic salmon aquaculture has increased productivity during the 

same period to 1.4 M tonnes in 2010 (FAO, 2012b). Although declines in wild Atlantic 

salmon and sea trout numbers began many years before the establishment of 

commercial Atlantic salmon farming, and occurs in regions with and without Atlantic 

salmon production sites, some groups nevertheless maintain that infection of outwardly 

migrating smolts with salmon lice originate from farm sites are responsible for this 

decline (Costello, 2009). It is, however, suspected that complex interactions of several 

other anthropogenic, biological and physical factors unrelated to Atlantic salmon 

production, influence variations in wild salmonid stock size (Torrissen et al., 2013) 

such as climate change and pollution. Todd et al. noted that sea surface temperatures 
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have been warming in sub-Arctic North Atlantic oceans over recent years, which they 

hypothesise has contributed to the return of underweight fish to spawning grounds 

(Todd et al., 2008). It has also been suggested that the fresh water environment can 

have a negative impact on outwardly migrating smolts (Russell et al., 2012). Juvenile 

salmon have been found to grow faster in some rivers and migrate to sea earlier due to 

climate change, pollution and industrial exploitation of rivers, which may result in 

reduced sea survival of these smaller smolts (Russell et al., 2012). 

Salmon farms do present a significant source of hosts for L. salmonis and 

hydrodynamic modelling suggests that planktonic salmon lice could potentially be 

dispersed up to 30 km from initial source (Amundrud and Murray, 2009; Costello, 

2009; Salama et al., 2013). The infective copepodids will therefore have potential to 

infect wild salmonids that migrate past salmon farm sites. Transmission of infective 

louse stages from salmon production sites has been associated with infection of juvenile 

wild salmonids migrating past commercial sites, where Krkošek et al. estimated that 

80% of wild pink salmon mortalities in the Broughton Archipelago (BC, Canada) was 

attributed to salmon louse infection and predicted 99 % population crash in 3.9 

generations (Krkošek et al., 2007). These conclusions were contested by several other 

groups, including Marty et al. who concluded that factors other than salmon lice were 

responsible for premature wild salmon mortalities in Broughton Archipelago (Marty et 

al., 2010). These authors also suggested wild salmonid production was not negatively 

associated with salmon lice or Atlantic salmon numbers from salmon farms, although 

the number of pink salmon returning to spawn in autumn did predict L. salmonis 

numbers on farmed fish the next spring and also accounted for 98 % of the salmon lice 

prevalence on outgoing wild juvenile pink salmon (Marty et al., 2010). The predicted 

pink salmon population decline in Broughton Archipelago has since not materialised 
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(Peacock et al., 2013). In the North Atlantic substantial declines in wild sea trout 

numbers were suggested to be associated with increased infection risk in areas 

containing Atlantic salmon farming sites in Scotland (MacKenzie et al., 1998; Butler, 

2002; Middlemass et al., 2010; Middlemass et al., 2013), Ireland (Tully et al., 1999; 

Gargan et al., 2012) and Norway (Bjorn et al., 2001; Bjorn et al., 2007). It is evident 

that wild and farmed hosts have the potential to cross infect each other, although farmed 

hosts are thought to be the most likely source due to localised epizootic episodes 

occurring when ovigerous females were recorded on farm sites that have a high density 

of hosts. However, a study of wild sea trout from sites on the east and west coast of 

Scotland recorded more L. salmonis on S. trutta sampled on the east coast than west 

coast (Urquhart et al., 2010). These results contradict suggestions of farm-associated 

mortalities as, while there are a high number of Atlantic salmon farms on the west 

coast, no farms exist on the east coast and this may therefore suggest influences of other 

factors on sea mortality of post-smolts, although the sea trout sampled on the east coast 

were larger and could therefore harbour a higher lice density. A study of Atlantic 

salmon post-smolts, sea trout and arctic charr in Norway found that, as sea trout and 

artic charr feed within nearshore waters, they have a higher infection risk than wild 

Atlantic salmon (Bjorn et al., 2007) that migrate to open ocean to feed for 1-4 years 

(Verspoor, 2007). Bjorn et al. also found that arctic charr returned to fresh water earlier 

than the other two species studied (Bjorn et al., 2007), although other studies have 

reported the premature return of sea trout to fresh water as a possible response to 

salmon louse infection (MacKenzie et al., 1998; Wells et al., 2007). Salmon louse 

infection has been shown to influence the mortality of post-smolt sea trout (Dawson, 

1998) and Atlantic salmon (Hvidsten et al., 2007) but it has also been shown that other 

factors such as acidification may have a significant influence on sea water mortality 
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(Finstad et al., 2007). The effects of sea louse infections on the early sea water 

mortality of wild salmonids in the Atlantic has been studied in Norway (Hvidsten et al., 

2007; Skilbrei et al., 2013) and Ireland (Jackson et al., 2011a&b; Gargan et al., 2012; 

Jackson et al., 2013a&b) by an indirect approach involving the release and recapture of 

smolts and comparison of the effects of prophylactic administration of anti-salmon 

louse treatment with untreated controls. The release and recapture studies from Norway 

concluded that the odds ratio of recapturing treated salmon than untreated controls was 

1.17:1, with a study between 1996 - 1998 finding that significantly more treated smolts 

survived in 1998 compared to controls (Hvidsten et al., 2007). A 9 year release and 

recapture study of Burrishoole stock smolts concluded that salmon louse infection of 

outwardly migrating smolts was not consistently a predictor of mortality (Jackson et al., 

2011a), which was also found in a study of Atlantic salmon river stocks from the south 

and west coast of Ireland between 2002 and 2006 (Jackson et al., 2011b). A separate 

study in Ireland involving the release and recapture of 74,324 smolts between 2004 and 

2006 found that EMB treated smolts were 1.8 times more likely to return than untreated 

controls and the authors concluded that salmon louse mortality of wild salmonids could 

be significant in this area of Ireland (Gargan et al., 2012). When considering both the 

Norwegian and Irish data on release and recapture of treated and untreated salmon 

smolts it was shown that the odds ratio of recapturing treated smolts was 1.11:1 to 1.2:1 

(Torrissen et al., 2013). The mortality rates were found to be highly variable between 

treatment groups with many smolts only moderately affected or unaffected by salmon 

lice and others being severely affected, with risk of infection being highly dependent on 

study location and release dates with large annual variability in ocean survival 

(Torrissen et al., 2013). There may be several random effects that influence this 

variability in the effects of L. salmonis on Atlantic salmon smolts, associated with 
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reduced EMB treatment efficacies and the differences in health status and feeding of 

smolts in the open ocean prior to return. It is evident that as the numbers of 

commercially produced Atlantic salmon exceed those of wild salmon, louse infection is 

likely to be an ongoing problem, with re-infection originating from both farm sites and 

wild migratory salmon (Torrissen et al., 2013). There is not currently any conclusive 

evidence that suggests that salmon lice are the main contributory factor to the declines 

in wild salmonid populations. It would seem that complex interactions of numerous 

different biological, physical and anthropogenic factors have contributed to this decline, 

although it is necessary to control salmon louse infection on Atlantic salmon farms as 

infection of wild salmonids will contribute to this problem. 

1.5 Control and management of salmon lice in aquaculture 

1.5.1 Integrated Pest Management (IPM) 

Integrated Pest Management (IPM) was first developed for the prevention and 

suppression of insect pests in the protection of crop plants through co-ordinated 

integration of multiple control tactics (Radcliffe et al., 2013). The Food and Agriculture 

Organisation of the United Nations (FAO) defines IPM as follows: 

“Integrated Pest Management (IPM) means the careful consideration of all 

available pest control techniques and subsequent integration of appropriate measures 

that discourage the development of pest populations and keep pesticides and other 

interventions to levels that are economically justified and reduce or minimize risks to 

human health and the environment. IPM emphasizes the growth of a healthy crop with 

the least possible disruption to agro-ecosystems and encourages natural pest control 

mechanisms.” (FAO, 2013). 

IPM strategies have been successfully employed in the control of pest species in 

many industries and are being adopted for the control of salmon lice in the Atlantic 



                                                                           Chapter 1 – General Introduction 
 

 

43 

salmon mariculture industry. In aquaculture, IPM strategies are being developed to 

consider all current treatment methods, in specific hydrographical regions, for co-

ordinated control and prevention of L. salmonis and where appropriate other infectious 

diseases of aquaculture species. In recent years, attempts have been made to develop 

IPM in Scotland (Rae, 2002; SSPO, 2013), Norway (Heuch et al., 2005; Torrissen et 

al., 2013), Ireland (Jackson et al., 2002) and more recently in Canada (Brooks, 2009), 

through collaboration of government agencies, aquaculture producers and wild fishery 

groups (SSPO, 2013). Geographical regions that contain commercial aquaculture are 

arranged into hydrographical areas and working groups are established for each area to 

include all commercial producers and wild fisheries that operate in the areas (Rae, 

2002). Working groups can then coordinate salmon louse monitoring, 

chemotherapeutant treatment and other farm management practices for effective control 

of salmon lice (Heuch et al., 2005). The most effective IPM strategies are those that 

utilise all available treatment methods, including antiparasitic compounds and non-

chemical based methods, on a rotational basis to prevent the development of resistance 

in salmon louse populations to specific medicinal compounds. 

1.5.2 Regulations for monitoring salmon lice numbers and drug 
susceptibility 

Regulatory agencies in Scotland, Norway, Ireland and Canada recommend 

specific regimes for monitoring salmon lice numbers and chemotherapeutant 

sensitivities (Brooks, 2009). This data are recorded and monitored over short- and long-

term periods for the identification of trends in reduced treatment success and to 

facilitate the adoption of alternative control measures and prevent development of 

serious salmon louse outbreaks. In Scotland, farm management areas (FMA) have been 

defined in the Code of Good Practice for Scottish Finfish Aquaculture (CoGP) 

(http://www.thecodeofgoodpractice.co.uk) and require co-ordination of salmon louse 
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control and fish health monitoring by companies within FMA, according to a Farm 

management agreement (FMAg) (SSPO, 2013). The CoGP defines best practices for all 

aspects of farm management including guideline treatment-trigger levels for L. 

salmonis. In Scotland, levels are defined as a mean abundance of  0.5 adult females 

between February - June and ≥ 1.0 adult females between July – January (Lees et al., 

2008a). In Norway, similar procedures are in place where the Salmon Lice Directive 

defines procedures for surveillance, prevention and treatment of salmon lice on 

Norwegian Atlantic salmon farms, including treatment trigger levels of 0.5 mature 

female or 3 mobile lice between January and August and 1 mature female or 5 mobile 

lice during the rest of the year (Torrissen et al., 2013). Chemotherapeutant treatment 

efficacy is recorded through the documentation of salmon louse counts before and after 

treatment and the use of bioassay methods to determine the sensitivity of salmon lice 

populations to various antiparasitic treatments (Sevatdal and Horsberg, 2003; Sevatdal 

et al., 2005a). These bioassay methods record salmon louse responses following 

aqueous exposure to chemotherapeutants, with results expressed as median effective 

concentrations (EC50) of the veterinary drug in question (SEARCH, 2006; Westcott et 

al., 2008). There are often large variations in bioassay methods between commercial 

companies and across geographical regions, including the use of solvents, salmon louse 

sex and life stage that are included and the selection of drug concentration, which 

makes it difficult to compare results between laboratories (Whyte et al., 2013). 

Bioassays for testing sea louse sensitivity are also labour intensive and require large 

numbers of lice which has prompted the recent development of simplified single dose 

bioassays for field assessments, in Norway (Helgesen and Horsberg, 2013a) and 

Canada (Whyte et al., 2013). 
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1.5.3 Farm management practices 

Farm management practices are routinely employed to reduce infectious diseases 

and avoid unnecessary chemotherapeutant use (Brooks, 2009). Atlantic salmon 

production sites are often stocked with healthy single year class smolts and routinely 

fallowed between production cycles, which have proven effective in interrupting 

salmon louse breeding and ensuring that newly introduced fish do not become infected 

by lice cultured on the previous year class (Bron et al., 1993c). These fallow periods 

can vary from < 4 weeks to 52 weeks throughout a year (MSS, 2011). Culture pens are 

thoroughly cleaned to remove any growth on the nets, which ensures there are high 

water currents through the pens which reduces the opportunity for salmon louse 

attachment to a suitable host. Removal of diseased fish, with compromised immune 

systems, is also important as they are more susceptible to louse infection and would 

provide a continual source of lice for infection of the healthy population and thereby 

reducing the overall health of the cage population (Brooks, 2009). As part of IPM, it is 

recommended that all farm sites within a management area co-ordinate management 

practices such as fallowing, to control sea lice populations throughout the hydrographic 

area. 

1.5.4 Cleaner fish application 

A number of wrasse species were shown to actively feed on host-attached mobile 

salmon lice on Atlantic salmon during trials in 1988 and 1989 (Bjordal, 1990). Wrasse 

were subsequently sourced from wild fisheries for control of salmon lice on Atlantic 

salmon farms at stocking densities of 1 wrasse to 25 - 150 Atlantic salmon (Treasurer, 

2002). Successful wrasse control of salmon lice was demonstrated on commercial 

Atlantic salmon production sites in Norway (Bjordal, 1990), Scotland (Treasurer, 1994) 

and Ireland (Deady et al., 1995). Several wrasse species have since been used, 
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including Goldsinny wrasse (Ctenolabrus rupestris), Ballan wrasse (Labrus bergylta 

Ascanius, 1767), Ascanius corkwing wrasse (Symphodus melops (Linnaeus, 1758)), 

rock cook (Centrolabrus exoletus (Linnaeus, 1758)), cuckoo wrasse (Labrus ossifagus 

Linnaeus, 1758) and scaled-rayed wrasse (Acantholabrus palloni (Risso, 1810)) 

(Torrissen et al., 2013). Two additional fish species, Cunner fish (Tautogolabrus 

adspersus (Walbaum, 1792) and Lumpfish (Cyclopterus lumpus Linnaeus, 1758), have 

also been shown to be effective as cleaner fish (Groner et al., 2013). To ensure efficient 

cleaner fish control of salmon lice it was found that cage conditions needed to be 

strictly managed (Deady et al., 1995), as several factors could influence cleaner fish 

effectiveness, including the presence of refuges for wrasse, the size and shape of nets 

and biofouling of nets (Costello, 1996; Treasurer, 1996; Groner et al., 2013). Wrasse 

are more inclined to feed on net biofouling than salmon lice (Deady et al., 1995), with 

feeding behaviour also being influenced by water temperature, parasite dispersal 

patterns and anti-salmon louse treatment strategies (Groner et al., 2013). There was a 

reduction in wrasse use in commercial Atlantic salmon aquaculture due to concerns that 

wild wrasse may act as a vector for disease (Treasurer, 2002), and low survival over 

winter periods unless shelter was provided from temperature fluctuations (Deady et al., 

1995). However, in recent years cleaner fish are increasingly being adopted as a non-

chemical based salmon louse treatment due to increasing incidence of reduced 

chemotherapeutant effectiveness and evidence that these fish are not efficient disease 

vectors. As a result, methods for commercial wrasse production are being optimised and 

supplementary feeds are being developed in an attempt to optimise cleaner fish use in 

aquaculture (Groner et al., 2013). 
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1.5.5 Salmon louse vaccine development 

There have been continuing attempts to develop a vaccine against L. salmonis, as 

successful vaccination would offer numerous benefits over antiparasitic treatments 

including no requirements for discharge consents or withdrawal periods and less chance 

of resistance being developed by the parasite (Raynard et al., 2002). Vaccines have 

successfully been developed against blood-feeding parasites including one targeted 

against the cattle tick (Boophilus microplus (Canestrini, 1888)) (Willadsena et al., 

1995). The antibodies are ingested by the parasite, as part of a blood meal, and target 

concealed antigens found on tick gut digestive cells which leads to increased cell 

membrane permeability, cell lysis and ultimately parasite death. It has been routinely 

demonstrated that L. salmonis also consumes blood as a result of tissue damage during 

feeding (Brandal et al., 1976), which suggests that it should also be possible to deliver 

antibodies at therapeutic doses to the gut of L. salmonis, however a successful vaccine 

has yet to be developed. Parasite gut physiology and cellular/biochemical food 

processing may influence successful vaccination as L. salmonis haemolymph has 

similar osmolarity to sea water (Hahenkamp and Fyhn, 1985), indicating that the 

salmon louse gut may impair antibody function or degrade them prior to antiparasitic 

effects (Raynard et al., 2002). Grayson et al. immunised Atlantic salmon with partially 

purified L. salmonis and C. elongatus extracts and found that treated hosts gained 

partial immunity against L. salmonis, antibodies targeting these salmon louse extracts 

were also found to bind L. salmonis gut epithelium (Grayson et al., 1995). A second 

study expressed recombinant salmon louse proteins and subsequently selected three 

antigens that affected female egg production, through screening expression libraries 

using monoclonal and polyclonal antibodies (Andrade-Salas et al., 1993). Carpio et al. 

performed vaccination trials using a recombinant my32 protein, designed to the my32 
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gene identified in C. rogercresseyi, and recorded reductions of C. rogercresseyi and 

delayed salmon louse development on the immunised fish (Carpio et al., 2011). Further 

unpublished studies using an L. salmonis homolog to my32 did not show the same 

reduction in salmon lice numbers, although RNA interference (RNAi) experiments 

targeting this my32 homologue lead to a loss of egg strings from treated lice or the 

presence of egg strings that did not hatch (Nilsen, 2012 personal communication). An 

alternative vaccination strategy has been suggested that involves promoting the 

blockage of salmon louse immunosuppressive compounds or facilitating host antibody 

production at the site of parasite attachment and feeding (Raynard et al., 2002). 

1.5.6 Functional feed development 

Covello et al. orally administered immunostimulatory compounds to Atlantic 

salmon and found that unmethylated DNA containing cytosine-phosphate-guanine 

oligodeoxynucleotide motifs (CpG ODN) and brewer‟s yeast extract (AllBru NuPro) 

decreased L. salmonis infection levels compared to controls, which was attributed to 

increased host inflammatory responses (Covello et al., 2012). In a separate study, CpG 

ODN compound was orally administered at a lower therapeutic dose (2 mg kg
-1

) in 

combination with a triple dose of the oral anti-sea louse treatment SLICE
® 

(150 µg kg
-1

) 

(Poley et al., 2013). Reduction in salmon lice numbers on administration of CpG ODN 

or an alternative yeast extract (Aquate
®
) confirmed previous results, however, it was 

also found that host immunostimulation did not improve SLICE
®
 efficacy but seemed 

to improve parasite survival (Poley et al., 2013). It was suggested that host 

immunostimulation may have an additional effect of decreasing SLICE
®

 efficacy 

through increasing P-glycoprotein expression in the parasite (Igboeli et al., 2013). The 

study of repeated infection of Atlantic salmon with L. salmonis after host CpG ODN 

immunostimulation suggested that immunostimulatory effects may not only enhance 
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inflammatory and innate responses but may also provide prolonged protection through 

the acquired immune system (Purcell et al., 2013). 

1.5.7 Selective breeding of salmon louse resistant salmonids 

Stock breeding programmes are currently being developed to select Atlantic 

salmon populations with enhanced resistance to L. salmonis by utilising marker assisted 

selection (MAS), which first requires the identification of candidate resistance 

genes/markers (Jones et al., 2002). Recently, when studying the genetics of Atlantic 

salmon susceptibility to L. salmonis a QTL region was identified on Atlantic salmon 

linkage group (LG) 6, that is associated with increased salmon louse abundance and is 

thought to contain MHC II genes, which will provide valuable markers for these 

breeding programmes (Glover et al., 2007; Gharbi et al., 2009). Candidate gene 

expression has also been studied in Atlantic salmon (Fast et al., 2006; Fast et al., 2007) 

and pink salmon (Jones et al., 2007; Jones et al., 2008). More recently global 

transcriptomic studies have been undertaken with Atlantic salmon (Skugor et al., 2008; 

Tadiso et al., 2011; Krasnov et al., 2012), pink salmon (Sutherland et al., 2011) and 

comparisons of salmon louse -susceptible and -resistant salmon species (Braden et al., 

2012). These expression studies have identified numerous immune-related genes that 

exhibit differential gene expression in response to salmon louse infection and/or 

between susceptible and resistant species, that may also be useful for salmon louse 

resistant salmonid breeding programmes. 

1.5.8 Chemotherapeutant treatment 

1.5.8.1 Chemotherapeutant treatment methods 

As Atlantic salmon are cultured at high density in open sea cages, attempts of 

chemical sea louse control have had to respond to the challenge to be able to deliver 

therapeutic doses of medicinal agents to high numbers of salmonid hosts in a manner 
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that is logistically possible, cost effective and results in successful control of the 

parasite. Many of the earliest anti-sea louse treatments were applied using immersion 

bath methods, although due to concerns regarding the wider environmental impact of 

these methods alternative techniques were developed that incorporated the medicinal 

agent in the feed. 

1.5.8.1.1 Bath immersion treatments 

Bath immersion methods require a reduction of the water volume in the fish cage, 

accomplished using a full tarpaulin or canvas skirt, and the addition of a known volume 

of active compound to the water (Rae, 2002; Guo and Woo, 2009). When employing 

these treatments, final therapeutic concentrations can not be confidently predicted as 

water volumes are not accurately controlled and there is a reliance on natural 

chemotherapeutant mixing (Guo and Woo, 2009). For effective treatment it is necessary 

to select a chemotherapeutant dose high enough to kill parasites but low enough to 

minimise toxicity to the host fish, although it is often the case that Atlantic salmon are 

exposed to variable concentrations, with chemical „hotspots‟ potentially toxic to the 

host (Roth et al., 1993) and other areas with low concentrations that expose salmon lice 

to sub-lethal levels of the agent (Guo and Woo, 2009). On completion of a bath 

treatment the tarpaulin or canvas skirt is removed to disperse the chemotherapeutant 

into surrounding waters which has been suggested to be potentially hazardous to marine 

organisms in close vicinity to the salmon farm (Willis and Ling, 2004). Bath treatments 

have often been administered using a cage-by-cage strategy that requires a succession 

of individual cage treatments until every cage on a farm has been treated (Sevatdal and 

Horsberg, 2003; Guo and Woo, 2009). This strategy not only has an excessive 

environmental impact due to prolonged release of a toxic substance but may also 

provide host refuges for salmon lice in untreated cages throughout the treatment period 
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(Campbell et al., 2006). There has recently been increasing use of well boats for 

performing bath treatments, where Atlantic salmon are transferred from cages into large 

well boats using vacuum, and after a resting period the chemotherapeutant is added 

using a dosing system (ACFFA, 2011). The use of well boat treatments allows closer 

control over chemotherapeutant concentrations and mixing, with additional control of 

effluent release and filtering to prevent release of viable salmon lice into the 

surrounding waters (Bravo et al., 2010; Stormoen et al., 2013). 

1.5.8.1.2 In-feed treatments 

Oral administration of anti-salmon louse treatments has often proven more 

efficient than bath immersion methods, although the effectiveness of this strategy relies 

on medicated feed consumption by the host salmon to ensure active agents reach target 

tissues and are subsequently ingested by the parasites (Berg and Horsberg, 2009). There 

are several factors that can influence the feeding rate of fish, such as hierarchical 

behaviours within a cage population with larger more dominant fish consuming more 

than the smaller fish (Berg and Horsberg, 2009). Additionally, elevated stress levels can 

cause a loss of appetite, which may occur to fish that have a high lice load, are densely 

stocked in cages or have been exposed to toxic chemicals or extreme temperatures. 

Variable feed intake often leads to sub-optimal active ingredient concentrations within 

tissues of some fish, meaning that lice colonising these fish will not be exposed to 

therapeutic levels of the antiparasitic agent and will subsequently survive the treatment 

cycle. The survival of these salmon lice often means that genetic mutations causing 

partial drug resistance increase in frequency in the gene pool, and because of genetic 

recombination some individuals in the next generation may combine several of such 

mutations to show a greater level of drug resistance (Denholm et al., 2002). Tissue 

concentrations of the anti-sea louse agent EMB will only reach therapeutic levels 
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several days after the initial treatment cycle upon feed metabolism by the host and 

distribution of EMB and metabolites to target tissues (Kim-Kang et al., 2004). In 

comparison, salmon lice are exposed to toxic levels of compounds more or less 

instantly when administered using bath immersion methods. In-feed treatments, 

however, may also provide sustained periods of antiparasitic protection and are often 

safer to handle and less hazardous to the wider environment (Guo and Woo, 2009). 

1.5.8.2 Chemotherapeutant compounds used for L. salmonis control 

Organophosphates are a class of neuroactive agents that act by inhibiting the 

enzyme acetylcholinesterase (AChE), the role of which is to cleave and thereby 

inactivate the neurotransmitter acetylcholine at cholinergic synapses (ffrench-Constant 

et al., 2004). Inhibition of AChE causes the accumulation of acetylcholine, leading to 

an excessive stimulation of acetylcholine receptors at the postsynaptic membrane and 

subsequent toxicity. The organophosphate (OP) trichlorphon was one of the earliest 

anti-salmon louse treatments (Brandal and Egidius, 1979) that was subsequently 

replaced by dichlorvos (2, 2-dichlorovinyl dimethyl phosphate) (Grave et al., 1991). 

OPs are administered using immersion bath methods and are only effective against 

mobile salmon louse stages, which means that multiple treatments are often required to 

ensure removal of adult lice that matured from chalimus lice surviving the preceding 

treatment. OPs were continually used for treatment of salmon lice infections of Atlantic 

salmon in Scotland and Norway, when in 1989 dichlorvos use was severely restricted 

by the Scottish Environmental Protection Agency (SEPA) due to reduced effectiveness 

and concerns over its environmental impact (Rae, 2002). In the early 1990s dichlorvos 

was replaced by an alternative OP, azamethiphos as licensed product Salmosan, which 

was deemed safer for handling and ~10 times more effective than dichlorvos, although 

cross-resistance of salmon lice to these OPs was highly likely (Roth et al., 1996). 
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Pyrethrum is a natural insecticide obtained as an extract of Chrysanthemum 

cinerariifolium and Chrysanthemum coccineum flower heads, which contain toxins 

termed pyrethrins that show a selective toxicity to arthropods (Casida, 1980). Pyrethrins 

express their toxic action on arthropods by disrupting normal ion permeability of nerve 

membranes through targeting neuronal voltage-gated sodium channels (Casida et al., 

1983). While pyrethrum was found to be effective for controlling salmon lice (Burka et 

al., 1997), it was only briefly used for this purpose, reflecting the relatively high cost of 

this natural pesticide in addition to its sensitivity for environmental degradation. For 

salmon louse control, pyrethrum was replaced by structurally and pharmacologically 

similar synthetic pesticides called pyrethroids (Casida et al., 1983; Burka et al., 1997). 

In particular, a salmon delousing agent containing cypermethrin (Exis
®
) was introduced 

during the 1990‟s (Hart et al., 1997) and alternative medicines based on deltamethrin 

(AlphaMax
®

) (Roth, 2000) and high-cis-cypermethrin (BetaMax
®
) subsequently 

became available. Pyrethroids are administered using immersion bath or well boat 

methods. Cypermethrin was authorised for use in Scotland during 1999 when > 90% of 

treatments in Norway also used this class of compound (Fallang et al., 2005). 

Hydrogen peroxide (H2O2) is a strong oxidising agent that has been used as an 

immersion bath treatment against salmon lice in Scotland and Norway since the early 

1990s (Thomassen, 1993; Rae, 2002). Currently two H2O2-based products, SalarTect
®
 

and Paramove
®
, are available. H2O2 has a very narrow safety margin, becoming 

increasingly toxic to fish at temperatures above 14ºC and losing effectiveness at 

temperatures below 10ºC. Moreover, H2O2 can cause gill damage to salmonids after 

prolonged exposure (Johnson et al., 1993; Bruno and Raynard, 1994) and is only 

effective for the removal of mobile salmon lice stages, with 85-100 % efficiency 

(Treasurer and Grant, 1997). H2O2 is not considered hazardous to marine life as it 
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degrades rapidly to water and oxygen, which has contributed to its continued use in 

regions where discharge consents are required for other chemotherapeutic agents 

(Burridge et al., 2010). H2O2 is also employed in the control of amoebic gill disease 

(AGD), a well-recognised problem for salmon aquaculture in Tasmania and a more 

recent problem for Scottish salmon aquaculture. Treatment of AGD can therefore 

provide coincident reductions in salmon louse infection levels (Adams et al., 2012). 

The benzoylphenyl urea compounds teflubenzuron (Calcide
®
), [1-(3, 5-dichloro-

2, 4-difluorophenyl)-3-(2, 6-difluorobenzoyl) urea] (Branson et al., 2000) and 

diflubenzuron (Lepsidon
®
), [1-(4-chlorophenyl)-3-(2, 6-difluorobenzoyl) urea] 

(Horsberg and Høy, 1991) are chitin synthesis inhibitors administered orally as a 

medicated in-feed preparation. Accordingly, these compounds are effective against all 

moulting louse stages, which need to form a new cuticle, but have little if any effects on 

adult salmon lice. Benzoylphenyl ureas are also toxic to non-target crustacean species, 

which lead to restricted use in aquaculture due to concerns over the potential adverse 

effects of chitin synthesis inhibitors on such species (Burka et al., 1997). 

Avermectins (AVMs) are macrocyclic lactones that are used as antiparasitic 

agents (Davies and Rodger, 2000), with ivermectin (IVM) being an AVM that is widely 

applied in human and veterinary medicine. AVMs are believed to act through 

modulating glutamate- and γ-aminobutyric acid (GABA)-gated chloride channels of the 

invertebrate nervous system, resulting in an influx of chloride ions that leads to nervous 

impulse disruption and ultimately death of the parasite (Kass et al., 1980; Arena et al., 

1995). While IVM is effective against salmon lice (Johnson and Margolis, 1993) it has 

not been licensed for routine use in aquaculture in the UK and Europe, although the 

compound has been used under the „Cascade principle‟ for treatment of severe cases of 

Atlantic salmon lice infestations during the 1990s, based on case-to-case emergency 



                                                                           Chapter 1 – General Introduction 
 

 

55 

prescriptions (Davies and Rodger, 2000). The AVM compound emamectin benzoate 

(EMB) was licensed in 1999 as an oral treatment for Atlantic salmon. EMB is the active 

ingredient in the commercial premix SLICE
®
, and is a stable salt compound of the 

AVM derivative, emamectin 4”-deoxy-4”-epi-methylamino-avermectin B1, which is a 

mixture of two homologous compounds 4”-deoxy-4”-epi-methylamino-avermectin B1a 

and 4”-deoxy-4”-epi-methylamino-avermectin B1b (Kim-Kang et al., 2004). The 

recommended SLICE
®
 feeding regime is administration of 5 g medicated feed per 

kilogram of salmon biomass for seven consecutive days to provide a daily dosage of 50 

µg SLICE
®
 per kilogram biomass (Stone et al., 2000a), which was initially shown to 

provide ~10 weeks parasite protection from the start of the treatment regime in field 

trials (Stone et al., 2000b). 

The environmental impact of EMB was studied through the analysis of EMB and 

metabolite concentrations around a commercial Atlantic salmon farm (Telfer et al., 

2006). EMB has low water solubility and so high concentrations were not expected in 

solution, although the authors recognised potential for negative impacts on sediment 

dwellers, filter feeders and surface dwelling crustacean inhabiting the surrounding 

environment, due to EMB adsorption to particulate material. The main source of EMB 

was identified as uneaten food material and Atlantic salmon biliary excretion and the 

largest environment impact of SLICE
®
 use on production sites appeared to be 

enrichment of organic material in sediments below the cages and surrounding areas. 

The effects of EMB on the surrounding environmental was found to be short-term due 

to degradation of EMB and metabolites, with residues found in sediments and fauna at 

levels that would not have a detrimental effect on survival (Telfer et al., 2006). 

Additionally, a separate study found that EMB use was unlikely to adversely affect 

planktonic copepods in the vicinity of Atlantic salmon farms, as concentrations that 
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caused toxic effects to these species were considerably higher than the Predicted 

Environmental Concentrations (PEC) for EMB (Willis and Ling, 2003) which was 

further confirmed in a. 31 month field study (Willis et al., 2005). It has been shown that 

exposure of Homarus americanus (American lobster) to 0.6 – 0.8 µg g
-1 

EMB induced 

premature moulting in preovigerous and ovigerous females, which the authors 

hypothesised may be due to EMB interference in moult inhibiting hormone (MIH) 

modulation of the moulting process (Waddy et al., 2002). Further studies reported a no 

observed effect level (NOEL) for EMB of 0.12 µg g
-1 

and lowest observed effect level 

(LOEL) of 0.22 µg g
-1 

in ovigerous female H. americanus (Waddy et al., 2007a), and an 

EC50 of > 589 µg g
-1 

and 644 µg g
-1 

for juvenile and adult lobsters respectively 

(Burridge et al., 2004). The latter study found that as H. americanus tissue EMB levels 

increased, consumption of EMB medication feed by the lobster decreased (Burridge et 

al., 2004). Moreover, ovigerous female H. americanus have been shown to prefer their 

natural feed when offered the option of medicated feed, although they will eat SLICE
® 

medicated feed (Waddy et al., 2007b). It was concluded from these studies that under 

current SLICE
® 

use, H. americanus feeding around Atlantic salmon production sites 

were unlikely to consume toxic levels of EMB, although a recent study found that 

repeated exposure of American lobster to low EMB (0.06 and 0.125 µg g
-1

 at 8 and 4 

doses respectively) seems to induce premature moulting to a greater extent than single 

higher EMB doses (Waddy et al., 2010). As the cumulative EMB dose after repeated 

exposure was higher than the dose lobsters would be expected to consume, further 

studies were required to investigate the effects of repeated exposure to lower doses 

(Waddy et al., 2010). 
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1.6 Mechanisms of resistance to antiparasitic compounds 

While chemical agents allow effective short- and medium-term control of 

parasites, there is a risk that drug resistance may develop in treated parasite populations 

over long-term periods of exposure. The formation of drug resistance in parasites is a 

classical example of an evolutionary process driven by natural selection as first 

proposed by Charles Darwin. The repeated treatment of a parasite population with 

drugs constitutes a selection pressure that can cause enrichment of genotypes in the 

gene pool that confer a fitness advantage under conditions of drug exposure 

(Wolstenholme et al., 2004). Theoretical considerations predict that selection pressure 

increases with increasing treatment frequency and an increasing percentage of the 

parasite population being exposed to the drug during treatments. As most control agents 

have specific modes of action, a majority of these resistance mechanisms, which are 

discussed in detail below, are also substance-class specific. Accordingly, the intensity 

of selection pressure for resistance development can be reduced by the implementation 

of a rotation strategy that uses drugs with distinct modes of action (Denholm et al., 

2002). 

While little is known about potential mechanisms of drug resistance in 

crustaceans including L. salmonis, the molecular mechanisms of resistance to chemical 

control agents in insects and nematodes are comparatively well studied. Recently 

proposed taxonomies based on molecular evolution place insects, crustaceans and 

nematodes in one large clade called Ecdysozoa (Telford et al., 2008), within which 

insects and crustaceans form a sub-clade called Pancrustacea (Regier et al., 2010), 

suggesting that crustaceans are phylogenetically closer to insects and nematodes than 

previously assumed. In the view of the fact that most salmon delousing agents contain 

active ingredients that are also used as insecticides and/or anthelmintics, it appears 
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likely that molecular mechanisms of drug resistance in salmon lice may overlap with 

those described in insects and nematodes. 

Resistance of insects to control agents is a problem that emerged soon after the 

beginning of large-scale insecticide use for the control of undesired species (Heckel, 

2012) such as phytophagous insects, insect parasites of domestic animals or humans 

and insects acting as disease vectors. The two main molecular mechanisms through 

which insecticide resistance can become established are firstly modifications of the 

insecticide‟s target site that disrupts binding of the control agent, and secondly changes 

in the pharmacokinetics of the insecticide that results in enhanced detoxification and 

reduces internal exposure to the toxicant. The latter mechanism can be based on 

enhanced expression of biotransformation enzymes and/or drug transporters (ffrench-

Constant et al., 2004; Wolstenholme et al., 2004). 

An association between insecticide resistance and the mutation of an insecticide 

target site was first found in fruit fly (Drosophila melanogaster Meigen, 1830) 

populations resistant to cyclodienes and the phenylpyrazole fipronil, which showed a 

single-amino acid substitution (Ala302) in a GABA receptor subunit termed Rdl 

(resistance to dieldrin) (ffrench-Constant et al., 1993). Homologues to the Ala302 

mutation were also identified in GABA receptors of insecticide-resistant isolates of 

other insect species (ffrench-Constant, 1994), demonstrating parallel evolution of this 

resistance mechanism. Another example of insecticide resistance linked to a target site 

mutation is provided by the knockdown resistance (kdr) phenotype (Busvine, 1951; 

Farnham, 1977), which is characterised by the decreased sensitivity of insects to DDT 

(dichloro-diphenyl-trichloroethane) and pyrethroids (Soderlund and Knipple, 2003). A 

single amino acid substitution (L1014F) in a voltage-gated ion channel, believed to be 

the target of DDT and the pyrethroids, was associated with kdr in a Drosophila mutant 
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(para
ts
) (Loughney et al., 1989). Interestingly, equivalent mutations of voltage-gated 

ion channels were subsequently identified in resistant isolates of the housefly (Musca 

domestica) (Williamson et al., 1993) and numerous other pest species (Soderlund and 

Knipple, 2003), again demonstrating parallel evolution in response to a specific toxic 

stressor. To quote a final example of insecticide resistance based on a target site 

mutation, OP resistance in the fruit fly has been linked to single amino acid mutations 

of acetylcholinesterase (AChE) that reduces its sensitivity to OP inhibition (Fournier et 

al., 1989). The analysis of OP resistant strains of Anopheles gambiae Giles, 1902 and 

Culex pipiens Linnaeus, 1758 revealed similar amino acid changes in AChE, providing 

another instance of parallel evolution (Weill et al., 2003; ffrench-Constant et al., 2004). 

An example of insecticide resistance based on increased detoxification is given by 

OP resistant strains of the aphid Myzus persicae (Sulzer, 1776) (Field and Devonshire, 

1998; Devonshire et al., 1998; Field et al., 1999) and the mosquito C. pipiens 

(Raymond et al., 1998), which show markedly increased levels of esterase expression 

that is believed to inactivate OPs by sequestration. The dramatic increases in esterase 

levels required for OP sequestration can be achieved through gene amplification (i.e. 

the evolutionary acquisition of multiple copies of the gene) and/or altered esterase gene 

regulation (Field et al., 1999; ffrench-Constant et al., 2004). The overproduction of OP 

deactivating enzymes is a common but physiologically expensive mechanism of OP 

resistance. OP resistance in the Australian sheep blowfly (Lucilia cuprina) was found to 

be based on a unique alternative mechanism, where a single-amino acid mutation of a 

carboxylesterase enzyme conferred the ability to hydrolytically inactivate OP 

insecticides (Oppenoorth and van Asperen, 1960; ffrench-Constant et al., 2004). 

The large cytochrome P450 (CYPs) gene family encodes enzymes that function as 

monooxygenases (Bernhardt, 1995; Nelson, 1998). Certain CYP subfamilies contain 
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members with roles as biotransformation enzymes, with most organisms possessing 

multiple CYP genes that are involved in biotransformation and show distinct but 

overlapping substrate specificities. Multiple CYP genes have been reported to be 

involved in insecticide resistance phenotypes (Bergé et al., 1998). For instance, 

increased expression of Cyp6g1 was found in a DDT resistant D. melanogaster strain 

(Daborn et al., 2002), whereas increased Cyp12d1 and Cyp6g1 (Brandt et al., 2002) or 

Cyp6a8 (Le Goff et al., 2003) expression was evident in other DDT-selected fruit fly 

strains. Furthermore, neonicotinoid resistance of M. persicae was associated with 

enhanced Cyp6Cy3 expression (Puinean et al., 2010), whereas two pyrethroid resistant 

Aedes aegypti strains showed increased levels of seven different CYP genes, including 

five from the Cyp9J family (Bariami et al., 2012). 

The large ABC (ATP-binding cassette) transporter gene superfamily contains 

proteins that are located in the cell membrane where they function as broad specificity 

drug efflux pumps, in addition to members with other diverse roles (Higgins, 1992; 

Dean et al., 2001; Jones et al., 2009). While these ABC drug efflux transporters have 

initially been described as drug resistance factors in human cancers (Cole et al., 1992; 

Doyle et al., 1998; Gottesman et al., 2002), recent data suggests that changes in ABC 

drug transporter expression levels can contribute to ecdysozoan invertebrate resistance 

against control agents. For instance, resistance of tobacco budworm (Heliothis 

virescens) populations against pyrethroids and carabamate insecticides coincided with 

an increased expression of the ABC transporter P-glycoprotein (Lanning et al., 1996a), 

and pyrethroid resistant A. aegypti strains mentioned above showed enhanced levels of 

one subfamily B ABC transporter, in addition to changes in CYP gene expression 

(Bariami et al., 2012). Further studies suggest roles for ABC transporters from 

subfamilies B and C in the resistance of nematodes to anthelmintic agents (Blackhall et 
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al., 1998; Xu et al., 1998; Ardelli and Prichard, 2004; Ardelli et al., 2006; Ardelli and 

Prichard, 2008; Bartley et al., 2009; James and Davey, 2009; Bourguinat et al., 2011; 

Dicker et al., 2011). 

The toxic action of AVMs was proposed to be based primarily on interaction with 

glutamate-gated chloride channels (GluCl) in Caenorhabditis elegans (Maupas, 1900) 

(Cully et al., 1994) and D. melanogaster (Cully et al., 1996). It has since been 

demonstrated that AVMs also interact with GABA-gated chloride channels (GABA-Cl) 

in insects and nematodes (Kane et al., 2000; Feng et al., 2002). Resistance to AVMs in 

some nematode strains has been attributed to mutations in GluCl and GABA-Cl 

subunits that decreases channel binding affinity for the drug (Njue and Prichard, 2004; 

McCavera et al., 2009). Other molecular mechanisms associated with the development 

of AVM resistance in ecdysozoan invertebrates includes increased ABC transporter 

activity (Blackhall et al., 1998; Xu et al., 1998; Buss et al., 2002; Ardelli et al., 2006; 

Bartley et al., 2009; Pohl et al., 2011) and changes in the activity of mechanisms 

responsible for drug metabolism such as CYPs (Kwon et al., 2010; Pu et al., 2010; 

Chen et al., 2011). 

1.7 Reduced susceptibility of L. salmonis to antiparasitic 

treatments 

Following the continual use of OPs for control of salmon lice reduced efficacy of 

dichlorvos (Jones et al., 1992) and azamethiphos (Roth et al., 1996) were reported in 

Norway and Scotland (Denholm et al., 2002). Similarly, reduced H2O2 sensitivity was 

reported for L. salmonis from farm sites in Norway and Scotland that had regularly used 

this treatment since the early 1990s compared to salmon lice without previous H2O2 

exposure, suggesting the development of H2O2 resistance (Treasurer et al., 2000). The 

pyrethroids, deltamethrin and cypermethrin, were also heavily used in Scotland and 
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Norway from 1999 and within a few years reports of reduced pyrethroid efficacy 

against L. salmonis began to appear (Sevatdal and Horsberg, 2003; Sevatdal et al., 

2005a). Residual AChE activity was analysed in salmon lice sampled from several 

Atlantic salmon production sites in Canada and Norway between 1999 and 2002 

(Fallang et al., 2004). A study measuring total and organophosphate-resistant activities 

of AChE in L. salmonis sampled from Canadian and Norwegian field sites found higher 

levels of organophosphate-resistant AChE in Canadian salmon lice compared to those 

sourced from Norway (Fallang et al., 2004). As OPs have been extensively used in 

Norway, but much less so in Canada, these results were interpreted as evidence for the 

existence of target-site resistance mechanisms responsible for OP resistance (Fallang et 

al., 2004). However, OP susceptibility analysis of salmon louse populations was not 

performed in this study (Fallang et al., 2004). The analysis of pyrethroid susceptibility 

in L. salmonis using the CYP inhibitor (piperonyl butoxide (PBO)) suggested that CYPs 

may be involved in pyrethroid detoxification, as PBO pre-treatment increased 

pyrethroid sensitivity in L. salmonis (Sevatdal et al., 2005b). Additionally, the 

identification of a novel point mutation in target sodium channels from 11 L. salmonis 

samples taken from areas with previous reports of reduced pyrethroid susceptibility 

suggests that target site mutation may also be associated with reduced L. salmonis 

pyrethroid susceptibility (Fallang et al., 2005). 

The EMB based feed (SLICE
®
) was made available in 1999 for the treatment of 

salmon louse infection of Atlantic salmon (Stone et al., 1999) and has since been used 

in Norway, Scotland and Canada. As EMB is administered orally, different factors can 

contribute to treatment failures, including inaccurate calculations of fish biomass, 

inadequate incorporation of EMB in medicated feed or poor consumption of the feed by 

the salmon (Bravo et al., 2008; Berg and Horsberg, 2009; Jones et al., 2012). 
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Nevertheless, a number of studies have reported reduced sensitivity of L. salmonis and 

C. elongatus to EMB in Norway, Scotland and Ireland (Lees et al., 2008a, 2008b; 

Heumann et al., 2012; Horsberg, 2012). Similarly, EMB resistance of C. rogercresseyi 

in Chile has been attributed to exclusive use of EMB since 2000 and continual AVM 

use since the early 1990s (Bravo et al., 2008; Bravo et al., 2010). 

Monitoring trends of reduced treatment efficacy has proven difficult as the 

emergence of resistant sea louse populations often occurs only once treatment failures 

are evident (Jones et al., 2013), at which time resistance alleles will already be 

widespread throughout problematic populations (Wolstenholme et al., 2004). In an 

attempt to identify potential trends in reduced EMB treatment efficacy, epidemiological 

studies have been conducted to analyse historical data on salmon louse counts and 

treatment episodes over successive years (Jones et al., 2013). Epidemiological studies 

found that EMB was still effective in British Columbia (BC), Canada, which differs 

from other Atlantic salmon producing regions largely due to a wider distribution of 

farm sites and a high numbers of wild Pacific salmon, which provide untreated host 

populations that could represent refuges for salmon lice from drug selection pressure 

(Saksida et al., 2010; Jones et al., 2012). Genetic differences between Pacific and 

Atlantic L. salmonis lineages may also account for these observed differences in 

susceptibility (Yazawa et al., 2008; Saksida et al., 2010). Atlantic salmon farms in the 

Bay of Fundy region of New Brunswick, Canada are concentrated in a smaller 

geographical area, which may explain reductions in EMB efficacy and variable mean 

lice abundance between farm sites in this region (Jones et al., 2012). Lee et al. 

investigated EMB treatment efficacy using historical data from 50 Scottish commercial 

fish farms (Lees et al., 2008b), showing that EMB efficacy in Scotland varied between 

years, with lowest sensitivities found in the last year (2006) and winter treatments were 
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more likely to fail than spring ones (Lees et al., 2008a). Comparisons of EMB 

sensitivity data between Scotland and New Brunswick identified a lower but steadier 

increase in EMB resistance in Scotland and a more rapid increase in New Brunswick, 

which was attributed to the fact that >95% of salmon louse treatments in New 

Brunswick during the study used EMB whereas approximately 50 % of treatments in 

Scotland were EMB based, thereby reducing selection pressure for resistance due to the 

use of alternative antiparasitic products (Jones et al., 2013). There is now 

comprehensive evidence for reduced SLICE
®
 efficacy throughout the Atlantic salmon 

farming industry; however, there is limited knowledge of the molecular mechanisms 

that reduce salmon louse susceptibility to EMB. It is therefore important that we build 

on current knowledge of the molecular mechanisms involved in the development of 

AVM resistance in insects and nematodes to establish the underlying mechanisms 

responsible for L. salmonis resistance to EMB. 

1.8 Thesis aims and objectives 

1.8.1 Overall aims 

The main aim of this study was to improve our understanding of reduced EMB 

susceptibility in L. salmonis and to provide genomic tools that will facilitate the study 

of wider salmon louse biology. Evidence from the current literature would suggest that 

resistance to EMB could be due to target site modifications or changes in the 

mechanisms responsible for drug detoxification. Additionally, the molecular 

mechanisms underpinning EMB resistance may or may not involve changes in 

transcription. A global transcriptomic strategy using custom L. salmonis microarrays 

was selected to investigate the molecular mechanisms involving transcriptional changes 

that may be involved in reduced EMB susceptibility. This strategy was to be used in the 

investigation of constitutive differences in gene expression and EMB induced changes 
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in gene expression using drug susceptible and EMB-resistant L. salmonis. A global 

transcriptomic analysis strategy was selected as it avoids the limitations associated with 

candidate gene approaches that are often based on specific assumptions regarding drug 

resistance mechanisms and require detailed knowledge of the biological systems being 

studied. The University of Stirling‟s Marine Environmental Research Laboratory 

(MERL) maintains two L. salmonis strains that were employed as the biological model 

for these investigations of EMB susceptibility in L. salmonis, as they differ in EMB 

susceptibility and show stable susceptibility profiles when tested using aqueous EMB 

bioassays. An alternative strategy was employed to explore the existence of genetic 

polymorphisms that may be associated with reduced EMB susceptibility but are not 

detected using a transcriptomic approach. This strategy used Restriction-site associated 

DNA sequencing (RAD-seq) which facilitates the identification of genetic markers in 

the L. salmonis genome without access to genome sequence or detailed knowledge of 

the biological systems being studied. There have been no previous studies concerning 

the using of microarrays to study drug resistance in L. salmonis or the use of RAD-seq 

for the identification of genetic markers in this species. 

1.8.2 Objectives 

The key objectives of the research presented in this thesis may be summarised as 

follows: 

1. Development of transcriptomic resources for L. salmonis. 

In the absence of a suitably annotated L. salmonis genome and with limited 

available sequence resources, new sequence was to be generated during this study that 

would facilitate the design of oligo microarrays. Custom oligo probes could then be 

designed to discovered target sequences, in addition to existing L. salmonis ESTs, for 

the design of microarrays to be used for global transcriptomic analysis of L. salmonis. 
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2. Comparison of constitutive gene expression between two L. salmonis strains 

with differing susceptibilities to EMB. 

A custom oligo microarray for L. salmonis was to be used for transcriptomic 

analysis of a drug susceptible (S) and an EMB-resistant (PT) L. salmonis strain, for the 

identification of genes that are constitutively differentially expressed between the 

strains that may indicate molecular mechanisms involved in reduced susceptibility to 

EMB. 

3. Analysis of transcriptomic responses to EMB exposure in two L. salmonis 

strains with differing susceptibilities to EMB. 

A custom oligo microarray for L. salmonis was to be used for analysing 

transcriptomic responses of L. salmonis strains S and PT to EMB exposure in order to 

identify genes indicative of responsive molecular mechanisms that reduce toxicity of 

EMB exposure and thereby reduce susceptibility. 

4. Identification of genetic markers associated with reduced EMB susceptibility 

and gender in L. salmonis. 

RAD-seq was to be employed in the identification of genetic markers in 

laboratory-maintained L. salmonis strains S and PT that may be associated with reduced 

EMB susceptibility. Additionally, the mechanisms responsible for sex determination 

and/or differentiation are poorly understood for the salmon louse and therefore these 

RAD-seq experiments were also used for the identification of sex-linked genetic 

markers in L. salmonis. With distinct differences in development time and EMB 

susceptibility observed between male and female salmon lice, it is hoped that the 

identification of sex-linked genetic markers might provide a tool to determine the 

genetic sex of L. salmonis that could be useful in the development of alternative control 

strategies. 
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2.1 Introduction 

In reflection of the high economic and ecological relevance of caligids, 

particularly the salmon louse, Lepeophtheirus salmonis (Krøyer, 1837), the general 

biology of caligid copepods and their host interactions have increasingly attracted 

research attention. Recent topical areas include the biological mechanisms determining 

host susceptibility and the potential mechanisms by which the parasite develops 

resistance to chemical treatments. 

Recent advances in genomic and transcriptomic methodologies offer considerable 

opportunities to significantly advance our understanding of the biology of caligid 

copepods, however, few genomic resources exist in this species-rich crustacean sub-

phylum. The driving force behind the development of crustacean genomic resources has 

very often been generated either by the needs of commercial exploitation of a particular 

species (Cesar et al., 2008) or the use of a species as a model to study environmental 

and evolutionary physiology (Tagmount et al., 2010) or ecotoxicology (Watanabe et al., 

2008). A substantial proportion of the existing resources for crustaceans are associated 

with the model aquatic species Daphnia pulex Leydig, 1860, and commercially 

important Malacostracans such as Litopenaeus vannamei (Boone, 1931) (Pacific white 

shrimp, Decapoda) and Homarus americanus Milne Edwards, 1837 (American lobster, 

Decapoda) (Stillman et al., 2008). Significant contributions to crustacean genomic 

resources have now been generated from research into the parasitic copepod L. 

salmonis (Yasuike et al., 2012). Additionally, with general acceptance of the global 

warming phenomenon, there has been a considerable amount of research into thermal 

adaptation of Petrolisthes cinctipes (Randall, 1839) (flat porcelain crab, Decapoda) with 

the hope of improving our understanding of the impact of climate change on aquatic 

species (Tagmount et al., 2010). Following the release of a D. pulex genome assembly 
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in 2011 (Colbourne et al., 2011), it has been suggested that copepod species are also 

ideally suited to be used as model species, as copepod haploid genome size can range 

from 0.14 to 12.46 pg. Copepods have been used for the study of climate change, 

biodiversity or evolutionary responses of invasive species, such as Eurytemora affinis 

(Poppe, 1880) that have adapted from marine to freshwater habitats (Bron et al., 2011). 

Among the copepoda, Tigriopus californicus (Baker, 1912) has been the subject of 

genomic studies of metal toxicology (Ki et al., 2009) while Calanus finmarchicus has 

been investigated with respect to genomic responses to thermal stress (Voznesensky et 

al., 2004) or surfactant exposure (Hansen et al., 2010). 

A large majority (92 %) of copepod expressed sequence tags (ESTs), publicly 

available in 2010, originated from parasitic copepoda (Yasuike et al., 2012), with L. 

salmonis and Caligus rogercresseyi providing 62 % and 15 % of these resources 

respectively (Bron et al., 2011). The L. salmonis genome project 

[http://sealouse.imr.no/] was launched in 2010 and an annotated genome is expected to 

be published in 2013. Publicly available sea lice ESTs originate from five parasitic 

copepod species, defined as Pacific L. salmonis (64,666 EST), Atlantic L. salmonis 

(57,349 EST), C. rogercresseyi (32,135), C. clemensi (14,821 EST) and Lernaeocera 

branchialis (16,441 EST) (Yasuike et al., 2012). Mitochondrial genomes have been 

made available for three sea louse species; L. salmonis (16,148 bp; Yazawa et al., 

2008), C. rogercresseyi (13,468 bp) and C. clemensi (13,440 bp) (Yasuike et al., 2012). 

The availability of mitochondrial and nuclear genome sequence has enabled genetic 

studies revealing distinct Atlantic and Pacific lineages (Yazawa et al., 2008), a finding 

that was confirmed in a later study (Yasuike et al., 2012). Salmon louse sequence 

resources have also facilitated transcriptomic analysis of complex traits, such as parasite 

development and egg production (Eichner et al., 2008) and stress responses to extreme 
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temperature and salinity conditions (Sutherland et al., 2012), through the development 

of cDNA or oligonucleotide-based microarrays (Bron et al., 2011). These global 

transcriptomic studies often provide candidate genes that can be further characterised 

using transcriptional and translational analysis (Kvamme et al., 2004; Skern-Mauritzen 

et al., 2007; Dalvin et al., 2011) or through use of direct gene knockout RNA 

interference studies (Campbell et al., 2009; Dalvin et al., 2009). 

The aim of this element of the research was to generate a custom oligonucleotide 

(oligo) microarray for L. salmonis, in order to provide a new tool for use in studies of 

the molecular determinants of drug susceptibility in L. salmonis (reported in Chapters 3 

and 4 of this thesis). The design of the microarray was first based on the use of existing 

L. salmonis EST resources available in GenBank, which were downloaded and 

assembled into a minimal set of contiguous sequences (contigs). In addition, subtracted 

cDNA libraries were constructed, with tester and driver cDNA derived from laboratory-

maintained L. salmonis strains differing in emamectin benzoate (EMB) susceptibility, 

and sequenced to enrich for transcripts potentially involved in the development of EMB 

resistance in the salmon louse. Finally, de novo transcriptome sequence was assembled 

from sequence reads generated using the Illumina Hi-Seq platform and RNA-seq 

technology to sequence a sample pool from key stages of the L. salmonis life cycle, 

ensuring representation of major transcriptional events in the custom sequence resource.  
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2.2 Materials and methods 

2.2.1 Salmon louse strains and husbandry 

Two salmon louse (L. salmonis) laboratory-maintained strains differing in 

susceptibility to EMB (Heumann et al., 2012), were used in this study. The susceptible 

strain S was established in 2003 using salmon lice from a Scottish farm site where no 

chemical control agents other than hydrogen peroxide had been used. The moderately 

EMB-resistant salmon louse strain PT was established in December 2008 using salmon 

lice from another Scottish production site with reports of variable EMB treatment 

efficacies. The strains have since been cultured under identical laboratory conditions, as 

described in detail elsewhere (Heumann et al., 2012). In brief, salmon lice were 

maintained on Atlantic salmon (Salmo salar) with an initial weight of 500 – 1000 g in 

circular tanks supplied with fresh seawater at ambient temperature, using a photoperiod 

corresponding to natural day length. To propagate salmon louse cultures, egg strings 

were allowed to hatch and develop to copepodids, which were used to inoculate a tank 

containing naïve host fish. Prior to the collection of salmon lice from hosts, fish were 

anaesthetised with 100 mg L
-1

 2-phenoxyethanol. Infection rates were maintained at 

levels that were unlikely to compromise fish welfare. All laboratory infections were 

carried out under UK Home Office licence and appropriate veterinary supervision. 

2.2.2 RNA extraction and purification 

Frozen samples were ground in liquid nitrogen using a pestle and mortar, and 

further mechanically homogenised using a rotating probe homogeniser (Ultra-Turrax
®
). 

Total RNA was immediately extracted from the homogenised sample using TRI 

Reagent
®
 (Sigma-Aldrich, UK), following the manufacturer‟s protocol. After phase 

separation, RNA was precipitated from the aqueous phase by addition of 0.25 volumes 

isopropanol and 0.25 volumes of a high salt buffer (0.8 M trisodium citrate; 1.2 M 
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sodium chloride; Appendix 1), as recommended for samples with high polysaccharide 

content (Chomczynski and Mackey, 1995). The total RNA was resuspended in 

nuclease-free water. For the construction of subtracted cDNA libraries, total RNA from 

60 untreated adult males from either strain (S or PT) were further purified using 

RNeasy columns (Qiagen, UK), pooled and subjected to poly (A)+ RNA isolation using 

the Poly (A) Purist™ kit (Ambion
®

, UK). To generate L. salmonis transcriptome 

sequence total RNA was extracted from 21 different salmon louse samples taken from 

key stages of the life cycle where each sample consisted of pools of individuals 

(Appendix 2). The 21 total RNA samples were pooled and then further purified using 

RNeasy columns (Qiagen, UK). UV spectroscopy (NanoDrop ND-1000, Thermo 

Scientific, USA) was used to confirm purity of the RNA samples and establish 

concentrations, whereas RNA integrity was assessed by agarose gel electrophoresis and 

ethidium bromide staining. 

2.2.3 Assembly of contiguous sequence from L. salmonis ESTs 

A total of 129,225 ESTs (> 100 bp) for L. salmonis, as described by Yasuike et al. 

(Yasuike et al., 2012), were downloaded during December 2010 in FASTA format from 

the GenBank Expressed Sequence Tags database (dbEST) held by the National Centre 

for Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov/nuest]. This EST 

list was manually assembled into the groups „Nilsen Norway‟, „Atlantic Norway‟, 

„Atlantic Canada‟ and „Pacific‟ according to the originating sequencing project and then 

quality filtered to remove poly A tails and sequences with a length < 100 nucleotides. 

The Lasergene software package SeqMan II (version 6.1) for Windows (DNAStar Inc., 

USA) was used to remove contaminating cloning vector and bacterial sequence from 

the sequences. 
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The four EST groups were individually processed to create consensus sequence 

(contigs) using The Gene Indices Clustering Tools (TGICL) (Computational Biology 

and Functional Genomics Laboratory [http://compbio.dfci.harvard.edu/tgi/software] 

(The Gene Index Project, USA)), following the manufacturers‟ instructions. Briefly, a 

multi-fasta file containing all the trimmed EST sequences was loaded and the ESTs 

were clustered into groups of similar sequences using the megablast pairwise alignment 

software. These sequence clusters were then passed to the cap3 assembly software that 

created consensus sequences through multiple alignments of the sequences within each 

cluster. The resulting contig and singleton sequences were reported in separate FASTA 

files that were downloaded for subsequent annotation. 

The assembled contig sequences were annotated using BLASTx (Basic Local 

Alignment Search Tool) searches against the non-redundant proteins (nr), 

UniprotKB/Swiss-Prot (Swissprot) and Reference Proteins (refseq_protein) GenBank 

databases at the National Centre for Biotechnology Information (NCBI), with 

annotation hits being considered significant when having a BLASTx expectation value 

(e-value) < 1 × 10
-4

. All sequences were further annotated with GO identifiers using 

Blast2Go software for Windows
®
 using Java Webstart (Centro de Investigación 

Príncipe Felipe, Spain). 

The 15K microarray design 1 (Table 2.1) was subsequently constructed using 

probes designed to 10,056 annotated and 5,052 unannotated sequences from this library 

of contig sequences. When constructing 15K microarray design 2 (Table 2.1) only 

9,710 of these annotated sequences were used, to allow incorporation of oligo probes 

designed to target sequence that was generated from subtracted cDNA library 

sequencing as discussed in section 2.2.4 of this chapter. Finally, the 44K microarray 

design 1 (Table 2.1) incorporated oligo probes that were designed to 9,429 of these 
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annotated target sequences. The remaining probes included on the 44K microarray 

design 1 were designed to sequence from subtracted cDNA library sequencing (section 

2.2.4) and salmon louse transcriptome sequence (section 2.2.5). 

2.2.4 Subtracted cDNA library construction and sequencing 

Suppression subtractive hybridisation (SSH) was used to prepare cDNA libraries 

enriched in transcripts differentially expressed between strains S and PT using 

commercial methods (PCR-Select™, Clontech, Takara Bio Inc., USA) (Adapter and 

primer sequences detailed in Appendix 3). Subtractions were performed in both 

directions, i.e. using cDNA derived from each strain (S or PT) either as the tester or the 

driver. A pool of cDNA from each subtraction, containing an equal amount of both 

subtracted cDNA libraries, was used for generating a 454 sequencing library using the 

GS FLX Titanium Rapid Library Preparation kit (Roche Applied Science, UK), 

following manufacturer‟s instructions. Adaptive Focus Acoustics™ (AFA™) using the 

S220 High Performance Ultrasonicator (Covaris
®

 Inc., KBiosciences, UK) was 

employed to randomly shear the cDNA, blunt ends were repaired and MID adapters 

ligated to the DNA fragments prior to sequencing using the Genome Sequencer™ (GS) 

Titanium FLX instrument (Roche Applied Science, UK) (EBI Sequence Read Archive 

(SRA) study ERP002190). GS FLX Titanium library preparation and sequencing was 

performed by The GenePool Genomics Facility (University of Edinburgh, UK). 

Sequence reads were assembled using the GS De Novo Assembler (Newbler) v2.5.3 

software (Roche Applied Science, UK) using default parameters after trimming of MID 

adapter and primer sequences. 

These contig sequences were annotated as detailed in section 2.2.3 and used in the 

design of oligo probes that were incorporated in 15K microarray design 2 (Table 2.1). 

Two oligo probes were designed to each of the 1916 annotated and 783 unannotated 
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contig sequences generated from L. salmonis subtracted cDNA library sequencing, 

giving a total of 3832 annotated and 1566 unannotated sequences being used in 15K 

microarray design 2. 

2.2.5 Salmon louse transcriptome sequencing 

2.2.5.1 Salmon louse life stages included 

The L. salmonis life cycle includes planktonic and host associated phases. The 

planktonic phase begins with hatching of nauplii from egg strings carried by gravid 

adult female lice, and comprises two non-parasitic nauplius stages and an infective 

copepodid stage that requires host-attachment for further development. The host-

associated phase begins with the settlement of infective copepodids on the surface of 

host fish and continues through two permanently attached chalimus stages, two mobile 

preadult stages and one final mature and reproductively active adult stage (Johnson and 

Albright, 1991a). It was originally considered that attached copepodids underwent a 

major metamorphosis into chalimus I (Pike and Wadsworth, 1999), then repeated 

frontal filament attachment and continued feeding through the successive three 

chalimus stages, facilitating gradual changes in body shape until chalimus IV closely 

resembles preadult I morphology (Bron et al., 1991). More recently however, it has 

been recognised that the chalimus phase comprises only two stages with the stages 

formerly described as chalimus I and II both now being classed as chalimus I and the 

former chalimus III and IV stages classed as chalimus II (Hamre et al., 2013). 

To generate a pool of samples for L. salmonis transcriptome sequencing 21 

samples were taken from key stages of the salmon louse life cycle (Appendix 2). 

Samples from earlier stages of the life cycle (nauplius – chalimus II) consisted of pools 

of multiple individuals due to the small size of individuals at these stages (0.5 – 2.8 

mm) (Johnson and Albright, 1991a). All samples were collected and preserved in an 
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RNA stabilisation solution (4.54 M ammonium sulphate, 25 mM trisodium citrate, 20 

mM EDTA, pH 5.4; Appendix 1) prior to storage at -70 °C. The L. salmonis samples 

collected for inclusion in this study were sampled at different times due to logistical 

reasons. Light and dark coloured egg strings, containing immature and mature nauplii 

respectively, were removed from gravid adult females using a sterile scalpel blade. The 

two nauplius stages develop relatively quickly (30.5 hours from nauplius 1 to 2 at 10 

°C) (Johnson and Albright, 1991b) and are difficult to differentiate by size. Atlantic L. 

salmonis are 0.54 – 0.56 mm in size (Johnson and Albright, 1991a), although it has 

been demonstrated that Pacific L. salmonis are larger than those originating from the 

Atlantic ocean (Schram, 1993). In order to obtain samples containing both stages, 

nauplii were collected by hatching egg strings in aerated sea water at two temperatures 

(8 and 10.5 °C) and collecting samples at 24 and 48 hours after egg string collection. 

Nauplii were collected by filtration using 0.22 mm mesh and transferred directly to 

RNA stabilisation solution. Similarly, free-living copepodids (0.7 mm) were filtered 

from culture after 5 days of incubation (10.5 °C). To obtain host-attached copepodids, 

fish were infected as detailed above and attached copepodids were collected using 

forceps under low magnification microscopy from host Atlantic salmon at 24 and 48 

hours post infection. Chalimus stage lice were collected by the same process, with each 

stage being differentiated under low magnification microscopy by size and morphology 

(Johnson and Albright, 1991a; Schram, 1993). Preadult (I and II) and adult male and 

female salmon lice can also be differentiated by size and morphology. Preadult I males 

are smaller than preadult I females (total length 2.9 and 3.7 mm respectively for 

Atlantic L. salmonis) and also differ by size and shape of the genital complex. Adult 

male and preadult II female Atlantic L. salmonis are approximately the same size (total 

length ~5.4 mm) but can easily be distinguished under low magnification microscopy, 
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using common morphological features (Johnson and Albright, 1991a; Schram, 1993). 

The abdomen of adult male salmon lice is shorter, with an ovoid genital complex, 

whereas the preadult II female genital complex is larger with cuticular folds and distinct 

lobes, and a narrowing of the abdomen as it meets the genital complex. Similarly, adult 

females have larger genital complex than males, and also have a larger more developed 

genital complex in comparison to preadult II females (Johnson and Albright, 1991a). 

The samples of different salmon louse stages were stored at -70 °C and processed for 

total RNA extraction and purification as detailed above. 

2.2.5.2 Library construction and sequencing 

A total RNA pool was created that included samples from the egg string, nauplii, 

copepodid, chalimus, preadult (I and II) and adult stages for male and female salmon 

lice, by incorporating 2.5 µg total RNA from each of 21 salmon louse samples 

(Appendix 2). Transcriptome sequencing of this pool (EBI Sequence Read Archive 

(SRA) study ERP002482) was performed using Illumina RNA-Seq, with the 

sequencing library being prepared using the TruSeq™ RNA Sample preparation kit. 

Library preparation and sequencing was performed by The GenePool Genomics 

Facility, University of Edinburgh. 

2.2.5.3 Transcriptome assembly and quality filtering 

Transcriptome sequencing requires high quality sequence reads for optimal 

assembly as sequencing errors can often create difficulties for short-read assembly 

algorithms. We therefore performed stringent filtering to remove low-quality reads 

containing ambiguous nucleotides (“N”) or with a Phred score under 20. The genome 

sequences for both the Pacific and Atlantic L. salmonis lineages (NCBI assembly 

ASM18125v2) were retrieved from the salmon louse genome project website 

[http://sealouse.imr.no/] (Accessed: July 2012) and used for all subsequent 
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transcriptome assembly processes. Two complementary sequence read assembly 

methods were chosen for this study. Firstly, TopHat v2.0.4 (Kim et al., 2013) was used 

to establish a reference-based assembly. Then, any unaligned reads were used by Trinity 

release 2012-06-08 (Grabherr et al., 2011) in order to build a de novo assembly of the 

remaining reads or to extend reference-based transcripts. Finally, transcript expression 

levels were estimated using the Fragments Per Kilobase of transcript per Million 

(FPKM) values by the Cufflinks v2.0.2 (Trapnell et al., 2012). 

2.2.5.4 SNP and Indel identification 

The sequence reads were aligned to the Atlantic L. salmonis reference genome 

[http://sealouse.imr.no/] (Accessed: July 2012) using the Bowtie2 v2.1.0 alignment 

software (Langmead et al., 2009). Samtools v0.1.19 (Li et al., 2009) software was then 

used to identify any Single Nucleotide Polymorphisms (SNPs) or insertions and 

deletions (indels) that differed between the Atlantic L. salmonis reference genome 

sequence and the new sequence resource. The original sequence generated in this study 

was returned, to retain any polymorphisms that may have been discovered in this new 

sequence resource. 

2.2.5.5 Gene annotation 

The longest coding DNA sequences were determined for each transcript using 

getorf from the EMBOSS v6.5.7 package (Rice et al., 2000). ESTScan v2 (Iseli et al., 

1999; Lottaz et al., 2003) was then used to confirm transcript coding regions and 

determine sequence orientation. The coding sequences of the predicted transcripts were 

annotated using BLASTp (Basic Local Alignment Search Tool) searches against the 

GenBank Reference Proteins database (refseq_protein; 03/03/2013 release) from the 

National Centre for Biotechnology Information (NCBI), with an expectation value (e-

value) cut-off of < 1 × 10
-4

 and minimum alignment length of 33 amino acids being 
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considered significant. Additionally, the transcripts were annotated using BLASTn 

searches against the UniGene/EST (L. salmonis datasets, 03/03/2013 release) databases, 

and BLASTx searches against the non-redundant proteins (nr), UniprotKB/Swiss-Prot 

(Swissprot) and refseq_protein databases (03/03/2013 release), with an e-value cut-off 

< 10
-4

 and minimum alignment length of 100 nucleotides being considered significant. 

2.2.6 KEGG and GO annotation 

Functional annotation of subtracted cDNA library sequences was performed using 

the Kyoto Encyclopaedia of Genes and Genomes (KEGG) and the KEGG Automatic 

Annotation Server (KAAS) [www.genome.jp/tools/kaas]. The annotation of salmon 

louse transcriptome sequences were used to retrieve Gene Ontology (GO) annotation 

for molecular function, biological process and cellular component (Ashburner et 

al., 2000) as well as biological pathway assignment according to the KEGG 

pathway database [http://www.genome.jp/kegg/pathway.html] (Kanehisa and Goto, 

2000; Kanehisa et al., 2012). A custom software pipeline converted transcriptome 

sequence GO terms to GO Slim terms, using the Protein Information resource, Generic 

GO Slim and Metagenomics Slim files [http://www.geneontology.org/GO.slims.shtml] 

(Accessed 18/03/2013). 

2.2.7 Salmon louse oligonucleotide microarray design 

Oligonucleotide probes (60mers) were designed to target contig sequences using 

the eArray Gene Expression (GE) probe design tool (Agilent Technologies, UK), 

employing the base composition and best probe methodologies, and implementing a 3‟ 

bias. For each sequence without a significant BLASTx based annotation two probes 

were designed, one of which was designed to the forward sequence while the other was 

designed to the reverse complement. Standard expression microarrays were designed 

using the eArray custom microarray design wizard (Agilent Technologies, UK), using 
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either an 8 × 15K or 4 × 44K design format. Microarray designs 1 and 2 comprised 

15,744 features including 536 obligatory controls (Table 2.1). An initial design was 

used for analysis of EMB induced gene expression (Chapter 4; Agilent AMADID No 

033382; EBI ArrayExpress design A-MEXP-2284). This 15K microarray design 1 

incorporated oligo probes designed to 10,056 annotated and 5,052 unannotated contig 

sequences that were assembled from existing L. salmonis ESTs as detailed in section 

2.2.3 of this chapter. With additional data becoming available, a minor redesign was 

implemented (Agilent AMADID No 039612; EBI ArrayExpress design A-MEXP-

2285) for analysis of constitutive gene expression (Chapter 3). This minor redesign 

incorporated new probes designed to target 2,699 sequences that were identified when 

sequencing the subtracted cDNA libraries enriched for transcripts differentially 

expressed between the EMB-resistant (PT) and drug-susceptible (S) salmon louse 

strains as detailed in section 2.2.4 of this chapter. Two probes were designed for each of 

the new targets. The new probes were used to replace unannotated probes present on the 

original array. The two 15K microarray designs shared 10,251 identical features. A 

third microarray was designed as detailed above but using a 4 × 44K design format 

(Agilent AMADID No 048507), that incorporated new salmon louse transcriptome 

sequence and comprised 45,220 features including 1,417 obligatory controls (Table 

2.1). This 44K microarray design incorporated oligo probes designed to 28,695 contig 

sequences originating from the new salmon louse transcriptome, 9,429 contig sequences 

assembled from existing L. salmonis ESTs (section 2.2.3) and 5,429 sequences 

generated from sequencing L. salmonis subtracted cDNA libraries (section 2.2.4).  
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Table 2.1 Composition of the features included on custom L. salmonis 
oligo microarrays. 

Probe type 

15K Microarray 

(Design 1) 

(AMADID 033382) 

15K Microarray  

(Design 2) 

(AMADID 039612) 

44K Microarray 

(Design 1) 

(AMADID # 048507) 

Annotated 10,056 13,542 26,887 

Unannotated 5,052* 1,566* 16,666* 

Control probes 100 100 250 

Agilent 

controls 
536 536 1417 

Total 15,744 15,744 45,220 

* Oligo probes were designed to both forward and reverse complement strands for all 

unannotated target sequences. 
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2.3 Results 

2.3.1 L. salmonis EST assembly 

A total of 129,225 L. salmonis ESTs were obtained from GenBank that had been 

generated from four sequencing projects (Table 2.2). The „Nilsen Norway EST resource 

consisted of 35,577 sequences of which 34,064 were > 100bp and found to originate 

from the sequencing of 14 separate L. salmonis cDNA libraries (Appendix 4). The four 

EST groups were each assembled into contig sequence to give 19,279 contig and 9,693 

(> 100bp) singleton sequences (Table 2.2). Manual quality control and functional 

annotation of these sequences provided 13,582 annotated (BLASTx e-value < 10
-4

) and 

5,616 unannotated target sequences suitable for the design of oligo probes to be used in 

the design of a microarray. 

Table 2.2 Summary of L. salmonis ESTs and assembled contig 
sequences. 

EST group ID 

Original 

EST 

sequences  

Quality 

filtered EST 

sequences  

Assembled 

contig 

sequences  

Singleton  

sequences*  

Nilsen Norway 35,577 28,941 3,644 2,307 

Atlantic Norway 19,406 18,299 4,370 1,386 

Atlantic Canada 9,577 9,075 2,644 1,051 

Pacific 64,665 61,331 8,621 4,949 

Total 129,225 117,646 19,279 9,693 

A total of 129, 225 ESTs, originating from four L. salmonis sequencing projects, were 

available for download from the NCBI GenBank database during 2010. These ESTs are 

described in full by Yasuike et al. 

* Singleton sequences are original ESTs that were not assembled into contig sequence. 

Four EST groups were assembled into contig sequence using the TGIC sequence assembly 

software. Short sequences and contaminating vector sequence were removed prior to the 

assembly process. 
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2.3.2 Salmon louse subtracted cDNA library sequencing 

To obtain a pool of salmon louse cDNA sequences enriched for transcripts 

differentially expressed between salmon louse strains S and PT, two SSH libraries were 

constructed, corresponding to subtractions between strains in both directions. A pool of 

both libraries was subjected to Roche 454 sequencing, producing a total of 94,834 reads 

with an average read length of 235 nucleotides (N50 value of 289 nucleotides) (Figure 

2.1). GS de novo sequence assembly software (Newbler v2.5.3) assembled these raw 

Roche 454 sequence reads into 3,242 contigs that were further categorised into 

isogroups according to sequence homology criteria. The contig sequences within each 

isogroup were further assembled into isotigs, with between 1 and 13 contigs being 

assembled into each isotig (Figure 2.2). The assembly of contigs from sequence reads 

provided 1,916 annotated (BLASTx e-value < 10
-4

) and 783 unannotated target 

sequences. For a number of these sequences, annotation suggested affiliation to gene 

families potentially associated with reduced EMB susceptibility. These gene families 

include ABC (ATP-binding cassette) transporters, cytochrome P450 monooxygenases 

(CYPs), and Cys-loop receptors. In particular, a multidrug-resistance ABC transporter 

(Accession XP_001862061.1) and two CYPs (15a1, Accession AAS13464.1 and 18a1, 

Accession XP_393885.1) were identified (Table 2.3) Moreover, isolated Cys-loop 

receptor subunits include a ligand-gated ion channel (LGIC) receptor subunit 

(nAChRα-3, Accession ADD38711.1) and a -aminobutyric acid (GABA) -receptor 

associated protein (Accession ACO11910.1) that could potentially constitute 

pharmacological targets for EMB (Table 2.3) The longest contigs generated from the 

subtracted library sequencing were annotated as constituents of cytoskeleton proteins, 

such as myosin and tropomyosin, whereas contig sequences assembled from the highest 

number of sequence reads were annotated as metalloproteinase enzymes (Table 2.4). 
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KEGG functional analysis of the annotated sequences revealed a large representation 

(53 %) of genes involved in metabolism (Figure 2.3). 

 

 

Figure 2.1 Salmon louse subtracted cDNA library sequence read length 

distribution. 

Subtracted cDNA libraries were generated in both directions between drug susceptible (S) 

and EMB-resistant (PT) laboratory-maintained L. salmonis laboratory strains. A pool 

containing equalised amounts of these cDNA libraries was sequenced using a Roche 

Genome Sequencer (GS) FLX  sytem with Titanium sequencing chemistry. Standard 

Flowgram Format (SFF) files were generated by sffinfo software, that also determined 

sequence read length distribution for the 94,834 raw sequence reads as a quality control 

(QC) metric. 
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Figure 2.2 Contig sequence inclusion in assembled isotig sequences. 

GS de novo sequence assembly software (Newbler v2.5.3) assembled raw Roche 454 

sequence reads into contigs, categorised these contigs into isogroups and subsequently 

assembled each contig group into isotigs. 
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Table 2.3 L. salmonis subtracted cDNA library sequences with annotation suggesting affiliation to gene families putatively 

associated with reduced EMB sensitivity. 

Sequence 

ID 

Sequence 

length 
Accession No. Annotation 

BLASTx 

e-value 

Contig 

inclusion 

ABC transporter     

isotig00897 848 XP_001862061.1 Multidrug resistance-associated protein 14 

[Culex quinquefasciatus] 

1.00E
-94

 1 

Cytochrome P450s     

isotig00748 1,141 AAS13464.1 Cytochrome P450 CYP15A1 

[Diploptera punctata] 

5.00E
-50

 1 

isotig02142 436 XP_393885.1 Cytochrome P450 CYP18A1 [Apis mellifera] 2.00E
-18

 1 

isotig02028 453 ACO10681.1 Cytochrome P450 3A24 [Caligus rogercresseyi] 2.00E
-35

 1 

isotig01206 641 XP_002400171.1 Cytochrome P450 [Ixodes scapularis] 2.00E
-49

 1 

LGIC receptor proteins     

isotig01382 570 ADD38711.1 Neuronal acetylcholine receptor subunit alpha-3 

[Lepeophtheirus salmonis] 

5.00E
-96

 1 

isotig00533 445 ACO11910.1 Gamma-aminobutyric acid receptor-associated protein 

[Lepeophtheirus salmonis] 

9.00E
-58

 2 

isotig00534 271 ACO11910.1 Gamma-aminobutyric acid receptor-associated protein 

[Lepeophtheirus salmonis] 

2.00E
-18

 2 
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Table 2.4 Sequences highly represented in L. salmonis subtracted cDNA library resource. 

A 

Contig ID Contig 

length 

Number of 

reads 

Isogroup Isotigs Number 

of Isotigs 

Isotig  

Annotation 

Accession  

number 

Blastx  

e-value 

contig01161 1,782 46 255 isotig00728 1 
Leucine rich 

protein, putative 
XP_001658446.1 9e

-63
 

contig01162 1,693 55 256 isotig00729 1 
Myosin heavy 

chain, muscle 
EFN74639.1 1e

-142
 

contig01163 1,675 64 257 isotig00730 1 Acheron AAN76709.1 3e
-35

 

contig01164 1,545 39 258 isotig00731 1 
Hypothetical 

protein 
EFX77428.1 0 

contig01165 1,543 324 259 isotig00732 1 
Cytochrome 

oxidase subunit I 
AAT39730.1 0 

 

contig01166 1,504 31 260 isotig00733 1 

Low-density 

lipoprotein receptor 

related protein 1b 

XP_002916019.1 1.48e
-12

 

B 

contig00151 466 4,151 2 isotig00001 - 49 50 Metalloproteinase ABU41019.1 3e
-32

 

contig00170 440 1,339 3 isotig00050 - 52 3 Metalloproteinase ABU41053.1 1e
-139

 

contig00166 459 1,313 2 isotig00001 - 49 50 Metalloproteinase ABU41019.1 3e
-32

 

contig00273 294 985 7 isotig00083 - 90 8 Trypsin 1a AAP55756.1 1e
-149

 

contig00176 207 775 3 isotig00050 - 55 5 Metalloproteinase ABU41053.1 1e
-139

 

contig00576 666 731 46 
isotig00292 and 

isotig00293 
2 

Elongation factor  

1-alpha 
ABU41064.1 1e

-15
 

Contig sequences were sorted according to either contig length (A) or raw sequence read count used to assemble the contig (B). The six longest contig 

sequences and six contigs with the highest raw sequence read count are detailed. 
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Figure 2.3 KEGG functional classification of annotated sequences from L. salmonis subtracted cDNA library sequencing. 

Functional classification of 2,809 isotigs and 6 large contig sequences, assembled from L. salmonis subtracted cDNA library sequencing. Classification was 

performed according to the KEGG orthology database, using KAAS (KEGG Automatic Annotation Server) and SBH (single-directional best hit) methods.
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2.3.3 Salmon louse transcriptome sequencing 

To create a salmon louse transcriptome sequence resource representing all key 

stages of the life cycle including major metamorphosis steps, a total RNA pool was 

generated that included every stage of the salmon louse life cycle. This total RNA pool 

was subjected to Illumina 100 bp paired end sequencing using the Illumina HiSeq 2000 

platform. A total of 389,406,444 raw sequence reads were generated with an average 

read length of 101 bp, 82 % of these reads having a 99.9 - 99.99 % base calling 

accuracy (Phred score 30 - 40) (Figure 2.4). A total of 266,447,466 reads (68.4 %) 

passed quality control and filtering, which were then used by TopHat and Cufflinks to 

generate a reference based transcriptome assembly of 33,537 transcripts using the 

Atlantic L. salmonis reference genome from the salmon louse genome project website 

[http://sealouse.imr.no/]. The sequence reads that could not be aligned to the reference 

genome were subsequently used for de novo sequence assembly using Trinity software, 

which generated an extra 4,144 transcripts and 698 reference based transcripts. Based 

on the high quality reads, 37,681 transcripts were assembled (EBI Sequence Read 

Archive (SRA) study ERP002482), consisting of 30,581 unique transcripts and 3,112 

alternative spliced transcripts, with an average length of 1338.19 bp ranging from 101 

to 24,684 bp. Of these, 96.6 % and 43.6 % transcripts had a length more than 200 bp 

and 1000 bp, respectively. Finally the 33,706 unique genes have an average length of 

1271.58 bp and a total length of 42,843,289 bp (Table 2.5). Each gene had an average 

of 1 splicing form per gene ranging from 1 to 5. To evaluate the quality of the 

assembled transcripts, all the usable sequencing reads were realigned to the transcripts. 

The sequencing depth ranged from 1 to 519,299 reads, with an average of 795 reads 

across whole transcripts. About 77 % of the transcripts were realigned by more than 10 

reads and 35 % were remapped by more than 100 reads.  
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Figure 2.4 Mean quality score distribution for the salmon louse transcriptome 

raw sequence reads. 

Quality control assessment of Illumina raw sequence reads using FastQC software 

(Brabraham Bioinformatics, UK) reported the mean sequence quality scores (Phred). Phred 

scores of 30 and 40 indicate a 99.9 % and 99.99 % base calling accuracy respectively. 



                                               Chapter 2 – Development of transcriptomic resources 
 

 

91 

Table 2.5 Transcriptome sequence set characterisation. 

Transcripts 37,681 

Unique genes 33,693 

# consisting of single transcript 30,581 

# consisting of multiple transcripts 3,112 

Transcript sequence length 
Unique 

genes 

Complete 

transcriptome 

Total sequence length (nt) 42,843,289 50,424,461 

Average transcript length (nt) 1271.58 1338.19 

Minimum transcript length (nt) 101 101 

Maximum transcript length (nt) 21,935 24,684 

Median transcript length (nt) 821 867 

 

The assembled transcripts were annotated using BLASTp and BLASTn searches 

against the refseq-protein and EST/UniGene databases respectively. The results 

indicated that out of 33,693 genes, 28,547 (84 %), 13,194 (39 %) and 8,640 (26 %) 

showed significant similarity to known proteins or gene transcripts in refseq_protein, 

EST and UniGene databases, respectively. 

Additionally, BLASTx annotation revealed 13,999 (41.5 %) well annotated 

transcripts (BLASTx e-value < 10
-9

), and an additional 2,748 (8.2 %) sequences 

annotated with a BLASTx e-value of 10
-4 

- 10
-9

. To evaluate the L. salmonis genome 

coverage of the assembled transcripts, the 129,225 ESTs (> 100bp) available for L. 

salmonis (Yazawa et al., 2012) were aligned to the transcript sequence generated in this 

study and vice versa. 97,785 (76 %) of the L. salmonis ESTs reported by Yazawa et 

al. aligned to at least one transcript, whereas 15,507 (41 %) of the newly sequenced 

transcripts had at least one corresponding L. salmonis EST within the set reported 

by Yazawa et al. 
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GO annotation was assigned to the assembled L. salmonis transcripts/genes on the 

basis of refseq_protein annotation. In total, 28,547 genes had similarity to known gene 

products; however only 4,954 (17 %) were assigned GO annotation, with the 

assignment of 3,009 different functional terms and protein binding (25 %) and nucleic 

acid binding (24 %) being identified as highly represented biological functions (Figure 

2.5). 

The KEGG pathway database records the networks of molecular interactions 

within cells and the differences in these networks between organisms. Again, on the 

basis of refseq_protein annotation, the KEGG pathways of the associated genes were 

obtained for each transcript. In total, 28,547 transcripts were similar to known gene 

products; however only 3,273 (11 %) were assigned KEGG annotation that covered 247 

different pathways. Of the transcripts that were assigned KEGG functional annotation, 

general metabolism was the largest group (19 %) with a total of 46 % annotated 

sequences being assigned metabolic functions (Figure 2.6). 

Transcripts were identified as members of gene families putatively associated 

with reduced drug susceptibility in ecdysozoan invertebrates based on the BLASTx 

annotation (Table 2.6). These gene families include LGICs (GluCl, GABA-Cl, nAChR 

and Glycine-gated chloride channels), ABC transporters and detoxification enzymes 

(CYP, glutathione-s-transferase (GST) and esterases). 
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Figure 2.5 GO Slim functional classification of L. salmonis transcriptome sequence. 

Gene Ontology (GO) terms were assigned to 4,954 (17 %) of the 28,547 annotated transcripts based on refseq_protein annotation. 

The distribution of GO Slim molecular function terms for the L. salmonis transcriptome is shown. 
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Figure 2.6 KEGG functional classification of L. salmonis transcriptome sequence. 

KEGG pathway classification was assigned to 3,273 (11 %) of the 28,547 annotated transcripts based on refseq_protein annotation. The distribution of 

KEGG pathways for the L. salmonis transcriptome is shown. 
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Table 2.6 Summary of sequences putatively associated with reduced 
EMB susceptibility. 

 

EST contigs SSH sequences Transcriptome 

sequences 

Subgroup 

Number of 

sequences 

Group 

Total 

Number of 

sequences 

Group 

Total 

Number of 

sequences 

Group 

Total 

ABC transporters 

A     1 

 B 2    3 

 C 6  1  7 

 F     1 

 G     4 

 Other 5 13  1 2 18 

Neuronal Acetylcholine receptors 

Alpha subunit 11  1  22 

 Beta subunit 1    3 

 Delta subunit     1 

 Other  12  1 5 31 

GluCl* receptor subunits 

Alpha subunit     6 

 Other 2 2  0 2 8 

GABA-Cl* receptor subunits 

Alpha subunit     2 

 Beta subunit     6 

 Other 5 5 2 2 4 12 

Glycine receptor subunits 

Alpha subunit     8 

 Beta subunit  0  0 9 17 

Cytochrome P450 

2J 2    3 

 3 4  1  7 

 15a1 1  1  3 

 18a1   1  2 

 Mitochondrial 3    2 

 Other 4 14 1 4 4 21 

Glutathione-s-transferase 

All  17 17  0 13 13 

Esterase 

All  1 1  0 7 7 

The full sequence annotation, accession numbers and BLASTx e-values are detailed in 

Additional file 2.1. 

* GluCl = Glutamate-gated chloride channel; GABA-Cl = Gamma-aminobutyric acid (GABA) 

chloride channel.  
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2.3.4 Salmon louse custom oligo microarray development 

For transcriptomic analyses, custom Agilent 15K feature oligo microarrays were 

designed using EST sequences, publicly available in GenBank (Section 2.3.1), and 

sequences derived from salmon louse SSH libraries (Section 2.3.2). A larger 44K oligo 

microarray was designed that incorporated 60mer oligo probes designed to 

transcriptome sequences (Section 2.3.3), in addition to probes from the two previous 

15K microarrays. On all three microarrays, oligo probes were designed to both forward 

and reverse complement strands for all unannotated sequences (Table 2.1).The GenePix 

array list (GAL) format files for the three microarray designs are detailed in Appendix 5 

and supplied as Additional files 2.2 to 2.4. 

2.3.4.1 L. salmonis 15K oligo microarray design 1 

The initial 15K custom oligo microarray was created through designing 60mer 

oligo probes to 13,542 annotated and 1,566 unannotated target sequences that were 

assembled from ESTs (Table 2.2). 

2.3.4.2 L. salmonis 15K oligo microarray design 2 

A second L. salmonis 15K oligo microarray was created that included 60mer 

probes designed to 10,056 annotated (BLASTx e-value <10
-4

) and 5,052 unannotated 

target sequences (Table 2.1). Microarray designs 1 and 2 share 10,251 identical features 

with the new probes included in design 2 used to replace unannotated probes from 

microarray design 1. Probes designed to annotated target sequence included 6,224 

probes that had been included on the previous 15K microarray (design 1), and 3,832 

probes designed to annotated target sequence from L. salmonis subtracted cDNA library 

sequencing (Section 2.3.2). These additional 3,832 probes comprised 2 unique probes 

designed to each of 1,916 annotated target sequences. The 5,052 probes designed to 

unannotated target sequence consisted of 3,486 probes from the previous 15K 
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microarray design and 1,566 probes designed to unannotated target sequence from L. 

salmonis subtracted cDNA library sequencing. 

2.3.4.3 L. salmonis 44K oligo microarray 

An L. salmonis 44K oligo microarray was created that included 60mer probes 

designed to 26,887 annotated (BLASTx e-value < 10
-4

) and 16,666 unannotated target 

sequences (Table 2.1). The 43,553 probes represented on this microarray includes 

28,695 probes designed to salmon louse transcriptome sequence, 11,970 designed to 

EST contig sequences and 2,888 designed to SSH sequence. 

2.3.4.4 Validation of gene expression analysis 

Salmon louse 15K microarray designs 1 and 2 were used to analyse differential 

gene expression responses between two laboratory-maintained salmon louse strains (S 

and PT). Microarray design one was used to measure gene expression in response to 

EMB exposure (see Chapter 4) and design two was used to measure constitutive gene 

expression between untreated salmon lice from these strains (see Chapter 3). To 

confirm these microarray results, transcript abundances of samples from each 

experiment were determined by reverse transcription quantitative PCR (RT-qPCR), and 

expression profiles measured using microarray analysis and RT-qPCR were compared 

(Table 2.7). The RT-qPCR methodology is detailed in Chapters 3, 4 and 5 of this thesis. 

A high degree of correlation was observed between expression values measured by both 

methods, for the majority of genes analysed (Pearson correlation coefficients (r) of 0.66 

to 0.99; p < 0.0001). 
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Table 2.7 Correlation of relative expression ratios measured using 

microarray and RT-qPCR. 

Accession No. Annotation r p-value 

15K Microarray design 1 

NP_001136346.1 Cuticular protein  0.99 <0.0001 

BAG74353.1 Metalloproteinase 0.99 <0.0001 

ADD24462.1 Cerebellin-3  0.96 <0.0001 

AAS91796.1 Intestinal trypsin 5 precursor  0.94 <0.0001 

ADD38289.1 Gamma-crystallin A  0.77 <0.0001 

ADD38711.1 Neuronal acetylcholine receptor subunit α3 0.71 <0.0001 

ACM68948.1 Selenium-dependent glutathione peroxidase  0.69 <0.0001 

BAI79321.2 Duplex-specific nuclease  0.66 <0.0001 

15K Microarray design 2 

XP_797271.2 Maltase-glucoamylase 0.99 <0.0001 

ADD38289.1 Gamma-crystallin a 0.96 <0.0001 

AAS13464.1 Cytochrome P450 15a1 0.95 <0.0001 

XP_003494528.1 Cytochrome P450 18a1 0.95 <0.0001 

ADD24187.1 Neuronal acetylcholine receptor subunit α3 0.92 <0.0001 

EFN73916.1 GABA receptor subunit alpha 0.89 0.0001 

Pearson correlation (r) of relative expression ratios (RER) calculated using L. salmonis 15K 

oligo microarray and RT-qPCR analysis. Correlation was calculated using 36 and 12 test 

samples for 15K microarray designs 1 and 2 respectively. (Significance p < 0.05). 
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2.4 Discussion 

The establishment of commercial Atlantic salmon production sites in the north 

Atlantic has provided coastal regions with a high-density of salmonids, which facilitates 

survival and reproduction of the salmon louse that normally parasitises these fish. Pest 

management strategies utilised by the aquaculture industry to control this ectoparasite 

have very often involved chemical intervention, using a single medicinal agent that 

rapidly becomes ineffective as resistance develops in L. salmonis populations after 

repeated exposure. There is currently limited understanding of the general biology and 

reproduction of L. salmonis and of the molecular mechanisms underpinning reduced 

susceptibility to anti-sea louse medicines. A number of studies have used candidate 

gene approaches to investigate specific aspects of salmon louse development and 

reproduction (Kvamme et al., 2004; Tribble et al., 2007a,b; Skern-Mauritzen et al., 

2007; Dalvin et al., 2009; Campbell et al., 2009; Dalvin et al., 2011). However, few 

studies have employed broad-scale „omics‟ strategies, such as transcriptomic analysis 

using oligonucleotide microarrays, which compared to candidate gene approaches offer 

the advantage of not being based on previous assumptions regarding the biological 

mechanisms involved. This study demonstrates the use of high-throughput sequencing 

strategies to generate sequence resources for the non-model species L. salmonis, which 

supplemented existing EST resources and provided target sequence for the construction 

of custom oligonucleotide microarrays, used in transcriptomic analysis of L. salmonis. 

The sequencing of transcripts enriched between L. salmonis strains, which differ in 

EMB susceptibility, identified a number of candidate genes putatively associated with 

reduced EMB susceptibility that required further investigation using gene expression 

studies, e.g. using the custom microarrays provided here and supplementary approaches 

such as functional studies. The transcriptome sequence generated in this study, which 
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considered all life stages of the salmon louse, provides an extensive collection of 

sequences that is expected to facilitate investigations into a wide range of subjects 

related to L. salmonis biology and reproduction. 

The assembly of contig sequences from existing L. salmonis ESTs generated 

19,279 contigs and 9,693 singleton sequences, which was similar to the 21,035 contigs 

and 9,331 singletons reported recently by another group (Yasuike et al., 2012), although 

the raw EST sequence quality filtering procedure differed in the present study. It was 

possible to annotate 47 % (BLASTx e-value <10
-4

) of the contig and singleton 

sequences that were used as target sequence for the design of 60mer oligo probes in the 

construction of custom 15K microarrays for the study of EMB susceptibility in L. 

salmonis. The specificity and sensitivity of these oligos was confirmed through RT-

qPCR validation of the two microarray experiments that utilised the 15K microarrays, 

with good correlation of expression ratios reported between analysis methods, for genes 

that exhibit differential expression within the limits of microarray technology (Fold 

change  1.3). There have been few published studies concerning transcriptomic 

analysis of L. salmonis, with the first study utilising a 7000 cDNA probe microarray to 

study post moult maturation and egg production (Eichner et al., 2008). This cDNA 

microarray was designed using contig sequences assembled from a collection of L. 

salmonis ESTs described by Yasuike et al. (Yasuike et al., 2012). Similarly, Sutherland 

et al. used these ESTs to construct a 38K oligo microarray to study transcriptomic 

responses of L. salmonis larvae to abiotic stress (Sutherland et al., 2012). The present 

study demonstrates the development of a 44K oligo microarray resource that utilises an 

expanded sequence resource with representation of major metamorphosis steps 

throughout the life cycle of a laboratory maintained L. salmonis strain sourced from the 

West coast of Scotland. 
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The enrichment of cDNA by SSH generated a high percentage of sequences that 

were annotated with metabolic functions, which may indicate key metabolic differences 

between L. salmonis strains S and PT that differ in EMB susceptibility. In addition, a 

number of genes were identified in gene families that have previously been associated 

with reduced EMB susceptibility. These candidate genes include LGIC receptor 

subunits, CYPs and a multidrug resistance associated protein (ABC transporter 

subfamily C). The principal pharmacological target for avermectin (AVM) compounds 

such as EMB is thought to be LGICs, more specifically glutamate-gated chloride 

channels (GluCl), which are members of the ecdysozoan specific „Cys loop‟ family of 

LGICs. The association of GluCl with AVM binding originated from work carried out 

on the model nematode (Caenorhabditis elegans (Maupas, 1900)) and the fruit fly 

(Drosophila melanogaster, Meigen, 1830) (Cully et al., 1994; Cully et al., 1996). 

Functional Cys-loop‟ LGICs are formed through the arrangement of protein subunits in 

a pentameric structure, which can be formed from identical subunit types or a 

combination of two to three different subunit isoforms. A GluCl subunit has been 

cloned in L. salmonis (Tribble et al., 2007b), but was not identified in this study, when 

subtracted cDNA libraries enriched between L. salmonis strains with differential EMB 

susceptibility were sequenced (Table 2.3). 

Reduced AVM susceptibility in nematodes has also been associated with 

molecular mechanisms that decrease cellular and/or tissue-specific drug accumulation 

and thus decreases internal drug exposure. The main mechanisms in this category 

include members of the ABC transporter gene superfamily. ABC proteins are located in 

the cell membrane and mediate the ATP-dependent active efflux transport of 

structurally and functionally unrelated organic compounds, including therapeutic drugs 

(Leslie et al., 2005; Jones et al., 2009). The salmon louse P-glycoprotein (P-gp) 
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homologue SL-PGY1 (Heumann et al., 2012) was not identified among cDNAs 

putatively expressed differentially between L. salmonis strains differing in EMB 

susceptibility that were enriched in this study using the SSH approach. However, a 

multidrug resistance-associated protein (MRP) was identified in these SSH libraries that 

could represent a potential drug efflux pump (Kruh and Belinsky, 2003; Deeley and 

Cole, 2006). Several CYPs were also identified in these libraries, which have also been 

implicated in reduced susceptibility of invertebrate pests to a variety of antiparasitic 

drugs (Heckel, 2012), although further research would be required to determine if these 

candidates are actually associated with reduced EMB susceptibility. 

The novel transcriptome sequence resource, generated as part of this study, 

consists of 33,693 unique transcripts of which ~50 % were functionally annotated 

(BLASTx e-value < 10
-4

). These sequences represent a 54 % increase in the number of 

available transcript sequences for L. salmonis, with only 28,972 contig and singleton 

sequences being assembled from existing ESTs. These transcript sequences include 

several putative candidate genes that have previously been associated with resistance of 

ecdysozoan pest species to antiparasitic compounds. These include ABC transporter 

proteins from subfamilies B, C and G, target LGIC receptor subunits and detoxification 

enzymes such as CYPs and esterases. KEGG and GO annotation of these L. salmonis 

transcripts identified a high representation of genes involved in metabolism, protein 

binding and nucleotide binding. Major biological functions, processes and cellular 

components are adequately represented in the transcriptome, providing an improved 

resource for the study of L. salmonis. 
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Conclusions 

The research reported in this chapter has provided a significant expansion of the 

genomic resources currently available for L. salmonis in the absence of a fully 

annotated salmon louse genome sequence. The creation of transcriptome sequence for 

L. salmonis from samples that represent key stages of the life cycle provides a sequence 

resource that can be used to study all aspects of L. salmonis biology and reproduction. 

The additional creation of sequence from a subtracted cDNA library, constructed using 

L. salmonis strains with differing susceptibility to EMB, provides a resource specific to 

the most commonly used antiparasitic agent in control of L. salmonis infection of 

Atlantic salmon, which is becoming increasingly ineffective. The assignment of suitable 

annotation to a high percentage of these sequences demonstrates that this resource 

contains adequate biological information to allow further interrogation in relation to 

associations with reduced EMB susceptibility and general L. salmonis biology. This 

study also reports successful use of this sequence resource, in addition to existing L. 

salmonis EST resources, in the construction of a custom L. salmonis 44 K oligo 

microarray. In the process of developing this custom microarray, two 15 K microarray 

designs were successfully employed in the study of EMB susceptibility of the salmon 

louse, showing accurate measurement of mRNA levels when compared to RT-qPCR. 

The resources created in this study will therefore contribute to research into a 

commercially important parasite (L. salmonis) but may also contribute to research into 

other copepod species or ecdysozoan pests. 
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3.1 Introduction 

The development of synthetic insecticides and parasiticides has revolutionised the 

control of arthropod pests and parasites of agricultural, medical and veterinary 

importance. However, the overuse of chemical control agents tends to promote the 

development of heritable insecticide or drug resistance (ffrench-Constant et al., 2004; 

Li et al., 2007; Labbé et al., 2007; Bass and Field, 2011; Heckel, 2012), with life-cycle 

traits of targeted organisms often favouring the ability to adapt genetically, such as high 

reproductive potential and short generation span. Drug resistance can follow from pre-

existing mutations in resistance genes, termed resistance alleles, which under normal 

conditions are rare and have a negative or neutral effect on fitness but which, under 

conditions of exposure to control agents, afford fitness benefits and can become 

enriched in the target species‟ gene pool given persisting selection pressure from the 

control agent (Wolstenholme et al., 2004). By the time resistance becomes apparent as 

treatment failure, resistance alleles have usually already reached high frequencies in the 

gene pool (Wolstenholme et al., 2004). 

The annual cost of sea louse infection to the global salmon farming industry has 

been estimated at €300 million, with the majority of this accounted for through 

expenses accrued from treatments with veterinary medicines (Costello, 2009). Only a 

limited range of anti-sea louse drugs are available and licensed for the treatment of fish 

(Burridge et al., 2010), and the continued use of a relatively small number of 

compounds creates a situation potentially favouring the development of drug resistance 

(Denholm et al., 2002). In the salmon louse, losses of efficacy have been reported for a 

number of control agents including organophosphates (Jones et al., 1992), pyrethroids 

(Sevatdal and Horsberg, 2003), hydrogen peroxide (Treasurer et al., 2000) and 

avermectins (AVMs) (Lees et al., 2008a; Igboeli et al., 2012). 
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The commonly used anti-sea louse treatment SLICE
®
 (Merck Animal Health) 

contains the avermectin compound emamectin benzoate (EMB) (Stone et al., 1999). 

SLICE
®
 is administered orally and a one-week treatment provides prolonged protection 

against all host-attached life stages of sea lice (Stone et al., 1999). Avermectins are also 

used against external and internal parasites of humans and livestock, including parasitic 

nematodes causing the human diseases onchocerciasis (River blindness) and lymphatic 

filariasis, as well as gastrointestinal parasites of sheep, cows and horses (Geary, 2005). 

The selective toxicity of avermectins against ecdysozoans is believed to be based on the 

binding and blockage of glutamate-gated (GluCl) and -aminobutyric acid (GABA)-

gated (GABA-Cl) chloride channels in the invertebrate nervous system (McCavera et 

al., 2007). Several molecular mechanisms have been suggested to contribute to the 

resistance of parasitic nematodes to the AVM compound ivermectin (IVM) (Beech et 

al., 2011). Functional studies revealed that AVM resistance in nematodes can be based 

on single amino acid mutations in subunits of GluCl and GABA-Cl that decrease the 

channels‟ sensitivities to the drug (Njue and Prichard, 2004; McCavera et al., 2009). 

Furthermore, resistant nematodes may show increased expression of ABC (ATP-

binding cassette) transporters, a group of membrane proteins with members capable of 

mediating the cellular efflux of drugs (Ardelli and Prichard, 2004; James and Davey, 

2009). Finally, avermectin resistance in insects has been connected to alterations in 

drug metabolism (Chen et al., 2011). 

Previous studies on potential molecular mechanisms of EMB resistance in salmon 

lice have used the candidate gene approach, i.e. the study of genes that have previously 

been linked to drug resistance in other organisms. In particular, such studies have 

investigated salmon louse ABC transporters (Heumann et al., 2012; Tribble et al., 

2007a) and GABA-Cl and GluCl subunits (Tribble et al., 2007b). However, potential 
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outcomes resulting from such candidate approaches are limited by the current 

knowledge of the biological process being studied. To avoid this limitation, a 

transcriptomic approach was followed in the present study, in which microarray 

analysis was used to compare transcriptomic profiles between drug susceptible and 

moderately (~7-fold) EMB resistant laboratory strains of salmon lice. 

3.2 Materials and methods 

3.2.1 Salmon louse strains 

Two laboratory-maintained Lepeophtheirus salmonis strains (S and PT) differing 

in susceptibility to EMB (Heumann et al., 2012), were used in this study. For more 

information on these strains please see the materials and methods section in Chapter 2 

of this thesis. 

3.2.2 Salmon louse exposure and sampling 

In order to confirm the EMB susceptibility levels of salmon louse strains S and 

PT, 24 hour bioassays (Sevatdal et al., 2005) were performed. EMB (technical grade, a 

gift from Merck Animal Health) was solubilised in seawater with PEG300 (final 

concentration 0.01% (v/v)). EMB concentrations used in bioassays were 32.5, 75, 150, 

300 and 600 µg L
-1

 with S lice, and 200, 400, 800, 1,600 and 3,200 µg L
-1

 with PT lice. 

Duplicate glass dishes containing 10 salmon lice and 200 mL of exposure solution were 

used per EMB concentration, control (seawater) or solvent control (seawater with 

0.01% (v/v) PEG300). At the end of 24 hours of exposure, salmon lice were recorded as 

normally motile or immotile upon visual examination and stimulation with a fine brush. 

Adult male salmon lice were collected from anaesthetised host fish as described 

in Chapter 2 and allowed to recover for 2 hours in aerated filtered seawater at ambient 

sea temperature. To analyse transcript expression in salmon louse strains S and PT in 

the absence of drug exposure (constitutive expression microarray experiment), six pools 
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of four adult males were collected and preserved in an RNA stabilisation solution (4.54 

M ammonium sulphate, 25 mM trisodium citrate, 20 mM EDTA, pH 5.4; Appendix 1) 

prior to storage at -70 °C. In order to replicate the analysis of strain-dependent 

differences in constitutive transcript expression using an additional set of biological 

samples, gene expression analyses were performed on seawater controls originating 

from a second experiment (Response to EMB exposure microarray experiment, see 

Chapter 4). The adult male salmon lice were collected 17 and 20 days after the 

introduction of infective copepodids to the Atlantic salmon hosts, for the constitutive 

expression and EMB exposure microarray experiments respectively. Additionally, for 

logistical reasons sea louse sampling was carried out in February and May for the 

constitutive expression and EMB exposure microarray experiments respectively. 

Infective copepodid lice were produced in bulk, with egg strings being removed from 

gravid adult female lice and incubated in aerated sea water for ~ 10 days prior to the 

infection of salmonid hosts, depending on water temperature. An assessment of the 

infective copepodid and adult male L. salmonis developmental stage was performed by 

visual examination under low magnification microscopy and was based on the size and 

shape of the salmon louse. In the experiment described in Chapter 4, salmon lice of 

either strain were subjected to short term (1 and 3 hours) EMB exposures as well as 

solvent (0.01 % (v/v) PEG300) or seawater control treatments. The effects of EMB 

treatment in the EMB response microarray experiment will be described in Chapter 4 of 

this thesis. The use of seawater control data from the „response to EMB exposure‟ 

microarray experiment (Chapter 4) as a quasi-replication of the constitutive expression 

microarray experiment in the present chapter was based on the assumption that different 

durations of salmon lice exposure to seawater, following collection from host fish and 

prior to sampling (2 h in constitutive expression microarray experiment, 3-5 h in 
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„response to EMB exposure‟ experiment), would only have minor or undetectable 

effects on the levels of transcripts having a role in EMB susceptibility. Previously 

collected bioassay data from the Marine Environmental Research Institute (MERL) 

support this contention, indicating that maintenance of salmon lice for up to 12 h after 

collection from host fish does not significantly affect the results of EMB immotility 

bioassays (Dr W. Roy, MERL, personal communication). No effects on sea louse 

motility were observed in either of these experiments. In the response to EMB exposure 

microarray experiment, for each combination of strain, exposure period and treatment, 

three pooled samples consisting of four salmon lice each were collected and stored at -

70 °C for later RNA extraction as above. The data for one and three hour sea water 

controls from the response to EMB exposure microarray experiment were pooled for 

each strain and used in this study of differential constitutive gene expression, thus 

resulting in the same level of biological replication (n = 6 biological replicates, i.e. 

pools of four L. salmonis) as in constitutive expression microarray experiment. 

3.2.3 RNA extraction and purification 

For microarray and RT-qPCR experiments, samples comprised pools of four adult 

male salmon lice. Frozen samples were ground in liquid nitrogen and total RNA was 

extracted using TRI Reagent
®
 (Sigma-Aldrich, UK), resuspended in nuclease-free water 

and further purified using RNeasy columns (Qiagen, UK) then assessed for purity and 

concentration as detailed in Chapter 2 of this thesis. 

3.2.4 Microarray analyses 

Labelling protocols are described in detail elsewhere (Morais et al., 2011). 

Briefly, for each test sample 250 ng total RNA was used as template for the 

amplification of antisense RNA with the incorporation of the modified nucleotide 5-(3-

aminoallyl)-UTP (aaUTP) into the amplified RNA (aRNA) during the in vitro 
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transcription step (TargetAmp™ Aminoallyl-aRNA Amplification Kit 101; Epicentre®, 

Cambio Ltd. UK). A common reference pool was created through pooling equal 

amounts of all aRNA test samples to be used in the experiment. The individual test 

samples were labelled with cyanine 3 (Cy3) and the common reference pool labelled 

with Cy5 mono-reactive dye (GE Healthcare, UK) in dye coupling reactions. 

Unincorporated dye was removed by column purification (Illustra Autoseq™ G-50 spin 

columns; GE healthcare, UK), and then dye incorporation was assessed by 

spectrophotometry (NanoDrop ND-1000, Thermo Scientific, USA) and fluorescent gel 

electrophoresis. Three hundred nanograms of each Cy 3 labelled test sample was 

competitively hybridised with 300 ng Cy5 labelled common reference pool on a 15K 

feature custom microarray, following the manufacturer‟s instructions (Agilent 

Technologies, UK). The hybridisation reactions were incubated at 65 °C with 10 rpm 

rotation for 17 hours in an Agilent rotary hybridisation oven and then washed with 

Gene Expression Wash Buffers 1 and 2, with a final wash using Stabilisation and 

Drying solution, again following the manufacturer‟s instructions (Agilent Technologies, 

UK). The hybridised microarrays were scanned using an Axon Genepix 4200A scanner 

with Genepix Pro 6.1 image acquisition software (Molecular Devices, UK) using 40 % 

laser power, 5 µm pixel size resolution and auto photo-multiplier tube (auto-PMT) 

function with 0.05 saturation tolerances. The raw microarray images were processed 

using Agilent Feature Extraction (FE) software version 9.5.3.1 that performed feature 

grid alignment, extraction and quantification. The fluorescence intensity results files 

from the FE software were imported into the GeneSpring GX version 12 software 

(Agilent Technologies, UK) for differential gene expression analysis. Data were 

normalised using Lowess normalisation of log2-expression ratios without baseline 

transformation. Features showing low quality according to Agilent quality control 
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metrics were discarded to provide a final feature set for analysis. Details of microarray 

experiments 1 and 2 have been submitted to ArrayExpress and assigned accession 

numbers E-MTAB-1484 (Constitutive expression microarray experiment) and E-

MTAB-1478 (Response to EMB exposure microarray experiment). The recording of 

the microarray experimental metadata complies with Minimum Information About a 

Microarray Experiment (MIAME) guidelines (Brazma et al., 2001). 

3.2.5 RT-qPCR 

To validate gene expression results from microarray experiments, the abundance 

of selected transcripts found to be differentially expressed in microarray analyses was 

determined by reverse transcription quantitative PCR (RT-qPCR). Per experiment, three 

targets that showed stable expression levels in microarray hybridisations were selected 

as reference genes. (Constitutive expression microarray experiment: 60S ribosomal 

protein S20, 40S ribosomal protein L44 and RMD-5 homolog; Response to EMB 

exposure microarray experiment: hypoxanthine-guanine phosphoribosyltransferase 

(HGPRT), RMD-5 homolog and elongation factor 1α). For each target sequence, 

primers were designed with a melting temperature (Tm) of ~60 °C using Primer 3 

software (Appendix 6 and 7). Aliquots (1µg) of total RNA samples previously used in 

microarray analyses were reverse transcribed (Superscript III, Invitrogen, UK) using 

random hexamers and anchored oligo-dT primers in a 3:1 molar ratio. No-template 

controls and controls omitting RT enzyme were included on each assay plate to detect 

potential DNA contamination. A cDNA pool containing equal amounts of all samples 

was made and included on each assay plate, serving as a calibration sample (20-fold 

dilution) and for derivation of a standard curve from serial dilutions. RT-qPCR 

reactions were performed in duplicate in a total volume of 20 µL containing 5 µL 

sample cDNA (20-fold dilution), 0.3 µM of each primer and 10 µL Absolute SYBR 
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Green I mix (ThermoFisher Scientific, UK), using the Mastercycler ep realplex2 

(Eppendorf, UK) with the following amplification conditions: 95 °C for 15 minutes, 

followed by 40 cycles of 94°C for 30 seconds, 15 seconds at the specific primer pair 

annealing temperature (Ta; Appendix 6 and 7) and 72 °C for 30 seconds. After 

amplification a melt curve was generated to ensure that a single product was amplified 

in each reaction. To this end, fluorescence was monitored while heating each sample 

from 55 °C to 95 °C at 0.5 °C increments for 15 seconds each. Threshold cycles were 

analysed using the PCR cycler software. Standard curves were derived from plots of the 

threshold cycle against the logarithm of the relative concentration of cDNA pool. 

Primer efficiency (E) was derived from linear fits to the standard curve according to the 

equation E = 10(-1/slope). The BestKeeper tool (Pfaffl et al., 2004) was employed to 

analyse expression stability of three reference genes and determine a robust BestKeeper 

expression index as a geometric mean for the three reference genes, which was in turn 

used to establish relative gene expression ratios using the ΔΔCt method (Ratio = (Etarget) 

ΔCt target (control – sample) 
/ (Ereference) 

ΔCt reference (control – sample)
) using the Relative Expression 

Software Tool (REST) Multiple Condition Solver (MCS) (Pfaffl, 2001). 

3.2.6 Statistical analysis 

Microarray gene expression data was analysed using GeneSpring GX version 12 

(Agilent Technologies). The analysis of constitutive differential gene expression in 

experiments 1 and 2 used students T-test adapted for samples with unequal variance 

(Welch) using a fold change threshold of 1.3. Multiple testing corrections were not 

applied to any statistical analysis of this gene expression study as this can often be over-

conservative when studying potentially subtle gene expression responses to stimuli 

(Leaver et al., 2008; Morais et al., 2011). This decision is supported by confirmation of 

differential expression by RT-qPCR in the current study. Gene enrichment analysis was 
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performed on lists of features chosen based on differential gene expression patterns 

using default settings of the FuncAssociate 2.0 web application (Berriz et al., 2009). 

Gene enrichment was calculated according to the significance (p < 0.05) of the 

association between the list of features and the GO attributes represented on the 

microarray. Relative expression ratios from RT-qPCR experiments were log 

transformed and tested for normality and equal variance to allow assumptions to be 

satisfied before being subjected to one way ANOVA using MiniTab 16.1 software 

(MiniTab Inc., UK). The significance level was set at 0.05 in all tests. 

3.3 Results 

3.3.1 Experimental design 

Two laboratory-maintained strains of salmon lice were used in the present study. 

Strain S is susceptible to all currently licensed anti-sea louse treatments including EMB, 

while strain PT is moderately resistant to EMB (Figure 3.1) (Heumann et al., 2012). 

Adult male salmon lice were used for the transcriptomic analyses as they are considered 

to provide a more steady physiological state than adult females, which undergo 

considerable morphological change following fertilisation and which are subject to 

repeated cycles of egg production. Salmon lice were collected from host fish 

anaesthetised in 100 mg L
-1

 2-phenoxyethanol and were then allowed to recover in 

aerated seawater for 2 hours before use. 
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In the constitutive expression microarray experiment, RNA expression profiles 

were analysed in lice sampled directly after recovery in order to reveal differences in 

constitutive gene expression between strains. The response to EMB exposure 

microarray experiment investigated the effects of short-term (1 to 3 hours) exposure to 

200 µg L
-1

 of EMB, compared to seawater and carrier controls. In addition to being 

investigated for effects of EMB (see Chapter 4), the data from the response to EMB 

exposure microarray experiment were also analysed with respect to differences in 

constitutive transcript expression between strains. For this purpose, data for the one and 

three hour sea water controls from the response to EMB exposure microarray 

experiment were pooled for each strain in order to obtain the same level of replication 

as used in the constitutive expression microarray experiment (n = 6 biological 

replicates, i.e. pools of four L. salmonis). This pooling of control data was regarded as 

justified, as we had previously observed that exposure of salmon lice to seawater for up 

to 12 hours after collection from the host has no effect on responses to EMB in water-

borne bioassays (Dr W. Roy, MERL, personal communication). 
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Figure 3.1 Susceptibility of salmon louse laboratory strains to emamectin 

benzoate (EMB). 

Toxicity of EMB to adult male salmon lice (L. salmonis) from laboratory strains S and PT in 

24 hours immotility bioassays. Symbols represent the immotility response observed in one of 

duplicate beakers of ten individuals included for each combination of strain and treatment. 

Dose-response relationships (solid lines) were established using probit analysis, and yielded 

EC50 values of 73.9 µg L
-1

 (95 % confidence intervals: 58.9 - 92.0 µg L
-1

) for the S strain and 

642.3 µg L
-1

 (642.3 - 957.4 µg L
-1

) for the PT strain. 
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3.3.2 Analysis of differences in constitutive gene expression 

To determine constitutive differences in gene expression between the PT and S 

strains, mRNA expression profiles were analysed in adult male salmon lice sampled in 

February 2012 (Constitutive expression microarray experiment) and May 2011 

(seawater controls of the response to EMB exposure microarray experiment). When 

data from each experiment were analysed, including only features present on both 

microarrays, similar numbers of features were found to be differentially expressed 

between strains in both the constitutive and the response to EMB exposure microarray 

experiments (1,113 and 1,280 features respectively; Figure 3.2). Comparison of these 

two feature lists revealed that only 359 features were reported as being significantly 

differentially expressed between strains in both experiments. Of these, 294 (82 %) 

showed the same direction of strain differences in the two experiments (Figure 3.2) and 

represented 226 genes of which 57 % were annotated. These 226 genes were arranged 

by significance of the expression differences determined in the constitutive expression 

microarray experiment. Genes that were represented in the top 100 most significantly 

differentially expressed transcripts are detailed in Table 3.1, which includes a 

substantial number of cytoskeleton proteins (26 %) and proteases (12 %). 

  



                                                    Chapter 3 – Constitutive gene expression analysis 
 

 

117 

 

Figure 3.2 Comparison of microarray features differentially expressed across 

salmon louse strains between experiments. 

Genes differentially expressed between two salmon lice strains differing in EMB 

susceptibility (S, PT) were determined by microarray analysis in two independent 

experiments. Features that showed differential expression between strains (fold change  

1.3, p < 0.05) were derived for both experiments. The Venn diagram only includes features 

studied in both experiments. 

*A total of 226 genes showed comparable differential expression between salmon louse 

strains in two independent microarray experiments and were therefore selected for further 

analysis of biological function. 
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Table 3.1 Genes showing differential expression between salmon louse strains 

differing in EMB susceptibility. 

Annotated genes (57 %) were sorted by the significance of differential expression between 

strains in constitutive expression microarray experiment and arranged by biological function. 

Features with identical annotation were removed prior to categorising biological function. 

Also indicated is the percentage representation for each functional category in the total 

number of annotated genes (129 genes). 

  



                                                    Chapter 3 – Constitutive gene expression analysis 
 

 

119 

Accession No. Annotation 

Constitutive expression 

experiment 

Response to EMB 

exposure experiment  

Fold 

change 

(PT/S) 

p-value 

Fold 

change 

(PT/S) 

p-value 

Ligand gated ion channel (<1 %) 
    

ADD24187.1 
Neuronal acetylcholine receptor 

subunit alpha-3 
-3.21 7.59E-05 -2.52 4.29E-03 

      Metabolism of xenobiotics (<1 %) 
    

ACO15001.1 Cytochrome P450 3A24 -1.48 1.95E-03 -1.31 4.13E-02 

      Regulation of synapse development (<1 %) 
    

ADD24462.1 Cerebellin-3 -1.86 3.60E-04 -4.91 3.53E-06 

      
Eye lens proteins (<1 %) 

    
ADD38111.1 Beta-crystallin A1 2.33 6.79E-05 1.37 1.35E-02 

      Transporters (2 %) 
    

NP_001116712.1 
Solute carrier family 8 

(sodium/calcium exchanger) 
-2.10 3.63E-04 -4.38 1.74E-05 

EFX88361.1 Alpha subunit of  Na+/K+ ATPase -1.67 2.21E-04 -2.08 5.34E-05 

ACO12613.1 Excitatory amino acid transporter 3 -1.42 1.10E-04 -1.34 4.96E-02 

      Cytoskeleton proteins (26 %) 
    

ADD38332.1 Troponin I -1.77 4.85E-05 -2.61 1.17E-06 

XP_001950563.1 Muscle LIM protein -1.67 1.57E-04 -2.30 1.32E-06 

AAA17371.1 Fast myosin heavy chain -2.11 1.73E-03 -6.23 1.68E-06 

ACO13186.1 Myosin light chain alkali -2.65 1.69E-05 -3.38 8.46E-06 

ACO12924.1 Myosin light chain alkali -2.06 1.16E-05 -3.69 9.66E-06 

ABU41018.1 Collagen alpha-1 chain -1.38 1.51E-03 -6.85 2.61E-05 

EFV61840.1 Smoothelin -1.43 4.03E-04 -1.85 6.25E-05 

ACO12887.1 Troponin T -1.73 1.04E-03 -2.93 8.12E-05 

ADV40202.1 Troponin 1 -1.94 1.87E-03 -2.93 3.23E-04 

AAW22542.1 Myosin light chain -1.76 1.00E-03 -2.23 3.73E-04 

ACO10528.1 Troponin C, isoform 1 -1.91 1.69E-03 -2.22 5.12E-04 

ACO12630.1 Troponin C, isoform 1 -1.61 3.01E-05 -1.51 5.92E-04 

ACO12421.1 Tropomodulin -1.51 1.17E-04 -2.37 1.01E-03 

ACO12794.1 Troponin C, isoform 1 -2.07 6.14E-05 -1.60 2.85E-03 

ACO14751.1 Troponin C, isoform 1 -2.12 4.94E-05 -1.56 4.18E-03 

ACO11818.1 Torso-like protein precursor -1.83 5.11E-05 -1.82 9.67E-03 

ACO11077.1 Troponin C, isoform 1 -1.92 6.27E-05 -1.48 1.56E-02 

      Regulation of actin cytoskeleton (<1 %) 
    

XP_002407362.1 Paxillin -2.79 8.32E-07 -1.48 2.28E-03 

      Calcium transport (<1 %) 
    

NP_001032719.1 
Sarco/endoplasmic reticulum  

calcium transporting ATPase 
-2.15 8.58E-07 -2.46 2.15E-04 

      Calcium binding (1 %) 
    

XP_002734090.1 Calmodulin-like -1.60 6.41E-05 -2.46 3.25E-04 

ACO11757.1 
Sarcoplasmic calcium-binding protein,  

beta chain 
-3.18 2.05E-06 -3.58 1.28E-03 

      Cuticle proteins (4 %)  
    

ADD24515.1 Cuticle protein 6 -2.29 1.79E-03 -12.28 4.75E-04 

ABU41025.1 Cuticle protein -2.57 2.78E-04 -12.91 1.88E-03 

ACO14885.1 Cuticle protein CP14.6 precursor -1.77 7.50E-04 -3.40 4.67E-03 

      Proteolysis (12 %) 
    

ADD38666.1 Matrix metalloproteinase-9 -2.29 1.07E-05 -7.35 1.84E-06 

ADD38283.1 Kunitz/BPTI-like toxin -2.45 5.43E-06 -1.79 2.50E-04 

ABU41053.1 Metalloproteinase -5.61 7.00E-06 -4.38 3.99E-04 

BAG74353.1 Metalloproteinase 14.83 8.20E-05 18.61 4.64E-04 

ACO11096.1 Serine carboxypeptidase CPVL precursor 1.58 2.44E-04 1.36 1.21E-02 

ABU41117.1 Metalloproteinase -2.72 6.62E-05 -1.41 1.82E-02 

AAS91793.1 Intestinal trypsin 2 precursor 7.73 1.90E-06 1.82 2.52E-02 

AAS91795.1 Intestinal trypsin 4 precursor 1.48 6.69E-04 1.42 2.79E-02 
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Enrichment analysis of the 294 features resulting from comparison of expression 

between strains was performed with respect to the gene ontology (GO) annotation 

representation on the microarray. Nine GO attributes were found to be significantly 

over-represented (Table 3.2), with calcium ion binding, structural constituent of muscle 

and actin binding being shown to be the most significantly over-represented GO terms. 

To confirm findings from microarray analyses, transcript abundance was analysed for a 

sub-set of significantly differentially expressed genes using RT-qPCR. Genes were 

selected on the basis of potential significance as pharmacological targets of EMB 

(GABA-Cl subunit alpha and neuronal acetylcholine receptor subunit α3), or 

detoxification mechanisms (cytochrome P450 isoforms, carboxylesterase). Maltase-

glucoamylase was further included because of its high level of differential expression 

(105-fold) between salmon louse strains. RT-qPCR analysis found that transcripts of 

nAChR α-3 were ~3.1-fold and ~2.6-fold less abundant in the PT than the S strain in 

experiments 1 and 2 respectively, which confirmed trends observed in the microarray 

analyses (Table 3.3). Similarly, RT-qPCR demonstrated that PT lice showed 

significantly lower levels of GABA-Cl α-subunit mRNA expression compared to the S 

strain (1.4-fold and 1.6-fold in experiments 1 and 2, respectively; Table 3.3), although 

differences were marginal. Isoforms of cytochrome P450 and carboxylesterase, i.e. 

enzymes potentially involved in detoxification, were found to show higher mRNA 

expression levels in the PT compared to the S strain in the constitutive expression 

microarray experiment, but not in the response to EMB exposure microarray 

experiment. Transcript levels of maltase-glucoamylase were much lower in PT than S 

lice in constitutive expression microarray, whereas in the response to EMB exposure 

microarray experiment the mRNA expression was moderately increased in PT 

compared to S lice (Table 3.3).  
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Table 3.2 Enrichment of GO classes in the list of features showing differential 

expression between salmon louse strains. 

GO attribute ID GO attribute name LOD1 adjusted p-

value2 

GO:0005509 Calcium ion binding 0.82 < 0.001 

GO:0008307 Structural constituent of muscle 1.25 < 0.001 

GO:0003779 Actin binding 0.79 < 0.001 

GO:0003774 Motor activity 0.92 < 0.001 

GO:0008061 Chitin binding 0.87 < 0.001 

GO:0000146 Microfilament motor activity 1.18 0.006 

GO:0008474 Palmitoyl-(protein) hydrolase activity 2.00 0.012 

GO:0016290 Palmitoyl-CoA hydrolase activity 2.00 0.012 

GO:0004099 Chitin deacetylase activity 1.31 0.037 

1
LOD is the Log10 of the GO attribute representation ratio (query list: entire gene entity list) 

2
The p-value is adjusted using 1000 null hypothesis simulations to test that the attribute 

single t-test p-value is significant (Adjusted p-value < 0.05). 
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Table 3.3 Gene expression measured by RT-qPCR in salmon lice from two strains differing in EMB susceptibility. 

For selected genes, mRNA expression was measured in salmon lice from two strains differing in EMB susceptibility (see Figure 1 for information on 

strains), results compared to findings obtained in microarray analyses. Significance (p < 0.05) assessed by t-test (Welch) for microarray analysis and one-

way ANOVA for RT-qPCR analysis. Fold changes ≥ 1.3 are underlined. 

Accession No. Annotation 

Constitutive expression microarray experiment Response to EMB exposure microarray experiment 

Microarray RT-qPCR 
Pearson 

correlation 
Microarray RT-qPCR 

Pearson 

correlation 

p-value 

Fold 

change 

(PT/S) 

p-value 

Fold 

change 

(PT/S) 

r p-value p-value 

Fold 

change 

(PT/S) 

p-value 

Fold 

change 

(PT/S) 

r p-value 

ADD24187.1 
Neuronal acetylcholine 

receptor subunit α3 
7.59E-05 -3.21 0.000 -3.08 0.93 

<0.000

1 
4.29E-03 -2.52 0.009 -2.64 0.89 0.0001 

EFN73916.1 
GABA receptor subunit 

alpha 
NS -1.19 0.015 -1.35 N/A N/A 2.05E-04 -1.75 0.005 -1.56 0.89 0.0001 

XP_003494528.1 Cytochrome p450 18a1 3.42E-08 3.34 0.000 3.14 0.95 
<0.000

1 
N/A N/A NS 1.00 N/A N/A 

AAS13464.1 Cytochrome p450 15a1 8.93E-04 2.14 0.000 1.82 0.95 
<0.000

1 
N/A N/A NS 1.09 N/A N/A 

NP_001136104.1 Carboxylesterase 1.13E-04 1.38 0.041 1.21 0.65 0.02 NS 1.12 NS 1.12 N/A N/A 

XP_797271.2 Maltase-glucoamylase 9.12E-05 -104.50 0.000 -194.85 0.99 
<0.000

1 
7.10E-03 1.72 0.017 2.00 N/A N/A 
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3.4 Discussion 

Using transcriptional profiling in comparative studies of a drug-susceptible and an 

EMB-resistant salmon louse strain, this study demonstrated the reduced constitutive 

mRNA expression of subunits of certain ligand-gated ion channels (LGIC) in the EMB 

resistant strain, namely a GABA-gated chloride channel subunit (GABA-Cl, ~1.4-fold 

decreased) and a neuronal acetylcholine receptor subunit (nAChR α-3; ~2.8-fold 

decreased). The toxicity of EMB and other AVMs against ecdysozoan invertebrates is 

reported to be based mainly on their interaction with another class of LGICs, the GluCls 

(Dent et al., 2000; Kane et al., 2000; Bloomquist, 2003), although GABA-Cls are also 

believed to be pharmacological targets of AVMs (Feng et al., 2002). While nAChRs are 

traditionally not considered to be implicated in the toxic action of AVMs in 

ecdysozoans, they can be allosterically modulated by IVM (Krause et al., 1998). This 

study‟s finding that mRNA levels of GABA-Cl and nAChR subunits are decreased in 

EMB-resistant salmon lice suggests that these LGICs may represent potentially 

additional target sites for AVMs in sea lice. AVM compounds such as EMB may have a 

lower affinity to target sites on these alternative LGICs, leading to a response that is 

tolerable in L. salmonis. The chloride ion influx resulting from such lower binding 

affinity may therefore not be strong enough to elicit nervous impulse disruption in the 

parasite compared to that resulting from normal AVM receptor binding of natural LGIC 

targets. The present study only considered levels of mRNA. Molecular mechanisms 

underlying differential susceptibilities between the studied strains could also include 

post-transcriptional regulatory mechanisms, such as mRNA processing and degradation, 

translation and protein degradation (Vogel and Marcotte, 2012); however, investigation 

of these factors lay outside the scope of the present study. Additionally, should reduced 

L. salmonis EMB susceptibility result from coding region mutations of genes 
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responsible for target LGICs or detoxification enzymes that do not lead to gene 

expression changes, then these mechanisms will not be detected using a transcriptomic 

approach (Beech and Silvestre, 2010). 

The experimental design used during this study included the measurement of 

constitutive differential gene expression between one drug susceptible and one EMB-

resistant salmon louse strain. The experimental design thus includes only one L. 

salmonis strain for each EMB susceptibility phenotype, which is a significant limitation 

of the study, but reflects the current availability of laboratory strains of L. salmonis in 

our laboratory. Atlantic L. salmonis populations appear to have very little genetic 

variation (Glover et al., 2011) which suggests that differential gene expression changes 

observed in strains S and PT should reflect field L. salmonis populations, although it is 

possible that a genetic bottleneck could have occurred when these strains were 

established (Kramer and Sarnelle, 2008) reducing genetic diversity of strains S and PT. 

Despite the limitation of an experimental design based on a restricted number of drug 

resistant and susceptible pests or parasites, studies using similar designs have succeeded 

in identifying molecular determinants of IVM resistance in mosquitoes (Bariami et al., 

2012) and the nematodes Caenorhabditis elegans (James and Davey, 2009) and 

Teladorsagia circumcincta (Dicker et al., 2011). 

Comparison of transcriptomic profiles for strains S and PT identified reduced 

expression of many transcripts in strain PT compared to strain S which were enriched 

for functions such as calcium ion binding and chitin metabolism. The functions of these 

transcripts show no obvious association with EMB susceptibility but could be related to 

the process of cuticle formation. In terrestrial arthropods, one mechanism of drug 

resistance involves cuticle thickening in order to reduce the penetration of topically 

applied insecticides (Wood et al., 2010; Lin et al., 2012). Such a mechanism is less 
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likely to be involved in reduced EMB susceptibility of L. salmonis strain PT as normal 

EMB exposure in field situations is considered to be through food consumption. An 

alternative hypothesis is that disparity in the expression of genes involved in calcium 

binding and chitin metabolism reflects strain differences in growth rate and metabolism. 

Drug resistance mechanisms often include the reallocation of metabolic resources to 

detoxification mechanisms, which often has associated fitness costs (Kliot and Ghanim, 

2012). It could be possible that strain PT salmon lice have reduced metabolic rates to 

compensate for the fitness costs associated with reduced drug susceptibility, resulting in 

the reduced mRNA levels of various transcripts associated with metabolic homeostasis 

that were found in the current study. Alternatively, the finding of differential expression 

between strains of genes with roles in calcium ion binding and chitin metabolism may 

suggest there was a problem with synchronisation of the cohorts of the strains used in 

the current study. Crustaceans undergo moulting cycles (ecdysis) throughout their 

lifecycle that involves physiological changes where the cuticle is replaced. This requires 

considerable gene expression changes before and after ecdysis to facilitate the 

resorption of old cuticle and generation of new cuticle (Terwilliger et al., 2005; 

Stillman et al., 2008; Seear et al., 2010b). Adult male salmon lice that had completed 

the final moult were used in the current study to limit the amount of moulting related 

gene expression changes, although it is difficult to accurately determine when 

individual L. salmonis have completed their last moult. The adult male salmon lice used 

in this study will have recently developed into adults; therefore a considerable amount 

of the genes relating to cuticle turnover that show differential expression may be 

associated with post-moult growth and cuticle thickening that occurs as these adult 

salmon lice mature. These gene expression changes may have been avoided through 

sampling the lice at later stages of development at which point the adults should have 
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completed any post-moult maturation. It may be possible that random differences in 

salmon louse development may have contributed to the differences in gene expression 

profiles observed between strains S and PT. In order to mitigate potential random 

effects, differences in constitutive gene expression between strains S and PT were 

analysed for data generated from two experiments. The salmon louse sampling time, 

after removal from the salmonid host, differed slightly between these two experiments 

(2 h in constitutive expression microarray experiment, 3-5 h in „response to EMB 

exposure‟ experiment). While previous bioassay data does suggest that this difference 

in sampling time would have a negligible influence on EMB susceptibility, analysis of 

the „response to EMB exposure‟ experiment (Chapter 4) indicates that time may be a 

significant factor affecting gene expression. This discrepancy in sampling time may 

therefore account for some of the differences found between these two experiments 

when comparing microarray features that were differentially expressed across salmon 

louse strains (Figure 3.2). Similarly, as salmon lice were sampled in February and May 

for constitutive expression and EMB exposure microarray experiments respectively, the 

seasonal difference in sea water temperature may also have an influence on the 

differential gene expression observed between the experiments. 

AVMs are used against parasitic and pest species of ecdysozoans including 

nematodes, insects and mites, and more recently crustaceans. While the molecular 

target sites of AVMs in crustaceans are unknown, GluCls are generally considered to be 

the main pharmacological targets of IVMs in nematodes and insects (Cully et al., 1994; 

Cully et al., 1996). Consistent with the role of GluCl as the main target of AVMs, IVM-

resistant strains of invertebrates can show mutations changing the expression levels or 

the peptide sequence of channel subunits (Dent et al., 2000; Kane et al., 2000). A 

GluCl subunit has been cloned in L. salmonis (Tribble et al., 2007b) and while 
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GluCl was represented amongst the microarray targets used for this study, no 

difference in mRNA expression was observed between salmon lice of the two studied 

strains. 

In addition to GluCl, further LGICs are known to interact with AVMs. For 

instance, IVM modulates the activity of nematode GABA-Cl (Feng et al., 2002), and 

can exert direct activating or potentiating effects on vertebrate glycine-gated chloride 

channels (Shan et al., 2001). Moreover, AVMs can modulate the activity of cation-

LGICs such as the α-7 nAChR (Krause et al., 1998) and the ATP-gated P2X4 receptors 

(Silberberg et al., 2007). A number of observations involving drug-resistant insects and 

nematodes support the hypothesis that LGICs other than GluCl constitute further 

toxicologically relevant targets of AVMs in invertebrates. Cyclodiene-resistant fruit 

flies having a single amino acid mutation in a GABA-Cl showed a moderate degree of 

cross-resistance to IVM (Kane et al., 2000). A null mutation in a histamine-gated 

chloride channel also conferred moderate IVM resistance in Drosophila melanogaster 

(Yusein et al., 2008), and a novel dopamine-gated ion channel (HcGGR3) was 

significantly down-regulated in an AVM-selected strain of the nematode Haemonchus 

contortus (Rao et al., 2009). The observation in this study that EMB-resistant salmon 

lice show decreased mRNA levels of nAChR and GABA-Cl is consistent with findings 

in the literature cited above, and suggests a role for nAChR and GABA-Cl as potential 

additional pharmacological targets of EMB in salmon lice. It is worth noting in this 

context that observed changes in nAChR expression could also relate to previous 

exposure of PT lice to compounds interfering with cholinergic neurotransmission such 

as the organophosphate (OP) anti-sea louse drug azamethiphos (Burridge et al., 2010). 

However, decreases in nAChR expression are not among typical molecular responses 

associated with OP resistance in insects (ffrench-Constant et al., 2007; Labbé et al., 
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2007). While decreased expression of nAChR has been observed in nematodes resistant 

to imidazothiazoles and other drugs that directly target nAChR channels (Beech et al., 

2011), these are classes of compound that have not been used against sea lice. 

Apart from modifications of the molecular targets, biocide resistance in pests and 

parasites can result from increased elimination of the chemical as a result of up-

regulation of biotransformation enzymes and/or drug transporters. The superfamily of 

cytochrome P450s (CYPs) contains heme-thiolate proteins that function as 

monooxygenases, many of which are involved in drug metabolism (Nerbert and 

Gonzalez, 1987; Bernhardt, 1995). CYPs play important roles as chemical resistance 

genes in insects (ffrench-Constant et al., 2007; Heckel, 2012), but their roles in the 

biochemical defence against toxicants in crustaceans are less well understood. The 

microarrays used in the present study included probes representing a number of target 

sequences that are annotated as CYPs (Constitutive microarray experiment: 18 probes; 

response to EMB exposure microarray experiment: 14 probes). These partial L. 

salmonis CYP sequences could not be unequivocally attributed to specific CYP 

families, as this would require establishing the overall degree of amino acid similarity 

to CYP family members (Nelson, 1998). However, based on BLASTx annotation (e-

values of ≤ 10
-7

), most of these sequences could be provisionally allocated to CYP 

clans, which are higher-order groupings that combine phylogenetically related CYP 

families (Nelson, 1998) (Clan 2: 6 sequences; clan 3: 5 sequences; mitochondrial clan: 

3 sequences). Two targets showing similarity to CYP15A1 and CYP18A1 (both clan 2) 

differed in mRNA expression in L. salmonis from the constitutive expression 

microarray experiment, but not the response to EMB exposure microarray experiment. 

Moreover, compared to the EMB susceptible strain a target showing similarity to 

CYP3A24 (clan 3) had lower expression levels in the EMB resistant strain, with a 
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moderate (1.48-fold) difference in transcript abundance found between the strains. In 

insects, CYP15A1 is involved in juvenile hormone synthesis (Helvig et al., 2004), 

whereas CYP18A1 functions to inactivate ecdysteroids (Guittard et al., 2011). 

Crustaceans possess homologues to both these clan 2 CYPs (Baldwin et al., 2009), but 

little is known of their function. In the green shore crab (Carcinus maenas) expression 

levels of two CYPs from clan 2 were affected by both the moulting cycle and previous 

exposure to xenobiotics (Dam et al., 2008). The differences in CYP mRNA levels 

found in this study were relatively small and/or variable between experiments and 

therefore do not provide clear evidence for an involvement of CYPs in the differential 

EMB susceptibility found in the salmon louse strains that were studied. 

Carboxylesterases are another class of enzymes that can confer insecticide 

resistance (ffrench-Constant et al., 2007). In this study, the expression of one 

carboxylesterase was moderately enhanced in EMB-resistant salmon lice in the 

constitutive expression microarray experiment, but no significant differences in 

expression were observed between strains in the response to EMB exposure microarray 

experiment. Accordingly, the data provides no evidence for a role of carboxylesterase in 

EMB resistance of salmon lice. 

ABC proteins are a family of membrane bound transporters mediating the 

transport of a diverse array of substrates across biological membranes (Jones et al., 

2009). Certain ABC proteins are drug efflux transporters located in the cell membrane, 

and have roles in the biochemical defence against toxicants (Leslie et al., 2005). The 

ABC transporter P-glycoprotein transports IVM (Bain and LeBlanc, 1996) and has 

relevance as a biochemical factor limiting the drug‟s toxicity in mice and nematodes 

(Schinkel et al., 1994; James and Davey, 2009). It has been suggested that P-

glycoprotein could be implicated in the resistance of pests and parasites to AVMs 
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(Lanning et al., 1996b; Xu et al., 1998; Ardelli et al., 2006), and a salmon louse 

homologue of P-glycoprotein called SL-PGY1 has been cloned (Heumann et al., 2012). 

In the present study, mRNA expression of SL-PGY1 did not differ between S and PT 

strains (data not shown), confirming similar data previously reported for these strains 

(Heumann et al., 2012). 

Conclusions  

The profiling of constitutive transcription in drug susceptible and EMB resistant 

laboratory strain of salmon lice revealed reduced mRNA expression of a number of 

LGIC subunits in the EMB resistant lice. GluCl, considered to be the major target site 

of AVM drugs in ecdysozoan invertebrates, displayed similar mRNA expression levels 

in EMB-resistant and reference strains. In contrast, subunits of GABA-Cl and nAChR 

showed decreased mRNA abundances in the EMB resistant compared to the reference 

strain. While GABA-Cl is considered a secondary target of AVMs in invertebrates, 

nAChR is not traditionally considered a target site for AVMs, even though it has been 

shown to interact with AVMs in vertebrates. It is possible that nAChR and GABA-Cl 

represent additional EMB target sites in salmon lice, and that the down-regulation of 

these channel subunits in this EMB-resistant strain could be related to the resistance 

phenotype. In the present study no changes were seen in the expression levels of 

biotransformation enzymes and drug transporters, both of which classes have been 

suggested to contribute to AVM resistance in other species. Further studies are needed 

to investigate potential relationships between the transcriptional changes observed and 

the susceptibility phenotype. 
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4.1 Introduction 

A variety of chemical compounds have been developed for the control of 

undesired invertebrate species from the nematoda and arthropoda phyla (Yu, 2008). The 

emergence of resistance to antiparasitic agents has become a major issue for the control 

of ecdysozoans with medicinal, veterinary and agricultural importance. As the 

antiparasitic compounds currently available only interact with a limited number of 

molecular targets, there is a high likelihood of resistance development unless treatment 

frequency is not closely controlled (ffrench-Constant et al., 2004; Labbé et al., 2007; Li 

et al., 2007; Bass and Field, 2011; Heckel, 2012). Accordingly, exposure of successive 

parasite generations to a toxin can lead to the selection of rare genetic mutations that 

confer improved fitness upon exposure. In parasite species with short generation times 

and extensive offspring production, the development of resistance is enhanced under 

conditions of persistent chemical selection (Wolstenholme et al., 2004). 

AVM resistant in insects can involve the enhanced activity of detoxification 

enzymes such as Cytochrome P450 monooxygenase (CYP) (Schmidt et al., 2010; Liu et 

al., 2011; Tao et al., 2012) and carboxylesterase (Raymond et al., 1998; Hawkes and 

Hemingway, 2002; Cui et al. 2006) and/or increased activity of ATP Binding Cassette 

(ABC) proteins (James and Davey, 2009), which include membrane bound transporters 

that move structurally and functionally different compounds across membranes. Drug 

resistance mechanisms in pests and parasites that are based on increased activity of 

detoxification pathways can involve constitutive changes in gene expression, and/or 

implicate gene regulation in response to exposure to the drug (Li et al., 2007). It has 

been demonstrated that CYP gene expression is induced by pyrethroid insecticide 

exposure of the mosquito Culex quinquefasciatus (Komagata et al., 2010; Liu et al., 

2011) and Aedes aegypti (Poupardin et al., 2008) in addition to constitutive 



                                         Chapter 4 – Transcriptomic responses to EMB exposure 
 

 

133 

overexpression of CYP genes, suggesting that both mechanisms may be involved in 

insecticide detoxification. In the phytophagous insect Helicoverpa zea plant 

allelochemical exposure can induce CYP gene expression (Li et al., 2002), with these 

genes being capable of metabolising both plant allelochemicals and insecticides (Li et 

al., 2004; Sasabe et al., 2004). There is also evidence that exposure of the cotton 

bollworm Helicoverpa armigera to the phytotoxin gossypol and pyrethroid insecticide 

deltamethrin induces similar CYP gene expression profiles (Tao et al., 2012). 

Glutathione-s-transferase and esterase detoxification enzymes have also been found to 

be involved in the tolerance of insect pests to plant allelochemicals, but are also often 

implicated in cases of insecticide resistance (Li et al., 2007). 

In the nematodes Caenorhabditis elegans (James and Davey, 2009) and 

Haemonchus contortus (Prichard and Roulet, 2007) exposure to ivermectin (IVM) has 

been shown to induce the overexpression of P-glycoprotein (P-gp) ABC transporters. It 

has also been reported that exposure of Lepeophtheirus salmonis to emamectin 

benzoate (EMB) can induce increased expression of P-gps (Tribble et al., 2007a; 

Igboeli et al., 2012; Igboeli et al., 2013). These studies would suggest that P-gp may be 

an important mechanism in resistance of L. salmonis to avermectin compounds, 

although other studies were unable to confirm this (Heumann et al., 2012) indicating 

that other mechanisms may be involved in reduced avermectin susceptibility of the 

salmon louse. 

Chapter 3 of this thesis analysed constitutive differences in the transcriptomic 

profiles between one moderate EMB-resistant and one drug susceptible strain of L. 

salmonis in order to understand the differences in EMB between these strains. The main 

objective of this thesis chapter is to investigate transcriptomic responses to EMB 

treatment in the same L. salmonis strains. A global transcriptomic approach similar to 
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that used in Chapter 3 was followed in the current study to measure mRNA responses 

of drug susceptible and moderately (~7-fold) EMB resistant L. salmonis laboratory 

strains to short-term EMB exposure. It is hoped that the results of this study will help 

unravel the complex interactions that may be responsible for reduced EMB 

susceptibility in L. salmonis. 

4.2 Materials and methods 

4.2.1 Salmon louse strains 

Two laboratory-maintained L. salmonis strains (S and PT) differing in 

susceptibility to EMB (Heumann et al., 2012), were used in this study. For more 

information on these strains please see the materials and methods section in Chapter 2 

of this thesis. 

4.2.2 Salmon louse exposure experiments 

Adult male salmon lice were collected from anaesthetised host fish as described 

in Chapter 2 and allowed to recover for 2 hours in aerated filtered seawater at ambient 

sea temperature. On the basis of results from salmon louse acute toxicity assays 

described in Chapter 3, a concentration of 200 µg L
-1

 EMB was selected for short-term 

exposure experiments (1 and 3 hour) performed to investigate EMB effects on transcript 

expression profiles. An EMB concentration of 200 µg L
-1

 results in > 95 % immotility 

in S lice after 24 hours but has no apparent effects in PT lice (See Figure 3.1, Chapter 

3). In addition, previous studies investigating the time course of EMB action revealed 

that the first toxic responses in the S strain became apparent after 6 hours of exposure 

(Data not shown). In view of these findings it was argued that if EMB tolerance in the 

PT strain required transcriptional regulation in response to drug exposure, then these 

should be detectable at early time points, and 1 and 3 hour exposure times were 

subsequently selected for this study. In addition to EMB treatments, the experiment 
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comprised seawater and solvent (0.01 % (v/v) PEG300) controls (Figure 4.1). For each 

combination of strain, exposure period and treatment, three pooled samples consisting 

of four salmon lice each were collected and preserved in an RNA stabilisation solution 

(4.54 M ammonium sulphate, 25 mM trisodium citrate, 20 mM EDTA, pH 5.4) prior to 

storage at -70 °C. None of the treatments had effects on louse motility. At the end of the 

experiment (3 hours), water samples were taken and sent to a commercial laboratory 

(Eclipse Scientific, Chatteris, UK) for EMB residue analysis (liquid chromatography 

with detection by MSMS). The measured EMB concentration in the nominal 200 µg L
-1

 

EMB treatment was 99.5 ± 5.2 µg L
-1

 EMB. This depletion of solubilised active 

ingredient may be attributed to EMB adsorption to the glass containers used for 

exposure assays (Helgesen and Horsberg, 2013b). 

 

Figure 4.1 Design of microarray experiment. 

Microarray analysis was used to measure transcriptomic profiles in drug-susceptible (S) or 

EMB resistant salmon louse strains (PT). Salmon lice were removed from hosts and then 

subjected to exposure of seawater containing 200 µg L
-1

 of EMB for 1 or 3 hours before 

sampling. Control treatments included exposures to seawater, or seawater containing the 

carrier PEG300, which was used to solubilise EMB. The number of pools of four salmon lice 

sampled for each combination of treatment and strain is given as n. 

  



                                         Chapter 4 – Transcriptomic responses to EMB exposure 
 

 

136 

4.2.3 RNA extraction and purification 

In microarray and RT-qPCR experiments, samples comprised pools of four adult 

male salmon lice. Total RNA was extracted and purified from these samples, then 

assessed for purity and quantified, as described in detail in Chapter 2 of this thesis. 

4.2.4 Microarray analyses 

The protocols used in this chapter for generating amplified RNA (aRNA), test 

sample and common reference pool labelling with mono-reactive dyes (cyanine 3 (Cy3) 

and Cy5 respectively), and microarray hybridisation and washing are described in detail 

in Chapter 3 of this thesis. Similarly, microarray image capture and processing and 

GeneSpring analysis are also described in Chapter 3. Functional annotation of the genes 

found to be differentially expressed upon EMB exposure of L. salmonis was performed 

using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) as detailed in Chapter 

2 of this thesis. Details of these microarray experiments have been submitted to 

ArrayExpress and assigned accession number E-MTAB-1478. The recording of the 

microarray experimental metadata complies with Minimum Information About a 

Microarray Experiment (MIAME) guidelines (Brazma et al., 2001). 

4.2.5 RT-qPCR 

To validate gene expression results from microarray experiments, the abundance 

of selected transcripts found to be differentially expressed in microarray analyses was 

determined by reverse transcription quantitative PCR (RT-qPCR). Three targets that 

showed stable expression levels in microarray hybridisations were selected as reference 

genes. (Hypoxanthine-guanine phosphoribosyltransferase (HGPRT), Required for 

meiotic nuclear division 5 (RMD-5) homolog and Elongation factor 1α). For each target 

sequence, primers were designed with a melting temperature (Tm) of ~60 °C using 

Primer 3 software (Appendix 6 and 8). Total RNA samples previously used in 
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microarray analyses were reverse transcribed and analysed in RT-qPCR reactions as 

detailed in Chapter 3 of this thesis. Similarly, relative gene expression ratios were 

established using the ΔΔCt method as detailed in Chapter 3. 

4.2.6 Statistical analysis 

The analysis of EMB induced differential gene expression employed three-way 

ANOVA to compare the effects of the factors salmon louse strain, exposure time and 

treatment on transcript expression. Multiple testing corrections were not applied to any 

statistical analysis of this gene expression study for the reasons detailed in Chapter 3 of 

this thesis. Hierarchical clustering of entities and conditions using normalised intensity 

values was performed using the GeneSpring GX version 12 software (Agilent 

Technologies, UK) and employed Euclidean similarity measure and Wards linkage rule. 

Principal component analysis (PCA) of experimental conditions using four components 

was also performed using the GeneSpring software. Network analysis of the gene 

expression data was performed using the BioLayout Express
3D

 application 

(Theocharidis et al., 2009). A network graph was constructed using the Pearson 

correlation coefficient (threshold of 0.94) to determine similarities between expression 

profiles, which were then arranged into groups of features with similar profiles using 

the Markov clustering algorithm (MCL) with the default inflation setting (2.2) for 

optimal clustering. Gene enrichment analysis was performed on lists of features chosen 

based on differential gene expression patterns using default settings of the 

FuncAssociate 2.0 web application (Berriz et al., 2009). Gene enrichment was 

calculated according to the significance (p < 0.05) of the association between the list of 

features and the GO attributes represented on the microarray. Relative expression ratios 

from RT-qPCR experiments were tested for normality and equal variance and log 

transformed to allow assumptions to be satisfied before being subjected to one way 
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ANOVA using MiniTab 16.1 software (MiniTab Inc., UK). The significance level was 

set at 0.05 in all tests. 

4.3 Results 

4.3.1 Effects of short-term exposure to EMB on transcript profiles in 

salmon lice 

Three-way ANOVA of the microarray expression data from the EMB response 

microarray experiment showed that of the total number of features that passed quality 

filtering (n = 10,804), a large proportion (55 %) was affected by the factor strain. In 

contrast, the factor treatment had a comparatively small influence on gene expression 

(Table 4.1). 

Table 4.1 Numbers of differentially expressed features identified by 

microarray analysis. 

Experimental factor 
Number of 

features 

Strain 5940 (55 %) 

Treatment 369 (3 %) 

Time 968 (9 %) 

Strain x Treatment 406 (4 %) 

Strain x Time 950 (9 %) 

Time x Treatment 1309 (12 %) 

Strain x Treatment x Time 1701 (16 %) 

Significance (p-value < 0.05) assessed by three-way ANOVA. Also indicated is the 

percentage of the total number of features (10,804) used in the analysis. 

Following hierarchical clustering of the normalised expression values for this list 

of features, the group of samples from strain S clustered together distinctly from those 

of the PT strain (Figure 4.2). Relatively little gene expression profile variation was 

observed among samples from strain PT regardless of exposure. Within strain S, the 

transcriptomic profiles of salmon lice from strain S that were exposed to seawater for 3 

hours (S,SW,3H) and EMB for 1 hour (S,EMB,1H) clustered separately from the other 
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treatment groups within this strain (Figure 4.2). Principal component analysis (PCA) 

identified two main principal components explaining 51.2 % and 10.3 % of the 

variation, respectively. The results from PCA confirmed the findings from the 

hierarchical clustering, with the different groups of PT lice grouping together in the 

PCA scatter plot, whereas within strain S the group exposed to EMB for one hour were 

positioned in the PCA scatter plot relatively far away from the other groups (Figure 

4.3). 
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Figure 4.2 Hierarchical clustering of features significantly affected by EMB exposure. 

A. Hierarchical clustering of the 2,020 microarray features displaying significant differential expression in response to EMB exposure or through the 

interaction of EMB treatment with the other factors analysed. Hierarchical clustering was performed on both conditions and entities. 

B. Enlarged view of the hierarchical cluster map showing treatment group clustering.
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Figure 4.3 Principal component analysis (PCA) of features significantly 

affected by EMB exposure. 

PCA of the 2,020 microarray features displaying significant differential expression in 

response to EMB exposure or through the interaction of EMB treatment with the other factors 

analysed. 
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To confirm these microarray results, transcript abundances were determined by 

RT-qPCR for six selected genes. Genes were selected so as to include a number of 

qualitatively different expression profiles, detectable fold-changes and selected 

candidate genes (-aminobutyric acid gated chloride channel (GABA-Cl) and neuronal 

acetylcholine receptor α3 (AChR-α3) subunits) (Figure 4.4). A high degree of 

correlation was observed between expression values measured by both methods 

(Pearson correlation coefficients (r) of 0.71 to 0.99; p < 0.0001) (Table 4.2). To further 

investigate the effects of EMB exposure, a list of those features that were significantly 

affected by EMB treatment or for which significant interactions between treatment and 

other factors were observed (treatment × strain; treatment × time; treatment × strain × 

time) was compiled. This list comprised a total of 2,020 features, of which at least 35 % 

of those which could be matched to KEGG hits by BLASTx, were involved in 

metabolism (Figure 4.5). 
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Figure 4.4 Gene expression responses at early time points of exposure to 

EMB. 

Relative expression ratios (RER) measured by microarray and RT-qPCR analysis of S and 

PT salmon louse strains (graphs displayed side by side) after 1 and 3 hours exposure to 200 

µg L
-1

 EMB, seawater (SW), or the solvent PEG300 (SOL). Data are Log2 RER ± SE (n = 3). 
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Table 4.2 Correlation of relative expression ratios measured using 

microarray and RT-qPCR. 

Accession No. Annotation r p-value 

NP_001136346.1 Cuticular protein  0.99 <0.0001 

BAG74353.1 Metalloproteinase 0.99 <0.0001 

ADD24462.1 Cerebellin-3  0.96 <0.0001 

AAS91796.1 Intestinal trypsin 5 precursor  0.94 <0.0001 

ADD38289.1 Gamma-crystallin A  0.77 <0.0001 

ADD38711.1 Neuronal acetylcholine receptor subunit α3 0.71 <0.0001 

Pearson correlation (r) of relative expression ratios (RER) calculated using L. salmonis 15K 

oligo microarray and RT-qPCR analysis. Correlation was calculated using 36 test samples. 

(Significance p < 0.05). 
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Figure 4.5 KEGG functional classification of genes differentially expressed on exposure of salmon lice to EMB. 

Metabolism 

Human Diseases 

Genetic Information 
Processing 

Cellular Processes 

Environmental 
Information Processing 

Metabolism 

Human Diseases 

Genetic Information Processing 

Cellular Processes 

Environmental Information Processing 

Digestive System 

Immune System 

Nervous System 

Circulatory System 

Endocrine System 

Excretory System 

Environmental Adaptation 



                                         Chapter 4 – Transcriptomic responses to EMB exposure 
 

 

146 

Transcript abundance profiles for the 2,020 features were further subjected to 

network clustering using the BioLayout Express
3D

 application (Theocharidis et al., 

2009). This resulted in the resolution of 59 clusters with a minimum cluster size of four 

features. The two main clusters 1 and 2 contained 418 and 62 features, respectively, that 

showed fold changes > 1.3 across all conditions (Figure 4.6 A & B). Within the two 

clusters, expression profiles were characterised by pronounced responses in S lice 

following 1 h of EMB exposure (down-regulation in cluster 1, up-regulation in cluster 

2), and a full or partial return to basal expression levels after 3h of EMB exposure. 

Moreover, for genes in both clusters, few if any responses to EMB exposure were 

observed in the PT strain. 

The most significantly differentially regulated genes from cluster 1, and the 

responses to EMB exposure in both salmon louse strains are summarised in Additional 

file 4.1. An analogous selection of genes from cluster 2 is provided in Additional file 

4.2. Genes in cluster one include the GABA-Cl and nAChR α-3 subunits which are 

potential targets for EMB, with nAChR α-3 also having been identified as constitutively 

differentially expressed between salmon louse strains. Genes in cluster two included a 

glutathione-S-transferase isoform and a nAChR α-3 precursor. Enrichment analysis of 

the features in cluster one is detailed in Table 4.3, showing significant over 

representation of twelve and under representation of four GO attributes. Chitin binding, 

calcium ion binding and hydrolase activity were the most significantly over-represented 

attributes and nucleic acid binding was identified as the most significant under 

represented attribute. KEGG functional analysis also shows a high representation of 

cytoskeleton proteins in cluster 1 (Figure 4.7), whereas proteins involved in protein 

digestion and absorption were the largest group identified in cluster 2 (Figure 4.8). 
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Figure 4.6 Relative expression profiles for the features in network clusters one 

(A) and two (B). 

A total of 418 (cluster 1) and 62 (Cluster 2) features (fold change ≥ 1.3 in S strain) were 

clustered using network analysis. The similarity of expression profiles were measured using 

the Pearson correlation coefficient and clustered using the Markov clustering algorithm 

(MCL). 
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Table 4.3 Enrichment of GO classes among features of network cluster 1. 

GO Attribute ID GO Attribute Name LOD 
Adjusted 
p-value 

GO:0008061 Chitin binding 0.95 < 0.001 

GO:0005509 Calcium ion binding 0.64 < 0.001 

GO:0016810 
Hydrolase activity, acting on carbon-nitrogen (but 

not peptide) bonds 
1.03 < 0.001 

GO:0042302 Structural constituent of cuticle 0.87 0.001 

GO:0005201 Extracellular matrix structural constituent 1.08 0.001 

GO:0050998 Nitric-oxide synthase binding 1.40 0.002 

GO:0019894 Kinesin binding 1.16 0.006 

GO:0005471 ATP:ADP antiporter activity 2.32 0.016 

GO:0048407 Platelet-derived growth factor binding 2.32 0.016 

GO:0004099 Chitin deacetylase activity 1.28 0.019 

GO:0004017 Adenylate kinase activity 1.07 0.02 
GO:0019205 Nucleobase, nucleoside, nucleotide kinase activity 1.04 0.022 

GO Attribute ID GO Attribute Name LOD 
Adjusted 

p-value 

GO:0003676 Nucleic acid binding -1.13 < 0.001 

GO:0003677 DNA binding -0.82 0.002 

GO:0003723 RNA binding -0.97 0.005 

GO:0005515 Protein binding -0.41 0.007 
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Figure 4.7 KEGG functional classification of genes of network cluster 1. 
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Figure 4.8 KEGG functional classification of genes of network cluster 2. 
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4.4 Discussion 

In the present study, transcriptomic responses of salmon louse strains S and PT to 

short term (1-3 h) aqueous exposures to 200 µg L
-1

 of EMB were investigated. Longer 

exposure (24 h) to this drug concentration does not induce behavioural signs of toxicity 

in the moderately EMB-resistant PT strain, but results in close to 100 % immotility of 

L. salmonis from the drug-susceptible S strain. Following short term exposures, a 

number of transcriptional responses to the treatment were observed in lice from strain S, 

but few transcriptional changes were found in lice from the PT strain. While the 

possibility exists that EMB exposure might provoke more pronounced transcriptomic 

responses in PT lice at later time points, differential behavioural responses to toxicity of 

EMB between the louse strains is observable as early as 5 hours post-exposure (data not 

shown). This suggests that, at this time point at least, some of the mechanisms 

responsible for EMB resistance will be expressed in strain PT. Accordingly, should 

EMB resistance of this strain involve transcriptional changes that are expressed 

constitutively or in response to drug exposure; such changes were expected to be 

detectable at the short term exposure endpoints selected. Chapter 3 of this thesis 

investigated constitutive changes in L. salmonis strain PT compared to strain S and 

therefore does not provide evidence of a role for classical resistance mechanisms that 

require transcriptional regulation in response to EMB exposure which were investigated 

during the current study. 

At the time of this study, the PT strain had been maintained in the laboratory for 

~3 years without EMB selection, and over this time period had displayed moderate but 

stable (~7-fold) EMB resistance. The strategy employed, which seeks to identify global 

transcriptomic responses only considers changes in mRNA levels. As noted in Chapter 

3, the EMB induced molecular mechanisms that may be responsible for reduced 
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susceptibility of PT salmon lice could involve changes in gene expression due to post-

transcriptional regulatory mechanisms, such as mRNA processing and degradation, 

translation and protein degradation (Ménez et al., 2012; Vogel and Marcotte, 2012). 

Additionally, molecular mechanisms may have evolved in PT salmon lice to enable a 

moderate (~7-fold) reduction in EMB susceptibility, constituting subtle fold-changes in 

numerous different proteins involved in detoxification and/or drug transport that could 

not be measured within the detection limits of microarray-based transcriptomic 

analysis. The toxicity assay used in the present study to assess salmon lice EMB 

susceptibility, involves the observation of reduced motility and abnormal swimming 

behaviour, during aqueous EMB exposure, as an indication of EMB toxicity (Sevadtdal 

et al., 2005; SEARCH, 2006). The standard L. salmonis EMB exposure route on 

Atlantic salmon production sites is considered to be food-borne ingestion over a seven 

day period. Accordingly, the possibility cannot be excluded that EMB resistant 

mechanisms may exist that are expressed only following oral EMB exposure. However, 

strain PT fails to show toxic responses to both waterborne (see Chapter 3) and on-fish 

EMB exposure (Dr. W. Roy, personal communication), suggesting that major 

mechanisms of resistance that play a role in field situations are also expressed during 

experimental aqueous L. salmonis exposure. 

In the drug-susceptible strain S, a complex array of transcriptional responses to 

EMB was observed, this being unsurprising given the recognised toxic effects of 24 

hour exposure to EMB on this strain. Early transcriptional responses in strain S are 

therefore likely to comprise both adaptive and general stress responses, as well as 

transcriptional changes reflecting the toxic action of the drug. Salmon lice from strain S 

showed a modest reduction in gene expression after 1 hour of EMB exposure and very 

little response after 3 hours of exposure. These results would suggest that the EMB 
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concentration or exposure time at which salmon lice from strain S exhibit the greatest 

transcriptomic response is out-with those selected during these experiments. Moreover, 

it may be the case that the exposure conditions selected during this study were not 

suitable for capturing transcriptomic responses that may be associated with reduced 

EMB susceptibility in strain PT. The main response observed in PT salmon lice was 

significant down regulation of several genes including cytoskeletal proteins and 

associated binding proteins. This may represent a mechanism adopted by less 

susceptible salmon lice involving the down regulation or cessation of non-essential 

cellular processes, as was suggested by Dicker et al. when they studied global 

transcriptomic responses of multi-drug resistant Teladorsagia circumcinta to IVM 

exposure (Dicker et al., 2011). Alternatively, this response may relate to stress 

responses resulting from the EMB exposure of PT lice, which masks any subtle changes 

in drug transport or detoxification that facilitate survival. Laboratory-maintained strains 

S and PT may not share a common genetic background and have been laboratory-

maintained for different periods of time (3 and 10 years for PT and S, respectively). 

Differences in genetic background may be responsible for differential transcriptional 

stress responses to removal from the host fish and/or drug exposure, which could mask 

the transcriptomic responses responsible for survival of EMB exposure. Additionally, 

differences in gene expression found in this study may be unrelated to EMB 

susceptibility and reflect the different genetic backgrounds of the strains. 

Drug resistance of ecdysozoans has often been associated with gene 

amplification, over expression or coding sequence mutations of three gene families 

responsible for detoxification (Li et al, 2007), which include CYP (Giraudo et al., 2010; 

Puinean et al., 2010; Bariami et al., 2012; Tao et al., 2012), glutathione-s-transferase 

(GST) (Che-Mendoza et al., 2009; Zhou et al., 2012) and esterase enzymes (Field and 
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Devonshire, 1998; Puinean et al., 2010; Bariami et al., 2012). These mechanisms can 

show constitutively enhanced expression, or induction following drug exposure. ABC 

transporters (James and Davey, 2009; Ardelli and Prichard, 2013) have also been shown 

to be involved in AVM resistance in some nematodes. ABC transporters (Tribble et al., 

2007a; Heumann et al., 2012; Igboeli et al., 2012; Igboeli et al., 2013), CYPs (Rewitz 

et al., 2006), GSTs, carboxylesterases and catalases (Jemec et al., 2010) have all been 

identified as biochemical defence mechanisms in crustaceans, however, they are less 

well characterised than in other ecdysozoan invertebrates. Herbivorous insects often 

possess pre-adaptations to plant allelochemicals, which gives these pests detoxification 

mechanism plasticity that can facilitate the development of insecticide resistance 

(Schuler, 2011). These insects are either specialists that parasitise a narrow host range, 

or generalist species that have a wider host range and are therefore exposed to a large 

diversity of chemicals (Li et al, 2004). Generalist species require more adaptable 

detoxification systems and more complex regulatory mechanisms that are often 

inducible upon exposure to exogenous compounds (Li et al, 2002). Crustacean species 

such as L. salmonis are exposed to a diverse array of chemicals (LeBlanc, 2007; 

Lauritano et al., 2012) which suggests they may possess adaptable detoxification 

systems. Detoxification enzyme gene family evolution in crustaceans may be similar to 

dipteran insects such as the mosquito Anopheles gambiae, where continual exposure to 

many different compounds is thought to be responsible for significant gene family 

expansions (Ranson et al., 2002). Although, lifestyle differences between these species 

mean that toxic compound exposure of crustacean parasites such as L. salmonis will be 

different from A. gambiae. Additionally, specific L. salmonis detoxification enzymes 

may not be represented in the limited sequence resources used in this study. 

Alternatively, as detoxification enzymes are often involved in the stress response of 
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marine copepods (Lauritano et al., 2012), any additional associations these enzymes 

may have with reduced EMB susceptibility in L. salmonis may be obscured by these 

stress responses. 

The most well documented AVM-induced mechanisms in AVM resistant 

nematodes is the up-regulation of P-gp ABC transporters (Prichard and Roulet, 2007; 

James and Davey, 2009; Lloberas et al., 2013). Recently, it was demonstrated that IVM 

exposure of Drosophila cells induced increased P-gp expression which was associated 

with elevated intracellular calcium via the Calmodulin/Relish (NF-ĸB) signalling 

pathway (Luo et al., 2013). This emphasises the complexity of mechanisms that may be 

responsible for increased P-gp expression and supports the decision to perform global 

transcriptomic analysis of EMB-induced responses in L. salmonis. The P-gp homologue 

(SL-PGY1) in L. salmonis was represented on the oligo microarray used in the present 

study (3 probes, BLASTx e-value 10
-20 

– 10
-86

), although P-gp mRNA expression in 

strains S and PT was unaffected by EMB treatment (data not shown), confirming 

similar data previously reported for these strains (Heumann et al., 2012). Increased P-

gp expression has previously been associated with reduced EMB susceptibility in L. 

salmonis (Tribble et al., 2007a). However, these observations were made using sea lice 

originating from New Brunswick, Canada with a different drug exposure history to 

those used in the current study, which may account for the differences in expression of 

an inducible detoxification mechanism such as P-gp ABC transporters. Three 

transcripts representing MRP (BLASTx e-value ≤ 10
-7

) ABC transporters were also not 

significantly differentially expressed upon EMB exposure of strains S and PT (data not 

shown). The results from this study do not provide evidence to support the involvement 

of these ABC transporters in reductions of EMB susceptibility in L. salmonis strains S 

and PT, however; only two subfamilies (B and C) were represented. Additionally, post-



                                         Chapter 4 – Transcriptomic responses to EMB exposure 
 

 

156 

translational phosphorylation of ABC transporter proteins could be involved in the 

control of EMB induced transporter activation, which would not be detected in the 

current study (Stolarczyk et al., 2011). Hopefully, the release of an annotated L. 

salmonis genome sequence in 2013 will allow discovery of a fuller complement of L. 

salmonis ABC transporters that can then be interrogated with regards to their 

involvement in EMB resistance. 

CYPs have been identified as significant components in the development of drug 

resistant insect pests (ffrench-Constant et al., 2004; Heckel, 2012), but comparable 

functions in crustacean species has yet to be established. The CYP target sequences 

represented in this study included 14 probes that were provisionally allocated to CYP 

clans according to BLASTx annotation (e-values of ≤ 10
-7

). The expression of these 

CYPs did not significantly change in response to EMB exposure of either strains S or 

PT and therefore it was not possible to identify a role for these CYPs in reduced EMB 

susceptibility of the L. salmonis PT strain. Drug resistance of some insect and mite 

species have been associated with gene expression changes for different CYP genes and 

isoforms (Schmidt et al., 2010; Liu et al., 2011; Tao et al., 2012) with only some 

isoforms being inducible upon drug exposure (Liu et al., 2011). It may be possible that 

CYP isoforms with roles in EMB detoxification in L. salmonis were not represented on 

the microarray used to measure transcriptomic responses in strains S and PT to EMB 

exposure. CYP gene expression changes have often been shown to be controlled by 

mutations in cis-acting promoter sequences or trans-acting regulatory factors (Li et al, 

2007). Additionally, it has been shown that the insertion of transposable elements into 

gene promoter regions can result in increased expression of some CYPs (Aminetzach et 

al, 2005; Schmidt et al., 2010). Moreover, transposon-mediated gene expression 

changes are thought to be highly adaptive and can be responsible for rapid changes in 
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expression in response to exposure to toxic agents (Li et al, 2007). If transposon-

mediated gene expression changes were responsible for EMB-induced responses in L. 

salmonis it would be expected that such responses would be detected in the current 

study. 

Finally, enhanced GST (Wang et al, 1991; Ranson et al, 2001; Wei et al, 2001) 

and esterase (Raymond et al., 1998; Hawkes and Hemingway, 2002; Cui et al. 2006) 

production has also been associated with insecticide resistance, although these targets 

did not show significant changes in mRNA level upon EMB exposure of L. salmonis 

during this study. However, esterases were poorly represented in the genomic resources 

available for construction of the microarray and it has also been demonstrated that CpG 

methylation or demethylation can lead to increased or decreased esterase gene 

expression (Field et al, 2000), although this mechanism would not be detected using 

transcriptomic analysis in the current study. 
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Conclusions 

The transcriptional profiling of EMB-resistant and -susceptible laboratory salmon 

louse strains in response to short term (1-3 h) aqueous EMB exposure was unable to 

provide evidence for the presence of specific resistance mechanisms requiring 

transcriptional regulation. The drug-susceptible S strain showed a number of 

transcriptional responses to treatment, but few responses were found in the EMB-

resistant PT strain other than down-regulation of non-essential cellular processes. The 

current study found similar mRNA expression for putative LGIC target subunits, 

biotransformation enzymes and drug transporters, which have previously been 

implicated in AVM resistance of ecdysozoans. It is recognised that further work is 

necessary to study transcriptomic responses between salmon lice from both extremes of 

EMB susceptibility, using modified aqueous exposure assay methods to select highly 

resistant lice from the PT strain. This study does, however, demonstrate the successful 

use of custom L. salmonis oligo microarrays in the measurement of transcriptomic 

responses of laboratory maintained salmon lice with differing EMB susceptibilities. 
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5.1 Introduction 

Rapid development of next generation sequencing (NGS) technologies now allow 

genome-wide marker identification and genotyping to be performed relatively simply 

and economically (Davey et al., 2011). The application of NGS to Restriction-site 

associated DNA sequencing (termed RAD-seq), provides an efficient method to 

generate a reduced representation of the genome and involves the large-scale discovery 

of Single Nucleotide Polymorphisms (SNPs) or insertions and deletions (indels) (Baird 

et al., 2008, Hohenlohe et al., 2010; Hohenlohe et al., 2012). When using RAD-seq, 

unique barcoding allows the association of sequence reads with individual samples so 

that DNA from multiple individuals can be analysed in the same RAD library, 

permitting sophisticated experimental designs suitable for the analysis of complex traits 

(Davey and Blaxter, 2011; Peterson et al., 2012). Moreover, RAD-seq reads can not 

only be examined in relation to a reference genome for genetic marker identification but 

can also be analysed de novo (Davey and Blaxter, 2011). It has therefore been possible 

to incorporate RAD-seq into a wide array of experimental designs and use it for more 

complex analyses such as population genetics (Hohenlohe et al., 2010; Hohenlohe et 

al., 2012), linkage mapping (Baxter et al., 2011; Richards et al., 2013; Takahashi et al., 

2013), Quantitative Trait Locus (QTL) analysis (Houston et al., 2012) and 

phylogeography (Emerson et al., 2010; Reitzel et al., 2013). 

As discussed in earlier chapters the precise mechanism responsible for emamectin 

benzoate (EMB) resistance in Lepeophtheirus salmonis is currently unknown with a 

role for P-glycoprotein (P-gp) ABC transporters being demonstrated in some studies 

(Tribble et al., 2007a; Igboeli et al., 2012; Igboeli et al., 2013), but not others 

(Heumann et al., 2012), suggesting a role for other mechanisms. Using comparative 

transcriptomic profiling of two L. salmonis strains differing in EMB susceptibility, the 
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studies reported in Chapters 3 and 4 of this thesis attempted to identify the transcripts 

associated with differential EMB susceptibility observed between drug susceptible (S) 

and EMB-resistant (PT) L. salmonis strains. While a majority of the differentially 

expressed transcripts identified between strains S and PT were related to muscle and 

cuticle formation, relatively subtle but significant changes in mRNA levels of ligand 

gated ion channels (LGIC) were detected. In contrast, no clear changes in transcript 

levels were found for genes involved in detoxification pathways, such as cytochrome 

P450s and ABC transporters. These results suggest that the mechanism responsible for 

EMB resistance in L. salmonis strain PT is not associated with large differences in 

transcript expression. Genetic analysis offers an alternative approach to unravelling the 

molecular determinants responsible for drug resistance; however the availability of a 

sufficiently large set of genetic markers is a prerequisite for this approach. 

The aim of the research reported in this chapter was to use RAD-seq for the 

discovery of genetic markers in L. salmonis that may be suitable for analysing genetic 

determinants of complex traits such as drug susceptibility. RAD-seq experiments 

usually combine marker discovery and massive parallel genotyping. In the present 

study, genetic markers were identified in L. salmonis and subsequently used in a 

preliminary experiment employing bulk segregant analysis to compare salmon louse 

strains S and PT. Time and budget constraints did not allow for F2 crosses to be 

generated between these strains, which would have permitted the implementation of a 

superior experimental approach involving QTL analysis. For the same reason, the 

factors strain and EMB susceptibility were confounded in the current experimental 

design, i.e. only one strain representing high (strain S) and low (strain PT) EMB 

susceptibility were included. Accordingly, further studies of any candidate genetic 

markers that show significant association with L. salmonis strain will be required to 
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confirm any associations with EMB susceptibility. Given differences in susceptibility 

observed between louse sexes, a further application for these markers was to test the 

hypothesis that sex determination in L. salmonis is genetic by attempting to identify 

sex-linked genetic markers through the inclusion of individuals from both sexes in the 

RAD-seq libraries. L. salmonis is gonochoristic, and laboratory-maintained cohorts of 

this species normally show sex ratios close to 1:1 (Johnson and Albright, 1991a; Hamre 

et al., 2009). While this observation is consistent with a genetic mechanism of sex 

determination, the mechanism in L. salmonis and other copepods is currently unknown. 

Environmental and genetic sex determination have both been reported in crustaceans 

(Juchault, 1999), and a similar situation exists for insects (Gempe and Beye, 2011). The 

mechanism for genetic sex determination is not conserved in crustaceans and there is 

evidence for a variety of male and female heterogametic systems (reviewed in: Legrand 

et al., 1987) in crustaceans, including the XX/XY and ZW/ZZ systems that have been 

described in mammals and birds, respectively (Charlesworth and Mank, 2010; 

Nakamura, 2010). 
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5.2 Materials and methods 

5.2.1 Salmon louse strains 

Two well characterised laboratory-maintained strains of salmon lice were used for 

RAD library preparation. Strain S has previously been shown to be susceptible to all 

salmon delousing agents in current use while strain PT shows decreased susceptibility 

(~7-fold) to EMB, as based on 24 h waterborne bioassays (Heumann et al., 2012) which 

is illustrated in Chapter 3, Figure 3.1 of this thesis. Verification of SNP marker 

association with sex was performed using salmon lice from these two strains and from 

an unrelated strain that had recently been established from a farm isolate (FI). These 

strains have all been cultured under identical laboratory conditions, as described in 

detail elsewhere (Heumann et al., 2012). For more information on these strains please 

see the materials and methods section in Chapter 2 of this thesis. 

5.2.2 Salmon louse selection 

L. salmonis engage in complex courtship behaviour between adult males and late 

preadult II stage females, which culminates in the formation of pre-copula pairs 

(Ritchie et al., 1996). Copulation takes place soon after the female moults into the adult 

stage, and females retain spermatophores from the mating in order to fertilise egg 

strings produced over their lifetime (Ritchie et al., 1996). Adult male and preadult 

female (n = 24) L. salmonis from strains S and PT were used for RAD library 

preparation. Preadult females were selected in preference to adult females to avoid the 

possibility of sample contamination with stored sperm. Adult female salmon lice were 

used for the verification of SNP sex association in strain FI, after genital segments had 

been removed to avoid male DNA contamination. Adult male and preadult female L. 

salmonis are approximately the same size (total length ~5.4 mm) but can easily be 

distinguished at these stages of development under low magnification microscopy, 
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using common morphological features (Johnson and Albright, 1991b). The abdomen of 

adult male salmon lice is shorter than that of females with an ovoid genital complex, 

whereas the preadult II female genital complex is larger with cuticular folds and distinct 

lobes, and a narrowing of the abdomen as it meets the genital complex. Similarly, adult 

females are much larger than adult males, have a larger genital complex than males and 

are also larger and, following mating, have a more developed genital segment in 

comparison to preadult II females (Johnson and Albright, 1991b). 

5.2.3 Determination of salmon louse EMB susceptibility phenotype 

While salmon lice from the laboratory maintained strains S and PT have shown 

stable EMB susceptibilities over multiple generations, EMB susceptibilities among 

individuals within either of these strains may show a degree of variation. The individual 

EMB susceptibility of male salmon lice used to prepare RAD libraries was 

characterised by exposing them to a relatively high EMB concentration (800 µg L
-1

), 

and establishing the time at which an immotility response became apparent in each 

individual. This time-until-response served as confirmation of the EMB susceptibility 

for male salmon lice included in RAD libraries. It was planned to obtain EMB 

susceptibility phenotypes for female salmon lice, however, preadult females were not 

available in sufficient numbers when this logistically elaborate experiment had been 

scheduled, which involved overnight drug exposure with regular observations at the 

Marine Environmental Research Laboratories (MERL) of the Institute of Aquaculture. 

Female lice were collected at a later date, but without characterisation of EMB 

susceptibility phenotypes. In order to establish individual EMB susceptibility 

phenotypes of males, salmon lice were collected from anaesthetised host fish as 

described in Chapter 2 and allowed to recover for two hours in aerated, filtered 

seawater at ambient sea temperature. EMB (technical grade, a gift from Merck Animal 
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Health) was solubilised in seawater with PEG300 (final concentration 0.01 % (v/v)) to a 

concentration of 800 µg L
-1

. Bioassays were set up in glass dishes containing 22 salmon 

lice and 200 mL of exposure solution (800 µg L
-1

 EMB). At regular intervals (Appendix 

9) throughout the 24 hour bioassays salmon lice were recorded as normally motile or 

immotile upon visual examination and stimulation with a fine brush. Salmon lice 

showing an immotility response were sampled into absolute ethanol and the exposure 

time at which the response had been observed was noted. Visual examination was 

performed until all 22 salmon lice exhibited an immotility response and were sampled 

for analysis, or that the remaining lice did not exhibit a response after 24 hours of EMB 

exposure. Samples were stored at 4 °C pending extraction of genomic DNA. 

5.2.4 RAD library preparation and sequencing 

RAD-seq libraries were prepared from adult male and preadult female L. salmonis 

selected from strains S and PT (n = 48; 24 from each strain). For male salmon lice 

sampled from strain S, the individuals that responded earliest to EMB exposure were 

selected (i.e. the most sensitive), whereas for strain PT the individuals that survived the 

longest were selected (i.e. the most resistant). This strategy was used to select the 

extremes of EMB susceptibility between strains S and PT. Genomic DNA was 

extracted from individual L. salmonis using the REAL-Pure genomic DNA extraction 

kit (Durviz S.L., Spain), including removal of residual RNA through RNase A 

treatment of the extracts. UV spectroscopy (NanoDrop ND-1000, Thermo Scientific, 

USA) was used to confirm purity of the DNA samples and establish concentrations, 

whereas high molecular weight (MW) DNA integrity was assessed by agarose gel 

electrophoresis and ethidium bromide staining. Each high MW DNA sample was then 

diluted to a concentration of 45 ng/µl in 5 mM Tris, pH 8.5. The RAD libraries were 

prepared as detailed previously (Etter et al., 2011) with minor modifications as detailed 
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in Houston et al. (Houston et al., 2012). Sequence details for the P1 and P2 paired-end 

adapters and library amplification primers used in RAD library preparation are 

available elsewhere (Baxter et al., 2011) and detailed in Appendix 10. Briefly, 200 ng 

of each DNA sample was digested at 37 °C for 45 minutes with 2 units of PstI high 

fidelity restriction enzyme (recognising the CTGC|AG motif) in a 10 µL reaction 

containing 1 × Reaction Buffer 4 (New England Biolabs, UK). The reactions were then 

heat-inactivated at 80 °C for 20 minutes. Each of the PstI digested DNA samples were 

individually identified through the ligation of specific P1 adapters each containing a 

unique five base nucleotide barcode (Appendix 11 and 12), at 25 °C for 30 minutes in a 

12.5 µL reaction containing 100 nM P1 adapter, 200 units of T4 DNA Ligase, 1 mM 

rATP and 1 × Reaction Buffer 2 (New England Biolabs, UK). Ligation reactions were 

heat inactivated at 65 °C for 20 minutes prior to combining them in four multiplexed 

libraries, each containing 12 salmon louse samples. Adaptive Focus Acoustics™ 

(AFA™) using the S220 High Performance Ultrasonicator (Covaris
®
 Inc., 

KBiosciences, UK.) was employed to randomly shear each RAD library pool to a size 

range of 150-700 bp. This sheared DNA was then column purified (PCR MinElute Kit, 

Qiagen) and size selected as described by Houston et al., 2012. The RAD library 

construction protocol was then followed as published (Baird et al., 2008; Etter et al., 

2011). The RAD library pools were PCR amplified using 15 - 16 cycles and 150 µL of 

each amplified library was column purified, size selected (300 - 550 bp) and quality 

checked as described by Houston et al., 2012. The four RAD library pools were further 

quality checked and quantified by quantitative PCR (qPCR) (KAPA Library) prior to 

sequencing on one lane of the Illumina HiSeq 2000 platform (v3 chemistry) using 

100 bp paired-end reads (EBI Sequence Read Archive (SRA) study ERP002400). Raw 

sequence data were processed using RTA 1.12.4.2 and Casava 1.6 (Illumina). RAD 
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library qualitative and quantitative checks, Illumina sequencing and processing of raw 

sequence reads were performed at The GenePool Genomics Facility (University of 

Edinburgh, UK). 

5.2.5 Genotyping RAD Alleles 

Sequence reads with low quality scores (quality index score under 30, while the 

average quality score was 37), missing the restriction site or those with ambiguous 

barcodes (with more than one mismatch) were discarded from the sequence set. All the 

remaining sequence reads were then sorted into loci and RAD markers were genotyped 

using the Stacks software 0.9995 (Catchen et al., 2011). The likelihood-based SNP 

calling algorithm implemented in Stacks (Hohenlohe et al., 2010) evaluated each 

nucleotide position for every RAD-tag from all individual samples, thereby 

differentiating true SNPs from sequencing errors. The processing parameters used in 

Stacks included; a minimum stack depth of at least 30 sequences, a maximum of 2 

mismatches in each locus for each individual and up to 1 mismatch between alleles. The 

paired-end reads were assembled using both Stacks and Velvet (version 1.2.08) 

software (Zerbino and Birney, 2008), which were used to separate RAD-tag sequences, 

with or without potential SNPs, but belonging to separate candidate loci. 

5.2.6 SNP association with sex, strain and EMB susceptibility 

The genetic association of L. salmonis phenotypic sex, strain and EMB 

susceptibility with RAD marker alleles was carried out by counting the number of times 

each allele was associated with a particular sex, strain or EMB susceptibility 

respectively. These counts were compared to an ideal scenario where each allele would 

be specific to the particular phenotype. 
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5.2.7 Verification of SNP sex association 

An additional twelve adult male and twelve preadult female L. salmonis per strain 

were sampled from strains S and PT and preserved in ethanol as detailed above. 

Similarly, twelve adult male and adult female L. salmonis were sampled from strain FI. 

Genomic DNA was extracted from each L. salmonis individual, quality checked and 

diluted as detailed above. SNP marker sex-association was verified using an allele 

specific PCR genotyping assay (KASP
TM 

v4.0, LGC Genomics, UK). SNP-specific 

primers were designed by LGC Genomics using sequence flanking RAD-marker 

Lsa101901. For each of the three strains, twelve male and twelve female salmon lice 

were genotyped in duplicate 10 µL reactions each containing approximately 40 ng 

template DNA, using the following amplification conditions: 94 °C for 15 minutes 

followed by 35 cycles of 94 °C for 20 seconds then touch-down cycles over 61 – 55 °C 

for 60 seconds (dropping 0.6 °C per cycle). Individual L. salmonis genotype assignment 

was performed through reading the fluorescence emission of the FAM (5' 6-

carboxyfluorescein) and CAL Fluor Orange 560 fluorophores for each sample, in 

comparison to no-template control reactions, using endpoint genotyping software and 

the Quantica qPCR thermal cycler (Bibby Scientific, UK). 

5.2.8 RT-qPCR analysis of prohibitin-2 expression 

The mRNA abundance of the prohibitin-2 gene was determined in adult male (n = 

10) and female (n = 8) drug susceptible (S) L. salmonis by reverse transcription 

quantitative PCR (RT-qPCR), using relative quantification with two reference genes 

that had shown stable expression levels in previous experiments (Hypoxanthine-

guanine phosphoribosyltransferase (HGPRT) and Required for Meiotic nuclear 

Division 5 (RMD-5) homolog) (unpublished data). Primers were designed for these 

three genes with melting temperatures (Tm) of ~60 °C using Primer 3 software 
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(Appendix 13). Adult male and female salmon lice were collected from anaesthetised 

host fish as described above and allowed to recover for 2 hours in aerated filtered 

seawater at ambient sea temperature and then preserved in an RNA stabilisation 

solution (4.54 M ammonium sulphate, 25 mM trisodium citrate, 20 mM EDTA, pH 5.4; 

Appendix 1) prior to storage at -70 °C. Total RNA was extracted and purified from 

these samples, then assessed for purity and quantified, as described in detail in Chapter 

2 of this thesis. Total RNA from adult male or female L. salmonis were reverse 

transcribed and analysed in RT-qPCR reactions, and relative gene expression ratios 

established using the ΔΔCt method as detailed in Chapter 3 of this thesis. Relative 

expression ratios from RT-qPCR analysis were compared between male and female L. 

salmonis using the non-parametric Mann-Whitney test as implemented in the Minitab 

16.1 software package (Minitab Inc., UK). The significance level was set at p < 0.05. 

Relative expression ratios from RT-qPCR analysis were compared between male and 

female L. salmonis using the non-parametric Mann-Whitney test as implemented in the 

Minitab 16.1 software package (Minitab Inc., UK). The significance level was set at p < 

0.05. 

5.3 Results 

5.3.1 Emamectin exposure experiment 

Adult male and preadult female salmon lice from laboratory-maintained strains S 

and PT (Heumann et al., 2012) were used for RAD library preparation. In order to 

establish estimates of the EMB susceptibility for individual male lice, L. salmonis were 

exposed to 800 g L
-1

 of EMB and examined at regular time intervals to establish the 

exposure time required for immotility responses to become apparent. L. salmonis rated 

as immotile were removed from the test vessels and sampled pending DNA extraction, 

taking a note of the exposure time at which the response was observed. Salmon louse 
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strains S and PT clearly differed regarding the time required for an immotility response 

to become evident (Figure 5.1). 

 

Figure 5.1 Adult male salmon louse susceptibility to acute EMB exposure for 

two laboratory strains. 

Toxicity response of adult male salmon lice (L. salmonis), from S and PT laboratory strains, 

to acute EMB exposure (800 µgL
-1

) using 24 hour immotility bioassays. Symbols represent 

the immotility response observed in a beaker of 22 individuals (Each symbol represents the 

percentage of the 22 lice that exhibited an immotility response at each time point). 
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5.3.2 RAD Sequencing 

DNA from each of 12 male and 12 female individuals from both the drug 

susceptible (S) and EMB-resistant (PT) laboratory-maintained L. salmonis strains was 

used to generate multiplexed PstI RAD libraries and sequenced at high depth using the 

Illumina HiSeq 2000 platform. In total, 331,642,960 raw reads (100 nt long) were 

produced, that comprised 165,821,480 paired-end reads (EBI Sequence Read Archive 

(SRA) studies ERP002400 and ERP002422 for strains S and PT respectively). After 

removal of low quality sequence reads (quality score under 30), sequences with 

ambiguous barcodes and orphaned paired-end reads, 80 % of the raw reads were 

retained (264,343,660 reads). The Stacks package (Catchen et al., 2011) was then used 

to assemble loci (RAD-tags) for each individual, which produced 378,697 unique RAD-

tags (Figure 5.2). The raw sequence read and RAD-tag count for each sample from 

strains S and PT are reported in Appendices 11 and 12 respectively. 
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Figure 5.2 Salmon louse RAD sequencing and polymorphic marker 

identification. 

RAD-seq technology was employed to genotype 48 individuals from drug susceptible (S) and 

EMB resistant (PT) laboratory maintained salmon louse (L. salmonis) strains, using 100 base 

paired end sequencing on an Illumina HiSeq 2000 platform. This produced 331, 642,960 raw 

sequence reads that comprised 165,821,480 paired end reads although after filtering 

264,343,660 raw sequence reads remained that produced 378,697 paired-end RAD 

markers. 41,235 of these polymorphic markers were poly-allelic and present in 75 % of the 

individuals analysed. 
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5.3.3 SNP association with strain, sex and EMB susceptibility 

Initial analysis of read number for the 378,697 RAD-tags did not reveal any sex-

specific markers (i.e. present in only one of the sexes). To maximise the number of 

informative markers and minimise the amount of missing or erroneous data, only 

paired-end RAD-tags retrieved from at least 75 % of the samples were used, which 

resulted in the retention of 82,954 RAD-tags. Analysis of this filtered set of markers did 

not reveal any RAD-tags with twice the coverage in one gender compared to the other. 

However, the median sequence read coverage was 68 reads per marker for each sample 

which varied greatly from 20 to 200 reads per marker for each sample, meaning that it 

would be difficult to identify markers with twice the coverage as only highly 

represented markers may be evident using such an analysis strategy. Further analysis 

revealed that 41,235 of these RAD-tags were polymorphic (containing 1 or 2 SNPs), of 

which 28,041 were bi-allelic (Figure 5.2, Table 5.1). The genetic association of 

polymorphic markers with phenotypic sex and strain was performed by direct 

comparison of each allele with the sex and strain of the individuals. Evaluation of the 

RAD markers for association with salmon louse strain identified 27 markers, with 15 of 

these exhibiting complete association with strain (Table 5.2). The SNP alleles and RAD 

marker allele sequences for the 27 strain-linked markers are detailed in Additional file 

5.1. Alignment of the RAD marker sequences to salmon louse transcriptome sequence 

created as part of this thesis (Chapter 2) revealed that some of the markers were located 

in transcribed regions (Table 5.3). 
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Table 5.1  Bi-allelic and poly-allelic RAD loci found in  75% of S and PT 

L. salmonis samples. 

 S strain PT strain 

 

Common 

Alleles* 

Total RAD loci 85,560 95,780 82,954 

Total poly-allelic RAD loci 31,555 38,884 41,235 

Total bi-allelic RAD loci 24,538 29,234 28,041 

Bi-allelic RAD loci with both alleles fixed - - 1,801 

 

Table 5.2 Identification of associations between RAD marker genotype 

and salmon louse strain. 

RAD marker 

ID 

Marker 

association (%) 

S strain 

genotype 

PT strain 

genotype 

Genome 

representation 

Transcriptome 

representation 

Lsa578 100  AA CC No No 

Lsa4637 100  GG AA No No 

Lsa8868 100  GG AA Yes No 

Lsa17314 100 AA CC No No 

Lsa29463 100 TT AA/AT Yes Yes 

Lsa58229 100 CC TT No No 

Lsa72290 100 CC TT No No 

Lsa91273 100 GG AA Yes No 

Lsa100190 100 GG AA Yes No 

Lsa100302 100 TT CC No No 
Lsa103134 100 CC TT No No 

Lsa109508 100 CC AA/AC Yes Yes 

Lsa111515 100 GG AA No No 

Lsa112470 100 CC TT No No 

Lsa127075 100 TT CC No No 

Lsa4170 98 CC CC/CT/TT Yes Yes 

Lsa5470 98 CC CC/CT/TT Yes Yes 

Lsa38618 98 CC CC/CG/GG Yes Yes 

Lsa103900 98 GG AA/AG/GG Yes Yes 

Lsa104162 98 CC/CG/GG GG Yes Yes 

Lsa3006 96 TT GG/GT/TT Yes Yes 

Lsa3626 96 TT CC/CT/TT Yes Yes 
Lsa96328 96 AA AA/AC/CC Yes Yes 

Lsa96339 96 CC AA/AC/CC Yes Yes 

Lsa112687 96 GG AA/AG/GG Yes Yes 

Lsa77217 94 AA AA/AG/GG Yes Yes 

Lsa41579 93 CC AA/AC/CC Yes Yes 

The genetic association of polymorphic RAD marker genotype with salmon louse strain was 

performed by direct comparison of the marker alleles with salmon louse strain (i.e., S or PT) 

for each of the 48 individual samples. The association (%) of each allele with strain is 

detailed, and also the presence or absence of each marker sequence in the draft 

genome and transcriptome sequence resources available for L. salmonis. 
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Table 5.3 Strain-linked RAD marker sequence alignment to salmon louse 

transcriptome. 

RAD 

marker ID 

RAD 

Marker 

length (bp) 

Transcript 

Length 

(bp) 

Transcriptome  

Hit Annotation 

Transcriptome  

Hit Accession 

Blastn 

e-value 

Lsa578 666     

Lsa4637 556     

Lsa8868 557     

Lsa17314 556     

Lsa29463 612 1551 
Camar1 transposase 
Chymomyza amoena 

AAO12862 3E-43 

Lsa58229 560  Unannotated   

Lsa72290 419     

Lsa91273 595     

Lsa100190 641     

Lsa100302 561     

Lsa103134 604     

Lsa109508 494 2178 
40S ribosomal protein S14 

Lepeophtheirus salmonis 
ADD24065 8E-49 

Lsa111515 659     

Lsa112470 579     
Lsa127075 629     

Lsa4170 504 1489 
Putative uncharacterized 

protein 
EFN85722 5E-27 

Lsa5470 602 1585 Unannotated NA 6E-19 

Lsa38618 635 14404 Unannotated NA 5E-172 

Lsa103900 96 877 
7 transmembrane receptor 

Trichinella spiralis 
XP_003377890 2E-139 

Lsa104162 215 915 
Hypothetical protein 

Caenorhabditis remanei 
XP_003101552 2E-79 

Lsa3006 573 472 Unannotated NA 8E-37 

Lsa3626 299 1232 
Hypothetical protein 
Tribolium castaneum 

EFA06378 1E-110 

Lsa96328 541 1189 
GA12899-PA 

Tribolium castaneum 
XP_973981 2E-11 

Lsa96339 218 5937 Lactate dehydrogenase P52643 3E-93 

Lsa112687 571 3895 
GF11514 

Drosophila ananassae 
XP_001960432 1E-20 

Lsa77217 523 895 Unannotated NA 9E-11 

Lsa41579 406 1800 Unannotated NA 2E-13 
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For the identification of sex-linked markers the results were then ranked in order, 

from maximum (complete separation between male and female or strain) to minimum 

association (not significantly different from random association). Evaluation of the 

28,041 markers identified that only one marker (Lsa101901) exhibited complete 

association with gender, where all samples were shown to be heterozygous female 

(allele „G‟ or „T‟) or homozygous male (allele „G‟ only) genotype (Lsa101901; NCBI 

dbSNP Accession: 749737482; Table 5.4). The mean read number at this locus was 29 

reads; female heterozygous alleles showed a mean read number of 14.5 each, whereas 

the male homozygous allele had 29 reads. It was not possible to find any statistically 

significant associations between RAD marker genotype and EMB susceptibility levels 

estimated using the bioassay. This may be due to the fact that there were only 12 

individuals analysed for each sample group. 
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Table 5.4 L. salmonis sex-linked SNP marker and KASP assay primer sequences. 

ID Primer allele 1 Primer allele 2 Primer common Allele 1 Allele 2 Marker allele 1 Marker allele 2 

Lsa101901 CAGATCGA

GCCAGGGA

TTTTAATAT

C 

ACAGATCG

AGCCAGGG

ATTTTAATA

TA 

GTTCCGTAAT

GGCTACATC

GTCCAA 

G T TGCAGCCGCGTATTCCCGA

CCAAAACTAAGTTCCGTAA

TGGCTACATCGTCCAAAAT

GATATTAAAATCCCTGGCT

CGATCTGTCAATTGCTTTC

GAATGAGCATTGACACTTG
TTGACGCTGTGTAATGAGC

TGAGAAGCATTGAACTTGG

CCACAACGCCCTTGAGAAC

TTCATTACAAATGGATGGA

AGGACTTTTTCATCAAAGT

CTCTTCCCA 

TGCAGCCGCGTATTCCCGACCA

AAACTAAGTTCCGTAATGGCTA

CATCGTCCAAAATTATATTAAA

ATCCCTGGCTCGATCTGTCAATT

GCTTTCGAATGAGCATTGACAC

TTGTTGACGCTGTGTAATGAGCT
GAGAAGCATTGAACTTGGCCAC

AACGCCCTTGAGAACTTCATTA

CAAATGGATGGAAGGACTTTTT

CATCAAAGTCTCTTCCCA 

Two SNP alleles and RAD-tag allele sequences that were identified as the SNP marker Lsa101901 are detailed, along with the allele specific primers and 

common primer designed for the allele specific PCR genotyping assay (KASP
TM

, LGC Genomics, UK). 
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5.3.4 Verification of sex association 

The association of marker Lsa101901 to phenotypic sex was further investigated 

using an allele specific PCR genotyping assay (KASP
TM

, LGC Genomics, UK). 

Individuals genotyped for the marker first included 12 male and 12 female salmon lice 

unrelated to the individuals from strain S that were used to generate the RAD library. 

Twelve males and 12 females from each of two further laboratory maintained 

L. salmonis strains PT and FI were also analysed. In all tested individuals, a complete 

association of the marker with phenotypic sex was observed, with females being 

heterozygous (G/T) and males homozygous (G/G) (Figure 5.3A). 
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Figure 5.3 Analysis of prohibitin-2 in male and female L. salmonis. 

(A) Genotyping using the allele specific KASP assay. A total of 72 individuals (36 male and 

36 female) from three unrelated L. salmonis strains (S, PT and FI) were genotyped using 

an allele specific PCR assay (KASP
TM

, LGC Genomics, UK). Individual L. salmonis 

genotype assignment was performed through reading the fluorescence emission of the 

FAM (Allele 1) and CAL Fluor Orange 560 (Allele 2) fluorophores for each sample, in 

comparison to no-template control reactions. The results of this PCR genotyping assay 

confirmed complete association of SNP genotype with L. salmonis sex as identified by 

RAD-seq analysis. 

(B) Differential expression of prohibitin-2. Relative prohibitin-2 expression (Mean ± SD) is 

shown for adult female (n = 8) and adult male (n = 10) L. salmonis from the drug 

susceptible (S) laboratory-maintained strain. The prohibitin-2 expression differed 

significantly between L. salmonis males and females (p = 0.0117, Mann-Whitney test). 
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5.3.5 Sex-linked SNP marker annotation 

The 218 nt marker sequence containing the Lsa101901 sex-linked SNP was used 

as a query in a nucleotide BLAST (Basic Local Alignment Search Tool) search, against 

the non-redundant nucleotides (nr) database available in GenBank at the National 

Centre for Biotechnology Information (NCBI). The marker sequence containing SNP 

Lsa101901 was identical to L. salmonis putative prohibitin-2 sequence (Accession 

BT121810.1, BLASTn e-value 2 × 10
-109

).The SNP in marker Lsa101901 was found to 

be a synonymous polymorphism within the coding region of the prohibitin-2 gene. A 

BLASTx search against the NCBI Reference Proteins (refseq-protein) database further 

established the identity of the marker-containing sequence, as it showed a high 

similarity to a Prohibitin-2-like protein (Accession XP003746427.1) from Metaseiulus 

occidentalis (Western predatory mite): 88% identity across the whole sequence 

(BLASTx e-value 2 × 10
-37

). The two Lsa101901 marker allele sequences were also 

identified in expressed sequence tag (EST) sequences (100 % query coverage) from 

Canadian and Norwegian Atlantic L. salmonis populations in addition to the Pacific 

population, using a BLASTn search against the NCBI EST database (Table 5.5). 

 

Table 5.5 Identification of L. salmonis EST sequences representing marker 

Lsa101901 alleles. 

L. salmonis 

population 
Allele 

EST 

Accession 

Atlantic Norway G GW663052.1 

Atlantic Norway T HO677162.1 

Atlantic Canada G GW644163.1 

Atlantic Canada T GW642628.1, GW642629.1 

Pacific G FK914464.1, EX486009.1 

Pacific T FK913245.1, FK913246.1 
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5.3.6 Gene expression analysis of prohibitin-2 

RT-qPCR analysis demonstrated that the marker sequence, containing the SNP 

Lsa101901 and annotated as L. salmonis prohibitin-2, was significantly differentially 

expressed (p = 0.0117, Mann-Whitney test) between male (n = 10) and female (n = 8) 

L. salmonis from a drug susceptible laboratory-maintained strain (Figure 5.3B). 

Relative expression analysis found that adult female L. salmonis expressed 1.8 fold 

more prohibitin-2 mRNA compared to adult males from this strain. 

5.4 Discussion 

The research presented in this chapter reports the identification of a library of 

SNP markers that were polymorphic between individuals from laboratory-maintained L. 

salmonis strains S and PT. Further analysis of these RAD markers identified 15 that 

exhibit complete association with salmon louse strain and therefore provide candidates 

for further study to establish an association with reduced EMB susceptibility in L. 

salmonis. In the present study a SNP marker was also identified in L. salmonis that 

showed complete association with sex in 96 genotyped individuals from three different 

strains. These results strongly suggest that sex determination in L. salmonis is genetic, 

and provide evidence for a female heterogametic ZW/ZZ system. 

The experimental design used in the current study included only one drug 

susceptible and one EMB-resistant strain that do not originate from the same genetic 

background, meaning that experimental factors „strain‟ and „resistance‟ were 

confounded. It would therefore be necessary to perform more elaborate experimentation 

to fully test the hypothesis that these SNP markers are associated with reduced EMB 

susceptibility and not just genetic differentiation between strains. Firstly, an alternative 

RAD-seq strategy could be employed that analyses salmon lice from strains S and PT 

that respond at early and late EMB exposure time points, which was not logistically 
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possible during the current study. Secondly, as strain PT is only moderately resistant to 

EMB it would be beneficial to establish a highly EMB-resistant laboratory strain 

through repeated cycles of selecting resistant individuals using aqueous EMB exposure 

assay methods for breeding next generations, which has been successfully employed to 

establish AVM resistant ecdysozoan invertebrate populations (He et al., 2009; Pu et al., 

2009; Shad et al., 2010; Chen et al., 2011). Thirdly, reciprocal crosses between a highly 

EMB-resistant laboratory strain and strain S would be the most informative strategy, as 

it would enable the construction of structured families for determining the inheritance 

of candidate resistance alleles and an association with EMB resistance phenotypes 

established using aqueous EMB bioassays. Similar strategies have been used in several 

studies involving AVM resistant species (He et al., 2009; Pu et al., 2009; Kwon et al., 

2010; Shad et al., 2010). Initially, however, the strain-linked SNP markers identified in 

this study can be further validated in future analysis of stains S and PT and additional 

salmon louse populations that exhibit reduced EMB susceptibility, using an allele 

specific fluorescence PCR assay. The requirement that L. salmonis are cultured on the 

salmonid host means that establishment of targeted laboratory strains and families, as 

discussed above, was not achievable within the financial and time constraints of the 

current study. 

It has been reported that the sex determination of a number of free-living and 

parasitic copepods can be influenced by environmental factors (Michaud et al., 2004; 

Gusmão and McKinnon, 2009). However, the results of this study provide evidence for 

a genetic sex determination mechanism in L. salmonis, which is supported by 

observations of sex ratios close to 1:1 in laboratory studies with L. salmonis (Johnson 

and Albright, 1991a; Hamre et al., 2009). Cytogenetic investigations and studies of sex-

linked marker heritability have suggested diverse systems of genetic sex determination 
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in crustaceans, with the most common ones being based on male (XX/XY) or female 

heterogamety (ZW/ZZ) (reviewed in: Legrand et al., 1987). In decapods, genetic 

linkage maps have provided evidence for ZW/ZZ systems in a number of penaeid 

shrimps and a freshwater prawn (Li et al., 2003; Staelens et al., 2008; Ventura et al., 

2011a), whereas cytogenetic studies have suggested male heterogametic systems 

(XX/XY or X0/XX) in brachyuran crabs (reviewed in: Lecher et al., 1995). Cytogenetic 

data further provide evidence for the presence of both male and female heterogametic 

sex determination systems among Copepoda (reviewed in: Legrand et al., 1987). The 

available data thus illustrate that mechanisms of sex determination are not conserved 

among crustaceans, which parallels the situation in insects (Gempe and Beye, 2011). 

Interestingly, the divergent sex determination systems of insects share an evolutionarily 

conserved pathway involving the transformer gene and its downstream target 

doublesex, but differ with respect to an upstream switching mechanism (Gempe and 

Beye, 2011). Homologues to sex determination-related insect genes (Kopp, 2012) have 

been reported from Penaeus monodon (giant tiger prawn) (Leelatanawit et al., 2009) 

and Macrobrachium nipponense (oriental river shrimp) (Qiao et al., 2012). Moreover, a 

homologue of doublesex has been shown to be involved in environmental sex 

determination in the branchiopod Daphnia magna (Kato et al., 2011). Together, this 

suggests that molecular pathways of sex determination are partially conserved between 

insects and crustaceans. 

Relatively little is known concerning sex differentiation and its endocrine control 

in crustaceans, and most available data have been obtained on decapods (reviewed in: 

Rodriguez et al., 2007). In this group, the default route of sexual development is 

female. Male sexual differentiation requires the presence of a male endocrine organ 

called the androgenic gland that produces an insulin-like factor controlling testis 
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function (Ventura et al., 2011b). Activity of the androgenic gland in males and ovaries 

in females is negatively controlled by the gonad-inhibiting hormone (GIH) and 

positively controlled by the gonad-stimulating hormone (GSH) (Rodriguez et al., 2007). 

Ecdysteroids are insect and crustacean hormones regulating the moulting process 

(ecdysis), and have been shown to stimulate ovarian growth in some crustaceans (Kato 

et al., 2011). Exposure to the ecdysteroid 20-hydroxyecdysone increased the number of 

male offspring in the branchiopod Daphnia pulex (Water flea) and the copepod Tisbe 

battagliai (Hutchinson et al., 1999; Peterson et al., 2001). Some studies have further 

suggested roles for steroids in crustacean reproduction; however, the precise identity 

and function of steroid hormones in crustaceans is still unknown (Rodriguez et al., 

2007; Mazurová et al., 2008). 

The sex-linked SNP marker isolated in L. salmonis during the present study was 

shown to correspond to a synonymous polymorphism in a gene encoding a homologue 

to prohibitin-2. Prohibitin-2 and the related prohibitin-1 are highly conserved 

ubiquitous eukaryotic proteins found in the mitochondria, where they have been 

suggested to function as chaperone proteins (Mishra et al., 2006). Prohibitins are also 

found in the nucleus, where they may regulate gene expression through interaction with 

a wide variety of transcription factors including steroid receptors. Prohibitin-2, also 

known as repressor of oestrogen receptor activity (REA), binds directly to the oestrogen 

receptor (ER), acting as a negative co-regulator of transcriptional activity (Montano et 

al., 1999). In targeted gene disruption studies with mice, the homozygous null mutation 

of prohibitin-2 was lethal, whereas in heterozygous knockouts increased physiological 

responses to oestrogens were observed in females, but not males (Park et al., 2005). 

Gene disruption studies in the nematode Caenorhabditis elegans further provide 

evidence for roles of prohibitin-1 in gametogenesis (Artal-Sanz and Tavernarakis, 
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2009). A study of a prohibitin homologue in Eriocheir sinensis (Chinese mitten crab) 

suggested a role in spermatogenesis (Mao et al., 2012), whereas an investigation in 

P. monodon demonstrated prohibitin-2 mRNA expression in both male and female 

gonads (Leelatanawit et al., 2009). In summary, published studies provide some 

evidence for sex-specific roles of prohibitins, which is in accordance with this study‟s 

finding of significantly higher mRNA levels of a prohibitin-2 homologue in adult 

female when compared to adult male L. salmonis. However, no evidence exists for a 

role for prohibitins in sex determination and/or sex differentiation. Following from 

these findings, it is clear that further research will be required to elucidate the nature of 

the molecular determinant(s) of sex determination in L. salmonis and to clarify the 

relationships that such determinants may have to the SNP marker reported in this study. 

Given the clear differences in EMB susceptibility observed between male and female L. 

salmonis and gender differences in P-gp ABC transporter expression (Heumann et al., 

2012; Igboeli et al, 2012; Igboeli et al., 2013), which is a molecular mechanism 

potentially associated with reduced EMB susceptibility, the identification of a robust 

marker for L. salmonis gender may help improve our understanding of EMB resistance 

in the salmon louse. 
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Conclusions  

The current study identified fifteen RAD markers that show complete association 

with salmon louse strain when analysing salmon lice from drug susceptible (S) and 

EMB-resistant (PT) laboratory strains. These markers may therefore include some that 

are putatively associated with EMB susceptibility, although further studies are 

necessary to confirm marker association with EMB susceptibility. A novel sex-linked 

SNP marker showing complete association with sex has also been identified in the 

salmon louse and suggests a genetic mechanism of sex determination in L. salmonis 

based on female heterozygosity. This sex-linked SNP marker represents a synonymous 

polymorphism in a prohibitin-2 homologue; however, the functional relationship of 

prohibitin-2 to sex determination remains uncertain. These findings contribute towards 

an improved understanding of sex determination in sea lice and may serve to help 

develop improved control strategies for this species. The identification of strain-linked 

SNP markers also provides genetic tools that may contribute to elucidating the 

molecular mechanisms responsible for EMB resistance in the salmon louse. 
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The overall aim of this study was to further our understanding of the molecular 

mechanisms associated with reduced susceptibility of the salmon louse Lepeophtheirus 

salmonis (Krøyer 1837) to the antiparasitic compound emamectin benzoate (EMB). 

Two laboratory-maintained L. salmonis strains that differ with respect EMB 

susceptibility and show stable susceptibility profiles over multiple generations were to 

be used as a model for these investigations. The current literature regarding avermectin 

(AVM) resistance in insects and nematodes would suggest that reduced EMB 

susceptibility in L. salmonis may involve target site modifications or changes in the 

molecular mechanisms responsible for drug detoxification. Additionally, some 

mechanisms involved in reduced EMB susceptibility may require transcriptional 

changes in response to EMB exposure, although other mechanisms may not include 

such changes. A global transcriptomic approach was selected for the analysis of EMB 

susceptibility in L. salmonis as such a strategy will detect transcriptional changes 

without bias, requiring no detailed knowledge of the biological systems being studied 

and facilitating the interrogation of multiple molecular mechanisms. With only limited 

sequence resources being available for L. salmonis at the beginning of this study, 

particularly in the absence of an annotated genome, a significant amount of the present 

work was concerned with generating new sequence to facilitate the analysis of EMB 

susceptibility in L. salmonis through the design of custom L. salmonis oligonucleotide 

(oligo) microarrays (Chapter 2) for the analysis of transcriptomic responses. These 

custom microarrays were used for the analysis of both constitutive differences in gene 

expression (Chapter 3) and EMB-induced transcriptomic responses (Chapter 4) in L. 

salmonis from drug susceptible (S) and EMB-resistant (PT) laboratory-maintained 

strains. Experiments included in this study were also aimed at the discovery of novel 

sequence in L. salmonis by generating a transcriptome through de novo sequencing a 
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pooled RNA library representing key stages of the salmon louse life cycle, using L. 

salmonis strain S (Chapter 2). Analysis of this transcriptome identified numerous 

candidates that may be suitable for further research to establish an association with 

reduced EMB susceptibility, including drug targets and drug detoxification 

mechanisms. Finally, complementary to the transcriptomic studies, a preliminary study 

used a genetic approach known as Restriction-site associated DNA sequencing (RAD-

seq) to generate a collection of genetic markers in L. salmonis suitable for analysing 

genetic determinants of complex traits such as drug resistance. RAD-seq was 

successfully employed in the identification of Single Nucleotide Polymorphism (SNP) 

markers putatively associated EMB susceptibility and a robust sex-linked marker, using 

L. salmonis strains S and PT (Chapter 5). 

6.1 The development of genomic resources for the study of 

salmon louse biology and reduced sensitivity to 

antiparasitics. 

When this study was initiated, the genomic and transcriptomic resources available 

in L. salmonis were extremely limited, with no genome sequence assembly available. 

Therefore, to provide resources for the study of EMB susceptibility in L. salmonis a 

significant amount of sequence was generated during the current study through de novo 

sequencing. A major contribution to these resources stemmed from the generation of a 

transcriptome for L. salmonis, using representative samples from key stages of the life 

cycle. This transcriptome was produced using samples from the L. salmonis strain S, 

and therefore repeating this process with strain PT and/or other independent L. salmonis 

strains would generate a more comprehensive transcriptome resource for further 

research, although this was not achievable within the financial constraints of this 

project. 
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Two complementary methods were used for the assembly of these transcripts, 

where TopHat v2.0.4 (Kim et al., 2013) used NCBI assembly ASM18125v2 of the L. 

salmonis genome as a scaffold for reference based assemblies and Trinity release 

2012-06-08 (Grabherr et al., 2011) was used to build a de novo assembly from the 

remaining sequence reads. A relatively stringent sequence assembly strategy was 

employed during this study to ensure the accuracy of assembled transcripts, which may 

explain conservative transcript numbers obtained compared to other species. A recent 

study (Yasuike et al., 2012) detailed sequence assembly using L. salmonis ESTs, which 

generated ~50% fewer putative transcripts in Atlantic and Pacific L. salmonis (14,466 

and 16,108 respectively) compared to the current study. While several factors differed 

between this study and Yasuike et al., the high power of next generation sequencing 

(NGS) approaches is likely to be the main reason for the higher number of putative 

transcripts obtained in the present work. This is supported by the fact that estimates of 

the number of putative transcripts generated for other copepods using NGS methods are 

at least in the range of that reported for L. salmonis here, e.g. ~40,000 for Tigriopus 

californicus (Barreto et al., 2011) and 56, 809 for Calinus sinicus (Ning et al., 2013). 

Transcriptomes have also been generated for a variety of crustaceans including 

Parhyale hawaiensis (Zeng et al., 2011), Macrobrachium rosenbergii (Ventura et al., 

2013), Macrobrachium nipponense (Ma et al., 2012) and Euphausia superb (Clark et 

al., 2011) where putative transcript numbers varied from 22,177 (E. superb) to 81,411 

(M. nipponense). A majority of these transcriptomes were generated using the 

alternative Roche 454 NGS platform (Barreto et al., 2011; Clark et al., 2011; Zeng et 

al., 2011; Ma et al., 2012; Ning et al., 2013) and transcripts were assembled using a 

variety of software and strategies that differed from those used in the current study. It is 

also worth noting that differences in transcript assemblies have been demonstrated 
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between different versions of the Newbler software used to assemble Roche 454 

sequence reads (Kumar and Blaxter, 2010). Given that L. salmonis has a relatively 

small genome size of 600 Mbp (The Salmon Louse Genome Project, 2013); the 

identification of 33,693 putative transcripts during this study is in line with the results 

detailed above that were obtained for other crustaceans, although it may be a rather 

conservative estimation. 

Annotation of the L. salmonis transcriptome generated during this study identified 

members of gene families potentially involved in the toxicology of EMB. In particular, 

the family of ligand-gated ion channel (LGIC) subunits that is assumed to contain the 

putative pharmacological targets of AVMs, in addition to ABC (ATP-binding cassette) 

transporters and the detoxification enzymes cytochrome P450s (CYPs), glutathione-s-

transferases (GSTs) and esterases that are members of gene families involved in 

detoxification pathways. Members of these gene families have previously been 

associated with drug resistance in ecdysozoan invertebrates and are therefore of interest 

for the study of EMB resistance in L. salmonis. When comparing the number of 

candidates identified in the transcriptome with those found among the sequences 

assembled from existing L. salmonis ESTs, it is evident that there are considerably 

more candidates in the L. salmonis transcriptome, which accordingly provides a larger 

pool of genes for further analysis to establish potential associations with reduced EMB 

susceptibility in L. salmonis. However, these candidates were identified in the L. 

salmonis transcriptome based on their functional annotation, which is likely to provide 

an under estimation of the true transcript numbers in the salmon louse. A more accurate 

and efficient method for candidate gene identification would be to employ a 

bioinformatic pipeline to align conserved signature motifs to query transcript sequences 

and perform BLASTx annotation, similar to that used to identify candidate insecticide 
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targets in the oriental fruit fly (Bactrocera dorsalis) (Hsu et al., 2012) and greenhouse 

whitefly (Trialeurodes vaporariorum) (Karatolos et al., 2011) transcriptomes, however, 

this was not achievable within the time constraints of the current study but will be 

performed in future studies. 

Current knowledge of the gene families commonly associated with ecdysozoan 

drug resistance is very limited in sea lice (Tribble et al., 2007a; Tribble et al., 2007b 

Heumann et al., 2012; Igboeli et al., 2012; Igboeli et al., 2013). While this study 

probably doesn‟t provide a comprehensive list of members from these gene families in 

L. salmonis, a wide array of candidate genes have been identified with potential roles in 

reduced EMB susceptibility that can be explored in future studies of salmon lice. This 

may include RNA interference (RNAi) studies that is a promising approach for 

functional studies of candidate genes, which has successfully been employed in the 

characterisation of a yolk-associated protein (LsYAP) (Dalvin et al., 2009) and analysis 

of developmental and tissue distribution of prostaglandin E2 synthase (Campbell et al., 

2009) in L. salmonis. 

6.2 Transcriptional profiles observed in the absence of drug 

exposure in two salmon louse strains with differing EMB 

susceptibilities. 

The main objective of transcriptomic profiling L. salmonis in Chapter 3 was to 

determine if any constitutive differences in mRNA expression existed between strains S 

and PT, which could be due to genetic changes in strain PT and may be associated with 

reduced EMB susceptibility. A global transcriptomic analysis strategy was used in the 

current study to avoid the limitations associated with candidate gene studies and 

increase the possibility of discovering novel mechanisms associated with drug 

resistance that may involve multiple gene families. However, measurement of mRNA 
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levels does not necessarily reflect protein levels that can be influenced by post-

transcriptional regulatory mechanisms, and transcriptomic profiling cannot be used to 

detect mutations in the coding regions of genes encoding drug target sites or 

detoxification enzymes unless these gene mutations also result in changes in gene 

expression. 

A significant limitation of the experimental design used in this study was that 

only one drug susceptible (S) and one EMB-resistant (PT) strain were available as a 

model for the experiments, due to the prohibitively high cost of establishing and 

maintaining L. salmonis on the salmonid host. Current literature would suggest that 

there is limited genetic variation among Atlantic L. salmonis populations (Glover et al., 

2011) which suggests that transcriptomic responses identified using these strains would 

represent true responses in field L. salmonis populations, although it is possible that 

genetic diversity could be reduced in laboratory strains S and PT. Molecular 

determinants of ivermectin (IVM) resistance were identified in other ecdysozoan pests 

using transcriptomic profiling approaches (James and Davey, 2009; Dicker et al., 2011; 

Bariami et al., 2012) which supports the decision to select a similar experimental design 

when exploring reduced EMB susceptibility in the salmon louse. 

The transcriptomic profiling of L. salmonis during this study identified reduced 

expression of a wide variety of transcripts in strain PT compared to strain S, which were 

enriched for functions such as calcium ion binding and chitin metabolism that could not 

be directly associated with reduced susceptibility to EMB in the PT strain, but may 

indicate general differences between the two strains. Stress responses in marine 

copepods have been shown to have high intra- and inter-species variability that can be 

associated with previous exposure to stressors (Lauritano et al., 2012). Strains S and PT 

differ with respect to drug exposure history, which will influence general stress 
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responses of these salmon lice. Alternatively, these results may indicate that there were 

problems with the synchronisation of cohorts of the two strains used for transcriptomic 

analysis. In order to mitigate potential random effects, constitutive differential gene 

expression between strains S and PT was analysed in two independent experiments, 

although only six replicate pools were used for each strain in the two experiments. If 

these results are considered as a true representation of differential gene expression 

between strains S and PT, then reduced expression of genes involved in metabolic 

homeostasis in strain PT may be indicative of differences in metabolism and growth 

rate between the strains. Increased expression of detoxification mechanisms can often 

have a fitness cost for the parasite through the need to reallocate resources and energy 

to facilitate drug metabolism that may impact development and reproduction or general 

health and survival of the individuals (Kliot and Ghanim, 2012). It may be possible that 

salmon lice from strain PT have a reduced metabolic rate to allow for fitness costs 

associated with allocating metabolic resources to mechanisms required to reduce the 

toxicity from EMB exposure. It has also been demonstrated that insecticide resistance 

has been associated with cuticle thickening in terrestrial arthropod pests (Wood et al., 

2010; Lin et al., 2012) which reduces penetration of the active ingredient when it is 

applied topically. This type of resistance mechanism is unlikely to directly apply in L. 

salmonis resistance to EMB as field EMB exposure is normally through ingestion with 

food material. 

This study identified a constitutively reduced mRNA expression of neuronal 

acetylcholine receptor (nAChR) and -aminobutyric acid gated chloride channel 

(GABA-Cl) subunits in the PT strain compared to strain S. The molecular targets of 

AVMs in crustaceans are not currently known, although glutamate-gated chloride 

channels (GluCls) are thought to be the main pharmacological target in nematodes and 
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insects (Cully et al., 1994; Cully et al., 1996; Dent et al., 2000; Kane et al., 2000; 

Bloomquist, 2003), however GABA-Cls are also thought to be targeted by AVMs (Feng 

et al., 2002) and the AVM compound IVM has been shown to influence the activity of 

nAChRs (Krause et al., 1998). Target site mutations are not necessarily associated with 

changes in gene expression but some studies demonstrate the influence of point 

mutations on the control mechanisms responsible for gene activation and expression 

(Beech and Silvestre, 2010; Beech et al., 2011). This study‟s finding of reduced mRNA 

levels of nAChR and GABA-Cl subunits in the PT strain suggests that these LGIC 

subunits may represent additional pharmacological target sites for EMB in salmon lice. 

Somewhat surprising, this study found no evidence for differences between the 

strains analysed with regard to mRNA levels of genes encoding enzymes and 

transporters involved in detoxification pathways. While comparatively little is known in 

crustaceans about the nature and role in environmental adaptation of detoxification 

pathways, these mechanisms play major roles in drug resistance in terrestrial 

ecdysozoan invertebrate pest species (Bass and Field, 2011). As genes involved in 

detoxification pathways may show altered mRNA levels either constitutively or in 

response to toxicant exposure, the involvement of detoxification pathways in reduced 

EMB susceptibility of L. salmonis will be discussed in section 6.3. 

6.3 Analysis of transcriptomic responses in two L. salmonis 

strains following exposure to EMB. 

The study reported in Chapter 4 of this thesis investigated transcriptomic 

responses induced by short-term EMB exposure of salmon lice from strains S and PT, 

which revealed modest changes in expression of a complex array of transcripts in 

salmon lice from strain S and few responses to exposure of L. salmonis from strain PT. 

As the present study involved sequencing subtractive cDNA libraries between the two 
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L. salmonis strains being studied and the inclusion of these transcript sequences on the 

microarrays employed in expression studies, it would be expected that any genes 

showing dramatic changes in expression between the strains should have been detected. 

The observations of this study did not include any changes in drug transporters or 

enzymatic defence mechanisms that are commonly associated with drug resistance in 

ecdysozoans which may suggest that the selected EMB exposure period and sampling 

points did not capture the period of exposure that elicits toxic responses in strain S or 

induces resistance mechanisms in strain PT. Additionally, the EMB concentration 

selected for this study may not have induced response levels in either L. salmonis strain 

that could be measured within the detection limits of a microarray hybridisation 

approach. The differences in route of EMB exposure between oral field exposure and 

aqueous laboratory exposure may have a significant influence on the transcriptomic 

responses measured in these experiments. It may be necessary for future investigations 

of EMB-induced responses in the salmon louse to use experiments where the parasite is 

exposed to EMB through natural exposure routes, although these experiments would 

involve replicate tanks of host fish which would be considerably more expensive than 

using an aqueous exposure assay and was not achievable within the financial constraints 

of this study. A reduction in EMB concentration was measured in the exposure solution 

sampled after completion of the assays in this study, which may be attributed to EMB 

adsorption to the glass containers used for exposure assays (Helgesen and Horsberg, 

2013b) and could have influenced the transcriptomic response levels measured during 

this study. 

The modest responses observed from exposure of strain S lice may be due to 

general responses to low-level toxicity and/or stress responses to drug exposure, 

removal from their host and/or the effects of the bioassay procedure. Detoxification 
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enzymes have been shown to be involved in the stress response of marine copepods 

(Lauritano et al., 2012). Therefore, general stress response mechanisms in both strains 

that involve these detoxification enzymes could obscure any additional associations the 

enzymes may have with reduced EMB susceptibility in L. salmonis. Laboratory strains 

S and PT do not share a common genetic background and therefore differences in gene 

expression could be related to differential stress responses to EMB exposure or may 

reflect strain differences that are unrelated to EMB susceptibility. The results of this 

study may also suggest that non-essential cellular processes are reduced in strain PT, as 

numerous genes were down regulated in this strain including cytoskeletal proteins and 

associated binding proteins. 

The P-glycoprotein (P-gp) ABC transporters have been found to be upregulated 

upon AVM exposure of several AVM resistant nematodes (Prichard and Roulet, 2007; 

James and Davey, 2009; Lloberas et al., 2013) and therefore P-gp association with 

reduced EMB susceptibility in L. salmonis was explored in the current study. The P-gp 

homologue (SL-PGY1) and transcripts for three MRP in L. salmonis were represented 

on the microarray used in the current study but were not found to be significantly 

differentially expressed upon EMB exposure of strains S and PT. The results from this 

study do not provide evidence to support the involvement of these ABC transporters in 

reductions of EMB susceptibility in L. salmonis strains S and PT, however, post-

translational phosphorylation of ABC transporter proteins could be involved in the 

control of EMB induced transporter activation, but would not be detected in the current 

study (Stolarczyk et al., 2011). 

Drug resistance of some insect and mite species have been associated with gene 

expression changes for different CYP genes and isoforms (Schmidt et al., 2010; Liu et 

al., 2011; Tao et al., 2012) with only some isoforms being inducible upon drug 



                                                                    Chapter 6 – General Discussion 

 

198 

exposure (Liu et al., 2011). No consistent regulation of CYP gene expression in 

response to EMB exposure of L. salmonis was observed in the present study. This 

observation is difficult to interpret, as the roles of CYPs in crustaceans and their 

inducibility by xenobiotics are not completely understood (Baldwin et al., 2009; Dam et 

al., 2008; Koenig et al., 2012). It cannot be excluded that smaller changes in CYP 

expression may have remained undetected in the present study, particularly as the 

number of biological replicates (n=3-6) and thus statistical power was restricted in 

microarray experiments, and in the absence of a fully annotated genome assembly, there 

is no certainty that all CYP isoforms of L. salmonis were represented on the microarray. 

This study also did not provide evidence for the role of GST and esterase enzymes in 

reduced EMB susceptibility of L. salmonis. These enzymes have often been associated 

with insecticide resistance (Wang et al, 1991; Raymond et al., 1998; Ranson et al, 

2001; Wei et al, 2001; Hawkes and Hemingway, 2002; Cui et al. 2006), however it was 

not possible to fully represent these gene families during the current study. 

To further explore the existence of EMB-induced mechanisms in L. salmonis 

using laboratory-maintained strains there are a number of strategies that could be 

employed in future experiments. Initially, it would be necessary to perform larger 

experiments that include numerous different EMB concentrations and exposure times, 

which was not achievable within the financial and time constraints of the current study. 

Additionally, these experiments should include a higher number of replicates and use 

multiple independent L. salmonis strains where all the cohorts used in the analysis are 

carefully synchronised The EMB-resistant strain (PT) available for this study is only 

moderately (~7-fold) resistant and therefore it would be beneficial to use aqueous EMB 

exposure assays to select resistant salmon lice for subsequent breeding of a highly 

resistant strain after numerous rounds of selection. Transcriptomic analysis of a highly 
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resistant L. salmonis strain in comparison to strain S would hopefully illuminate 

putative EMB-resistance mechanisms more efficiently. Additionally, the modification 

of existing EMB aqueous exposure bioassays to allow the selection of salmon lice with 

different degrees of EMB susceptibility may help in elucidating resistance mechanisms 

by selecting highly susceptible and resistant individuals for transcriptomic profiling. 

The alternative global transcriptomic analysis strategies mentioned above could include 

the use of an improved oligo microarray, which was described during Chapter 2 of this 

thesis and includes oligo probes that represent the transcriptome sequence also 

generated during this study. However, the most superior strategy for exploring 

transcriptomic responses associated with EMB resistance in L. salmonis would be to 

use RNA-seq, a NGS strategy that can not only be used for differential gene expression 

analysis, but can also detect splice variant abundances or target site mutations that 

cannot be detected using a microarray hybridisation strategy (Wang et al., 2009). 
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6.4 Use of genome-wide SNP discovery to explore complex 

traits including drug resistance in the salmon louse. 

Reduced drug susceptibility in ecdysozoan invertebrates has previously been 

associated with point mutations in target subunits that may influence the affinity of 

target sites for the drug or influence LGIC conformation upon drug binding (Beech and 

Silvestre, 2010; Beech et al., 2011). Additionally, genetic polymorphisms may exist in 

EMB resistant L. salmonis that influence the control mechanisms responsible for gene 

activation and expression, or prevent the expression of functional proteins (Beech and 

Silvestre, 2010; Beech et al., 2011). The transcriptomic analysis method used in 

Chapters 3 and 4 of this thesis is an approach that does not detect such genetic 

mutations and therefore a complementary genetic method was employed to identify 

SNPs in L. salmonis. RAD-seq technology was used to search for SNPs in L. salmonis 

through comparison of RAD-tag sequences between male and female salmon lice from 

strains S and PT. The selection of this approach was supported by previous studies that 

used similar approaches to identify associations between genetic markers and drug 

resistance in the diamondback moth (Plutella xylostella) (Baxter et al., 2011) and the 

two-spotted spider mite (Tetranychus urticae) (Van Leeuwen et al., 2012). In this study, 

a RAD-seq strategy successfully identified 15 SNP markers that were identified as 

polymorphic when comparing strains S and PT and were therefore putatively associated 

with reduced EMB susceptibility. As laboratory-maintained strains S and PT do not 

have the same genetic background further analysis is required to confirm an association 

of RAD markers with EMB resistance as was discussed in Chapter 5 of this thesis. 

Additionally, generation of F2 crosses using strain S and a highly EMB resistant L. 

salmonis strain would allow Quantitative Trait Locus (QTL) analysis for the association 

of SNP markers with EMB susceptibility, which was not possible during the current 



                                                                    Chapter 6 – General Discussion 

 

201 

study due to financial constraints. The suggestion of such an approach is supported by 

successfully incorporation of RAD-seq in a QTL study of Infectious Pancreatic 

Necrosis (IPN) in Atlantic salmon (Houston et al., 2012). The identification of a robust 

SNP marker for reduced EMB susceptibility does however provide a valuable genetic 

tool that could be used for rapid identification of less susceptible field populations and 

incorporated in pest control strategies. 

The study reported in Chapter 5 further included the identification of SNP marker 

Lsa101901 in L. salmonis that showed complete association with sex in 96 genotyped 

individuals from three different strains. These results strongly suggest that sex 

determination in L. salmonis is genetic and provide evidence for a female heterogametic 

(ZW/ZZ) system. Sex ratios of wild and laboratory-maintained populations of mobile L. 

salmonis are influenced by environmental factors and farm management practices but 

are usually close to 1:1 (Johnson and Albright, 1991b; Bron et al., 1993b; Ritchie et al., 

1996; Hamre et al., 2009) which is consistent with a genetic mechanism of sex 

determination as suggested in this study. Cytogenetic investigations and studies of sex-

linked marker heritability have identified diverse systems of genetic sex determination 

in crustaceans with male (XX/XY) or female heterogamety (ZW/ZZ) being most 

common (Legrand et al., 1987). Male and female heterogametic sex determination 

systems have also been identified in copepoda (Legrand et al. 1987) which suggests that 

it is possible that a ZW/ZZ genetic sex determination exists in L. salmonis as suggested 

in this study. The sex-linked SNP marker identified in this study represents a 

synonymous polymorphism in a prohibitin-2 homologue; however, the functional 

relationship of prohibitin-2 to sex determination remains uncertain. It has previously 

been demonstrated that there is differential EMB susceptibility between L. salmonis 

gender, with females being more susceptible than males (Westcott et al., 2008). It has 
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also been recognised that the chalimus phase of the L. salmonis life cycle comprises 

two stages (Hamre et al., 2013), rather than the previous hypothesis that there was 

successive chalimus stages (Johnson and Albright, 1991b; Pike and Wadsworth, 1999). 

This sex-linked SNP marker may therefore contribute to better understanding of how 

EMB susceptibility could be influenced in L. salmonis populations and the study of 

chalimus stage L. salmonis sex-ratios on salmonid hosts, to better understand how L. 

salmonis reproduction could be manipulated in the development of non-chemical based 

control strategies. 
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Conclusions 

The studies detailed in this thesis demonstrate the use of current genomic and 

transcriptomic approaches to improving our understanding of the molecular 

mechanisms potentially involved in reduced L. salmonis EMB susceptibility. As a fully 

annotated L. salmonis genome is yet to be released, this project involved supplementing 

existing L. salmonis sequence resources to enable the study of EMB resistance. These 

new sequence resources facilitated the design of oligo microarrays for the analysis of 

transcriptomic responses in L. salmonis and provided candidates putatively associated 

with EMB resistance. The L. salmonis microarrays developed in this study were used 

for the transcriptomic profiling of constitutive gene expression and EMB-induced 

responses in the L. salmonis laboratory strains S and PT, which differ in susceptibility 

to the anti-parasitic drug EMB. Constitutively lower mRNA levels of nAChR and 

GABA-Cl subunits were found in the EMB resistant strain PT when compared to the 

reference strain S. In contrast, very few EMB-induced transcriptomic responses were 

measured in strain PT. In addition, RAD-seq technology was employed to discover 

SNPs in L. salmonis and perform parallel genotyping of individuals from strains S and 

PT. Genetic analysis identified SNP markers that were putatively associated with EMB 

susceptibility, and further isolated a sex-linked SNP marker showing complete 

association with gender in three different L. salmonis laboratory-maintained strains. The 

identification of alternative molecular targets for EMB and strain-linked SNP markers 

putatively associated with reduced L. salmonis EMB susceptibility provides candidates 

for future studies to establish an association with EMB susceptibility in L. salmonis. 

Finally, a robust SNP marker for L. salmonis gender may help advance our 

understanding of sex determination in sea lice and the development of improved control 

strategies for this species. 
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Appendix 1 General buffers & solutions 

RNA Stabilisation Solution 

(4.54 M ammonium sulphate, 25 mM trisodium citrate, 20 mM EDTA, pH 5.4) 

Constituent Volume/ 

Weight 

0.5 M EDTA (pH 8.0)  20 ml 

1 M Sodium Citrate 12.5 ml 

Ammonium sulphate 300g 

Milli Q Water 467.5 ml 

 

RNA Precipitation Solution (0.8M Sodium Citrate, 1.2M Sodium Chloride) 

Constituent Weight (g) 

Sodium Citrate 

(C6H6Na2O71.5H2O) 

10.524 

Sodium Chloride 3.506 
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Appendix 2 Salmon louse samples included in a total RNA pool for 

transcriptome sequencing. 

Sample 

ID 
Salmon louse stage 

1 Egg strings (Light colouration) 

2 Egg strings (Dark colouration) 

3 Nauplius (24 hrs growth at 8 °C) 

4 Nauplius (24 hrs growth at 10.5 °C) 

5 Nauplius (48 hrs growth at 8 °C) 

6 Nauplius (48 hrs growth at 10.5 °C) 

7 Free-living Copepodid 

8 Attached Copepod (24 hrs dpi) 

9 Attached Copepod (48 hrs dpi) 

10 Chalimus Ia (72 hrs dpi) 

11 Chalimus Ib (96 hrs dpi) 

12 Chalimus Ic 

13 Chalimus 2a 

14 Chalimus 2b 

15 Preadult 1 Male 

16 Preadult 2 Male 

17 Adult Male 

18 Preadult 1 Female 

19 Preadult 2 Female 

20 Adult virgin Female  

21 Adult gravid female 
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Appendix 3 PCR-Select™ cDNA subtraction kit - Adaptor and primer 

sequences. 

cDNA synthesis primer 5'-TTTTGTACAAGCTT30N1N-3' 

 

Adaptor 1  5'-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-3' 

              3'-DGGCCCGTCCA-5' 

        

 PCR primer 1 5'-CTAATACGACTCACTATAGGGC-3' 

        Nested PCR primer  5'-TCGAGCGGCCGCCCGGGCAGGT-3' 

 

 Adaptor 2R 5'-CTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAGGT-3' 

          3'-GCCGGCTCCA -5' 

  Nested PCR primer 2R      5'- AGCGTGGTCGCGGCCGAGGT-3' 

  

RsaI Eag I/Eae 

T7 Promoter 

RsaI Not I 
Srf I/Sma I 

T7 Promoter 
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Appendix 4 cDNA library details for the Nilsen Norway EST sequences. 

Library 

ID 

Library 

description 

Number of 

Sequences 

CC Chalimus 120 

FB 

Adults 

(Colon/Intestine) 707 

HA Adults 680 

L1T T1 Adults 1,513 

LF 

Preadult I and II 

(with filament) 1,806 

LNC Copepodites 3,348 

LNO 

Preadult I and II 

(with filament) 16,079 

LPA Preadult Stages 89 

LPU Preadult Stages 1,340 

ME 

Adults  

(with blood) 4,031 

NA Nauplius 66 

NLG Egg string 3,541 

PU Preadult II 602 

SB Adult 142 

 

Total 34,064 

The 35,577 EST sequences that originated from the ‘Nilsen Norway’ sequencing group were 

assessed to remove the short sequences (<100 bp). The remaining 34,064 sequences were 

grouped according to the sequenced cDNA library as detailed. 

Appendix 5 L. salmonis oligonucleotide microarray designs 

Microarray design GAL file name 

15K microarray design 1 033382_D_20110405.gal 

15K microarray design 2 039612_D_20120319.gal 

44K microarray design 1 048507_D_20130327.gal 
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Appendix 6 Reference gene primers for RT-qPCR analysis of relative gene expression (Chapters 3, 4 and 5). 

Accession 

No. 
Annotation Primer sequence (5' - 3') Ta 

Fragment 

size (bp) 

ACO14905.1 

Hypoxanthine-guanine 

phosphoribosyltransferase 

(HGPRT) 

GCAGCAAACATCGAATCTCA 
55 187 

TCTTTGCACGAACAAACTGC 

          

ACO15319.1 RMD5 homolog A 
TCTCCTTATGCCCACTTGCT 

55 220 
GAGTTCCGTCCTTTGCATTC 

          

EF490880.1 Elongation factor 1α 
CCAAATTAAGGAAAAGGTCGACAGACGTACTG 

60 86 
TGCCGGCATCACCAGACTTGA 

          

BT121430.1 40S ribosomal protein S20 
AGTGTGGCCGGTGTTTAACAATCATCAA 

60 86 
GGGCTTCGAGTCCTTGTATGCTGCTGCTACT 

          

ACO10279.1 60s ribosomal protein L44 
CCTAGCTGCAATCACCATGA 

55 197 
CTCTTGCACTTGCTGCACTC 
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Appendix 7 Primers used for RT-qPCR analysis of relative gene expression 

between salmon louse strains (Chapter 3). 

Accession No. Annotation Primer sequence (5' - 3') Ta 
Fragment 

size (bp) 

ADD24187.1 

Neuronal 

acetylcholine 
receptor subunit α3 

GAATTTTGGTGAGGGGGAAT 
55 208 

ACCATTGGACTTGACGATCC 

          

EFN73916.1 
GABA receptor 

subunit alpha 

AATCTCACCGGATGGTCTTG 
55 201 

ATGGTTGCTTTGGCAAGAGT 

          

XP_003494528.1 
Cytochrome p450 

18a1 

GAAAATTTGGCTCGAATGGA 
55 163 

TTTTCACGTCCCGTGGTATT 

          

AAS13464.1 
Cytochrome p450 

15a1 

AAATGAGGCTCGCTTTACCA 
55 229 

CCTTGCTGCTGGGATGTAAT 

          

NP_001136104.1 Carboxylesterase 
CAATTATTGGGCATGGCTCT 

55 155 
CTTTCCCATTTTCCCACTCA 

          

XP_797271.2 
Maltase-

glucoamylase 

CAGGATCCAGGTCTCTTTGG 
55 180 

GATTTCGGCAAACCATGTCT 
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Appendix 8 Primers used for RT-qPCR analysis of relative gene expression 

between on exposure to EMB (Chapter 4). 

Accession No. Annotation Primer sequence (5' - 3') Ta 
Fragment 

size (bp) 

AAS91796.1 
Intestinal trypsin 
5 precursor 

GGAGTGGATCGCATTTTTGT 
55 226 

CCAAAATGCAAACGTCATTG 

          

XP_001850227 Metalloproteinase 
GAAGATGCCTGCAAAATGGT 

55 163 
ATCGCTTTTCGAATCAAGGA 

          

ADD24462.1 Cerebellin-3 
AAACGATGGGCGTATTTCAG 

55 163 
GAGAATCCATGCGGTTTTGT 

          

ADD38711.1 nAChR α3 
TGGGCTGTCCATGAATGTAA 

55 181 
CTCGGGACAGCACACATAAA 

          

NP_001136346.1 Cuticular protein 
GTGTCATCGGCTCATGTGTT 

55 225 
CGAACTTTGTGTGGGTCCTT 

          

ADD38289.1 
Gamma-crystallin 

A 

GGATTTATGGGAATCGAGCA 
55 224 

ACTTGATCGGCAAAATGTCC 

          

ACM68948.1 

Selenium-

dependent 

glutathione 

peroxidase 

CGAACAGACATTGCTTGGAA 

55 196 
GCAAATTCAGGCCATCCTAA 

          

BAI79321.2 
Duplex-specific 

nuclease 

GCGGCTCCTCAATATCAAAG 
55 188 

GTAACGAGGAGCGGGTATCA 

          

ACO12859.1 

Chloride 

intracellular 
channel exc-4 

ACATTCCACCATCCCATCAT 
55 190 

CAGGGCTTTCGGATGTATGT 

          

ADD38201.1 
TIP41-like 

protein 

TCTCCCAAAGGTGGTTCATC 
55 237 

AAAACCTCCACTGGACATGC 
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Appendix 9 Salmon louse immotility assessment time points 

Observation 

Time of 

exposure (hours) 

1 0.3 

2 0.7 

3 1.0 

4 1.5 

5 2.0 

6 2.5 

7 3.0 

8 4.0 

9 5.0 

10 6.0 

11 8.0 

12 10.0 

13 12.0 

14 15.0 

15 18.0 

16 21.0 

17 24.0 
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Appendix 10 Illumina
®
 adapter and primer sequences 

P1 adapter sequences 

P1 top: 

5´AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTxx

xxxTGC*A -3´ 

P1 bottom: 

5´PxxxxxAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTAT

CAT*T-3´ 

P2 paired end (PE) adapter sequences 

P2 top: 

5‟-P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCAGAACAA-3‟ 

P2 bottom: 

5‟CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGA

TC*T-3‟ 

PE PCR Primer 1.0    5´-AATGATACGGCGACCACCGA-3‟ 

PE PCR Primer2.0    5´-CAAGCAGAAGACGGCATACGA-3‟ 

PE sequence primer - Read 1 

5´-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3‟ 

PE sequence primer - Read 2 

5´-CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-3‟ 

“P” denotes a phosphate group. 

 

“x” refers to barcode nucleotides. 

 

* denotes a phosphorothioate bond introduced to confer nuclease resistance to double stranded oligo. 
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Appendix 11 Multiplex barcode assignment and RAD-tag identification 

for individual samples from drug-sensitive (S) salmon lice. 

ENA Sample 

ID 
Barcode 

ID 
Gender 

Barcode 

Sequence 

RAD 

Library 

Filtered 

reads 

Total RAD-

tags 

ERS225423 14 Female CTCTT 2 2584676 130107 

ERS225424 B05 Female GAAGC 4 7065732 161378 

ERS225425 18 Female CCCCA 2 1923370 117510 

ERS225426 B10 Female GGGGA 4 5319672 157878 

ERS225427 15 Female CGTAT 1 2706698 134748 

ERS225428 13 Female CTTCC 3 3002946 131562 

ERS225429 B11 Female GTACA 4 6600830 158765 

ERS225430 11 Female AGTCA 3 2597410 125933 

ERS225431 16 Female CGCGC 1 2271838 128326 

ERS225432 7 Female GCTAA 1 2848806 134932 

ERS225433 17 Female CCTTG 2 2294860 124569 

ERS225434 12 Female AGCTG 3 2733504 128068 

ERS225420 5 Male GGTTC 3 3267350 137270 

ERS225435 10 Male GACTA 2 2855436 140236 

ERS225421 9 Male GATCG 3 3582112 145417 

ERS225436 24 Male TGCAA 4 2824930 148666 

ERS225437 4 Male GTCAC 1 2745824 138293 

ERS225438 1 Male ATTAG 1 2047938 128194 

ERS225439 3 Male GTTGT 2 3413014 151534 

ERS225440 25 Male TCTCT 4 897604 79038 

ERS225441 8 Male GCCGG 3 3454646 140592 

ERS225442 2 Male ATCGA 2 2706406 132272 

ERS225443 B01 Male CGATA 4 11697094 197636 

ERS225436 6 Male GGCCT 1 3590478 148027 

Unique five base nucleotide barcodes were assigned to each salmon louse DNA sample. 

These samples were included in a multiplex RAD library and sequenced, which generated 

sequence reads that were quality filtered and used for the identification of paired-end RAD-

tags in  75 % of the samples. 
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Appendix 12 Multiplex barcode assignment and RAD-tag identification 

for individual samples from EMB-resistant (PT) salmon lice. 

ENA Sample 

ID 

Barcode 

ID 
Gender 

Barcode 

Sequence 

RAD 

Library 
Filtered reads 

Total RAD-

tags 

ERS226918 E5 Female AGAGT 1 38702 1619 

ERS226913 B04 Female CTGAA 1 1446160 108344 

ERS226908 D02 Female TAGCA 1 10337800 158315 

ERS226910 B08 Female GCGCC 2 11648734 159572 

ERS226912 D04 Female TCGAG 2 9825154 157526 

ERS226914 C5 Female TGACC 2 22432 863 

ERS226911 B06 Female GAGAT 3 17341138 163812 

ERS226915 B07 Female GCATT 3 17928016 163311 

ERS226907 27 Female TATAC 3 2864762 127441 

ERS226916 D09 Female AACCC 4 5107894 148517 

ERS226917 D11 Female ACCAT 4 4780420 147905 

ERS226909 D12 Female ACTGC 4 4606692 144340 

ERS226923 B03 Male CTAGG 1 23818866 196804 

ERS226930 26 Male TCCTC 1 3034598 137401 

ERS226927 23 Male TGTGG 1 5571176 178547 

ERS226922 B02 Male CGGCG 2 17290824 188769 

ERS226928 28 Male TACGT 2 5386784 170448 

ERS226920 21 Male TTTTA 2 3244760 142556 

ERS226924 20 Male CACAG 3 3360070 146687 

ERS226919 19 Male CATGA 3 3127890 139270 

ERS226925 22 Male TTCCG 3 4342760 182092 

ERS226926 B12 Male GTGTG 4 10182526 176914 

ERS226929 D01 Male TAATG 4 8415250 210118 

ERS226921 D03 Male TCAGA 4 5587078 157408 

For further details please see legend for Appendix 11. 
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Appendix 13 Primers used for RT-qPCR analysis of prohibitin-2 relative 

gene expression between male and female salmon lice (Chapter 5). 

Accession No. Annotation Primer sequence (5' - 3') Ta Fragment 

size (bp) 

BT121810.1 Prohibitin-2 GCGTATTCCCGACCAAAACT 55 167 

GAAGTTCTCAAGGGCGTTGT 
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Appendix 14 Additional file details 

Additional file 2.1 Annotation of L. salmonis transcriptome sequences putatively 

associated with reduced EMB susceptibility. 

Transcripts were identified as members of gene families putatively associated with reduced 

drug susceptibility in ecdysozoan invertebrates based on BLASTx annotation. 

Additional file 2.2 GAL format file detailing the L. salmonis 15K oligo 

microarray design 1. 

Description of oligo probe positions on the L. salmonis 15K microarray design 1. 

Additional file 2.3 GAL format file detailing the L. salmonis 15K oligo 

microarray design 2. 

Additional file 2.4 GAL format file of the L. salmonis 44K oligo microarray. 

Additional file 4.1 Genes identified from the features grouped in network 

cluster 1. 

Changes in expression of genes in cluster 1 (Chapter 4, Figure 4.6) observed following 

exposure of two salmon louse strains to EMB, expressed relative to gene expression in the 

matching solvent (SOL) control. Annotated genes (35%) are arranged by category of biological 

function. Features with identical annotation were removed prior to categorising biological 

function. 

Additional file 4.2 Genes identified from the features grouped in network 

cluster 2. 

Changes in expression of genes in cluster 2 (Figure 5) observed following exposure of two 

salmon louse strains to EMB, expressed relative to gene expression in the matching solvent 

(SOL) control. For further details, please see legend of Additional file 4.1. 

Additional file 5.1 SNP alleles and RAD marker allele sequences for the L. 

salmonis strain-linked RAD markers. 

Twenty seven strain-linked SNP alleles and RAD marker allele sequences were identified 

through the comparison of RAD-tag sequences between L. salmonis strains S and PT. 


