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Abstract 12 

 13 

Bumblebees and other pollinators provide a vital ecosystem service for the agricultural sector.  Recent 14 

studies however have suggested that exposure to systemic neonicotinoid insecticides in flowering 15 

crops has sub-lethal effects on the bumblebee workforce, and hence in reducing queen production.  16 

The mechanism behind reduced nest performance, however, remains unclear.  Here we use Radio 17 

Frequency Identification (RFID) technology to test whether exposure to a low, field realistic dose 18 

(0.7ppb in sugar water and 6ppb in pollen) of the neonicotinoid imidacloprid, reduces worker foraging 19 

efficiency.  Whilst the nectar foraging efficiency of bees treated with imidacloprid was not 20 

significantly different than that of control bees, treated bees brought back pollen less often than 21 

control bees (40% of trips versus 63% trips, respectively) and, where pollen was collected, treated 22 

bees brought back 31% less pollen per hour than controls. This study demonstrates that field-realistic 23 

doses of these pesticides substantially impacts on foraging ability of bumblebee workers when 24 

collecting pollen, and we suggest that this provides a causal mechanism behind reduced queen 25 

production in imidacloprid exposed colonies.   26 

 27 

28 



Introduction 29 

Around a third of all human food is thought to depend on insect pollination (McGregor 1976) and 30 

many crops benefit from this service, with adequate pollination increasing yields and improving crop 31 

quality (Klein et al. 2007).  Recently, however, there has been growing concern over the use of 32 

neonicotinoid pesticides in agriculture and the sub-lethal effects they can have on pollinators 33 

(Decourtye et al. 2004; Desneux et al. 2007; Yang et al. 2008; Aliouone et al. 2009; Henry et al. 2012; 34 

Whitehorn et al. 2012, Gill et al. 2012; Williamson & Wright 2013; Di Prisco et al. 2013; Matsumoto 35 

2013), which has culminated in an EU-wide restriction on the use of three neonicotinoid pesticides.  36 

The ban comes into place in December 2013 and is a temporary, two year measure preventing the use 37 

of imidacloprid, clothianidin and thiametoxam until further research can clarify the impact these 38 

pesticides are having on bees (European Commission 2013).  Sub-lethal effects do not bring about 39 

direct mortality but impair an organism’s ability to function in some other way, for example by 40 

impacting on activity, fecundity, neurophysiology, learning performance or other aspects of behaviour 41 

(Desneux et al. 2007; Laycock et al. 2012).  There is mounting evidence that neonicotinoid pesticides, 42 

formulated to target neurotransmitter receptors in insects, are negatively impacting the foraging 43 

behaviour of bees by inducing memory and learning dysfunctions, and impairing navigational skills 44 

(Henry et al. 2012; Aliouane et al. 2009; Yang et al. 2008; Decourtye et al. 2004).  The continuing 45 

decline of pollinators such as bumblebees and honeybees, coupled with an increased focus on 46 

sustainable food production means that a greater understanding of the wider impacts of pesticides on 47 

pollinators is required. 48 

Imidacloprid is the second most widely used agrochemical in the world (Pollak 2011), and is 49 

commonly used as a seed dressing to protect crops from insect pests.  The pesticides used in these 50 

seed dressings are transported throughout the plant via the sap, ending up in both pollen and nectar at 51 

concentrations typically ranging from <1 to 10 ppb (parts per billion) (Cresswell 2011; EFSA 2012).  52 

Oil seed rape is the second most abundant arable crop grown in the UK in terms of area (Garthwaite et 53 

al. 2010) and its flowers are known to attract bumblebees, honeybees and other pollinating insects 54 

(Hayter & Cresswell 2006).  The majority of growers that produce oilseed rape do so using dressed 55 



seeds, with recent figures suggesting that only around 4% of seed sown in the UK remain untreated 56 

(Garthwaite et al. 2010).  Fields of rape offer a mass flowering crop that blooms for several weeks and 57 

bees that forage on these plants are thus exposed over large scales to trace dietary insecticides such as 58 

imidacloprid.    59 

A recent study by Whitehorn et al. (2012) found that Bombus terrestris (Linnaeus 1758) colonies 60 

exposed to field realistic doses of imidacloprid (0.7ppb in sugar water and 6ppb in pollen), produced 61 

85% fewer queens than control colonies.  Bumblebees have an annual cycle, with new queens single-62 

handedly founding the next generation of nests (Goulson 2010).  There is evidence that only the most 63 

successful nests produce new queens (Muller & Schmid-Hempel 1992) and reductions in the number 64 

of queens produced one year will likely have knock on effects for the number of colonies founded the 65 

next.  However, Whitehorn et al. (2012) did not attempt to elucidate the mechanisms underlying 66 

reduced performance of treated colonies, which might include reduced fecundity of the queen, or 67 

reduced foraging efficiency of the workers. Gill et al. (2012) provide a possible explanation; they 68 

found that exposure to imidacloprid at 10 ppb in sugar water reduced the foraging success of worker 69 

bumblebees.  However, the highest concentration of imidacloprid found in the nectar of seed-treated 70 

oilseed rape to date is 0.8ppb (EFSA 2012).  In this study we examined the effect of a lower, more 71 

field realistic dose of imidacloprid to determine what effects it may have on the foraging ability of B. 72 

terrestris workers. 73 

Methods 74 

Six commercial B. terrestris colonies (Biobest N.V., standard hives) were used to examine the effect 75 

of field realistic doses of the pesticide imidacloprid on foraging activity over a four week period.   76 

Upon arrival, nests were small, evenly aged and consisted of the queen and up to 65 workers.  They 77 

contained two internal tanks which supplied the bees with sugar solution during transportation, and 78 

these tanks were sealed prior to controlled feeding to ensure that bees only had access to the ‘nectar’ 79 

provided as part of the experiment.  Colonies of approximately equal weights were randomly 80 

allocated to either a treatment or control group (three in each).  Control colonies were fed ad libitum 81 



(ad lib) with pollen and a sugar water solution for a period of 14 days in the laboratory.  Over the 82 

same period colonies assigned to the treated group were fed pollen and sugar water containing 6ug kg
-83 

1
 and 0.7ug kg

-1
 imidacloprid respectively, thus mimicking levels of imidacloprid found in oil seed 84 

rape (Bonmatin et al 2005).  During the 14 day period bees were provided with no alternative forage. 85 

After two weeks of controlled feeding in the lab, all colonies were placed out in the field and the 86 

foraging behaviour of bees was monitored over a four week period (07.08.2012 – 04.09.12).  The 87 

study was carried out in domestic gardens in an urban area of Stirling in the Central-belt region of 88 

Scotland. The nearest farmed area was over 1km away.   Bees were allowed to acclimatise to their 89 

surrounding for 24 hours.  After this time the first 12 bees exiting each nest that had undamaged 90 

wings were collected.  In treated nests this first batch of bees would have been individuals that 91 

consumed contaminated pollen and nectar during their adult life, however given the 9 day pupation 92 

phase they are not likely to have been larvae reared on food contaminated with imidacloprid (Van Der 93 

Steen 2008).   We used Radio Frequency Identification (RFID) technology to monitor the foraging 94 

duration of individual bumblebees, and an automated system to record the weight of bees entering and 95 

exiting the nest.  RFID technology is increasingly being used to study the behaviour of insects 96 

(Robinson et al. 2009: ants; Streit et al. 2007; Molet et al. 2008: bumblebees; Sumner et al. 2007: 97 

paper wasps), and allows an accurate and automated way of monitoring their activity (Ohashi et al. 98 

2010).  A small RFID tag (mic3®-AG64 bit RO, iID2000, 13.56MHz system, 1.0x1.6x0.5mm; 99 

Microsensys GmbH, Erfurt, Germany) weighing 3mg (<3% of the weight of the smallest bee tagged) 100 

was glued to the dorsal surface of each bee’s thorax.  The weight of these tags was small relative to 101 

the average weight of nectar and pollen carried by bees; bumblebees are known to carry up to 90% of 102 

their own body weight (Goulson et al. 2002).  The tags were carefully positioned so that they would 103 

not hamper wing movement and bees were then released and left to forage independently for a period 104 

of four weeks.  Treated and control colonies were randomly paired and each pair were monitored for a 105 

24h period every third day (approximately).  A fully automated system was set up to record the time 106 

and weight of bees departing from and returning to the nest: in a set-up similar to that used by Stelzer 107 

et al. (2010) a system of 2cm tubes were used to connect the entrance of each colony to a clear plastic 108 



box mounted on top of a balance (weighing to 3 decimal places).  A small clearance gap was left 109 

between the tube system and the weighing box to ensure that only the weight of bees in the box was 110 

recorded.  In most cases the time it took for bees to traverse the box was sufficient to get a stable 111 

reading.  However on about a third of occasions there were multiple bees in the box at one time which 112 

meant it was not possible to obtain an accurate weight of any one individual bee.  If this occurred 113 

when a bee was returning to the nest, the trip was excluded from the analysis of weight data.  114 

However if it occurred when a bee was leaving the nest then an average weight of that bee was 115 

obtained from other departures made during the monitoring period, and this was used as proxy in the 116 

analysis.  After traversing the box, bees then entered another length of tube leading them to the 117 

outside.  RFID readers were mounted between the nest entrance and the first length of tube, which 118 

recorded the exact time bees entered and exited the nest.  A motion detecting camera was set up to 119 

record the weight of bees as they passed over the balance, and to determine if bees returned carrying 120 

pollen.  As in Stelzer et al. (2010), any trips that lasted for five minutes or less as well as those flights 121 

where bees lost mass were excluded from analysis as the majority of these were likely to have been 122 

orientation or defecation flights.  These trips only accounted for a small number of the total trips 123 

recorded and numbers were similar in treated and control colonies (only 15 trips in total, nine for 124 

treated and 8 for control bees).  Additionally any trips over four hours in duration (seven in total, three 125 

for treated and four for control bees) were excluded from the analysis as these often occurred on rainy 126 

days where bees may have been prevented from returning to the nest due to adverse weather. 127 

Fourteen days into the four week data capture period a further 12 bees from each nest were tagged.  128 

The development of B.terrestris workers in laboratory conditions includes ~14 day of larval 129 

development during which larvae are frequency fed, followed by ~9 days as a pupa. Thus in treated 130 

colonies, bees tagged at this point were likely to have been those reared on the pollen and nectar 131 

dosed with imidacloprid.  At the mid-way stage of the experiment one control nest and one treated 132 

nest had to be removed from the experiment due to wax moth infestations; therefore no further bees 133 

were tagged in each of these colonies. 134 



All statistical analyses were conducted using R version 2.15 (R Development Team, 2012).  135 

Generalised Linear Mixed Effects models (GLMM; fitted by maximum likelihood using the lme4 136 

package) with Gaussian errors were used to test the effect of imidacloprid treatment on, trip duration, 137 

weight of forage collected and the foraging efficiency (mg of forage collected per hour) of individual 138 

bees.  The time of day for each trip and the number of days since each bee was tagged were included 139 

as covariates along with treatment as a fixed factor.  Individual and colony I.D. were included as 140 

random factors to account for pseudo-replication between and within colonies.  ‘Batch’ (whether the 141 

bees were tagged at the start of week one, or the start of week three) was also included as a fixed 142 

factor.  All two way interactions were included in the starting model. Factors that did not contribute 143 

significantly to the model were removed in a stepwise manner, using p=0.05 as a threshold for factor 144 

retention or removal.  After each simplification step models were assessed using the Akaike’s 145 

information criterion (AIC; Akaike, 1974).  When modelling both pollen and nectar foraging 146 

efficiency the most parsimonious model determined using the stepwise approach matched the model 147 

with the lowest AIC value.     148 

 149 

A GLM, with quasibinomial errors to allow for over dispersion, was used to determine if there was a 150 

significant difference in the proportion of trips in which treated and control bees returned with pollen.  151 

The number of trips in which bees returned with pollen over the number of returns without pollen was 152 

modelled as the response variable and treatment and batch were included as fixed effects.  Nest was 153 

included as a fixed effect in this analysis as, due to the relatively small sample size, models including 154 

nest as a random effect were unable to correctly separate out nest effects that were not due to 155 

treatment.  156 

 157 

A Pearson’s correlation was used to examine the relationship between time spent foraging and the 158 

weight of the load collected during each bout. Unless otherwise stated all averages are means ± 159 

standard deviation.   160 

 161 

Results 162 



Between 07 August 2012 and 04 September 2012 data were gathered from 256 foraging bouts; 21 163 

foragers from control colonies were recorded making 113 foraging trips (5.4 ± 1.4 trips per bee), and 164 

24 foragers from treated colonies made a total of 142 trips (5.96 ± 1.9 trips per bee).  During the 165 

course of the study two bees from the treated group and one bee from the control group failed to 166 

return to the nest.  There was no difference in the lifespan of bees from treatment and control groups, 167 

with all tagged bees (with the exception of the three that failed to return to the nest) surviving until the 168 

end of the study.    169 

Control bees spent on average 25.44 ± 6.1 minutes foraging for nectar, with a mean weight of 42.6 ± 170 

9.86 mg collected per bout, resulting in a nectar foraging rate of 101 ± 10.68 mg/hr
-1

.  This was not 171 

significantly different from the nectar foraging rate of treated bees (GLMM: χ
2
=0.534, d.f=1, 172 

p=0.464; Figure 1a) who spent on average 27.26 ± 8.4 minutes foraging for nectar, bringing back 44.7 173 

± 12.49 mg of nectar per bout resulting in a foraging rate of 99.24 ± 9.67 mg/hr
-1

.  Neither treatment 174 

nor any of the other proposed explanatory variables; time of day, batch and number of days since the 175 

bee was tagged, were significant in explaining trip duration, weight of nectar collected or nectar 176 

foraging efficiency. 177 

The average length of time spent on pollen foraging trips (trips in which the returning bee had visible 178 

pollen loads) was 73.8 ± 14.38 minutes for control bees with a mean weight of 57.32 ± 11.22  mg 179 

being collected per bout, resulting in a pollen foraging rate of  47.71 ± 7.62  mg/hr
-1

. The mean length 180 

of time spent on pollen foraging trips in treated bees was 77.85 ± 24.96 minutes, with the minimal 181 

model for trip duration including treatment, the number of days since the bee was tagged and the 182 

interaction between the two (GLMM: χ
2
=9.99, d.f=1, p<0.01).  Trip duration in control bees remained 183 

approximately constant throughout the experiment, however in treated bees the duration of trips 184 

increased with time from tagging.  The mean weight of pollen collected per bout by treated bees was 185 

41.07 ± 12.72mg, with treated bees bringing back significantly less pollen than control bees (GLMM: 186 

χ
2
=4.76, d.f=1, p <0.01), with no other factors remaining in the minimal model.  This resulted in a 187 

mean foraging rate for pollen of 32.97 ± 9.43 mg/hr
-1

, a 31% reduction compared to control bees 188 

(GLMM: χ
2
=18.06, d.f=1, p <0.001; Figure 1b).  There was no significant effect of time of day, batch 189 



and number of days since individual bees were tagged in explaining pollen foraging efficiency. 190 

Treated bees were also significantly less likely than control bees to return to the nest carrying pollen 191 

(41% vs 65% of foraging bouts respectively; t= -2.135, n=42, p<0.05).  192 

The positive correlation between time spent foraging for pollen and the amount of forage collect was 193 

significant in both treated bees (r=0.576, n=57, p<0.001) and control bees (r=0.729, n=71, p<0.001). 194 

In accordance with Whitehorn et al. (2012), treated nests gained less weight than control nests and 195 

also produced fewer workers and queens, but the number of nests used in our experiment was too few 196 

to permit meaningful statistical analysis of these differences. 197 

Discussion 198 

This study strongly corroborates the findings of previous studies, and shows that the neonicotinoid 199 

imidacloprid can have sub-lethal effects on free-flying worker bumblebees, and thus is likely to 200 

reduce colony success.  Here we were able to quantify for the first time the change in bumblebee 201 

foraging efficiency as a result of field-realistic measures of imidacloprid exposure showing that, on 202 

pollen gathering trips, treated bees brought back 31% less forage per hour than controls, representing 203 

a significant reduction in efficiency.  This is in accordance with the findings of Gill et al. (2012) who 204 

ranked the pollen loads of bumblebees returning to the nest as small, medium or large and found that 205 

imidacloprid exposed bees brought back proportionally more small loads than unexposed bees.  Gill et 206 

al. (2012) also found that imidaclopid exposed bees collected pollen on 59% of their foraging bouts, 207 

versus control bees that collected pollen on 82% of occasions (a 28% decrease).  Using a lower, field 208 

realistic dose we found that bees exposed to imidacloprid showed a 23% reduction in the frequency of 209 

pollen-collecting trips, compared to controls.    210 

Pollen is the main protein source for bumblebees and is particularly important for the rearing of young 211 

to replace older workers (Harder 1990).  It has been suggested that foraging for pollen is  more 212 

challenging than foraging for nectar (Raine & Chittka 2007), and it is usually restricted to dry, sunny 213 

weather, whereas nectar can be collected in most conditions except heavy rain (Peat & Goulson 214 

2005), so that pollen rather than nectar shortages are more likely to limit colony success (Goulson 215 



2010).  This is reflected in the lower foraging efficiency of bees when gathering pollen versus nectar 216 

(Peat & Goulson 2005).  Using the same concentrations of imidacloprid as the current study (6ppb 217 

pollen and 0.7ppb nectar), and the same two-week exposure period, Whitehorn et al. (2012) found an 218 

85% reduction in queen production in colonies exposed to imidacloprid.  Developing queens are 219 

known to require more food during their developmental period and thus queen production is likely to 220 

suffer as a result of lower provisions of pollen. Whitehorn et al. (2012) also found that colonies 221 

exposed to imidacloprid gained significantly less weight over time than control colonies.  In previous 222 

work studying B. lucorum, a species closely related to B. terrestris, a positive correlation was found 223 

between nest size and queen production (Muller & Schmid-Hempel 1992). Hence our data provide a 224 

simple mechanism for the dramatic declines in queen production described by Whitehorn et al. 225 

(2012); a substantially reduced pollen supply to the colony.  226 

In this experiment we made the assumption that if a bee returned with a visible pollen load then any 227 

increase in weight recorded was due to the pollen it had collected whilst foraging. In some cases 228 

however it is likely that bees foraged for a mixture of pollen and nectar. It is thus possible that the 229 

lower weight of forage brought back by bees exposed to pesticide was due to reduced nectar 230 

collection, or a combination of reduced pollen collection and reduced nectar collection. The former 231 

seems less likely since bees which returned only with nectar showed no significant impact of pesticide 232 

treatment.   233 

It is worth noting that in the present study bumblebees were kept in the lab for two weeks and treated 234 

colonies were given no alternative but to feed upon pollen and nectar dosed with imidacloprid.  This 235 

is perhaps unrealistic of field conditions as bees would normally be free to forage on a range of 236 

contaminated and uncontaminated resources.  However, oil seed rape is the third most abundant 237 

arable crop grown in the UK (after wheat and barley) with the production area for this crop having 238 

increased by 17.75% between 2010 and 2012, representing an increase of 114,000 hectares 239 

(Garthwaite 2010; DEFRA 2012).  Rape is known to flower for around 3-4 weeks providing an 240 

abundant, if short-lived floral resource (Goulson et al. 2010).  Both bumblebees and honeybees feed 241 

on oil seed rape (Hayter & Cresswell 2006) and given the general decline in floral resources in the 242 



countryside (Carvell et al. 2006) it is likely that, whilst in flower, oil seed rape constitutes a large 243 

component of many bees’ diets.  A recent study by Thompson et al (2013) that examined the effects 244 

of three neonicotinoids on bumblebee colonies in field conditions failed to establish a negative 245 

control, demonstrating that these substances are widespread in agricultural environments.  246 

Furthermore, substantial concentrations of neonicotinoids (up to 9ppb) have been found in 247 

wildflowers growing near to treated crops (Krupke et al. 2012), suggesting that exposure to these 248 

types of pesticide might not be restricted to bees foraging on the crops themselves. Hence we suggest 249 

that the level of exposure used here is likely to approximate that experienced by some wild bumblebee 250 

nests under field conditions.    251 

Interestingly, we found no significant difference in foraging efficiency between the first batch of 252 

foragers tagged and the second.  This suggests that impaired foraging continued to be seen in bees 253 

from treated colonies for at least four weeks after exposure. However, it is not clear whether this 254 

occurred because bees continued to be exposed to imidacloprid in honey stored within the nests, or 255 

whether the reduced performance of the second batch of foragers was due to exposure as larvae. Yang 256 

et al. (2012) describe impaired learning in honeybees following exposure to imidacloprid as larvae. 257 

Further studies could clarify the persistence of imidacloprid within the nest and the effects it may 258 

have on subsequent generations of workers. Whatever the mechanism, our data suggest that exposure 259 

to imidacloprid may reduce worker performance for at least four weeks after the source of exposure is 260 

removed. 261 

Whilst this study has put forward a mechanism for reduced queen production in imidacloprid exposed 262 

colonies (Whitehorn et al. 2012) it is not able to fully explain the mechanism behind the reduced 263 

pollen foraging efficiency found in treated bees.  In both treated and control bees a positive 264 

correlation was found between time spent foraging and the weight of pollen collected and no 265 

significant difference was found in the number of bees failing to return to the nest between treatments, 266 

which, coupled with the fact that there were no differences found in nectar foraging efficiency, 267 

suggests that navigation is not likely to have been the issue.  Further studies are needed to clarify how 268 

imidacloprid impairs bumblebee’s ability to forage for pollen, with the evidence gathered in this study 269 



suggesting that the pesticide may either reduce motivation to collect pollen, or impair the bees’ ability 270 

to collect pollen from flowers, rather than affecting their trips to and from their foraging sites. 271 

Agricultural intensification has been proposed as a primary driver behind the decline of bumblebees, 272 

with habitat loss as well as increased pesticide use believed to be two important causal factors 273 

(Goulson et al. 2008).  Whilst this study has focused on the effects of imidacloprid, the uses of other 274 

neonicotionoids have also been called into question, since the three most commonly used compounds, 275 

imidacloprid, thiamethoxam and clothianidin all have similar modes of action (Nauen et al. 2003).  A 276 

recent study has reported harmful effects of thiamethoxam on honeybee homing abilities (Henry et al. 277 

2012), whilst another found no significant impact of thiamethoxam on colony initiation in bumblebees 278 

(Elston et al. 2013). If ecologically and economically important pollinator populations are to be 279 

maintained then the advisability of any future use of neonicotinoids on flowering crops must be 280 

questioned and further work is needed to clarify their impacts.   281 
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Fig. 1 The efficiency of foraging on pollen gathering trips was significantly lower for treated bees 391 

than untreated bees, whilst no significant difference was found in foraging efficiency on nectar 392 

gathering trips.  The box plots depict median and interquartile range, with the bars representing the 393 

means of treated and untreated bees and their 95% confidence interval. 394 


