
An Ontology Based Approach Towards A Universal

Description Framework for Home Networks

A thesis submitted in accordance with the requirements of the University of

Stirling for the degree of Doctor of Philosophy

by

Liam Stephen Docherty

Department of Computing Science & Mathematics University of Stirling, Scotland,

UK

November 2009

Declaration

I hereby declare that the work presented in this thesis is my own original work unless

otherwise indicated in the text, and that it has not been submitted for any other

degree or award. Where work presented in this thesis appears in publications of

which I am a named author, references are indicated in the text.

i

Abstract

Current home networks typically involve two or more machines sharing network

resources. The vision for the home network has grown from a simple computer net-

work, to every day appliances embedded with network capabilities. In this environ-

ment devices and services within the home can interoperate, regardless of protocol

or platform. Network clients can discover required resources by performing net-

work discovery over component descriptions. Common approaches to this discovery

process involve simple matching of keywords or attribute/value pairings.

Interest emerging from the Semantic Web community has led to ontology lan-

guages being applied to network domains, providing a logical and semantically rich

approach to both describing and discovering network components. In much of the

existing work within this domain, developers have focused on defining new descrip-

tion frameworks in isolation from existing protocol frameworks and vocabularies.

This work proposes an ontology-based description framework which takes the

ontology approach to the next step, where existing description frameworks are in-

corporated into the ontology-based framework, allowing discovery mechanisms to

cover multiple existing domains. In this manner, existing protocols and networking

approaches can participate in semantically-rich discovery processes. This framework

also includes a system architecture developed for the purpose of reconciling existing

home network solutions with the ontology-based discovery process.

This work also describes an implementation of the approach and is deployed

within a home-network environment. This implementation involves existing home

networking frameworks, protocols and components, allowing the claims of this work

to be examined and evaluated from a ‘real-world’ perspective.

ii

Acknowledgements

A number of people have had an impact on my time as a PhD student. I would

like to acknowledge their contribution to my work and experience. Firstly, I would

like to acknowledge the Scottish Funding Council who funded my PhD through the

MATCH project. I would also like to thank the members of the MATCH project

for their views and feedback on both the theory and implementation of my work.

I would also like to thank my supervisors Evan Magill and Mario Kolberg for the

numerous conversations, thoughts, criticisms and suggestions which have shaped my

thought process and approach towards this work. In particular, I would like to thank

Evan for his understanding during the various circumstances I have encountered

during the PhD process.

I would like to thank Paul Godley, Gavin Campbell, Lloyd Oteniya, Claire Ma-

ternaghan and Tony McBryan who each provided valuable contributions to my PhD

experience, sharing thoughts, advising and testing out various aspects of my work.

My experience has been, without doubt, a more fulfilling and enriching time because

of them.

I would like to thank my family and my parents-in-law for the unmeasurable

levels of support they have provided. There are no words eloquent enough to express

how important my wife, Nicola, has been through my entire academic career. She

is the overwhelming reason for my accomplishments to date. May this work be a

testament to her, as it would not exist without her.

My final thanks are given to God. He is both my provider and my strong tower.

iii

Publications

Various aspects of this work are represented in the following publications:

• K. J. Turner, L. S. Docherty, F. Wang and G. A. Campbell, ‘Managing Home

Care Networks’, Proc. 8th Int. Conf. on Networks (ICN’09), pp. 354-359,

March 2009

• F. Wang, L. S. Docherty, K. J. Turner, M. Kolberg and E. H. Magill, ‘Services

and Policies for Care at Home’, Proc. 1st Int. Conf. on Pervasive Computing

Technologies for Healthcare, Institution of Electrical and Electronic Engineers

Press, New York, USA, pp. 7.1-7.10, November 2006.

• P. D. Gray, T. McBryan, N. Hine,C. J. Martin, N. M. Gil, M. Wolters, N. Mayo,

K. J. Turner, L. S. Docherty, F. Wang and M. Kolberg, ‘A Scalable Home Care

System Infrastructure Support Domicilary Care’, Technical Report CSM-173,

Department of Computing Science and Mathematics, University of Stirling,

August 2007

iv

Contents

1 Introduction 1

1.1 Issues . 2

1.2 Ontologies . 3

1.3 Aims . 3

1.4 Contribution . 4

1.5 Overview of the thesis . 5

2 The Home Network 8

2.1 Entertainment in the Home Network 9

2.2 The Progressing Vision . 10

2.3 Comment on the Home Network Vision 11

2.3.1 The Single Vendor Environment 12

2.3.2 The Two Vendor Environment 12

2.3.3 The Multi-Vendor, Multi-Protocol Environment 13

2.3.4 Descriptions within the Home Network 14

2.4 Home Care in the Home Network . 15

2.4.1 Motivation for the Home Care Network 16

2.4.2 The Emerging Home Care Network 17

2.5 Merging Aims of the Home Network 18

3 Home Network Solutions 20

3.1 Home Network Terminology . 20

3.2 Universal Plug and Play . 22

3.2.1 Joining the Network . 23

v

3.2.2 Device and Service Descriptions 23

3.2.3 Discovering other Devices . 25

3.2.4 Joining a network . 26

3.2.5 Leaving a network . 27

3.2.6 Discovery in the Network . 27

3.2.7 Replying to Searches . 28

3.2.8 Controlling Devices and Services 28

3.2.9 Control Messages and SOAP 29

3.2.10 Events within the Network 29

3.2.11 Presentation . 30

3.2.12 The Suitablilty of UPnP . 30

3.3 Home Audio/Video Interoperability (HAVi) 30

3.3.1 Controllers, Devices, DCMs and FCMs 31

3.3.2 Device Classification . 32

3.3.3 HAVi Networks . 33

3.3.4 Descriptions and Discovery 33

3.3.5 Communication . 34

3.3.6 The Suitability of HAVi . 35

3.4 X.10 . 36

3.4.1 Plugging into X.10 . 36

3.4.2 Control . 37

3.4.3 Discovery . 37

3.4.4 Issues in X.10 . 38

3.5 Interoperability in the Home . 38

3.6 A Naive Home Network Scenario . 39

3.7 Protocol Bridges . 42

3.8 Middleware . 43

3.9 OSGi . 44

3.9.1 Life cycle Management . 44

3.9.2 Services And Bundles Within The OSGi Framework 45

vi

3.9.3 The Bundle Activator . 46

3.9.4 Registering Services . 46

3.9.5 Discovering Services . 47

3.9.6 Using Services . 48

3.9.7 Scope of OSGi . 48

3.10 Jini . 49

3.10.1 Jini Clients . 49

3.10.2 Registering Services . 50

3.10.3 Discovering Services . 51

3.10.4 Service Registry Groups . 52

3.10.5 Proxies within the Jini Network 52

3.11 An OSGi Supported Home Network 54

3.11.1 Service-Orientated Discovery 55

3.11.2 Registrations . 55

3.11.3 Environment Evaluation . 57

3.11.4 X.10 Registration . 57

3.11.5 UPnP Registration . 57

3.11.6 Jini Registration . 60

3.11.7 Evaluation of the OSGi Discovery Process 62

3.11.8 OSGi Evaluation Conclusion 65

4 Service Discovery Approaches in the Home Network 67

4.1 System Architecture . 67

4.1.1 Decentralised Architecture . 68

4.1.2 Centralised Architecture . 69

4.2 Component Description . 70

4.2.1 No Description . 71

4.2.2 Attribute/Value Pairs . 72

4.2.3 Description Schemas . 74

4.2.4 Comparison of approaches . 76

vii

5 Ontology Languages 77

5.1 Meta-Data . 77

5.2 The Resource Description Framework 79

5.2.1 Expanding the Boundaries . 80

5.2.2 Using Resources . 80

5.2.3 Transporting and Exchanging RDF 81

5.2.4 RDF/XML . 83

5.2.5 Issues in RDF . 86

5.3 RDF Schema . 86

5.3.1 Resources in RDFS . 86

5.3.2 Properties in RDFS . 88

5.3.3 RDFS Issues . 91

5.3.4 The Semantic Web . 91

5.4 The Web Ontology Language . 92

5.4.1 OWL Resources . 92

5.4.2 OWL Properties . 94

5.4.3 OWL Restriction Classes . 98

5.5 Domain Descriptions . 100

5.5.1 Using owl:imports . 101

5.5.2 Describing Small Domains . 101

5.5.3 Describing Large Domains . 104

5.6 Ontology Conclusion . 106

6 Ontologies Within Web Services 107

6.1 Web Services . 107

6.1.1 Web Service Description Language 108

6.1.2 UDDI . 109

6.2 OWL-S . 111

6.2.1 The Service Profile . 112

6.2.2 The Service Model . 114

6.2.3 The Service Grounding . 115

viii

6.2.4 The Feasible Impact of OWL-S 115

6.3 Other Ontology-based Web Service Description Approaches 120

6.3.1 SWSF . 120

6.3.2 WSMO . 121

6.4 Web Services Conclusion . 123

7 Ontology Related Work 124

7.1 Home Network Ontology Projects . 124

7.1.1 The Networked Appliance Service Utilisation Framework . . 125

7.1.2 The Gadgetware Architectural Style Ontology 125

7.1.3 Other Home Network Projects 126

7.1.4 Service Discovery within Home Networks 128

7.2 Context Aware Systems . 129

7.3 Upper Ontologies . 132

7.3.1 Developing and Using Upper Ontologies 133

7.3.2 Cyc and OpenCyc . 134

7.3.3 The Suggested Upper Merged Ontology (SUMO) 135

7.3.4 DOLCE . 135

7.4 Comment on Existing Approaches 136

8 Approach 139

8.1 Purpose and Scope of the Approach 139

8.2 Approach Method . 141

8.2.1 The Base Layer . 141

8.2.2 The Core Layer . 143

8.2.3 The Generic Layer . 146

8.2.4 The Protocol Layer . 148

8.2.5 Converting Between Protocol and Ontology Descriptions . . . 152

8.2.6 Developer Defined Ontologies 154

8.3 HNOS Conclusion . 156

ix

9 System Architecture and Implementation 157

9.1 Implementation Overview . 158

9.2 The Ontology Registry . 159

9.3 The Simple Query Interface . 163

9.3.1 Simple Queries . 164

9.3.2 Complex Queries . 164

9.3.3 Meta Queries . 165

9.4 Summary of the Ontology Registry Architecture 166

9.5 Protocol Translators . 167

9.5.1 The Translation Process . 168

9.5.2 The UPnP Translation Bundle 168

9.5.3 The Jini Translation Bundle 170

9.5.4 The X.10 Translation Bundle 172

9.5.5 Summary of the Translation Approach 173

10 Deploying the Approach 176

10.1 Applying the Approach to a Home Network Environment 176

10.1.1 Modifications and Assumptions 177

10.1.2 Ontology-Based Descriptions 179

10.1.3 Discovery with an Ontology Vocabulary 181

10.1.4 Adding New Protocols . 186

10.1.5 Conclusion of the Ontology Approach 187

11 The MATCH Project 189

11.1 System Architecture . 190

11.1.1 User Interaction . 190

11.1.2 System Communication . 191

11.1.3 Core System Components . 192

11.1.4 The Policy Server . 192

11.1.5 The Task Manager . 192

11.1.6 The Interaction Manager . 193

x

11.1.7 The Resource Registry . 194

11.1.8 System Review . 194

11.2 The Role of Ontologies within MATCH 195

11.2.1 Describing Components . 196

11.2.2 Evolving Vocabulary . 196

11.2.3 Describing Interaction Details 196

11.2.4 Logic Based Discovery . 197

12 Evaluation 199

12.1 The Protocol/Vocabulary Relationship 200

12.2 The Reasoning Approach of the Registry 200

12.3 The Responsiveness of the Registry 202

12.3.1 Evaluation of the HNOS . 203

12.3.2 Evaluation of the MATCH System Environment 204

12.3.3 Evaluation of the Registry with Additional Ontologies 204

12.3.4 Response Evaluation . 205

12.4 The Range of the Vocabulary and Approach 207

12.4.1 Web Service Deployment . 207

12.4.2 Peer to Peer Domains . 208

12.5 The Versatility of the Approach . 209

12.5.1 The Home Network Ontology Stack 209

12.6 The System Architecture and Implementation 210

12.7 Limitations of the Approach . 211

12.7.1 Logical Metadata . 212

12.7.2 Agreement on Standards . 212

12.7.3 Component View of the Network 213

12.7.4 Translators . 214

13 Conclusions and Future Work 216

13.1 Home Network Conclusions . 216

13.2 Review of Work . 218

xi

13.3 Future Work . 220

13.3.1 Deploying the Approach Within Other Middleware and Envi-

ronments . 220

13.3.2 Abstract Actions . 223

13.4 Final Remarks . 225

xii

List of Figures

2.1 Initial Home Networks . 8

3.1 CyberGarage Air Conditioner . 23

3.2 Services Provided by the Air Con . 24

3.3 Services of the Air Conditioner . 25

3.4 A Discovery Message Template. 28

3.5 Relationship of the Device, DCM and FCM 32

3.6 An Example HAVi Network of Clusters 34

3.7 An X.10 Appliance Module . 36

3.8 Muti-protocol Home Network . 38

3.9 A Naive Home Network . 40

3.10 Naive Discovery . 41

3.11 Using a UPnP-to-HAVi Bridge . 42

3.12 Middleware in the Home Network . 43

3.13 An Example Bundle Manifest . 45

3.14 The OSGi Service Registry . 46

3.15 Relation Between Services and Users 48

3.16 Jini Registry Providing a Registrar 50

3.17 Copying The Service Object Into The Registry 50

3.18 Interaction Between the Registry and User 51

3.19 Service Proxies and Service Controller 53

3.20 Registering and Retrieving the Service Proxy 53

3.21 An X.10 Registration in OSGi . 58

3.22 UPnP Description of the Light Device 58

xiii

3.23 UPnP Description Converted for OSGi 59

3.24 UPnP Description of the Power Service 59

3.25 UPnP Description of the Power Service Converted for OSGi 60

3.26 Jini Description of a Lamp Controller 61

3.27 Jini Description of the Lamp Controller converted for OSGi 61

3.28 Discovering the X.10 Lamp Service 62

3.29 Discovering the UPnP Power Service 63

3.30 Discovering the Jini Service . 63

3.31 The Modified Jini Query . 64

4.1 Discovery in the Decentralised Network 68

4.2 Discovery in the Centralised Network 69

5.1 RDF Graph about www.stir.ac.uk/ lsd 82

5.2 Expressing RDF Information in XML 82

5.3 RDFS Relations . 87

5.4 Description of a Customer class . 102

5.5 Description of a DetailedCustomer class 103

5.6 Relationships through Ontology Reuse 106

6.1 Overview of an OWL-S Description 112

6.2 The SearchMusicByArtist Service . 116

6.3 Service User Knowledge . 116

6.4 Specifying the relationship between class instances 119

7.1 OWL representation of an OccupiedRoom 130

7.2 OWL representation of the MeetingRoom 131

7.3 Customising an Upper Ontology for Use 134

7.4 Boundaries Between Protocols . 136

7.5 Common Communication Protocol 137

8.1 The Base Level of the Stack . 141

8.2 The Base Ontology . 142

xiv

8.3 The Core Level of the Stack . 144

8.4 The Generic Layer of the Stack . 147

8.5 Description of an Audio Speaker . 147

8.6 The Protocol Layer of the Stack . 149

8.7 Architecture of Protocol Devices . 150

8.8 Architecture of Lamp Devices . 151

8.9 Using an Existing Television Device Description 154

8.10 The Development Layer of the Stack 155

9.1 The Middleware Architecture . 159

9.2 Algorithm for converting Complex Queries 165

9.3 Algorithm behind Meta Queries . 166

9.4 The Ontology Registry Architecture 167

9.5 Translation within the UPnP Translator 169

9.6 A UPnP Alert . 170

9.7 Translation within the Jini Translator 171

9.8 The X.10 User Wizard . 172

9.9 Translation within the X.10 Translator 173

10.1 Ontology Description of the X.10 Lamp 180

10.2 Ontology Description of the UPnP Light 180

10.3 Ontology Description of the UPnP Service 180

10.4 Ontology Description of the Jini Light Interface 181

10.5 Simple Ontology Query . 182

10.6 A Complex Ontology Query . 183

10.7 A Logic Based Query . 185

10.8 Unsupported Excite Protocol . 187

11.1 The MATCH System . 195

11.2 A Sample MATCH Query . 198

11.3 Description of TomsPersonalTracker Held by the Registry 198

11.4 Relationships within the MATCH Ontology 198

xv

12.1 Response times of the Registry using the HNOS 203

12.2 Response Times of the Registry Within the MATCH system 204

12.3 Response Times of the Registry using Imported Ontologies 205

12.4 Comparisons of Response Times . 206

12.5 Comparison of Secondary Response Times 207

xvi

List of Tables

4.1 Table of Comparisons . 76

xvii

Chapter 1

Introduction

The idea of the home network has changed in recent years, due to the increasing

availability of both network devices and high speed internet connections and the low

costs of computing hardware. Typical existing home networks consist of desktop

computers, laptops and mobile phones all sharing resources, such as documents,

printers or internet access. In recent years, the boundaries of the home network

have changed. Substantial research and development has been given to redefining

simple household appliances, allowing these to become resources within the network

[58, 38]. Pervasive computing involves computational components being embedded

in everyday appliances and objects, becoming ‘invisible’ to the home user. Taking

advantage of this new discipline promises exciting possibilities for the home network,

where the services offered by appliances are now available to the network. The mobile

phone can be used to switch on the central heating. A power monitoring program

running on the desktop computer can maintain levels of power consumption without

direct intervention of the user. Films can be streamed directly from the laptop DVD

drive to the family television. The network acts like a marketplace, offering services

and resources to interested parties [76] . Transactions are initiated and concluded

in a predefined manner.

Viewing the possibilities from such a high level obscures the issues facing this

vision of the home network. The main issues, and that which also draws the majority

of research, is the locating and use of the devices and services on offer. Part of this

1

process requires discovering the availability of desired resources within the network.

Descriptions have a decisive role within the discovery process, especially within the

home network, where resources may differ in terms of protocol, platform, developer

and vendor [36, 11].

1.1 Issues

In networked environments which share a common protocol, discovery can be a rela-

tively straight-forward process. Each network component would know exactly what

resource or service it required. The description schemas and vocabularies used to

describe the various components could allow rich representations of the attributes

and capabilities of components within the network. As the syntax would be shared

by all components, discovery could involve a predefined set of desired attributes of

a component, which could be fixed before the client component joined the network.

As all components ‘know’ about the set of vocabularies used, they are able to ‘un-

derstand’ descriptions within their own network. For example, components using

the Universal Plug and Play protocol (covered in section 3.2) understand the terms

used in the description process.

The emerging home network environment cannot afford this luxury approach

to component description and discovery. This is a result of the dynamic nature of

the environment. The home network is a collection of ad hoc devices and services,

which may include a wide range of differing protocols [10, 65]. The term protocol

need not only refer to how components communicate, but also how components

discover and describe themselves. In such an environment, the discovery process

can be hindered by the possible number of protocols existing. Each protocol may

have its own internal classification system, or its own way of referring to a particular

component.

This issue can be illustrated with an example in the natural language world.

In the English language, the desktop PC is classified as ‘the computer’. In the

French language, the same desktop PC is classified as ‘de ordinateur’. This example

highlights a situation where the terms describing the same object are syntactically

2

different. This issue can exist in the home network environment. The protocol-

specific vocabularies used to describe the classification of the same component may

be syntactically different from one another. To resolve this issue, a more adaptive

and robust approach towards supporting discovery is required.

It is not enough to simply create a new protocol, as this would alienate any

existing home network protocols from participation. This approach must refrain

from excluding existing home network protocols, and be extensive enough to include

emerging protocols. To fulfill this requirement, the approach must be independent

from any specific protocol or existing discovery method. In essence, the approach

would require to project the illustration of a marketplace, where services and re-

sources may be offered by many vendors, but there is a common understanding of

the ‘goods’ required.

1.2 Ontologies

An emerging solution for the issues described can be found within computing-

orientated Ontologies [82, 62]. Ontology languages can be used to provide a common

understanding between clients and providers. Ontology languages come in many

flavours, but are designed for a single purpose: To define data in a structured,

logical and machine understandable way. These languages can be used to unify de-

scription vocabularies or define common knowledge bases. Chapter 5 provides an in

depth overview of ontologies.

1.3 Aims

The primary aim of this work is to provide a description approach capable of ad-

dressing the home network issues identified. This work aims to provide a description

framework which:

• is concerned with the Home Network, but abstract from any particular protocol

• allows inclusion of existing protocols and their descriptive vocabularies

• is extensive and scalable to suit new and developing protocols, their services
and devices, and new environments

3

This work also aims to define an approach for adapting current home network

environments, allowing existing components to benefit from the description frame-

work. In particular, the aims of this approach are to:

• allow existing network services and devices to ‘plug in’ without need to conform
to the new description framework

• allow the description framework to be applied across different home network
environments, not being tied to a single solution

1.4 Contribution

The contribution of this work is novel in intention and in approach. While efforts

exist which provide new description frameworks for the home network [82, 70, 19], no

work exists which attempts to reconcile this work with existing protocols. This can

lead to existing frameworks being isolated and rendered obsolete. In an environment

where multi-protocols may exist, there is little to be gained from simply introducing

a new framework which ignores previous work. Similarly, no work exists which allows

the new description framework to retain the protocol specific information within the

description. Assumptions of what data is important and what is not are difficult to

make in environments where parties or agents may be interested in different aspects

of a description.

This approach satisfies the aims stated previously by applying ontology lan-

guages to the domain. Rather than simply creating a new stand-alone vocabulary

or schema-based framework, this work proposes a two-stage approach towards sup-

porting cross-domain discovery.

The first stage of this approach is designed to support network clients in the dis-

covery process. By viewing the home network as a collection of multiple description

domains, ontologies are used to unify these domains. Relationships and associa-

tions are created between protocol specific attributes and generic ontology concepts.

Semantic intentions behind protocol specific terminologies are unified with a view

towards removing syntactical differences within the home network. In this manner

distinctions between protocols can be removed at the descriptive level. Providing

4

a single vocabulary which can be applied to multiple domains allows a logical and

intelligent approach to discovery in the home. By using the vocabulary, network

clients can use a common set of terms to discover network components, regardless of

their operating protocol or platform. The approach is scalable to incorporate new

protocols and components, allowing the generic vocabulary to remain relevant over

time, evolving as the home network evolves.

The second stage of this approach is aimed at supporting protocols within the

home network. Deploying an abstract description framework within a home net-

work would require all existing and emerging protocols to conform. By not doing

so, protocols risk being alienated from the discovery process. This work proposes

a system architecture designed to address this issue. By providing interpretation

between protocols specific terminology and the generic ontology vocabulary, exist-

ing protocols can take part in the discovery process. The architecture described in

this work supports protocol domains by interpreting descriptions on behalf of the

protocol. In this manner, low level heterogeneous descriptions are transformed into

high-level generic descriptions without requiring existing protocols to conform. In

much the same way as the ontology vocabulary is designed to hide the protocol

distinctness at the descriptive level, the system architecture is designed to obscure

the generic discovery process from all existing protocols within the network.

This work describes a working implementation of both stages, specifying a set of

ontologies to unify existing protocols and deploying an implementation of the system

architecture within an existing middleware framework. The implementation demon-

strates that this approach is not only successful in satisfying the issues identified,

but is both relevant and viable within existing and emerging environments

1.5 Overview of the thesis

The thesis is arranged in the following order:

• Chapter 2 introduces the home network. It discusses the present state of the

network concept and introduces the progressing vision for this environment.

With the introduction of this vision, initial issues are highlighted and discussed.

5

• Chapter 3 is concerned with reviewing existing popular protocols and technolo-

gies developed so support home network environments. This chapter discusses

the various strength and weakness of existing technology, and introduces sce-

narios and experiments which provide the motivation for this work.

• Chapter 4 reviews common approaches towards service and device discovery

within home and other relevant network technologies. The chapter compares

approaches and evaluates the usefulness of each approach in satisfying the

needs of emerging home network scenarios. Based upon the conclusions drawn,

this chapter proposes the use of ontology languages to address weaknesses

identified.

• Chapter 5 discusses the ontology languages used by this work, including their

strengths and weakness in addressing the issues identified.

• Chapters 6 and 7 discuss existing approaches and applications of ontology

languages within networked domains. These approaches are evaluated to both

show the relevance of the technology and show that this work is unique in its

approach and intention.

• Chapters 8 and 9 provide the main body of the thesis. These chapters are

concerned with describing this work, highlighting the advantages of this work

and providing evidence to support these claims. These chapters also discuss

a working implementation of this approach using existing technologies and

frameworks.

• Chapter 10 applies the implementation described in Chapters 8 and 9 to a

real-world home network scenario.

• Chapter 11 introduces the MATCH project, and describes how this work was

integrated into a home care system.

• Chapter 12 evaluates this work, in accordance with existing work and against

the claims made. This chapter also describes the weaknesses and limitations

of this work, and provides discussion as to how these could be addressed.

6

• Chapter 13 concludes this work with a discussion of the contribution of this

work to the research and development community. This chapter also discusses

possible areas of future study.

7

Chapter 2

The Home Network

The home network environment can be defined in a number of ways. At the simplest

level, a home network consists of a few computers sharing files between each other.

This domain has grown to include the sharing of peripherals (such as printers) and

other resources (such as external storage and internet connections - See Figure 2.1).

Currently, the typical home network would be at this level, with computers and

games consoles sharing a single internet access point within the home. On top of

the relatively static machines, mobile computers (such as PDAs and mobile phones)

can rapidly join and leave the network. In this manner, the home network can take

on the shape of a Local Area Network (LAN).

While existing implementations of the home network are at this level, a great

deal of interest and research is being investing into expanding the boundaries of the

The Internet

Figure 2.1: Initial Home Networks

8

network, by integrating existing technology and providing more functionality. This

chapter is concerned with emerging configurations of the home network, examining

the possibilities offered and issues which require to be addressed.

2.1 Entertainment in the Home Network

From an entertainment perspective, the existence of digital television content heralds

a new level of control for the user [15]. With the introduction of digital transmission,

the user can now record their favourite programs, download ‘on-demand’ programs

and rent out films directly from their digital box. The transmission can be wired

(cable) or wireless. In many homes, the home digital box would be connected to a

television, and the media would be streamed directly via a connected cable.

At this point, an intervention by the home network could allow the media from

the digital box to be streamed wirelessly to any device in the home capable to

displaying the visual data, and producing the sound output. For example, after

renting out a film, the presentation data could be streamed to whichever room the

user was occupying, provided it contained a television. If the user needed a drink

while watching the film, the media could be switched from the lounge television to

the small TFT television in the kitchen. To take the example one stage further,

suppose the user then moved through to the study. With a television lacking in this

room, the home networked could stream the visual data to the computer monitor,

and re-route the sound data through the study stereo system. The changing location

of the user could be derived from sensor readings which convey user movement.

While this may be a relatively far-fetched example in practical terms, it highlights

the current opinion on what the next stage for the home network could be. The above

example dealt with a simple, entertainment based scenario which involved a specific

subset of home entertainment appliances. This example is concerned with a single-

point solution. A single-point solution may include many different components, and

require interaction between these components, but is ultimately concerned with a

single outcome. In this case, the outcome is to allow the user to watch a film,

regardless of their location.

9

The expanding vision of the home network may be driven by such small scenarios,

but the realisation of this vision can have further reaching possibilities. If the home

network is not only concerned with supporting single point solutions, but also with

supporting large-scale, multi-goal solutions, then the domains which could benefit

from the home network become more numerous.

2.2 The Progressing Vision

Rather than having a collection of single point solutions, offering these solutions

as a collection of ‘services’ within the network would allow a flexible, dynamic and

responsive home network environment. Using the above example, if the televisions

and monitors of the home could communicate with, not only the digital box, but

any device capable of producing visual output, the boundaries of the network could

be pushed beyond simple scenarios. For example, it would be possible to participate

in a webcam chat where the video feed of the other webcam could be streamed

from the laptop to the lounge television, without the need to expressly set up the

communication channels.

In this example, the ability of the lounge television to accept video data would

be offered to the network as a service, allowing any interested clients to use the

feature as needed. Should a client make use of the television, the service would

be withdrawn from the network until the client had finished. What this example

highlights is that future home network environment may become increasingly ad

hoc, where services can be offered and withdrawn at a moment’s notice. While

having such a dynamic environment may seem to reduce the reliability given by

fixed communication channels (e.g. the webcam always uses the lounge television),

the network can be seen to be more reliable, as there are more alternatives should

the first choice selection not be available. If the lounge television is unavailable, the

user can move through to the study and use the computer monitor.

In realising this vision, the home network becomes a ‘marketplace’ of services,

where providers can advertise their services, and clients can discover and browse

desired services [25]. Like a marketplace transaction, service usage can take place

10

when the service client can provide what the service provider requires. For example,

suppose the lounge television requires DVD-format video input. The laptop webcam

can only then use the service if it can provide the television with DVD-format input.

In the marketplace, this transaction would be akin to the seller only accepting VISA.

The buyer can only carry out the transaction if they have the means to pay with

VISA. There can also be the possibility of services accepting multiple types of input

(DVD, AVI, MPEG, WMV) similar to a market seller accepting multiple forms of

payment.

Services may also produce output, and so the service client needs to be able to

understand the data which is generated by the provider.

2.3 Comment on the Home Network Vision

As has been discussed, the purpose of the home network is a continually changing

notion. While initially driven by simple goals of sharing files and internet connec-

tions, the vision has now grown to accommodate more complex goals, and, as a side

effect, may have a more profound impact on everyday life. While the entertainment

and simple home appliance usage provides an attraction, the home network can play

a major role in enhancing and supporting lifestyles by providing various levels of care

for those at home. Several research projects are concerned with this area, ranging

from small scale monitoring, such as busyness and location monitoring [40, 85], to

large scale systems [41, 39]. Home care networks are discussed in Section 2.4.

Regardless of the role which the home network may play, providing an infrastruc-

ture to support a dynamic and evolving environment provides compatibility issues

amongst existing home network devices and protocols. For clients to be able to

make use of services available within the network, they must be able to discover

them. Using the example given in section 2.2 the laptop needs to stream the video

data using the DVD-format. This input format may be particular to the category of

television, or the laptop may only be able to output the video data in this format.

If the lounge television accepts only AVI-format video data, but the laptop cannot

provide this input, the laptop cannot make use of the television. This may be as a

11

result of the laptop manufacturer overseeing the need for the laptop to provide this

output, or the television manufacturer only allowing the television to accept this

particular format.

In order for successful interaction in the home network, clients require to discover

services and devices which they know they can interact with. This requires that the

devices and service describe themselves, in order to allow clients to discover them.

Clients may know in advance what services they wish to use, and the discovery pro-

cess is a simple matter of finding out where the services are. This information would

be found within the description of the service. On discovering the desired service,

the client can then interact with the provider. Discovery and description processes

become more complex as the number of standards, protocols and vendors within the

network increase. This complexity can be highlighted using three examples: One

where a single protocol and vendor exists within a network, one where two vendors

exists (but share the same description protocol) and one where multiple vendors

and protocols exist within a single network. These examples will reuse that given in

section 2.2.

2.3.1 The Single Vendor Environment

On being instructed to play the video data, the laptop searches through the network

for a ‘Sony Television’, in order to stream the DVD-format data to. On discovering

that the television exists within the network, the laptop extracts the network location

of the TV from the description and then begins to stream the data. The laptop can

know beforehand that the television accepts DVD-format data as input, as both

devices may have been developed within the same environment, given that they are

provided by the same vendor.

2.3.2 The Two Vendor Environment

On searching for a Sony television, the laptop discovers that there are none in the

home, but there is a Panasonic television. The laptop could naively follow the same

pattern and extract the location from the description and begin to stream the data,

12

but what if this model of television does not accept DVD-format video as input? At

this point, the laptop could also check the description and extract the types of video

input this television accepts. The Panasonic television accepts AVI-format video as

input, which the laptop is able to provide. At this point, the laptop can now begin

to stream the video data to the television.

2.3.3 The Multi-Vendor, Multi-Protocol Environment

On searching for a Sony television, the laptop discovers again discovers that there

are none available. The laptop then searches for any other brand of devices which

categorise themselves as a television, which again returns no results. The user

then instructs the laptop to search for any computer monitors within the home and

discovers one in the study. On discovering this monitor (of a different vendor),

the laptop needs to work out how it can interact with the computer monitor, as it

has only explicit knowledge of interacting with Sony televisions. A recent software

update on the laptop added a component capable of utilising computer monitors for

video output. The laptop passes the reference to the monitor to this component, and

receives the relevant information back. This component then works on behalf of the

laptop, interrogating the description of the monitor to extract relevant details (such

as location and accepted inputs) and passes the information back to the laptop in

a format it can understand. The laptop can now begin to stream the video data to

the monitor.

In this environment, there are a few observations which can be made. Firstly,

instead of seeing a monitor as a completely separate device from the television, it

would be useful if the laptop knew about the similarities of the devices. A television

produces video output, much like a monitor. The monitor and television are related

in their purpose. If this were known about, it would not require intervention from

the user to discover an appropriate device to use. The laptop could have searched

for all instances of televisions and monitors, as it would know they provide the same

function.

The second observation to be made is that the laptop required another compo-

13

nent to assist it in carrying out the transaction. This was because the laptop did not

know how to interrogate and extract information from the monitor description (as

it only knows about televisions!). At the description protocol level, the monitor was

indeed distinct from the television at both the discovery stage, and at the descrip-

tive stage. It would be useful if both devices share a common description protocol,

as the laptop could have carried on the transaction without the need for the help

of an additional component. (This is assuming that the communication stage was

identical for both devices).

2.3.4 Descriptions within the Home Network

What becomes clear is that the descriptions of devices and services become more im-

portant as the heterogeniality within the network increases [76]. In an environment

which is expected to be multi-vendor, as well as multi-protocol, continuity between

the description protocols is essential in allowing services and devices to interoper-

ate within the home network. There is a need of collaboration between developing

protocols, as well as a reconciliation of existing ones, if such a vision is to be realised.

This need is not a small matter. There are varying approaches to providing

descriptions which typically are determined by the platform, resources and level of

intelligence available to the device or service. Some protocols are tailored for specific

categories of network components (such as assistive technology, which can support

those at home) while others are related to the vendor or developer (Apple devices

use Apple-specified protocols). Through the variety of the potential home network

environment, it may not be suitable to require all description protocols to adhere

to a single specification. If this were the case, information relative to the specific

domain of the component may be lost. Rather than specifying a rigid description

schema, it is more useful to locate common features of component descriptions and

attempt to unify these attributes.

As component descriptions move towards a common vocabulary or description

approach, components can be described at a level higher than that of their protocol

or vendor. Sony and Panasonic Televisions can simply be described as Televisions,

14

with any vendor or protocol specific information merely becoming attributes of the

description - rather than information which renders the devices logically distinct

from each other. In a similar manner, network services can be composed at a higher

level, being able to discover and use components based upon their function, rather

than their protocol or vendor. For example, a DVD-playback service could perform

discovery using ‘Television’ as the desired component, rather than ‘Sony Television’

or ‘Bluetooth Video Playback Device’.

High-level services may make use of low level, single point devices or existing

services. By combining these primitive network components, the home network can

offer advantages greater than automated entertainment services or functions which

reduce daily repetitive tasks. As mentioned in Section 2.3, home networks which

can support care functions for those at home may provide a catalyst to realising the

potential of the home network.

2.4 Home Care in the Home Network

Home Care Networks are attracting a substantial amount of both research and finan-

cial investment [69, 68, 96]. There are multiple definitions of a home care network,

ranging from social to technical. From a social interpretation, a home care network

refers to individual or groups of personnel involved in caring for someone at home.

The network may involve doctors, nurses, health professionals, home help staff, war-

dens, first response persons, family members, neighbors and the home occupant. The

idea behind this ‘network’ is that each person, or group, can communicate in some

way with other persons or groups. For the purposes of this work, it is satisfactory

to leave this definition of the social home care network as it is.

From a technical interpretation of the home care network, a user’s home would

include a number of networked devices and services which assist the user, the car-

ers and other care personnel, in supporting the user within their own home [96].

This home care network could support many aspects of the health care service, from

symptom management and patient monitoring [91] to community care and rehabil-

itation [104].

15

2.4.1 Motivation for the Home Care Network

Within the UK, the proportion of retired persons within the population is expected

to rise. With the increase of retirees, the proportion of those who are working will

fall [74]. An aging population, coupled with a proportional decrease in medical

personnel, will result in more pressure being put on the health service resources [12].

As an alternative to living in care homes, many people are making use of assistive

technology to allow them to remain independent, and in their own homes, for longer

[60, 87]. Assistive technology typically consists of single point services and devices,

such as a flood detector, an alarmed pull cord or neck pendant.

These single point devices can be integrated into a rudimentary network, allowing

then to share a single phone or internet connection to a care-providing call centre.

If a device is triggered, an alarm is sent to the call centre and a response person is

on hand to deal with the situation. An alarm signal may include a device id, which

corresponds to a description within the care providers database, allowing them to

determine what kind of alarm has been received.

Home Care technology can be categorised into three Generations:

• First Generation: This group consists of simple single point devices, such as

pull cords and neck pendant alarms, which respond to a direct action from a

user (e.g. a pull, or press). Alarms from these devices are directed to response

staff, such as a housing warden or social care worker for immediate response.

• Second Generation: This generation uses groups of simple sensors for ambient

monitoring of the patient. Data gather from these sensors is used to detect

potentially dangerous situations in the home where the user may not be able

to raise an alarm (such as the user suffering a fall, or loss of consciousness).

In the event of such a situation, the system generates the alarm on behalf of

the user.

• Third Generation: This emerging generation of Home Care systems is respon-

sible for a higher level of monitoring and data processing[39, 41], which may be

more intrusive than that of previous generations. Third Generation systems

16

attempt to predict problems and dangerous scenarios by means of monitoring

many aspects of the user’s life [72], such as lifestyle, exercise and diet. These

systems can also offer assistance to users, supporting them in every day tasks.

This generation is not confined to the home, as wearable sensors can be taken

outside the home, with data being downloaded on return.

First Generation systems are currently installed in many sheltered housing com-

plexes and residential care homes. The simplicity and non-intrusiveness of the de-

vices removes many of the barriers to Home Care systems. Simple implementations

of Second Generation systems can also be found in homes, as passive monitoring

devices, such as flood and smoke detectors, can alleviate some of the risks faced

by those who require care at home. More complex devices within the Second Gen-

eration tier, such as fall detectors, require the user to take a more active role in

their care, by wearing sensors, or understanding meanings behind alarms (such as

an inactivity alarm) [94]. Third Generation systems are still largely in the research

stages.

2.4.2 The Emerging Home Care Network

Existing home care networks are largely alarm-based, that is to say, the network

reacts to alarm events, such as an alarm cord being pulled, or a neck pendant being

pressed. The need for a more comprehensive network is an emerging issue, which

researchers believe can be supported by the home network. As discussed in Section

2.2, home networks are moving towards a collection of services within the home

which can be used by a variety of clients. Within the emerging home care network,

a similar environment can exist.

For example, a home owner has a security system installed which consists of a

set of simple PIR sensors and a monitoring system which detects intrusions in the

home. In order to monitor the mobility of the home user, an activity monitoring

system is installed. This system detects and records activity taking place within

the home, and provides a high level overview of this data to the community nurse.

Rather than install new devices to detect motion activity, the monitoring system

17

can simply use the outputs from the currently installed PIR sensors. Using the

marketplace simile, the PIR sensors offer a ‘motion detection’ service to the network

(of which, the security system is the priority client), and the activity monitoring

system agrees to the transaction of data from the sensors, to its own system.

The integration of various existing assistive technologies, cumulating with the

emerging home network provides possibilities for a more comprehensive network of

support for all those involved in home care [86, 87]. Using webcams and home

computers, doctors can hold remote consultations from their own offices, reducing

the need to travel, and allowing for quicker detection of issues. In a similar fashion,

community care nurses can handle a greater number of patients due to the reduced

need to visit the geographical location of each patient.

It should be stated that the aim of the home care network is not to reduce the

face-to-face contact between the user and health care personnel, but rather that

entire care infrastructure is supported more efficiently. The support offered by the

home care network would assist in correctly identifying those who require interven-

tion quicker, reducing the number of unnecessary hospital referrals and supporting

the independent living of those who are still able to remain at home.

2.5 Merging Aims of the Home Network

While the entertainment aspect of the home network may attract typical home

network users to buy the technology (and therefore continue to drive research and

development), the home care network may be the area where the most impact is

felt. Approaches and technical developments aimed at providing the interactions

discussed in Section 2.2 could be reused to support the provision of home care

technology.

For example, suppose some services are developed which detects when the user

arrives home, and switches on the hall light and re-routes all calls to the user’s

mobile phone to their home line. These services could be seen as luxuries which

simply remove some of the burdens from the user. Suppose another user owns a

home care network. These services can be modified to provide real benefit to the

18

user. If the user gets up in the middle of the night, a service may switch on their

bedroom light and a hall light, assuming the user is going to the bathroom. Similarly,

if the user requires to make an emergency call, a service may route the call to the

nearest location which contains a microphone and speaker.

While entertainment may drive the home network vision forward, the home care

network has the potential to bring the home network into the everyday lives of users.

19

Chapter 3

Home Network Solutions

Various protocols and approaches have emerged as candidates for use in the Home

Network. Some have been purpose built specifically for the home, while others have

been leveraged from other environments. This section will briefly introduce some of

the terminology used within the home network domain and within this work. This

section will then discuss some of the main home network solutions, highlighting

those used within this work, and providing discussion on the suitability of each,

focusing on the service and device discovery techniques offered by these solutions, if

this feature exists.

To conclude, this section will present two discussions of existing home network

scenarios, highlighting the issues which require to be addressed within the home

network domain.

3.1 Home Network Terminology

A Service is a function, action or operation offered to network clients. For example,

a power service may be switched on or off. A data-storage service may save data

in a certain location. An alarm service may notify listeners to interesting events.

A Service is mainly software based, capable of being accessed by other software

clients or agents. Services are in general offered by Devices and Components

A Device is an item of hardware that may offer or provides one or more Services

to the network. For example, a Lamp device would offer a power service. An

20

external hard-disk may offer a data storage service. A smoke alarm may offer an

alarm service. A Device may also contain software agents which are designed to

use Services within the network. A Device is networked, in that its services can

be offered to the network, and any agents within the Device can act within the

network.

A Component represents a less tangible concept within the home network do-

main. A Component may be a software container for one or more Services. For

example, a Mathematical Component may offer computation Services to the net-

work. The term Component can also be used to represent a logical grouping of

a Device or software container and the services offered. For example, a network

management Component may refer to a software module which offers network

management services to a user through a physical user interface. In this manner, a

Component may also refer to a Device or Service. It can be used as an abstract

term to describe any instance of networkable item.

As mentioned above, this Chapter is concerned with describing home networking

approaches, issues and solutions. A common term used in this discussion is Pro-

tocol. Protocol is a diverse term. It can represent the method by which network

components communicate (i.e. the transport layer). For example, components may

use the Bluetooth protocol or Firewire protocol to communicate. Protocol can

also refer to the manner in which components describe themselves. In this instance,

Protocol may refer to the vocabulary used by components, or an industrial stan-

dard which dictates the presence of attributes. Finally, Protocol can be used as a

collective term to describe all aspects of component behaviour, including commu-

nication and description. This work refers to this definition of Protocol when the

term is used.

Using these definitions, the rest of this chapter is concerned with discussing

popular home network solutions and scenarios.

21

3.2 Universal Plug and Play

Universal Plug and Play, or UPnP as it is commonly known, is a set of standards

for component addressing, information exchanging and service usage within a net-

worked environment [90]. This environment may be small and local, such as the

Home Network, or large and wide, such as a company network, or even the Inter-

net. The architecture is built upon common internet technologies, utilising TCP/IP,

HTTP and XML. This allows UPnP to offer a driver-free environment where trans-

actions are carried out using common protocols rather than device or vendor specific

protocols. In this manner, existing devices can also ’plug into‘ the UPnP architec-

ture, as long as they adhere to the UPnP Device Architecture (UDA). The UDA

specifies how devices can join and leave UPnP networks, as well as how they can

communicate with other enabled devices. The UPnP architecture is suitable for

both managed and unmanaged networks.

UPnP networks consist of Service Providers and Control Points. Service Providers

are devices which offer services to the network, e.g. a Printer. Control Points are

devices which can use services, such as a Digital Camera (which can use a Printer).

UPnP devices may contain both Service Providers and Control Points. The UPnP

Architecture also allows for UPnP Devices to contain embedded UPnP Devices.

For example, a UPnP Stereo may contain a CD Player and a Radio. The UPnP

Architecture can be broken down into six main points concerning a UPnP Device:

• Joining the Network

• Device and Service Descriptions

• Discovering other Devices

• Controlling Devices and Services

• Eventing in the Network

• Presentation

This work shall concentrate on the discovery and descriptive parts of the archi-

tecture.

22

...
<deviceType>urn:schemas-upnp-org:device:aircon:1</deviceType>
<manufacturer>CyberGarage</manufacturer>
<manufacturerURL>http://www.cybergarage.org</manufacturerURL>
<modelDescription>CyberUPnP AirCon Device</modelDescription>
<modelName>AirCon</modelName>
<modelNumber>1.0</modelNumber>
<modelURL>http://www.cybergarage.org</modelURL>
<serialNumber>1234567890</serialNumber>
<UDN>uuid:cybergarageAirConDevice</UDN>
<UPC>123456789012</UPC>
...
<presentationURL>http://www.cybergarage.org</presentationURL>
...

Figure 3.1: CyberGarage Air Conditioner

3.2.1 Joining the Network

For a device to participate in an UPnP network, it requires an IP address. The

UPnP Specification utilises the Dynamic Host Configuration Protocol (DHCP) for

assigning addresses to the network. If the network is managed, the local DHCP

server assigns an address to the client. If the network is unmanaged, i.e. there is no

DHCP server, the client retrieves an address through Auto IP. Auto IP is a process

where DHCP clients can gain a network address by a series of communications with

the network.

3.2.2 Device and Service Descriptions

Descriptions within a UPnP network take the form of an XML document which

captures important features of the device. A typical device description document

takes the form of first specifying the version of the UPnP protocol used, and then

stating attributes of the device, such as device type, device name, manufacturer,

reference and unique identifications and finally a list of services offered by the device.

An excerpt describing attributes of an UPnP Air Conditioner is shown in Figure 3.1

Descriptions of services contained within the device description contain only a

few details: A service type, service ID and URLs to where interested clients can learn

more about the service capabilities (from the SCPDURL), possible subscriptions

23

...
<serviceList>
<service>
<serviceType>urn:schemas-upnp-org:service:power:1</serviceType>
<serviceId>urn:schemas-upnp-org:serviceId:power:1</serviceId>
<SCPDURL>/service/power/description.xml</SCPDURL>
<controlURL>/service/power/control</controlURL>
<eventSubURL>/service/power/eventSub</eventSubURL>

</service>
<service>

<serviceType>urn:schemas-upnp-org:service:temp:1</serviceType>
<serviceId>urn:schemas-upnp-org:serviceId:temp:1</serviceId>
<SCPDURL>/service/temp/description.xml</SCPDURL>
<controlURL>/service/temp/control</controlURL>
<eventSubURL>/service/temp/eventSub</eventSubURL>

</service>
</serviceList>
...

Figure 3.2: Services Provided by the Air Con

(from the eventSubURL) and the service endpoints where control points can invoke

actions (from the controlURL). Services offered by the UPnP Air Conditioner are

described in Figure 3.2

This level of detail is enough for prospective clients to decide if this UPnP device

contains the functionality they require. If a UPnP device does not contain the

services desired, it can be ignored. If the device does contain the correct services, a

client can then examine a more detailed service description at the location specified

by the SCPDURL element.

Detailed Service Descriptions

A UPnP service description contains a list of actions, along with a set of variables

associated with the actions. An action is an invocation of a particular service.

For example, a service list may contain a ’SetPower‘ action which allows a control

point to switch a device on or off. With each action comes a corresponding list of

arguments used by the action. These arguments may be inputs (e.g. a power value)

or an output (e.g. the success of the action), and a service may have one or more

arguments for each action. A state table contains a list of state variables associated

24

...
<actionList>

<action>
<name>SetPower</name>
<argumentList>
<argument>
<name>Power</name>
<relatedStateVariable>Power</relatedStateVariable>
<direction>in</direction>

</argument>
<argument>
<name>Result</name>
<relatedStateVariable>Result</relatedStateVariable>
<direction>out</direction>
</argument>

</argumentList>
</action>

...
</actionList>
...

Figure 3.3: Services of the Air Conditioner

with the service. For example, a Power service may contain a variable, called Power,

which refers to the current state of the Device. These variables may be private to the

Service, such as the result of an action, while others may be available to interested

clients.

An excerpt from the description of services offered by the UPnP Air Conditioner

is shown in Figure 3.3.

3.2.3 Discovering other Devices

All discovery and advertising within a UPnP network uses the Simple Service Dis-

covery Protocol (SSDP), which is a protocol specified within the UPnP Architecture.

SSDP

SSDP specifies headers for messages between providers and clients in the discov-

ery process. SSDP messages are broadcast to the network, either by control points

requesting services, or by services replying to requests. The broadcast address spec-

25

ified by SSDP is 239.255.255.250, and on port 1900. By broadcasting messages,

all control points within the network are guaranteed to receive each advertisement

of services. Similarly, ensuring all service providers receive every service request

provides the maximum return of relevant services. As an aside, the UPnP specifica-

tion also contains rules governing the volume and transmission of messages on the

broadcast network. This set of rules ensure that the network is free from devices

’spamming‘ SSDP messages.

There are three main types of SSDP message used within the UPnP network:

• Notification messages - Used when joining and leaving the network

• Search messages - Used during discovery

• Response messages - Replies to search messages

3.2.4 Joining a network

Once a UPnP device has obtained a network address, it broadcasts a series of mes-

sages, advertising its capabilities to control points within the network. This takes

the form of a number of SSDP discover messages designed to announce the availabil-

ity of the device, and its services, to the network. An SSDP announcement message

contains four main attributes:

• A notification type. This is usually the classification of the device or service

being announced.

• A unique identifier for the message.

• A URL where interested control points can query for more information about

the sending device.

• A time-out specifying how long the message is valid for.

This message is classified as a ssdp:alive message, due its nature. The message

announces that the service or device is now available.

26

3.2.5 Leaving a network

When leaving a network, a UPnP Device must announce its removal to ensure that

other components are aware of its unavailability. A leaving message has three main

attributes:

• A target recipient.

• A notification type. When leaving a network, this attribute has the value

ssdp:byebye.

• A Unique Service Name (or USN).

The USN value is the name of the service or device being removed (which is

an instance of the type of service or device). The type of notification is always

ssdp:byebye, which indicates that this is a leaving message. More specifically, a

leaving message is a revoking of a ssdp:alive message. For each ssdp:alive message

broadcast on joining the network, a corresponding message must be sent to revoke

the announcement. A leaving message has no lifetime (once broadcast, it is assumed

the device has left the network). Both joining and leaving messages contain ‘NO-

TIFY * HTTP/1.1’ as the initial message header. This indicates that this kind of

message is a notification to the whole network.

3.2.6 Discovery in the Network

Discovery within the UPnP network also uses SSDP. A search message contains

three important elements:

• A maximum time for the validity of the search message.

• A search target.

• A notification type

A Control Point provides a maximum time value to ensure that it can handle all

responses to the search. Devices which respond to a search message choose a delay

between 0 and the maximum time before responding to the message. In this manner,

27

M-SEARCH * HTTP/1.1
HOST: 239.225.225.250:1900
MAN: "ssdp:discover"
MX: (seconds to delay response)
ST: (search target)

Figure 3.4: A Discovery Message Template.

the Control Point is not flooded with responses instantaneously. The search target

is the desired service or device type. This target can be generic (e.g. find all devices)

or specific (e.g. find an Air Conditioner). This type of message is categorised as a

ssdp:discover message. An example search template is shown in Figure 3.6.

3.2.7 Replying to Searches

Rather than replying to the Control Point performing the search, candidate devices

simply re-broadcast their capabilities to the network. The capabilities which are

re-advertised are those which match the search message. For example, a Digital

Camera may search for a Printer device. A Device capable of printing, scanning and

faxing can reply to the search message, but only announce its printing capabilities.

A response message takes a similar format to that of a ssdp:alive message. The main

difference is that instead of a notification type, a search target (ST) header is used

instead, denoting the particular device or service witch is responding.

3.2.8 Controlling Devices and Services

As previously mentioned in section 3.1, only UPnP Control Points can invoke services

within the network. After a UPnP Control Point locates a desired UPnP component,

it can control the device or invoke the service by sending action requests to the

component. A Control Point can gather information about how to interact with

the component by parsing the service descriptions provided. On finding a suitable

service, and constructing a valid control message, the service user passes the control

message to the provider. The provider then carries out the action associated with

the service, and may return a similar message back to the user. This message may

contain the result of the action (such as a current variable value) or any error states.

28

3.2.9 Control Messages and SOAP

Control messages are formed using Simple Object Access Protocol (SOAP) [101].

A SOAP message encapsulates all necessary information required by the service

provider to carry out the action. For example, if a service description states that a

power service requires a POWER variable as input, the SOAP message will contain

such a variable, along with a desired value (e.g. POWER = 1). On receiving a SOAP

message, the service provider carries out the action, and may return a different SOAP

message which encapsulates any output from the service (such as variable values or

errors).

Protocol-Free Interaction

Using SOAP allows service invocation to be independent of any particular platform

or protocol which the service provider is using. This approach is in keeping with

the UPnP philosophy of using common protocols for all aspects of discovery and

control. It also provides scope for developers to enhance their existing products to

be UPnP enabled.

3.2.10 Events within the Network

As discussed in Section 3.2.2, service descriptions contain a URL which Control

Points may subscribe to in order to receive events from that service. The state

table within a service description can contain a number of variables which may be of

interest to other parties. When these variables change, an event message is sent out

to all subscribers containing the new value of the variable. For example, a Power

Monitoring device may wish to subscribe to any changes in the power state of the Air

Conditioning. If a Control Point requested that the Air Conditioning be switched

on, the Power Monitoring device would receive this new state of the Power variable

(e.g. 1). A state table may contain more than one variable which can be observed.

In such cases, any changes to any observable variables results in the current values

of all such variables being sent to subscribers.

State messages, which contain the state table, have a SSDP-like header which

29

contains information about the message type and target. The body of the message

is an XML representation of the observable state variables. A state message does

not contain state variables which are not observable. Such variables may be able to

be retrieved through a simple variable value request.

3.2.11 Presentation

Device descriptions may contain an attribute while provides a presentation URL.

The presentation URL points to a location where a graphical representation of the

device can be found. This representation may provide a visual overview of the

current state of the device. For example, an UPnP House Light Controller may

provide a graphical representation of the current state of all lights within the home,

allowing the user to quickly view which lights were on and off. Any presentation

provided by a UPnP Device is intended for human users, allowing a natural interface

into the Device.

3.2.12 The Suitablilty of UPnP

UPnP provides an attractive option for home networks. Compliant devices need only

implement the UPnP architecture in order to participate within an UPnP network.

Devices are free to operate on any platform or protocol they wish, providing they

adhere to the UPnP architecture while interacting within the network. For this

reason, UPnP is attracting interest from research projects in a number of home

network applicable domains [92, 66]

3.3 Home Audio/Video Interoperability (HAVi)

The Home Audio/Video Interoperability (HAVi) architecture is concerned with in-

corporating typical home entertainment devices, such as televisions, stereos, and

digital television receivers, into a home network [50]. The HAVi specification can be

applied to a range of existing and emerging devices, being designed to be both future

proof and incorporate legacy devices. HAVi is independent of any platform or ven-

dor specific implementations, instead defining a set of Application Programmable

30

Interfaces (APIs) which devices may offer to other devices. Such APIs allows de-

vices to interoperate with any resources available in the network, allowing late device

binding (i.e. devices can use any available instance of a particular device category,

rather than a specific implementation). This section will describe the descriptive

and discovery approaches specified by the HAVi protocol.

3.3.1 Controllers, Devices, DCMs and FCMs

The HAVi architecture distinguishes between two main components within a Home

Network, Controllers and Controlled Devices.

• A Controlled Device is a device which provides functionality, such as a Visual

Display

• A Controller is an interface into a Controlled Device, for example a Control

Panel on front of the Visual Display

Controllers and Controlled Devices may be part of the same logical device, or

they may exist on separate devices (e.g. a Remote Control and a Television). A

Controller may be responsible for one or more Controlled Devices. A Controller

hosts a Device Control Module (DCM) for each Controlled Device. A DCM is a set

of APIs which other devices or applications use to control the Controlled Device.

In order to be portable DCMs need to be independent of the platform of the

using device or application. DCMs are generally sets of Java code complied into

bytecode. The Java language is used because of its ‘Write Once, Run Anywhere’

properties. The bytecode is able to be run on any platform which contains a Java

Virtual Machine (JVM).

Devices and applications download DCMs from the Controller in order to dis-

cover the functions of the device. The DCM acts as a proxy between the user and

the Controlled Device. DCMs may contain a standard set of functions, defined by

the HAVi specification, or a mixed set of standard and specialised functions. Spe-

cialised functions may be particular to a set of devices, for example vendor-specific

devices, which may limit the range of users of the particular device (as users require

to know the interface of the DCM in advance).

31

Figure 3.5: Relationship of the Device, DCM and FCM

Each DCM owns one or more Function Control Modules (FCMs), with one FCM

for each function or service offered by the device. An FCM is an abstract represen-

tation of a service, and is used by service users to interact with the service. As the

DCM acts as a proxy to a Controlled Device, a FCM acts as a proxy to a service on

that Controlled Device. The relationship between a Controlled Device, DCM and

FCM is shown in Figure 3.5.

3.3.2 Device Classification

HAVi specifications contain scope for four main groups of Audio/Visual (AV) de-

vices:

• Full AV devices (FAV) - These devices are rich in terms of resources and

capabilities. FAV devices contain a JVM, and so can control any device which

adheres to the HAVi architecture (Those which offer a DCM). FAV devices

can act as co-ordinators for a HAVi network, offering the functionality of other

devices to the network (through use of DCMs).

• Intermediate AV devices (IAV) - These devices do not contain a JVM, and so

cannot download and utilise DCM code. IAV devices may, however, contain

predefined code which allows them to use a set range of devices. IAV devices

may also offer the functionality of these devices to the network

• Base AV devices (BAV) - These devices are the most basic HAVi devices

available. They have no capabilities for using other HAVi devices, but still

offer a DCM, which allows them to be used by FAV devices

• Legacy AV devices (LAV) - These devices are not HAVi enabled, and are

largely independent from the Home Network. FAV and IAV devices may work

32

on behalf of LAV devices, bringing them into the HAVi network. In such cases,

the HAVi component translates HAVi commands into those understood by the

LAV device

3.3.3 HAVi Networks

As mention in section 3.3.2, FAV and IAV devices can offer the functionality of

other BAVs and LAVs to the network. The HAVi specifications suggest that Home

Networks will, in general, consist of clusters of devices, with one main device acting

as co-ordinator for all other devices and services within the cluster. A cluster may

represent devices in a single room, or per housing level. FAV and IAV devices act

as the co-ordinator for clusters, corresponding with other co-ordinators within the

network. (It should be mentioned that the HAVi architecture can also support

cluster-free networks). An example cluster may be the Living Room cluster. In this

cluster, the Digital Television Receiver is a FAV device, and offers its own services to

the network. The co-ordinator of a cluster is responsible for providing the services

within the cluster to the rest of the network. As coordinator for the Living Room,

the Digital Television Receiver may also offer the services of the BAV Television and

BAV stereo system to the network. The co-ordinator is responsible for managing the

DCMs for all devices within its cluster. Figure 3.6 depicts a example HAVi network,

containing two clusters of devices.

3.3.4 Descriptions and Discovery

Discovery with HAVi networks relies on Registry components. Each FAV or IAV

device contains its own Registry, which maintains a list of services which the co-

ordinating device can provide. Services within the registry may be explicitly owned

by the device, or implicitly offered, on behalf of BAV or LAV devices in the cluster.

In this manner, each cluster will have a registry, responsible for providing consistent

and relevant information about the services within the cluster.

Each service in the cluster is represented by a Software Element within the

Registry, along with a list of system attributes. A Software Element contains a

33

Figure 3.6: An Example HAVi Network of Clusters

well-defined interface for users to interact with the service, with the service being

an implementation of that interface. The HAVi specification defines a set of sys-

tem attributes which can be attached to a Software Element. Having a defined list

increases the continuity between devices of differing developers and vendors. A Soft-

ware Element contains a list of system attributes and a Software Element Identifier

(SEID), which uniquely represents the element with the network.

Applications can query the Registry of a device to discover desired services, and

then retrieve the associated DCM and FCM from the Controller. Querying requires

the application to construct a template of a desired Software Element, complete

with a set of required attributes. This template is then submitted to the Registry,

with the SEID of any matching services being returned to the application. The

application can then identify the relevant device and download the DCM from the

device.

3.3.5 Communication

The main transport protocol used within HAVi networks is the IEEE 1394 interface,

commonly known as FireWire. This protocol is well suited to high speed communi-

cation and data transfer. Some clusters, such as those managed by IAVs, may use

34

specific protocols for communicating with LAV devices, which may not support the

IEEE 1394 interface.

All messages sent within the HAVi network contain a SEID, which acts as an

recipient address for the message. Messaging within the network is managed by

one or more Message Systems, a component present on all FAV and IAV devices.

A FAV or IAV therefore also acts as the message co-ordinator for the cluster it is

a member of. The Message System is responsible for assigning SEIDs to software

elements within its domain (cluster). This SEID is the same attribute used within

the registry process.

The Message System also contains functions for removing SEIDs from the net-

work (i.e. unregistering the element from the network), validating elements for trust

purposes, and co-ordinating ‘call backs’, which are responses to messages from Soft-

ware Elements containing any success or error messages.

3.3.6 The Suitability of HAVi

HAVi presents an interesting choice for a home network environment. Like UPnP,

the HAVi architecture contains properties which can be applied to network compo-

nents which are not native to the protocol [71]. FAV devices are able to act as proxies

for other devices which do not offer the architecture. In this manner, HAVi clusters

may be composed of many non-HAVi components with FAV devices propagating

HAVi commands from the network into commands understood by a non-HAVi de-

vice. While this is undoubtedly a useful and unique approach to providing a common

protocol for a home network, it may be difficult to include existing home appliances

to the protocol. High-speed communication is crucial for communication between

multimedia devices. It would be difficult for this communication to take place be-

tween HAVi and non-HAVi devices, such as between a HAVi compliant DVD player

and a standard television.

35

Figure 3.7: An X.10 Appliance Module

3.4 X.10

The X.10 protocol is an open industry standard, designed to support the automation

and control of devices. X.10 supports devices which are simple on/off components

in terms of functionality, such as lamps, ceiling lights, fans and motors. An X.10

network consists of Controllers which command X.10 enabled devices, and Modules

which allow every day powered devices to ‘plug in’ to the protocol.

3.4.1 Plugging into X.10

X.10 is well suited to the home domain as the transport medium used by the protocol

is already installed in every home. The X.10 protocol uses power lines to commu-

nicate between Controllers and Modules, using radio frequency signals to transmit

data. Both Controllers and Modules plug into standard power sockets, with devices

then plugging into a Module to become X.10 enabled. Figure 3.7 shows a typical

X.10 Module.

Addressing

Each X.10 device has a unique address within the network. This address is a com-

position of a house code and a device code. A house code is a letter between ‘A’ and

‘P’, while a device code is a number between 1 and 16. For example, if the Living

Room had house code ‘G’ and the Television had device code 8, the X.10 address of

the device would be ‘G8’. This addressing system allows for 256 unique addresses

36

(16 house codes 16 device codes) within a single network.

3.4.2 Control

A Controller sends control signals through the power line to the Modules in the

network. A control signal consists of a X.10 address and a command, for example

‘F5 ON’. A Controller can specify multiple devices before the command, for example

‘F5, G8, A6 ON’, allowing a single command to be applied to multiple devices. A

Module will listen for control signals which apply to its address, and then carries

out the command specified. In general, X.10 is based upon a peer relationship, with

Modules simply listening for commands from Controllers, unable to output any data

of their own, such as status (e.g. ‘F5 is OFF’). Commands are usually limited to ON

and OFF, but some specialised Modules can understand other simple commands,

such as dimming instructions for lights.

3.4.3 Discovery

Unlike the protocols discussed so far, X.10 has no capability for discovering devices or

appliance modules within the network. X.10 controllers have no scope for discovering

if any appliance modules existing on the home power line, or to retrieve any state

information about any modules present. Controllers simply send on/off commands

to specified device addresses with no means to ensure these commands are received.

Despite these limitations, X.10 provides a simple solution to networking existing

home appliances, and integrating them into the home network.

As an aside, while a description-less protocol such as X.10 would seem to be of

little use within a home network environment, similar protocol specifications, such as

EIB and KNX (www.knx.org), are seeing large investment and utilisation within the

smart homes domain. X.10 has also been utilised within existing home care projects

[64, 41]. Using these protocols, the robust aspect of component discovery is traded

for a reliable, lightweight communication protocol which can be easily integrated

into everyday appliances, such as light switches and air conditioners. Rather than a

‘market-place’ of resources, appliances are programmed with explicit knowledge of

37

HAVi Network

X.10 Network

UPnP Network

Figure 3.8: Muti-protocol Home Network

what devices to use, and how to interact.

3.4.4 Issues in X.10

Using power lines as a transport medium causes potential issues within the home. If

homes share power line networks, it can be difficult to restrict X.10 control signals to

a single domicile. Signals which travel outside the intended home may interfere with

X.10 devices on other home networks. The lack of standardised control commands

limits the potential use for X.10 to simple on/off devices (such as lights) and safety

cut outs (for example, on cookers and electric fires).

3.5 Interoperability in the Home

As this chapter has demonstrated, there are a choice of protocols designed for home

networking. As discussed in section 2.3.1, the Home Network using a single protocol

avoids numerous compatibility issues. Some protocols are designed with a specific

purpose in mind. For example, HAVi was designed for audio/visual devices, and

X.10 for on/off powered devices. While the scope of protocols can be extended to

incorporate other devices, it is more feasible that a Home Network will contain a

number of protocols, all chosen for a specific reason.

Figure 3.8 shows a hypothetical Home Network, where audio/video devices lie

within the HAVi network, the house lighting system is controlled through X.10 and

38

other multimedia devices utilise the UPnP protocol. This Home Network contains

three distinct networks which are unable to interact with each other. The television

has no knowledge of the house lighting system, while the UPnP enabled mobile

phone does not know about the presence of a networked stereo system. Section 3.6

describes a home network discovery scenario in such an environment.

3.6 A Naive Home Network Scenario

In an environment where a client service receives no discovery support from the

network, the client requires to make a number of interactions with the environment

when performing discovery. It is assumed that the client can directly or indirectly

interact with any protocol within the network. An initial difficulty arises from

the nature of the home network. The environment is unbounded in the number

of possible protocols which can exist. Each potential protocol represents a new

interaction the client must make with the environment.

For example, suppose there are three protocols within the home environment. 1

Taken from the scenario above, a client service wishes to discover suitable lamp

devices in home (or relevant devices which can provide light). For each protocol, the

client requires to know how to perform discovery in that domain. In this example, the

client requires to know about discovery in three domains, and is required to explicitly

interact with each domain to discover any suitable devices, shown in Figure 3.9. An

initial (and perhaps naive) assumption can be made in that for in an environment

where x number of protocols exist, a client would require to know x number of

different ways to perform discovery.

It is not unconceivable that within a multi-protocol domain, two protocols may

share a similar approach toward discovery. For example, a protocol may adhere

to a standardised approach toward description, while having a unique approach to

execution. This possibility may improve on the many-to-many relationship in terms

of discovery, but a worst-case scenario would still involve a x :x relationship to be
1Throughout this chapter, the three protocol example is reused to represent the three main

approaches to descriptions identified within Chapter 3.

39

Figure 3.9: A Naive Home Network

resolved.

The main issue with home network descriptions still remains unresolved. Vo-

cabularies and terminologies used by protocols remain largely heterogeneous. In

an home network which is unsupported by middleware for discovery, clients have a

heavy responsibility to know in advance the terminologies to be used for discovering

desired components. Protocols may be described through schemas, attributes or less

structured forms of vocabulary, and semantically similar concepts may be described

in distinct ways. To this end, to discover a lamp device (or similar), the client service

will require a specific discovery message for each potential protocol based on specific

terms. In our three protocol example, the client service will require to construct

three separate messages based on each protocol’s description approach, shown in

Figure 3.10.

In essence a new relationship emerges. The relation between the number of

protocols in the environment and the distinct messages which the client requires to

know to discover also becomes an x :x relationship. For every new protocol added

into the environment, a new discovery message format may be required in order

to perform true cross-protocol discovery. For each component the client wishes to

discover, x number of discovery message may be required, or a 1:x ratio between

desired component and messages required. For example, if a client wishes to discover

40

Figure 3.10: Naive Discovery

a Lamp, every protocol within the network may use a different vocabulary set and

description format. A client must take into account every possible protocol, and

construct a discovery message accordingly.

In summary, two issues require to be addressed to ensure real-world implemen-

tations of a home network that match the characteristics demanded by the home

network vision, presented in Section 2.2. These issues are:

• A reduction of the x :x relationship between numbers of protocols and methods

of discovery needed to be known by a client.

• A reduction of the 1:x relationship between the service type the client wishes

to find and the number of possible messages or vocabularies needed to discover

the service in each protocol domain.

It may be suitable that the networks described in Section 3.5 remain distinct

and have no interaction with each other, but this would seem to contrast with the

goals of the Home Network, namely to enable devices and services within the home

to interoperate. In a natural language environment, if two persons wish to converse,

but do not speak the same language, an interpreter is used. The interpreter listens

to dialogue in one language, and then translates the dialogue into another language.

In the case of network protocols, a similar method can be used.

41

3.7 Protocol Bridges

For one protocol to interact with another, translation from one protocol to another

is needed, and is commonly known as a protocol bridge (as it bridges between two

protocols). Using the example in Figure 3.8, a UPnP-to-HAVi bridge could allow

the UPnP enabled phone to stream music to the HAVi stereo, shown in Figure 3.11.

Protocol bridges require to know how to interact on both sides of the bridge. The

extent to how the bridge acts is usually determined by the purpose of the bridge.

For example, the purpose of the UPnP-to-HAVi bridge may be to allow UPnP

devices to control HAVi devices. To achieve this, the bridge must have knowledge

of how to perform service discovery within the HAVi network, must be able to

understand the messages involved, and must know how to convert UPnP commands

into HAVi commands. The bridge may have a further purpose, that of offering

HAVi services to the UPnP as UPnP services. To achieve this, the bridge must, in

addition to the requirements already specified, act as a HAVi component, listening

for new services joining the HAVi network, translate their descriptions into the UPnP

format, and then announce them to the UPnP network as UPnP services.

Protocol bridges may be uni or bi directional, with the UPnP-to-HAVi bridge

discussed being uni-directional. (The bridge acts on behalf of the UPnP network).

A bi-directional bridge acts on behalf of both networks, translating HAVi commands

into UPnP commands, and vice versa.

Software components, called Middleware, can be used to support protocol bridges

in this task. Middleware can provide computational resources, as well as mainte-

nance and management functions. Multiple bridges can share the same middleware

environment, which leads to the Middleware becoming a central component to the

Home Network (see Figure 3.12).

Figure 3.11: Using a UPnP-to-HAVi Bridge

42

HAVi Network

X.10 Network

UPnP Network

Figure 3.12: Middleware in the Home Network

3.8 Middleware

As has been shown, middleware can play a pivotal role within the Home Network.

In addition to housing protocol bridges, middleware environments can also offer

a programmable interface for users to compose their own services. For example,

suppose a user wishes to make use of the functions of their HAVi DVD player and

their X.10 lights. Every time a DVD is played, the X.10 lights within the room

should dim or switch off. To make this possible, the Middleware within the network

would require bridges into both HAVi and X.10. The user would create instructions

using tools provided by the middleware to control the HAVi and X.10 devices.

This scenario highlights an important aspect of middleware. Middleware con-

tains many of the properties which characterise home networking protocols, such

as a programmable environment and classification of ‘types’ of devices and services.

For example, to provide the service composition described above would require the

middleware to contain the concept of a HAVi DVD service, and an X.10 Light.

In this manner, some home networking middleware platforms can be considered a

protocol within their own right. These middleware platforms may have their own

system of service and device discovery.

The Open Services Gateway Initiative (OSGi) is a prominent middleware plat-

form which is attracting interest from the home network research domain [3, 24, 61].

43

3.9 OSGi

The Open Services Gateway Initiative specifies an architecture for creating, man-

aging and deploying Java-based services within a single framework or runtime envi-

ronment [67]. Services within the framework share resources, and may themselves

share resources with the rest of the framework. In this manner, services can be both

providers and clients. In simple terms, an OSGi service is an implementation of a

well known interface. A service within OSGi is offered by an OSGi ‘bundle’. An

OSGi bundle can offer zero or more services to the framework. (A bundle which offers

no services may still be offering other resources, such as libraries, to the framework).

A typical OSGi framework offers a number of features, such as service regis-

tration, security, http support and framework recovery. The OSGi framework also

manages the life cycle of all bundles.

3.9.1 Life cycle Management

The life cycle of a bundle has six main states:

• Installed: This state represents a bundle which has initially been installed into

the framework, awaiting its dependencies to be resolved.

• Resolved: This state represents a bundle which has had all its dependencies

resolved. Bundles remain in this state until started by the framework.

• Started: This state represents a bundle which has been started by the frame-

work. The state of this bundle immediately moves onto the Active state.

• Active: This state represents a bundle which is currently acting within the

framework. The bundle remains in this state until it is stopped.

• Stopped: This state represents a bundle which has its dependencies resolved,

and has been active within the framework, but is no longer active.

• Uninstalled: This state represents a bundle which is no longer part of the OSGi

framework.

44

The OSGi framework maintains the state of each bundle in a persistent man-

ner, allowing the framework to recover easily in cases where a restart is needed.

If a restart of the framework is needed, each bundle does not need to re-register

themselves, as the framework assumes their states are unchanged.

3.9.2 Services And Bundles Within The OSGi Framework

A bundle encapsulates all required OSGi information within a manifest file.

Manifest-Version: 1.0
Bundle-ClassPath: ., libs/Keyboard.jar
Bundle-Version: 1.0.0
Bundle-Name: DisplayManager
Bundle-ManifestVersion: 2
Bundle-SymbolicName: DisplayManager
Bundle-Activator: uk.ac.stir.cs.lsd.providers.display.impl.Activator
Bundle-Description: Manages Swing Interfaces
Bundle-Vendor: Liam Docherty
Import-Package: javax.swing, org.osgi.framework
Export-Package: uk.ac.stir.cs.lsd.providers.display

Figure 3.13: An Example Bundle Manifest

A manifest file contains simple properties of the bundle, such as developer and

bundle version. The manifest also states the required Java libraries for the bundle,

denoted by the bundle classpath. These libraries are already contained within the

bundle, and are loaded into the framework along with the bundle. The final part of

the manifest states which resources are required by the bundle in order to be started,

and what resources from within the bundle are to be shared with the framework.

Using the example shown in Figure 3.13, the Display Manager bundle requires

both the javax.swing and org.osgi.framework libraries to be available in order to be

started (denoted by Import-Package). These libraries are the dependencies of the

bundle. The Display Manager bundle then exports the library uk.ac.stir.cs.lsd.providers.display

to the framework (denoted by Export-Package), which can then be used by other

bundles within the framework.

One important property not yet covered is the Bundle-Activator property. This

property instructs the framework where the Activator for the bundle can be found.

45

Interface Implementation Properties
LightInterface KitchenLight Location=Kitchen
LightInterface BedroomLight Location=Bedroom
LightInterface LivingLight Location=LivingRoom

Figure 3.14: The OSGi Service Registry

Bundle Activators are found within all bundles which offer services to, or use services

within, the OSGi framework.

3.9.3 The Bundle Activator

An activator is the first point of contact for the OSGi framework after a bundle has

been started (and, only if an activator exists!). Within its activator a bundle may

register services with the OSGi service registry, or search the registry for required

services (or both!). These processes will be covered in sections 3.9.4 and 3.9.5. The

bundle activator is also called by the OSGi framework as the bundle is moved to

the stopped state. This allows the bundle activator to perform operations, such as

unregistering its services, or removing links to external services, ensuring that the

bundle can leave the framework cleanly.

3.9.4 Registering Services

The OSGi registry maintains a list of services (or implementations of interfaces)

along with a set of attributes of that service (as shown in Figure 3.14). For a bundle

to register a service with the registry, it submits three items:

• An interface: This is a well known service interface which service users will

know about in advance. In abstract terms, the service interface acts as the

classification of the service.

• The service: As previously mentioned, the service is an implementation of a

particular interface.

• A set of properties: Properties can be used to distinguish between services.

For example, two services which implement a LightInterface can be distinguish

46

by the value of a Location property.

On submitting a service for registry, the OSGi registry assigns a service registra-

tion, which acts as a unique reference for the service. This provides the providing

bundle with a link to the service object within the registry. Service properties are

largely left to the developer to define, as there is a lack of properties defined by the

OSGi specification.

A bundle is able to register multiple services with the OSGi registry, and is

responsible for notifying the registry when the service is no longer available.

3.9.5 Discovering Services

Within the bundle activator, a bundle can discover desired services within the frame-

work by using the OSGi registry. To discover a service, the bundle submits an

interface and property query to the framework. The interface is used to match im-

plementations within the registry, with the property query used to further match

suitable services to the query. In simple terms, the bundle asks the registry to ‘find

a service which implements this interface and has these properties’.

Property queries are expressed using a Lightweight Directory Access Protocol

(LDAP) syntax, which allows a more expressive form of querying, over simple prop-

erty matching.

On discovering suitable matches, the registry returns a list of service references

which correspond to services within the registry. The querying bundle can then

select a reference from the list, and submit this reference back to the registry. The

registry then provides the service to the querying bundle.

Bundles can place requests within the OSGi framework to be notified in the

event of a particular service joining the framework. In this manner, bundles which

offer multiple services can join the framework in stages. For example, a LightControl

service provides a graphical user interface for controlling the lights within the home.

As a new LightService joins the framework, the LightControl service can add a new

light object to the interface.

47

Figure 3.15: Relation Between Services and Users

3.9.6 Using Services

As Java is an object orientated language, services are modeled as objects. When

services are retrieved from the registry, the client bundle receives a direct reference

to the service object. The service object may be shared between many bundles, as all

users share the same implementation (see Figure 3.15). The client bundle interacts

with the service by applying the service interface to the service object. In simple

terms, this means the service client uses functions defined by the service interface.

As a service unregisters from the framework, service users are notified by a

service event. This alerts the service user that the service reference is no longer valid,

and should be discarded. In this way, services can leave the framework gracefully,

ensuring references are stable and sound.

3.9.7 Scope of OSGi

OSGi is executed within a single Java Virtual Machine (JVM), along with all regis-

tered bundles. This places a limitation on an OSGi framework, as all elements of a

OSGi network can be susceptible to faults affecting the JVM, such as power failure

and class loader errors.

Sharing a single JVM also limits all bundles to share the same implementa-

tions of libraries. For example, suppose an existing bundle both offers and uses a

LightInterface Java class. If a new bundle joins the framework with a new version

of the LightInterface class, it will be unable to start as only one definition of the

48

LightInterface class can exist within the framework.

An OSGi-supported network can also be constrained by OSGi’s inability to fed-

erate requests between all existing frameworks within the domain. Suppose two

OSGi frameworks exist, one which contains entertainment services and one which

contains home care services. Service A is contained within the first domain, and

is designed to play background music when the user enters the living room. This

service wishes to discover if any movement detection services are available. Move-

ment detection services are located within the second OSGi framework, and are used

by a number of home care services. Service A would be unable to discover these

movement detection services, as it can only discover within it’s own framework. The

OSGi frameworks are unable to share discovery requests between each other. This

OSGi issue has attracted an amount of research and development to resolve. OSGI-

R (r-osgi.sourceforge.net/) is one solution to this issue, but has yet to be integrated

into the OSGi specification.

3.10 Jini

Jini is another Java-based architecture designed to support distributed computing

[93]. The architecture is designed for complete management of the network, cov-

ering the behaviour of both network management components and network clients.

Network management components may also be distributed within the network. Jini

was originally developed by Sun and has been transferred to Apache for future de-

velopment and refinement[34]. Due to the well defined specifications, Jini has also

found itself being applied within home network research projects [49]

3.10.1 Jini Clients

Clients within a Jini network can be said to be mobile. The code of which they

comprise can be moved throughout the network. This is necessary, as each Jini

client may be executing within its own JVM.

A Jini client can be a service provider, a service user or both. Jini service

providers register their services with a service registry. This registry can be queried

49

by service users. Services take the form of service objects. These objects model the

functions of the service. For example, a Clock service may provide functions for

users to get the time, or set alarms.

3.10.2 Registering Services

Figure 3.16: Jini Registry Providing a Registrar

Figure 3.17: Copying The Service Object Into The Registry

The Jini architecture specifies a Service Registry architecture which is designed

to handle all aspects of the discovery process. To register, a service provider first

discovers the registry by either a unicast to a specific address (if the register address

is known) or a multicast to the whole network. The multicast may result in more

than one registry responding.

Once the provider has a reference, it obtains a Registrar object from the registry

(see Figure 3.16). This object acts as a proxy to the registry, providing a local

interface for the provider. The provider then passes a copy of the service object to

the registrar along with a list of properties about the service. The registrar then

50

places the copied service object within the service registry (shown in Figure 3.17).

The provider is then given a unique reference for the service.

Entry Objects

The properties submitted in a service registry take the form of Entry Objects.

An Entry is a class which embodies a specific attribute, such as the location af-

fected by the service, the developer of the service, or the manufacturer of hard-

ware which the service controls. Encapsulating attributes within a concrete class

allows for a more relevant matching of properties. For example, the service reg-

istry would be able to differentiate between uk.ac.cs.stir.lsd.toaster.Location and

uk.ac.cs.stir.lsd.gps.Location. Both properties describe a Location attribute, but

the context in which it applies is different for each Entry object.

An Entry object simply contains a value, with the property name being identical

to the classname of the object. The Jini architecture specifies a number of Entry

attributes for describing services. Users can also implement their own Entry objects.

3.10.3 Discovering Services

The initial step of discovering services follows that of registering services. A service

user must first find a service registry, if one is not already known. On contacting a

registry, the service user receives a Registrar object.

Figure 3.18: Interaction Between the Registry and User

To discover services, a service user must construct a ServiceTemplate. This

template requires a list of desired service types (defined by a service interface) and a

51

list of desired properties (defined by Entry objects). The template is then submitted

to the Registrar, which queries the service registry. If a suitable match is found, a

copy of the service object is passed to the service user. The interaction between

these components is shown in Figure 3.18. As a Jini network can be distributed, the

service user receives a copy of the service to execute within its own JVM.

3.10.4 Service Registry Groups

Jini permits categories of service registries, with each registry deployed for a par-

ticular group of services. A number of registries may exist within a single network

domain. One service may be registered in more than one registry. In this manner,

a service may wish to register itself within a single registry, within a select group,

or in all registries within the network.

Similarly, service users may wish to browse a specific group of service registries.

Jini services can discover registries by unicast requests (where registry addresses

are known) and multicast requests (where addresses are unknown). As part of

this registry discovery mechanism, a Jini client can submit parameters denoting

which types of registries they wish to discover. For example, departments within a

University may maintain their own Jini service registry. A Jini client may wish to

discover the registries of the Computing Science department only.

Having multiple registries allow Jini network users to maintain a list of available

services relevant to a specific purpose. This may also be as a result of access restric-

tion, where high-priority services are maintained on a controlled registry. Regardless

of registry type, service discovery and registration processes are the same.

3.10.5 Proxies within the Jini Network

A service may control a single device. For example, a Jini television may offer a

service which allows a user to control the television. Using this service, a user may,

for example, change channels and volume levels. If a number of service users wished

to control the television, conflicts may occur (for example, if two users wish to select

two different channels). This scenario would be akin to a single television being

52

Figure 3.19: Service Proxies and Service Controller

Figure 3.20: Registering and Retrieving the Service Proxy

controlled by two or more remote controls.

In this situation, rather than providing a direct control service, a proxy service

could be provided. This proxy would appear to provide the same functions to the

service user, but instead federates functions requests to a service control component

(shown in Figure 3.19).

To this end, rather than register the controlling component with the Jini service

registry, service proxies can be registered instead. When service users retrieve a

copy of the proxy from the service registry, they act as if they hold a copy of the

service controller itself. The process is highlighted in Figure 3.20.

In this manner, the service controller can federate requests from users, prioritis-

ing actions and resolving conflicts. Using proxies also allows the service controller to

configure certain aspects of service usage. For example, if the service user is based

upon a wireless device, the controller may provide a proxy with specific communica-

tion endpoints. Similarly, if the service user is based upon an Ethernet-based device,

53

a different proxy, with different communication endpoints could be provided.

Section 3.11 presents a real-world implementation of a home network supported

by an OSGi middleware framework. This implementation was designed to address

the issues identified in Section 3.6. OSGi was chosen because if its popularity and

support within research and industry domains. In this experiment, the outcomes

are evaluated and presented as a case for this work.

3.11 An OSGi Supported Home Network

A typical OSGi framework has various means to support discovery within the home

network. A scenario was created to provide a realistic aim for this experiment: a

client wishes to locate a lamp device with a power service. In this implementation, an

OSGi framework is supported with driver bundles, capable of interacting in specific

protocol domains. For the purpose of evaluation, driver bundles for X.10, UPnP

and Jini have been deployed within the framework to support service and device

discovery in this home network domain.

This implementation simplifies part of the discovery process for a client. The

driver bundles communicate with their specific domains for the purpose of discover-

ing available components, and subsequently enter a description of discovered compo-

nents into the OSGi registry. This process removes the requirement from the client

to understand how to discover in each specific domain. The client need only know

how to interact with the OSGi registry. In this manner, the relationship between

the protocols and the methods of discovery is reduced to a simple x :1 relationship.

(For x protocols, there is only one method of discovery needed).

This implementation requires that all drivers be configured to interact with the

OSGi registry. For this to be achieved, the terminologies and formats of protocol

specific descriptions require to be recompiled into a format suitable for the OSGi reg-

istry. This requires descriptions to be expressed through an attribute/value pairing.

The strengths and weaknesses of this approach have been previously discussed, but

it is sufficient to say difficulties arise when sharing an attribute/value environment

with multiple parties.

54

3.11.1 Service-Orientated Discovery

An initial difficulty with an OSGi-registry approach is that it is service-orientated.

Attributes expressed in the OSGi registry are intended to describe services on the

framework, or specifically, attributes of the service implementation. There is little

support for describing devices which offer services to the framework, or provide

context information.

It could be argued that this is not necessarily an issue: Clients are inherently

service-orientated, looking to manipulate real-world objects or data through relevant

services. Services are also software-bound where as devices are hardware-bound.

These arguments would seemingly suggest that the OSGi approach is sufficient, that

service descriptions by themselves are sufficient in a home network. This assumption

does not hold. Suppose a client wishes to stream a media file to a component capable

of both audio and visual output. From a real world perspective, the client wishes

to discover a television, which would offer both services. In a service orientated

environment, it is difficult to describe an audio output service and visual output

service which can be guaranteed to be offered by the same component.

To simply attempt to solve this by using a defined attribute, such as offered-

ByDevice, proves ineffective. A query in OSGi takes desired attribute values as

input. There is scope within the query syntax used by OSGi to match upon wild

card values (as OSGi uses LADP for querying over attributes) but there is no func-

tion to retrieve meta data about services. For example, it is not possible to discover

an audio output service, retrieve its providing device and then query again for a

relevant visual output service. This feature would be need to be provided by the

service itself.

3.11.2 Registrations

As discussed in Section 4.2, attribute/value approaches to describing components

can suffer from unbounded vocabularies. Two services which are identical in what

they achieve may be described in logically distinct ways. This is a result of syn-

tactically different, but semantically similar vocabularies. In an interface-driven

55

environment, such as OSGi, this issue is especially prevalent. An OSGi description

takes the form of (interface implemented, service properties). The interface provides

the classification of the service type. For example, an audio output service offers an

implementation of the audio output interface. This approach is suitable in an envi-

ronment where services can be expressed in an interface/implementation format. A

service is bound onto a well known service interface, and a client knows in advance

what functions will be offered by the service.

This approach cannot be carried easily into an environment where non-interface

based protocols exist. For example, suppose a well known interface existed for Lamp

devices: LampInterface. When an X.10 Lamp joins the network, existing X.10

drivers register the device as an implementation of the X.10Device interface. At this

point, the X.10Device implementation is syntactically different from a LampInterface

implementation, and is therefore logically distinct.

A complex solution to this issue could involve pseudo-implementations, where

protocol drivers generate well-known interface implementations, customized for a

particular protocol. In this example, the X.10 driver could register an implementa-

tion of the LampInterface, customized to control the X.10 Lamp. While this solution

appears attractive and straight-forward, it does not scale well. For every possible

service interface, a driver must provide an implementation. As service interfaces are

inherently unbounded in number, possible implementations are equally unbounded.

Developing a protocol driver requires a choice be made.

If developers choose to ensure their driver is capable of registering a particular

service under a well-known interface, then the driver is only suitable for a small

selection of protocol specific components. For example, an X.10 Lamp Driver able

to register X.10 Lamps under the LampInterface would only be suitable for X.10

Lamp devices. All other X.10 devices would remain unsupported and unusable,

unless further X.10 drivers were available.

The second choice is to provide a protocol driver capable of supporting all pro-

tocol specific components, but at a more generic level. In the X.10 driver example,

this would be akin to simply registering all X.10 devices as implementations of the

56

X.10Device interface. In this manner, all components would be supported, and

discoverable - but at the cost of distinction from well-known interfaces. It is the

experience of this work that existing protocol drivers are of this second variety. Pro-

tocol specific services are registered as implementations of a generic interface, with

service attributes providing the necessary discovery information, such as service cat-

egory. In this manner, compliance with well-known interfaces is sacrificed to ensure

all relevant protocol components are registered. This is not an issue limited to OSGi,

but to all typical interface-driven registration processes.

3.11.3 Environment Evaluation

This experiment involved using three driver bundles to provide descriptions of three

Lamp devices and corresponding services, with one Lamp device per protocol do-

main. Rather than evaluate each description provided (which would in truth be an

evaluation of the protocols rather than OSGi), the OSGi discover mechanism has

been evaluated in various aspects including continuity between protocol terms and

number of interactions required by a client to discover all relevant components.

3.11.4 X.10 Registration

In the OSGi-supported environment evaluated, the X.10 driver registers X.10 de-

vices under an ‘X.10Device’ interface, along with some descriptive properties. A

specific attribute is used to denote the device category: ‘device-type’. Code shown

in Figure 3.21 is used to register a Lamp device within the Living Room. It should

be mentioned that the X.10 and UPnP protocols have no scope for describing the

location of a device. For the purpose of evaluation, locations are derived by way of

user interaction.

3.11.5 UPnP Registration

The UPnP driver used within this evaluation is built upon an implementation of

an UPnP control point. 2 As the control point discovers UPnP devices, the driver
2The control point is provided by Satoshi Konno - www.cybergarage.org

57

X10Device device = new X10DeviceImpl("A1") ;
Properties props = new Properties() ;
props.put("device-type","Lamp") ;
props.put("location", "LivingRoom") ;

context.register(X10Device.class.getName(), device, props) ;

Figure 3.21: An X.10 Registration in OSGi

<deviceType>urn:schemas-upnp-org:device:light:1</deviceType>
<friendlyName>CyberGarage Light Device</friendlyName>
<manufacturer>CyberGarage</manufacturer>
<manufacturerURL>http://www.cybergarage.org</manufacturerURL>
<modelDescription>CyberUPnP Light Device</modelDescription>
<modelName>Light</modelName>
<modelNumber>1.0</modelNumber>
<modelURL>http://www.cybergarage.org</modelURL>
<serialNumber>1234567890</serialNumber>
<UDN>uuid:cybergarageLightDevice</UDN>
<UPC>123456789012</UPC>

Figure 3.22: UPnP Description of the Light Device

compiles a description based upon the UPnP attributes. This description is then

entered into the OSGi registry.

An UPnP device is registered as an implementation of a UPnPDevice interface.

UPnP devices cannot be registered as implementations of a generic (or Java based)

interface, for the reasons discussed in Section 3.11.2. Instead, a UPnP registration

mirrors that of an X.10 registration: the category of device must be obtained from

the descriptive attributes. As a UPnP description is schema based, an OSGi based

description can be generated by the driver, without the need for user intervention

(aside from the addition of a location attribute).

UPnP Device Description Conversion

The UPnP description of the Cybergarage Light Device used in this evaluation is

given in Figure 3.22.

As this description is already in a attribute/value format, it is a relatively simply

58

UPnPDevice device = new UPnPDeviceImpl(deviceLocation) ;
Properties props = new Properties() ;

props.put("UPNP_DEVICE_TYPE", "urn:schemas-upnp-org:device:light:1") ;
props.put("UPNP_DEVICE_FRIENDLYNAME","CyberGarage Light Device") ;
props.put("UPNP_MANUFACTURER","CyberGarage") ;
props.put("UPNP_MANUFACTURER_URL","http://www.cybergarage.org") ;
props.put("UPNP_MODEL_DESCRIPTION","CyberUPnP Light Device") ;
props.put("UPNP_MODEL_NAME","Light") ;
props.put("UPNP_MODEL_NUMBER","1.0") ;
props.put("UPNP_MODEL_URL","http://www.cybergarage.org") ;
props.put("UPNP_SERIAL_NUMBER","1234567890") ;
props.put("UPNP_UDN","uuid:cybergarageLightDevice") ;
props.put("UPNP_UPC","123456789012") ;
props.put("location", "LivingRoom") ;

context.register(UPnPDevice.class.getName(), device, props) ;

Figure 3.23: UPnP Description Converted for OSGi

transition into an OSGi description, shown in Figure 3.23. A location attribute is

added by means of user interaction as each UPnP device is discovered.

In a similar manner the UPnP service description (a power service) is translated

from the UPnP terminology into an OSGi registration, shown in Figures 3.24 and

3.25

<serviceList>
<service>

<serviceType>urn:schemas-upnp-org:service:power:1</serviceType>
<serviceId>urn:schemas-upnp-org:serviceId:power:1</serviceId>
<SCPDURL>/service/power/description.xml</SCPDURL>
<controlURL>/service/power/control</controlURL>
<eventSubURL>/service/power/eventSub</eventSubURL>

</service>
</serviceList>

Figure 3.24: UPnP Description of the Power Service

The UPnPService class contains functionality which allows clients to retrieve the

identification of the parent device. This is required to provide linkage between the

service and the device which is offering it to the service. It should be stated that

59

UPnPService service = new UPnPServiceImpl(deviceLocation) ;
Properties props = new Properties() ;

props.put("UPNP_SERVICE_TYPE","urn:schemas-upnp-org:service:power:1") ;
props.put("UPNP_SERVICE_ID", "urn:schemas-upnp-org:serviceId:power:1") ;
props.put("UPNP_SCPDURL", "/service/power/description.xml") ;
props.put("UPNP_CONTROL_URL", "/service/power/control") ;
props.put("UPNP_SUB_URL", "/service/power/eventSub") ;

context.register(UPNPService.class.getName(), service, props) ;

Figure 3.25: UPnP Description of the Power Service Converted for OSGi

services require to be registered independently of their parent device. If a parent

device only offers one service, a case could be made that a service reference can be

made within the device description. For example, the Light Device description could

be modified with a new property:

props.put("UPNP_SERVICE","urn:schemas-upnp-org:service:power:1") ;

While this would be sufficient for single service devices, it is not feasible for

multiple services, as only one ‘UPNP SERVICE’ entry is permitted per registration.

Similarly, it would be unfeasible to mix device and service attributes within the

UPnPDevice registration, as this violates the integrity of the description (i.e. a

device description should describe only attributes of the device, and similarly for a

service description).

3.11.6 Jini Registration

The Jini protocol driver has a more straight forward role in converting between the

protocol specific description to an OSGi based description. As previously discussed,

Jini uses Entry objects to provide attributes about a service. A Jini registration

takes a similar format to that of an OSGi registration: (service interface name,

service implementation, list of Entry object attributes). The only change required

for an OSGi registration is to convert an Entry object into an attribute/value pair.

An Entry object contains one or more fields, with each field representing a particular

60

attribute. For this evaluation, the conversion process is done by combining the class

name of the Entry object and field as the attribute name, and the value of the Entry

as the attribute value.

A Jini service has been developed which implements the LampInterface, and

includes a Location Entry object, which is used to describe the location of the

physical component of the service. The steps involved in creating a Jini description

are given in Figure 3.26

LampInterface lamp = new LampInterfaceImpl() ;
\\A location at 12 Tree Walk, on the ground floor, in the Living Room
Location loc = new Location("12 Tree Walk", "0", "LivingRoom");
Entry[] entries = new Entry[] {loc} ;
ServiceItem item = new ServiceItem(null, lamp, entries) ;

Figure 3.26: Jini Description of a Lamp Controller

The ServiceItem object contains both the service instance and its descriptive

properties. As this is passed to the Jini driver (which is built upon a Jini Registrar)

an OSGi description is derived, shown in Figure 3.27.

LampInterface lampImpl = lamp ;

Properties props = new Properties() ;
props.put("net.jini.lookup.entry.Location.building","12 Tree Walk") ;
props.put("net.jini.lookup.entry.Location.floor","0") ;
props.put("net.jini.lookup.entry.Location.room","LivingRoom") ;

context.register(LampInterface.class.getName(), lamp, props) ;

Figure 3.27: Jini Description of the Lamp Controller converted for OSGi

It is important to provide an unique URI reference for Jini attributes, rather

than simply use the field name of the Entry object. In this manner, the driver can

ensure that two Entry objects with similar field names remain distinct. Suppose

two Entry objects existed with a field named location, where the intent from one

provider is to describe the physical location affected by a service in the home, and

the other provider describes the download location of the service by field. It would

not be enough to represent both attributes with the same string value, as a client

61

would have no way to differentiate between the two intentions.

The testbed for this evaluation is now complete. There are three instances of

Lamps or Lamp-controlling services within the OSGi registry. This allows OSGi

clients to have a centralised point of discovery, highlighting the x :1 relationship

between existing protocols and methods of discovery required. The evaluation will

concentrate on the process involved by a client in discovering each instance of the

Lamp components.

3.11.7 Evaluation of the OSGi Discovery Process

A LightSwitch service has been developed to operate the various Lamp services and

devices in the home. This service is able to use all Lamp services within the frame-

work. The LightSwitch service first requires to discover the available Lamp compo-

nents. The LightSwitch service has knowledge of how each component is described

within the OSGi registry. In order to discover the components, the LightSwitch

must query the OSGi registry.

Querying the Registry

In order to discover each type of Lamp component, the client must query the registry

three times, with three distinct sets of terminology. Firstly, to discover the X.10

Lamp, the client must submit a query in the format shown in Figure 3.28.

ServiceReferences[] x10References =
context.getServiceReferences(X10Device.class.getName(),"device-type=Lamp") ;
X10Device lamp = (X10Device)context.getService(x10References[0]) ;

Figure 3.28: Discovering the X.10 Lamp Service

The variable lamp now holds a reference to the X10 Lamp controller. This query

required the use of protocol specific terminology: ‘device-type=Lamp’. The property

‘device-type’ is specific to the X.10 domain.

Discovering the correct UPnP service is slightly more complex. Within the UPnP

domain, the desired service is a ‘power’ service which is offered by a Lamp device.

It is not enough to simply discover any power service, it is crucial that the service is

62

offered by a Lamp device. Figure 3.29 shows the steps taken to discover the correct

UPnP service.

ServiceReferences[] upnpReferences =
context.getServiceReferences(UPnPService.class.getName(),
"UPNP_SERVICE_TYPE=urn:schemas-upnp-org:service:power:1") ;
UPnPService service = (UPnPService)context.getService(upnpReferences[0]) ;

//check for correct parent
ServiceReferences[] lampReferences =

context.getServiceReferences(UPnPDevice.class.getName(),
"UPNP_DEVICE_TYPE=urn:schemas-upnp-org:device:light:1,

UPNP_DEVICE_FRIENDLYNAME="+service.getDevice().getFriendlyName()) ;

//if references are not empty, we can assume a correct match

Figure 3.29: Discovering the UPnP Power Service

Querying over the UPnP domain requires a completely separate terminology

from the X.10 domain. Terms such as ‘UPNP DEVICE TYPE’ and ‘urn:schemas-

upnp-org:device:light:1’ are specific to the UPnP domain within OSGi. A service

user who wishes to be able to discover UPnP resources must have knowledge of the

UPnP terminology.

Jini provides a unique case of discovery. As the Jini service implements the

LampInterface interface, the service type is implicit within the interface class name.

In other words, the client knows that if the Jini service implements the LampInter-

face interface, it controls a Lamp device within the network. Figure 3.30 shows the

steps taken to retrieve the Jini service. No terminology is required in this instance,

as the service type is not considered an attribute of the service.

ServiceReference jiniReference =
context.getServiceReference(LampInterface.class.getName()) ;

LampInterface lamp = (LampInterface)context.getService(jiniReference) ;

Figure 3.30: Discovering the Jini Service

63

ServiceReference[] jiniReferences =
context.getServiceReferences(LampInterface.class.getName(),

"net.jini.lookup.entry.Location.room=LivingRoom") ;
LampInterface lamp = (LampInterface)context.getService(jiniReferences[0]) ;

Figure 3.31: The Modified Jini Query

Evaluating the Query Process

Discovering three separate protocols required two different terminologies to be used,

and one instance where no terminology was required. At face value, the OSGi

experiment has shown that, in some cases different sets of terminologies are required,

but in others no terminology is required. It is difficult to draw any clear conclusions

from this simple experiment.

Clearer conclusions can be drawn by evaluating a more complex experiment.

To this end, more realistic queries have been constructed and submitted to the

OSGi registry. In this case, rather than simply search for available Lamp devices or

services, the client provides a specific criteria, namely those in a specific location:

The Living Room. In natural terms, the client is searching for a Lamp service which

affects the Living Room.

Discovering relevant X.10 and UPnP services simply requires an extension of

the attributes used within the query process. The X.10 query adds an additional

property and value:

• ‘location=LivingRoom’

Similarly, the UPnP query requires an addition property. In this case, it is

added to the second part of the query, ensuring that the parent device of the service

is located in the Living Room:

• ’location=LivingRoom’

The Jini query requires to be restructured, as it now includes a criteria for

determining suitable services. The Jini query takes a form similar to the queries of

the X.10 and UPnP queries, shown in Figurefig:OSGi-Jini-Mod.

This experiment forces the Jini query to include protocol specific terminology

as part of the query. For a client to discover a Lamp service in the Living room

64

now requires distinct terminologies for each protocol domain. The X.10 and UPnP

queries include a common attribute, location, which is abstract from the protocol

specific terminologies. This common attribute does not succeed in preventing the

overall query from being protocol specific.

In the experiments carried out in this work within an OSGi supported home

network, the relationship between the number of protocols in the domain, and the

number of vocabularies required to be known by a client remains a x :x relation-

ship. If one aspect of a query requires protocol specific terminology, then the whole

query becomes specific to that protocol domain. It is not possible to reuse queries

constructed for one protocol in discovering components within a second protocol

domain. In short, there is no scope for one query being applicable across protocols.

This observation is not based on a whole OSGi registry query per say, but only

on the attribute criteria submitted as part of the query. An OSGi query requires

a desired interface to be submitted as part of the query. It is assumed that this

interface may, in many cases, always be protocol specific, for the reasons described

in Section 3.11.2. The interface can be thought of describing how clients interact

with the service, rather than attributes of the service. As has been previously

mentioned, this work is concerned with describing what services are, rather than

how they can be used.

3.11.8 OSGi Evaluation Conclusion

OSGi provides a great deal of support for cross-protocol discovery of network com-

ponents. As has been shown, utilising the registry of an OSGi framework reduces

the (protocols : discovery method) relationship to x :1. This provides a solid base

for component discovery. The issues surrounding protocol specific terminology still

remain. A x :x relationship between protocols and vocabularies is not scalable within

a home network environment. Existing services which do not update their range of

protocol specific vocabularies are left behind, potentially becoming obsolete as new

protocols emerge.

In summary, this experiment provided the following outcomes:

65

• The relationship between the number of protocols within the network and

the methods of discovery needed is reduced to x :1 relationship. The OSGi

registry provides a central point of discovery, as protocol drivers are responsible

for ensuring protocol specific components are discovered. This is a perfect

relationship, even in a worst-case scenario.

• The relationship between the service type the client wishes to find and the

number of possible messages or vocabularies needed to discover the service

remains at 1:x. The use of differing vocabularies and attributes requires clients

to have knowledge of how an attribute is represented in each domain. This

issue remains unchanged from the naive scenario presented in Section 3.6.

It is clear that, to provide an extensive and scalable middleware framework, a

new approach toward component discovery is required.

66

Chapter 4

Service Discovery Approaches

in the Home Network

Despite a number of approaches to supporting a Home Network, there are a few

common approaches to service discovery. These approaches can be loosely separated

into a three categories:

• System Architecture

• Component Description

• Service Usage

4.1 System Architecture

The architecture of each service discovery approach can bring differing solutions and

issues to the network environment. There are two main architectures found within

the home network: decentralised and centralised. Rather than apply to all aspects

of network life, these categories represent the management aspects of networks, such

as service discovery, error recovery, and message infrastructure. Service usage, in

terms of architecture, is considered to be service to service.

67

Figure 4.1: Discovery in the Decentralised Network

4.1.1 Decentralised Architecture

UPnP (discussed in section 3.2), and to a lesser extend HAVi (discussed in section

3.3), operate a decentralised approach to service discovery. Within a decentralised

architecture, there is no main component, or components, tasked with maintaining

a list of services. A discovery request for a specific service is broadcast to the entire

home network. Components which offer the desired service respond directly to the

querying component.

With a decentralised approach, the network is less prone to component failure.

For example, suppose an UPnP Lamp joins the network. Various control points

utilise the functions of the component, with others subscribing to Lamp events. If

the Lamp component fails, client services are no longer able to utilise the Lamp,

and subscribers no longer receive updates. Other components within the network

remain unaffected. Service and device discovery can continue to take place. Users of

the failed Lamp can discover alternatives and continue to function normally. Figure

4.1 depicts this architecture in use.

HAVi networks may suffer more from node failure due to FAV and IAV devices

acting on behalf of more basic devices within the network. Failures of FAV or IAV

devices can result in services of a number of devices being withheld from the network.

68

Figure 4.2: Discovery in the Centralised Network

In a decentralised network, all components are responsible for keeping infor-

mation about themselves consistent. This usually means components requiring to

continually broadcast messages concerning their existence or current state. This

can result in a large number of messages being transmitted to ensure the network is

maintained in a consistent state.

4.1.2 Centralised Architecture

OSGi typifies a centralised approach to supporting the Home Network, with Jini

holding some similar characteristics. In a centralised network, there is a main point

of contact for all components joining the network. The central component can

be responsible for a number of operations, such as a service registry or network

security (shown in Figure 4.2). A centralised service registry provides a single point

of reference for service clients. In this manner service users will know that all services

will be registered in a single place, and can be confident that if the service is in the

network, it will be in the registry also.

A centralised approach allows network management components to apply pri-

orities and authorisation levels to network actions. For example, Component A

may wish to discover a Home Security service. The centralised security component

can limit the types of services which Component A can discover. In this example,

69

Component A does not have a high enough authorisation to discover Home Security

services, and as a result is returned no results. Having a single entry point to major

components, such as service registries, allows a more reliable and robust security

implementation.

Centralised Architectures also ensure that every possibly discoverable network

component is discoverable. In other words, when a client searches a centralised

registry, they can be confident that all available components are represented within

the registry. Centralised architectures also allow for registries to ensure descriptions

are consistent.

In terms of network robustness and reliability, centralised networks are more

prone to network failure. Failure may be caused by a number of issues, such as

component overuse power loss. If the components responsible for major network

actions, such as service registry, are unavailable, the network is unable to function.

4.2 Component Description

Approaches to service descriptions vary amongst protocols. Some protocols use no

descriptions (such as X.10), some contain an implementation of and attribute/value

approach (such as Jini and OSGi), and others have a defined description schema

(such as UPnP). The extent of the description approach has some degree of influence

over the ease of integration into the home network. For example, it is easier for

middleware to extract service attributes from a description, if the component adheres

to a protocol specific schema.

This section will describe the approaches to integrating protocols with middle-

ware, with respect to their description approach. This section will also evaluate each

approach on 3 important areas within the Home Network environment.

• Configuration - This area refers to the ease and level of involvement required

in setting up a network with a particular description approach

• Interaction - This area refers to how automated the service discovery process

is with respect to the particular approach

70

• Integration - This area refers to the ease of integrating protocols of a particular

description approach into a home setting

4.2.1 No Description

Protocols which have no descriptive specification provide a unique challenge in an

multi-protocol network. There is no possibility for a middleware framework to per-

form any kind of classification upon the device or service. Protocols which contain

no descriptions are largely hardware based, such as X.10.

Configuration

With the emphasis on the simplification of networking, descriptive properties have

been traded for ease of installation and configuration. Such network devices are, in

terms of description approach, the equivalent of current domestic appliances, such

as televisions and washing machines. In this manner, little configuration is required

to integrate these components into the network.

Interaction

With no descriptive classifications of devices or services, interaction in this approach

requires being direct. For example, it is not possible to carry out the action ‘Switch

on the Lamp in the Living Room’, as there is no concept of Lamp or Living Room

(or even Switch On). Instead interaction is limited to ‘Switch on Device X’ or

‘Pass these arguments to Service Y’: There is no computational concept of what

component the client is interacting with. Interaction therefore can either be hard

coded, or human user initiated.

Integration

Understanding the type of device requires the intervention of the human user. Any

kind of description has to be applied externally to the device or service. The easiest

approach to this is a description wizard application, which allows the user to describe

the device or service to the framework. With a rudimentary description present,

71

these network components can now be integrated (from a descriptive level) into

the home network. With a lack of protocol specific vocabulary, the user requires

applying descriptive properties used by the middleware to the service and device

descriptions.

4.2.2 Attribute/Value Pairs

When using a service registry, services are typically stored with a set of descriptive

attributes, (see sections 3.10.2, 3.9.4 and 3.3.4). These attributes are essentially a

set of attributes with corresponding values. The attributes typically accompany an

interface, or classification of the service or device they are describing. In essence,

the whole description takes the form:

"I am a service/device of type X and I hold these descriptive properties"

The attributes are syntactic representations of a specific semantic attribute. For

example, a Location attribute may be defined to represent the location of a particular

device in the home. The word Location is the tag, or anchor onto this semantic

concept. Knowing what the attribute represents allows middleware applications to

understand the values it extracts from the service properties. In a similar manner,

the interface or classification of the service is a textual anchor to the service type.

Configuration

Having an open approach to providing descriptive attributes allows this approach

to be easily configured. As there are no restrictions or requirements as to what

attributes are present, developers are free to provide any number of attributes which

they believe to be suitable. The only requirement in this approach concerns the

service or device interface. The component must adhere to the functions offered by

the component interface.

Interaction

This approach, while lightweight in deployment, suffers from one main issue - the

requirement of well defined properties. Suppose a device provides a Lamp service

72

whose Location attribute has the value LivingRoom. A LightControl service wishes

to know about all Lamps which have their location within the home. Suppose the

LightControl service understood the values representing the rooms in the home,

such as LivingRoom, BedRoom, and Kitchen. The LightControl service, however,

is unaware of the Location attribute, instead using a Room attribute to tag the

concept. The LightControl service would not be able to discover the Lamp service

as the criteria over the Lamp query would not match. The Lamp would be offering

(Location, LivingRoom) as a descriptive property, while the LightControl would

require services with property (Room, LivingRoom).

In order for the Attribute/Value approach to succeed in a network environment

there needs to be a well defined set of properties which service providers and users

can adhere to. For example, suppose a certain middleware framework is chosen to

support a Home Network environment. The developer of the middleware, or the

network technician, could define a set of properties which will be used in service dis-

covery. If all network components comply with this set, service and device discovery

will be well supported. If some components choose to use their own set, they risk

being unused by service users. As illustrated by the above example, two or more

properties may be designed to tag the same semantic concept. In many implemen-

tations of the attribute/value approach, the matching of service user criteria against

service provider properties is purely syntactical.

Regardless of the issue highlighted, discovery in an attribute/value environment

can be fairly well automated, as components can use any available services or devices

which firstly adhere to the desired interface, and secondly hold the desired attribute

values.

Integration

The issue described above continues to exist within an integrated environment. If

two protocols share this description approach, more care is required to ensure at-

tributes are well understood and known. In a multi protocol environment, where

multiple parties may be involved, the issues of multiple tags for the same concept

73

becomes more difficult to resolve. Not only does there require to be an agreement

between developers within a single protocol as to what terminology to use, there

also requires a cross protocol agreement to adhere to the same terminology.

If this issue is resolved, the integration of the attribute/value approach is straight-

forward. While different protocols may use different service discovery techniques,

the content of the querying messages can traverse protocols. In integrating into an

environment with differing approaches to descriptions, the requirement of an tax-

onomy for adherence becomes more vital. Having a defined set of attributes allows

external protocols to access the descriptive content, and therefore fully participate

in the discovery process.

4.2.3 Description Schemas

Automation in the home can require a great deal of configuration. Some home au-

tomation requires the user to configure the whole network, for example in a X.10

network. Some scenarios can involve a mixture of human and computer configura-

tion, where the user installs the device (and perhaps device drivers) but the device

then configures itself within the network. A third scenario exists where the en-

tire configuration process is handled by the network device itself, such as in UPnP

networks.

In a zero configuration network, every aspect of the configuration is required

to be programmed into the network device. In such an environment a simple at-

tribute/value approach to descriptions is not sufficient, as this approach suffers from

a lack of standards. In a tightly controlled environment, a description schema can

be used to support the self configuration. Such a schema specifies an exact set of

attributes which will be present in the description of a specific device or service. For

example, a Lamp description schema may specify that a description of the device

must have a Location attribute present. For each component, a schema or template

exists. In order to be valid, a description must adhere to the defined schemas.

74

Configuration

The main drawback to description schemas lies in the amount of time and resources

required to develop such schemas. For each new device, a new schema must be

created, and similarly for a new service. As networked components may be developed

by a range of vendors, it may be more efficient for a third party to develop schemas

for the protocol (this is the approach that the UPnP forum have taken). In this

manner vendors can adhere to a common schema, and interoperability in a multi-

vendor environment is possible. This approach however requires the third-party

to create schemas which are relevant to the widest range of vendors, in order to

encourage uptake and adherence to the schemas.

Interaction

Description schemas provide a robust discovery environment. Service users can be

confident that descriptive attributes will be present in the provider descriptions.

Similarly, users can be confident that a particular device will offer a set collection of

services. For example, a description schema for a printer may specify exactly what

services will be offered (such as printDocument, getTonerLevel). In this manner,

the description acts as a soft interface for devices and services.

Discovery within a schema-based network can be said to be fully automated, as

no interaction should be required from the human user. In previous approaches,

users may be required to explicitly create service or device links (between clients

and providers) or resolve syntactical issues. Utilising schemas ensures no unexpected

situations arise at the discovery stage.

Integration

Integrating a schema-based protocol into a network benefits from similar advantages

described in the previous interaction section. A middleware component can easily

extract protocol specific attributes from a schema-driven description. Knowing in

advance what attributes will be present allows the protocol to be adapted into

either a similar schema based framework or an attribute/value framework. Search

75

No Description Attribute/Value Schema
Configuration Simple Medium Heavyweight

Interaction Unautomated Fairly automated Fully Automated
Integration User Intervention Medium Easy

Table 4.1: Table of Comparisons

agents designed to work in a multi-approach environment can be pre-programed with

knowledge about schema attributes from multiple protocols, including identification

of where attributes from different protocols represent (or tag) the same semantic

concept.

4.2.4 Comparison of approaches

Table 4.1 summerises the advantages and disadvantages associated with each ap-

proach. Description schemas offer clear advantages when provisioning for a poten-

tially complex network environment. Having a well structured approach to config-

uration, interaction and integration provides a reliable environment for interoper-

ability. As interaction procedures are well defined, possible outcomes can be known

in advance. Providing a high level of automation also reduces the number of di-

rect interventions by a human user. The heavyweight approach to the description

(configuration) of network components using description schemas can restrict the

usefulness of this approach, in terms of development time, and ensuring the schemas

are well known enough by other protocol users.

This work proposes the use of ontology languages to address the issue of heavy-

weight description approaches. Ontology languages are designed to provide a com-

mon reference vocabulary [43], while being able to unify existing vocabularies [45].

Chapter 5 provides a detailed discussion of ontology languages, and how they can

be used to alleviate issues of multiple terminologies being used within a common

domain. In this manner, this work, described in Chapter 8 allows home networks to

retain the advantages of schema-based protocols, while supporting the configuration

aspect of protocols of all three approaches.

76

Chapter 5

Ontology Languages

An ontology is a data structure which is concerned with describing various aspects of

a domain [47]. The data within the ontology describes concepts within the domain,

and the relationships between them. For example, an ontology about a library

may describe a list of books and for each book, a number of attributes relevant to

them, such as author and publisher. A number of ontology languages exist which

provide a range of capabilities for describing information. This chapter will provide

an overview of the language used in this work, including the foundation languages

used. As a prologue to the ontology discussion, this chapter will first discuss the use

of meta-data within the ontology domain, and its relevance to the discovery process.

5.1 Meta-Data

Ontologies assist search agents in locating relevant information, using typically meta-

data to enhance the discovery process. Meta-data can be defined as data about

data, or attributes of the data. For example, a search agent could search the library

database for all books written by a particular author, and published in a particular

year. In this example, the name of the author and the year of publication would be

considered meta-data.

Without meta-data, searching in any environment would typically be a shallow

process. For example, within common library online catalogues, it is possible to

search for a single book by title. Suppose we wish to find out if the library owns a

77

copy of ‘PC Building for Beginners’. Searching for this book simply involves entering

the title into the relevant field. If the book is not in the library, the search fails.

This simple discovery process, where the search is only dependent on a specific title,

is one dimensional. The search space, which is a collection of possible matches to

the search, is a simple list of titles which may match the desired title.

Suppose that the reason we searched for a particular title is because it was the

only title we knew dealt with PC building. Rather than limit the search to a specific

title, a more robust approach would be to search the library on the subject of the

book. In this example, the search parameter is concerned with the subject of the

book, ‘PC Building’. Searching over the subject of all books within the library

provides a larger search space for the search, and therefore may return a greater list

of relevant books.

Meta-data, such as a book subject, provides a richer search environment, where

the search process can be relevant and robust. If attributes of the library books, such

as book subject, are kept within the catalogue, the search mechanism can provide a

more supportive search.

This environment is in contrast with existing search mechanisms for the internet,

which is largely devoid of well-structured meta-data. Initial approaches to online

searching made use of keywords embedded in webpages, in order to identify their

content. A search engine would utilise these keywords in order to determine the

relevance of the page to the search. It could be argued that keywords are a form of

meta data, as they attempt to convey some meaning about the web document. With

naive keywords, there was no way to determine what attribute is being represented.

For the most part, a keyword identified content, which limited their usefulness to

searches over content. Searches over any other attributes, such as author or product

supplier, required a more descriptive approach.

The keyword approach also suffered from lack of control and verification over the

keywords used in a webpage. For example, if one web page was merely concerned

with receiving the most number of visits, it could embed a number of popular key-

words in order to be returned as a match for a variety of searches. In a less malicious

78

example, an online car sales site could notify that it deals with vehicle sales. Using

keywords, a search for ‘car sales’ would not find the online car sales site as it does

not contain ‘car’ as a keyword.

Due to these issues, simple keyword searches have been largely abandoned in

favour of more sophisticated ranking, indexing and discovery algorithms. These

approaches are still dependent on meta-data being available about web pages and

resources. For this reason, a number of description frameworks for structured meta-

data have emerged.

5.2 The Resource Description Framework

The Resource Description Framework (RDF) [43] was motivated by the need to

structure data on the web. The initial purpose of RDF was the definition of web-

pages through their meta-data (such as author, location, last update) [43]. Defining

the meta-data allows human readable attributes of a webpage to become machine

readable. With a defined framework, searching for relevant webpages could become

more like the searching within a library system. The framework contains three main

elements: resources and properties are used to describe data, and are encapsulated

within a statement to represent facts.

Resource

A resource can be anything which has a Uniform Resource Identifier (URI). A URI

uniquely identifies the resource within its domain. The most simple example of a

resource is a webpage, whose URI would be the Uniform Resource Locator (URL)

of the webpage. This URL uniquely identifies the webpage within the domain of the

Internet, and therefore can act as the URI.

Property

A property describes an attribute of a resource. For example, Author could be a

property denoting the author of a webpage. A property is also a resource, as it needs

a unique reference within its domain. It then follows that a property may also have

79

its own properties.

Statement

An RDF statement consists of a Resource, a Property and a value. A statement

is a triplet of information, expressed in the logical format: (subject, property,

object). The subject is always a Resource, and a property is always a member

of the Property class. The object within a statement may be a literal value or

it may be another resource. An example of a literal value statement would be

(www.cs.stir.ac.uk/˜lsd, Author, ‘Liam Docherty’). An example of a state-

ment with a resource as the object would be (www.cs.stir.ac.uk/˜lsd, Author,

www.lsd.org). Here www.lsd.org could refer to a webpage about the author.

5.2.1 Expanding the Boundaries

The boundaries of RDF have expanded into describing more general resources which

are described on the web, but are not actual web pages. For example, an online music

store offers CDs for sale. Each CD has some meta-data associated, such as price

and artist. Using RDF, this meta-data could also be captured and expressed using

resources, properties and statements. For example, the price of a Queen album could

be expressed in the form (Queen’s Greatest Hits, Price, ‘£9.99’).

At this level, RDF can provide meta-data support for web searches, resembling

our library search example earlier. For example, we could customise a search agent

to find a website which sells ‘Queen’s Greatest Hits’ for £10 or less.

5.2.2 Using Resources

As mentioned, the object of an RDF statement can be a resource. Using the example

of the website, suppose the following statements existed:

• (www.cs.stir.ac.uk/~lsd, Title, "Liam’s Departmental Page")

• (www.cs.stir.ac.uk/~lsd, Author, www.lsd.org)

• (www.lsd.org, Author, "Liam Docherty")

80

• (www.lsd.org, Age, "27")

The second statement contains a resource as its object, and therefore must then

have a URI. As this object is a webpage, the URI is also a URL and can be located

within the Internet. A search agent could be tasked with finding out the age of the

author of www.cs.stir.ac.uk/˜lsd, and by following the URL it would be able to

extract the age from www.lsd.org.

The use of resources on the internet is a useful attribute within RDF, as it allows

information about a particular resource to be defined elsewhere. As demonstrated,

the age of the webpage author is not defined on every webpage, but rather on his

own personal webpage. This mirrors how information is held on the Internet, where

information about particular resources are defined independently from where the

resource is used. For example, Amazon may sell CDs and books, but information

about these items are defined by their publishers, rather than the Amazon website.

In this manner, information needs only to be defined once for each resource, and can

then be displayed in other locations by extracting this information from the original

source. A conceptual diagram of these statements can be found in Figure 5.1.

Using RDF properties

Figure 5.1 highlights an important issue found within RDF. There are two instances

of the Author property, which involve two different resources as the property object.

In one instance, the resource is an object, and in the other, a literal reference. In

each case, the property statement is valid, as there are no restrictions placed on the

property as to what it refers to. This issue is discussed further in Section 5.2.5.

5.2.3 Transporting and Exchanging RDF

Representing RDF data in statements allows the meta-data to be quick to access

and easy to index. In contrast, when storing RDF data in a persistent manner or

exchanging data, statements are an inefficient approach, due to the potential number

of statements. For both storage and exchange, RDF triples can be expressed in an

XML format. An example is given in Figure 5.2.

81

Figure 5.1: RDF Graph about www.stir.ac.uk/ lsd

<rdf:Description about ="www.lsd.org">
<Age>27</Age>
<Author>"Liam Docherty"</Author>

</rdf:Description>

Figure 5.2: Expressing RDF Information in XML

Using XML allows RDF data to be encapsulated in class descriptions. Using the

example in Figure 5.2, all information about www.lsd.org is encapsulated within a

single description element. XML descriptions about classes are limited to a single

instance. That is to say, once a class description is encountered, a user of RDF

can be sure that no other information will be added to the description later in the

document. This point is important, as it streamlines the parsing process. As XML

is a standard data exchange format, users of RDF may utilise a wide range of tools

available for parsing the document. If a user applies a SAX parser to an RDF

document, they can quickly jump to the description of classes they are interested

in, without having to parse the rest of the RDF document. Using XML also allows

the use of namespaces, reducing the amount of text within the document.

The lightweight format imposed by the XML serves to ensure that RDF doc-

uments are well formed. Having a standardised format to represent RDF data

facilitates the exchange of RDF properties between users.

As RDF properties are shared and reused, a standard set of properties will emerge

82

to describe a domain. For example, say Amazon, Play.com, iTunes and Walmart

websites all use the same RDF properties to describe their products. Intelligent

search agents, which can make use of the RDF meta-data, can be developed which

can cover all four websites. If an emerging website also uses these RDF properties

to describe their products, the search agent can then include the new website in its

search domain. In this manner, the most used properties become the standard for

the domain.

5.2.4 RDF/XML

RDF/XML [42] is the syntax designed to facilitate the exchange of RDF between

agents and parties. The syntax requires no DTD, as there are no restrictions on

order, cardinality and existence of elements within the document. As explained

in section 5.2, two of the main elements within RDF are resources and properties.

These elements transfer seamlessly into XML.

Resources in RDF/XML

Using the graph shown in Figure 5.1, we can represent the www.cs.stir.ac.uk/˜lsd

resource as:

<rdf:Description about ="www.cs.stir.ac.uk/~lsd">

The <rdf:Description> tag annotates that this element will describe a resource in

the RDF data. This element can contain an attribute of either ‘rdf:about’ or ‘rdf:ID’,

followed by the name of the resource it is describing. (The difference between these

attributes will be discussed later). After being described, or even just declared

(where there is no immediate description), these resources may be referenced from

anywhere else in the document, provided that the reference occurs after the resource

has been declared.

Properties in RDF/XML

Properties are represented as elements within a <rdf:Description> element. The

RDF statements about www.cs.stir.ac.uk/˜lsd, shown in 5.2.2, could be repre-

83

sented in RDF/XML as:

<rdf:Description ID ="www.cs.stir.ac.uk/~lsd">
<Title>"Liam’s Departmental Page"</Title>
<Author>www.lsd.org</Author>

</rdf:Description>

One important feature this example shows is the use of literals within RDF/XML

descriptions. As previously mentioned, the value of a property can be a literal value,

such as a name, or another resource. This is conveyed within the syntax, with values

of properties which are literal enclosed in single quote marks. Values which are not

literal are objects, and may have been previously defined in the document. As

mentioned, resources need to be declared before they can be referenced. When

translating RDF statements to RDF/XML, the translator may encounter a resource

as a property value. If this is the first time the resource has been encountered, there

will be no pre-existing declaration of the resource. RDF/XML avoids this issue by

allowing resources to be declared within the body of the property element. For

example, suppose www.lsd.org had not yet been declared within the document,

the above XML statements could be rewritten as:

<rdf:Description ID ="www.cs.stir.ac.uk/~lsd">
<Title>"Liam’s Departmental Page"</Title>
<Author>

<rdf:Description ID ="www.lsd.org" />
</Author>

</rdf:Description>

In simple terms, the document reads that the Author of www.cs.stir.ac.uk/˜lsd

is a new resource by the identity of www.lsd.org. Properties in RDF/XML may

occur in any order, and have no constraints on their cardinality. As long as the

properties of a resource are stated within the resource description, the description

will be considered valid.

Declaration and Definition

As mentioned earlier, it is enough for a resource to simply be declared for it to be

referenced. A resource can be declared in one part of the document, and then defined

84

later in the document (or even in a separate document). This allows the syntax to be

robust, with an ability to function if nothing else is known about the resource apart

from that it exists. It also allows for a distributed approach to describing resources,

allowing different documents to describe different aspects about the domain.

Namespace

Using XML allows RDF/XML to leverage namespaces within documents. If prop-

erties or resources are defined external to the document, a fully qualified URI is re-

quired for the document to be parsed correctly (and for the RDF data to be valid). In

situations where an RDF document contains many external references, the vast ma-

jority of the URI text may be identical (for example, if the document makes several

references to single external document). The namespace of the external document is

declared at the start of the RDF/XML document with a local reference name, which

can be substituted throughout the document. For example if our RDF/XML doc-

ument referenced many properties defined at www.cs.stir.ac.uk/˜lsd/descriptions,

the RDF/XML document would contain the following namespace declaration:

rdf:RDF xmlns:lsd="http://www.cs.stir.ac.uk/~lsd/descriptions#"

An application parsing the RDF/XML description would replace the ‘lsd’ names-

pace with http://www.cs.stir.ac.uk/˜lsd/descriptions#. This would allow de-

scriptions to be shortened, for example:

<rdf:RDF xmlns:lsd="http://www.cs.stir.ac.uk/~lsd#"
...>
<rdf:Description ID ="www.cs.stir.ac.uk/~lsd">

<lsd:Title>"Liam’s Departmental Page"</lsd:Title>
<lsd:Author>www.lsd.org</lsd:Author>

</rdf:Description>
...

</rdf>

In a similar manner, we can declare a base namespace for the current document.

This allows us to define a set of terms which are relevant to our document, without

having to provide the full URI for each resource.

85

5.2.5 Issues in RDF

RDF/XML was a successful step forward in providing meta-data within a domain,

due to the simple and light-ruled approach to expressing RDF data. RDF/XML

however was simply a syntax for tagging important values within a domain descrip-

tion document. It allows a meta-data description about a resource to be stated (such

as www.cs.stir.ac.uk/˜lsd), but it does not define what the resource represents.

For example, www.cs.stir.ac.uk/˜lsd is a webpage, but this is not conveyed in

the RDF description.

Similarly, properties are expressed through simple markup tags, and do not

impose any kinds of restrictions on what the value represents. For example, the on-

line CD store may describe the cost of a CD using a ‘Price’ property. One store may

represent this cost as <Price>‘9.00’</Price>, another as <Price>‘£9’</Price>,

and a third as <Price>‘Nine Pounds’</Price>. This potential for ambiguity limits

the usefulness of using RDF/XML across domains, as each party may have a different

intention for a syntactically similar property. These issues were addressed by the

extension of RDF/XML, through the RDF Schema.

5.3 RDF Schema

The RDF Schema (or RDFS) [42] was developed to facilitate the need for extra se-

mantics within RDF descriptions. It was designed to allow richer descriptions of web

resources, and the terms used to describe them. RDFS allows the use of classification

terms, such as ‘instance’ and ‘subclass’, when describing the domain. Leveraging

these logical features, rudimentary inference and reasoning can be performed over

descriptions. The schema brings additional features which allows information to be

embedded into resource and property descriptions.

5.3.1 Resources in RDFS

Resources within RDFS take on logical properties which allow them to be iden-

tified as a given type of resource. Class concepts are introduced to allow re-

sources to be grouped together under a single category of class. For example

86

Figure 5.3: RDFS Relations

www.cs.stir.ac.uk/˜lsd and www.lsd.org could be declared as members of the

Website class. The following elements have been introduced through RDFS for

conveying this feature.

rdfs:Class

All resources are an instance of rdfs:Class. This element represents the root of all

classes. Figure 5.3 displays the relationships between rdfs:Class and the other main

RDFS classes.

rdfs:Resource

As has been discussed, all things described through RDF are resources. All resources

are an instance of rdfs:Class. This means that a resource always belongs to an

instance of a rdfs:Class element, even if it is the root rdfs:Class element.

rdfs:Literal

Properties may have literal values, and RDFS introduces the rdfs:Literal class to

facilitate this. The rdfs:Literal class is an instance and subclass of rdfs:Class. An

87

instance of a rdfs:Literal class is also a subclass of rdfs:Resource.

rdfs:Datatype

This element represents the class all valid RDF datatypes, as specified by the RDF

syntax. A rdfs:Datatype element is a subclass of rdfs:Literal.

5.3.2 Properties in RDFS

The intention of property elements within an RDF description was to convey a re-

lationship between two resources. Semantically, the actual RDF property element

conveyed no real meaning. Conventionally, the type of property used to describe a re-

lationship should convey, in some sense, what the types of of agents are involved. For

example, consider the RDF statement (QueensGreatestHits, hasMusicGenre,

Rock). The property hasMusicGenre would convey that the subject of the prop-

erty is a MusicAlbum, and the object is a member of the MusicGenre class. It could

then be logically determined that QueensGreatestHits is therefore a MusicAl-

bum, and Rock is therefore a MusicGenre.

RDFS allows semantic meaning to be included in resource properties definitions

through the following elements:

rdfs:Property

This element represents a RDF property, and is an instance of rdfs:Class.

rdfs:subClassOf

As mentioned in section 5.3.1, using Class elements allow resources to be grouped

into specific categories. Resources can be defined to be members of a particular class

using the rdfs:subClassOf property. For example, the RDF statement (Queens-

GreatestHits, rdfs:subClassOf, MusicAlbum) defines the resource Queens-

GreatestHits to be a member of the MusicalAlbum class.

Subclass relationships provide logical relationships between resources. For ex-

ample, if A is a subclass of B, and B is a subclass of C, then A is also a subclass

88

of C. The deducing of the relationship between A and C is considered a forward

chaining relationship, where successive relationships provide additional entailments.

In logical terms, the rdfs:subClassOf property is transitive property. If our Website

class was considered a subclass of the Document class, it could be inferred that

www.lsd.org was also a member of the Document class.

In RDFS the subclass property observes the same limitations as the logical sub-

class property. The subclass property is not symmetrical, and so it does not im-

mediately follow on that all MusicalRecording members are also members of the

QueensGreatestHits class.

Property domains and ranges

RDFS introduces terms to convey some semantics about properties. A property

domain represents the class or classes of resources which may be described by the

property. For example, members of the Building class would be viable domain

members of a hasAddress property. A property range describes valid property

values which may be found in the property description. For example, a member

of the PostalAddress class would be a valid value for the hasAddress prop-

erty. To convey these property attributes, RDFS introduces the rdfs:domainand

rdfs:range classes.

rdfs:domain

Suppose the domain of the hasPrice property, shown previously, was of type Mu-

sicAlbum. This could be expressed in RDFS as (hasPrice, rdfs:domain, Musi-

cAlbum). This annotates the property to state that any resource found within the

domain of the property can be considered of type MusicAlbum.

rdfs:range

Following on from the domain of the hasPrice property, the range can be expressed

in a similar manner: (hasPrice, rdfs:range, DecimalPound). Using this prop-

erty, it can be deduced that any resource used as the object of this property can

89

be considered as an instance of the DecimalPound class. Using this property,

the ambiguity of the example described in Section 5.2.5 can be resolved: The valid

representation of CD price would be (CD, hasPrice, 9.00).

rdfs:subPropertyOf

Similar to the rdfs:subClassOf property, rdfs:subPropertyOf is a transitive prop-

erty which denotes relationships between two properties. Consider a new exam-

ple. Theres exists a Person called Peter, and a Country called Spain. Suppose

Peter is on holiday in Spain, then his current location is also Spain. Two prop-

erties have been created to describe these facts, onHoliday and hasLocation.

The relationship between these two properties can be expressed as (onHoliday,

rdfs:subPropertyOf, hasLocation). So if Peter is on holiday in Spain, he is

currently located in Spain. Again this relationship is not symmetrical, just because

he is located in Spain does not mean he is on holiday!

Properties of Properties

As mentioned in Section 5.2, properties are also resources and can therefore have

their own descriptive properties. To express this in another way, we can now ex-

press meta-data about meta-data. Adding meta-data to properties allows additional

logical entailments to be made. For example, suppose a search agent examined the

RDF statement (Peter, onHoliday, Spain). The first entailment which could

be made has been described previously, that Peter is also located in Spain. The

second entailment which can be made is that the resource Spain is an instance of

the Country class.

This may seem a trivial example at first, but given a complex search criteria,

the advantages of RDFS are clear. Suppose a company held a list of where all their

employees were currently located in the world. The company wishes to discover all

employees which are currently located in countries where the climate is classed as

warm. The entailments which can be made from the above statement provide a

great deal of information which the search agent would find useful. Firstly, Peter is

90

in a Country, and may be a match for the search criteria. To check the second part

of the criteria, the agent would require to parse all information about Spain, which

may be in the company list, or may be external. On returning from the information

retrieval, the agent concludes that Spain is a warm country, and returns Peter as

a match for the search.

5.3.3 RDFS Issues

RDFS presents a solid base for describing resources, by embedding simple semantics

into descriptions. Using the syntax, users can provide a structured description of

resources, where properties are defined to eliminate ambiguity, and developers can

convey a level of meaning in their descriptions. In environments where these de-

scriptions are tightly controlled, search agents are able to function by using known

descriptive terms in their search process. RDFS descriptions, however, are still un-

able to provide rich representations or address the issues of ‘syntactically different,

semantically similar’ vocabularies [52]. For example, there is no scope for a search

agent to discover similarities between a MusicCD and a CDMusicAlbum, as

both classes are still described using literal string values. In order for similarities to

be detected and resource classifications to be better represented, a further level of

definition is required.

5.3.4 The Semantic Web

The Semantic Web is a vision for the Internet, where information is well defined and

represented in a logically rich manner [22]. In this vision, search agents can discover

desired data and resources in an intelligent manner, based upon descriptions using

machine-understandable terms and logical rules. Both RDF and RDFS are part

of the Semantic Web vision ([22]). A further language, namely the Web Ontology

Language, is also used to address the logical aspects of the vision, allowing for issues,

such as ‘syntactically different, semantically similar’, to be resolved at the machine

level.

91

5.4 The Web Ontology Language

The Semantic Web is concerned with providing better definition to information

available within the Internet.

In order for agents to ‘understand’ information, the data requires to be described

at a level above that of RDFS. The Web Ontology Language (OWL) [45] has been

developed on top of the RDF/XML format, and leverages all properties of RDFS.

OWL provides additional property information which moves towards being able to

describe a resource in a logical manner, and as such allows machine processing to

perform reasoning and inference upon the data.

Defining the properties of a class, allows for automatic classification based upon

available information. For example, suppose a webpage is classed as a document

which also has a URL. On parsing the description of www.lsd.org, an agent would

identify that the document has a URL (which is www.lsd.org) and as such can be

considered a webpage. This information need not be explicitly stated in the original

description as it can be inferred from the context. In this example, the context is

the classification rule that all documents with URLs are webpages.

5.4.1 OWL Resources

OWL can be used to provide template descriptions of resources, in order to describe

exactly what constitutes a particular resource. For example, a CD Music Album

could be defined as a CD which contains one or more tracks of music. Any CD

resources which contain at least one track of music can therefore be classified as a

CD Music Album.

OWL brings a number of additional expression which can be applied to a re-

source.

owl:equivalentClass

Using our above example of the CD Music Album resource, suppose another party

defined their own resource, Music CD. If these two resources shared the same do-

main space, and both definitions were equal (both were defined as a CD with at least

92

one track of music), then a CD Music Album would be equivalent to a Music CD.

This fact can be expressed in OWL as (CD Music Album, owl:equivalentClass,

Music CD). Any agent encountering an instance of a CD Music Album could

treat the resource as if it were a Music CD. This property is symmetrical, and so

the statement (MusicCD, owl:equivalentClass, CDMusicAlbum) is implied.

owl:disjointWith

Suppose there exists two similar classes, which contained similar properties but

were semantically different. Due to the logical nature of the language, two classes

may be deduced to be similar, due to a lack of information to the contrary. In

such situations, the owl:disjointWith property can be used to explicitly declare two

resources as being logically distinct.

For example, suppose an agent encountered the statement (Car, owl:disjointWith,

Bus). In this case, the description is stating that a Car cannot be a Bus, and vice

versa (the property is also symmetrical). In real world terms a car is likely to be

owned by a person, and a bus owned by a company. This information may be miss-

ing from the ontology, but it is enough for a developer to declare the two classes to

be distinct.

This property can be used to detected inconsistency within descriptions, in sit-

uations where a resource would appear to be both a Car and a Bus.

OWL Individuals - owl:Individual

Within OWL, an Individual is an instance of a class member. For example, Ford

may be an individual of the class CarManufacturer. An individual can be related

through properties to other individuals, but they may not be related to other re-

sources. An instance of a class member can be annotated with owl:Individual, for

example (Ford, owl:Individual, CarManufacturer).

93

owl:sameAs, owl:differentFrom

As owl:equivalentClass can only be applied to resources, owl:sameAs is the prop-

erty for expressing the same relationship between individuals. For example (Ford,

owl:sameAs, FordUSA) states that Ford and FordUSA can be considered the

same individual. In a similar manner owl:differentFrom allows individuals to be de-

clared logically distinct from each other. Both properties are symmetrical, in that if

it is declared (A, owl:sameAs, B), then it can be infered that (B, owl:sameAs,

A). Both properties are also mutually exclusive with each other. It is logically in-

consistant for a description to contain statements (A, owl:sameAs, B) and (A,

owl:differentFrom, B).

5.4.2 OWL Properties

OWL provides a range of new property attributes to enhance descriptions. The key

to machines being able to process, compute and discover new data is by expressing

attributes of resources in the most descriptive manner possible. In this way, all infor-

mation about a given resource may not be explicitly stated, but instead implicitly

inferred from the property attributes. The OWL syntax introduces the following

property attributes.

owl:equivalentProperty

Two properties may share the same intention. For example ownsProperty and

ownsBuilding may both convey the same relationship between a Person and a

Building. In such cases the properties may be annotated to show equivalence:

(ownsProperty, owl:equivalentProperty, ownsBuilding). This property is

symmetrical.

owl:inverseOf

The inverse of a property can be thought of as the reverse relationship between two

classes or concept. For example, hasParent describes a relationship between a child,

which is the subject or domain of the property, and a parent, which is the object or

94

range of the property. The inverse of this relationship is hasChild, which describes

the relationship from the parent point of view (i.e. the parent is the subject and the

child is the object). This can be stated as (hasChild, owl:inverseOf, hasParent).

owl:ObjectProperty

As previously discussed, a property may have a rdfs:Resource or rdfs:Literal element

as its value. In section 5.2 it was also mentioned that a property is also a resource.

OWL contains two classes of properties which are both subclass of rdfs:Property.

The first of these is owl:ObjectProperty. An object property always as another

resource as its value, for example (Lamp, hasLocation, LivingRoom). Liv-

ingRoom is a resource described elsewhere, and can assumed not to be a literal

value. Object properties are declared in a similar fashion to rdfs:Property objects

in RDF/XML: <owl:ObjectProperty rdf:ID=‘hasFriend’/>.

The fact that this property is an object property can assist in consistency

checking and error detection. Agents can assume that if the property is of type

owl:ObjectProperty, that the value of the property is always a resource.

owl:DatatypeProperty

Datatype properties always have a literal value as its value, for example (Lamp,

hasSerialNumber, ‘193F3GF8U’). The property hasSerialNumber always point

to a string representation of a device’s serial number. In this case, hasSerialNum-

ber can be said to be a Datatype property and is expressed in RDF/XML as

<owl:DatatypeProperty rdf:ID=‘hasSerialNumber’/>. Values of Datatype property

objects are never assumed to be concrete resources.

owl:SymmetricProperty

The OWL property attributes described so far are all symmetrical properties. OWL

also allows for explicit declaration of this attribute within a property description.

For example, suppose the property hasFriend describes the relationship between

two Person resources. This property can be said to be symmetrical as if (Peter,

95

hasFriend, Alice) then the inverse is also true, (Alice, hasFriend, Peter). This

property attribute is itself symmetrical. In RDF/XML, this attribute is expressed

in the following manner:

<owl:ObjectProperty rdf:ID="hasFriend">
<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<owl:ObjectProperty/>

This denotes that the property is both an ObjectProperty and a SymmetricProp-

erty. Datatype properties cannot be symmetrical, for obvious reasons.

owl:FunctionalProperty

Functional properties are unique in that the object of the property may only have one

instance of the property. For example, hasMainAddress describes the relationship

between a Person and their main point of residence. A Person may only have one

main residence and so the hasMainAddress property is a functional one. This can

be expressed in RDF/XML as:

<owl:ObjectProperty rdf:ID="hasMainAddress">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>

</owl:ObjectProperty>

Functional properties are ‘one-way’ properties. A Person may have one main

residence, but that residence may be the main residence for many Person objects.

The Person is not unique within the residence, but the residence is unique to the

Person. This is true within the OWL domain, and is taken into consideration

during consistency and error checking.

owl:TransientProperty

Transient properties denote forward changing relationships between resources. For

example, the hasAncestor relationship is a transient property describing relation-

ships between family members. If (Anna, hasAncestor, John) and (John, ha-

sAncestor, Claire) then it follows that (Anna, hasAncestor, Claire). The

96

relationship always points forward, Anna -> John -> Claire. Transient properties

are not intrinsically symmetrical properties (i.e it does not follow that Claire ->

John -> Anna) but if annotated with an inverse property can also be backward

changing too.

xsd datatypes

As discussed in section 5.3.2, RDFS allows the specification of the range and of a

property. This range can be a Class or a Literal. OWL allows further definition in

situations where the value is literal. Rather than specify an abstract class, OWL

allows specifying a particular datatype, mainly corresponding to a built-in XML

Schema datatype. For example, the range of a hasName property would specify

that the value is a String. This can be expressed in RDF/XML as:

<owl:DatatypeProperty rdf:ID="hasName">
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

owl:Ontology

OWL allows ontologies to embed information about the ontology document it-

self, such as version and purpose information (in a human readable format). The

owl:Ontology element is a class defined to contain such information, and is com-

monly found at the beginning of the document. It can be expressed in the following

manner:

<owl:Ontology rdf:about="">
<owl:versionInfo>v2.4 2008/06/13</owl:versionInfo>
<rdfs:comment>A Music CD ontology</rdfs:comment>
...

</owl:Ontology>

Properties contained within the owl:Ontology element are all instances of the

owl:OntologyProperty class. Developers can create their own meta-data header

properties to be contained within this element. An important property which can

be included within the owl:Ontology class is owl:imports which specifies external

97

ontologies which are referenced within the document. This property is discussed

later in section 5.5.1.

5.4.3 OWL Restriction Classes

As mentioned in section 5.4.1, classes can be defined to have particular attributes

associated with them. If a resource displays these properties, it can then be logically

classified as a member of that class. Recall the definition of a CD Music Album.

If a resource is described as being a CD and contains at least one music track, it

can then be classified as a CD Music Album.

OWL provides scope for classification by using restrictions on properties and

their values. For example, suppose the description of a CD contained the statement

(CD, containsMedia, MusicTrack A). For a CD to be classified as a CD Music

Album, there must exist a containsMedia relationship to an instance of a Music-

Track. In this example, the restriction is that any instance of the containsMedia

relationship must point to a MusicTrack resource. If this restriction is satisfied,

then the owner of the description may be classified as a CD Music Album.

OWL expresses these relationships through the following elements:

owl:Restriction

The Restriction class contains information about the kind of restriction on the re-

source. All restrictions are expressed through a Restriction class.

owl:onProperty

This element denotes which property has the restriction placed upon it (e.g. con-

tainsMedia). Two kinds of property restrictions can be placed upon a property.

owl:someValuesFrom

As already specified, for a resource to be considered as a CD Music Album it

must contain at least one music track. The restriction (denoted by owl:onProperty)

is on the containsMedia property. There may be many instances of this property

98

within a resource description, but if at least one instance has a MusicTrack resource

as its value, then the restriction is satisfied. This constraint can be captured using

owl:someValuesFrom. This property denotes the required class which must appear

at least once in the resource description. It can be expressed in RDF/XML as:

<owl:Class rdf:ID="CD_Music_Album">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#containsMedia" />
<owl:someValuesFrom rdf:resource="#MusicTrack" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

In this example, the value of the owl:someValuesFrom property is MusicTrack.

owl:allValuesFrom

As owl:someValuesFrom represents the case where at least one member of a class

must be present, owl:allValuesFrom represents the other end of the spectrum. Using

the owl:allValuesFrom property within a restriction specifies that for all instances

of the restricted property, every value must be of a particular class. For example,

suppose a CD could only be declared to be a CD Music Album if all media

resources on the CD were music tracks. This would mean that if a CD contained

anything other than music, it could not be said to be a CD Music Album. In a

similar manner to owl:someValuesFrom, the owl:allValuesFrom property is expressed

through RDF/XML as:

<owl:Class rdf:ID="CD_Music_Album">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#containsMedia" />
<owl:someValuesFrom rdf:resource="#MusicTrack" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

99

owl:cardinality, owl:minCardinality, owl:maxCardinality

One of the most simple property restrictions found in the logical domain is cardinal-

ity. OWL includes cardinality properties with the syntax for simple restrictions of

properties. Descriptions can specify how many times a property instance may occur

within a description. For example, a family ticket for entrance to an amusement

park specifies that no more than two children can gain entry on the ticket. This

cardinality restriction can be expressed through RDF/XML as:

<owl:Class rdf:ID="FamilyTicket">
...

<owl:Restriction>
<owl:onProperty rdf:resource="#adultEntry"/>
<owl:cardinality rdf:datatype="&xsd;int">2</owl:cardinality>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#childEntry"/>
<owl:maxCardinality rdf:datatype="&xsd;int">2</owl:maxCardinality>

</owl:Restriction>
...

</owl:Class>

In this example, the description specifies that no more than 2 children, and

exactly 2 adults, can be admitted on a family ticket.

5.5 Domain Descriptions

Defining complete domains can be a long and difficult task. Ensuring that all impor-

tant concepts are captured accurately and all domain properties are represented in a

relevant manner can require an iterative approach. Issues can occur when describing

small specific domains or large generic domains. Some issues are particular to the

size of domain being described, while others can appear in any domain. To alleviate

some issues involved when describing domains, OWL allows developers to import

existing ontologies into their domain ontologies. This section will discuss the syntax

used, and highlight the issues which can be alleviated by ontology reuse.

100

5.5.1 Using owl:imports

As mentioned in section 5.4.2, OWL allows for meta-data about the ontology to be

embedded within the document. References to external ontologies reused within the

document are contained within the Ontology element. The owl:imports property is

used to indicated the ontologies required for any machine-based management of the

ontology. A component which is responsible for managing all aspects of ontology

use, such as consistency checking, inference and reasoning, requires all relevant data

to be available. If Ontology A references Ontology B, then the component would

require both Ontology A and B within its domain model. An ontology which reused

elements from the ontology contained at www.lsd.org/ontology would include the

element:

<owl:Ontology rdf:about="">
...
<owl:imports rdf:resource="http://www.lsd.org/ontology"/>

</owl:Ontology>

5.5.2 Describing Small Domains

Describing a small domain may allow those who describe to also develop the search

agents for that domain. In this manner, developers can capture classes and prop-

erties which will be relevant to their purpose. Complete descriptions may not be

required, as the important attributes will be based on a particular viewpoint. For

example, if a developer was to create an ontology to describe a customer list, they

may define a Customer class. It may be enough for this domain that a Customer

class contains only a CustomerNumber, a CustomerName and an Address.

This class is expressed in Figure 5.4.

From a different viewpoint, it may be important to also capture extra attributes

about the Customer, such as CardNumber, SecondAddress and PhoneNum-

ber. In small specific domains, descriptions can be tailored to the purpose of the

agents. Two similar parties can be concerned with the same domain (e.g. Cus-

tomers) but describe the domain differently based upon their intentions. In such

101

<owl:Class rdf:ID="Customer">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#hasAddress"/>
<owl:allValuesFrom rdf:resource="#Address"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasCustomerNumber"/>
<owl:allValuesFrom rdf:resource="#CustomerNumber"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasName"/>
<owl:someValuesFrom rdf:resource="#CustomerName"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

Figure 5.4: Description of a Customer class

situations it may be acceptable for both descriptions to remain logically independent

from each other. The intention of the OWL syntax, however, is to unite domains

which have similar purposes and meaning. In this instance, the second domain,

which requires more detailed information, can reuse the description of Customer

already specified, and then add additional attributes. Suppose our initial ontology

was found at the web location www.lsd.org/customer. An ontology about the sec-

ond customer object, called DetailedCustomer can be described using a mixture

of new and imported terms, shown in Figure 5.5.

This document would be considered syntactically valid as a parser can retrieve

the initial ontology as defined by the owl:imports property. As DetailedCustomer

is defined as being a member of the Customer class (through the rdfs:subClassOf

property), it is subject to the restrictions imposed upon the Customer class, as

well as those specified in DetailedCustomer. An agent designed to search through

Customer objects would now be able to operate in a domain concerning Detailed-

Customer objects, without any need for modification.

Reusing ontologies within small domains allows developers to base their work

102

<rdf:RDF
xmlns:cust="http://www.lsd.org/customer#"
... >

<owl:Ontology rdf:about="">
...
<owl:imports rdf:resource="http://www.lsd.org/customer"/>

</owl:Ontology>

<owl:Class rdf:ID="DetailedCustomer">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#hasEmailAddress"/>
<owl:allValuesFrom rdf:resource="#EmailAddress"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasPhoneNumber"/>
<owl:allValuesFrom rdf:resource="#PhoneNumber"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasSecondAddress"/>
<owl:allValuesFrom rdf:resource="#SecondAddress"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="&cust;Customer"/>

</owl:Class>

Figure 5.5: Description of a DetailedCustomer class

103

upon a common root ontology, and then expand descriptions for their own purpose.

5.5.3 Describing Large Domains

Suppose a developer wishes to define an ontology which is concerned with on-line

media sales. Such a domain may involve concepts such as CDs, DVDs, Books,

Computer Games and downloadable music. To specify such a large ontology may

become difficult, as there can be many concepts and attributes which require to

be accurately and consistently described. There is also issues with determining the

scope of the ontology. For example, is it enough for the ontology just to describe

the media, or should it also describe the website?

Scope

The scope of an ontology can be determined by purpose of the ontology. If the

reason for developing the media ontology is to support our search agent (and enable

other search agents) then the scope is concerned with describing media. If, however,

the purpose is to allow external agents to discover our available media, and enable

indirect purchasing (where third party agents act on behalf of clients), then the

scope may well be concerned with describing our whole environment, including the

webpage, accepted payment types and delivery details.

Ontology arrangement

When developing large scale ontologies, which may have more than a single purpose

(create an internal description catalogue AND allow for indirect purchasing), defin-

ing all information within a single ontology document can be an inefficient approach.

As the amount of information grows, the size of the document grows, which in turn

can increase parsing time. Single files can also suffer from inconsistencies, as one

invalid statement makes the whole document inconsistent.

The solutions to consistency and accuracy issues which were addressed in small

domains can be leveraged in large domains. Rather than have a single large ontology

which describes a large generic domain, we can break the ontology into smaller

104

ontologies. Each ontology would describe a particular subdomain. This approach

can then facilitate ontology reuse, where new information is built upon existing

information.

Suppose we have a Core ontology which describes important concepts within the

overall media domain. This ontology would specify classes such as Author, Title,

Genre, Developer and Price. A new ontology, which is concerned with film media

(DVDs), is then created to deal with aspects of the film domain. In this ontology, a

new class called ‘Film Genre’ is created and declared to be a subclass of the Genre

class in our existing ontology. Subsequent Film Genre classes can then be described,

such as Action, Romance and Comedy. A similar ontology is created which deals

with the Computer Game ontology. This ontology also contains a subclass of Genre,

‘Game Genre’, which then has various subtypes such as Action (which is logically

distinct from Action in the Film ontology), Sports and Strategy. In this manner, as

each ontology is processed and declared consistent, new ontologies can rely on the

information already expressed. The relationship between the ontologies can be seen

in Figure 5.6.

Having all domain information within one document also forces any developers

using the ontology to have all the information in memory. For example, if a developer

was creating ontologies about specific films, they would initially require to have all

ontology information about the Film domain in memory. If this information was

contained within a single ontology document, along with the Game domain, and

Music domain, then a large amount of redundant information would be loaded into

memory unnecessarily. Using the above example, describing a DVD would only

require knowledge of the Film ontology and the Core ontology. All information

about Games, Books and Music is not needed, and is therefore not required to be

loaded into memory. In addition, an online media store may reuse multiple ontologies

describing Games, Books and Music.

105

Figure 5.6: Relationships through Ontology Reuse

5.6 Ontology Conclusion

Logic-based ontologies provide a unique approach to describing domains, and unify-

ing multiple vocabularies (provided they are expressed in the same language). Using

the ontology elements described, developers can create a vocabulary which contains

implicit rules, which can allow reasoning and inference to be performed on the knowl-

edge base. In this manner, environments described by ontology languages provide

better support for search agents, than keyword-based or syntax-based search envi-

ronments. Descriptions can convey a level of meaning through the logical properties

of the language. This characteristic would seem well suited to describing network

domains.

Chapters 6 and 7 discuss existing network-related frameworks and projects which

may be suitable for addressing home network issues. Chapter 6 describes the en-

vironment of web services, while Chapter 7 describes relevant ontology-based work

within the home network domain.

106

Chapter 6

Ontologies Within Web Services

Web services are an existing network domain where ontologies are being applied

in order to promote a more automated and semantically rich approach to both

service descriptions and service usage [102, 20]. This domain has emerged as a

candidate environment for the use of ontology languages. Work from this domain

has motivated the appliance of ontology languages to other domains, such as peer-

to-peer, workplace and home networks.

This chapter will introduce web services, and discuss the aims behind the technol-

ogy. This chapter will then discuss relevant work within the Web Service domain,

and critique existing work on its suitability to other domains, such as the home

network. This chapter will conclude by highlighting the different approaches and

applications of ontologies to achieve a variety of goals.

6.1 Web Services

A web service is a software application which performs a specific function, much like

a service within the home network. Rather than limit the domain of use to a small

network area, a web service can be used by any qualified machine connected to the

internet [103]. A service offered in Edinburgh, Scotland may be used by a client

service in Sydney, Australia.

An example of a web service is a hotel booking service which allows clients to

book a reservation. Typically such a service can be represented by webpage interface.

107

This requires any clients to interact using web forms, which can be difficult to

automate. Rather than require users to explicitly visit a service’s webpage in order

to use the service, a web service publishes a service description which can be used to

remotely interact with the service provider. In a similar manner to common home

networking protocols, web service registries can maintain a repository or directory

of web services. By utilising registries, web services can be combined to provide

complex applications [54]. For example, a price comparison application can provide

information on the best prices for a particular product. This can be achieved by a

main web service aggregating various price lists which are each represented through

a web service. Thus, the price comparison application removes the need for a human

user to perform various quotation requests sequentially.

As clients and providers may be operating on differing platforms, a common

approach to service interaction is required. This protocol will allow service providers

and users to exchange messages understandable to both parties. To satisfy these

goals, the Web Service Description Language was created.

6.1.1 Web Service Description Language

The Web Service Description Language (WSDL) [46] is a XML-based specification

for describing services in order to allow protocol independent interoperation. A

WSDL description defines a service as an abstract set of messages, message types

and actions or functions, which operate on a network endpoint. A WSDL descrip-

tion then binds the abstract descriptions onto a concrete description specific to a

particular implementation or protocol.

In simple terms, the abstract description allows WSDL to define a lightweight

description of the parameters used within the message passing. Parameters may

be a single single element, such as a string, or a combination of elements. For

example, a BookRequest object may involve both an Author and PublicationDate.

The abstract description also includes a representation of a function offered by the

service. For example, a BookLocation function may require a BookRequest object as

input. The concrete part of the description provides a binding between the abstract

108

description, and a protocol specific implementation of the service. Each function

will have a binding onto a network endpoint, which is the point of contact with the

network. A user can retrieve the protocol specific details and interoperate with the

service.

Messages are exchanged between providers and users using the SOAP protocol

described in section 3.2.9

WSDL allows providers to describe how to interact with the service. In order

to allow web clients to discover services, an approach to describing what the service

does is required. To this end, a standardised approach to web service descriptions

and service registries has emerged in the form of Universal Description Discovery

and Integration or UDDI for simplicity.

6.1.2 UDDI

UDDI provides an XML-based directory service for web services. Clients query a

UDDI registry using SOAP (see section 3.2.9) to discover suitable services for use,

and retrieve WSDL descriptions of those services. UDDI was designed to allow

businesses to list their services in a manner which would allow other businesses to

discover and utilise them [33].

UDDI Description

A UDDI description comprises of a mixture of human and machine readable ele-

ments. A description contains 3 main elements:

• White Page: This element contains basic contact information about the ser-

vice. This information may include details about the company offering the

service, and contact details of personnel involved with the service (for such

actions as billing and technical support).

• Yellow Page: This element describes what the service does. This element

contains references to external taxonomies which represent classifications of a

service. A number of taxonomies may be referenced to increase the chances of

the service being discovered.

109

• Green Page: This element contains the operational details of the service,

namely the WSDL description. Interrogating this element allows a client to

make use of the service.

The Yellow Page element is used in the discovery process, notifying the taxon-

omy classifications of which the service adheres to. There is, however, no explicit

relationship between the taxonomy classification and the implementation described

in the Green Page element.

UDDI Nodes

A UDDI node is a server which supports the UDDI specification, and contains a

collection of services. A node may be owned by a single company, providing a

collective storage for UDDI descriptions.

UDDI Registries

A UDDI registry is a collection of one or more UDDI nodes, and acts as a listing of

available web services. Registry users require to know the location of a UDDI registry

before searching the directory. A registry can limit responses depending on the type

of service offered, either private (limited to certain clients) or public (available to

all clients). This lightweight approach to restricted access allows businesses to offer

access to their UDDI registry to the public, while ensuring that critical or sensitive

services listed are unusable.

Discovery

UDDI offers an attribute/value approach to providing meta data about services.

Such meta-data can describe a number of attributes, such as geographical location,

cost-per-use, and reliability. Issues surrounding this approach have been discussed

in Section 4.2.2. UDDI attempts to circumvent these issues by allowing multiple

taxonomy attributes to be cited, increasing the chance of an attribute matching.

Due to the syntax-based matching, there is no scope for expressing the relationship

between attributes. The onus is therefore on the client, as much as on the provider, to

110

submit as many possible representations of a semantic concept. In other words, both

provider and user may be required to submit multiple attributes which represent the

same semantic concept, in the hope of finding a successful match.

The Success of UDDI

The structured approach towards the description of web services offered by UDDI

has led to the specification being integrated into the Web Service Interoperability

standard (WS-I). This standard is defined by the Web Services Interoperability

Organization [100], and is concerned with creating guidelines and testing procedures

for interoperability amongst web services. Work also exists towards providing a

degree of security within UDDI registries, and WSDL descriptions [2].

UDDI is very much suited to tightly controlled environments where a specified

taxonomy for categorisation and attributes is adhered to by all parties. Expanding

this domain to open up UDDI registries to a larger network, such as the internet,

may result in a low uptake due to the open-standard approach towards describing

the what part of a service description [8].

One popular approach to addressing this solution is by describing the what part

of the service using ontology or logical languages [20, 21, 1]. By providing machine-

understandable descriptions, many of the risks associated with wide-domain web

service provision can be addressed [78]. One approach to providing ontology de-

scriptions of web services can be found within OWL-S.

6.2 OWL-S

OWL-S [20] was developed to provide a language for richly describing web ser-

vices. Rather than simply specify some keyword attributes, or syntax-based at-

tribute/value parings, OWL-S provides a schema and vocabulary for describing se-

mantically what a service does. This builds upon the simple approach of specifying

a category of service, by describing how a service carries out its function, and how

the world is affected by its execution.

OWL-S is built upon OWL, as the name implies. This allows the language

111

Figure 6.1: Overview of an OWL-S Description

to inherit the logical properties offered by OWL. OWL-S also includes scope for

describing how a client can interact with a service. This is achieved by fusing OWL-

S elements with WSDL descriptions. An OWL-S service description has three main

parts (depicted in Figure 6.1):

• A ServiceProfile: This element describes what the service does. This element

contains a mixture of human and machine readable information about the

service.

• A ServiceModel: This element describes how the service achieves its purpose.

The ServiceModel describes the processes involved for the service to carry out

its task.

• A ServiceGrounding: This element describes the bindings between OWL-S

elements and WSDL messages. It allows clients to understand how to interact

with the service, based on semantic concepts expressed in the ServiceModel.

6.2.1 The Service Profile

The Service Profile part of an OWL-S description is used for the initial matching

stage within service discovery. The ServiceProfile firstly contains details about the

business or owner of the service. Similar to UDDI, these details can include details

on cost of use, business address, or contact details for support staff. While easily

112

readable from a human perspective, these details are captured within a structured

schema, and can therefore be extracted by a computer agent.

The ServiceProfile then specifies the operational details of the service. In par-

ticular, the inputs, outputs, pre-conditions and post-conditions of the service are

specified. The inputs and outputs of a service are described in OWL, and represent

concrete data-types. For example, a service may require a CreditCardPayment

as an input. The data-types required to constitute a CreditCardPayment are de-

fined later in the service description. Additionally, services users may already know

about the CreditCardPayment concept, and can then search the inputs of available

services for this concept.

The pre-conditions and post-conditions of a service are intended to describe to

a potential service user how the service changes the environment around it. The

definition of the service environment is service dependent. The syntax or language

used to express these conditions is not defined by the OWL-S specification. The

specification is purposely open-ended on these attributes, to allow service providers

to use their own preferred approach. The OWL-S overview suggests the Knowledge

Interchange Format (http://ksl.stanford.edu/knowledge-sharing/kif/) as one option

[20]. The scope for expressing conditions of a service provides an OWL-S description

with the ability to describe what the service does at a new semantic level.

For example, suppose the purpose of a service user was to make a hotel booking

in a specific location. Rather than search over a taxonomy reference, a service user

can search on the post-conditions of a service, or in other words search for a service

which changes the environment in a certain way (‘A hotel room is booked, a credit

card is charged’).

The decision not to specify a specific approach to describing conditions limits the

usefulness of this part of an OWL-S description. With scope for multiple languages

being used, discovery over service conditions may be limited to tightly controlled

domains. In such domains, the languages used for describing conditions would be

agreed in advanced.

The final part to the ServiceProfile contains a list of attributes of the service. The

113

initial attributes classify the service, allowing service providers to refer to external

classification taxonomies. The attribute list also includes scope for describing the

‘quality‘ of the service. The definition of quality is not specified, and may refer to

the reliability or availability of the service. This set of attributes therefore refers to

an external quality-rating taxonomy. The final set of attributes are not specific to a

role, and are decided by the developer or vendor of the service. For example, these

may describe the location of the service, or average response time.

The list of attributes within a Service Profile can be parsed by any interested

service user. This differs in approach from many service discovery approaches. Once

a profile is discovered, all descriptive attributes are exposed to the search agent.

6.2.2 The Service Model

The ServiceModel element of an OWL-S is responsible for describing the process

which the service takes to achieve its purpose. The process is described in terms of

atomic and composite processes. An atomic process is a one-step event which closely

maps to the description of the service given in the ServiceProfile, in terms of inputs,

outputs pre-conditions and post-conditions. A composite process may contain many

steps towards achieving the goal of the service. For example, a hotel booking system

may first require to find an available room, then authenticate the credit card used,

then retrieve payment from the payees account.

The service model describes inputs and outputs used throughout the service in-

vocation, not only between the user and provider, but also between the internal

process within the service. It describes how the outputs from one process are used

within following processes. It also may describe the post-conditions possible if the

service is invoked with some pre-conditions unsatisfied (for example, if a bank ac-

count does not have enough funds to settle a bill). By examining the process model,

service users can understand how the service carries out its function.

114

6.2.3 The Service Grounding

The ServiceGrounding describes the relationships between concepts expressed in

OWL, used in the ServiceProfile and ServiceModel, and elements of the WSDL ser-

vice description. (Recall, WSDL explicitly describes a service in a manner which

allows direct service invocation). OWL concepts specified within the input and out-

puts of the service description are mapped onto WSDL message parts and types. The

service itself is mapped onto a WSDL function description. The WSDL description

then specifies how to invoke the service.

6.2.4 The Feasible Impact of OWL-S

There are two main issues which require attention if OWL-S is to have a serious

impact on web services and other networked domains.

Internal Classes

The first issue which plagues many attempts at providing a standardised framework

for discovery, and one which OWL-S attempts to address, is lack of commonly held

terminologies [7]. Providing an ontology based framework provides some support

for cross-platform or multi-domain discovery. For example, the property hasInput

within an OWL-S service profile is more than just a string tag. This property is

defined as having a OWL-S Profile as the subject, and an Input parameter as the

object. The Input parameter is not a simple string value, and instead is an ontology

class specified elsewhere within the collection of ontologies describing the service. In

this manner, service users can interrogate Input and Output parameters in order to

understand what they represent.

Despite this new layer of semantic description, service users may still find diffi-

culty in understanding Input and Output parameters. Suppose a user of an online

music store wishes to discover all music by a specific artist. The music store offers

a SearchMusicByArtist service which takes an ArtistName Input parameter and re-

turns a MusicCollection Output parameter. The data flow involved in this service

is shown in Figure 6.2.

115

Figure 6.2: The SearchMusicByArtist Service

Input
ArtistName

Known Unknown
FirstName none

SecondName

Output
MusicCollection

Known Unknown
AlbumName StoreRef

Figure 6.3: Service User Knowledge

On further examination of the ArtistName parameter, the service user discovers

that an ArtistName class composes of a FirstName and SecondName elements, both

of which are of type xsd:string. FirstName and SecondName classes are well known

within the domain (perhaps defined in a standardised ontology), and are in turn

known by the service user. This knowledge allows the construction of the service

input. The MusicCollection parameter is defined as a list of MusicAlbum objects.

This class contains an AlbumName element and StoreRef element, as defined within

the service ontologies. AlbumName is a well known class (again, being defined in a

standardised ontology), and is hence understandable to the service user. StoreRef

represents a unique number given to every album which the store provides. This

element is unique also to the online store, and is not necessarily understood by the

service user. The service user may decipher that the element is of type xsd:string,

but not fully grasp what the element semantically represents.

Figure 6.3 shows the classes and knowledge involved in the service invocation

from the service user point of view. Despite not explicitly understanding what

ArtistName represents, it has knowledge of the core elements involved in the class

(FirstName and SecondName). This means it can construct an ArtistName object.

To the service user, AlbumName may simply represent a collection of FirstName

and SecondName elements. It is possible to store this knowledge for future use,

and add this knowledge to its own knowledge base. Disregarding this knowledge,

however, will not hinder the user making future use of the service, as it can simply

116

rediscover the elements of the ArtistName class.

The MusicCollection class poses a problem to the service user. As Figure 6.3

shows, the service user knows about the AlbumName class. It understands what the

class represents, and may be able to separate the class into more basic components

(for example, the class may simply be of type xsd:string). StoreRef contains the

challenge to the service user as it does not know what the class represents. Output

parameters viewed as a whole object may be less important to service users than

the elements of the output object. As the user knows about AlbumName elements,

this may be all that the user requires to carry on its own goals. It may be sufficient

to disregard the StoreRef part of the output.

Suppose to purchase a music album, the service user was required to provide

a StoreRef which corresponds to the desired item. It is at this point that having

partial knowledge of the parameters used in service usage becomes an important

issue. As highlighted by Figure 6.3, it is possible to construct an Input parameter, if

the user has knowledge of the elements which compose that parameter. If knowledge

about any core elements of the parameter are missing, a complete parameter cannot

be formed.

This issue can be addressed by referencing internal classes as little as possible. An

internal class type is an ontology class defined within the OWL-S service ontologies,

which is not fully constructible using external, well known elements. For example,

the MusicCollection Output parameter contained a mix of elements which were

well known (AlbumName) and those specific to the music store (StoreRef). In

such cases, service users need to be programmed to interact with a specific set of

service providers. This is in contrast with the web service philosophy, where services

interact based entirely on open standards, including service invocation, and service

parameters.

This issue is not quickly solved. A major reason for internal classes stems from

a lack of well defined external ontologies or vocabularies. If a term or class does

not exist externally for describing a parameter, the developer is forced to define

their own. It is imperative that for any ontology based description framework to be

117

successful, well defined external taxonomies must exist.

As an aside, this issue can often be found in environments where service interfaces

are used for information exchange [83]. Interfaces must be well known in order for

service users to interact with the service provider. Web service languages provide

support for situations where interfaces are not well known. Languages, such as

WSDL and OWL, are able to represent complex interfaces through simple types. If

the simple components are well known, then a complex class can be created ‘on-the-

fly’.

Pre and Post Conditions

An interesting step forward in approaches to describing services has led to the in-

clusion of pre and post conditions. OWL-S is not alone in integrating these details

into the service description. Other description languages, such as the Semantic Web

Services Framework [21] and the Web Service Modeling Ontology [29], have taken a

similar approach, although specify these conditions in differing ways.

As described in section 6.2.1, OWL-S does not specify how pre and post con-

ditions are stated, leaving the implementation language up to the developer. This

presents two issues. The first issue is concerned with the open-standard environment

web services typically operate in. In a domain where multiple standards may exist

for a single cause (for example, multiple terms describing the same concept), unspec-

ified framework approaches may lead to multiple approaches existing. For example,

as the syntax used for pre and post conditions is not specified, service providers and

service users may use differing syntax. A provider may specify conditions in a syn-

tax which the user does not understand. Similarly, a user may search for a service

using a condition syntax which is unsupported by available service providers. As an

aside, Lin and Arpinar have investigated the use of RDF statements within the pre

and post conditions [63], and found the approach wanting for this very reason. In

this manner, discovery can also involve matching conditions of a service to a user’s

requirements.

The second issue is larger than OWL-S, being a characteristic of OWL itself.

118

AirlineBooking {

void invokeService(CreditCard inputCC, Journey desiredJourney) {

if (validCard(inputCC)) {
makeBooking(desiredJourney) ;

}
else {
showInvalidCardError() ;
}

}

boolean validCard(CreditCard testCC) {

if(testCC.isValid()) {
return true ;

}
else return false ;

}
}

Figure 6.4: Specifying the relationship between class instances

OWL is unable to describe variable concepts, that is concepts which accept their

value from somewhere else. This can be illustrated using an OWL-S example (given

in [20]). Suppose a precondition of a AirlineBooking service is that the CreditCard

submitted as part of the input is valid. From a programming point of view, this

can be expressed by creating a relationship between the CreditCard instance in the

input and the CreditCard instance within the precondition. A skeleton excerpt for

this is shown in Figure 6.4.

As can be seen, the CreditCard instance used to test the precondition is the same

instance used to invoke the service. It is specified that the CreditCard instance used

within the precondition holds the same value as that given in the input.

From an OWL perspective, it is not possible to denote this relationship, as ab-

stract variables are not represented within the OWL syntax [53]. Ontology languages

are designed to express facts about an environment or domain. There is no scope

within OWL for specifying concepts which will be given their value or facts at a later

date. Specific to this example, there is no way in OWL to describe the relationship

between inputCC and testCC. The scope of testCC is only within the conditions

119

part of the description. Similarly, the scope of userCC is only within the inputs

and outputs part of the description. The problem of scope is discussed within the

OWL-S specification, with plans to address it in future revisions.

6.3 Other Ontology-based Web Service Description Ap-

proaches

OWL-S is one example of the increasing interest in the use of ontologies within the

Web Service domain. The expressiveness of ontology languages present a unique

approach to providing a robust, multi-platform and multi-agent environment. The

Semantic Web Service Framework (SWSF) and The Web Service Modeling Ontology

(WSMO) are two further attempts at providing a standardised approach to service

description, discovery, invocation and composition. This section will briefly discuss

these approaches.

6.3.1 SWSF

The Semantic Web Service Framework has been designed to provide a more expres-

sive environment for the describing, discovery and invocation of web services. SWSF

is comprised of two main parts:

• The Semantic Web Services Language (SWSL). This is the language used

within SWSF for describing all aspects of the service domain (although the

language itself is not domain specific). This language also specifies rules which

are used to infer and reason over SWSL concepts. (In comparison with OWL-

S, OWL is the language of the OWL-S approach, in which the basic concepts

are stated, and logical rules are specified)

• The Semantic Web Services Ontology (SWSO). This is the actual specification

of the SWSF framework. The vocabulary is built upon SWSL, developing and

customising terms to describe the many aspects of a web service. SWSO (which

is sometimes referred to as First-Order Logic Ontology for Web Services or

FLOWS) contains rules as to how aspects of a service should be expressed, such

120

as service profile, service conditions, and service invocation instructions. (As

a comparison to OWL-S, the SWSO would mirror the OWL-S specification)

In contrast to OWL-S, which is a Description Logic language, SWSL is a First-

Order Logic (FOL) language. This allows SWSF to provide a more expressive envi-

ronment in which to describe services. For example, a SWSF description can detail

the state of a service during each stage of the service execution, while also providing

information about service exceptions. Rather than rely on external systems to define

logic-based pre and post conditions as in OWL-S, SWSF includes its own approach

to describing service conditions. This allows the entire service description to be

rooted within SWSO, providing a complete approach to Web Service descriptions.

SWSF is partially motivated by the efforts of OWL-S [21]. Similar concepts

to those described within an OWL-S Profile can be found within a SWSF service

description. SWSF also adopts a similar approach to grounding inputs and outputs

of a service to a WSDL service description.

In summary, SWSF aims to provide a more rich and expressive environment over

those offered by OWL-S and other description languages. Having a FOL approach

allows other logic-driven web service languages to be substituted into the SWSF en-

vironment [21], increasing the interoperability of the framework. One main drawback

with SWSF, compared to OWL-S, is that it is a fairly heavyweight based approach,

involving complex ontology specifications and rules. This, however, is unavoidable

if an expressive environment is required.

6.3.2 WSMO

The Web Service Modeling Ontology is an effort towards providing greater support

for web service usage and composition through detailed descriptions of a Web Ser-

vice. WSMO is built upon the Web Service Modeling Language (WSML) which

utilises a similar logic approach as offered by SWSL (see section 6.3.1).

WSMO distinguishes between a Web Service and a Service: A Web Service offers

one or more Services. For example, Amazon.com would be seen as a Web Service,

which offers Services such as ISBN lookup, and online purchasing [1]. WSMO uses

121

this distinction to highlight the exchange of messages between services when a user

invokes a service. One service may use another service embedded within the same

web service, or it may make use of external web services. WSMO describes service

usage information as the Choreography of the service, and service composition as the

Orchestration of services. Description of a service Choreography and Orchestration

is built upon that of Abstract State Machines. In this manner, service interaction

can be described as a series of Event-Condition-Action (ECA) statements. WSMO

allows multiple interfaces to be defined for a single Web Service [1]. Each interface

will have a series of ECAs attached, allowing the complete trace of data passing,

possible exceptions, and expected outcomes for each interface.

WSMO also includes features common to both SWSF and OWL-S, namely

the description of a web service through inputs, outputs, pre and post conditions.

WSMO also describes the assumptions made by a Web Service, and the effects of a

Web Service. These attributes refer to the state of the world before and after service

usage. The definition of world is not limited to the web service domain.

WSMO is concerned with Goals rather than service categories. A Web Service

can allow the full or partial achievement of a Goal. In simple terms, a user will

search for a service which fulfills the user’s goal, rather than search for a specific

category of service. Service composition, or orchestration can be used to satisfy goals

which cannot be fulfilled by a single Web Service. WSMO makes use of mediators

to support the usage of multiple services.

Mediators are used to interpret and provide bridges between differences in ter-

minologies, service invocations and goal descriptions. Mediators can be used to

interact with a number of services to achieve a main goal. Mediators can also be

used to reconcile terminologies from external languages to terminologies described

through WSML. For example, OWL terms can be interpreted into WSML terms.

The WSMO framework does not include implementations of any particular media-

tors, but provides references to those used within the service descriptions. In this

manner, when a client uses a desired service, it can know before hand what mediators

are provided and used by the providing service.

122

In summary, WSMO provides a framework which is capable of providing struc-

tured descriptions of Web Services. This ECA approach to service invocation allows

WSMO to inherit the advantages of abstract state machines, namely having a for-

mally defined process on which users can rely. The move from service categories to

user goals provides a more natural approach to using web services, from a human

user point of view. Service categories can be ignored, so long as a service satisfies a

certain goal. This, however, can lead to issues such as deriving low level goals, from

a high level goal description.

6.4 Web Services Conclusion

Web services have emerged as a catalyst for the development and research into

new ontologies and ontology languages. The web-based approaches to providing

an environment for adhoc service usage would seem appropriate for transference

into the home network domain. Having a common language for description, along

with common protocols for communication, allow the web service domain to provide

distributed computing without the need for heavy configuration on the behalf of the

user.

The approaches in web services also allow for an error-tolerant service environ-

ment. For example, service A is a regular client of service B. Due to node failure,

service B becomes unavailable. Service A does not need to wait for the service to

recover, and can instead search the network for a replacement service using the com-

mon description languages. Service C can then be substituted for service B, without

any changes to the way service A operates.

For these reasons, ontology languages and web-service based approaches have

been applied to home network domains in a variety of projects.

123

Chapter 7

Ontology Related Work

Several network related research projects have been motivated by the emergence of

ontology languages and their use within the web service domain. These projects are

not limited to service descriptions within a single home network, but also involve

peer-to-peer networks [31, 77, 70], context-aware systems [80, 17, 81] and policy

control [41, 32]. This chapter will discuss relevant ontology-based projects which

are either based within the home network, or use approaches which could be applied

to an aspect of the home network. This chapter will also review relevant work

concerned with using ontology languages to create generic vocabularies, which may

be used within the home domain.

7.1 Home Network Ontology Projects

As discussed in section 2.2, the vision of the home network requires devices and ser-

vices to act within an ad hoc environment [51]. In order to reduce the invasiveness

(with respect to the user) of configuration and operation, network components re-

quire to discover and use each other in a robust manner. If a user wishes to complete

a task, the network must attempt to carry out this task to the best of its ability.

Open standard communication protocols and middleware frameworks support the

interaction of network components. Just as in web services, ontology languages

have been applied to the home network to provide a richly described environment

for discovering desirable network components.

124

7.1.1 The Networked Appliance Service Utilisation Framework

The Networked Appliance Service Utilisation Framework (NASUF) is a middleware

framework designed to support service discovery within networked environments,

such as the home network [30, 70]. It is an extensive framework which supports

service discovery and composition, while mediating between service descriptions of

differing vocabularies. Services are described through their inputs, outputs, precon-

ditions and effects (IOPEs). NASUF has a component responsible for managing

service requests, which are submitted in an IOPE format. NASUSF uses ontology

languages to describe services and service requests. In this manner, inference and

reasoning can be performed over descriptions, allowing the framework to resolve

compatibility issues. For example, [30] describes a scenario where a service user

is looking for a service which accepts a Movie as input. In the network, a service

exists which accepts a Film as input. The NASUF is able to resolve this syntactical

difference, allowing the two services to interoperate.

NASUF is a unique approach to home network management. Rather than have

a centralised service registry, NASUF is able to propagate service requests over P2P

networks [31]. This approach allows NASUF to offer the advantages of a decen-

tralised service discovery approach, namely an ability to function in the presence

of component failure. As nodes within the home network can maintain their own

service registry, the failure of one registry does not prevent other components from

functioning. Nodes also maintain a list of composite services which they can offer

to the network. Composite services may use other services external to the node.

Nodes offer composite services to the network as if they hosted the entire service

themselves.

7.1.2 The Gadgetware Architectural Style Ontology

The Gadgetware Architectural Style (GAS) Ontology [18, 19, 17] is an approach

to service and device descriptions. This approach describes artifacts and plugs,

rather than devices and services. This description is grounded within the GAS

Ontology, which not only capture attributes of artifacts and plugs, but also defines

125

how users can interact with these artifacts. The GAS Ontology is broken into two

main ontologies, the GAS Core Ontology (GAS-CO) and the GAS Higher Ontology

(GAS-HO).

The GAS-CO provides the core concepts, relationships and attributes relevant

to the home network environment. These concepts are common to all artifacts

within the domain, as well as providing some core service classification. A service

is represented through an SPlug, and an artifact may contain zero or more SPlugs.

A Synapse describes the relation between two SPlugs, it represents the current

relationship between a service provider and a service user.

The GAS-HO describes instances of artifacts, containing attributes of the arti-

fact, state information and its plugs and current synapse. The GAS-HO also contains

knowledge that the artifact has gained, such as what applications it is involved with

and recently used artifacts. The GAS-HO part of an artifact description can be

dynamic, changeable by usage or environmental changes.

The GAS Ontology is a unique approach to supporting the home network. De-

scribing current transactions (synapse) is a novel idea, providing real time infor-

mation as to the current state of providing and consumer services. However, it is

difficult to visualise how the GAS approach can be integrated into the current state

of the home network. This approach relies on devices being compatible with the

eGadget and eWorld views of the UbiCom world.

7.1.3 Other Home Network Projects

The initial purpose of using ontologies within web services was to allow a more au-

tomated, simplified and richly described environment for service usage, composition

and communication. This idea has been applied to middleware frameworks, allowing

home networks to benefit from similar gains.

The AIDAS middleware, [88], is an approach towards service discovery with dy-

namic environments, such as the Home Network. This approach relies on semantic

matching between user requests and service abilities. Services are described in terms

of identification, capabilities and requirements. The these service profiles are cap-

126

tured using OWL, and are stored within a Discovery Manager component within

the mainframe. User profiles are also represented in terms of identification, capabil-

ities and requirements. On joining the AIDAS framework, the Discovery Manager

semantically matches services which conform to the capability and requirement re-

strictions of the user. This allows the AIDAS middleware to appeal to a wide range

of ‘users’ which may only speak one language, or have limited computational and

storage resources.

OSGi is used in a number of home network projects to support cross platform

communication, and information management. Some research projects have en-

hanced the OSGi platform with ontology-based approaches. de Vergara et al. [26]

propose an approach which attempts to automate the service discovery process

within the OSGi framework. Services and OSGi bundles are described through

OWL, and rules are specified which allows the automated updating of a service reg-

istry. The user’s view of the registry is customised, depending on the user’s profile,

and availability of the service.

The SOCAM architecture, [48], is a project while takes a more natural approach

to service discovery. The architecture is built upon OSGi, and leverages OWL in

describing context information in the home. The SOCAM architecture maintains a

registry of available services which can be queried by other services. Clients within

the SOCAM architecture query about the information they want, rather than for a

particular service which provides it. For example, rather than find a service which

provides location tracking, a service user would query over the location of a particular

person. The registry then returns a service which can provide this information. The

SOCAM approach is currently aimed at building context-aware systems, discussed in

Section 7.2, rather than supporting home networks. However, the semantic reasoning

behind the querying approach is certainly noteworthy, and would be a next step

toward discovery over information rather than service categories and interfaces.

127

7.1.4 Service Discovery within Home Networks

In the projects discussed so far within this chapter, discovery within the network

can be separated into two distinct approaches.

• User Centric: When a device controlled by a human joins the network, all

available services are exposed.

• IOPE Centric: Following the same approach as web services, the main part of

discovery is performed over the inputs and outputs of a service, based upon

client requirements. Only relevant services are then exposed.

User Centric Approaches

User centric approaches, such as those by Toninelli [88] and de Vergara [26], typically

assume that the user is best supported by having a complete list of available services

displayed to them. This approach is in stark contrast to the typical approach in

home networks (described in Section 4), where a registry is maintained, but available

services are discovered by user requests and queries. Rather than take an active role

in the service discovery process, user centric approaches are passive - the service

registry is openly viewable. It is comparable to a service within the home network

submitting a query to discover all services within the network. This query would

then be continually submitted to ensure the returned list was up to date at all times.

A user centric approach is useful in networks where the human user wishes a great

deal of control over their network. Having a complete list of usable services removes

the need for any further querying. This is a powerful advantage of this approach. No

interpretation between human-readable and machine-usable querying vocabulary is

needed, and the user can have an accurate view of the whole network at all times

(assuming the list automatically updated). Human users can also determine services

of identical categories, despite potentially being described differently. This issue was

previously discussed in Section 2.3.

A user centric approach can make service-to-service interoperability difficult. In

the absence of a defined querying language or interface, services must maintain their

128

own list of network services. This may take place as a new device or service joins

the network, where a notification message may be broadcast (as with UPnP). In the

absence of a structured central registry, network services must rely on other services

being aware of their environment and continually broadcasting their existence. While

this approach is well suited to providing a great deal of control to a human user, it

may not be suitable for automated service usage and composition [88].

IOPE Centric

Performing service discovery over the inputs, outputs, preconditions and effects

(IOPE) of a service is an approach adopted from web services (see Chapter 6).

As web service-like descriptions are applied to the home network, [18, 19, 30, 70],

the service discover methods follow a similar approach. For example, ‘Find me a

service which is of type X and accepts Y as input’. As discussed in Section 6.2.4,

discovery using the pre and post conditions of a service is difficult and complex [97].

IOPE centric approaches therefore tend to concentrate on the input and output

parts of a service description.

7.2 Context Aware Systems

Many forms of information can be labeled as context information. For example the

current time of day, or outside temperature are examples of basic context informa-

tion. User location and current activity are examples of more relevant and higher

level context information. At an abstract level, context information can be any in-

formation which is not available from within the system. This information describes

attributes external to the network.

High levels of context information can be gained from lower levels. For example,

if John is currently in ‘Meeting Room A’, and the room has 3 occupants, it can be

inferred that John is currently in a meeting. Notice that it is inferred that John is

in a meeting, and not simply that John is in a meeting. Ontology languages can be

used to derive high level context information from low level information.

For example, consider the ontology class described in Figure 7.1. An Occupied-

129

<owl:Class rdf:about="#OccupiedRoom">
<rdfs:subClassOf rdf:resource="#Room"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasOccupant"/>
<owl:onClass rdf:resource="#Person"/>
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

3
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Figure 7.1: OWL representation of an OccupiedRoom

Room is specified as a room with 3 or more occupants.

Suppose, through various means, an employee’s location can be derived by the

office system. The real-time description of the office meeting room may be that

shown in Figure 7.2. As the meeting room has 3 occupants, the reasoning system

can infer that the room is occupied. John’s location shows that he is in the meeting

room. In turn the meeting room is occupied, and so we can infer that John is in a

meeting.

In this manner, some research projects have concentrated on describing con-

text information through ontology languages. This allows them to derive high level

contexts by inference. Wang et al.[98, 99] discuss scenarios where the availability

of a user is derived from context information such as current activity and location.

This derivative is specified through rules concerning ontology information. The Gaia

project [16, 80] moves beyond simple rule-based inference, exploring the use of prob-

ability, fuzzy logic and Bayesian networks in order to derive context information.

The use of context information within a home network allows a more personalised

system [28]. Allowing the user to customise the behaviour of the system based on

information, such as location or current activity, would only help in integrating

home networks into daily life. For example, a HouseLight monitoring system could

manage room lights, switching off those in rooms where no users are present. This

service, in turn, could then be a component of an EnergySaver service. In a similar

manner, service invocation could be time-driven. A MorningRoutine service could

130

<owl:Class rdf:about="#MeetingRoom">
...
<owl:Restriction>

<owl:onProperty rdf:resource="#hasOccupant"/>
<owl:someValuesFrom rdf:resource="#Paul"/>

</owl:Restriction>
...
<owl:Restriction>

<owl:onProperty rdf:resource="#hasOccupant"/>
<owl:someValuesFrom rdf:resource="#David"/>

</owl:Restriction>
...
<owl:Restriction>

<owl:onProperty rdf:resource="#hasOccupant"/>
<owl:someValuesFrom rdf:resource="#Simon"/>

</owl:Restriction>
...
<rdfs:subClassOf rdf:resource="#Room"/>

</owl:Class>

Figure 7.2: OWL representation of the MeetingRoom

switch on the heating at 7am, and then switch on the coffee machine at 8am, while

displaying the latest news headlines on a display which is in the same location as

the user.

A context-aware home network is certainly an attractive prospect. A typical

home network may contain a number of simple devices and services from which

context information can be gained, such as IR sensors, chair occupancy sensors, on-

line calenders and television recording schedules [9]. From such raw data sources,

information about availability, current activity and location could be derived.

Projects exist where developers have integrated context-aware applications into

a home care environment, for example the Amigo project [39] and Construct. Con-

struct [23] is a middleware platform which supports context gathering in home care

networks, and represents the data through RDF. This augments the support avail-

able from the home care network, where service invocation can be heavily trigger

based. (E.g. If the user is watching TV, and it is after 12pm, present the current

time vocally every 10 minutes).

Representing context information through ontology languages allows the use of

131

the information to be independent from how it is represented [59]. This prevents

issues of standard lock-in where only specific applications can understand what the

information means. Using ontology languages also allows the context information

to be disseminated back into more basic data. For example, suppose John is cur-

rently engaged in a BoardMeeting activity. In addition to first inferring that John

is unavailable, an agent can then check the definition of BoardMeeting, perhaps dis-

covering who comprises as the Board, and then inferring that these people are also

unavailable.

The success of ontology-based context aware systems depends on the ontologies

being tightly controlled and well defined. The use of ontologies is more suited to

small, local domains, than that of an all-encompassing standard. The reason for

this restriction is that definitions of high level context information, such as activity,

availability and preference can be closely related to the particular domain in which

they are being used. One view of a person’s unavailability may be different to that

of another. Having an ontology particular to a small domain allows developers to

ensure it is strongly suitable for that particular domain. Using a universal approach

may require heavy customisation of the ontologies in order for them to be correct.

7.3 Upper Ontologies

An upper ontology is a an ontology which describes concepts which remain the same

across multiple domains [37]. These concepts are general enough that their meaning,

or what they represent, is not dependent on the context or domain in which they

are used.

For example, it could be argued that a Person concept is general enough to be

applicable to many domains without having to change the definition. A Person

within the home domain would be the same Person within the work domain. This

Person concept would remain unchanged if moving from a location-based domain to

a more natural domain such as a legal or family domain. The Person concept would

be relevant to all domains. (This does not mean all attributes of the Person concept

are relevant to all domains, but that the definition of the Person concept is true in

132

all domains).

Upper ontologies are useful for building large scale ontologies [37, 4]. The upper

ontologies can be used as foundations for future development. The use of a third-

party ontology as a foundation increases the chance of agents, who use one set of

ontologies, being able to act in an environment described using another set [4].

When encountering an unknown concept or term, an agent may be able to reduce

the concept into terms found within the third party ontology. If successful, the

agent can then act on lower-level information, perhaps reconstructing the terms into

concepts found within its own ontologies. (Other advantages of reusing ontology

terms has been previously discussed in sections 5.5.2 and 5.5.3).

In simple terms, upper ontologies are a standardised set of ontologies designed to

provide a common foundation for applications or further ontologies across a range of

domains. This section will review the process involved in creating an upper ontology,

and discuss existing upper ontologies used within the research domain.

7.3.1 Developing and Using Upper Ontologies

In creating an upper ontology, concepts, properties and rules are created and devel-

oped. These concepts may be simply stated entities, such as those in a taxonomy,

or may have meaning defined through properties and rules. As already mentioned,

upper ontologies may be wide ranging, but are rarely constrained to a particular

domain. Upper ontologies may consist of a number of domain specific ontologies in

order to be as inclusive as possible.

Developers can create their own ontologies using terms defined within an upper

ontology [27]. At this stage, developers may tailor their ontology to a specific domain

without invalidating the purpose of an upper ontology. This is because ontologies

built upon an upper ontology will share a common definition of terms. A reasoner

application, which can understand the ontology data and infer new information,

can utilise the new domain specific information. The reasoner application can then

draw conclusions based upon both the protocol specific ontology and the upper

ontology data. Conclusions may be the result of a user query, or the adding of new

133

Figure 7.3: Customising an Upper Ontology for Use

information.

A number of upper ontologies have emerged within the research domain. Some

have been developed for a specific purpose, while others are concerned with providing

a consistent and structured approach to describing elements in multiple domains.

7.3.2 Cyc and OpenCyc

The Cyc project began in 1984, with the aim of developing an extensive set of

ontologies capable of supporting artificial life [55, 84]. One main project aim is to

support reasoning and recognition over natural language data. Using an example

given by [55], the following sentences can cause problems for artificial intelligence

agents:

• Fred saw the plane flying over Zurich.

• Fred saw the mountains flying over Zurich.

The Cyc project expresses information through CycL, a first-order logic lan-

guage designed specifically for the project. Using CycL, facts about objects can be

expressed, which can then be used to solve syntactic ambiguities like that shown

above. Planes, of course, can fly, while mountains cannot. These facts can be known

by a Cyc agent, and in turn the meaning of the sentences can be derived. In the

first case, Fred is looking up at a plane. In the second case, Fred must be in a plane

134

looking down over the mountains (while on his way to Zurich!). Understanding the

sentence allows new information to be gained.

At present, the Cyc knowledge base contains 300,000 concepts, and nearly 3

million assertions. The Cyc project provides a reduced set of concepts through

OpenCyc, which is an open-source version of the Cyc knowledge base. There exists

an open-source version of the Cyc ontology, named OpenCyc. OpenCyc has also

been translated from CycL into OWL, and contains a set of permanent end-points

representing various concepts within the ontology [56]. Despite being an reduced

version of the full Cyc knowledge base, OpenCyc still contains a substantial amount

of information [57].

7.3.3 The Suggested Upper Merged Ontology (SUMO)

The Suggested Upper Merged Ontology is another movement towards creating an

upper ontology to support multiple domains and applications [73]. It is written in a

first-order logic language called SUO-KIF and is controlled by the IEEE, although

SUMO is in fact open source. SUMO is a collection of ontologies from various

general and specific domains, such as Economy, Geography and Government. It

can also supply information from external sources, such as Wikipedia [79]. It boasts

20,000 terms (concepts) and 70,000 axonims (relationships). A translation of SUMO

from SUO-KIF into OWL is also available [79]. SUMO, like Cyc, is concerned with

expressing information in a structured way, so as to allow artificial intelligence to act

on the facts, and inferences present within the knowledge base. SUMO is also well

grounded within the WordNet lexicon, which is a large database of English terms,

relationships and meanings designed to support artificial understanding of words.

7.3.4 DOLCE

DOLCE stands for a Descriptive Ontology for Linguistic and Cognitive Engineer-

ing. It is heavily engineered towards assisting machines in understanding the human

language [75]. In this manner, as machines understand the language, they are able

to identify subjects (such as a Person), actions and able to predict consequences

135

Figure 7.4: Boundaries Between Protocols

of existing facts and statements. The DOLCE project is also involve in integrat-

ing WordNet into the DOLCE ontology (through the OntoWordNet project [75]).

Rather than developing ontologies for a specific domain, DOLCE its aimed at defin-

ing what words mean within the general human language. These terms can then

be carried into specific domains, as developers can be confident that the terms are

both correct, and well defined.

7.4 Comment on Existing Approaches

As has been shown throughout this Chapter and Chapter 6, a large amount of

effort and progress has been made toward providing seamless interoperation between

networked components. Communication protocols, such as SOAP and WSDL, are

being applied in web service environments (discussed in sections 6.2 and 6.3.1) to

assist in the communication between heterogeneous components. UPnP follows a

similar approach toward home network communication (see section 3.2). These

protocols abstract the data being passed from the platforms or protocols of the

components conversing. This abstraction blurs the distinction between protocols at

the communication layer. In other words, providers and consumers see no differences

between each other while communicating. A provider may be operating on protocol

A, while a consumer may be operating on protocol B. Figure 7.4 represents this

situation. There is a logical distinction between these protocols because of the

communication protocols they each use.

If both parties use an abstracted communication protocol, then the provider has

no need to know that the consumer is operating on a completely different protocol.

Figure 7.5 shows two components sharing a communication protocol. The left hand

component has no reason to believe the right hand component is executing on a

136

Figure 7.5: Common Communication Protocol

different protocol than itself. At the communication level, both components are

seen to be sharing the same protocol.

Description approaches such as UDDI, OWL-S and SWSF allow services to de-

scribe themselves in an manner independent of their operating protocol. As has been

discussed in Section 7.1, projects exist which aim to achieve the same abstraction.

The view that a web-service type approach can be applied to the home network to

achieve the same aims may be a little naive. As thoroughly discussed in Chapter

3, several mature protocols already exist within the home network domain. These

protocols already contain their own approaches for description and communication.

In order to conform with an approach such as NASUF or GAS, entire protocols

would require to be re-engineered. Only once a protocol conforms to a description

approach, can it be said to abstract from its own executional protocol.

This issue is partially solved by middleware (see section 3.8). Middleware can

facilitate the exchange of protocol specific messages between network components.

As already discussed, this can performed through drivers. Drivers are responsible

for translating protocol specific messages. These messages may be translated into

a format abstracted from any protocol, like that of web services. These messages

may also be translated directly into another format designed for a specific protocol.

Using middleware drivers removes the need for existing protocols to be altered to

comply with a specific communication approach.

Figure 7.5 depicts the interaction between protocol drivers. Messages are trans-

lated into a common format shared by both drivers, which can then be reconstructed

into a protocol specific format at the receiving end. Two important items must exist

for this communication to take place:

137

• A driver, to do translation on behalf of a protocol domain

• A common message format, to allow information to be shared between protocol

domains

It should also be mentioned that the common message format must be relevant

to all forms of protocol specific messaging. What this means is that it is not enough

to simply come up with a simple messaging format. The format must be able to

encapsulate the kinds of data which would normally be passed between components

sharing the same protocol. This is also true within the web service domain, where

SOAP allows the exchange of multiple types of messages.

It becomes clear that to bring an ontology based approach toward describing net-

work components into the home network, a similar approach is required. The aim

of this work is to provide exactly this approach. A common description frame-

work has been created which allows services and devices to be described in an

protocol-independent manner. This framework captures relevant concepts in or-

der to encapsulate the many types of approaches and vocabularies used by home

network protocols. The framework is expansive enough to handle the description ap-

proaches described in section 4.1, while also having scope to retain protocol-relevant

attributes.

At the same time, this work describes a system architecture designed to support

the description framework within home network environments. The architecture

allows existing and emerging protocols to participate in an ontology-driven discovery

process, without the need to conform to the framework or vocabulary. This work also

provides an implementation of this middleware framework, complete with protocol

drivers. This framework is designed to provide a protocol-free way of discovering

services and devices in the home, mimicking the web service approach to describing

network components.

138

Chapter 8

Approach

This chapter will describe the approach taken toward specifying an ontology based

description vocabulary. This chapter will discuss the purpose and scope of the

vocabulary, followed by the methods taken to specify the terminology. An insight

into the reasons for the methods used will also given.

The following Chapter will discuss a system architecture and implementation to

support this approach within a home network environment. Chapter 9 demonstrates

how this approach can support cross-protocol component description and discovery

within existing environments, and be extended for future networks.

8.1 Purpose and Scope of the Approach

This work is unique in its aims and approach. Rather than simply creating a new,

independent description framework, this work is designed to leverage and incorpo-

rate existing description approaches and vocabularies. This work is designed to be

compatible with existing protocols, working in tandem with middleware frameworks

to support service and device users. This work allows home network services and

devices to be described independently from the description mechanisms imposed

by their protocols. In addition, this work is able to be applied in existing home

network environments, as well as being extensive and scalable to adapt to future

developments. The aim of this work is to allow clients to discover desired compo-

nents without the need to understand protocol specific vocabularies and discovery

139

mechanisms.

This approach is independent of any specific discovery approach, from those

described in Sections 4.2 and 7.1.4. There is no intent in this approach to describe

interaction details of network components. Middleware already provides support

for interactions between multi-protocol domains. Without the need to specify how

services should interact, this work can be applied over multiple domains quickly,

removing the need to cross over between the protocol description and interoperation

boundaries.

This approach allows a generic vocabulary for describing home network protocols,

devices and services. Having a common vocabulary provides a focal point, a single

set of terms for discovering desired components. Currently, clients using middleware

require to know the protocol specific terminology to discover suitable components.

The discovery process for each protocol within the network may differ, and so a new

discovery process may need to be constructed for each home networking protocol.

This work simplifies this process, removing the requirement from the client to know

about every possible home networking protocol. Clients need only construct a single

discovery process, using the terms from the generic vocabulary, to discover available

network components, regardless of protocol. The second part of this chapter will

discuss how the implemented middleware framework federates this single process

into a discovery program over all available.

This work shall demonstrate how the use of OWL allows for semantically rich

component descriptions, which in turn provides a logical framework in which to

perform discovery. These descriptions increase the scope of a standard discovery

process, while reducing the complexity needed of a network client to participate. To

this end, this chapter will highlight how, by using ontologies and middleware, a rich

description framework can be applied to the home network environment, without

the need to restrict the protocols used.

140

Figure 8.1: The Base Level of the Stack

8.2 Approach Method

Section 5.5.1 introduced the ability of an OWL ontology to import the knowledge of

external ontologies. Sections 5.5.2 and 5.5.3 discuss ontology reuse within different

domain sizes. Ontology importing and reuse provides a structured approach toward

defining a vocabulary. The vocabulary described in this work is built in a stack-like

manner where ontologies below define information used by those ontologies above.

In this stack, upper levels reuse information provided by lower level sources. This

allows the generic vocabulary to be grounded in classes and attributes described in

low level ontologies.

This stack has been named the Home Network Ontology Stack (HNOS). It has

been designed to be scalable and expansive, allowing the vocabulary to be expanded

in the future as the home network domain expands, as new protocols emerge and

as new services and devices are developed. The ontology stack contains four main

ontology layers:

• The Base Layer, described in Section 8.2.1

• The Core Layer, described in Section 8.2.2

• The Generic Layer, described in Section 8.2.3

• The Protocol Layer, described in Section 8.2.4

The base ontology layer contains a single ontology. The other levels of the stack

are comprised of a collection of ontologies. Each level of the stack has a distinct

purpose in supporting the description framework.

8.2.1 The Base Layer

The base level of the stack (shown in Figure 8.1) provides a foundation for the

vocabulary. This ontology is responsible for stating relevant concepts in the home

141

<owl:Class rdf:ID="Location"/>
<owl:Class rdf:ID="Component"/>
<owl:Class rdf:ID="Service"/>
<owl:Class rdf:ID="Protocol"/>
<owl:Class rdf:ID="User"/>
<owl:Class rdf:ID="Software_Module"/>
<owl:Class rdf:ID="Security"/>
<owl:Class rdf:ID="Device"/>
<owl:Class rdf:ID="Context_Variable"/>
<owl:Class rdf:ID="Vendor"/>

Figure 8.2: The Base Ontology

network domain. These concepts are given no meaning or definition, and are simply

stated in order to exist. This level of the ontology stack is not unlike the upper

ontologies described in section 7.3. The purpose of the base layer is to contain a

collection of terms which can be reused by ontologies tailored to a specific domain.

No assumptions are made as to how the concepts will be used by other ontologies,

even though the ontology is designed for the home network domain.

Figure 8.2 displays the ontology information within the base layer. Each concept

has some relationship to the home network domain. Each concept also has a semantic

intention or meaning behind it, but is not expressed in this layer. By itself, this

ontology simply contains string values, each concept differing from the next simply

by the arrangement of characters.

Relating Base Concepts

Ontology based home network projects, such as those described in section 7.1.4,

typically define a set of ontologies to support their approach. These documents

exist independently of other ontologies which exist for similar purposes. Despite the

use of ontologies, search agents can still be restricted by the issue of semantically

similar, but syntactically different description vocabularies (introduced in Section

1.1). Advantages can be gained by developing ontologies in acknowledgment of

existing vocabularies. This work attempts to acknowledge the work done by other

ontology developers, specifically those who have developed upper ontologies.

Having a set of core concepts which are simple and undefined, allow relations

142

to be formed with other upper ontology concepts. By using the owl:equivalentTo

property, owl concepts from one ontology can be declared identical to those in others

(as described in Section 5.4.1). By this method, the core layer of the ontology can

be unified with other upper ontologies.

Using Base Concepts

As already mentioned, the base layer is designed to provide a simple, small set

of terms to use as an anchor into the domain vocabulary. Without any kind of

definition, these concepts offer little advantage over simple RDF data, or a keyword

approach. Each concept represents an important domain within the home network

environment, but in themselves do not provide a satisfactory vocabulary to start

describing home network components. The second layer of the stack is charged with

expanding the vocabulary for this purpose.

The base concepts are intended to represent the most abstract level of semantic

classes within the home network domain. These classes have been captured through

observations of existing description approaches. These approaches include those

described in home network protocols, such as UPnP, HAVi and Jini, and the web

service description languages, such as OWL-S and UDDI. A critique of this approach

is given in Chapter 12.

8.2.2 The Core Layer

The core level of the stack (Figure 8.3) contains the main descriptive elements of the

framework. In this layer, domain vocabularies concerning the base concepts stated

earlier are giving meaning. In the scope of this work, to give a concept meaning

is to provide descriptive attributes which can logically distinguish the concept from

others. The core layer contains a number of ontologies, one for each of the concepts

contained within the base layer. In this manner, each ontology can be developed

independently of others within the layer. This characteristic is important for the

vocabulary to be extensive and robust, and shall be highlighted later in this section.

Each ontology within this layer has been developed to provide descriptive at-

143

Figure 8.3: The Core Level of the Stack

tributes and new classes relative to the domain of the base concept. For example,

the Device ontology contains descriptive attributes which can be applied to the de-

vice concept, such as offersService, hasLocation and hasDeviceCategory. The

Device ontology also contains a parent concept, DeviceCategory. A DeviceCat-

egory represents the purpose of the device. For example, Speaker, hasDevice-

Category, Audio denotes that a Speaker concept can be classified as a device is

categorised as an Audio device. The Device ontology therefore defines many classes

of DeviceCategory which can be used to represent the classification of a device.

More Than A Taxonomy

A taxonomy is a classification of particular domain. Within a taxonomy, classes

share relationships between each other, such as parent-child relationships. For ex-

ample, a taxonomy can contain the fact that a Car is a subtype of Vehicle. At

first, it would seem that the core layer of the stack is merely a taxonomy for the

particular domain, but this is not so. As stated earlier, the core layer can be used

to give meaning to classes. For example, when a member of the Speaker class is

encountered, it contains attributes which denote it as being a Speaker. There is

meta-data available to denote why it is a member of the Speaker class, rather than

it simply just being a member of the class. If a device is a member of the Speaker

class, this means it also hasDeviceCategory: Audio

Having Separate Ontologies

One of the main assumptions of this work is that there can be no complete ontology

or set of ontologies which accurately capture every relevant aspect of the home net-

work domain. To this end, taking an isolationist view toward ontology development

144

protects the stack approach against situations where disagreements arise to the con-

tents of a domain ontology. Section 5.5.3 discusses issues associated with developing

large ontologies to cover a number of domains. Separating ontologies into specific

domains provides a structured approach to ontology development. If a developer or

user disagrees with assumptions or definitions made within one ontology, there is no

need to disregard all other ontologies within the core layer.

Suppose a developer already has an ontology which describes locations within

the home. Rather than program their search agent to work with a new definitions

of location related concepts, they can simply substitute the location ontology within

the stack with their own. When the developer now begins to create component de-

scriptions, they can use a mix of terminology from both the stack inbuilt vocabulary

and their own location ontology.

As all information concerned within the core ontologies is either self contained,

or references concepts within the base ontology, there is no conflict or invalidation of

the other ontologies within the core level. The developer merely requires to provide

a relationship between their own base location concept and that within the base

ontology. The logical properties of OWL allow for search mechanisms to bridge this

combination of ontologies.

For example, suppose the developer’s base location concept has the URI ext:Room,

this can be declared equivalent to the Location concept within the Base ontology

through the owl property (ext:Room, owl:equivalentTo, lsd:Location). The

Device ontology contains the property hasLocation, which is defined in the ontology

by (hasLocation, rdfs:range, lsd:Location). Through the equivalence property,

hasLocation has an implied definition (hasLocation, rdfs:range, ext:Room)

which can be inferred through parsing the OWL description. Suppose ext:Room

contains a subclass ext:LivingRoom. Through the replacement of the Location on-

tology, but the use of the other ontologies in the core layer, the following description

would be valid: (Speaker, hasLocation, ext:LivingRoom).

This example highlights the advantages gained by separating domain ontologies.

This approach increases the usability of the stack vocabulary, reducing the chance

145

of a developer requiring to create their own home network ontology. This layer of

the stack is not intended to be complete. New classes of devices and services may

emerge, along with new representations of the other base concepts. For example,

it is unfeasible to believe every class of Context Variable can be captured within a

single ontology, as this concept can be largely thought of as context dependent.

Abstracting from the Ontology

This core level is like a collection of dictionaries. Each dictionary is concerned with

one term from the base level. A dictionary defines how the concept can be used.

Concepts are given definition from the attributes stated in the dictionary. The reason

the layers within the ontology stack are separated is this: Someone may disagree

with one of the dictionaries, but this does not exclude them from using the other

dictionaries. If everything was in a single ontology, disagreeing with one dictionary

would invalidate the whole ontology. In this approach, they can define their own

dictionary for a concept, but reuse the rest of the dictionaries within the layer.

8.2.3 The Generic Layer

The Generic Layer of the stack (Figure 8.4) is where general service and device

descriptions are formed, using the ontologies from the lower layers. Ontologies in

this layer are concerned with providing generic descriptions of common devices and

service found within the home network. For example, Figure 8.5 shows the de-

scription of a generic audio speaker. This is a description of a device, using at-

tributes stated in the Device core ontology (device;hasCategoryType and de-

vice;offersService). It also references a class created within the Service core on-

tology, (service;Audio Output Service).

This description can be read as: A device (denoted by the rdfs:subClassOf prop-

erty) which is categorised as an Audio Speaker (denoted through the owl:restriction

on device;hasCategoryType) and offers an Audio Output Service (denoted by

the owl:restriction on device;offersService). This device has the id tag AudioS-

peaker.

146

Figure 8.4: The Generic Layer of the Stack

<owl:Class rdf:ID="AudioSpeaker">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="&device;hasCategoryType"/>
<owl:someValuesFrom rdf:resource="&device;Audio_Speaker"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&device;offersService"/>
<owl:someValuesFrom rdf:resource="&service;Audio_Output_Service"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>
<rdfs:subClassOf rdf:resource="&core;Device"/>

</owl:Class>

Figure 8.5: Description of an Audio Speaker

A parser can investigate the explicit definition of the service by visiting the

service endpoint, denoted by the service URI. RDF/XML allows for namespace use

(see Section 5.2.4). Substituting ‘service’ for its namespace will provide the URL.

The Generic layer of the stack is also not intended to be a complete work. As

new services and devices are created for the home network, so new descriptions will

be created. These descriptions can be added to the generic layer at a later date.

The ID Tag Illusion

Defining generic descriptions can be a difficult task. What one developer defines as

being a lamp, another may class as a table light, or a standing lamp. Difficulties can

147

arise because of the starting point taken when describing a device or service. When

describing a television, for example, it is important not to apply attributes to the

description just because it has been given the literal identification ‘television’. The

ID tag is simply another attribute of the class. It is designed to identify the class,

not to indicate what the properties of the class are. Logically this makes sense: a

literal value can not initiate any kind of inference. It is the class as a whole which is

reasoned over, which can initiate inference, and which represents an actual real life

object, accurately or poorly. Therefore it is not possible for a class description to be

wrong based on its ID tag.

When performing any kind of discovery, services or descriptions can only be

requested by ID tag once the requester is sure that the class description identified

by the tag accurately represents the desired component. Without this assurance,

discovery agents must discover components by an abstract criteria. For example

Find a device which offers service X. This service must be of category Y. The device

must be located in Z.

8.2.4 The Protocol Layer

The Protocol layer of the stack (Figure 8.6) is concerned with the various protocols

which may be found within the home network. The responsibilities of this layer

are two-fold. Firstly, this layer allows protocol descriptions which are semantically

related to those in the generic layer to be declared so. Secondly, this layer allows

the description framework to capture and retain property-specific attributes about

devices and services, and allow them to be stored within the description.

Protocol Descriptions

The approach of this work is based upon the assumption that the middleware frame-

work managing the home network has the capability to perform cross-protocol dis-

covery. As Chapter 3 has shown, many home network solutions already contain

their own mechanisms for discovery, which can be utilised by middleware frame-

works. Other protocols, such as X.10, require more explicit interaction with the

148

Figure 8.6: The Protocol Layer of the Stack

home user, but are still largely able to be included in a home network. With this

assumption in mind, the protocol layer of the stack is built upon the presumption

that the middleware can extract descriptions from the environment. Protocol on-

tologies are responsible for capturing classes of descriptions, services and attributes

which can found in their own domain.

For example, the UPnP ontology contains classifications of UPnP devices and

services, while also capturing the specific attributes defined in the UPnP schema.

In this manner, as attributes are parsed by the middleware framework, they can

be transfered into their ontology equivalent. At this point, a protocol specific de-

scription can be represented in a protocol specific ontology description. If left at

this point, the description would remain understandable only to those agents who

understood the particular protocol ontology. As stated, the aim of this work is to

provide a single querying language for discovering network components.

To alleviate this potential issue, a protocol ontology also includes relationships

between protocol specific classes and those within the generic and core layers of the

ontology. For example, a UPnP Device is declared to be a subclass of Device, the

concept stated within the base ontology. At this point, the usefulness of this work

becomes clear.

Suppose an agent simply wanted to discover all devices within the home net-

work. The agent is executing within a middleware framework, and has access to

the ontology framework. The agent can simply request a list of all instances of the

Device class. At this point, assuming the UPnP ontology is being used by the UPnP

149

Figure 8.7: Architecture of Protocol Devices

domain, all UPnP devices will be returned. For each protocol ontology (and compli-

menting description translator) that exists within the network, the query will also

return available devices in the instance list. The initial query makes no assumptions

about what protocols the agent expects. A single reference is used, without the need

to specify the inclusion of any specific protocols. This query covers all matching on-

tology classes, as they all share a common root within the Device concept. Figure 8.7

illustrates this query, denoting the relationships with the ontology descriptions. If

all UPnP devices are denoted as being a subclass of an UPnP Device, then logically

they are all instances of a Device.

This example highlights the potential simplification of discovery when grounding

protocol descriptions into abstract concepts. Protocol ontologies also relate devices

and services to those described within the core layer of the stack. For example, an

UPnP Speaker is a subclass of the Speaker class created within the Device ontology.

A UPnP Audio Input Service is a subclass of the Audio Input Service described

within the Service ontology. In this manner, if an agent wishes to discover an

Audio Input Service, it will discover the UPnP service.

Figure 8.8 illustrates a similar example. Suppose an agent wished to discover

available lamps within the home. On searching for instances of the class Lamp,

created within the Device ontology, the agent discovers two specific instances:

• urn:schemas-upnp-org:device:light:1 - a UPnP instance of a Lamp Device.

150

Figure 8.8: Architecture of Lamp Devices

• uk.ac.cs.lsd.LightInterface - a Jini implementation of a Lamp Device.

These instances can be considered by the agent to be generic instances of a

Lamp. The only restrictions on what protocols can be discovered using this generic

vocabulary depends on the protocol ontologies available (and their corresponding

translators). If an agent wishes to discover devices of a specific protocol, they

simply need to specific the classification of the device or service using the protocol

specific ontology. For example, suppose an agent could only interact with Jini driven

devices. Instead of requesting instances of Lamp, and then querying the protocol of

each returned instance, the agent would request instances of the Jini Lamp device.

This request would return only Jini devices, ensuring the returned matches are

usable.

Protocol Specific Attributes

It is not entirely impossible for a protocol to specify attributes which can find no root

within the ontology stack vocabulary. The Service and Device ontologies attempt to

provide a set of attributes which are common to home network protocols, without

attempting to include every possibility. Rather than discard this information, proto-

col ontologies are encouraged to include specific attributes. This may at first seem

inefficient, as these attributes will have no generic roots, and are undiscoverable

151

using generic queries.

The reason for retaining them is this: once a search agent has discovered a

suitable component, it is possible to determine what protocol the component is using.

Principally, this information would be required to interact with the component.

Suppose the protocol specific description approach contained contact information

within its description framework. Without the specific attributes within the ontology

description, an agent, once locating the component, would have to re-query the

component using the protocol specific format. This scenario is in contrast with

the aims of this work. To this end, having protocol specific attributes within a

protocol ontology does not invalidate the approach, but provides robust support for

the interaction part of a home network transaction.

8.2.5 Converting Between Protocol and Ontology Descriptions

The conversion between the protocol specific terminology and the ontology termi-

nology varies between protocols, and is very much protocol specific. This work

concentrates on three main protocols, UPnP, Jini and X.10. A set of ontologies have

been designed and developed to represent descriptions of each of these protocols.

UPnP has a defined schema for describing services and devices. To this end,

it is relatively easy to extract the description and convert it into an ontology rep-

resentation. Jini does not provide a specification for describing services, instead

making use of Entry objects to denote a particular attribute. A small set of Entry

objects are defined in the Jini specification, and are used in this work to extract

a Jini description for conversion. X.10 has no method for providing any kind of

description, and so requires a user to set up a description through a user interface.

This is not a limitation of this work, but a limitation of the protocol. To include the

X.10 protocol in a home network, explicit user intervention will be required in all

aspects of integration and description. Leveraging this requirement, an X.10 ontol-

ogy description is generated as the user creates a description for the home network.

In summary, ontology descriptions for each protocol are based upon:

• UPnP: The UPnP schema.

152

• Jini: Entry objects included in the Jini API.

• X.10: User generated description.

The methods used for generating ontology descriptions of these protocols is de-

scribed more thoroughly in Section 9.

Protocol Layer Conclusion

The Protocol layer of the stack allows protocol descriptions to be related to more

generic descriptions, while retaining their protocol specific attributes. Protocol com-

ponents can be described at a protocol level. For example, an UPnP Audio Speaker

is described as an UPnP Audio Speaker. As previously described, the protocol spe-

cific classes are logically grounded in classes within the lower layers of the stack. In

this manner, when a UPnP Speaker is identified, further ontology information can

be inferred about this class. For example if it is an UPnP Audio Speaker, then it

is a member of the Audio Speaker class. This then infers that it offers an Audio

Output service. The UPnP description may also describe this service at an UPnP

level (through an UPnP Audio Output description).

If a protocol-based description does not redefine the attribute values of the

generic class, then the generic values are used. For example, if a UPnP Audio

Speaker does not denote that it has an UPnP Speaker device category, then it inher-

its the generic Speaker device category from the generic Audio Speaker description.

Finally, as new protocols may emerge, this level is not intended to be complete.

New ontologies can be added to this level of the stack as required, even at run-time.

This feature of the stack allows the overall approach to be extensive and scalable. As

ontologies are reasoned over continuously, new ontology information can be added at

runtime without the need to restart the middleware framework. As will be shown,

error and conflict detection is a continuous process as new information is added.

In this manner, the size of the vocabulary can grow as the network grows, without

abandoning the principles of the stack-based approach.

153

<owl:Class rdf:ID="ACME_Television">
<rdfs:subClassOf rdf:resource="&core;Television_Device"/>

</owl:Class>

Figure 8.9: Using an Existing Television Device Description

8.2.6 Developer Defined Ontologies

Using the stack vocabulary, users and developers can create their own descriptions,

knowing that their descriptions will be well grounded. As has been stated, the

Home Network Ontology Stack is not intended to be a static vocabulary, indeed this

work does not claim it to be a complete vocabulary. In an environment where new

technologies may emerge, it is important that the stack is never assumed to be a

closed, finalised work. Users can use the vocabulary in two distinct ways.

Using Existing Descriptions

Suppose a user has set up a home network, managed by a middleware framework.

Suppose the middleware framework contains a software driver for a television device

of a proprietary protocol. The user wishes to add this device to the description

registry (which is built upon the ontology stack). The user can simply create an

subclass of the Television Device described within the Generic layer of the stack,

shown in Figure 8.9.

This simply annotates that the ACME Television is a member of the Televi-

sion Device class, and thusly inherits the attributes of the Television Device. This

description will also inherit the generic attributes of the services offered by a ACME Television

Device. As the middleware is responsible for the software driver, protocol specific

implementation details are not required. Some annotation will be required to in-

dicate that the middleware is the controller. This can simply be added with the

usesProtocol attribute in the Device ontology.

A similar process is used to describe protocol specific devices and services. Pro-

tocol translators, described in Section 9, create customised classes based upon those

within the protocol ontologies. These descriptions allow clients to first discover the

component, and secondly determine the protocols used by the components. The

154

Figure 8.10: The Development Layer of the Stack

protocol of the component provides further contextual meaning to the ontology in-

formation.

Adding Ontologies to the Stack

The stack is deliberately designed to be generic, in order to be suitable for a range

of potential home network domains. Leveraging the support for multiple protocol

domains offered by the ontology stack, users can customise layers of the stack to

support their particular domain. For example, Chapter 12 describes how the ontol-

ogy stack has been used in the MATCH project. Various ontologies have been added

to the stack to support service and device discovery in a home care environment.

For example, ontologies describing home care devices and services have been added

to the Core and Generic layers of the stack, while ontologies describing aspects of

the communication protocol used have been added to the Protocol layer.

Users can customise the stack to support their own domain, be it specific (such

as home care) or wide-reaching (such as a home-network which extends into the web

service domain). Figure 8.10 depicts this potential customisation, with the scope

of user ontologies reaching as far as the core levels of the stack. As indicated in

Section 4.2, the HNOS also provides the richness of a description schema approach

(with defined attributes and class values). The HNOS also allows developers to reuse

existing work, removing the heavy-handedness associated with creating schemas for

each new device and service.

155

8.3 HNOS Conclusion

Sections 2.3 and 7.4 discuss the issues which require to be addressed in order to sup-

port a home network unhindered by protocol distinctions. Section 7.4 in particular

highlighted two issues which continue to distinguish the home network environment

from a web-service like environment. The need for a common abstracted vocabu-

lary, and a method to interpret protocol specific description frameworks. Addressing

these issues would remove the protocol distinction between network components at

the description layer.

The HNOS addresses the issue of a common vocabulary which can be used to

exchange service and device descriptions. The HNOS allows home network clients to

use a single vocabulary and framework for discovery, removing the current require-

ment on clients to query using the discovery framework of each potential protocol.

The HNOS approach also allows this work to be extensive and scalable. As new ser-

vices, devices and protocols are added to the network, new ontologies can be added

at run time without the need to restart the framework, or retrieve a new version of

the HNOS. (Conceivably, the HNOS could be versioned as required, removing the

need for new ontologies not included currently to be continually added).

The following Chapter describes how this work approaches the second issue which

requires to be addressed: that of extracting protocol specific descriptions from the

environment. The ontology vocabulary described within this Chapter requires to

be supported from within home networks, rather than be applied externally by

developers and vendors. Chapter 9 describes the second stage of this work: A

system architecture designed to support the ontology approach at the middleware

level. Chapter 9 will also describe an implementation of this architecture, using

existing home network solutions and technology.

156

Chapter 9

System Architecture and

Implementation

This work is concerned with supporting the home network through a common vo-

cabulary for describing services and devices. One unique aspect of this work is the

aim to include existing home network protocols within this approach. For this rea-

son, no assumptions are made about the flexibility of existing protocols to adapt to

a new description framework. To include existing protocols, this work proposes the

use of middleware to support the translation of descriptions from protocol specific

terms into general ontology based terms. Middleware also provides a central point

of reference for discovering desired services and devices by maintaining a registry of

ontology descriptions.

This work proposes a simple system architecture for support the ontology-based

approach described in the previous chapter. This architecture contains two main

component types for applying the approach to home networks:

• An Ontology Registry: This component is responsible for managing the ontol-

ogy descriptions of all services and devices within the network. The registry

owns an ontology repository containing the vocabulary specified within the

HNOS, as well as an ontology description and classification of all participating

network components. The registry is responsible for responding to network

client queries, performing continuous reasoning over the ontology data, and

157

adding relevant logical entailments to the existing ontology descriptions. The

registry is more than a simply repository of attributes, as existing descriptions

and ontology data can change over time, as the registry is provided with new

information and classifications.

• Protocol Translator Components: Translator components are charged with in-

terpreting between protocol and ontology domains. They are responsible for

gathering the descriptions of components within a protocol domain and trans-

lating descriptions into ontology classes and instances found within the HNOS.

Translators are responsible for a single protocol domain, but this relationship

is not functional. A protocol domain may have one or more translators, as a

translator may be designed for a specific group or category of network compo-

nents. By using translators, a certain level of compliance can be had within a

home network, without requiring intervention from either the registry or the

protocol developers.

The ontology registry provides a single point of contact for network components

to query for desired components while allowing a generic querying vocabulary to be

used. The translation components remove the burden from both the registry and

the protocol domains to conform to a specific approach. Chapter 10 discusses the

advantages gained by using this system architecture in terms of the scalability of this

approach. The rest of this Chapter is concerned with describing an implementation

of this system architecture deployed within an OSGi framework.

9.1 Implementation Overview

Section 3.9 introduces the OSGI framework, a Java-based middleware platform ca-

pable of supporting a home network environment. This work provides a middleware

implementation built upon the OSGi framework, allowing the use of the Java-based

ontology tools available, as well as aspects of the OSGi framework itself. This im-

plementation uses the Jena framework1 to support the ontology registry, designed
1(http://jena.sourceforge.net/)

158

Figure 9.1: The Middleware Architecture

for the management and querying of ontology information. OSGi systems make use

of driver bundles to control devices and services within the network. These bundles

allow the framework to ‘plug in’ to a particular protocol. This work makes use of

existing UPnP, Jini and X.10 driver bundles. Through these bundles, the descrip-

tive attributes of protocol specific components can be exposed to the framework.

Figure 9.1 contains a high-level representation of the middleware architecture. This

section will expose implementation details of the registry and translation process

used within this work. Chapter 12 evaluates the suitability and performance of this

implementation in real-world systems.

9.2 The Ontology Registry

The registry contains a number of features to support and manage a home network

environment. This section provides an in-depth description of the important features

of the registry.

The Ontology Model

The ontology registry is charged with making ontology descriptions available to

client components. The ontology registry also performs logical operations over the

ontology information, such as inference and reasoning. In this manner, the ontology

registry is more active than typical service registries. The ontology registry is more

than a simple list of service and device types, rather it is like a library catalogue

(like that described in Section 5.1). Facts can be implied from the meta data about

the devices and services contained in the registry. As new information is added

159

to the registry, new information can be inferred about existing device and service

descriptions. In simple terms, a description of a component may grow from the

original description provided to the registry in the first instance. This may happen

unbeknown to the providing component.

The ontology registry uses the Jena Semantic Web Framework for managing

the ontology operations. Jena is a Java library designed to support semantic ap-

plications, and can utilise RDFS and OWL ontology languages. Jena internally

represents all ontology information in the form of RDF graphs, which provide a

structured and scalable approach to storing ontology information. When communi-

cating with users, Jena provides ontology information in a Model form, which stores

information in statements or RDF triplets. Reasoning and inference is performed

over the graph when operations are performed on the Model (such as the removing

or adding of information). The Model object offers an API to the graph, allowing

users to create, delete and modify ontology information.

The Simple Query Interface

This work assumes that no network client should need to understand the complexities

of the any ontology querying language or how ontology information is represented

internally within the registry ontology model in order to function within the network.

To this end, a querying interface called the Simple Query Interface (SQI) has been

developed to decouple the discovery process from any particular implementation of

the inner ontology model. This interface is part of the system architecture, and

is described in section 9.3 along with an implementation of this query interface

included as part of the registry implementation.

The Display Manager

The registry also offers a visual display manager which is designed to provide a

common presentation area for protocol translators. The display manager provides

a centralised point of focus for displaying any information concerned with the de-

scription or discovery aspects of the ontology-driven network. For example, protocol

160

translators may wish to provide a wizard interface for users to configure network

descriptions, alert to new network components, or to explicitly add or remove de-

scriptions from the registry.

The display manager also offers functions to client components for drawing focus

to a particular presentation or for providing alerts to users. For the most part, the

display manager is hidden unless it is in use by a client component. As the registry is

implemented within an OSGi framework, the display manager is implemented using

Java Swing, and is therefore able to provide a consistent layout across multiple

platform.

Ontology Plugin Management

The registry exposes functions for protocol translator components to exchange and

modify information. The simplest approach to loading descriptions into the registry

is to pass a string URL of the component description to the registry. The registry

can then download the corresponding ontology. This approach, however, is not

suitable for use with protocol translators as descriptions are typically dynamically

generated, and are therefore unlikely to have a concrete URL from where they can

be downloaded.

This issue is addressed in a unique way by this implementation. When a trans-

lator joins the network, it requests its own ontology model from the registry. This

model contains the default information found within the HNOS, up to the Generic

layer of the stack. The translator then loads protocol ontologies concerned with

their own domain into their private model. The translator can then use this private

model to create their own ontology classes and descriptions. When a description has

been create within the private model of the translator, it is then merged with the

model contained within the registry. In this manner, the registry no longer requires

a concrete URL to the description, as it is given a fully-formed ontology class. Each

private model is referred to as an ontology plugin.

There are a number of advantages gained by using this approach. Firstly, a

sizeable amount of the reasoning process can be offloaded from the registry onto

161

protocol translators. As ontology descriptions are created, they are reasoned over

using the information available within the private model. As mentioned, the private

model comes already loaded with a sizeable amount of information from the HNOS.

When ontology descriptions are added to the ontology registry, they have already

been subjected to a large amount of reasoning which the ontology registry is no

longer required to perform. This does not mean the registry performs no additional

reasoning, as additional ontology information may be present within the registry

model which was not passed as part of the private model.

This approach also allows protocol translators to buffer multiple new descriptions

and then add them to the registry in one interaction. As models are merged, the

registry copies all new information from the private model into the registry model.

Determining new information when merging models is a process handled by the

Jena Framework. Having a degree of separation between private models and the

registry model also proves useful in protecting against inconsistent descriptions. As

descriptions are generated locally, inconsistencies can be detected and addressed

within the private model before being added to the registry.

The Ontology Plugin Management component also contains a number of func-

tions to allow translator bundles to quickly query the registry for meta data. These

functions include:

• getInstances(String classURI)

This function returns a list of all instances of the specified class type.

• getPropValues(String classURI, String propURI)

This function returns a list of property values on the specified class type.

• removeClass(String classURI)

This function requests the registry ontology model to remove the specified

class. This function would be used when devices or services leave the network.

• removeModel(Model model)

Translators can use this function to remove a number of classes from the

registry ontology model. For example, when a translator is removed from the

162

network, this function can be used to remove all classes contained within the

private model from the registry.

9.3 The Simple Query Interface

Query formats within home networking protocols typically take the format ‘Find me

an instance of Class X which has attribute Y ’. A Class may be a service interface,

or an instance of a device adhering to a taxonomy classification. This format can

be represented through a format similar to an RDF or OWL statement: (subject,

property, object), or in this case (Class X, attribute, Y). To represent this,

the Simple Query Interface (SQI) provides a statement-driven interface for querying

the ontology registry.

The SQI provides mechanisms for expressing three types of queries:

• Simple Queries: These queries follow a simple (subject, property, object)

format.

• Complex Queries: A complex query represents multiple queries over the same

subject.

• Meta Queries: A meta-query encapsulates queries which contain sub queries.

Using this set of queries, users can interact with the ontology registry, without

needing prior understanding of how the information is represented within the reg-

istry, or the specific querying mechanisms used by the ontology model. Providing

a querying interface also allows the underlying ontology registry to be replaced if

required.

The implementation included in this work is designed for interacting with the

Jena model. Jena provides a querying language called SPARQL [44], which is de-

signed for RDF and OWL information. The implementation converts queries formed

using the SQI into SPARQL queries which are specific to the registry implementa-

tion. The conversion of the three queries types are implemented in the following

manner.

163

9.3.1 Simple Queries

As mentioned, a Simple Query follows a standard (subject, property, object)

format and is represented through the interface as:

public SimpleQuery(String subject, String property, String object)

An example Simple Query may be:

new SimpleQuery(‘Device:TV’, ‘Location:hasLocation’, ‘Location:LivingRoom’) ;

This query wishes to discover any instances of a TV within the living room. This

query is broken into a SPARQL query which would take on the form:

"SELECT ?match " +

"WHERE {?match <Location:hasLocation> <Location:LivingRoom> .

?match <rdfs:SubclassOf> <Device:TV>}" ;

In basic terms, this query requests any classes which match the given pattern,

with ?match being used as a wildcard variable. Any classes matching are returned

to the SQI in a result set. The SQI then parses this result set, extracts the elements

denoted by ?match and then returns this list to the querying client in the form of

an array of string URIs. Each URI corresponds to a matching ontology class within

the registry.

9.3.2 Complex Queries

Complex Queries are similar to Simple Queries in that they concern a single subject,

but may have multiple conditions attached to them. Users can construct Complex

Queries using the following interface:

public ComplexQuery(String subject) {

public void addCondition(String property, String object) ;

}

An example Complex Query may be:

164

String queryString = "SELECT ?match WHERE {";
for (int i = 0; i<query.getConditionSize() ; i++) {
Condition condition = query.getCondition(i) ;
queryString += " ?match <"+condition.getProp()+"> <"+condition.getObj()+"> . }"

}
queryString += ?match <rdfs:SubclassOf> <"+query.getSubject()+"> }" ;

Figure 9.2: Algorithm for converting Complex Queries

ComplexQuery complexQuery = new ComplexQuery(‘Device:TV’) ;

complexQuery.addCondition(‘Location:hasLocation’, ‘Location:LivingRoom’) ;

complexQuery.addCondition(‘TV:receivesSignal’, ‘TV:Digital’) ;

This query expands on the Simple Query to discover a TV which can also receive

a digital signal. The SQI implementation handles Complex Queries by iterating over

the conditions on the query, and adding a new condition to the SPARQL query as

demonstrated in Figure 9.2.

Any viable matches are then returned within an array to the querying compo-

nent.

9.3.3 Meta Queries

Meta Queries are the mechanism by which clients can submit sub-queries as part of

their query. For example, ‘Find me a Lamp device which is located in the room to

the left of the Hall ’. This method of querying embeds an inner query as the object

of the query, allowing clients to query upon unknown information. In this example,

the client does not explicitly state what the location of the device should be, but

rather indirectly describes the location (as left of the hall).

In this example, the sub-query is an instance of a Simple Query described earlier.

Meta Queries can also accept Complex Queries as the object of the query. This would

be akin to adding an extra condition onto the object query, which in this case is

querying for a location.

Meta Queries can be accessed using the following interfaces:

MetaQuery(String subject, String property, SimpleQuery query)

MetaQuery(String subject, String property, ComplexQuery query)

165

String queryString = "SELECT ?match WHERE {";
?meta <Location:toLeftOf> <Location:Hall> .
?meta <rdfs:SubclassOf> <Location:Room> .
?match <Location:hasLocation> ?meta .
?match <rdfs:SubclassOf> <Device:Lamp> }" ;

Figure 9.3: Algorithm behind Meta Queries

Suppose we wanted to form the query given in the above example using a Meta

Query. This could be achieved by using the interface in the following manner:

SimpleQuery simple = new SimpleQuery(‘Location:Room’,

‘Location:toLeftOf’, ‘Location:Hall’) ;

MetaQuery meta = new MetaQuery(‘Device:Lamp’, ‘Location:hasLocation’, simple) ;

SPARQL offers a flexible approach to sub-queries, making use of wildcard vari-

ables. The SQI translates Meta Queries by first separating the query into sub-query

parts (i.e into Simple and Complex Queries), and then substituting wildcard vari-

ables for unknown classes. For example, the above query would be translated into

SPARQL using the sudo-code shown in Figure 9.3.

In this example, ?meta would contain the valid matches for the location part of

the query. This variable may hold more than one value, and so the query matches

against any Lamps found within any locations matching the location criteria. When

submitting Complex Queries as part of a Meta Query, each new condition is added

onto the criteria for ?meta. By allowing clients to query over information unknown

to them, the number of interactions with the registry is reduced. This also allows

clients to remain abstracted from information which they do not directly need.

9.4 Summary of the Ontology Registry Architecture

Figure 9.4 shows the architecture of the registry. The Simple Query Interface, Ontol-

ogy Plugin Management and Display Manager are all exposed to client components,

while the SQI implementation and the Jena ontology model is only accessible from

within the registry. For the purpose of this work, all registry components were

166

Figure 9.4: The Ontology Registry Architecture

developed as part of the implementation, excluding the Jena ontology models.

This work is built around a centralised registry. This provides a single location

for the addition of new information, and ensures information about the network is

always up-to-date, consistent and dependable. An issue still remains over how to

insert descriptions into the registry, which is handled by protocol translator bundles.

9.5 Protocol Translators

Protocol translators are charged with interpreting protocol specific descriptions into

terms contained within the HNOS. Protocol translators provide the buffer between

protocol specific terminologies and schemas and the common terminology found

within the ontology stack. Protocol translators are specific in their implementation,

with each translator designed specifically for a single protocol.

Protocol translators are in effect one way translators, from the specific to the

generic. This is simply a design issue, and it is entirely feasible that translators could

eventually become bi-directional or even multi-lingual. Having a one-way translator

ensures this work is lightweight in its approach and deployment. Certainly, for the

purpose of evaluation and research, a one-way approach is suitable.

167

9.5.1 The Translation Process

A translator interacts with its protocol domain, discovering new devices and services,

parsing their descriptions, and adding ontology-generated descriptions to the reg-

istry. The translator contains a list of hard-coded associations between well known

service and device categories, and their ontology equivalent. Where applicable, a

translator also contains associated rules between protocol specific attributes and

their ontology equivalent. For example, if a protocol vocabulary has an attribute

denoting the manufacturer of a device, the translator will contain an association be-

tween this attribute and a hasManfacturer property within the protocol ontology.

These associations are stored in hash tables called association tables.

The protocol ontologies within the Protocol layer of the stack contain the re-

lationships between the protocol specific ontology attributes and those within the

lower levels of the stack. As each ontology is tailored to a specific protocol, so the

amount of association contained within a translator is dependent on the level of

structure within the protocol description framework. As ontologies have been de-

signed to describe UPnP, Jini and X.10 protocols, so three corresponding protocol

translators have been implemented.

9.5.2 The UPnP Translation Bundle

The UPnP translator is build upon an UPnP Control Point (described in Chapter 3).

A Control Point is capable of discovering any UPnP device within the network, and

retrieving its description. Leveraging this capability, the UPnP translator listens

for all new devices joining the network. When a new device joins, the translator

retrieves the device description.

Section 3.2 describes the contents of a UPnP description. In general, an UPnP

description comprises of descriptive attributes of the device, along with URLs which

provide descriptions of the services offered by the device. The UPnP translator

parses the description using the functionality offered by the UPnP Control Point.

The OSGi based Control Point processes an UPnP description into a series of UPnP

objects, which can then be explored by the translator.

168

Figure 9.5: Translation within the UPnP Translator

When the UPnP translator joins the network, it requests an Ontology Plugin

object from the registry. As devices join the network, the translator enters a de-

scription into its own private model before merging the model with the registry.

As a device leaves, the translator removes the ontology description from its private

model, and indicates to the registry that it should also remove the description.

The translator contains a number of association tables which contain UPnP

device and service types, and their ontological equivalent. In a similar manner, there

are symmetrical relationships between UPnP properties and properties specified in

the UPnP Ontology.

Figure 9.5 shows the process taken to translate UPnP descriptions. On being

notified by the UPnP control point of a new device, the translator extracts the values

of the UPnP descriptive elements from the control point registry. On retrieving the

UPnP description, the translator consults with the association tables to construct

an ontology description and enters it into its private model. The translator then

initiates a merge of the private model with the registry.

At this point, there is a correlation between the UPnP object created by the

control point, and the UPnP class created by the translator. Using the association

tables, it would be possible to translate the ontology description back into an UPnP

description.

169

Figure 9.6: A UPnP Alert

The UPnP translator also makes use of the Display Manager offered by the

registry to provide alerts for user interactions. When a UPnP device joins the

network, an alert is presented to the user to allow them to indicate the location of

the device within the home. An example alert is shown in Figure 9.6. The list of

rooms is provided by requesting a list of Room instances from the registry.

It should be noted that the UPnP driver is not tailored to discover a subset

of devices. Any UPnP device which joins the network will have a description of

some kind generated. If a device joins and no corresponding associations are found

within the association tables, a generic UPnP description is created and added to

the registry, along with all properties and attributes found within the description.

9.5.3 The Jini Translation Bundle

A Jini framework makes use of a service registry component for discovery within

a network. The registry accepts and maintains a list of available resources within

the network. To this end, the Jini translator is built upon an implementation of

the Jini Service Registrar interface provided by this work. The implemented Jini

registry responds to client discovery messages, and creates descriptions as service

implementations are added to the registry. To a Jini client, the Translator is no

different from a Registrar object designed to manage Jini networks.

Jini provides a unique challenge to the traditional view of the home network. A

Jini service is a Java object. In essence, it is the object itself which offers services

to the network, through the class functions. For the purposes of this work, a Jini

service is treated as a device, or more correctly, a software interface to a device.

The functions of the Jini service are therefore considered the services offered by the

170

Figure 9.7: Translation within the Jini Translator

software interface.

As discussed in Section 8.2.5, Jini describes attributes through Entry objects.

The type of each Entry object determine their ontology equivalent attributes. The

translator recognises the set of Entry objects provided by the Jini API, using associa-

tion tables to store relationships between Entry attributes and ontology equivalents.

One entry object may contain a number of attributes.

The Jini translator also contains associations between a sample set of Jini ser-

vice interfaces and ontology devices and services described within the stack. When a

known service interface is registered, the translator creates a complete description of

a Jini Device class, including attributes described through Jini Entry objects. On-

tology service descriptions correspond to the functions offered by the Jini interface.

Figure 9.7 shows the interactions within the Jini translator when a new Jini

registration is received by the Jini registry implementation. The registry notifies

the translator and passes the Jini description along with any Entry objects. The

Translator accesses the association tables and creates a corresponding ontology class

within its private model. Once completed, the model is merged with the ontology

registry.

The Jini translator suffers from a lack of well known service interfaces in the Jini

framework which may be encountered in the home network. This is not a weakness

171

Figure 9.8: The X.10 User Wizard

in this approach, but rather a limitation on protocols which utilise interfaces in a

similar manner. In a full-scale environment, a number of Jini translators may exist,

with each translator designed for a set number of interfaces.

9.5.4 The X.10 Translation Bundle

In contrast with the Jini and UPnP translation bundles, the X.10 translator is user

driven. A user interface has been created to support a user in integrating an X.10

device into the network, shown in Figure 9.8. The user interface concentrates on the

device type, network address and room location of the device. As with the UPnP

Translator, the list of rooms is populated through querying the ontology registry for

Room instances. The list of devices is limited to those described within the X.10

ontologies. In the absence of any native description attributes, this information is

enough to provide an ontology description of an X.10 device. The X.10 translator

also contains a limited set of associations which translate between ontology references

and human readable references used within the wizard.

An ontology description of the X.10 device is generated as the user describes

the device through the interface, as shown in Figure 9.9. X.10 ontology descriptions

benefit directly from the logical properties of the OWL language. For example, an

X.10 device offers no explicit services to the network. If an X.10 Lamp is described

172

Figure 9.9: Translation within the X.10 Translator

in the registry, it will logically be related to the Generic Lamp described within the

Generic layer of the stack. It therefore inherits the services offered by an instance

of a Lamp device.

The X.10 translator allows this work to evaluate the efficiency of applying a

service-orientated environment over existing simple home appliances. As X.10 mod-

ules allow existing appliances, such as lamps and air-fans, to be included in a home

network, it is important that the protocol is not excluded in the description and

discovery process.

9.5.5 Summary of the Translation Approach

Section 4.2 discussed the three main approaches towards description between the

main home network protocols. The protocol translators implemented represent an

instance of each approach:

• X.10: This protocol represents the ‘No Description’ approach. This requires

heavy user interaction.

• Jini: This protocol represents the ‘Attribute/Value’ approach (as well as the

centralised registry approach). The translator is tailored to what is known

at the time. If an unknown Jini service joins, it can only be represented as

173

a generic Jini Device in the registry. Unknown Entry objects may also be

encountered, as users are able to create their own attributes.

• UPnP: This protocol represents the ‘Schema’ approach (as well as an envi-

ronment without a registry). The translator knows what attributes can be

expected, and has a good understanding of device types, which are tightly

controlled. This translator is not final, in that it will require updating as new

service and device types are created.

Using the system architecture described, this work can evaluate the suitability

and relevance of the ontology vocabulary in various domains. In some situations,

descriptions can be generated automatically, and invisible to the user. In other sit-

uations, user intervention is required. This represents the current state of the home

network, which has not yet reached the levels of the ‘zero configuration’ environment.

By using the ontology vocabulary described in Chapter 8, and the system archi-

tecture approach described within this Chapter, this work is able to:

• Provide a single language required for discovering available devices and services

in the network.

• Provide a single point of discovery for all network components, leveraging

existing middleware frameworks

• Incorporate existing protocols, and their terminologies, within the ontology

vocabulary.

• Blur distinctions between protocols at the description level.

The following Chapter evaluates and examines aspects of this approach which

further allow this work to:

• Present a description framework which can evolve as the environment changes,

by the inclusion of new protocols, service and device types. The framework is

also adaptive to a changing definition of the home network environment.

174

• Recognise existing approaches, and can be reconciled with relevant existing

upper ontologies.

This work does not aim to disregard previous work by other ontology and home

network developers. Instead, this work identifies a weakness in current approaches

and trends, and addresses this issue in a manner which can be applied retrospectively.

To this end, Chapters 10 and 12 evaluate the contributions of this work. Chapter

10 revisits the scenario presented in Chapter 3 using an implementation of this work

and clearly highlights the benefits of this approach in such a situation. Chapter 12

is concerned with evaluating the approach within existing environments, including

measuring the effectiveness and scalability within home network domains.

175

Chapter 10

Deploying the Approach

The main claim of this work is that ontology languages can be used to support a

protocol-independent discovery environment. This work has been concerned with

providing both a language and framework for supporting this claim. The language

is composed through an ontology-based syntax, and the framework has been aug-

mented with components capable of understanding and managing the ontology lan-

guage.

As a recap, the purpose of this approach is to support clients in discovering

desired services, devices or other network resources. Without this support, clients

would need to make provisions for the possibility of numerous protocols existing

within the network when discovering network components. Returning to the scenario

given in Section 3.11, suppose a client wishes to discover if there is a lamp device

within the network capable of being client controlled through a power service. This

seemingly simple operation can require the client to begin numerous processes which

will allow this wish to be carried out in a multi-protocol environment.

10.1 Applying the Approach to a Home Network Envi-

ronment

An underlying aim of this work is to reduce the protocol:vocabulary relationship

to x :1. In such an environment, a single query can cover multiple domains. By

176

using the ontology approach presented in Chapter 8, a client can query a registry

using a single instance of a query, and be confident that all relevant matches will

be returned. To evaluate this claim, the experiment described in Section 3.11 is

revisited, using the implementation of this work described in Chapters 8 and 9. The

purpose of this experiment is to highlight the advantages gained using this approach

over existing solutions, showing where interactions are simplfied, and where protocol-

specific interactions are removed.

10.1.1 Modifications and Assumptions

The ontology vocabulary has been designed to describe services and devices regard-

less of protocol. In this manner, services and devices can be abstracted from their

protocol specific descriptions. It is not feasible to expect existing protocols to change

their description approaches in order to comply with the ontology vocabulary. In

some cases, descriptions may be hard-wired into the component, and in other cases

components may not contain enough computational resources to adapt to a new

vocabulary. The service providers used in the initial experiment are reused and

unchanged, while the service clients have been re-engineered to make use of the

ontology approach.

By allowing the existing Lamp services to remain untouched provides a level

ground to compare this approach with existing approaches. By using the transla-

tion bundles described in Chapter 9, the protocol domains also remain unmodified,

strengthening the claim of this approach that it can be applied in current and future

home networks.

The Lamp Client

The service client has been embedded with a knowledge of how to interact with

the Simple Query Interface. The client has not been augmented with any ontology

understanding outside knowledge of classifications and attributes within the HNOS.

177

Client Assumptions

In this experiment, it is assumed that the client knows how to interact with services

from each of the domains. As has already been stated, this work is not concerned

with providing interaction information within a service or device description. It

is assumed that, by examining an ontology description, a client user can extract

information which then enables the client to retrieve protocol specific details from

the service provider. For example, if a client discovers a suitable UPnP device, it can

extract the UPnP address from the description, and then query the device directly

for invocation details.

In the case of X.10, which has no native invocation description, a client can re-

trieve the address of a device from the ontology description. Using this information,

a client can then interact with the device.

One reason for resisting the temptation of providing interaction details is this:

This approach is designed to work in tandem with both existing protocols and ex-

isting middleware frameworks. This work does not offer any implementation of

a specific middleware framework, other than augmenting existing component reg-

istries. Middleware frameworks for home networks already exist which can support

cross protocol interaction, with OSGi being an example. It is assumed that client

users operating within a home network environment will already have some concept

of the distinction between protocols at the invocation layer. There is little common

ground between interacting with Jini, X.10 and UPnP components, and so clients

may adopt different approaches for interacting with each protocol (or more correctly,

with each protocol driver).

With this in mind, it is assumed that by ignoring interaction details within

a description, this work does not place any further burden on a client to know

about how to interact with each protocol. Existing protocol drivers are able to blur

protocol distinctions at the invocation layer, while this work is only concerned with

the descriptive layer.

178

10.1.2 Ontology-Based Descriptions

In the OSGi-based experiment described in Section 3.11, descriptions generated for

OSGi contained distinct attributes which largely were conveying similar meaning.

For example, there were three different approaches to representing the type of ser-

vice, and two different attributes for describing the location of each service. As the

ontology vocabulary abstracts from the protocol, the ontology descriptions of each

instance of the Lamp service take on a common set of attributes, most of which are

either identical or logically related.

Within the OSGi registry, a reference to the controlling service or device is

provided through the Java implementation object. When a suitable match is found

in the registry, a client user can retrieve this reference in order to manipulate the

service or device. As an ontology description is separated from the implementation,

a reference is needed. An ontology description can contain implicit clues as to the

protocol of the device or service being described. Properties may be protocol specific

but have logical roots within the generic level of the ontology stack. By examining

the properties of a description a client user can infer the protocol of the component

being described. For simplicity, the protocol of the component is also referenced

through the usesProtocol attribute of the device and service ontologies. Using

this protocol reference, a client can, in most cases, then query the protocol domain

to retrieve the service.

X.10 Registration

Within this experiment, the generated X.10 description differs slightly from that of

the OSGi description, and is shown in Figure 10.1. A3 Lamp represents the X.10

Lamp, which is declared to be a sub class of a Lamp device, which is described in

the Light ontology (denoted by Light:#Lamp).

UPnP Registration

The UPnP description is similar in content to that generated for an OSGi regis-

tration. As UPnP provides both device and service descriptions, so there are two

179

[A3_Lamp, rdfs:#subClassOf, X10:#X10_Lamp]
[A3_Lamp, rdfs:#subClassOf, X10:#X.10_Device]
[A3_Lamp, rdfs:#subClassOf, Core:#Device]
[A3_Lamp, rdfs:#subClassOf, Light:#Lamp]
[A3_Lamp, rdfs:#subClassOf, A3_Lamp]
[A3_Lamp, device:#hasAddress, "A3"]
[A3_Lamp, Device:#hasLocation, "Living room"]

Figure 10.1: Ontology Description of the X.10 Lamp

[CyberGarage_Light_Device, rdfs:#subClassOf, upnpDev#UPnPLamp]
[CyberGarage_Light_Device, rdfs:#subClassOf, upnpDev#UPnPDevice]
[CyberGarage_Light_Device, rdfs:#subClassOf, Core:#Device]
[CyberGarage_Light_Device, rdfs:#subClassOf, Light:#Lamp]
[CyberGarage_Light_Device, rdfs:#subClassOf, CyberGarage_Light_Device]
[CyberGarage_Light_Device, Device:#offersService, upnpservice:power:1]
[CyberGarage_Light_Device, Device:#hasSerialNumber, "1234567890"]
[CyberGarage_Light_Device, isRealService, "true"]
[CyberGarage_Light_Device, Device:#hasLocation, Living_Room]
[CyberGarage_Light_Device, upnpDev#hasFriendlyName, "CyberGarage Light Device"]

Figure 10.2: Ontology Description of the UPnP Light

descriptions generated, shown in Figures 10.2 and 10.3. Note that the UPnP device

is denoted as a sub class of Light:#Lamp. This fact is generated by an association

between the UPnP device type and a classification from within the Generic layer of

the ontology stack. The UPnP service is declared as a sub class of a power service

for the same reason. The UPnP device description contains a link to the power

service through the offersService property.

[upnpservice:power:1, rdfs:#subClassOf, Core:#Service]
[upnpservice:power:1, rdfs:#subClassOf, Service:#Power_Service]
[upnpservice:power:1, rdfs:#subClassOf, urn:schemas-upnp-org:serviceId:power:1]
[upnpservice:power:1, upnpSer:#hasSCPDURLValue, "/service/power/description.xml"]
[upnpservice:power:1, upnpSer:#hasEventSubURLValue, "/service/power/eventSub"]
[upnpservice:power:1, upnpSer:#hasServiceIDValue,
"urn:schemas-upnp-org:serviceId:power:1"]
[upnpservice:power:1, Service:#usesProtocol, UPnP]
[upnpservice:power:1, upnpSer:#hasControlURLValue, "/service/power/control"]

Figure 10.3: Ontology Description of the UPnP Service

180

[RegistrarClient.LampImpl, rdfs:#subClassOf, Jini:#JiniDevice]
[RegistrarClient.LampImpl, rdfs:#subClassOf, Core:#Device]
[RegistrarClient.LampImpl, rdfs:#subClassOf, Light:#Lamp]
[RegistrarClient.LampImpl, Device:#hasCategoryType, Device:#Lighting]
[RegistrarClient.LampImpl, Device:#offersService, Service:#Power_Service]
[RegistrarClient.LampImpl, Jini:#isInBuilding, "LivingRoom"]
[RegistrarClient.LampImpl, Jini:#isOnFloor, "Home"]
[RegistrarClient.LampImpl, Jini:#hasRoomLocation, "1st"]

Figure 10.4: Ontology Description of the Jini Light Interface

Jini Registration

The Jini description generated for this experiment is shown in Figure 10.4. In this in-

stance, the subclass relationship between the Jini service and the Light:#Lamp inter-

face is inferred by the registry. This is due to the presence of the Device:#hasCategoryType

and Device:#offersService properties. The inference is based upon the pre-existing

of the Light:#Lamp description.

10.1.3 Discovery with an Ontology Vocabulary

An ontology description is similar in layout to schema-based descriptions, but may

also leverage properties of the ontology language. An ontology description contains

well-defined properties, which are logically grounded in generic and abstract ontolo-

gies. Ontology classes are also logically defined, containing sets of properties which

can be inherited by child classes. Armed with this knowledge, client users can access

a powerful discovery environment.

For example, suppose Device X is defined as a Device with Device Category x,

and offering Service y. A client who has knowledge of Device X may also know

about the attributes of the class. If a client wishes to discover Device classes which

offer Service y, they need only search for instances of Device X. It is obvious that

such a simple assumption would not be sufficient within a real-world example, as

multiple Device classes may also offer Service y. This example serves to highlight

the logical assumptions that can be made while discovering components within the

home network. Just as schema based descriptions can be relied on to contain a set

of defined properties, so an ontology description can be relied upon to hold true to

181

SimpleQuery query = new SimpleQuery(
"core:Device", "rdfs:subclassOf", "Light:#Lamp") ;
ArrayList instances = registry.submitQuery(query) ;

Figure 10.5: Simple Ontology Query

any class definitions contained. If Device XImpl is of type X, it can be assumed to

adhere to the definitions specified within the definition of Device X.

These properties of an ontology description greatly simplify the discovery process

within a home network environment. To support this claim, consider the query

expressed to discover all instances of a Lamp Device, given in Figure 10.5.

This query requests all instances of all Devices (denoted by core:Device) which

are children of the generic Lamp Device class (denoted by rdfs:subclassOf, Light:#Lamp).

By examining the descriptions of the X.10, UPnP and Jini devices, the ontology reg-

istry matches the query to each description, as each description shares a root within

the Light:#Lamp class. All descriptions are also instances of the core:Device class.

On submitting this query to the ontology registry, the following results are re-

turned:

[RegistrarClient.LampImpl, CyberGarage_Light_Device, A3_Lamp]

The first outcome of this experiment is concerned with the protocol:vocabulary

relationship. A single query has been expressed which discovers all instances of

the Lamp Device. The query makes no distinctions between protocols, concerned

only with discovering all available devices. It is built upon the assumption that all

instances of the Lamp Device class offer a power service. As already discussed, this

assumption is viable due to the logical properties of ontology languages: A child

class inherits the attributes of the parent class. Based upon this assumption, the

protocol:vocabulary relationship has been reduced to a simple x :1 relationship. One

query is sufficient because all available descriptions utilise a single vocabulary, the

ontology stack.

182

ComplexQuery query = new ComplexQuery(core:Device) ;
query.addCondition("Device:#hasCategory", "Device:#Lighting") ;
query.addCondition("Device:#offersService", "Service:#PowerService") ;
ArrayList instances = registry.submitQuery(query) ;

Figure 10.6: A Complex Ontology Query

Assumption-less Queries

As has been shown, ontology queries can be formed upon assumptions drawn from

class descriptions and the ontology language. Suppose a client user does not have

the knowledge to express the query given above. This client has no concept of the

ontology within the Generic layer of the stack in which the Light:#Lamp class is

described. Instead, the client only has knowledge of the lower levels of the ontology

stack. It is important that network clients which do not have full knowledge of all

represented ontology classes are not prevented from discovering desired components.

In lieu of knowledge about the Light:#Lamp class, a client can discover all available

Lamp Devices by constructing a more complex query, given in Figure 10.6.

This query requests to be notified of any instances of the Device class, which has

category ‘Lighting’ and offers a power service. This query is in essence constructing

a class which matches the Light:#Lamp class. The registry parses the query in a

sequential fashion:

• The registry first lists all instances of the core:Device class.

• From this list, the registry discards any instance which do not match the
hasCategory property.

• From the resulting list, the registry discards instances which do not offer a
PowerService service.

• The registry then returns the list1.

In this manner, clients can discover desired services and devices based upon

attributes rather than explicit classification. This allows the discovery process to

scale as the number of classes or classifications increase. This process also maintains

the x :1 relationship between protocols and vocabularies required for discovery. As
1The registry first removes erroneous classes from the list. These are classes which logically

satisfy the query, but are irrelevant to any home network clients.

183

the vocabulary remains abstract from the protocols in the environment, clients can

be assured that their queries will be applicable regardless of what protocols are in

existence.

Extracting Meta-Data From the Registry

It is important that any description framework is able to support connections be-

tween the component description and the component protocol. When a client dis-

covers suitable services or devices, a mechanism is required to indicate to the client

how to interact. The values returned by the registry are references to services or

devices within the home network, and do not convey any protocol details to the

client. By themselves, these references only specify what components exist within

the network.

Interaction is presumed to be protocol specific. In this implementation, the mid-

dleware provides support for protocol specific interaction, and therefore removes the

need for details to be included within a component description. A client need only

discover what protocol a component uses, before then utilising the middleware for

interaction. The ontology registry provides further querying methods for extracting

meta-data from component descriptions. On retrieving a reference from the registry,

a client can query the registry as to the protocol of the referenced component:

ArrayList protocols = registry.getPropValues(reference, "Device:#usesProtocol") ;

Meta-data queries are concerned with a particular attribute or property. As

an ontology class may contain more than one instance of an attribute, the registry

simply returns all known values. In the above example, the query simply retrieves

the value of the Device:#usesProtocol property on the given reference.

In the same manner, clients can request meta data about any given ontology

class.

Logical Querying

Up until this point, querying over ontology information, or even querying within an

OSGi registry, relies on string matching. In other words, the properties and val-

184

ComplexQuery query = new ComplexQuery(core:Device) ;
query.addCondition("Device:#hasCategory", "Lighting") ;
query.addCondition("Device:#offersService", "Service:#PowerService") ;
query.addCondition("location:isNearTo", "Bedroom") ;
ArrayList instances = registry.submitQuery(query) ;

Figure 10.7: A Logic Based Query

ues expressed within a query are explicitly matched to classes within the ontology

registry. As discussed in Section 5.4, OWL is more than a simple mark-up lan-

guage. OWL provides logical properties for describing classes and concepts. The

ontology registry leverages this logical advantage in its management of the ontology

information. It is right that the querying process be able to leverage these same

advantages.

For example, the Location ontology (found within the stack) contains a property,

isNearTo, for describing relative positions of rooms within a home. In addition to

this property, two more properties have been created for defining relative locations of

rooms: toLeftOf and toRightOf. These properties are declare to be sub-properties

of isNearTo: If Room A is to the left of Room B, then it can also said to be near

Room B. This logical property can be taken advantage of in the querying process.

In this experiment, additional context information has been added to the ontol-

ogy:

(Bedroom, location:toLeftOf, LivingRoom)

The previous query presented in Figure 10.6 can be modified to include an

additional property, shown in Figure 10.7. This query requests a Lamp Device

which has a location near to the Bedroom. This query successfully matches the

three instances of Lamp Devices present within the network. This is because the

(location:isNearTo, Bedroom) part of the query is disseminated into (loca-

tion:toLeftOf, Bedroom) and (location:toRightOf, Bedroom). This logical

inference therefore matches on the descriptions of the available components.

185

10.1.4 Adding New Protocols

In evaluating this approach, three sets of protocol ontologies have been developed

for X.10, UPnP and Jini. This is obviously enough for networks which contain

only these three protocols. In environments where other protocols exists, suitable

protocol ontologies require to be developed.

Suppose a new protocol emerges, Excite4Home. In the existing home network

environment used in this evaluation, any Excite4Home components are undiscover-

able by the ontology approach. Without any protocol driver or ontology, there is

no way to reconcile the Excite vocabulary with the ontology stack. It is important

that an approach which can be applied in existing home network environment is

also applicable to future environments. If a standard emerges for describing existing

protocols which is not scalable or extensive, emerging protocols and components are

required to conform, or be backward compatible with that standard.

The approach presented in this work is able to scale as the environment develops.

To incorporate Excite4Home into an ontology-supported home network, a translator

component and a Excite4Home ontology set requires to be developed. The translator

is responsible for associating Excite description attributes, interfaces and classes with

terminology within the Excite4Home ontology and home network stack.

In this manner, an ontology-based Excite4Home vocabulary emerges. This vo-

cabulary, which is grounded within the ontology stack, allows Excite components

to be registered within the ontology vocabulary. Once components are registered,

they can be discovered by clients. Suppose a client wishes to discover available data

storage components before the Excite translator is installed in the framework. An

Excite hard disk is added to the network, but is undiscovered by the client, shown

in Figure 10.8.

After some time the translator is installed and available Excite component de-

scriptions are translated and registered in the ontology registry. The client submits

the same query to the registry, and is now returned the Excite hard disk as an

appropriate component.

This scenario highlights the extensiveness of this approach. As new protocols

186

Figure 10.8: Unsupported Excite Protocol

emerge, they can be installed into the ontology domain by use of translator compo-

nents and the development of a protocol ontology set. Clients within the network

can remain oblivious to the addition of a new protocol, as the ontology vocabulary

abstracts from protocol specific attributes. The installation of new translators and

ontologies can be performed at run time, without necessarily requiring a framework

restart. As the domain grows, the ontology vocabulary also grows to ensure that

the approach remains relevant to the number of protocols in the network.

10.1.5 Conclusion of the Ontology Approach

The ontology approach presented in this work simplifies the discovery process in the

home network. It achieves this by moving the complex nature of cross-protocol dis-

covery from network clients onto the protocol driver and translator components

within middleware framework. In this manner, network clients no long require

knowledge of multiple vocabularies and description approaches when discovering

available services and devices.

A network client need only have knowledge of the ontology vocabulary in order

to discover any instance of the component, regardless of protocol. This approach

relies on the translator bundles converting protocol specific descriptions, and the

registry matching client requests to available network components. The registry is

involved in applying a logical process to the discovery process (e.g. searching for

an Audio service will discover UPnP and HAVi Audio services). This logical step

may be taken when descriptions are added to the network (classification based upon

existing information in the registry) or at discovery time (e.g. a client submits a

187

description of a desired class, the registry classifies this description, and then returns

instances of that class).

The ontology approach is not a static one. It can scale as the environment

expands (as discussed in Sections 8.2.6, 10.1.3 and 10.1.4), allowing the approach

to be applicable to evolving network environments. Allowing the vocabulary to be

customised allows the approach to be applied in environments where a higher level

of description is required.

To further highlight the robust and versatile nature of this approach, Chapter

11 describes the use of this approach and system architecture with the MATCH

project. The MATCH project is concerned with providing home care systems to a

variety of users. As part of the home care system, the project requires an abstracted

discovery framework to support the high-level approach toward service description

and usage. This work has been deployed within the MATCH system to assist in the

provision of home care through network services.

188

Chapter 11

The MATCH Project

MATCH (Mobilising Assistive Technologies for Care at Home) is a project concerned

with designing and deploying home systems for providing a level of care and support.

A MATCH system is specifically tailored to the home user or users, thus systems may

differ in implementations. The purpose of a MATCH system is to provide support

for both those with complex care needs and those who provide support. This may

include family members, formal and informal carers, and health professionals.

A MATCH system is built upon a number of home care services and devices,

which work together to achieve goals. Goals may include supporting the indepen-

dence of a user, providing user data to health care professionals, or monitoring the

state of the home to prevent dangerous scenarios. Similar to a home network, a

MATCH system utilises existing devices, services and assistive technologies which

may be of differing protocols and vendors. A MATCH system can be customised to

suit the needs of a user and their support network (carers and health professionals).

This customisation is not limited just to when the system is installed, but can also

occur over time, as the needs of the system users change. This requires the system to

be adaptive and resilient, capable of carrying out desired goals by using the network

resources available to it.

In order to provide reliable resource discovery within a potentially evolving envi-

ronment, the MATCH system utilises the approach described in this work to support

the description of services and devices. An implementation of the work described

189

in Chapters 8 and 9 has been customised to the domain of home care systems

[96, 95, 89]. This chapter describes this implementation and customisation, high-

lighting the aspects of the project which have benefited from this work.

11.1 System Architecture

A typical MATCH system can be described through three different viewpoints:

• How the system interacts with users.

• How the system communicates internally.

• How the system performs its tasks.

11.1.1 User Interaction

As already discussed, a MATCH system utilises existing technology to achieve its

goals, and interact with users and the environment. This technology includes stan-

dard sensors (e.g. movement), motors, X.10 modules, Infra-Red transceivers, touch

screen monitors and audio equipment (e.g. microphones and speakers). To allow

control over these devices, relevant software services are deployed within an OSGi

framework. In this manner, the functions of hardware devices can be offered to the

system through software interfaces. In addition, the MATCH system also provides

a natural interface for users to configure or create goals for the system.

Utilising this technology, a MATCH system can interact with users in multiple

ways (e.g. touch, speech, movement). New technology can be added to the MATCH

system as it becomes available. Similarly, interactive technology may leave the

system, and so the system is adaptive to the resources available to it.

Care services operating within the OSGi framework provide functionality to the

MATCH system. These services may be simple software interfaces to hardware

(e.g. a service which offers audio output), or higher level services which offer more

complex operations (translate string values into an audio format).

190

11.1.2 System Communication

A MATCH system may contain a variety of protocol specific devices and services

(much like a typical home network). An OSGi framework can offer support for

cross protocol communication through driver bundles. MATCH does not utilise

this feature, instead making use of a message broker system to communicate with

system components. By using a message broker, components can be developed

and deployed quickly, without reliance on appropriate driver bundles being present.

Communication can instead take place by abstracting from any protocol or platform,

similar to that of a web service environment.

To communicate, system components send and receive messages in a publish-

subscribe manner. For example, a movement sensor interface publishes movement

messages to the broker. A movement monitoring service can subscribe to these

messages, and therefore receive any relevant messages from the broker network.

Components which offer messages to the system own a specific channel within

the broker system. Using this channel, a component can publish messages to the

network. Message types are specific to a component classification. For example,

all sensors which monitor movement within the home may publish messages of the

same type, MovementMessage. In this manner, a component may have the following

attributes:

Component Type: PIR Sensor

Channel: movement1

Message Type: MovementMessage

A service designed to monitor movement in the home would then subscribe to

the channel movement1, and begin receiving MovementMessages. As messages are

exchanged in a manner abstracted from protocol, drivers are not required to support

any interaction.

A message router is responsible for subscribing clients to channels, as well as

routing message to appropriate subscribers. A system component need only locate

the message router in order to act within the system. In this manner, there is no

explicit binding between system components.

191

11.1.3 Core System Components

In each MATCH implementation, there are four main components which configure

and control the main aspects of the system. These are:

• The Policy Server.

• The Task Manager.

• The Interaction Manager.

• The Resource Registry.

Using these components, a MATCH system can evolve to suit a user’s need, while

being able to adapt to changes in the available network resources. Each component

plays a specific role in the MATCH system.

11.1.4 The Policy Server

The policy server allows all users of the system (which may include carers and health

professionals) to configure desired goals for the system to achieve. For example,

suppose a user wishes to be notified of any daily appointments at 9am every day.

A user can configure the system by implementing a policy to achieve this goal. A

policy is a rule, or set of rules, which are triggered by an event. In this example,

the policy would be triggered at 9am every day.

Policies may be triggered by events internal and external to the system. Policies

provide a means for users to customise the system, in a fashion which can be applied

at run time. The policy server maintains a library of policies, which may be active

or inactive. The server also contains relevant context information about all aspects

of the environment, such as home layout and user capabilities.

11.1.5 The Task Manager

As no explicit binding takes place between system components, the task manager

co-ordinates interaction between system components. Suppose a policy expressed

the goal: When someone walks in the front door, switch on the hall light. Rather

than contain explicit details on which light to switch on, or what sensor to subscribe

192

to, a task is created which encompasses this action. This task is a continuous action,

which maintains a relationship between any sensor which monitors the front door

and any light which is in the hall. Once a task has been created by the task manager,

it becomes an independent entity. The task manager may modify or stop a task,

but it is no longer responsible for the actions of the task.

A task may be an abstract entity which is required to be initialised with param-

eters. For example, a SwitchOnWhen task requires to have two parameters to be

initialised: A component to switch on, and an event to listen for. A task may also

require no parameters, being pre-configured, and simply requires to be started by

the task manager.

In some cases, a task requires explicit tailoring in order to perform successfully.

Consider the example given in the policy manager description. The task to be

performed requires the system to communicate with the user to notify of daily

appointments. In this example, there is no specifications as to how the system

should communicate with the user. In these circumstance, the task manager requests

assistance from the interaction manager.

11.1.6 The Interaction Manager

The interaction manager is charged with providing interaction options to the task

manager. The interaction manager provides recommendations based upon various

information sources, such as available components, user capabilities and contextual

information. Using the appointment example, the task manager requests appropri-

ate recommendations from the interaction manager. The interaction manager may

consult with the policy manager to determine the capabilities of the user. If the user

is deaf or hard of hearing, then any audio notification is not suitable. Similarly, if

the user finds it hard to point or touch surfaces, a touch based confirmation is not

suitable.

The interaction manager also consults the resource registry in order to determine

available suitable resources. The registry contains descriptions of all available de-

vices and services within the system and network. The interaction manager queries

193

the registry and retrieves relevant components. The interaction manager ranks dis-

covered components in order of relevance to the task, and returns recommendations

to the task managers.

11.1.7 The Resource Registry

The resource registry maintains a list of device and service descriptions. The re-

source registry is an implementation of the ontology registry described in Chapter

8. It provides a means of describing system components in a manner abstracted

from protocol or vendor, with descriptions being grounded within the home network

ontology stack. An overview and evaluation of the registry is presented in Section

11.2.

This implementation of the registry is less reliant on protocol drivers, and more

on user-driven configuration. This is because the MATCH system provides a method

of communication independent of protocol, and so varying levels of user-driven con-

figuration will already be required (e.g. for providing communication and context

information). As part of the resource registry, a configuration wizard is provided for

quick installation, modification and removal of component descriptions.

11.1.8 System Review

By utilising the message broker system, and by the inclusion of the four main system

components, a MATCH home care system can provide a high degree of customisation

for system users. Having a component-like approach toward providing care services

allow a library of care services to be created. In this manner, services can be selected

for relevant situations, and removed when no longer required. By utilising the policy

server and resource registry, the system can be manipulated at run time, without

requiring a system restart.

As mentioned, the resource registry is an implementation of the ontology reg-

istry, described in this work. In order to fully support the MATCH system, shown

in Figure 11.1.8, the ontology stack has been expanded, with ontologies specific

to MATCH being added. An overview and evaluation of the use of an ontology

194

Figure 11.1: The MATCH System

approach is given in the following sections.

11.2 The Role of Ontologies within MATCH

The MATCH project utilises an ontology-based component discovery approach for

the following reasons:

• The ability of the ontology language to describe components in a manner
abstracted from protocol or vendor.

• The ability of the vocabulary to adapt and scale to meet user and system
requirements at run time.

• The ability of the vocabulary to describe interaction details of components.

• The ability of the ontology registry to provide a logic-based discovery environ-
ment.

Some of these advantages are inherit within the approach itself, while others are

found by customising the approach to the project domain. As the MATCH system

operates at a level above protocol specific details, the use of the HNOS and ontology

registry are well suited to this domain. The description language is independent of

the system platform, allowing descriptions to persist, even if the underlying system

is changed.

195

11.2.1 Describing Components

Initially, the MATCH project utilises a limited range of assistive technology. The

catalogue of devices used has been translated into a set of ontologies, which are

positioned within the core and generic layers of the stack. In a similar manner, a

small set of available network care services has also been described.

MATCH components not only abstract from protocol, but also from concept

of device or service. Components are represented through a Component ontology

class, but continue to have many of the attributes contained within the core levels

of the stack, such as category and location. In addition to describing Components,

MATCH ontologies also contain scope for describing Tasks. Tasks are a special

instance of the Component class, reserved for use within the task manager.

11.2.2 Evolving Vocabulary

A MATCH system may be deployed within a users home for various reasons. Some

systems may be a short-term solution to user needs. Other systems may be designed

to provide continuous, long-term support for users and carers. Components within

the system may be replaced with new versions, and new components may be added

as technology matures.

It is the intention of the project that a system should not require constant on-

site maintenance or system restarts when applying system changes. To support this

intention, a MATCH system is deployed upon an OSGi framework which allows

remote framework management. As discussed in Sections 8.2.6 and 10.1.4, adding

new ontologies to the stack can be performed at runtime. The registry stores all

ontology information in a model, which is constantly changing, based upon the

ontology information available.

11.2.3 Describing Interaction Details

Components within the MATCH system use channels to exchange messages through

the message broker. Once a component has been discovered using the registry, the

component client requests the interaction details from the registry, found within the

196

component description.

Tasks and Components both contain an ownsChannel and offersMessageType

which provide information on how system components can interact through the mes-

sage broker. Excluding these properties, a MATCH component is described in a

similar manner to that of a device or service. For example, consider the description

of a wireless PIR sensor presented below:

The MessageType pointed to by the offersMessageType property is a concrete

ontology class. In this manner, a MessageType may contain attributes and relation-

ships. In particular, MessageType classes can be sorted into sets of messages. For

example, a PersonalMovementMessage is concerned with the movements of a spe-

cific individual within the home. A PersonalMovementMessage is sub-class of the

MovementMessage class.

It is important to note that the original HNOS is not concerned with describing

any interaction details, as system interaction is largely system dependent. Home

networks are not guaranteed to share a common communication approach, like that

found within UDDI-like web services. The inclusion of interaction details within the

MATCH project demonstrates the versatility of OWL in describing and unifying

various domains. The MATCH project required the addition of specific ontologies

to the HNOS vocabulary, but this requirement does not invalidate the intention or

usefulness of the vocabulary. It instead serves to highlight the suitability of this

approach in addressing various home network scenarios, in this case: a home care

network.

11.2.4 Logic Based Discovery

A MATCH system can leverage the advantages of logic-based discovery already

described in this work (Section 10.1.3). For example, suppose a component which

monitors movement around the home wishes to discover any components which

detect movement and publish MovementMessage information. In interacting with

the registry, the query shown in Figure 11.2 is formed.

This query simply requests instances of Components which are of the category

197

ComplexQuery query = new ComplexQuery("Base:Component") ;
query.addCondition("Component:#hasCategory", "Device:#MovementMonitor") ;
query.addCondition("Component:#offersMessageType", "Message:#MovementMessage") ;
ArrayList results = registry.submitQuery(query) ;

Figure 11.2: A Sample MATCH Query

[TomsPersonalTracker, rdfs:#subClassOf, Match:#PersonalTrackingComponent]
[TomsPersonalTracker, rdfs:#subClassOf, Core:#Component]
[TomsPersonalTracker, Device:#hasCategoryType, MATCH:#PersonalMovementMonitor]
[TomsPersonalTracker, Movement:#tracksPerson, "Tom"]
[TomsPersonalTracker, Component:#ownsChannel, "TomTracker"]
[TomsPersonalTracker, Component:#offersMessageType, Message:#PersonalMovementMessage]

Figure 11.3: Description of TomsPersonalTracker Held by the Registry

MovementMonitor and offer MovementMessages. Suppose a PersonalTrackingCom-

ponent offers real time information about a specific person as they move around

the home. Within the registry, this component can be represented as that given in

Figure 11.2.4.

The logical aspect of the ontology descriptions allow the query of the monitoring

component to locate TomsPersonalTracker. This is because of the logical relation-

ships within the vocabulary. Figure 11.4 depicts the relationships between classes

found in the description of TomsPersonalTracker and those within the MATCH

ontologies (and subsequently the HNOS). With the logical sub-class relationships

in the class descriptions, the registry matches Device:#MovementMonitor to

MATCH:#PersonalMovementMonitor and Message:#MovementMessage

with Message:#PersonalMovementMessage.

Figure 11.4: Relationships within the MATCH Ontology

198

Chapter 12

Evaluation

This work presents an approach to describing and discovering components within a

home network. Evaluating this approach proves a challenge within itself. Some de-

scription frameworks, such as OWL-S and SWSF, are under continual development

or are designed for a web service domain. This work has identified issues within

these frameworks and, where applicable, has attempted to address these issues.

Relevant work within home network domains, such as the NASUF (Section 7.1.1)

and GAS (Section 7.1.2) ontology projects, are concerned with exploring the nov-

elty of an ontology approach within the home network domain. General evaluation

is given to the success of the approach, rather than comparisons with existing ap-

proaches or middleware frameworks.

Upper ontologies, such as those described in Section 7.3, are typically large,

collaborative efforts. Some projects, such as the Cyc project [55], have provided

open-source versions of their ontologies. It was an initial aim of this work to relate

terms within the HNOS to relevant terms found within publicly available upper

ontologies, in particular the OpenCyc ontology provided by the Cyc project. After

initial investigation, it was found that this aim was not immediately feasible, due to

the size of the single ontology provided.

In the absence of a standardised form of ontology or framework evaluation, the

following aspects of this work have been evaluated:

• The Protocol/Vocabulary Relationship.

199

• The Reasoning Approach of the Registry.

• The Responsiveness of the Registry.

• The Range of the Vocabulary and Approach.

• The Versatility of the Approach.

• The Limitations of the Approach.

12.1 The Protocol/Vocabulary Relationship

Chapter 1 introduced the issue of multiple vocabularies within home network envi-

ronments. As the number of protocols within the domain increase, so the number

of vocabularies used may also increase. Existing home network protocols and mid-

dleware do not typically share common sets of vocabularies. In this environment,

clients are required to know multiple vocabulary sets in order to discover across

multiple domains. In this environment, the relationship between existing protocols

and vocabularies required can be naively represented as x :x. This relationship is

highlighted in Section 3.6.

Section 10.1 describes the experiments carried out within a home network envi-

ronment supported by the ontology approach. This approach provides a supportive

description and discovery environment, designed for networks which may contain

multiple vocabularies. This approach unifies existing protocol vocabularies. In this

manner, existing protocols are not rendered obsolete or incompatible with the mid-

dleware framework. As new protocols join the network, new ontology representa-

tions of the protocol vocabulary are added to the HNOS within the registry. Existing

clients can discover new components, described using existing ontology-based termi-

nology. A client therefore only requires to know the ontology vocabulary, which is

initially captured within the HNOS. Therefore, the protocol/vocabulary relationship

can be represented as x :1.

12.2 The Reasoning Approach of the Registry

The registry implementation is proactive in reasoning over new information. As new

information is added to the registry, the reasoning process is invoked to ensure the

200

ontology model contains all relevant information as soon as it is available. This is

similar to the eager loading pattern commonly found within software programming,

where objects are fully initialised when created [35].

Issues associated with eager loading are concerned with the relationship between

the amount of time and resources required to fully initialise an object compared to

the extent to which it is used. For example, suppose object A contains ten fields,

with each field referencing another object. In initalising object A using eager loading

would require each field to also be initialised, and hence a further ten objects require

to be initialised. Suppose a client of object A is only interested in the first field.

After examining this field, the client disregards object A as it has no further use

for it. In this instance, the process of intialising object A is very inefficient, as nine

other referenced objects are unneeded but are still initialised.

The converse approach to eager loading is lazy loading [35]. Lazy loading is

concerned with only initialising and loading objects and fields when required, in an

‘on-demand’ manner. Using the example of object A, when the client wishes to

interogate the first field, object A first checks to see if this field has been initialised.

If it has not been initialised, it initialises the field and then returns the result to the

client. If the client then has no further need for object A, a substantial saving has

been made as the other nine objects are not initialised.

Within the ontology registry, eager loading involves the registry reasoning over

all new information as it becomes available. For example, suppose ontlogy class A

was stated to be a subclass of class B as part of its description. On being submitted

to the registry, all known information about class B is added to the description

of A. Suppose as part of this information, class B is also related to class C. This

information is also added to the class A description on the initial load of information.

A potential drawback to this approach is that this information may never be

accessed by any client, either directly or indirectly. No client may desire to discover

information about class A or class B. Additionally, the reasoning process may be a

time-intensive operation, as numerous facts and information may be infered. The

registry takes this approach to ensure all information is available when reasoning

201

over new information.

Lazy loading within the registry would require the opposite approach, where

reasoning is only initiated when a client wishes to know about a specific ontology

class or instance. From a functional point of view, ontology information would

therefore only be reasoned over when directly required. In practice however, to

perform full reasoning, the whole ontology model would require to be reasoned over

to ensure any applicable entailements are added. For example, to perform reasoning

over class A would require class B to be reasoned over, which in turn may require

class C to be reasoned over. In practice, lazy loading simply moves the processing

time from components uploading descriptions to those querying for descriptions.

It is for this reason that this work adopts a pro-active, eager-loading approach to

reasoning, ensuring client quering times are kept to a minimum.

12.3 The Responsiveness of the Registry

This section is concerned with the data stored within the registry, and the respon-

siveness to querying and modification. This evaluation will also measure the volume

of data captured and inferred by the registry, and correlate the volume with the

registry responsiveness. The volume of data will be measured in terms of RDF

statements and number of ontology classes present. The test-bed machine used in

evaluation contains a dual-core CPU running at 2.4GHz, with 4GB of memory. This

evaluation is performed in three stages:

• Evaluation of the Home Network Ontology Stack.

• Evaluation of a MATCH system environment.

• Evaluation of a registry with additional ontologies.

The ontology registry stores a model of ontology metadata, including classes and

relationships. This model can change continuously, as new data is added or removed.

If the model has changed, the new data must be reasoned over. If the model remains

stable, no reasoning is performed. It is for this reason that querying may encounter

two different registry states. If a query concerns ontology information which has

202

Stack Level Ontology Classes RDF Statements Initial Query (s) Secondary (s)
Base 12 84 0.065 0.001
Core 148 1368 0.189 0.006

Generic 168 1511 0.226 0.009
Protocol 197 1886 0.27 0.009

Figure 12.1: Response times of the Registry using the HNOS

not yet been reasoned over, the registry first performs reasoning, and then returns

relevant matches back to the user. Additional queries over the same information do

not initiate the reasoning process. In this manner, initial queries may take longer to

return than subsequent queries. Querying time is largely dependent on the amount

of information within the registry.

This evaluation has captured the querying time from two different perspectives:

The initial query, and the secondary query. The initial query represents a query over

un-reasoned data, while the secondary query represents subsequent queries over the

same data. The query expressed is intended to represent the worst case scenario: the

retrieval of all instances (and sub classes) of the owl:Thing concept. This concept

is the root of all ontology classes, and all ontology classes are a member of the

owl:Thing set.

This evaluation is initially performed using each level of the HNOS stack.

12.3.1 Evaluation of the HNOS

The stack is built in a ‘bottom up’ manner, with each level of the stack containing

more meta data than the level below. In this manner, the higher the levels of the

stack used, the more information is contained within the registry. This is reflected

in the query response times of the registry, shown in Figure 12.1.

This data set represents an environment where the registry contains the com-

plete meta-data set contained within the HNOS. This environment does not contain

any ‘live’ network components, but simply the descriptions of possible components

(within the Generic and Protocol layers). An implementation of the MATCH system

has been used to implement a more ‘real world’ environment.

203

Stack Level Ontology Classes RDF Statements Initial Query (s) Secondary (s)
MATCH 322 2725 0.479 0.010

Figure 12.2: Response Times of the Registry Within the MATCH system

12.3.2 Evaluation of the MATCH System Environment

The MATCH project involved the development of additional ontologies for describ-

ing available MATCH devices and services. In particular, the MATCH ontologies

describe several assistive technology devices and network services used by MATCH

components. These ontologies, coupled with the HNOS, provide a rich environment

for describing home care components, while also providing a large amount of meta-

data within the registry. The query response time of the registry within a MATCH

system is shown in Figure 12.2.

What is becoming clear is that, while the initial query time would seem very

much tied to the amount of data within the registry, the secondary querying time

remains extremely low throughout. As explained, the initial query instigates a

reasoning process by the registry on all unreasoned data within the model. When

no information is reasoned over, the response times are minimal.

A home network is potentially unbounded in size. As the number of network

components increase, so the amount of information within the registry also increases.

To further examine the emerging properties of the query response times, external

ontologies have been imported into the registry to increase the amount of information

present.

12.3.3 Evaluation of the Registry with Additional Ontologies

To fully evaluate the capability of the ontology registry, larger ontologies have been

imported in order to increase the amount of data. These ontologies have been devel-

oped by Gavin Campbell and Ken Turner for supporting the Appel Policy Language

[14, 13]. These ontologies are not designed for a home network environment, but are

written in OWL, and therefore share the same logical properties as the HNOS. The

query used for evaluation continues to be applicable to these ontologies, as all ontol-

ogy classes are members of the OWL:Thing class. The evaluation results are given

204

Ontology Name Ontology Classes RDF Statements Initial Query (s) Secondary (s)
GenPol 250 3672 0.395 0.009
WizPol 606 7757 0.620 0.014

HomeCare 790 9196 0.744 0.017
Sensor 871 9619 0.791 0.015

Figure 12.3: Response Times of the Registry using Imported Ontologies

in Figure 12.3. As can be seen, while the initial query time continues to increase

as the data increases, the secondary (and subsequent) query time remains stable.

For example, the Sensor ontology taken from the Appel ontologies contains more

than three times the RDF statements contained within the HNOS and MATCH

ontologies, and yet the secondary querying time is a mere 0.005 seconds longer.

12.3.4 Response Evaluation

As a component description can own one or more RDF statements, and a home

network is potentially unbounded in components, it is difficult to equate the amount

of information used within this evaluation with any upper bounds or threshold within

a home network environment. For this reason, this section is simply an evaluation

of the registry with respect to the volume of data used, with no concrete conclusions

drawn over what the data represents.

It should be mentioned that the final entry in this evaluation (the Sensor ontol-

ogy) contains nearly three times the ontology classes than the HNOS and MATCH

ontologies. From a naive viewpoint, these extra classes could equate to 500 device

and service descriptions within the network if it is assumed that each new class rep-

resents a description instance of a device or service. Similarly, the Sensor ontology

contains nearly four times the RDF statements, which can directly equate to just

under 7000 descriptive statements.

Figure 12.4 shows a comparison between the initial and secondary response times.

The initial query time displays a clear relationship with the amount of data within

the registry.

The initial query represents the first ontology operation to be performed upon

the whole model. In other words, no operations have been carried out upon the

205

Figure 12.4: Comparisons of Response Times

data other than consistency checking. It is for this reason that the initial querying

time is not in line with the secondary time. In comparison to existing home network

protocols, the initial response time for the Sensor ontology (0.8 seconds) would be

deemed appropriate. The UPnP and HAVi architectures both specify a timeout

period greater than 1 second [90, 50]. As this response time is only applicable to

the initial query, client A may receive a delay of 0.8 seconds, but client B would

then experience a delay of only 0.015 seconds (and subsequently for client C). What

becomes clear is that the initial response time will not be experienced by the vast

majority of network clients. Instead, the secondary response time can be used as the

standard waiting time clients should expect to experience. From a naive perspective,

the initial response time appears to be follow an exponential trend as the amount

of data grows.

The response time is due to various factors such as ontology complexity, the size

of the model and the computational resources available. As these factors can vary,

it is difficult to present a relationship between the volume of data and the response

time of the registry. One key claim of this work is that it is scalable, and suitable to

apply in a potentially expanding environment. This evaluation supports this claim.

206

Ontology Name Ontology Classes RDF Statements Response Time (s)
Core 148 1368 0.006

Sensor 871 9619 0.015

Figure 12.5: Comparison of Secondary Response Times

Consider the table shown in Figure 12.5. In this comparison with the Core level

ontologies, the Sensor ontology increases the ontology classes found within the reg-

istry by a factor of 6, and RDF statements by a factor of 7. The response time

is increased by a factor of 2. While it may be difficult to form this relationship

into a formula, it is clear that as the volume of data increases within the registry,

the response time does not scale in a similar manner. The response time remains

extremely favourable, and well within acceptable response times (such as those pre-

sented by UPnP and HAVi). In this manner, this work is valid in its claims to be

scalable within the domain.

12.4 The Range of the Vocabulary and Approach

This section will explore the potential domains out with the home network where

the HNOS and registry approach could be applied. This section will concentrate on

two domains in particular: A web service domain, and a peer-to-peer domain.

12.4.1 Web Service Deployment

Successful web service environments are built upon a common description framework

and messaging format (discussed in Chapter 6). Standard approaches, such as UDDI,

already exist within the domain for describing services. As this work is designed to

provide unification to existing description vocabularies, it would have little effect in

a domain which contains a single framework approach.

Web Service definitions, such as UDDI, OWL-S and SWSF, contain a structured

format for describing services, specifying a set of defined properties which may be

found within a description. Some properties can be constrained in their values, but

others may open ended with no set range defined. One such open ended property

found within UDDI, OWL-S and SWSF is that which specifies the category of the

207

service. This property is deliberately left unbounded as services may refer to a

number of external taxonomies. At this point, part of the approach presented by

this work may be used.

One of the main purposes of the HNOS is to allow protocol specific descriptions

to be grounded within more generic attributes and classes. In this manner, a client

can request services of a generic category and discover all protocol specific imple-

mentations. By leveraging this characteristic of the HNOS, web service registries

could be augmented to allow clients to discover using the same principle. Web clients

could then discover using a generic classification, with the registry performing the

logical operation of determining all instances of that classification.

In this manner, web service clients could operate in multiple web service domains.

Web service registries can then take the logical step between the generic classification

requested, and the specific classification used within the domain.

12.4.2 Peer to Peer Domains

Peer-to-Peer networks provide a unique network domain. Peer-to-peer (P2P) net-

works can vary in type and structure, but in general are devoid of centralised resource

registries. In such a variable environment, it is difficult to see how the approach pre-

sented in this work can be easily applied. In networks where peers are responsible for

maintaining their own registries, the amount of ontology information which would

be replicated in each peer may deem this approach prohibitive. In this environment,

it would be important to restrict the amount of ontology information to only that

which is relevant to the node. To support this requirement, it would be equally

important for the ontologies within the ontology stack to be designed in a tight

manner, with each ontology severely limited in what it describes. A node would

then contain only information limited to the services provided, including any possi-

ble network variants. Such variants would correspond to sub-services or requesting

using different terminologies.

It would be sufficient to assume that the stack-approach presented in this work

would require to be more tightly defined and controlled in order to be applied to

208

a P2P environment. As P2P is typically adhoc in both peer capability and service

provision, the vocabulary would require to be equally wide-ranging. While the

approach presented in this work is extensive, the management of the descriptions

(the SSDB) is suited to a controlled environment where services are for a particular

domain. It is at this existing work, such as the DiSUS [31] component within the

NASUF, and the GloServ architecture [6, 5], would prove to be more suited to this

environment.

12.5 The Versatility of the Approach

Chapters 8 and 10 discuss aspects of the approach which can be extended and reused.

This work claims these aspects ensure the approach remains relevant and applicable

as the domain changes. This section examines these claims in terms of the ontology

stack, the system architecture and implementation.

12.5.1 The Home Network Ontology Stack

Section 8.2.6 discusses the extendibility of the ontology stack, citing the use of the

approach within the MATCH project. This project required the vocabulary within

the core and generic levels of the stack to be extended. To achieve this requirement,

the stack was extended to incorporate new devices and service types, as well as other

context information specific to the home care domain. This project highlighted the

extensiveness of the vocabulary approach. The core and generic levels are potentially

unbounded in the amount of information which they may contain, and it is these

layers which allow the stack to claim to be extensive.

From a high level view, the core level provides the vocabulary for the approach,

while the generic level provides the classification aspect. The core level can therefore

be extended as required to describe the domain, while the generic level provides

meaning to the vocabulary. As an aside, this work recognises that new information

being added to the stack is of little use if no other ontologies make reference to it.

Some support can be gained from logical inference, but in general new information

requires new ontologies to make use of it to avoid being redundant.

209

This work provides three sets of protocol vocabularies developed to address three

specific protocols. It is important the approach described within this work is not

limited to domains containing only these protocols. Protocol ontologies are built

upon all other levels within the stack. As the top-most level of the stack, the protocol

layer is versatile, allowing protocols to be removed and modified with ease. This is

because no ontologies depend on the information within this layer. The exception

to this statement is that protocol ontologies may reuse ontology information within

other protocol ontologies, but this is likely to be confined to protocol ontology sets.

(E.g. UPnP ontologies may reuse information found within their own ontology

set, but are unlikely to reuse ontology information from other protocols.) In this

manner, the ontology level of the stack can be extended to include new protocols, and

modified by removing or updating existing protocol ontologies without invalidating

the ontology stack. It is this characteristic of the protocol layer which allows this

work to claim to scalable. The ontology stack is viable regardless of the number of

protocols and protocol ontologies within the domain, whether this be many or none

at all. As the domain scales (new protocols entering the network) the stack can scale

with it by simply adding a new protocol ontology into the protocol layer.

12.6 The System Architecture and Implementation

The Ontology Registry supports the extensive aspect of the Ontology Stack by

allowing new ontologies to be added to the core and generic levels of the stack at

run time. As new information is added to the stack, the registry reasons of the

new data and infers any new facts discovered. While the registry is in itself a

static component, the amount of ontology data it can managed is limited only by

computational resource. While this would appear to initially be an obvious and

unimportant aspect of the registry, it obscures an important characteristic. The

registry does not constrain what type of ontology information is submitted, other

than it is expressed in an OWL format. This allows information which may be

initially unrelated to the Ontology Stack to be loaded into the registry, potentially

extending the purpose of its use beyond service and device discovery. While this

210

aspect is not one which this work intentionally offers, it does highlight the open-

ended implementation of the architecture.

In symmetry with the scalable aspect of the Ontology Stack, the system architec-

ture is designed and implemented with scope to allow multiple protocol translators

to be present within a network. The registry is not required to provide protocol

translators, but rather translators are required to work with the registry. This al-

lows the system architecture to scale with the domain. If only one protocol and

corresponding translator is present within the network, the registry behaviour is un-

changed from there being multiple protocols and translators. The registry does not

force a one-to-one relationship between protocols and translators. Multiple trans-

lators can act on behalf on a single protocol when interacting with the registry. In

simple terms, as the number of protocols expand, and the number of protocol on-

tologies increase, the protocol translators can scale similarly to support the universal

discovery approach.

In removing the burden of providing and managing protocol translators from

the registry, the system architecture can claim to be component orientated. Trans-

lation is provide where the facilities exist, allowing the approach to be dynamic and

lightweight. One drawback of this approach is that there is no guarantee of an ap-

propriate translator being available when relevant protocol ontologies exist. In this

scenario, implicit knowledge about discovery in a certain domain can exist without

any means to carry this discovery out. It is believed that this weakness is outweighed

by the lightweight approach with the system architecture. To address this weakness

would require the registry to own translators for every possible protocol, which can

quickly become a heavyweight approach.

12.7 Limitations of the Approach

This Section will discuss the limitations of this work, and provide suggestions as to

how these limitations may be addressed.

211

12.7.1 Logical Metadata

This work is grounded within OWL, an ontology language which contains logical

properties capable of supporting inference and reasoning. As a descriptive logic lan-

guage, OWL descriptions contain a number of statements which are always logically

true, but may have no relevance to the purpose of the description. For example, con-

sider an ontology class named ClassX. Within an ontology model, such as that used

by the ontology registry, the following statements potentially exist about ClassX:

[ClassX, rdfs:#subclassOf, ClassX]

[ClassX, rdf:#type, ClassX]

[ClassX, rdfs:#subclassOf, owl:#Thing]

[ClassX, rdfs:#subclassOf, owl:#Class]

[ClassX, rdfs:#disjointWith, owl:#Nothing]

For every ontology class that exists within the model, there may be up to five

statements which exists describing logical properties of the class. (In this case,

ClassX is both a subclass of and type of ClassX. It is also a subclass of the owl:Thing

and owl:Class classes stated within the OWL syntax.) Suppose a home network con-

tains only three component descriptions. The registry would contain up to fifteen

statements which simply describe logical properties which can either be taken for

granted, or are not relevant to the description purpose. This relationship is propor-

tional, but can quickly give way to scenarios where ten descriptions infer up to fifty

statements. These statements are of course logically true, and do not mislead in any

way. If the registry is executing on a powerful platform, this meta data should not

affect performance. However, on platforms where computational resources are at a

premium, this logical meta data may begin to slow down the discovery process.

12.7.2 Agreement on Standards

In a domain where issues have arisen because of a difference in description vocabu-

laries and approaches, there is a need for existing and emerging protocol developers

to agree on the terms and ontologies within the HNOS. Where the HNOS does not

212

meet their need, perhaps because of new technology or classification, it is important

that when adding a new ontology to the stack, the principal of Generic ontologies is

maintained.

For example, suppose one developer creates the ontology class Sony:3DTelevision

and another Panasonic:3DTelevision. If there is no 3DTelevision class declared

within the generic level of the stack, both classes remain distinct from each other.

Protocol, or in this case Vendor, specific components require to be grounded within

the generic and core layers of the stack. Otherwise, clients wishing to discover

3DTelevisions would require to search for the Sony and Panasonic classes separately.

This issue can be difficult to resolve if two developers create similar ontology

classes at the same time. If Sony and Panasonic develop their televisions within the

same time frame, who should be charged with defining the generic ontology class?

In such an instance, it would be more effective for a third party organisation to be

charged with defining new ontology classes for the core and generic layers of the

ontology stack.

12.7.3 Component View of the Network

The approach given in this work requires a particular view of a home network. The

ontology stack views a service as being offered by a device. For the most part, this

assumption is suitable: Networked devices offer networked services. Jini highlights

where this view becomes less straight forward. Jini services are not offered by a

device, but by a software component. More specifically, within the Jini domain a

service offers functions. In this manner, the Jini service is the offering component,

and the functions are the services offered.

What this observation highlights, is that it is important for developers to attach

meaning to the properties of a class, rather than a class name. If a component

offers functionality, then it can be classified as a Device without requiring to be a

manifestation of a device. Similarly, functionality is classified as a service, even if it

is not classified as such within its own domain.

This process of thinking is crucial to the success of this approach, and yet it can

213

be difficult to reconcile with traditional views of devices and services. For example,

suppose a component offers a Lighting service. In discussing home network resources,

the ‘Lighting’ term represents one way of thinking about a service. Within this

approach, a Lighting service does not immediately resolve into a simple description.

Answers must be asked of the ‘Lighting’ term.

For example - what does a Lighting service do? A simple assumption is that a

Lighting service provides light in a location through being switched on and off. This

assumption highlights the need for a specific view of the home network. A Lighting

service allows a Light to be switched on and off. The component is the Light, while

the function being offered is a power function (on/off). ‘Lighting’ may represent a

high level concept, but it must be disseminated into Device and Service terms in

order to be discoverable within the network.

As an aside, some of the awkwardness of this approach may be resolved by

swapping Device with Component. In this manner, Components offer Services.

Scenarios, such as Jini, become simple as a service is no longer a Device but a

Component. This change is merely a change of the URI of the Device component.

12.7.4 Translators

This work presents a vocabulary which is scalable and extensive. The work also

describes a middleware implementation of a resource registry which is supported

by protocol translators. The success of this approach relies on these translators to

plug into multiple protocol domains. As a protocol specific component joins the

network, an ontology description is generated based upon the protocol vocabulary.

The reliance on translators has the potential to limit the impact of this approach

within the home.

A translator is capable of translating between two known vocabularies. In the

case of a schema-based vocabulary, such as UPnP, this translation is supported by

description templates. These templates, including properties and values, can be

known in advance by translators. Translator developers can configure the transfor-

mation between the protocol vocabulary and the ontology vocabulary in advance.

214

This approach works extremely well where protocols already contain a tightly con-

trolled description vocabulary.

This approach is less effective in domains where the vocabulary is not controlled.

Jini contains a small set of description attributes (Entry Objects) which are pro-

vided with the architecture. The Jini Architecture also allows Jini developers to

create their own set of Entry objects. This is a common feature of protocols which

adopt an attribute/value approach toward descriptions. Users may specify their

own attributes and values. Protocol translators have no way of determining ontol-

ogy equivalents if the knowledge is not provided by developers before hand. If an

unknown attribute or value is encountered, a translator can not provide an equiva-

lent description in the registry.

This issue is not limited to this work. It is a potential weakness in all home net-

work environments, supported or unsupported. Clients are typically pre-programmed

to search for specific resources with specific attributes. For a successful discovery

process, clients and providers must utilised a shared vocabulary, which may be de-

fined only for the local network, or may be standardised by a third party.

As new vocabularies emerge, and new devices and services are created, trans-

lators require to be updated to ensure the most recent conversion knowledge is

available. Translators may eventually contain multiple protocol specific attributes

which correspond to a single ontology attribute. There is potential for translators

requiring constant updating to incorporate new vocabularies. The work and ap-

proach presented in this work is capable of supporting this scenario, as translators,

which are OSGi bundles, can be updated at runtime, without any need to restart

the registry or framework.

215

Chapter 13

Conclusions and Future Work

This work has identified issues which required to be addressed for the home network

vision to become reality. The scenario explored in Section 3.6 and experiment de-

tailed in Section 3.11 highlight the motivation behind this work. A home network

should be able to contain multiple components and inter-operate without exposing

any protocol distinctions to the user.

13.1 Home Network Conclusions

To achieve this vision, a network service provider is required to:

• Describe the service in a manner which can be discovered by any components

within the network.

• Expose the service in a manner which allows clients to use the service.

Similarly, network service clients must be able to:

• Express discovery requests in a manner understandable by all components

within the network.

• Interact with the service in a manner understandable by both provider and

client.

In existing home network solutions and approaches, a vast amount of research

and development has been given to the secondary requirement of both clients and

216

providers. One well-explored option to support service invocation is through mid-

dleware frameworks. A second option which emerges is by using common communi-

cation protocols, and by using well-known interfaces or invocation languages, such

as WSDL. It is the observance of this work that this requirement is well addressed

by the research and industry communities.

It is also the observance of this work that the initial requirement of both providers

and clients has received little attention. In the majority of work encountered and ob-

served, networks rely on an attribute/value approach towards describing providers,

and submitting similar attribute/value queries from clients to the network. As has

been discussed, this approach does not scale well, and is certainly not suitable for

adhoc and evolving environments. There is a need for all components to share a

common approach to description and to utilise a shared vocabulary. As the environ-

ment may change through emerging protocols, components and requirements, this

description approach cannot afford to be static.

This requirement is not easily solved. To require all existing and future com-

ponents to adhere to a specific approach may not be feasible within itself, due to

the amount of vendors, developers and protocol providers involved in the domain.

This is not an issue limited to home network domains. As presented in Section 1.1,

a real life object such as a computer can be described using various sets of vocabu-

lary, with each unique to a nation or ethnic group. In a real-world setting, societies

which contain many different languages may become separated and distinct. This

possibility is reflected within home networks, highlighting the need to address this

issue.

Chapters 6 and 7 reviewed existing work within web service and home net-

work projects which were concerned with describing services. On examining these

projects, an important issue emerged. To simply provide a new description approach

risks alienating existing protocols, while providing no clear incentive for developers

to adhere to the approach over other existing description approaches.

For these reasons identified, this work has provided a description framework, a

vocabulary (Chapter 8), and a method to apply this approach to existing and emerg-

217

ing home networking protocols and solutions (Chapter 9). Using this approach, home

networks need not be distinct and isolated at the descriptive layer. This approach is

able to scale as the domain grows (Section 12.1), and able to be tailored to emerging

protocol specific description schemes (Section 8.2.6). By applying this work, home

network developers and users can ensure that protocol distinctions are resolved by

the network, without the need for user intervention. In simple terms, the complexity

of discovery within multi-protocol environments has been removed from the network

clients and onto the middleware framework and description vocabulary.

The implementation described in Section 10.1 included protocols which use each

approach identified within Section 4.2. It is recognised that this evaluation is by

no means exhaustive in terms of the number of protocols. These protocols were

chosen due to existing integration tools for the purpose of experimentation. While

a more comprehensive evaluation would include more existing protocols, this work

demonstrates there is no requirement for these existing protocols to be modified or

rendered obsolete in ontology-based description environments.

The implementation demonstrates that this approach is more than simply a the-

ory or future standard, but a immediate solution to existing home network issues.

The implementation also shows this approach to be generic and versatile, being able

to be deployed in environments out with the standard home network (as demon-

strated within the MATCH project discussed in Chapter 11). In this manner, this

work can claim to be technically relevant and applicable to existing environments,

being able to be implemented and automated with existing technology and proto-

cols. This claim is important in a domain where existing approaches and projects

are commonly described and discussed at a level abstracted from implementation

detail.

13.2 Review of Work

In the initial chapter of this work, a number of aims were specified. These aims are

required to be met in order to provide a comprehensive solution which can support

existing and future home network environments.

218

Provide a generic home network vocabulary

The Home Network Ontology Stack (HNOS) has been developed specifically for

describing network components at a generic level. By using terms and concepts

from the Generic level of the stack, and those below, network components can be

described independently of how they are provided.

Inclusion of existing protocol vocabulary

The protocol level of the HNOS is designed to allow existing vocabularies to be

incorporated into the framework. In this manner, protocol specific properties can

be captured and remain specific to the domain, while generic properties can be

related to properties found lower in the stack. In this manner, terms from protocol

specific domains which are semantically similar can be logically deduced to be so.

Syntactical differences no longer render properties logically distinct from each other.

Providing an extensive and scalable framework

Sections 10.1.3 and 10.1.4 discuss the scope of this approach in terms of scalabil-

ity and extensiveness. Section 12.2 evaluates the efficiency of the implementation

presented in this work. In both cases, the approach proves resolute: capable of in-

cluding new vocabulary, which can immediately participate in discovery operations,

without encountering relative slow-down in the response times of the registry.

Provide support for existing protocol specific components

The approach presented in this work makes use of translation components to incor-

porate existing home network components. In this manner, existing home network

components are not excluded from the approach. Network users are therefore able to

compose high level services based upon existing technology which is not constrained

to a particular protocol or vendor. This approach can also be applied to emerging

protocol specific components, blurring the distinctions between protocol domains.

219

Devise an approach suitable for multiple environments

Section 12.4 discussed the method behind applying this work in different environ-

ments. The description vocabulary presented is independent of any particular en-

vironment or implementation. Similarly, the middleware approach presented is also

generic, while the implementation is specific to an OSGi middleware framework. Sec-

tion 12.4 discusses the requirements of new environments where this approach may

potentially be applied. This work need not be constrained to a single middleware

framework, or a specific set of protocols.

13.3 Future Work

The idea and approach presented in this work is based upon a simple idea. A home

network may contain many protocols. Each protocol may have its own approach

in terms of communication, operation and description. These aspects can render a

protocol incompatible with other protocols in the network.

The ontology vocabulary described in this work is abstract from protocol, vendor

or platform. While the translation implementation is specific to OSGi, the approach

behind this implementation is applicable in any domain capable of supporting a

multi-protocol environment. This work can be taken as an on-going approach to

providing an environment where all aspects of home network management and use

can be provided at a level higher than protocol, platform or vendor. This section

proposes future work in the areas of middleware frameworks and service invocation.

13.3.1 Deploying the Approach Within Other Middleware and En-

vironments

This work presents an home network implementation managed by an OSGi middle-

ware framework. OSGi is well suited to this approach as existing protocol driver

bundles can be modified to support the translation process. It is important that

this approach is not tied to a single middleware platform. This work is concerned

with removing boundaries between protocols and platforms, it would seem conflict-

ing to only be applicable to a single middleware environment. For this reason, it

220

is important that the approach be deployed within other middleware frameworks.

Candidate frameworks require to have the following features or capabilities:

• Support a Java Virtual Machine: A JVM is necessary for the Ontology Reg-

istry to operate. The underlying ontology management application (Jena) and

querying interface (SQI) is written in Java.

• Provide translation ‘Services’ which can interact with protocol domains: These

services provide interaction across protocol boundaries in terms of descrip-

tion and registration. These components may be built upon existing protocol

drivers, or developed for this purpose. There is no requirement for these com-

ponents to be able to invoke protocol-specific actions or services. These actions

may be carried out by other components.

A natural choice for an additional implementation would be upon a Jini frame-

work which, like OSGi, is service orientated.

A Jini-Based Implementation

A Jini framework satisfies the above requirements. The Jini architecture is written

in Java, and requires all service, or at least all service proxies, to be written in

Java. A Jini environment differs to an OSGi environment, as all network services

are free to execute independently of the framework. (In OSGi, all services execute

within a single JVM). This allows the home network to take a distributed approach

to discovery. The Jini registry would be used by clients to discover the ontology

registry.

For the most part, the translation bundles used within the OSGi implementation

could be easily adapted to a Jini network environment. These bundles would also

require to discover the ontology registry by means of the Jini service registry. After

discovery of the ontology registry, the translation bundles could operate identical to

that of an OSGi-based environment.

This example is concerned with a Jini-based environment, but highlights the po-

tential of this approach. After the initial discovery of the ontology registry, transla-

tion bundles and clients can interact out with any support from the Jini framework.

221

Service-Orientated approaches exist for performing discovery within environment

without a centralised registry. It seems appropriate that future work also be given

into investigating the application of this approach within an environment without

middleware.

A Middleware-less Environment

One approach to distributed service discovery can be found within UPnP. In UPnP,

service clients discover desired services by means of broadcasting discover messages

(more specifically using SSDP). In porting this approach into a distributed envi-

ronment, it becomes clear that this approach would require to be adapted to the

environment. The ontology registry would require to be modified into a component

capable of responding to broadcast discover messages. Similarly, the SQI part of

the registry would require to be modified to convert between the domain-specific

method of message passing (if one exists) and the querying format accepted by the

registry.

Assuming the translation components are modified in a similar manner, the

normal base of interactions can now take place. This approach is portable as the

underlying principles of the approach are not platform or protocol specific. That is,

the ontology registry implementation is confined to a Java-based execution environ-

ment, but the information which it manages is abstracted from this confinement.

Similarly, the translation bundles are not required to operate on any specific plat-

form, with the only constraint being that they can communicate with the ontology

registry.

The two environments described are concerned with future work within extending

and evaluating the implementation of this approach. This work would be useful in

examining the limitations and requirements in ensuring this approach is not tightly

bound to a specific middleware. Aside from this work, an interesting expansion of

this approach may be found by describing abstract forms of service invocation and

actions.

222

13.3.2 Abstract Actions

As earlier discussed,some network-like domains, such as web services, share a com-

mon description approach in order to increase interoperability. These domains may

also contain a common communication protocol, such as SOAP, to further support

the collaborative environment. As has been shown, in an environment where differ-

ing protocols already exist within the domain, an intervention approach is required.

This approach is required to provide inclusion for existing network components to

interoperate regardless of the protocols used. For this to be achieved, different parts

of the network environment require to be abstracted from protocol boundaries.

This work has described an approach toward abstracting network component

descriptions from specific domain vocabularies and approaches. Another feature of

network interoperation which could potentially be abstracted is the service or device

invocation stage. One solution to bridging protocol boundaries at the invocation

level discussed in this work is using protocol drivers. These components bridge

communication from one protocol into another. This approach still involves a large

amount of protocol-specific implementation.

For example, a driver translates into a protocol A. A client of this driver requires

to know how to interact with it, including what format the message should be passed

in and what errors or state messages may be returned by the driver. Suppose the

client wishes also to interact within protocol B. This requires additional knowledge

of how to interact with the protocol B driver. Drivers A and B may require different

messages values, which are appropriate for the respective domains. For example,

suppose a client wishes to switch on two different lamps, one using protocol A and

another using B. Protocol A requires a ‘ON’ action value, while B requires the value

‘1’. Thus, a client requires to know how to interact with both protocol drivers,

which in turn may require the client to have some understanding of protocol-specific

message types and values.

This issue can be partly resolved by protocol drivers sharing a common interface,

with each driver being a protocol-specific implementation of the interface. Using an

interface approach does not scale well, as it must take into account every possible

223

action which can be carried out by a network component. For example, suppose

the driver interface is represented in a Java environment. The Java object would

require methods for each component action, which maybe become infeasible as new

components emerge.

Instead of anticipating every possible action, it may be more feasible to represent

the action in an abstract manner, independent of protocol-specific values and oper-

ations. For example, a switch on action could be represented in the following string:

‘deviceid:LivingRoom1, action:power, values:status=on,;’. In this environment, the

vocabulary and structure used can be abstracted from the protocol domain. When

a driver receives this string, it can interpret the intention of the client in a protocol

specific domain. The driver would contain associations between the abstract vocab-

ulary, and the protocol specific messages, actions and values relevant to the domain.

These associations would be similar to those found within the ontology translation

components.

In this manner, clients may interact with any protocol drivers without requir-

ing any domain specific knowledge. Drivers can therefore decouple the invocation

process from any domain specific format or approach. This approach would re-

quire a standardised format of the action string, as well as a universally applicable

vocabulary. This requirement is not unlike the issues addressed by this work.

The area of abstract actions has already received a degree of investigation and

implementation within policy based systems, such as that used within the MATCH

project. In this environment, policies or rules can be formed to invoke or manipu-

late services and devices in the home. The policy system used within the MATCH

project represents any service or device based actions in an abstract format. This

abstract action is then converted into a protocol specific action by the system. The

vocabulary used within the system is largely user and system specific, but the ab-

stract action format is generic to any domain, as specified by the Appel policy system

specifications.

The area of future work discussed within this section could be built upon the

work done within the MATCH and Appel systems. This work could extend the

224

scope of the approach into creating a standardised ontology-based vocabulary for

representing actions and action values. In tandem with the description approach

presented in this work, network components could be both described and used in

a protocol-independent manner. Clients would be able to interact without any

required knowledge of the existing protocols within the network.

13.4 Final Remarks

The approach presented in this work meets the aims stated. The approach allows

the discovery process within home networks to be a natural process, removing the

need for clients to require extensive amounts of terminology and inbuilt knowledge.

The binding between generic and protocol specific terminologies is moved onto the

middleware framework, allowing existing clients to continue to operate in future do-

mains. New sets of vocabularies need not render existing discovery queries obsolete,

as the ontology language allows semantically similar concepts to be logically related.

It is important to note that the discovery aspect of home networks is not the only

issue which requires to be addressed. The discovery operation is merely the initial

part of any network interoperation. This work attempts to reverse the common

occurrence of new protocols and description frameworks being developed in isolation

from existing work. In this manner, this work can be used as a foundation upon

which true cross-protocol transactions can occur within the home.

225

Bibliography

[1] ESSI WSMO Working Group . Web Service Modeling Ontology. Technical

report, The World Wide Web Consortium, June 2005.

[2] Carlisle Adams and Sharon Boeyen. Uddi and wsdl extensions for web ser-

vice: a security framework. In XMLSEC ’02: Proceedings of the 2002 ACM

workshop on XML security, pages 30–35, New York, NY, USA, 2002. ACM.

[3] Heejune Ahn, Hyukjun Oh, and Chang Oan Sung. Towards reliable osgi frame-

work and applications. In SAC ’06: Proceedings of the 2006 ACM symposium

on Applied computing, pages 1456–1461, New York, NY, USA, 2006. ACM.

[4] Kathleen Ahrens, Siaw Fong Chung, and Chu-Ren Huang. Conceptual

metaphors: ontology-based representation and corpora driven mapping prin-

ciples. In Proceedings of the ACL 2003 workshop on Lexicon and figurative

language, pages 36–42, Morristown, NJ, USA, 2003. Association for Compu-

tational Linguistics.

[5] Knarig Arabshian and Henning Schulzrinne. Combining ontology queries with

key word search in the gloserv service discovery system. In MC ’07: Proceed-

ings of the 2007 ACM/IFIP/USENIX international conference on Middleware

companion, pages 1–6, New York, NY, USA, 2007. ACM.

[6] Knarig Arabshian and Henning Schulzrinne. An ontology-based hierarchical

peer-to-peer global service discovery system. Journal of Ubiquitous Computing

and Intelligence, 1(2):133–144, December 2007.

226

[7] Steffen Balzer, Thorsten Liebig, and Matthias Wagner. Pitfalls of owl-s: a

practical semantic web use case. In ICSOC ’04: Proceedings of the 2nd inter-

national conference on Service oriented computing, pages 289–298, New York,

NY, USA, 2004. ACM.

[8] Sujata Banerjee, Sujoy Basu, Shishir Garg, Sukesh Garg, Sung-Ju Lee, Pramila

Mullan, and Puneet Sharma. Scalable grid service discovery based on uddi. In

MGC ’05: Proceedings of the 3rd international workshop on Middleware for

grid computing, pages 1–6, New York, NY, USA, 2005. ACM.

[9] Martin Bauer, Christian Becker, and Kurt Rothermel. Location models from

the perspective of context-aware applications and mobile ad hoc networks.

Personal Ubiquitous Comput., 6(5-6):322–328, 2002.

[10] André Bottaro and Anne Gérodolle. Home soa -: facing protocol heterogeneity

in pervasive applications. In ICPS ’08: Proceedings of the 5th international

conference on Pervasive services, pages 73–80, New York, NY, USA, 2008.

ACM.

[11] Yérom-David Bromberg and Valérie Issarny. Indiss: interoperable discov-

ery system for networked services. In Middleware ’05: Proceedings of the

ACM/IFIP/USENIX 2005 International Conference on Middleware, pages

164–183, New York, NY, USA, 2005. Springer-Verlag New York, Inc.

[12] Axel Brsch-Supan. Labor market effects of population aging. Labour,

17(SpecialIssue):5–44, 2003.

[13] Gavin A. Campbell. Ontology for Call Control. Technical Report CSM-170,

Department of Computing Science and Mathematics, University of Stirling,

UK, June 2006.

[14] Gavin A. Campbell. Ontology Stack for a Policy Wizard. Technical Report

CSM-169, Department of Computing Science and Mathematics, University of

Stirling, UK, June 2006.

227

[15] Pablo Cesar, Konstantinos Chorianopoulos, and Jens F. Jensen. Social televi-

sion and user interaction. In Comput. Entertain., volume 6, pages 1–10, New

York, NY, USA, 2008. ACM.

[16] S. Chetan, J. Al-Muhtadi, R. Campbell, and M. D. Mickunas. Mobile gaia:

a middleware for ad-hoc pervasive computing. In Proceeings of The Second

IEEE Consumer Communications and Networking Conference, pages 223–228,

2005.

[17] Eleni Christopoulou, Christos Goumopoulos, and Achilles Kameas. An

ontology-based context management and reasoning process for ubicomp ap-

plications. In sOc-EUSAI ’05: Proceedings of the 2005 joint conference on

Smart objects and ambient intelligence, pages 265–270, New York, NY, USA,

2005. ACM.

[18] Eleni Christopoulou, Christos Goumopoulos, Ioannis Zaharakis, and Achilles

Kameas. An ontology-based conceptual model for composing context-aware

applications. In Workshop on Advanced Context Modeling, Reasoning and

Management, 6 th Int. Conference on Ubiquitous Computing, 2004.

[19] Eleni Christopoulou and Achilles Kameas. Gas ontology: an ontology for

collaboration among ubiquitous computing devices. Int. J. Hum.-Comput.

Stud., 62(5):664–685, 2005.

[20] The OWL-S Coallition. OWL-S: Semantic Markup for Web Services, Novem-

ber 2004.

[21] Semantic Web Services Language Committee. Semantic Web Services Frame-

work (SWSF) Overview. Technical report, The World Wide Web Consortium,

September 2005.

[22] W3C Advisory Committee. Semantic web activity statement, October 2008.

[23] Lorcan Coyle, Steve Neely, Gatan Rey, Graeme Stevenson, Mark Sullivan,

Simon Dobson, and Paddy Nixon. Sensor fusion-based middleware for assisted

228

living. In 4th International Conference On Smart Homes & Heath Telematics,

pages 281–288, Belfast, UK, 26/06/2006 2006. IOS Press, IOS Press.

[24] Kiev Santos da Gama. An osgi middleware for mobile digital tv applications.

In Mobility ’07: Proceedings of the 4th international conference on mobile

technology, applications, and systems and the 1st international symposium on

Computer human interaction in mobile technology, pages 690–695, New York,

NY, USA, 2007. ACM.

[25] Giliard Brito de Freitas and Cesar Augusto Camillo Teixeira. Ubiquitous

services in home networks offered through digital tv. In SAC ’09: Proceedings

of the 2009 ACM symposium on Applied Computing, pages 1834–1838, New

York, NY, USA, 2009. ACM.

[26] Jorge E. López de Vergara, Vı́ctor A. Villagrá, Carlos Fadón, Juan M.

González, José A. Lozano, and Manuel Álvarez Campana. An autonomic

approach to offer services in osgi-based home gateways. Comput. Commun.,

31(13):3049–3058, 2008.

[27] Wolfgang Degen, Barbara Heller, Heinrich Herre, and Barry Smith. Gol: to-

ward an axiomatized upper-level ontology. In FOIS ’01: Proceedings of the

international conference on Formal Ontology in Information Systems, pages

34–46, New York, NY, USA, 2001. ACM.

[28] Anind K. Dey and Jennifer Mankoff. Designing mediation for context-aware

applications. ACM Trans. Comput.-Hum. Interact., 12(1):53–80, 2005.

[29] Roman et Al. Web Service Modeling Ontology. Applied Ontology, 1:77–106,

2005.

[30] P. Fergus, M. Merabti, M. B. Hanneghan, Taleb-Bendiab, and Minghwan.

A. A semantic framework for self-adaptive networked appliances. In IEEE

Consumer Communications & Networking Conference, pages 229–234. IEEE

Computer Society, 2005.

229

[31] P. Fergus, A. Minghwan, M. Merabti, and M. B. Hanneghan. Disus: Mobile

ad hoc network unstructured services. In Personal Wireless Communications.,

pages 75–82. ACTA Press, 2003.

[32] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and B. Thu-

raisingham. Rowlbac: representing role based access control in owl. In SAC-

MAT ’08: Proceedings of the 13th ACM symposium on Access control models

and technologies, pages 73–82, New York, NY, USA, 2008. ACM.

[33] Organization for the Advancement of Structured Information Standards (OA-

SIS). Introduction to UDDI: Important Features and Functional Concepts,

October 2004.

[34] The Apache Software Foundation. River proposal, 2006 December.

[35] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley, 2003.

[36] Adrian Friday, Nigel Davies, and Elaine Catterall. Supporting service dis-

covery, querying and interaction in ubiquitous computing environments. In

MobiDe ’01: Proceedings of the 2nd ACM international workshop on Data

engineering for wireless and mobile access, pages 7–13, New York, NY, USA,

2001. ACM.

[37] Eva Gahleitner, Wernher Behrendt, Jürgen Palkoska, and Edgar Weippl. On

cooperatively creating dynamic ontologies. In HYPERTEXT ’05: Proceedings

of the sixteenth ACM conference on Hypertext and hypermedia, pages 208–210,

New York, NY, USA, 2005. ACM.

[38] Alfonso Gárate, Nati Herrasti, and Antonio López. Genio: an ambient intel-

ligence application in home automation and entertainment environment. In

sOc-EUSAI ’05: Proceedings of the 2005 joint conference on Smart objects

and ambient intelligence, pages 241–245, New York, NY, USA, 2005. ACM.

[39] Nikolaos Georgantas, Sonia Ben Mokhtar, Yerom-David Bromberg, Valerie

Issarny, Jarmo Kalaoja, Julia Kantarovitch, Anne Gerodolle, and Ron Mevis-

230

sen. The amigo service architecture for the open networked home environ-

ment. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP Conference

on Software Architecture, pages 295–296, Washington, DC, USA, 2005. IEEE

Computer Society.

[40] Nubia M. Gil, Nicolas A. Hine, John L. Arnott, Julienne Hanson, Richard G.

Curry, Telmo Amaral, and Dorota Osipovic. Data visualisation and data min-

ing technology for supporting care for older people. In Assets ’07: Proceedings

of the 9th international ACM SIGACCESS conference on Computers and ac-

cessibility, pages 139–146, New York, NY, USA, 2007. ACM.

[41] P. D. Gray, T. McBryan, N. Hine, C. J. Martin, N. M. Gil, M. Wolters,

N. Mayo, K. J. Turner, L. S. Docherty, F. Wang, and M. Kolberg. A scalable

home care system infrastructure support domicilary care. Technical report,

Department of Computing Science and Mathematics, University of Stirling,

August 2007.

[42] RDF Core Working Group. RDF Vocabulary Description Language 1.0: RDF

Schema. Technical report, The World Wide Web Consortium, February 2004.

[43] RDF Core Working Group. Resource Description Framework/W3C Semantic

Web Activity. Technical report, The World Wide Web Consortium, 2004.

[44] RDF Data Access Working Group. SPARQL Query Language for RDF. W3C,

January 2008.

[45] The Web Ontology Working Group. OWL Web Ontology Language Overview.

Technical report, The World Wide Web Consortium, February 2004.

[46] Web Services Description Working Group. Web Services Description Language

(WSDL) Version 2.0 Part 1: Core Language. Technical report, The World

Wide Web Consortium, June 2007.

[47] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowl. Acquis., 5(2):199–220, 1993.

231

[48] Tao Gu, Hung Keng Pung, and Da Qing Zhang. Toward an osgi-based infras-

tructure for context-aware applications. IEEE Pervasive Computing, 3(4):66–

74, 2004.

[49] Karthik Harihar and Stan Kurkovsky. Using jini to enable pervasive comput-

ing environments. In ACM-SE 43: Proceedings of the 43rd annual Southeast

regional conference, pages 188–193, New York, NY, USA, 2005. ACM.

[50] HAVi, Inc. The HAVi Specification: Specification of the Home Audio/Video

Interoperability (HAVi) Architecture, 1.1 edition, May 2001.

[51] Cristian Hesselman, Hartmut Benz, Pravin Pawar, Fei Liu, Maarten Wegdam,

Martin Wibbels, Tom Broens, and Jacco Brok. Bridging context management

systems for different types of pervasive computing environments. In MOBIL-

WARE ’08: Proceedings of the 1st international conference on MOBILe Wire-

less MiddleWARE, Operating Systems, and Applications, pages 1–8, ICST,

Brussels, Belgium, Belgium, 2007. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering).

[52] Ian Horrocks and Peter F. Patel-Schneider. Three theses of representation

in the semantic web. In WWW ’03: Proceedings of the 12th international

conference on World Wide Web, pages 39–47, New York, NY, USA, 2003.

ACM.

[53] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules lan-

guage. In WWW ’04: Proceedings of the 13th international conference on

World Wide Web, pages 723–731, New York, NY, USA, 2004. ACM.

[54] Richard Hull and Jianwen Su. Tools for composite web services: a short

overview. In SIGMOD Rec., volume 34, pages 86–95, New York, NY, USA,

2005. ACM.

[55] Cycorp. Inc. The cyc knowledge base.

[56] Cycorp. Inc. Opencyc for the semantic web.

232

[57] Cycorp. Inc. Opencyc.org.

[58] Naohiko Kohtake, Jun Rekimoto, and Yuichiro Anzai. Infopoint: A device

that provides a uniform user interface to allow appliances to work together

over a network. Personal Ubiquitous Comput., 5(4):264–274, 2001.

[59] Panu Korpipää, Jonna Häkkilä, Juha Kela, Sami Ronkainen, and Ilkka

Känsälä. Utilising context ontology in mobile device application personalisa-

tion. Proceedings of the 3rd international conference on Mobile and ubiquitous

multimedia, 1:133–140, 2004.

[60] V. Koufi, F. Malamateniou, and G. Vassilacopoulos. A medical diagnostic and

treatment advice system for the provision of home care. In PETRA ’08: Pro-

ceedings of the 1st international conference on PErvasive Technologies Related

to Assistive Environments, pages 1–7, New York, NY, USA, 2008. ACM.

[61] Chin-Feng Lai and Yueh-Min Huang. Context-aware multimedia streaming

service for smart home. In Mobility ’08: Proceedings of the International

Conference on Mobile Technology, Applications, and Systems, pages 1–5, New

York, NY, USA, 2008. ACM.

[62] Meeyeon Lee, Seung Soo Park, and Jung-Won Lee. Ontology-based service lay-

ering for facilitating alternative service discovery. In ICUIMC ’08: Proceedings

of the 2nd international conference on Ubiquitous information management

and communication, pages 465–470, New York, NY, USA, 2008. ACM.

[63] Lin Lin and I. Budak Arpinar. Discovering semantic relations between web

services using their pre and post-conditions. In SCC ’05: Proceedings of the

2005 IEEE International Conference on Services Computing, pages 237–238,

Washington, DC, USA, 2005. IEEE Computer Society.

[64] David Liu and Dao Xian. Home environmental control system for the disabled.

In i-CREATe ’07: Proceedings of the 1st international convention on Reha-

bilitation engineering & assistive technology, pages 164–168, New York,

NY, USA, 2007. ACM.

233

[65] Emerson Loureiro, Frederico Bublitz, Nadia Barbosa, Angelo Perkusich,

Hyggo Almeida, and Glauber Ferreira. A flexible middleware for service pro-

vision over heterogeneous pervasive networks. In WOWMOM ’06: Proceed-

ings of the 2006 International Symposium on on World of Wireless, Mobile

and Multimedia Networks, pages 609–614, Washington, DC, USA, 2006. IEEE

Computer Society.

[66] Lorena F. Maia, Danilo F. S. Santos, Ricardo S. Souza, Angelo Perkusich,

and Hyggo Almeida. Seamless access of home theater personal computers for

mobile devices. In SAC ’09: Proceedings of the 2009 ACM symposium on

Applied Computing, pages 167–171, New York, NY, USA, 2009. ACM.

[67] D Marples and P. Kriens. The open services gateway initiative: an intro-

ductory overview. Communications Magazine, IEEE, 39:110–114, December

2001.

[68] Tony McBryan, Marilyn R. McGee-Lennon, and Phil Gray. An integrated

approach to supporting interaction evolution in home care systems. In PETRA

’08: Proceedings of the 1st international conference on PErvasive Technologies

Related to Assistive Environments, pages 1–8, New York, NY, USA, 2008.

ACM.

[69] Marilyn Rose McGee-Lennon. Requirements engineering for home care tech-

nology. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference

on Human factors in computing systems, pages 1439–1442, New York, NY,

USA, 2008. ACM.

[70] A. Mingkhwan, P. Fergus, O. Abuelma’Atti, M. Merabti, B. Askwith, and

M. B. Hanneghan. Dynamic service composition in home appliance networks.

Multimedia Tools Appl., 29(3):257–284, 2006.

[71] Tatsuo Nakajima. Experiences with building middleware for audio and visual

networked home appliances on commodity software. In MULTIMEDIA ’02:

234

Proceedings of the tenth ACM international conference on Multimedia, pages

611–620, New York, NY, USA, 2002. ACM.

[72] Ian Neild, Paul Bowman, and David Heatley. Sensor networks in telecare. In

EmNets ’07: Proceedings of the 4th workshop on Embedded networked sensors,

pages 18–22, New York, NY, USA, 2007. ACM.

[73] Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS ’01:

Proceedings of the international conference on Formal Ontology in Information

Systems, pages 2–9, New York, NY, USA, 2001. ACM.

[74] Confederation of British Industry. Effects of an Ageing UK Population: CBI

evidence to the House of Lords Inquiry. http://www.cbi.org.uk.

[75] Institute of Cognitive Science and Italian National Research Council Technol-

ogy. Laboratory for applied ontology - dolce.

[76] Sung Ho Park, Myung Jin Lee, and Soon Ju Kang. Multimedia room bridge

adapter for seamless interoperability between heterogeneous home network

devices. In MG ’08: Proceedings of the 15th ACM Mardi Gras conference,

pages 1–9, New York, NY, USA, 2008. ACM.

[77] Olena Parkhomenko, Yugyung Lee, and E. K. Park. Ontology-driven peer pro-

filing in peer-to-peer enabled semantic web. In CIKM ’03: Proceedings of the

twelfth international conference on Information and knowledge management,

pages 564–567, New York, NY, USA, 2003. ACM.

[78] Jyotishman Pathak, Neeraj Koul, Doina Caragea, and Vasant G. Honavar. A

framework for semantic web services discovery. In WIDM ’05: Proceedings

of the 7th annual ACM international workshop on Web information and data

management, pages 45–50, New York, NY, USA, 2005. ACM.

[79] Adam Pease. The suggested upper merged ontology(sumo) - ontology portal.

[80] Anand Ranganathan, Jalal Al-Muhtadi, and Roy H. Campbell. Reasoning

about uncertain contexts in pervasive computing environments. IEEE Perva-

sive Computing, 3(2):62–70, 2004.

235

[81] Nirmalya Roy, Gautham Pallapa, and Sajal K. Das. An ontology-driven am-

biguous contexts mediation framework for smart healthcare applications. In

PETRA ’08: Proceedings of the 1st international conference on PErvasive

Technologies Related to Assistive Environments, pages 1–8, New York, NY,

USA, 2008. ACM.

[82] Michele Ruta, Tommaso Di Noia, Eugenio Di Sciascio, Massimo Paolucci,

Floriano Scioscia, and Eufemia Tinelli. A semantic-based registry enabling

discovery, composition and substitution of pervasive services. In MobiDE ’08:

Proceedings of the Seventh ACM International Workshop on Data Engineering

for Wireless and Mobile Access, pages 63–70, New York, NY, USA, 2008. ACM.

[83] Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning domain

ontologies for web service descriptions: an experiment in bioinformatics. In

WWW ’05: Proceedings of the 14th international conference on World Wide

Web, pages 190–198, New York, NY, USA, 2005. ACM.

[84] Stephen Strom. Building a large-scale generic object model: applying the

cyc upper ontology to object database development in java. In OOPSLA

’00: Addendum to the 2000 proceedings of the conference on Object-oriented

programming, systems, languages, and applications (Addendum), pages 37–38,

New York, NY, USA, 2000. ACM.

[85] Ali Maleki Tabar, Arezou Keshavarz, and Hamid Aghajan. Smart home care

network using sensor fusion and distributed vision-based reasoning. In VSSN

’06: Proceedings of the 4th ACM international workshop on Video surveillance

and sensor networks, pages 145–154, New York, NY, USA, 2006. ACM.

[86] Andrea Taylor, Richard Wilson, and Stefan Agamanolis. Supporting carers

in their caring role through design. In CHI EA ’09: Proceedings of the 27th

international conference extended abstracts on Human factors in computing

systems, pages 3985–3990, New York, NY, USA, 2009. ACM.

236

[87] Linda Tetzlaff, Michelle Kim, and Robert J. Schloss. Home health care sup-

port. In CHI ’95: Conference companion on Human factors in computing

systems, pages 11–12, New York, NY, USA, 1995. ACM.

[88] Alessandra Toninelli, Antonio Corradi, and Rebecca Montanari. Semantic-

based discovery to support mobile context-aware service access. Comput.

Commun., 31(5):935–949, 2008.

[89] K. J. Turner, L. S. Docherty, F. Wang, and G. A. Campbell. Managing Home

Care Networks. In R. Bestak, L. George, V. S. Zaborovsky and C. Dini,

editor, Proc. 8th Int. Conf. on Networks (ICN’09), pages pp. 354–359. IEEE

Computer Society, March 2009.

[90] UPnP Forum. UPnP Device Architecture 1.1, October 2008.

[91] Upkar Varshney. Pervasive healthcare and wireless health monitoring. In Mob.

Netw. Appl., volume 12, pages 113–127, Hingham, MA, USA, 2007. Kluwer

Academic Publishers.

[92] Antonio Vilei, Gabriella Convertino, and Fabrizio Crudo. A new upnp ar-

chitecture for distributed video voice over ip. In MUM ’06: Proceedings of

the 5th international conference on Mobile and ubiquitous multimedia, page 2,

New York, NY, USA, 2006. ACM.

[93] Jim Waldo. The jini architecture for network-centric computing. In Commun.

ACM, volume 42, pages 76–82, New York, NY, USA, 1999. ACM.

[94] Agustinus Borgy Waluyo, Isaac Pek, Xiang Chen, and Wee-Soon Yeoh. De-

sign and evaluation of lightweight middleware for personal wireless body area

network. In Personal Ubiquitous Comput., volume 13, pages 509–525, London,

UK, 2009. Springer-Verlag.

[95] F. Wang, L. S. Docherty, K. J. Turner, M. Kolberg, and E. H. Magill. Ser-

vice and Policies for Care At Home. In J. C. Chachques J. E. Bardram and

U. Varshney, editors, Proc. 1st Int. Conf. on Pervasive Computing Technolo-

237

gies for Healthcare, pages pages 7.1–7.10. Institution of Electrical and Elec-

tronic Engineers Press, New York, USA, November 2006.

[96] Feng Wang and Kenneth J. Turner. Towards personalised home care systems.

In PETRA ’08: Proceedings of the 1st international conference on PErvasive

Technologies Related to Assistive Environments, pages 1–7, New York, NY,

USA, 2008. ACM.

[97] Hai Wang, Zengzhi Li, and Lin Fan. An unabridged method concerning ca-

pability matchmaking of web services. In WI ’06: Proceedings of the 2006

IEEE/WIC/ACM International Conference on Web Intelligence, pages 662–

665, Washington, DC, USA, 2006. IEEE Computer Society.

[98] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontol-

ogy based context modeling and reasoning using owl. In PERCOMW ’04:

Proceedings of the Second IEEE Annual Conference on Pervasive Computing

and Communications Workshops, page 18, Washington, DC, USA, 2004. IEEE

Computer Society.

[99] Xiaohang Wang, Jin Song Dong, ChungYau Chin, SankaRavipriya Het-

tiarachchi, and Daqing Zhang. Semantic space: An infrastructure for smart

spaces. IEEE Pervasive Computing, 3(3):32–39, 2004.

[100] The Web Services Interoperability Organization (WS-I). The Web Services -

Interoperability (WS-I).

[101] XML Protocol Working Group. SOAP Version 1.2 Part 1: Messaging Frame-

work (Second Edition), April 2007.

[102] Kai Yang and Robert Steele. An ontology mediated web service aggregation

hub. In WI ’07: Proceedings of the IEEE/WIC/ACM International Confer-

ence on Web Intelligence, pages 572–576, Washington, DC, USA, 2007. IEEE

Computer Society.

[103] Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. Deploying

and managing web services: issues, solutions, and directions. In The VLDB

238

Journal, volume 17, pages 537–572, Secaucus, NJ, USA, 2008. Springer-Verlag

New York, Inc.

[104] Thomas G. Zimmerman and Keng-hao Chang. Simplifying home health mon-

itoring by incorporating a cell phone in a weight scale. In PETRA ’08: Pro-

ceedings of the 1st international conference on Pervasive Technologies Related

to Assistive Environments, pages 1–4, New York, NY, USA, 2008. ACM.

239

