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ABSTRACT

A renormalization analysis is presented for a generalized Harper equation

(1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1

+2λ cos(2π(iω + φ))ψi = Eψi. (0.1)

For values of the parameter ω having periodic continued-fraction expansion,

we construct the periodic orbits of the renormalization strange sets in func-

tion space that govern the wave function fluctuations of the solutions of the

generalized Harper equation in the strong-coupling limit λ → ∞.

For values of ω with non-periodic continued fraction expansions, we make

some conjectures based on work of Mestel and Osbaldestin on the likely

structure of the renormalization strange set.



1. INTRODUCTION

The generalized Harper equation

(1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1

+2λ cos(2π(iω + φ))ψi = Eψi (1.1)

is a discrete model of electron hopping in an applied sinusoidal potential on

a one-dimensional integer lattice, taking into account next-nearest neighbour

interaction terms.

i − 1 i i + 1

ψi−1 ψi ψi+1

Fig. 1.1: One dimensional integer lattice.

In this discrete Schrödinger equation, the variable ψi is the wave function at

lattice site i ∈ Z (see figure 1.2), and E is the eigenvalue corresponding to

the eigenfunction ψi. The parameter ω represents the magnetic flux, and λ,

α are interaction parameters. The parameter φ is the phase, which we set to

0.

The model undergoes a phase transition from electrical conductor to insulator
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ψ
i

i

Fig. 1.2: Wave function ψi at lattice site i ∈ Z [50].

at λ = 1, at which point there is self-similarity of the spectrum eigenfunctions

[61]. This critical behaviour is reflected in the localized regime λ > 1, where

Ketoja and Satija observe [30] (in the Harper equation case (α = 0), and for

golden mean flux ω = (
√

5−1)/2) that the exponentially decaying eigenfunc-

tions possess universal self-similar fluctuations which they explain in terms

of a universal fixed point of a renormalization operator. For the general case,

α > 0 the renormalization appears to send the system to a universal strange

attractor determined by the strong coupling limit λ → ∞, a projection of

which is the orchid first obtained in [30] and illustrated in figure 1.3. Mestel

and Osbaldestin [45] analyse this set and provide a description of its structure

in terms of symbolic dynamics.

Such sets occur for other irrational ω (for example, figure 1.4) and the anal-
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-1 -0.5 0.5 1

-1

-0.5

0.5

1

Fig. 1.3: The orchid.

ysis in [45] was extended by Mestel and Osbaldestin [46] to irrationals of the

form ω = (−a +
√

a2 + 4)/2, a ∈ N, i.e., those ω with period-1 continued

fraction [a, a, a, . . . ]. The aim of this project is to extend this work further to

all periodic continued fractions. Since the orbits under the Gauss map of all

quadratic irrationals ω are eventually periodic, i.e., they have periodic tails

in their continued-fraction expansions, the theory we develop applies to all

quadratic irrationals ω. Our goal in this work is to define a model space for

each periodic continued fraction and to construct an embedding of this model

space into the space of function pairs on which the renormalization trans-

formation acts. We then demonstrate that the renormalization strange set

so constructed corresponds to that observed in the generalized Harper equa-

tion, at least up to a scale change. Thereby we present a rigorous structural

analysis of the strange sets seen in the generalized Harper equation.
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-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Fig. 1.4: Renormalization strange set for the continued fraction ω = [2, 2, 2, . . .].

It turns out that the general periodic continued-fraction case presents con-

siderable additional complications over the period-1 case, in that we must

deal with periodic sequences of function pairs, each defined on separate do-

mains, and many parameters change dynamically. For example, it is no

longer possible to confine ourselves to a single invariant interval and code

space. Instead we must allow the invariant interval and codes to change at

each iteration of the renormalization map (see section 3.1.3 below). Thus,

a complete analysis using the approach in [45] would present considerable

difficulties, and consequently such an analysis is not attempted. Instead, we

restrict ourselves to the important special case in which not only are the

continued fractions periodic, but also the codes defining the orbits of the

strange sets. This restriction allows us to define our function pairs on do-

mains for which the renormalization transformations are compact operators
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and we may thus use the more elegant techniques presented by Dalton and

Mestel in [9] in their study of the strong-coupling fixed point for period-1

continued fractions. Moreover, as the orbits with periodic codes are dense

in the code space, our analysis covers a dense subset of the renormalization

strange set in function-pair space.

1.1 The Harper equation and generalized Harper equation

In this section we give an overview of the Harper equation and generalized

Harper equation and we give a derivation of the these equations from the

Hamiltonian formulation in quantum mechanics.

1.2 Previous work related to the Harper and generalized

Harper equation

The Harper equation

ψn+1 + ψn−1 + 2λ cos(2π(ωn + φ))ψn = Eψn. (1.2)

(also known as the almost Mathieu equation) was introduced by Harper in

[18] as a tight binding model of electrons on a two-dimensional lattice in a

transverse magnetic field. See [62] for a recent discussion.

The model has been extensively studied over the years, principally because it

undergoes a metal insulator transition when the coupling parameter λ = 1.
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Most research has concentrated on the spectral analysis of the model. See

[58, 59] for a recent review of this work.

The spectrum of the model has an intricate structure as given by the so-

called Hofstadter butterfly, a fractal discovered by Hofstadter in the 1970’s

[23].

Fig. 1.5: The Hofstadter Butterfly [24].

Hofstadter predicted that the allowed energy level values of an electron in

a crystal lattice, as a function of a magnetic field applied to the system,

formed a fractal set, that is, the distribution of energy levels for large scale

changes in the applied magnetic field repeat patterns seen in the small scale

structure. This fractal structure is generally known as Hofstadter’s butterfly,

and is shown in figure 1.5. Analogous structures have also been found to

exist for the energy spectrum of the generalized Harper equation [19].
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Further important progress was made by Aubry and André [3] who conjec-

ture the metal–insulator transition at λ = 1, such that, for λ < 1 there is

absolutely continuous spectrum, whilst for λ > 1 the model exhibits local-

ization. After many years of work by several authors, a modified version of

the conjecture was proved by Jitomirskaya in 1999 [26].

Renormalization analysis of the self-similarity of the spectrum eigenfunctions

has been studied by Ostlund and Pandit [52] and others authors [12, 28, 29,

34, 35, 53, 64]. See [61] for a review.

The Harper equation is obtained by only including nearest neighbour inter-

actions in the tight binding model [62]. By including next-nearest neighbour

interactions a generalized Harper equation is obtained. In section 1.1 we

derive the generalized Harper equation from a Hamiltonian formulation in-

troduced in 1994 by Han et. al. [16]. However, the generalized Harper

equation was obtained earlier by Claro et. al. [8] who derived it as a model

of an electron in a uniform magnetic field with potential with hexagonal

symmetry and obtain the Hofstadter butterfly.

Later Thouless [65] studied the spectrum of the Harper and generalized

Harper equation and obtained lower bounds for the measure of the spec-

trum for rational ω.
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1.2.1 Derivation of the Harper equation

Recall from the theory of Quantum Mechanics, that the Eigenvalue equation

(stationary Schrödinger equation) is given by

Hψ = Eψ, (1.3)

where H is the Hamiltonian operator. For the Harper equation the Hamil-

tonian can be written in the form

H(px, x) = 2ta cos px + 2tb cos x, (1.4)

where ta, tb ∈ R and px = −2πiω d/dx. Expanding the right hand side of

(1.4) we have

H(px, x) = ta

(
2 cos

(
−2πiω

d

dx

))
+ 2tb cos x

= ta

(
exp

(
i

(
−2πiω

d

dx

))
+ exp

(
−i

(
−2πiω

d

dx

)))
+ 2tb cos x

= ta

(
exp

(
2πω

d

dx

)
+ exp

(
−2πω

d

dx

))
+ 2tb cos x. (1.5)

Applying this operator to ψ(x) equation (1.4) becomes:

ta (ψ(x + 2πω) + ψ(x − 2πω)) + 2tb cos(x)ψ(x) = Eψ(x), (1.6)

where we have made use of the result exp
(
ν d

dx

)
ψ(x) = ψ(x + ν).
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If we fix x0 ∈ R and make the substitution x = x0 + 2πωn we get:

ta (ψ(x0 + 2πωn + 2πω) + ψ(x0 + 2πωn − 2πω))

+2tb cos(x0 + 2πωn)ψ(x0 + 2πωn) = Eψ(x0 + 2πωn). (1.7)

(Here ω = ω0 = [a1, a2, a3 . . . ] and ωn = {ω−1
n−1} = [an+1, an+2, an+3 . . . ].)

Writing ψn = ψ(x0 + 2πωn) we have

ta(ψn+1 + ψn−1) + 2tb cos(x0 + 2πωn)ψn = Eψn, (1.8)

Now making the substitutions x0 → 2πφ, tb/ta → λ, E/ta → E gives the

Harper equation:

ψn+1 + ψn−1 + 2λ cos(2π(ωn + φ))ψn = Eψn. (1.9)

1.2.2 Derivation of the generalized Harper equation

For the generalized Harper equation we replace the Hamiltonian in equation

(1.4) by:

H(px, x) = 2ta cos px + 2tb cos x + 2tab cos(px − x) + 2tab cos(px + x), (1.10)
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where px = −2πiω d
dx

. The two additional terms correspond to next-nearest

neighbour interactions. Then we have

2 cos(px ± x) = 2 cos(−2πiω
d

dx
± x)

= exp(i(−2πiω
d

dx
± x)) + exp(−i(−2πiω

d

dx
± x))

= exp(2πω
d

dx
± ix)) + exp(−2πω

d

dx
∓ ix). (1.11)

To proceed further we need the following result:

Theorem 1. (Baker-Campbell-Hausdorff [15]). For linear operators, A,B,

we have

exp(t(A + B)) = exp(tA) exp(tB) exp(−t2

2
[A,B]), (1.12)

provided that [A,B] commutes with A and B. Here [A,B] = AB − BA.

Applying this result to (1.11) with A = 2πω d
dx

, B = ±ix, and [A,B] =

±2πωi, (which already satisfies the hypothesis of the theorem) and setting

t = 1, gives

exp(2πω
d

dx
± ix) = exp(2πω

d

dx
) exp(±ix) exp(∓πωi)

= exp(2πω
d

dx
) exp(±i(x − πω)). (1.13)

Operating on ψ(x) gives

exp(2πω
d

dx
± ix)ψ(x) =

(
exp(2πω

d

dx
) exp(±i(x − πω)

)
ψ(x)

= exp(±i(x + 2πω − πω))ψ(x + 2πω) (1.14)
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and

exp(−2πω
d

dx
∓ ix)ψ(x) =

(
exp(−2πω

d

dx
) exp(∓ix) exp(∓πωi)

)
ψ(x)

=

(
exp(−2πω

d

dx
) exp(∓i(x + πω)

)
ψ(x)

= exp(∓i(x − 2πω + πω))ψ(x − 2πω) (1.15)

so that (1.11) operating on ψ(x) becomes

2 cos(px ± x)ψ(x) = exp(±i(x + 2πω − πω))ψ(x + 2πω)

+ exp(∓i(x − 2πω + πω))ψ(x − 2πω). (1.16)

Now let us assume tab = tab. Then we have

H(px, x)ψ(x) = (2ta cos px + 2tb cos x + 2tab cos(px − x)

+2tab cos(px + x))ψ(x) (1.17)

= ta(ψ(x + 2πω) + ψ(x − 2πω)) + 2tb cos(x)ψ(x)

+tab(exp(−i(x + 2πω − πω))ψ(x + 2πω)

+ exp(i(x − 2πω + πω))ψ(x − 2πω)

+ exp(i(x + 2πω − πω))ψ(x + 2πω)

+ exp(−i(x − 2πω + πω))ψ(x − 2πω)) (1.18)

= 2tab(cos(x + πω)ψ(x + 2πω) + cos(x − πω)ψ(x − 2πω))

+ta(ψ(x + 2πω) + ψ(x − 2πω)) + 2tb cos(x)ψ(x) (1.19)

= Eψ(x). (1.20)
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Then, dividing by ta and letting 2tab/ta = α, tb/ta = λ, and E = E/ta, we

have

(1 + α cos(x + πω))ψ(x + 2πω) + (1 + α cos(x − πω))ψ(x − 2πω)

+2λ cos(x)ψ(x) = Eψ(x). (1.21)

Now if we fix φ and let x = 2π(φ + nω) and ψn = ψ(x) = ψ(2π(φ + nω)) we

get the generalized Harper equation

(1 + α cos(2π(ω(n + 1/2) + φ)))ψn+1 + (1 + α cos(2π(ω(n − 1/2) + φ)))ψn−1

+2λ cos(2π(nω + φ))ψn = Eψn. (1.22)

1.3 Renormalization Methods

In this section we introduce renormalization methods with the simple exam-

ple of circle map renormalization and give the sturcture theory of Lanford-

Yampolsky for critical circle map renormalization [68]. Our ultimate aim

is to construct a similar theory for the generalized Harper equation. In this

thesis we make progress towards this goal by constructing the periodic points

corresponding to the horseshoe structure.

1.3.1 General renormalization theory

Certain critical phenomena such as the transition to chaos, magnetism to

non-magnetism, liquid gas transition etc, have been observed to occur re-
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peatedly at many different scales. This observation was the motivation for

the technique of renormalization which seeks to explain the structure of crit-

ical behaviour and in particular scaling exponents and universal behaviour.

Specifically renormalization involves the iteration of a renormalization op-

erator subject to renormalization constants. The system is transformed by

aggregating components to form a new system on a different scale and then

renormalizing to restore the original scale. The resulting system is one dis-

playing the same interesting phenomena as the original but now encompass-

ing all scales.

1.3.2 Universality classes

Renormalization analysis of the action of the renormalization operator on

a suitable function space gives rise to quantitative predictions which may

be applied to other systems which share some qualitative features with the

system under investigation. Such systems are said to lie in the same uni-

versality class. In this way simple models can give rise to the derivation of

universal constants observed in more complex physical systems within the

same universality class.

1.3.3 Circle map renormalization

The renormalization group formalism has led to developments in the un-

derstanding of the transition to chaos, the best known examples are period

doubling cascades and the breakdown of invariant circles in dissipative and
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area preserving maps. To introduce the methods involved in renormaliza-

tion we look first at the illustrative example of circle map renormalization.

This section describes some universal properties of critical circle maps with

golden mean rotation number. First let us explain what is meant by rotation

number.

Rotation number

Representing the circle T by the real numbers R mod 1 and recalling [1] that

every homeomorphism on the circle can be represented by a homeomorphism

F : R → R on the reals such that:

F (x + 1) = F (x) + 1, (1.23)

then the circle homeomorphism f : T → T may be represented by a home-

omorphism F : R → R on the reals known as the lift of f . The rotation

number ρ(f) of f can then be defined by:

ρ(f) =

(
lim

n→∞
F n(x) − x

n

)
mod 1. (1.24)

For homeomorphisms this limit exists and is independent of the choice of lift

and the point x ∈ T.
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It is useful to express ρ(f) as the continued fraction

ρ(f) =
1

a1 +
1

a2 +
1

a3 + . . .

(1.25)

where an ∈ Z for all n. This is abbreviated as [a1, a2, a3, . . . ]. More about

continued fractions can be found in appendix A.

Circle maps

The circle map is a one-dimensional map, mapping the circle onto itself. A

prototypical 2 parameter family of circle maps is the Arnold family given by:

fκ,Ω : θn+1 = θn + Ω − κ

2π
sin(2πθn), (1.26)

with θn calculated mod 1. The parameter Ω may be interpreted as a forcing

frequency while κ controls the amount of nonlinearity. Setting κ = 0 gives

the unperturbed circle map:

θn+1 = θn + Ω (1.27)

If Ω = p/q, p, q ∈ N is rational then the rotation number ρ = Ω and θn

follows a periodic trajectory since

θq
n = θn + p (1.28)

= θnmod 1, (1.29)
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i.e. θn returns to the same point after q iterations of the map. If however Ω is

irrational then θn never returns to the same point, the motion is quasiperiodic

and the points fill the circle densely.

For irrational Ω, increasing κ from 0 to 1 gives the transition from quasi-

periodicity to chaos as the magnitude of the non-linear term increases. This

is the transition we will look at, in particular, how renormalization methods

have been used by Ostlund et. al. [51] to explain universal scaling constants

obtained in the numerical experiments of Shenker [57].

Arnold Tongues

As κ increases from 0 to 1 a plot of the parameter space, Ω against κ, as shown

in figure 1.6, reveals tongues that spread out from every rational number,

within these tongues the rotation number is rational and corresponds to the

value of Ω at κ = 0. This phenomenon in which rational periodic motion

occurs for a finite range of forcing frequencies is known as mode-locking.

These mode-locked regions surrounding each rational number are known as

Arnold tongues.

The Arnold tongues Ap/q corresponding to rotation number p/q are given by:

Ap/q = {(κ, Ω) : f q
κ,Ω(x) = x + p for some x}. (1.30)

At κ = 0 the Arnold tongues are an isolated set of measure zero, they widen

upwards to a finite width at κ = 1. At κ = 1 the map has a cubic critical

point at the origin which means that the inverse map is not differentiable.
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For κ > 1 the tongues overlap and the circle map becomes noninvertible.

κ

0.0

1.0

0
1

1
1

1
2

1
3

2
3

1
4

3
4

1
5

2
5

3
5

4
5

1
6

5
6

Ω

Fig. 1.6: Arnold tongues [6].

Devil’s staircase

For κ = 1, the measure of quasiperiodic states (irrational rotation number)

on the Ω-axis has become zero, and the measure of the mode-locked states

has become 1. A plot of the rotation number ρ(Ω) against Ω for the circle

map (1.26) with κ = 1 reveals that at almost all values of Ω, the rotation

number is some rational. For κ ≤ 1 the rotation number is monotonic in Ω

giving the structure of a devil’s staircase being constant on an infinite set of

intervals corresponding to every rational rotation and is irrational elsewhere

as shown in figure (1.7).
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Fig. 1.7: Devil’s staircase [66]

Universality

Numerical studies have revealed that circle maps exhibit interesting universal

properties, i.e. for large classes of circle maps there exist quantities that are

the same for all functions in their class.

Let |κ| < 1 be fixed so that fΩ = fκ,Ω and let Ω∗ be the fixed value of Ω

such that ρ(fΩ) = Ω, i.e. Ω∗ is the value of Ω for which the rotation ρ(fΩ) is

equivalent the fixed rotation Ω. Let Ωn be the value of Ω closest to Ω∗ such

that ρ(fΩ) = pn/qn, the nth convergent to Ω∗. If κ = 0 then Ωn = pn/qn and

Ω = Ω∗. In general for |κ| < 1 the following results are given by [22]:

1. If f = fΩ then f qn(0) − pn decreases as an where a = −Ω∗.

2. a−n(f qn(anx)−pn) converges, up to a scale change, to the rigid rotation
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x → x + Ω∗.

3. limn→∞(ωn − ωn−1)/(ωn+1 − ωn) = δ where δ = −Ω−2
∗

Critical circle maps

A critical circle map is the lift of an analytic homeomorphism with a single

critical point that is cubic. For the above two parameter family of circle

maps fκ,Ω given by equation (1.26), criticality occurs when κ = 1.

Setting κ = 1 we have that fΩ = f1,Ω is critical and numerical experiments

of Shenker [57], corresponding to maps with golden mean rotation number,

give the following results:

1. f qn(0) − pn decreases as an where a = −0.776 . . . = −Γ0.527...

2. a−n(f qn(anx)−pn) converges to an analytic function ξ of x3 as n → ∞.

3. limn→∞(ωn−ωn−1)/(ωn+1−ωn) = δ where δ = −2.834 . . . = −Γ−2.164...,

where Γ represents the golden mean (
√

5 − 1)/2.

Any 2-parameter family satisfying these conditions is said to be in the golden

mean universality class. Similar results hold for other irrational rotation

numbers with periodic continued fractions.

Circle map pairs

It is usual to work with an operator acting on a space of pairs of maps. The

map of the circle f can be written in terms of a pair of functions (ξ, η) as
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illustrated in figure 1.8 such that

f(x) = ξ(x) for η(0) < x < 0

= η(x) for 0 < x < ξ(0). (1.31)

η(0) 0 ξ(0)

0

ξ(0)

ξ

η

ξ(η(0))

−β
=

ξ(
η
(0

))
−

η
(0

)

Fig. 1.8: Pairs of maps (ξ, η).

Identifying the points η(0) and ξ(0), f is a well defined homeomorphism of

the circle [η(0), ξ(0)] provided it satisfies the following conditions:

1. ξ(η(0)) = η(ξ(0))

2. 0 < ξ(0) < 1

3. ξ(0) = 1 + η(0) for a circle of length 1.

4. ξ, η are increasing on [η(0), 0] and [0, ξ(0)] respectively.
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Renormalization scheme

Following the above numerical findings a renormalization theory was devel-

oped to explain these properties. The renormalization explanation given by

Ostlund et. al. [51] is as follows.

The action of the renormalization operator on the pair (ξ, η) where ρ(ξ, η) =

[n, . . .] is given by

Tn :


 ξ(x)

η(x)


 
→


 β−1ξn−1(η(βx))

β−1ξn−1(η(ξ(βx)))


 , (1.32)

where β = ξn−1(η(0)) − ξn−1(η(ξ(0))).

To illustrate the action on Tn we consider the case n = 1 then (1.32) becomes

T1 :


 ξ(x)

η(x)


 
→


 β−1η(βx)

β−1η(ξ(βx))


 , (1.33)

with the rescaling β = −(ξ(η(0)) − η(0)) chosen to impose a suitable nor-

malization condition, e.g. a circle of length 1.

In general this operator sends rotation numbers ρ = pn/qn to ρ = pn−1/qn−1

where pn and qn are the rational convergents to ρ(ξ, η) as given by the recur-

rence relations (A.3), with the result that it preserves the golden mean.
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Renormalization analysis

The renormalization analysis [51] is given in terms of two fixed points of T :

The simple and the critical fixed points. The simple fixed point determines

the scaling behaviour of diffeomorphisms and is the rigid rotation given by

the pair of maps

ξ(x) = x + Γ (1.34)

η(x) = x + Γ − 1, (1.35)

where Γ represents the golden mean (
√

5 − 1)/2.

This fixed point has a one-dimensional unstable manifold with corresponding

eigenvalue −Γ−2. The presence of this fixed point explains the “simple”

scaling observed for sub-critical maps with golden mean rotation number.

The critical fixed point determines the scaling behaviour of circle maps with a

single cubic critical point at 0 and is observed in the transition from quasiperi-

odicity to weak turbulence in dissipative dynamical systems. Mestel [41]

proves the existence and hyperbolicity of this critical fixed point for cubic

critical circle maps with golden mean rotation number.

Structure of renormalization strange set.

In [4] Lanford conjectured the dynamics of renormalization for critical cir-

cle maps of fixed degree d (e.g. cubic). Let us define the renormalization

transformation T (ξ, η) = Tn(ξ, η) where the rotation number ρ is given by
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ρ = [n, . . .]. Then Lanford conjectures the existence of a renormalization

strange set on which T acts hyperbolically with a 1-dimensional expansion

and codimension-1 contraction, see figure 1.9.

V1 = T (D1)

D1

V2

D2

V3

D3

Fig. 1.9: Schematic representation of the action of T on ∪Dn [4].

Yampolsky [68] has proved that this picture is correct when the degree of

criticality, d, is an odd integer.

Theorem 2. (Lanford-Yampolsky) There exists a set I of degree-d critical

circle map pairs in the space of critical circle map pairs which is invariant

under the renormalization transformation T and such that the action of T

on I is topologically conjugate to a two-sided shift on the symbol space Σ̂

consisting of biinfinite sequences of symbols in N ∪ {∞} with the left shift

map σ. The conjugacy map i : I 
→ Σ̃ satisfies i ◦ T ◦ i−1 = σ and if a pair

ζ = i−1(. . . , a−k, . . . , a−1, a0, a1, . . . , ak, . . .), then ρ(ζ) = [a0, . . . , ak, . . .].

The set I has compact closure A and for any critical circle map pair ζ with
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irrational rotation number, T nζ −→ A as n −→ ∞. Moreover for any ζ,

ζ ′ ∈ I with ρ(ζ) = ρ(ζ ′) the distance d(T nζ, T nζ ′) −→ 0 as n −→ ∞.

A more precise statement of this theorem and results on hyperbolicity may

be found in [68].

1.4 Decimation theory and the renormalization equations

1.4.1 Renormalization of fluctuations

Let us commence our renormalization analysis of the generalized Harper

equation,

(1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1

+2λ cos(2π(iω + φ))ψi = Eψi, (1.36)

by outlining heuristically the derivation of the renormalization equations us-

ing the Ketoja-Satija decimation approach [30, 28]. We are interested in the

insulator regime, λ ≥ 1, in the zero-phase case φ = 0, and we also take the

strong coupling limit, E ∼ 2λ, with λ → ∞. This regime is characterised by

an exponentially decaying wave function ψi ∼ e−γ|i|, where

γ = log


λ

α
+

√(
λ

α

)2

− 1


 . (1.37)
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The reason for taking E ∼ 2λ is that

γ ∼ log

(
2λ

α

)
, (1.38)

so

e−γ ∼ α

2λ
, (1.39)

so to ensure convergence we take E ∼ 2λ giving rise to the strong coupling

limit.

Let us write

ψi = eγ|i|ηi (1.40)

where ηi is the fluctuation at site i shown in figure (1.10). In terms of the

fluctuations ηi, the generalized Harper equation (1.1) becomes, for i > 0,

e−2γ (1 + α cos(2π(ω(i + 1/2) + φ))) ηi+1 + (1 + α cos(2π(ω(i − 1/2) + φ))) ηi−1

+ 2e−γλ cos(2π(iω + φ))ηi = e−γEηi .

(1.41)

We may now consider the strong-coupling limit. Setting E = 2λ and using
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i

η
i

Fig. 1.10: The fluctuation ηi at lattice site i ∈ Z.

equations (1.38 - 1.39), the equation (1.42) becomes

α2

4λ2
(1 + α cos(2π(ω(i + 1/2) + φ))) ηi+1 + (1 + α cos(2π(ω(i − 1/2) + φ))) ηi−1

+ α cos(2π(iω + φ))ηi = αηi ,

(1.42)

taking the limit λ → ∞ this gives

ηi−1 +
α(cos(2π(iω + φ)) − 1)

1 + α cos(2π(ω(i − 1/2) + φ)))
ηi = 0. (1.43)

Our goal is now the renormalization analysis for the fluctuations ηi. The

analysis is an extension of the decimation method of Ketoja-Satija [30, 28],

simplified somewhat by the strong-coupling hypothesis λ → ∞.
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Let ω ∈ (0, 1) have continued fraction expansion ω = ω0 = [a1, a2, a3 . . . ]

and ωn = {ω−1
n−1} = [an+1, an+2, an+3 . . . ], where {·} denotes the fractional

part and ai ∈ N. The denominators of the rational convergents cn = pn/qn

to ω satisfy, for n ≥ 1, qn = anqn−1 + qn−2, with q−1 = 0, q0 = 1, and

pn = anpn−1 + pn−2, with p−1 = 1, p0 = 0, and we have the important

relation:

qn−1ω − pn−1 = (−1)n−1γn
0 , n ≥ 1 (1.44)

where γn
0 =

∏n−1
i=0 ωi.

1.4.2 Decimation theory

Following the method of Ketoja and Satija, a decimation may be defined by

the relation:

ηi+qn−1 = t̂n(i)ηi . (1.45)

The function t̂n(i) encodes the relationship between ηi+qn−1 and ηi, and thus

is an appropriate object to study to understand the fluctuations.

A recurrence for t̂n may be obtained in the following way. Evaluating (1.45)

with i set equal to i, i + qn−1, i + 2qn−1, . . . , i + (an − 1)qn−1, gives the

following set of equations:

ηi+qn−1 = t̂n(i)ηi (1.46)

ηi+2qn−1 = t̂n(i + qn−1)ηi+qn−1 (1.47)

...

ηi+anqn−1 = t̂n(i + (an − 1)qn−1)ηi+(an−1)qn−1 . (1.48)
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Now evaluating (1.45) with n set equal to n− 1 and i set equal to i + anqn−1

gives

ηi+anqn−1+qn−2 = t̂n−1(i + anqn−1)ηi+anqn−1 . (1.49)

Eliminating ηi+qn−1 , . . . , ηi+anqn−1 between these equations, we make use of

the recurrence for the qn−1, to obtain ηi+qn = t̂n+1(i)ηi where

t̂n+1(i) =

(
an−1∏
j=0

t̂n(i + jqn−1)

)
t̂n−1(i + anqn−1) . (1.50)

Setting the phase φ = 0, and evaluating (1.45) at n = 0 and n = 1, we obtain

ηi = t̂0(i)ηi, ηi+1 = t̂1(i)ηi, which, on comparing with (1.43) at i + 1, with

φ = 0, gives initial conditions

t̂0(i) = 1, t̂1(i) =
1 + α cos(2π(ω(i + 1/2)))

α(1 − cos(2π(i + 1)ω))
. (1.51)

Following [30] we now transform from the discrete variable i to a continuous

variable x, by writing x = (−1)n(γn
0 )−1{iω} and setting tn(x) = t̂n(i). Then
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for n > 1 we have

tn+1(x) = tn+1((−1)n+1(γn+1
0 )−1{iω}) = t̂n+1(i) (1.52)

=

(
an−1∏
j=0

t̂n(i + jqn−1)

)
t̂n−1(i + anqn−1) (1.53)

=

(
an−1∏
j=0

tn((−1)n(γn
0 )−1{(i + jqn−1)ω})

)

tn−1((−1)n−1(γn−1
0 )−1{(i + anqn−1)ω}) (1.54)

=

(
an−1∏
j=0

tn(−(−1)n+1(γn+1
0 )−1ωn{iω + j(−1)n−1γn

0 })
)

tn−1((−1)n+1(γn+1
0 )−1ωnωn−1{(iω + an(−1)n−1γn

0 }) (1.55)

=

(
an−1∏
j=0

tn(−ωnx − j)

)
tn−1(ωnωn−1x + ωn−1an), (1.56)

In deriving this equation we have implicitly used the periodicity of the func-

tion tn and (1.44). Using the definition of the variable x and the periodicity

of the cosine function, we have from (1.51) the initial conditions

t0(x) = 1, t1(x) =
1 + α cos (2π (−ωx + ω/2))

α (1 − cos (2π (−ωx + ω)))
. (1.57)

We have therefore reduced the renormalization theory for the fluctuations ηi

to the study of a second-order functional recurrence (1.56) under the initial

conditions (1.57).
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1.4.3 Derivation of renormalization equations

We now reformulate the second-order recurrence (1.56) as a first order oper-

ator on function pairs (un, tn). Writing un(x) = tn−1(−ωn−1x), we obtain

un+1(x) = tn(−ωnx), tn+1(x) =

(
an−1∏
j=0

tn(−ωnx − j)

)
un(−ωnx − an).

(1.58)

Thus we may express the recursion (1.56) in terms of the renormalization

operator

Rn


 un(x)

tn(x)


 
→


 un+1(x)

tn+1(x)


 , (1.59)

where


 un+1(x)

tn+1(x)


 =


 tn(−ωnx)(∏an−1

j=0 tn(−ωnx − j)
)

un(−ωnx − an)


 . (1.60)

From the initial condition (1.57) we get u1 = 1.

It is the operator Rn that is the object of our study. It is closely connected

to the operators studied by Mestel and Osabldestin and co-workers [45, 46]

but differs significantly in that it is dependent on n, and thus we are in fact

considering a sequence of operators.

Several properties of the operator Rn are immediately apparent. First, Rn

is multiplicative. Consequently, it is convenient to define unary and binary

operations and functions coordinatewise on function pairs, so that, for exam-

ple, multiplication is defined by (u, t)(u′, t′) = (uu′, tt′). The multiplicative
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property of Rn can then be written as Rn((u, t)(u′, t′)) = Rn(u, t)Rn(u′, t′).

We can, at least formally, also define the logarithm of a pair log(u, t) =

(log u, log t) in which case Rn is a linear operator. It is clear that zeros and

singularities of the functions u and t are obstructions to converting Rn into

a linear operator, and, indeed, the dynamics of Rn are determined to a large

extent by the zeros and poles of these functions. A further consequence is

that the dynamics of Rn are dependent on the initial condition (1.57), and in

particular on the zero sets and the poles. In fact, the symmetries of the cosine

function in the initial condition are important in determining the evolution

of Rn

Our second observation is that Rn is determined by the sequence (an), which

itself determines the sequence of frequencies (ωn). Although we are interested

in n increasing (or forward iteration), it turns out that for a full analysis that

we should take n ∈ Z, and that backward iteration is important too.

Let us write NZ for the space of bi-infinite sequences of positive integers, so

that NZ = {a = (ak)k∈Z | ak ∈ N}, with left shift operator σ : NZ → NZ

given by σ(a)k = σ(ak) = ak+1.

1.5 Statement of main results

In this section we give the principal results of the thesis. Our aim is to con-

struct an invariant set in function-pair space comprising the periodic points

of a renormalization strange set. Specifically, for a given periodic continued

fraction, a = (ak)k∈Z, we wish to construct a sequence of sets (Ok)k∈Z in a



1. Introduction 43

space of function-pairs such that Rk(Ok) = Ok+1 and such that the dynamics

on Ok can be understood in terms of a shift map on a symbol space together

with dynamics on sign pairs. Furthermore, we require that iteration of the

renormalization map with initial conditions corresponding to the generalized

Harper equation converges to the sequence of sets Ok.

Let us denote by NZ,P er the subspace of NZ consisting of periodic sequences,

i.e. satisfying an+p = an for all n ∈ Z for some fixed p ∈ N and let ω =

[a1, . . . , ap], a1, . . . , ap ∈ N, have a periodic continued fraction expansion of

period p. Then, for k ∈ Z, we set ak = a
k mod p

and a = (ak)k∈Z. Thus we

may identify ω with a unique a ∈ NZ,P er.

The following theorem is the key to the construction of the strange set.

Theorem 3. Let a be a fixed sequence in NZ,P er corresponding to a periodic

continued fraction. For each n ∈ Z, there exists a continuous map βn :

ΣPer → Fn such that for c ∈ ΣPer,

Rnβn(c) = Lbn(+1, +1)βn+1(c) , (1.61)

where Lbn : {+1,−1}2 → {+1,−1}2 is given by

Lbn(su
n, s

t
n) = (st

n, (−1)bn(st
n)ansu

n) , (1.62)

and multiplication is carried out coordinatewise. Here bn = cn + c̃n where

c̃ = (c̃k)k∈Z denotes the partner code to c (to be defined in section 3.1.4

below), ΣPer is a subspace of periodic codes to be defined in section 3.1.3 below

and Fn is the function-pair space defined in section 3.3. The equation (4.63)
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generalizes to

Rn((su, st)βn(c)) = Lbn(su, st)βn+1(c) (1.63)

where (su, st) ∈ {+1,−1}2 is an arbitrary sign pair. The map βn is two-to-

one in the sense that βn(c) = βn(c′) if, and only if, c′ = c or c′ = c̃.

The property (4.63) may be summed up in the following commutative dia-

gram.

ΣPer

βn

��

βn+1×Lbn

����
��

��
��

�

Fn
Rn �� Fn+1

Using the maps βn we may define strange sets for each n ∈ Z as given by the

following.

Theorem 4. There exists a sequence O = (Ok)k∈Z, Ok ⊆ Fk, such that for

all n ∈ Z, Rn(On) = On+1. The sets On consists of images (su
n, s

t
n)βn(c) as

c ranges over ΣPer and (su
n, s

t
n) ∈ {+1,−1}2 is a sign-pair depending on c

(to be defined in section 4.3 below).

Our final result concerns the generalized Harper equation itself. We show

that for a dense set of initial conditions (corresponding to periodic codes)

the dynamics under the renormalization transformation converges to a scaled

version of the renormalization strange set. Specifically, we have:

Theorem 5. Let ω = ω0 have periodic continued fraction expansion [a1, . . . ap]

with period p ≥ 1, and let (ωn)n∈Z be the associated p-periodic sequence
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ω= (ωk)k∈Z with periodic continued fraction a = (ak)k∈Z. Then there ex-

ist a dense set of α in the range α > 1 such that iteration of the associated

renormalization operator Rn, for n ≥ 0, converges to O∗
n, where O∗

n is the

set On scaled by a function-pair (u∗
n, t

∗
n) of period a multiple of p.

We prove theorem 1 in section 4.2, theorem 2 is proven in section 4.3, and

theorem 3 in section 4.3.5.

1.6 Organisation of thesis

In chapter 2 we give an overview of previous work on the Harper and gen-

eralized Harper equation, in particular the work of Mestel and Osbaldestin

on renormalization analysis of the fluctuations for the generalised Harper

equation. In chapter 3 we begin our renormalization analysis for the case

of periodic continued fractions. In chapter 4 we construct the map βn as

given above in terms of En also constructed in this chapter and carry out a

numerical study. In chapter 5 we consider the case of general continued frac-

tions and give conjectures based on work of Mestel and Osbaldestin on the

likely structure of the renormalization strange set. Chapter 6 contains the

conclusions of the thesis and a discussion of future work. In appendix A we

introduce continued fractions and give some number theoretic results which

are useful in the thesis. Appendix B contains an brief overview of dynamical

systems while in appendix C we look at shift spaces, and in appendix D give

a brief synopsis of the spectral theory of compact linear operators on Banach

spaces which we use in the thesis. In appendix E we prove lemma 2 which is
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stated in section 4.1.1 and concerns the spectral properties of the renormal-

ization operator. In appendix F we construct the projection operator defined

in section 4.1.3 for the periodic continued fractions with period 1, 2, and p

and also for the case of a general continued fraction. In appendix G we prove

lemma 5 given in section 4.1.3. Appendix H gives the details the construction

of En which is done in section 4.1.3. Finally the proof of lemma 9 is found in

appendix I.



2. REVIEW OF PREVIOUS WORK

In this chapter we give an overview of the previous work on the Harper

and generalized Harper equation, and, in particular, on the application of

renormalization theory to the Harper and generalized Harper equations.

2.1 The strong coupling fixed point

In common with the Harper equation, the generalized Harper model (1.1)

undergoes a phase transition from electrical conductor to insulator at λ = 1,

at which point there is self-similarity of the spectrum eigenfunctions [61].

This critical behaviour is reflected in the localized regime λ > 1, where for

α = 0 and golden mean flux ω = (
√

5 − 1)/2, Ketoja and Satija observe

[30] that the exponentially decaying eigenfunctions possess universal self-

similar fluctuations which they explain in terms of a universal fixed point of

a renormalization operator.

The existence of this fixed point was proved by Mestel, Osbaldestin and Winn

in [42]. This paper is concerned with the functional recurrences occurring

in the study of quasiperiodic systems. In particular they prove the existence

of the strong-coupling fixed point for golden-mean renormalization of of fluc-



2. Review of previous work 48

tuations in the Harper equation, thereby establishing a firm foundation for

the work of Ketoja and Satija. Below is a summary of their results:

Let

φ1(z) = −ωz , φ2(z) = ω2z + ω , (2.1)

where ω = (
√

5 − 1)/2 is the golden mean which satisfies ω2 + ω = 1.

Theorem 6. Let n ∈ N be given. Then there exists a unique, real analytic,

entire function t : C → C satisfying the fixed point equation

t(z) = t(φ1(z))t(φ2(z)) , (2.2)

with

1. t(1) = 0

2. t(j)(1) = 0 for j = 1, . . . , n−1, t(n)(1) �= 0, so that t has a zero of order

n at z = 1; and

3. t(z) > 0 for z ∈ (−ω−1, 1).

Moreover

t(z) = t∗(z)n , (2.3)

where t∗ is the entire function given by

t∗(z) =
1 − z

1 − ω

∞∏
k=1

∏
i1,...,ik
i1=1

1 − φi1 ◦ · · · ◦ φik(z)

1 − φi1 ◦ · · · ◦ φik(ω)
. (2.4)
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In addition to existence Mestel et. al. derive properties of the fixed point

function as follows:

Theorem 7. The function t∗ in theorem 6 satisfies:

1. the zeros of t∗ are the points 1 and φ−1
ik

◦ · · · ◦ φ−1
i1

(1), where k ≥ 1,

i1 = 1 and i2, . . . , ik ∈ {1, 2} (We note that −ω−1 is of this form.);

2. t∗(ω) = 1, t∗(−ω) = ω−2, t∗(ω2) = ω−1;

3. t∗ has a unique maximum at zc on (−ω−1, 1) with zc ∈ (−ω, 0).

The graph of t∗ is given in figure 2.1.

–3
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–1

0

1

2
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Fig. 2.1: The function t∗.

A Banach space F is defined on which the derivative of the operator

R : (u(x), t(x)) 
→ (t(−ωx), t(−ωx)u(−ωx − 1)) (2.5)

acts, and following theorem is proved.

Theorem 8. Let n ∈ N and let t be the solution of (2.2) given by theorem 6.

Let u(z) = t(−ωz). Then
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1. The derivative of R at (u, t), L = dR(u,t), is a compact operator on F .

2. The spectrum of L consists of 0 together with eigenvalues

λ = ±ω−n,±ω−(n−1), . . . ,±ω−1,−1,±ω,±ω2, . . . . (2.6)

Each of these eigenvalues is simple except for ω−1 which is a double

eigenvalue with a one-dimensional eigenspace and further one-dimensional

generalized eigenspace.

This work was extended to quadratic irrationals with a period-1 continued

fraction in [9], where the methods are also simplified.

2.2 Previous work on the Orchid

For the general case, α > 0 renormalization appears to send the system to

a universal strange set determined by the strong coupling limit λ → ∞, a

projection of which is the orchid illustrated in figure 1.3. The orchid was

first obtained by Ketoja and Satija in [30]. In this paper they study both

the Harper and generalized Harper equation in the insulator regime from a

renormalization standpoint using their decimation approach.

Writing ψi = e−γ| i |ηi, Ketoja and Satija define functions fn(i) and en(i) by

the relation

fn(i)ηi+Fn−1 = ηi+Fn + enηi. (2.7)

This is a more general relation than the one we have used in equation (1.45).
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The relation used in equation (1.45) corresponds to that of equation (2.7) in

the strong coupling limit, but is simpler to analyse. Both lead to the same

recurrence (up to a difference in sign). In fact, numerically at least, fn(i) → 0

and the recurrence for the en(i) is (up to a difference in sign) our recurrence

for the tn(i) in the golden mean case. Ketoja and Satija then introduce a

transformation from a discrete coordinate to a continuous coordinate leading

to the recurrence for the tn(x).

From numerical experiments Ketoja and Satija make the following conclu-

sions:

• For the Harper equation, tn(x) tends to a fixed point, the strong-

coupling fixed point.

• For the generalized Harper equation tn(x) converges to a strange set

with the golden-mean orchid projection.

• Periodic orbits in the renormalization strange set have period a multiple

of three.

Mestel and Osbaldestin give in [45] the first rigorous results on the orchid,

giving the work of Ketoja and Satija a firm foundation. Considering the

golden-mean case ω = (
√

5−1)/2, they study the renormalization theory for

the fluctuations in the wave function in the generalized Harper equation

(1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1

+2λ cos(2π(iω + φ))ψi = Eψi. (2.8)
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In [45], the main topic is the study of the recurrence:

tn+1(x) = tn(−ωx)tn−1(ω
2x + ω) , (2.9)

with initial conditions derived from the generalized Harper equation. This is

written in terms of a renormalization transformation:

(un+1, tn+1) = R(un, tn) , (2.10)

where

R(un, tn)(x) = (tn(θ0(x)), tn(θ0(x))un(θ1(x))) , (2.11)

and θ0, θ1 are the linear contractions

θ0(x) = −ωx , θ1(x) = −ωx − 1 . (2.12)

and un(x) = tn−1(−ωx).

The transformation R is studied first of all by understanding the iterated

function systems defined by θ0 and θ1, which has an invariant set on the

interval [−ω−1, 1] with subintervals [−ω−1,−ω] and [−ω, 1]. This leads nat-

urally to code spaces: Σ̂ the subshift of finite type consisting of bi-infinite

sequences c = (ck)k∈Z, ck ∈ {0, 1}, satisfying ckck+1 = 0, i.e., sequences for

which no two consecutive terms of the sequence have digit 1. A partnering

operation is defined in terms of blocks of symbols A = 010, B = 00, C = 01

by A → A, B → C, C → B. Discarding those codes for which there is not a

unique decomposition in terms of blocks, a code space Σ is obtained.
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The principal analytical work in the paper is the construction of a pseudo-

conjugacy βn from a (modified) code space Σ to a space F of function pairs

satisfying the equation

R
(
(su, st)β(c)

)
= Lb0(s

u, st)β(σ(c)) , (2.13)

where b0 = c0 + c̃0 mod 2 and Lb(s
u, st) = (st, (−1)bsust) is a map on sign-

pairs. An analysis of the dynamics of the map Lb leads to the following

transition diagram (figure 2.2). Here the sign pairs occurring at the start of

blocks are enclosed in boxes. The arrows show the possible sign transitions

within the blocks A or B/C to the sign pair at the beginning of the next

block, which may be (+1, +1), (+1,−1) or (−1,−1), indicated by a box.

The sign pair (−1, +1) may be traversed within a block but does not occur

at the start of a block. The block to block transitions under the map Lb

starting with the sign pair (−1, +1) are found to be invariant.

The three-fold symmetry of the orchid transition diagram (figure 2.2) is the

explanation for the three-fold symmetry in the orchid (figure 1.3). Indeed,

the structure of the orchid is then obtained by combining the dynamics on

the code space Σ with the dynamics induced on the sign pairs.

Further analysis in [45] shows that for the initial condition given by the

generalized Harper equation, the renormalization transformation R converges

to the a set O the projection of which is the orchid. Finally, the authors

show that the O is strange in the sense of Devaney [11], although it is not an

attractor, having two non-stable directions in function-pair space. Finally, in
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Fig. 2.2: The orchid transition diagram [45].

an analysis of the periodic orbit structure of O the authors prove a conjecture

that all periodic orbits have period a multiple of 3.

A non-rigorous extension of the orchid work to quadratic irrationals of the

form [a, a, . . . ] is provided in [46].

2.3 Previous work on related topics with similar

renormalization analyses

Functional recurrences of the form (2.9) have application in several other

quasi-periodic models in dynamical systems, in particular, in the renormal-

ization analysis of correlation functions.
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2.3.1 Strange non-chaotic attractors

Feudel et. al. [13] study the model

xt+1 = 2λ tanh(xt) sin 2πθt , θt+1 = θt + ξ (mod 1) (2.14)

where ξ is irrational. To simplify the analysis they study the discrete variable

yt = −sign(xt). Renormalization analysis of the correlation function of yt:

C(t) = 〈yn, yn+t〉 leads (for the case ξ the golden mean) to the recurrence

Qn(y) = Qn−1(−ξy)Qn−2(ξ
2y + ξ) (2.15)

but with a discontinuous initial conditions. They exhibit a numerically ob-

tained period-6 orbit as shown in figure 2.3.
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Fig. 2.3: Period-6 orbit of (2.15) showing y along the x axis.



2. Review of previous work 56

Mestel and Osbaldestin [43] study the Multiplicative golden-mean recurrence:

Qn(x) = Qn−1(−ωx)Qn−2(ω
2x + ω) , (2.16)

for piecewise constant functions and apply the theory to justify the above

work of Feudel et. al. [13].

Kuznetsov et. al. [36] study a quasiperiodically forced non-linear systems

near the birth of a strange nonchaotic attractor. A renormalization analysis

for golden-mean rotation number yields an extension of the golden-mean

second-order functional recurrence to a recurrence on two functions Qn, Hn:

Qn+2(y) = Qn+1(−ωy)Qn(ω2y + ω) (2.17)

Hn+2(y) = Hn+1(−ωy) + Qn(−ωy)2Hn(ω2y + ω) (2.18)

It is likely that our methods will be applicable in this case and this is a prime

candidate for further work.

2.3.2 Correlation in quasiperiodic quantum two level systems

In [14] Feudel et. al. study a two-level quantum mechanical system in a

time-dependent field with Hamiltonian given by

H(t) =
1

2
ωσχ +

1

2
S(t)σx (2.19)
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where σχ and σx are the Pauli spin matrices

σx =


 0 1

1 0


 σχ =


 1 0

0 −1


 (2.20)

In the case when

S(t) =
∞∑

n=−∞
Rnδ(t − 2πn/ω) (2.21)

and Rn = κΦ(φn), φn+1 = φn + Ω (mod 1), Ω, the golden mean, and φ

periodic or period 1, the problem reduces to a skew sum mapping

φn+1 = φn + Ω , θn+1 = θn + κΦ(φn). (2.22)

Feudel et. al. study the case when Φ is a discontinuous modulation function

and consider the correlation function KB(t) = 〈cos[κQt(φ)]〉 where Qt(φ) =∑t−1
l=0 Φ(φ + lΩ), Q0 = 0. Writing Zm(y) = QFm(y(−Ω)m), they find Zm

satisfies the recurrence Zm(y) = Zm−1(−yΩ) + Zm−2(yΩ2 + Ω).

These results are analysed in [44] where Mestel and Osbaldestin study the

additive golden-mean recurrence:

Zn(x) = Zn−1(−ωx) + Zn−2(ω
2x + ω) , (2.23)

where ω = (
√

5 − 1)/2, and show the existence of a piecewise continuous

period-6 orbit and calculate the correlation function. This work is extended

in [47] to the case where ω is a quadratic irrational of the form [a, a, a, . . . ].
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2.3.3 Application to billiards

Chapman and Osbaldestin [7] adapt the renormalization analysis of the func-

tional recurrence

Qn(x) = Qn−1(−ωx)Qn−2(ω
2x + ω) (2.24)

to the problem of symmetric barrier billiards with golden mean trajectories.

Let θx, θy be angles corresponding to a point unit mass in the square chamber

[0, 1] × [0, 1] with time evolution given by

θx(t) = θx,0 + ωxt (mod 1), (2.25)

and

θy(t) = θy,0 + ωyt (mod 1). (2.26)

Then the problem of the motion of a point mass in a rectangular chamber

with a vertical barrier (see figure 2.4) is described in terms of the skew-

product system

θn+1 = θn + ω (2.27)

sn+1 = snΦ(θn), (2.28)

where θn = θy(n/ωx) is the angle of the trajectory, ω is the golden mean

rotation number, sn = ±1 is the sign of x, and Φ(θ) = B(y) where B(y)

determines if there is a barrier present at y.
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Fig. 2.4: A symmetric barrier billiard and its corresponding barrier function B(y).

For irrational rotation numbers they study the behaviour of the sign sn by

looking at the autocorrelation function

C(t) = 〈snsn+t〉 = lim
N→∞

1

N

N∑
n=1

snsn+t. (2.29)

They find that the self similarity of the autocorrelation functions can be

explained in terms of periodic orbits of the recurrence (2.24).

For the special case of the half-barrier they give a rigorous calculation of the

asymptotic values in the autocorrelation function at Fibonacci numbers.



3. RENORMALIZATION ANALYSIS

In this chapter we begin our renormalization analysis for the case of periodic

continued fractions.

3.1 Dynamics of zeros and singularities

The dynamics of the renormalization operator (1.59) depend to a large extent

on the zeros of the functions (un, tn) contained in the invariant set of an

iterated function system (IFS) which we shall now define.

3.1.1 Iterated function system

If we let, for i = 0, . . . , an,

θn
i (x) = −ωnx − i (3.1)

then we may rewrite (1.60) as


 un+1(x)

tn+1(x)


 =


 tn(θn

0 (x))(∏an−1
i=0 tn(θn

i (x))
)
un(θn

an
(x))


 . (3.2)
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Here the functions {θn
0 , θn

1 , θn
2 , . . . , θn

an
} form an Iterated Function System

(IFS), whose fixed-point set is the interval In, which we refer to as the fun-

damental interval. The interval In = [−ωn − an, 1] splits into subintervals In
i

given by In
0 = [−ωn, 1] and In

i = [−ωn − i,−ωn − i + 1] for i = 1, . . . an.

−ωn − an −ωn − (an − 1) −ωn 0 1

Fig. 3.1: The interval In.

3.1.2 The map Gn

We now define the map Gn : In → In+1 by

Gn(x) = −ω−1
n x − iω−1

n , for x ∈ In
i . (3.3)

Then G(In
i ) = [1−ω−1

n , 1] = In+1
an−1 ∪ · · · ∪ In+1

0 for i = 1, . . . , an and G(In
0 ) =

[−ω−1
n , 1] = In+1. The functions un and tn are then defined on

In
an

= [−ωn − an,−ωn − (an − 1)] = [−ω−1
n−1, 1 − ω−1

n−1] (3.4)

and

In
an−1 ∪ · · · ∪ In

0 = [−ωn − (an − 1), 1] = [1 − ω−1
n−1, 1] (3.5)

respectively. The significance of the maps Gn is that they determine the

dynamics of the zero sets of (un, tn).
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3.1.3 Shift spaces

Recall that NZ,P er denotes the subspace of NZ consisting of periodic se-

quences, i.e. satisfying an+p = an for all n ∈ Z for some fixed p ∈ N.

Then for a ∈ NZ,P er we define the code spaces

Σ = {c = (ck)k∈Z : ck ∈ {0, 1, . . . , ak}, ck = ak =⇒ ck−1 = 0} . (3.6)

This is a space of biinfinite codes of symbols {0, . . . , an} with the single

restriction that the symbol an must be preceded by the symbol 0. The

reason for this restriction is as follows. The symbols 0, . . . , an correspond to

the subintervals In
0 , . . . , In

an
. The map Gn determines the possible transitions

between symbols so that the symbol i is permitted to be followed by j if, and

only if, In
j ⊆ Gn−1(I

n−1
i ). Since

Gn−1(I
n−1
0 ) = [−ω−1

n−1, 1] = In, (3.7)

and

Gn−1(I
n−1
i ) = [1 − ω−1

n−1, 1] = In
an−1 ∪ . . . ∪ In

0 , (3.8)

we see that only Gn−1(I
n−1
0 ) contains In

an
, hence the symbol an must be

preceded by the symbol 0, as claimed. Also note that there are no more

restrictions since Gn−1(I
n−1
i ) contains In

j for all j = 0, . . . , an − 1. This can

be seen in figure (3.2).
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−ωn − an −ωn − (an − 1) −ωn 1
In

In+1

−ωn+1 − an+1

−ωn+1 − (an+1 − 1)

Fig. 3.2: The map Gn illustrated for n = 7.

Let us now define the subspace of periodic codes

ΣPer = {c ∈ Σ : c is periodic.}. (3.9)

It turns out that it is convenient to exclude from ΣPer the periodic codes

consisting of all 0s and the two codes of the form . . . 0an−20an0an+2 . . . for n

odd and even. This is because the partnering relation (to be defined below

in section 3.1.4) is not well defined for these three codes since the codes

. . . a−30a−10a10a30 . . . (3.10)

and

. . . 0a−20a00a20a4 . . . (3.11)
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both have partner code

. . . 00000000 . . . (3.12)

and the partnering is not unique. Henceforth, we assume that ΣPer has these

codes omitted.

Let us denote by σ the left-shift map, defined for a code c = (ck)k∈Z by

σ(c)k = ck+1.

We now introduce a map en : ΣPer → In which connects directly the code

space ΣPer with the maps Gn. For n ∈ Z, let en : ΣPer → [−ω−1
n , 1] denote

the evaluation map at time n given by

en(c) = −
∞∑

k=n

ck(−1)k−nγk
n (3.13)

where γt
s = ωs . . . ωt−1. It is straightforward to verify that the following prop-

erties of en(c) hold for c ∈ ΣPer.

1. en(c) is a continuous function of c ∈ ΣPer.

2. en(c) ∈ int(In
cn

), the interior of the interval In
cn

.

3. Gn(en(c)) = en+1(c).

4. For c, c′ ∈ ΣPer, the equality en(c) = en(c′) if, and only if, c = c′.

The first statement follows immediately from the geometric decay of γk
n as

k → ∞. We now prove the second statement, for which we need to use the

identity
∞∑

r=1

an+2r−1γ
n+2r−1
n = 1 . (3.14)
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(See section 3.1.4 below.) We consider first the case cn ∈ {1, . . . , an}. Then

en(c) = −
∞∑

k=n

ck(−1)n−kγk
n (3.15)

< −cn − ωn +
∞∑

r=1

an+2r−1γ
n+2r−1
n (3.16)

= −cn − ωn + 1 , (3.17)

where we have used the identity (3.14) and the inequality cn+1 ≤ an+1 − 1.

Strict inequality follows from the periodicity on c and a, since cn+1+2� =

cn+1 < an+1 = an+1+2� for some � ≥ 1. Similarly, we have

en(c) > −cn −
∞∑

r=1

an+2rγ
n+2r
n (3.18)

= −cn − ωn

∞∑
r=1

an+1+2r−1γ
n+1+2r−1
n = −cn − ωn , (3.19)

where we have again used (3.14) with n replaced by n + 1. Strict inequality

follows from the fact that cn+2r < an+2r for some r ≥ 1 since xn+2r−1 �= 0 for

at least one r ≥ 1 and we have excluded codes of the form (. . . an0an+20 . . . ).

The case when cn = 0 is similar, and we omit it for the sake of brevity.
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To prove the third statement, we calculate

Gn(en(c)) = −ω−1
n

(
−

∞∑
k=n

ck(−1)k−nγk
n

)
− iω−1

n (3.20)

= −
∞∑

k′=n+1

ck′(−1)k′−(n+1)ωn+1 . . . ωk′ (3.21)

= −
∞∑

k′=n+1

ck′(−1)k′−(n+1)γk′
n+1 (3.22)

= en+1(c) (3.23)

= en(σ(c)). (3.24)

This is illustrated in the following commutative diagram.

Σn

σ
��

en �� In

Gn

��
Σn+1

en �� In+1

The fourth statement follows immediately from the previous ones.

3.1.4 Evaluation map and partnering

Following [46] we now introduce a partnering operation S̃ on codes in ΣPer.

The purpose of this operation is to take into account the symmetries of the

zeros of the initial conditions (1.57), in particular the reflection symmetry of

the zeros of the function 1+cos 2πx about x = 1/2 (the case α = 1 in (1.57)).

The partnering operation is related to the following identities. Recalling the
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notation γm
n =

∏m−1
k=n ωk, the identity

ωn = [an+1, an+2, . . .] =
1

an+1 + ωn+1

, (3.25)

gives in turn

an+1γ
n+1
n + γn+2

n = 1. (3.26)

Repeatedly permuting the indices in this equation, multiplying through by

−ωn, and adding the resulting equation to (3.26) results in the identities

1 = an+1γ
n+1
n + γn+2

n , (3.27)

1 = (an+1 + 1)γn+1
n − (an+2 − 1)γn+2

n − γn+3
n , (3.28)

1 = (an+1 + 1)γn+1
n − an+2γ

n+2
n + (an+3 − 1)γn+3

n + γn+4
n , (3.29)

1 = (an+1 + 1)γn+1
n − an+2γ

n+2
n + an+3γ

n+3
n − (an+4 − 1)γn+4

n − γn+5
n ,

... (3.30)

which are equivalent to the observation that 1 is a fixed point of the following

contractions, which we make use of in the proof of propostion 1 below.
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κn
2 (x) = an+1γ

n+1
n + γn+2

n x, (3.31)

κn
3 (x) = (an+1 + 1)γn+1

n − (an+2 − 1)γn+2
n − γn+3

n x, (3.32)

κn
4 (x) = (an+1 + 1)γn+1

n − an+2γ
n+2
n + (an+3 − 1)γn+3

n + γn+4
n x, (3.33)

κn
5 (x) = (an+1 + 1)γn+1

n − an+2γ
n+2
n + an+3γ

n+3
n − (an+4 − 1)γn+4

n − γn+5
n x,

... (3.34)

Repeating this process ad infinitum gives the identity

1 = γn+1
n + an −

∞∑
k=n

(−1)k−nakγ
k
n = ω−1

n−1 −
∞∑

k=n

(−1)k−nakγ
k
n , (3.35)

which we shall use in the definition of partnering below. A further identity

that follows in an analogous manner is

∞∑
r=1

an+2r−1γ
n+2r−1
n = 1 , (3.36)

which may be obtained in the limit from (3.26) by repeatedly advancing the

indices in (3.26) by 2, multiplying through by γn+2
n = ωnωn+1 and adding.

We now define a substitution operation S̃ on the biinfinite periodic codes in

c ∈ ΣPer (from which we excluded the periodic code consisting of all zeros

for convenience). For a given periodic code c, we have two cases: case (i) all

cn �= 0 and case (ii) cn = 0 and cm �= 0 for infinitely many n, m.

In case (i), we note that from (3.6) that 1 ≤ cn ≤ an − 1 for all n ∈ Z. We
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may therefore define S̃(c) = c̃ = (c̃n)n∈Z by c̃n = an − cn. It is immediate

that 1 ≤ c̃n ≤ an − 1 and c̃ is again a code in ΣPer with no zeros.

The definition in case (ii) is more complicated. We split the code c into finite

sequences which we call elementary blocks and then define S̃ on each of these

elementary blocks in turn. As S̃ preserves this elementary block structure,

we may recombine the blocks to form the partner code c̃. The procedure is

as follows.

Firstly c is split into finite blocks beginning with a single 0, i.e., into blocks

of the form

0d0d1 . . . dk0
r , (3.37)

where k ≥ 0, dj �= 0, j = 0, . . . , k, r ≥ 0. Further the trailing run of 0s is

split so that this block is written

0d0d1 . . . dk0(00)(r−1)/2 , r odd , (3.38)

0d0d1 . . . dk(00)r/2 , r even , (3.39)

and thus we subdivide each of these blocks into elementary blocks of the

form 0d, 0d0d1 . . . dkd where k ≥ 0, dj �= 0, for j = 0, . . . , k and 0 ≤ d. On

these resulting elementary blocks the operation S̃ is then defined as follows.

Let us suppose that an elementary block has initial zero starting at index

n ∈ Z, so that, in view of (3.6), we have either a block of length two, of

the form 0d, where 0 ≤ d ≤ an+1, or a block of length three, or more, of

the form 0d0d1 . . . dkd, where k ≥ 0, 1 ≤ d0 ≤ an+1, 1 ≤ dj ≤ an+j+1 − 1

(1 ≤ j ≤ k), and 0 ≤ d ≤ an+k+2 − 1. (Note that when k = 0 we have a
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block of length three of the form 0d0d.) The operation S̃ can now be defined

on the elementary blocks by

S̃(0d) = 0(an+1 − d), (3.40)

S̃(0d0d1 . . . dkd) = 0(an+1 + 1 − d0)(an+2 − d1) . . . (3.41)

(an+(k+1) − dk)(an+(k+2) − d − 1), k ≥ 0. (3.42)

It is straightforward to check that S̃ gives a new elementary block of the

same length satisfying the above conditions. The action of S̃ is to take digit

complements according to the elementary block structures of lengths 2, 3,

. . . , which are

0an+1 (3.43)

0(an+1 + 1)(an+2 − 1) (3.44)

0(an+1 + 1)an+2(an+3 − 1) (3.45)

0(an+1 + 1)an+2an+3(an+4 − 1) (3.46)

...

For example, suppose ω = [5, 5, 5, . . .]. We split the code

c = . . . (011234)(05)(00)(03412330)(00)051230 . . . (3.47)

as shown. Then

S̃(c) = (054320)(00)(05)(03143224)(05)S̃(051230 . . .). (3.48)
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Having defined S̃ on each elementary block, all of the elementary blocks are

then combined to form a new partner code c̃ = S̃(c). This defines a map

S̃ : ΣPer → ΣPer which is easily seen to be a continuous involution, i.e.,

S̃2 = id, the identity map. Continuity follows from the observation that in

case (ii) for each index n the elementary block containing cn is constant for

all codes sufficiently close to c in ΣPer. We note that case (i) can be thought

of as a single elementary block stretching to infinity in both directions and,

indeed, continuity in case (i) follows from the fact that as a periodic code

approaches c in ΣPer, for each index n the elementary block containing cn

grows in length to the left and right so the partner code also approaches

S̃(c). It is also clear that S̃ commutes with the left shift map σ on ΣPer.

We next define the sum map

S : ΣPer → {S = (Sk)k∈Z : Sk ∈ {1,−ω−1
k−1, 1 − ω−1

k−1}}, (3.49)

the space of biinfinite sequences with terms at index n taken from {1,−ω−1
n−1, 1−

ω−1
n−1}. The sum map is important because it motivates the reason for the

choice of partner operation S̃. For a code c is case (i) above we set S(c)n =

1 − ω−1
n−1 for all n ∈ Z. In case (ii), S is defined in terms of the elementary

block structures given above. Let c = (ck)k∈Z be a code with partner S̃(c),

denoted by c̃. c and c̃ are divided into blocks and S is defined on the ele-

mentary block structures (3.43) - (3.46) as follows. Let the first entry in the
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block be at index n. Then,

S(0an+1) = 1(−ω−1
n ) (3.50)

S(0(an+1 + 1)(an+2 − 1)) = 1(−ω−1
n )(1 − ω−1

n+1) (3.51)

S(0(an+1 + 1)an+2(an+3 − 1)) = 1(−ω−1
n )(1 − ω−1

n+1)(1 − ω−1
n+2) (3.52)

S(0(an+1 + 1)an+2an+3(an+4 − 1)) = 1(−ω−1
n )(1 − ω−1

n+1)(1 − ω−1
n+2)(1 − ω−1

n+3)

... (3.53)

extending S to the whole of c. By construction, we have that S(c) = S(c̃)

and S(σ(c)) = σ(S(c)), provided that the biinfinite sequence a is also left

shifted. Again it is straightforward to check that S is continuous. We have

the following result which specifies precisely how y = e(c) and ỹ = e(c̃) are

related, and explains the terminology ‘sum map’:

Proposition 1. Let y = e(c) and ỹ = e(c̃). Then y + ỹ = S(c), where, the

sum is to be calculated termwise.

To prove this proposition, let us consider a bi-infinite code c and its partner

code c̃, given by the above substitution rules. We write yk = ek(c), ỹk = ek(c̃)

and set Sk = yk + ỹk. We first of all consider case (i) in which all cn �= 0

for all n ∈ Z. Then from the definition of ek(c) in (3.13), the identity (3.35)

above, and the partnering definition above, we have

Sk = ek(c) + ek(c̃) = −
∞∑

k=n

(−1)k−nakγ
n
k = 1 − ω−1

n−1 , (3.54)

as required. In case (ii), we proceed somewhat differently. Let us write the



3. Renormalization Analysis 73

codes in terms of the above block structures, (3.43) - (3.46). Then we claim

that if n ∈ Z starts a block (i.e., cn = c̃n = 0, the first zero of a block),

then yn + ỹn = 1. Indeed, suppose the block starting at n is of total length

j1 ≥ 2. Then from (3.13) we have Sn = κn
j1

(Sn+j1) so that, making use of the

identities (3.27) - (3.30) and (3.31) - (3.34),

|Sn − 1| = |κn
j1

(Sn+j1) − κn
j1

(1)| (3.55)

= γn+j1
n |Sn+j1 − 1|. (3.56)

Since the next block, of total length j2 ≥ 2 starts at n+j1, we have, similarly,

|Sn − 1| = γn+j1
n γn+j1+j2

n+j1
|Sn+j1+j2 − 1|. (3.57)

Continuing in this way,

|Sn − 1| = γn+j1+j2+...+jk
n |Sn+j1+j2+...+jk

− 1|, (3.58)

we notice that the Sk are bounded and obtain the limit Sn = 1, as claimed.

We now consider k ∈ Z within a block. Consider an elementary block struc-

ture and let n ∈ Z correspond to the start of the block. Now from (3.13) we

know that,
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yn+i = en+i(c) = −
∞∑

k=n+i

ck(−1)k−(n+i)γk
n+i

= −cn+i + ωn+i

∞∑
k=n+(i+1)

ck(−1)k−(n+(i+1))γk
n+(i+1)

= −cn+i − ωn+iyn+(i+1), (3.59)

and similarly,

ỹn+i = −c̃n+i − ωn+iỹn+(i+1), (3.60)

then,

Sn+i = yn+i + ỹn+i

= −(cn+i + c̃n+i) − ωn+iSn+(i+1). (3.61)

If we now consider the elementary block structure 0an+1 of length 2, we have

Sn = −(cn + c̃n) − ωnSn+1

= −ωnSn+1, (3.62)

then if Sn = 1,

Sn+1 = −ω−1
n . (3.63)

Thus S(0an+1) = 1(−ω−1
n ) corresponds to the sum y + ỹ on the block.

Similarly, for the elementary block structure 0(an+1 + 1)(an+2 − 1) of length
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3 we have, again, Sn = 1, and Sn+1 = −ω−1
n , where now

Sn+1 = −(cn+1 + c̃n+1) − ωn+1Sn+2, (3.64)

which implies

−ω−1
n = −(an+1 + 1) − ωn+1Sn+2, (3.65)

so that, using (3.25)

Sn+2 = 1 − ω−1
n+1, (3.66)

and S(0(an+1 + 1)(an+2 − 1)) = 1(−ω−1
n )(1− ω−1

n+1) corresponds again to the

sum y + ỹ on the block.

Finally, for an elementary block structure 0(an+1 + 1)aj
n+i(an+2+j − 1) with

i = 2, . . . , j+1 of length j+3 for j ≥ 1, we have again, Sn = 1, Sn+1 = −ω−1
n ,

Sn+2 = 1 − ω−1
n+1, and

Sn+i = −(cn+i + c̃n+i) − ωn+iSn+(i+1), (3.67)

which implies

1 − ω−1
n+(i−1) = −(an+i + 1) − ωn+iSn+(i+1), (3.68)

so that

Sn+(i+1) = 1 − ω−1
n+i, (3.69)
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and similarly for the final block,

Sn+j+1 = 1 − ω−1
n+j = −an+j+1 − ωn+j+1Sn+2+j, (3.70)

which implies

Sn+2+j = 1 − ω−1
n+j+1. (3.71)

Giving,

S(0(an+1+1)aj
n+i(an+2+j−1)) = 1(−ω−1

n )(1−ω−1
n+1)(1−ω−1

n+2) . . . (1−ω−1
n+j+1).

(3.72)

This completes the proof of the proposition.

Let us now explain briefly the significance of these definitions for the problem

in hand. The function t1(x) in the initial conditions (1.57) has two zeros

whose sum is either 1 or 1 − ω−1
0 corresponding to either the start or the

middle of an elementary block defined above (see section ?? below). Thus

when we map ΣPer into the function-pair space Fn at index n, we make use

of the partnering operator to obtain a zero set for the resulting function pair

that correspond to that of t1.
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3.2 Function-pair spaces

In order to give a precise definition of the function space and of the renor-

malization transformation Rn, we must specify the domains of the functions

U and T . Let a = (ak)k∈Z and the corresponding ω= (ωk)k∈Z be fixed.

For cn ∈ C and rn > 0, let D(cn, rn) denote the disc centered at cn with

radius rn. Let V n
1 = D(cn

1 , r
n
1 ) and V n

0 = D(cn
0 , r

n
0 ) be the discs in C where

cn
0 = 1 − ω−1

n−1

2
, rn

0 =
ω−1

n−1

2
+ δ, cn

1 =
1

2
− ω−1

n−1, rn
1 =

1

2
+ δ, (3.73)

where δ > 0, as illustrated in figure 3.3.

−ω−1
n−1

1
2
− ω−1

n−1 1 − ω−1
n−1 1 − 1

2
ω−1

n−1

V n
1

V n
0

1

Fig. 3.3: The domains V n
0 and V n

1 .

The choice of δ > 0 is dependent on the particular code c ∈ ΣPer for which

we construct En(c) such that βn(c) = En(c)En(c̃) in section (4.1.3) below.

Indeed for a given c the values of yn = en(c) and ỹn = en(c̃) form periodic

sequences, which (as we have seen in section 3.1 above) are bounded away

from the boundaries of the intervals In
j . Let us choose δ = δ(c) so that the
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distance of each of the points yn and ỹn is bounded away from ∂V n
0 and ∂V n

1

by at least δ > 0. It is clear that such a choice of δ is always possible and that

δ(c) may be chosen to be locally constant, i.e., there is a neighbourhood N of

c in ΣPer such that δ is constant on N . Unfortunately, ΣPer is not compact

so that it is not possible to choose δ independently of c on the whole of ΣPer.

Our approach is therefore to define En locally and then to patch together the

local definitions to obtain a map defined on the whole of ΣPer. Since δ may

be arbitrarily small the final construction is a map from ΣPer to the function

space obtained by taking δ = 0.

Letting δ > 0, we now prove the following set inclusions, which show that

the operator Rn is so-called analyticity improving.

Lemma 1. The following inclusions hold for all δ > 0.

θn
0 (V n+1

1 ) ⊆ V n
0 (3.74)

θn
i (V n+1

0 ) ⊆ V n
0 , i = 0, . . . , an − 1 , (3.75)

θn
an

(V n+1
0 ) ⊆ V n

1 . (3.76)

Proof. Since θn
0 is a similarity it is sufficient to show that θn

0 maps the end

points of a diameter of V n+1
1 inside V n

0 . Now, DV n+1
1 = [−δ−ω−1

n , 1−ω−1
n +δ]

is a diameter of V n+1
1 , and

θn
0 (DV n+1

1 ) = [−ωn + 1 − ωnδ, 1 + δωn] ⊂ (1− ω−1
n−1 − δ, 1 + δ) ⊆ V n

0 (3.77)

(using ω−1
n−1 = ωn + an), so that equation (3.74) holds.
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Similarly, for i = 0, . . . , an − 1, DV n+1
0 = [1− ω−1

n − δ, 1 + δ] is a diameter of

V n+1
0 and

θn
i ([1 − ω−1

n − δ, 1 + δ]) = [−ωn − ωnδ − i, 1 − ωn + ωnδ − i], (3.78)

so that

θn
0 (DV n+1

0 ) ∪ . . . ∪ θn
an−1(DV n+1

0 ) = [−ωn − ωnδ − (an − 1), 1 − ωn + ωnδ]

⊆ (1 − ωn − an − δ, 1 + δ) ⊆ V n
0 (3.79)

and again we can conclude that equation (3.75) also holds.

Finally for (3.76):

θn
an

(DV n+1
0 ) = [−ωn − ωnδ − an, 1 − ωn + ωnδ − an] (3.80)

⊆ (−ω−1
n−1 − δ, 1 − ω−1

n−1 + δ) (3.81)

⊆ V n
1 . (3.82)



3. Renormalization Analysis 80

3.3 Definition of the renormalization transformations

We may now formally define the renormalization maps Rn and related addi-

tive versions:

Rn(u(x), t(x)) = (t(θn
0 (x)),

(
an−1∏
i=0

t(θn
i (x))

)
u(θn

an
(x))) (3.83)

R0,n(U(x), T (x)) = (T (θn
0 (x)),

(
an−1∑
i=0

T (θn
i (x))

)
+ U(θn

an
(x))) (3.84)

where θn
i (x) = −ωnx − i.

For δ > 0, we define the function space:

F δ
n = {(U, T ) : U : V n

1 → C, T : V n
0 → C, U, T real analytic

and ‖(U, T )‖ = ‖U‖1 + ‖T‖1 < ∞}, (3.85)

so that we have from Lemma 1

Rn : F δ
n → F δ

n+1, R0,n : F δ
n → F δ

n+1. (3.86)

We also have Rn(exp(U, T )) = exp(R0,n(U, T )), with exp defined coordinate-

wise. For the case a periodic with period p, say, it follows that F δ
n+p = F δ

n

for all n ∈ Z. Let us denote by Fn the function space obtained by setting

δ = 0. It is clear from the above inclusions that Rn is well defined on Fn and

we also have that F δ
n may be continuously embedded in Fn.



4. PERIODIC CONTINUED FRACTIONS

In this chapter we shall be concerned with periodic continued fractions, al-

though much of the theory applies in the more general case.

Let ω = [a1, . . . , ap], a1, . . . , ap ∈ N, have a periodic continued fraction ex-

pansion of period p. Then, for k ∈ Z, we set ak = a
k mod p

and a = (ak)k∈Z.

Thus we may identify ω with a unique a ∈ NZ,P er. In what follows we shall

restrict to this fixed sequence a with period p ≥ 1 so that an+p = an for all

n. We further set, for k ∈ Z, ωk = [ak+1, . . . , ak+p], and let ω= (ωk)k∈Z. For

k ∈ Z, we also define V k
0 , V k

1 to be the domains in C given in section 3.2

above. Let us also set a code space Σ = {c ∈ (ck)k∈Z | ck ∈ {0, . . . , ak}, ck =

ak ⇒ ak−1 = 0}, and ΣPer = {c ∈ Σ | c is periodic} (with certain codes

removed, as explain in section 3.1.3.) We can now define a space of function

pairs for each k ∈ Z. For domains V k
1 , V k

0 ⊆ C we have

Fk = {(U, T ) : U : V k
1 → C, T : V k

0 → C, U, T real analytic}, (4.1)

with norm ‖(U, T )‖ = ‖U‖1 + ‖T‖1, where ‖ . ‖1 denotes the standard L1-

norm, given for a function analytic on D(a, r) with Taylor expansion f(x) =∑∞
i=0 fi(x − a)i/ri by ‖ f ‖1 =

∑∞
i=0 | fi |. Then Fk is a real Banach space of

function pairs.
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4.1 Construction of the map En

The construction of the renormalization strange sets is achieved through a

map En which gives a function pair for each periodic sequence c ∈ ΣPer. Our

aim in this section is the construction of the map En for periodic ω. We

then give an outline of the spectral properties of Rn and define a projection

operator Pn that annihilates the expanding directions in Rn. Further details

are relegated to the appendix. Finally, we give an outline of the construction

of En in section 4.1.3.

4.1.1 Spectral properties of the renormalization operator

In this section we study the spectral properties of the renormalization maps

R0,n for δ > 0. Introducing the notation R�
n = Rn+�−1Rn+�−2 . . . Rn and

similarly for R�
0,n, we will investigate the spectral properties of Rp

0,n : F δ
n →

F δ
n. The spectral properties of the linear maps R0,n will be important in what

follows, and in this section we prove the following lemma, which characterizes

the spectral properties of the operator Rp
0,n for a periodic of period-p.

Lemma 2. Let a be periodic of period p ≥ 1. Then the operator Rp
0,n : F δ

n →
F δ

n is compact. Its spectrum consists of simple eigenvalues

{(−1)p(m+1)(γp
0)

m+1, (−1)pm(γp
0)

m−1,m = 0, 1, 2, . . .}, (4.2)

where γp
0 = ω0 . . . ωp−1. In particular there are two eigenvalues of modulus

greater than or equal to 1, viz., (−1)p and (γp
0)

−1.
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The proof of this lemma is given in appendix E. Our aim now is to de-

fine projection operators P0,n so that the non-stable eigenvalues, (γp
0)

−1 and

(−1)p (which are given by setting m = 0, 1 in lemma 2) are killed off by

the projection P0,n and so that the largest remaining eigenvalue has absolute

value 0 < γp
0 < 1. Then we can conclude that there exists ρ ∈ (γp

0 , 1) such

that ‖Rk
0,nP0,n‖ ≤ Kρk for k ≥ 0 and for some constant K .

4.1.2 Projection operator

In order to construct the maps βn, we first define a projection operator that

‘kills off’ the expanding eigendirections in the function space F δ
n. In other

words, we project down to the stable manifold of the renormalization strange

set. This is done in order to obtain a convergent series. Specifically, we have

the following lemma.

Lemma 3. Let a be periodic of period p ≥ 1. Then for each n ∈ Z, there

exists a projection map P0,n : F δ
n → F δ

n, satisfying RnP0,n = P0,n+1Rn and

such that the spectral radius of Rp
0,nP0,n : F δ

n → F δ
n is strictly less than 1.

Furthermore, there exists constants K > 0 and 0 < ρ < 1 such that, for all

n ∈ Z, k ≥ 0,

‖Rk
0,nP0,n‖ ≤ Kρk . (4.3)

Proof. In order to prove the lemma, let us define

P0,n(Un, Tn) = (Un, Tn) − ∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 , (4.4)
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where, for � ≥ 0,

∆n
� (Un, Tn) =

∫ 1−ω−1
n−1

−ω−1
n−1

U (�)
n (x)dx +

∫ 1

1−ω−1
n−1

T (�)
n (x)dx, (4.5)

and vn
0 , vn

1 are function pairs satisfying

R0,nv
n
0 = ω−1

n vn+1
0 , (4.6)

R0,nv
n
1 = −vn+1

1 , (4.7)

subject to the conditions:

∆n
0 (vn

0 ) = 1, (4.8)

∆n
0 (vn

1 ) = 0, (4.9)

∆n
1 (vn

0 ) = 0, (4.10)

and ∆n
1 (vn

1 ) = 1, (4.11)

The pairs vn
0 and vn

1 satisfying these conditions are given in appendix F

below. With this definition, the projection P0,n kills off the non-contracting

directions vn
0 , vn

1 . Moreover, P0,n commutes with R0,n in the following way:

Proposition 2.

R0,nP0,n(Un, Tn) = P0,n+1R0,n(Un, Tn) (4.12)
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Proof.

R0,nP0,n(Un, Tn) = R0,n ((Un, Tn) − ∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 )

= R0,n(Un, Tn) − ∆n
0 (Un, Tn)Ro,n(vn

0 ) − ∆n
1 (Un, Tn)R0,n(vn

1 )

= R0,n(Un, Tn) − ∆n
0 (Un, Tn)ω−1

n vn+1
0 − ∆n

1 (Un, Tn)(−vn+1
1 )

= R0,n(Un, Tn) − ∆n+1
0 (R0,n(Un, Tn))vn+1

0

−∆n+1
1 (R0,n(Un, Tn))vn+1

1

= P0,n+1(R0,n(Un, Tn)). (4.13)

Here we have used equations (4.6), (4.7) and the following result:

Proposition 3.

∆n+1
� (R0,n(Un, Tn)) = −(−ωn)�−1∆n

� (Un, Tn) (4.14)
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Proof.

∆n+1
� (R0,n(Un, Tn)) =

∫ 1−ω−1
n

−ω−1
n

d�

dx�
Tn(θn

0 (x))dx

+

∫ 1

1−ω−1
n

d�

dx�

(
an−1∑
i=0

Tn(θn
i (x)) + Un(θn

an
)

)
dx (4.15)

= (−ωn)�

∫ 1−ω1
n

−ω−1
n

T (�)
n (θn

0 (x))dx

+(−ωn)�

∫ 1

1−ω−1
n

an−1∑
i=0

T (�)
n (θn

i (x)) + U (�)
n (θn

an
(x))dx

(4.16)

= (−ωn)�−1

∫ 1−ωn

1

T (�)
n (y)dy

+(−ωn)�−1

an−1∑
i=0

∫ −ωn−1

−ωn−(i−1)

T (�)
n (y)dy

+(−ωn)�−1

∫ −ωn−an

−ωn−(an−1)

U (�)
n (y)dy (4.17)

= −(−ωn)�−1

∫ 1

1−ωn

T (�)
n (y)dy

−(−ωn)�−1

∫ 1−ωn

−ωn−(an−1)

T (�)
n (y)dy

−(−ωn)�−1

∫ −ωn−(an−1)

−ωn−an

U (�)
n (y)dy (4.18)

= −(−ωn)�−1

(∫ 1−ω−1
n−1

−ω−1
n−1

U (�)
n (y)dy +

∫ 1

1−ω−1
n−1

T (�)
n (y)dy

)

(4.19)

= −(−ωn)�−1∆n
� (Un, Tn). (4.20)

We conclude that the spectral radius of Rp
0,nP0,n is (ω1 . . . ωp), and further
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deduce that there exist constants K > 0 and 0 < ρ < 1 such that

‖Rk
0,n‖ ≤ Kρk , for k ≥ 0. (4.21)

This concludes the proof of lemma 3.

We may now readily define a multiplicative version Pn of the projection

operator P0,n as follows. Letting (un, tn) ∈ F δ
n, we set

Pn(un, tn) = (un, tn) exp(−∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 ) , (4.22)

where (Un, Tn) = log |(un, tn)|. It is straightforward to show that Pn has the

following properties.

1. Pn exp(Un, Tn) = exp(P0,n(UnTn)) for (Un, Tn) ∈ F δ
n.

2. P 2
n = Pn, so that Pn is a projection operator;

3. RnPn = Pn+1Rn;

Proof. 1.

Pn(exp(Un, Tn)) = Pn(un, tn)

= (un, tn) exp(−∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 )

= exp(Un, Tn) exp(−∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 )

= exp((Un, Tn) − ∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 )

= exp(P0,n(Un, Tn)). (4.23)
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2. Let Pn(un, tn) = (ûn, t̂n) then

P 2
n(un, tn) = Pn(ûn, t̂n)

= (ûn, t̂n) exp(−∆n
0 (Ûn, T̂n)vn

0 − ∆n
1 (Ûn, T̂n)vn

1 ),

(4.24)

where (Ûn, T̂n) = log |(ûn, t̂n)|. Now,

(Ûn, T̂n) = log |(ûn, t̂n)‖

= log |Pn(un, tn)|

= log |(un, tn) exp(−∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 )|

= log |(un, tn)| − ∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1

= (Un, Tn) − ∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 , (4.25)

and using linearity we have

∆n
� (Ûn, T̂n) = ∆n

0 (Un, Tn) − ∆n
0 (Un, Tn)∆n

� (vn
0 ) − ∆n

1 (Un, Tn)∆n
� (vn

1 ).

(4.26)

Taking � = 0 and using equations (4.8) and (4.9) we have

∆n
0 (Ûn, T̂n) = ∆n

0 (Un, Tn)−∆n
0 (Un, Tn)∆n

0 (vn
0 )−∆n

1 (Un, Tn)∆n
0 (vn

1 ) = 0,

(4.27)
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similarly for � = 1 using equations (4.10) and (4.11) we have

∆n
1 (Ûn, T̂n) = ∆n

1 (Un, Tn)−∆n
0 (Un, Tn)∆n

1 (vn
0 )−∆n

1 (Un, Tn)∆n
1 (vn

1 ) = 0,

(4.28)

so that equation (4.24) becomes

P 2
n(un, tn) = (ûn, t̂n) = Pn(un, tn). (4.29)

3. From (4.23) we have that Pn(un, tn) = exp(Po,n(Un, Tn)), then

Rn(Pn(un, tn)) = Rn(exp((Un, Tn) − ∆n
0 (Un, Tn)vn

0 − ∆n
1 (Un, Tn)vn

1 ))

= Rn(un, tn) exp(−∆n
0 (Un, Tn)Rnv

n
0 − ∆n

1 (Un, Tn)Rnv
n
1 )

= Rn(un, tn) exp(−ω−1
n ∆n

0 (Un, Tn)vn+1
0 + ∆n

1 (Un, Tn)vn+1
1 )

= Rn(un, tn)

exp(−∆n+1
0 (Rn(un, tn))vn+1

0 − ∆n+1
1 (Rn(un, tn))vn+1

1 )

= Pn+1(Rn(un, tn)), (4.30)

where we have used the result

∆n+1
� (Rn(un, tn)) = −(−ωn)�−1∆n

� (Un, Tn). (4.31)

Lemma 3 has a corollary for the multiplicative projection Pn.

Lemma 4. Let (un, tn) ∈ F δ
n satisfy
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1. Pn(un, tn) = (un, tn);

2. (un, tn) �= 0 on V
n

1 × V
n

0 ;

3. (un, tn) > 0 on
(
V

n

1 × V
n

0

) ∩ R2.

Then R�
n(un, tn) → (1, 1) as � → ∞.

Proof. We have that (un, tn) = exp(Un, Tn) where (Un, Tn) ∈ F δ
n is well

defined and analytic since (un, tn) �= 0 on V
n

1 × V
n

0 . Moreover P0,n(Un, Tn) =

(Un, Tn). Then from Lemma 3, ‖R�
0,n(Un, Tn)‖ → (0, 0) as � → ∞. We

conclude that R�
n(un, tn) = exp(R�

0,n(Un, Tn)) → (1, 1) as � → ∞.

We shall make use of the multiplicative projection in our subsequent analysis.

4.1.3 Construction of the map En

We aim to construct a biinfinite sequence of maps En : ΣPer → F δ
n, such that

En = hn(c) , (4.32)

where

hn(c) =




(yn − x, yn − x) cn−1 = 0

(1, yn − x) cn−1 �= 0

(4.33)

and multiplication is carried out coordinatewise so that (u1, t1)(u2, t2) =

(u1u2, t1t2). Here yn = en(c) is the image of the evaluation map, and (u1
n, t

1
n) ∈
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F δ
n with

u1
n(x) > 0, x ∈ (−ωn − an,−ωn − (an − 1)) (4.34)

t1n(x) > 0, x ∈ (−ωn − (an − 1), 1) (4.35)

and En has the important property

Rn((su, st)En(c)) = κcn(su, st)En+1(c) . (4.36)

where the sign-pair (su, st) ∈ {+1,−1}2 and κcn : {+1,−1}2 → {+1,−1}2 is

given by

κcn(su, st) = (−st,−(−1)cn(st)ansu). (4.37)

Let us we briefly explain the origin of κcn . We show below that Rn(En(c)) =

(−1,−(−1)cn)En+1. Using the multiplicative properties of Rn we have

Rn((su, st)En) = (st, (st)ansu))(−1,−(−1)cn)En+1 (4.38)

= κcn(su, st)En+1. (4.39)

When (su, st) = (+1, +1) the relation (4.36) becomes

Rn(En(c)) = κcn(+1, +1)En+1 = (−1,−(−1)cn)En+1 . (4.40)

Let us define Hn,1(c) by the equation:

Rnhn(c) = κcn(+1, +1)hn+1(c) exp(Hn,1(c)), (4.41)
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where Hn,1(c) ∈ F δ
n+1. We give the construction of Hn,1(c) explicitly. There

are four cases:

Case (i). cn−1 = 0, cn = 0. Recalling that

Rn(u(x), t(x)) = (t(θn
0 (x)),

an−1∏
i=0

t(θn
i (x))u(θn

an
(x))), (4.42)

and

yn+i = −cn+i − ωn+iyn+(i+1), (4.43)

and using equation (4.37) we have that

Rn(hn(c)) = (yn − θn
0 (x), (

an−1∏
i=0

yn − θn
i (x))(yn − θn

an
(x)))

= (θn
0 (yn+1) − θn

0 (x), (θn
0 (yn+1) − θn

0 (x))
an∏
i=1

(yn − θn
i (x)))

= (−1,−1)(yn+1 − x, yn+1 − x)(ωn, ωn

an∏
i=1

(yn − θn
i (x)))

= κ0(+1, +1)hn+1(c) exp(Hn,1(c)), (4.44)

where

Hn,1(c) = log

(
ωn, ωn

an∏
i=1

(yn − θn
i (x))

)
. (4.45)

Case (ii). cn−1 �= 0, cn = 0. Similarly,
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Rn(hn(c)) = (yn − θn
0 (x),

an−1∏
i=0

(yn − θn
i (x)))

= (θn
0 (yn+1) − θn

0 (x), (θn
0 (yn+1) − θn

0 (x))
an−1∏
i=1

(yn − θn
i (x)))

= (−1,−1)(yn+1 − x, yn+1 − x)(ωn, ωn

an∏
i=1

(yn − θn
i (x)))

= κ0(+1, +1)hn+1(c) exp(Hn,1(c)), (4.46)

where

Hn,1(c) = log

(
ωn, ωn

an−1∏
i=1

(yn − θn
i (x))

)
. (4.47)

Case (iii). cn−1 = 0, cn �= 0. Here,

Rn(hn(c)) = (yn − θn
0 (x), (

an−1∏
i=0

yn − θn
i (x))(yn − θn

an
(x)))

= (1, yn − θn
cn

(x))

(yn − θn
0 (x), (

cn−1∏
i=0

(yn − θn
i (x)))(

an∏
j=cn+1

(yn − θn
j (x))))

= (−1,−(−1)cn)(1, yn+1 − x)

(θn
0 (x) − yn, (−1)cnωn(

cn−1∏
i=0

(yn − θn
i (x)))(

an∏
j=cn+1

(yn − θn
j (x))))

= κcn(+1, +1)hn+1(c) exp(Hn,1(c)), (4.48)
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where

Hn,1(c) = log

(
θn
0 (x) − yn, ωn(

cn−1∏
i=0

(θn
i (x) − yn))(

an∏
j=cn+1

(yn − θn
j (x)))

)
.

(4.49)

Case (iv). cn−1 �= 0, cn �= 0. Finally,

Rn(hn(c)) = (yn − θn
0 (x),

an−1∏
i=0

(yn − θn
i (x)))

= (1, yn − θn
cn

(x))

(yn − θn
0 (x), (

cn−1∏
i=0

(yn − θn
i (x)))(

an∏
j=cn+1

(yn − θn
j (x))))

= (−1,−(−1)cn)(1, yn+1 − x)

(θn
0 (x) − yn, (−1)cnωn(

cn−1∏
i=0

(yn − θn
i (x)))(

an−1∏
j=cn+1

(yn − θn
j (x))))

= κcn(+1, +1)hn+1(c) exp(Hn,1(c)), (4.50)

where

Hn,1(c) = log

(
θn
0 (x) − yn, ωn(

cn−1∏
i=0

(θn
i (x) − yn))(

an−1∏
j=cn+1

(yn − θn
j (x)))

)
.

(4.51)

The reason for defining Hn,1 is that it is a function pair that has no zeros

on the domains V1 and V0, provided δ is chosen sufficiently small, and, we

have a bound for ‖Hn,1(c)‖ independent of n. Indeed, we have the following

technical lemma:

Lemma 5. There exist δ > 0 and L > 0 (depending on a and c) such that
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the function Hn,1 = (u1
n+1, t

1
n+1) ∈ F δ

n+1 satisfies

1. u1
n+1(x) > 0 for x ∈ V

n+1

1 ∩ R, and t1n+1(x) > 0 for x ∈ V
n+1

0 ∩ R;

2. ‖Hn,1‖ ≤ L.

The proof of this lemma is laborious, if straightforward. We refer the reader

to appendix G, where full details will be found. The precise bound L is

dependent on the choice of δ, but this merely governs the estimates for the

convergence of En(c) and does not affect the function so defined which is

independent of δ.

Let us now define En = hn exp(Kn) where Kn is constructed so that Kn =

Kn(c) ∈ F δ
n, and Hn,1 + R0,nKn = Kn+1, which is the required functional

equation for K.

Defining Hn,0 = log |hn| it is also shown in appendix H that

R0,nHn,0 = Hn+1,0 + Hn,1 (4.52)

where Hn,1 ∈ F δ
n+1 is as before.

Using the notation R�
n = Rn+�−1Rn+�−2 . . . Rn and similarly for R�

0,n, we

define:

Hn,� = R�−1
0,n+1H

n,1 , Ĥn,� = R�−1
0,n+1P0,n+1H

n,1 . (4.53)

Setting Ĝn =
∑∞

k=1 Ĥn−k,k, the convergence of the series is shown in ap-

pendix H where it is also demonstrated that Ĝn satisfies the equation

R0,nĜn + Ĥn,1 = Ĝn+1 . (4.54)
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The function pair Kn is now given by

Kn = Ĝn − (I − P0,n)Hn,0 ∈ F δ
n , (4.55)

where P0,n is given by (4.4) above. The details are laid out in appendix H.

The construction of En depends on c in that δ depends on c. δ may be

chosen locally constant, however, so that we may define a restricted map

En : N ∩ ΣPer → Fn ⊆ F δ
n, where the patch N is an open neighbourhood of

c. By covering ΣPer by patches of this form, we may define En : ΣPer → Fn.

Let us remark briefly on the continuity of the map En. Since the evaluation

map en and the partnering operation are continuous, the functions hn de-

pend continuously on c in F δ
n and Fn. Since the series for Ĝn is uniformly

convergent in F δ
n it follows also that Ĝn, and, hence, Kn and En depend

continuously on c in each neighbourhood N . It follows immediately that

En : ΣPer → F is continuous.

4.2 The map βn and symmetry properties

The maps En constructed above form the basic ingredients of the embedding

of the model space into the function-pair space F δ
n. They map the space

ΣPer into F δ
n sending a periodic code c into a function pair (u(x), t(x)) with

t(x) having precisely one zero. The initial condition t1(x) has two zeros in

the fundamental interval (see (1.57)) and these zeros are related by the

symmetry of the cosine function. We incorporate this by constructing a new
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map βn in terms of En. This map βn is that required by Theorem 9.

4.2.1 Definition of βn

Specifically, we define βn : ΣPer → F δ
n for c ∈ ΣPer by

βn(c) = En(c)En(c̃) , (4.56)

where, as usual, multiplication is carried out coordinatewise. Let us now

define a map Lbn , for bn ∈ Z on sign-pairs (su
n, s

t
n) ∈ {+1,−1}2

Lbn(su
n, s

t
n) = (st

n, (−1)bn(st
n)ansu

n). (4.57)

The map is invertible with inverse

L−1
bn

(su
n, s

t
n) = ((−1)bn(su

n)anst
n, s

u
n). (4.58)

The map Lbn is derived from κcn as follows. Firstly, from equation (4.36),

we have that

Rn(βn(c)) = Rn(En(c))Rn(En(c̃)) = κcn(+1, +1)En+1(c)κc̃n(+1, +1)En+1(c̃)

(4.59)

= Lbn(+1, +1)βn+1(c) , (4.60)
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where bn = cn + c̃n. Similarly, for general sign-pairs (su, st), we have

Rn((su, st)βn(c)) = Lbn(su, st)βn+1(c) , (4.61)

as claimed in Theorem 9. For, from equation (4.56),

Rn((su
n, s

t
n)βn(c)) = Rn(su

n, s
t
n)Rn(En(c))Rn(En(c̃))

= (st
n, (s

t
n)ansu

n)κcn(+1, +1)En+1(c)κc̃n(+1, +1)En+1(c̃)

= (st
n, (s

t
n)ansu

n)(−1,−(−1)cn)(−1,−(−1)c̃n)En+1(c)En+1(c̃)

= (st
n, (−1)bn(st

n)ansu
n)βn+1(c)

= Lbn(su
n, s

t
n)βn+1(c). (4.62)

The following theorem is the key to the construction of the strange set.

Theorem 9. Let a be a fixed sequence in NZ,P er corresponding to a periodic

continued fraction. For each n ∈ Z, there exists a continuous map βn :

ΣPer → Fn such that for c ∈ ΣPer,

Rnβn(c) = Lbn(+1, +1)βn+1(c) , (4.63)

where Lbn : {+1,−1}2 → {+1,−1}2 is given by

Lbn(su
n, s

t
n) = (st

n, (−1)bn(st
n)ansu

n) , (4.64)

and multiplication is carried out coordinatewise. Here bn = cn + c̃n where

c̃ = (c̃k)k∈Z denotes the partner code to c (to be defined in section 3.1.4
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below), ΣPer is a subspace of periodic codes to be defined in section 3.1.3 below

and Fn is the function-pair space defined in section 3.3. The equation (4.63)

generalizes to

Rn((su, st)βn(c)) = Lbn(su, st)βn+1(c) (4.65)

where (su, st) ∈ {+1,−1}2 is an arbitrary sign pair. The map βn is two-to-

one in the sense that βn(c) = βn(c′) if, and only if, c′ = c or c′ = c̃.

Proof. It is immediately clear from (4.56) that βn(c) = βn(c̃). Conversely,

let us suppose that βn(c) = βn(c′) for c, c′ ∈ ΣPer. Then, by construction,

En(c)En(c̃) = En(c′)En(c̃′). Now, by construction, the zero of the second co-

ordinate of En(c) has yn = en(c) and, similarly for En(c̃), En(c′) and En(c̃′). It

follows immediately that en(c′) = en(c) or en(c′) = en(c̃) and from section 3.1

that c′ = c or c′ = c̃.

We note that βn is continuous because En is continuous and since the part-

nering operation is continuous.

4.2.2 Sign dynamics

We now consider the dynamics of a sign-pair (su, st) ∈ {−1, +1}2 under the

map Lb(s
u, st) = (st, (−1)b(st)ansu). It is the sign dynamics that determine

the symmetry structure of the renormalization strange set. Our task is to
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understand the behaviour of the map Lb on the block structures,

(0an+1) for m = 2; (4.66)

(0(an+1 + 1)(an+2 − 1)) for m = 3; (4.67)

(0(an+1 + 1)an+2 . . . an+m−2(an+m−1 − 1)) for m ≥ 4. (4.68)

Let us consider a block of length m ≥ 1 starting at iteration n with sign-pair

(su
n, s

t
n). We calculate the sign-pair (su

n+m, st
n+m) in terms of (su

n, s
t
n) and, to

this end, we write, for j ≥ 0,

(su
n+j, s

t
n+j) =

(
(−1)rn+j−1(su

n)pn+j−1(st
n)qn+j−1), (−1)rn+j(su

n)pn+j(st
n)qn+j)

)
,

(4.69)

where this equation defines the indices pn+j, qn+j, rn+j. Using the relation

(su
n+j+1, s

t
n+j+1) = Lbn+j

(su
n+j, s

t
n+j), where bn+j is the jth entry in the block

structure starting at n, a straightforward calculation gives the recurrence

relations and initial conditions

pn+j+1 = an+jpn+j + pn+j−1 , pn = 0, pn−1 = 1 (4.70)

qn+j+1 = an+jqn+j + qn+j−1 , qn = 1, qn−1 = 0 (4.71)

rn+j+1 = an+jrn+j + rn+j−1 + bn+j , rn = 0, rn−1 = 0 (4.72)

valid for j = 0, . . . , n + m − 1. Using this notation, we may readily obtain

the following results.

Lemma 6. Calculating modulo 2, we have
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1. rn−1 �= pn−1, rn = pn, rn+j �= pn+j, for j = 1, . . . ,m − 1, and rn+m =

pn+m;

2. for j = 0, . . . ,m,


pn+j−1 qn+j−1

pn+j qn+j


 = Mn+j−1 . . . Mn . (4.73)

The proof of the lemma is a straightforward application of the recurrence

relations (4.70 – 4.72) and the block structures (4.66 – 4.68) given above.

Calculating modulo 2, gives for m = 2, rn+1 = 0 �= 1 = pn+1 and rn+2 =

an+2 = pn+2 and for m = 3, rn+1 = 0 �= 1 = pn+1, rn+2 = an+1 + 1 �=
an+1 = pn+2, whilst rn+3 = an+2an+1 + 1 = pn+3. For m ≥ 4, we have

rn+1 = 0 �= 1 = pn+1, rn+2 = an+1 + 1 �= an+1 = pn+2 and, by induction,

for j = 1, . . . , n + m − 2, we have rn+j+1 − pn+j+1 = an+jrn+j + rn+j−1 +

bn+j − (an+jpn+j + pn+j−1) an+j(rn+j − pn+j) + rn+j−1 − pn+j−1 + an+1 =

an+j + 1 + an+1 = 1, using rn+j − pn+j, rn+j−1 − pn+j−1 = 1. Similarly, we

have rn+m−pn+m = an+jrn+m−1+rn+m−2+bn+m−1−(an+m−1pn+m−1+pn+m−2)

= an+m−1(rn+m−1 − pn+m−1) + rn+m−2 − pn+m−2 + an+m−1 − 1 = an+m−1 +

1 + an+m−1 − 1 = 0, as claimed. Here we have used rn+m−1 − pn+m−1,

rn+m−2 − pn+m−2 = 1. This completes the proof of statement 1. Statement 2

follows immediately from the recurrence relations for pn+j and qn+j and the

initial conditions. Indeed, writing the recurrence relations in matrix form,
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we have for j = 0, . . . ,m,


pn+j−1 qn+j−1

pn+j qn+j


 = Mn+j−1 . . . Mn


1 0

0 1


 = Mn+j−1 . . . Mn , (4.74)

as required. The lemma is proved.

4.2.3 Symmetries of the renormalization strange set

We now consider the symmetries of the renormalization strange sets. The

renormalization strange sets are built from copies of the fundamental sets,

the symmetries of which, i.e., the number of copies and orientation, are

determined by the sign pairs (su
n, s

t
n), which in turn depend on the maps the

Lb. It transpires that we can analyse the symmetries in terms a group of

order 6 determined by the parities of the entries in the p-periodic continued

fraction a = (ak)k∈Z, ak+p = ak. Let us write ā for a mod 2, and let us

consider the reduced continued fraction ā = [ā1, ā2, . . . , āp]. Let A, B be the

2 × 2 matrices

A =


0 1

1 0


 , B =


0 1

1 1


 . (4.75)

Then over the field of two elements Z2, i.e., with addition and multiplication

modulo 2, A and B satisfy A2 = I, B3 = I, BA = AB2 and thus generate

a group of order 6 isomorphic to the symmetric group S3 and the dihedral

group D3. The elements of this group are I, B,B2, A,AB,AB2, with orders

given in table 4.1 below.
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Element Order Action on Invariant sign-pair sets Number of

M̄ sign-pair other than {(−1, 1)}. copies of

(su, st) fundamental set

I 1 (su, st) {(1,1)}, {(1,-1)} , {(-1,-1)} 1

B 3 (−st,−sust) {(1,1), (1,-1), (-1,-1)} 3

B2 3 (sust,−su) {(1,1), (1,-1), (-1,-1)} 3

A 2 (−st,−su) {(1,1), (-1,-1)}, {(1,-1)} 1 or 2

AB 2 (sust, st) {(1,-1), (-1,-1)}, {(1,1)} 1 or 2

AB2 2 (su,−sust) {(1,1), (1,-1)}, {(-1,-1)} 1 or 2

Tab. 4.1: Action of group elements on sign-pairs.

Now, let us write M̄ = Mn+p−1Mn+p−2 . . . Mn mod 2, where

Mi =


0 1

1 ai


 . (4.76)

From the lemma 6 we obtain immediately that for a block of length p or over,

(su
n+p, s

t
n+p) = ((−1)rn+p−1(su

n)pn+m−1(st
n)qn+m−1 , (−1)rn+p(su

n)pn+m(st
n)qn+m)

(4.77)

= (−1)pn+m(−(su
n)pn+m−1(st

n)qn+m−1 , (su
n)pn+m(st

n)qn+m) , (4.78)

and it is straightforward to obtain the action on a sign-pair over a period as

given in the third column of table 4.1.
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We are now able to give a criterion for the symmetries of the renormalization

strange sets as follows.

Theorem 10. Let (ak)k∈Z, ak+p = ak have period p ≥ 1, with reduced con-

tinued fraction ā = (āk)k∈Z. Writing M̄ = Mn+p−1Mn+p−2 . . . Mn mod 2,

where

Mi =


0 1

1 ai


 , (4.79)

the symmetries of the renormalization strange set are given in terms of M̄ as

given by table 4.1. In the case when the number of copies of the fundamental

set is one or two, the value of the sign-pair (su
n, s

t
n) at the start of a block

determines the number of copies of the fundamental set.

To prove the theorem we argue as follows. The sets βn(ΣPer) have period

p, and for n + kp for k ∈ Z, at the end of a sequence of blocks we will

have Mn+�p−1Mn+�p−2 . . . Mn mod 2 = M̄ � for some � ∈ N. Referring now

to the fourth column of table 4.1, we see that the number of copies of the

fundamental set is given by the number of elements in an invariant sign-pair

set, and therefore the number of copies of the fundamental set is given by fifth

column of the table. In the cases when 1 or 2 copies of the fundamental set

are possible, the precise number is determined by the sign-pair corresponding

to initial condition for the generalized Harper equation.

We illustrate these ideas with the period-1 examples. For p = 1 and a =

(ak)k∈Z, ak = a, we have M̄ = A, if a is even, and B, if a is odd. From the fifth

column of table 4.1, we see that there are 1 or 2 copies of the fundamental

set if a is even and 3 copies if a is odd. This accords with the conclusions
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of [46].

4.3 Definition and properties of the renormalization strange

set

4.3.1 Definition of the renormalization strange set

We are now in a position to define the renormalization strange set. This we

do using the maps βn and the sign-pair dynamics discussed above.

Let a ∈ NZ be periodic, with associated bi-infinite sequence ω = (ωk)k∈Z.

For a given c ∈ ΣPer, we may choose an initial sign-pair (su
0 , s

t
0) ∈ {+1,−1}2

and then define, for each k ∈ Z, a unique sign-pair (su
k , s

t
k) ∈ {+1,−1}2 such

that for all Lbk
(su

k , s
t
k) = (su

k+1, s
t
k+1). Here, as before, b = c + c̃. We may

now define strange sets for each n ∈ Z as follows.

Theorem 11. There exists a sequence O = (Ok)k∈Z, Ok ⊆ Fk, such that for

all n ∈ Z, Rn(On) = On+1. The sets On consists of images (su
n, s

t
n)βn(c) as

c ranges over ΣPer and (su
n, s

t
n) ∈ {+1,−1}2 is a sign-pair depending on c.

Proof. We may then consider a function-pair (su
0 , s

t
0)β0(c). In view of the

discussion in section (4.2.2), not all such function-pairs are members of the

renormalization strange set corresponding to the generalized Harper equa-

tion. Indeed, whether or not such a function pair is a member of the renor-

malization strange set is determined by the sign-pair (su
k , s

t
k) at the start of

a block for the code c. Let us denote by B0(c) the set of sign-pairs (su
0 , s

t
0)

such that for each start of a block, (su
k , s

t
k) ∈ Sk} where Sk is set of sign-pairs
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as given in table 4.1. Note that in the case of 1 or 2 copies of the funda-

mental set, Sk is not unique and consists of either one or two sign-pairs,

precisely which sign-pairs being determined by the group element at k. (See

section 4.2.2.) In view of the analysis in section 4.2.2, if these conditions

hold for any one k at the start of a block, then they hold at any other k

starting a block. Note that it may be that k = 0 is not at the beginning of

a block for a given c so it is not convenient to define these sets in terms of

the initial sign pair (su
0 , s

t
0) alone. We may now define the renormalization

strange set O0 = {(su
0 , s

t
0)β0(c) | (su

0 , s
t
0) ∈ B0(c), c ∈ ΣPer}. Similarly, we

may define for n ∈ Z, On = {(su
n, s

t
n)βn(c) | (su

0 , s
t
0) ∈ B0(c), c ∈ ΣPer}

(where O0 corresponds to the case n = 0). Again by the analysis of sec-

tion 4.2.2, the condition that the initial sign pair (su
0 , s

t
0) ∈ B0(c) means

that all sign pairs (su
n, s

t
n) at the start of a block satisfy the conditions that

(su
n, s

t
n) ∈ Sn. Using the properties of the map βn it is straightforward to

show that Rn(On) ⊆ On+1.

4.3.2 Convergence to the scaled orchid

Recall that the initial condition corresponding to the generalized Harper

equation is

u1(x) = 1 , t1(x) =
1 + α cos(2π(−ω0x + ω0/2))

α(1 − cos(2π(−ω0x + ω0)))
. (4.80)

As in [45] we divide up this initial condition into the numerator and denom-
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inator and analyse each separately. Specifically, we write

u1
1(x) = 1 , t11(x) =

1 + α cos (2π(−ω0x + ω0/2))

α/2
, (4.81)

u2
1(x) = 1 t21(x) =

1

2(1 − cos (2π(−ω0x + ω0))
. (4.82)

Note that from the multiplicative property of Rn we have that (un, tn) =

(u1
n, t

1
n)(u2

n, t
2
n) where

(u1
n, t

1
n) = Rn−1 . . . R1(u

1
1, t

1
1) , (u2

n, t2n) = Rn−1 . . . R1(u
2
1, t

2
1) . (4.83)

Our first aim is to establish that the pairs (u1
1, t

1
1), (u2

1, t
2
1) are invariant under

the projection operator.

Lemma 7.

P1(u
1
1, t

1
1) = (u1

1, t
1
1), (4.84)

P1(u
2
1, t

2
1) = (u2

1, t
2
1). (4.85)

Proof. We prove the lemma by direct calculation using the definition of Pn

given in equation (4.22). Let us first show that ∆1
0(log |(uj

1, t
j
1)|) = 0 for

j = 1, 2. We make use of the integral identity

∫ a+2π/c

a

log |1 + b cos(−cx + d)|dx =
2π

c
log(|b|/2) (4.86)

valid for a, b, c, d ∈ R with |b| ≥ 1, c > 0. Setting a = 1 − ω−1
0 , b = −1,
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c = 2πω0, d = 2πω0, we obtain

∆1
0(log |(u2

1, t
2
1)|) =

∫ 1

1−ω−1
0

− log 2 − log |1 − cos (2π(−ω0x + ω0)) |dx

= −ω−1
0 log 2 − ω−1

0 log(1/2) = 0 , (4.87)

and, setting a = 1 − ω−1
0 , b = α, c = 2πω0, d = 2πω0/2, we have

∆1
0(log |(u1

1, t
1
1)|) =

∫ 1

1−ω−1
0

− log(α/2) + log |1 + α cos (2π(−ω0x + ω0/2)) |dx

= −ω−1
0 log(α/2) + ω−1

0 log(α/2) = 0 . (4.88)

We further observe that

∆1
1(log |(uj

1, t
j
1)|) =

∫ 1

1−ω−1
0

d

dx
log |tj1(x)|dx = 0 (4.89)

for j = 1, 2, since tj1 is periodic with period ω−1. In this calculation it is

necessary to take account of the logarithmic singularities both within the

interval (1−ω−1
0 , 1) and at the endpoints 1−ω−1

0 and 1. This completes the

proof of the lemma.

4.3.3 Analysis of the zero set of the initial condition (u1
1(x), t11(x))

In order to show that the renormalization operator converges to a strange

set (at least for a countable dense subset of periodic points) we need to

analyse the zero set of function pairs (u1
1(x), t11(x)). The function u1

1(x) = 1,

so clearly has no zeros, and the relevant zeros of the function t11(x) are the
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solutions of the equation 1+α cos(2π(−ω0x+ω0/2)) = 0 with x in the range

1− ω−1
0 ≤ x ≤ 1. As in [45], we write α−1 = cos 2πr, where r is a parameter

with 0 < r < 1/4 so that 1 < α < ∞, and we seek solutions of the equation

cos(2π(−ω0x + ω0/2)) = − cos 2πr. Thus x = (1 − ω−1
0 )/2 + (±r − k)/ω0,

with k ∈ Z.

It is straightforward to show that for 0 < r < min{(1−ω0)/2, 1/4}, there are

precisely two solutions xL = 1/2−r/ω0 and xU = 1/2+r/ω0, in the required

range with xL +xU = 1−ω−1
0 . Furthermore, for (1−ω0)/2 < r < 1/4 (which

can only occur when ω0 > 1/2) the solution xU lies outside the required

range, but there is one additional solution xU ′ = 1/2 + (r − 1)/ω0 satisfying

xU ′ + xL = 1.

For 0 < r < 1/4, there is a countable dense subset corresponding to those

α for which the solutions xL, xU or xL, xU ′ have periodic codes (as defined

above). In both cases the codes are partners, as a consequence of Lemma 1.

Furthermore, for the case (1 − ω0)/2 < r < 1/4, xL and xU ′ correspond

to the start of a block (since their sum is 1), whilst for r < 1(1 − ω0)/2,

xL and xU are not at the start of a block since their sum is 1 − ω−1
0 . The

precise position in the block depends in general on the values of r and ω0

and a complete analysis is not attempted here. The position in the block

determines the sign-pair that applies at the start of the next block, which

in turn determines the number of copies of the fundamental set according to

the theory in section 4.2.2.

We may summarize the position as follows:
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Lemma 8. There is a countable dense subset of α > 1 for which the initial

condition (u1
1, t

1
1) = h1(c)h1(c̃)(û1

1, t̂
1
1) with c, c̃ ∈ ΣPer, where

h1(c) = (1, xL − x) , (4.90)

h1(c̃) =




(1, xU ′ − x), 1 < α if ω0 < 1/2

(1, xU ′ − x), 1 < α < (cos 2π(1 − ω0)/2)−1 and ω0 > 1/2

(1, xU − x), (cos 2π(1 − ω0)/2)−1 < α and ω0 > 1/2

(4.91)

and (û1
1, t̂

1
1) �= 0 on V̄ n

1 × V̄ n
0 and (û1

1, t̂
1
1) > 0 on V̄ n

1 × V̄ n
0 ∩ R2.

4.3.4 Analysis of the zero set of the initial condition (u2
1, t

2
1)

We now turn to the denominator of the initial condition (u1, t1). We shall

see that its function is merely to scale the renormalization strange set given

by the numerator rather than to alter its fundamental structure. Indeed, due

to the multiplicative structure of the renormalization transformation Rn, we

may analyse (u2
1, t

2
1) separately, and its structure is given by the dynamics

of its poles, or rather, the zeros of the denominator in the interval I0. The

pole structure is straightforward to determine. Again u2
1 = 1 is without

singularities and t21(x) has poles of order 2 at x = 1 and 1 − ω−1
0 . Applying

the renormalization transformation Rj−1 . . . R1, gives that, for j ≥ 2, u2
j has

a pole of order 2 at −ω−1
j and t2j has a pole of order 2 at 1. A consequence is

that the denominator converges to a periodic function of period p, the period

of ω0. Indeed, we have the following result, the proof of which we omit.
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Proposition 4. There exists a period-p function pair (u∗, t∗) which is pe-

riodic of period p under the renormalization transformation Rn, such that,

under iteration of the renormalization transformation,

Rj−1 . . . R1(u
2
1, t

2
1)/Rj−1 . . . R1(u

∗, t∗) (4.92)

converges to (1, 1).

The function pair (u∗, t∗) corresponds to the strong-coupling fixed point in

the golden-mean case, and the proof of the proposition is similar to that

contained in [45, 9].

4.3.5 Proof of Theorem 12

For a dense set of initial conditions (corresponding to periodic codes) the

dynamics under the renormalization transformation converges to a scaled

version of the renormalization strange set. Specifically, we have:

Theorem 12. Let ω = ω0 have periodic continued fraction expansion [a1, . . . ap]

with period p ≥ 1, and let (ωn)n∈Z be the associated p-periodic sequence

ω= (ωk)k∈Z with periodic continued fraction a = (ak)k∈Z. Then there ex-

ist a dense set of α in the range α > 1 such that iteration of the associated

renormalization operator Rn, for n ≥ 0, converges to O∗
n, where O∗

n is the

set On scaled by a function-pair (u∗
n, t

∗
n) of period a multiple of p.

Proof. From Lemma 8 there is a countable dense set of α > 1 for which

(u1
1, t

1
1) has the structure given by the lemma, where c, c̃ are partners in
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ΣPer. Because the structure of h1(c) and h1(c̃) correspond to (4.33) with

c0 and c̃0 �= 0, which may not be the case, we iterate once, and consider

(u2, t2) = R1(u1, t1). We have (u2, t2)/((u
∗
2, t

∗
2)β2(c)) satisfies the hypothesis

of Lemma 4. Here (u∗
2, t

∗
2) = Lb1(+1, +1)R1(u

∗, t∗) which is of period a

multiple of p. Theorem 3 follows.

4.4 Reformulation in terms of sequence spaces

In our analysis we construct several objects indexed by an integer n, which

it is convenient to regard as ‘time’. In order to simplify our expressions, we

may reformulate our results in terms of bi-infinite sequences. Recall that we

consider a fixed bi-infinite period-p sequence a of continued-fraction entries,

which gives rise to a periodic sequence ω= (ωn)n∈Z. All our constructions

are implicitly dependent on a and, to simplify notation, we often suppress

explicit dependence. First, we adopt the convention that for a object Xn

indexed by n ∈ Z, the corresponding symbol without an index (either in

bold type face or otherwise) denotes the associated bi-infinite sequence, so

that, for example, X = (Xn)n∈Z. Let us also adopt the general convention

that σ denotes the left shift map so that, when considering a bi-infinite

sequence of objects X = (Xn)n∈Z, the expression Xσ denotes the bi-infinite

sequence (Xn+1)n∈Z. This convention is needed because the renormalization

transformations Rn take a function pair (un, tn) ∈ Fn to the function pair

(un+1, tn+1) ∈ Fn+1, so that the induced map R on F = (Fn)n∈Z is defined

R : F → Fσ, and, defining P = (Pn)n∈Z, the equation RnPn = Pn+1R

becomes RP = PσR.
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We are now in a position to reformulate our results as follows. We construct

a map E : ΣPer → F , E = (En)n∈Z,, such that for all sequences of sign-pairs

(su, st) = ((su
n, s

t
n)n∈Z),

R((su, st)E) = κ(su, st)Eσ , (4.93)

where, for a given c ∈ ΣPer, κ : {−1, +1}Z → {−1, +1}Z is given by

κn(su, st) = κcn(su
n, s

t
n). Noting that the partnering operation extends straight-

forwardly to bi-infinite sequences, we have a map β : ΣPer → F and a map

L : {−1, +1}Z → {−1, +1}Z such that

R((su, st)β) = L(su, st)βσ , (4.94)

where, for a ∈ ΣPer, L : {−1, +1}Z → {−1, +1}Z is given by L(su, st) =

Lbn(su
n, s

t
n) and b = c + c̃.

Let us call a sequence (su, st) ∈ {−1, +1}Z compatible with a given sequence

c if L(su, st) = (su, st)σ. Then, it follows from section 4.2.2 above that,

letting c range over ΣPer, the set of compatible sequences so obtained is

partitioned into two disjoint sets if a contains at least one odd entry or into

three disjoint sets if a contains only even entries. Precisely one of these sets

contains the sign pair (+1, +1) at the start of blocks, and we denote by B(c)

the set of such (su, st) for a given c. We may now define invariant strange sets

by setting O = {(su, st)β(c)}, where (su, st) ranges over the permitted sign

pairs OS(c) and c ranges over ΣPer. Then O = (On)n∈Z, where On is the

renormalization strange set defined above. The set O satisfies R(O) = Oσ.
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In section 5.4 below we give an alternative formulation in which we conjecture

a structure theory for all irrational ω.

4.5 Numerical study

Here we study numerically the evolution of a pair of functions (u(x), t(x))

iterating over the renormalization operator (3.83). At each iteration a pro-

jection is performed in order to remove unstable eigenvectors to ensure con-

vergence. The projection operator, Pn, is given by (4.4). The resulting

renormalization strange set (un(x), tn(x)), is evaluated at (0, 0) to produce

the two-dimensional projections shown.

Below is a summary of results for periodic continued fractions.

4.5.1 The golden mean case, ω = [1, 1, 1, . . .].

• This is the orchid discovered numerically by Ketoja and Satija.

• Mestel and Osbaldestin give a description of the orchid in terms of a

code space and sign pairs.

• Found to consist of three copies of a fundamental set figure (4.2) which

is the embeding of the model space into function pair space.
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Fig. 4.1: The orchid, ω = [1, 1, 1, . . .]

4.5.2 Fixed a case ω = [a, a, a, . . .].

• For each value of a an orchid like structure is present.

• Sign pairs dictate the transitions between components of these struc-

tures.

• It is revealed that for a odd the orchid consists of three copies of a

fundamental set. This is shown for the case a = 1 where the orchid

(figure 4.1) consists of three copies of the fundamental set given in

figure 4.2, while for the case a = 3 we have figure 4.5 which is made up

of three copies of the corresponding fundamental set figure 4.6.

• For a even it is found that the orchid consists of two copies of a funda-

mental set. This is shown in figure 4.3 which consists of two copies of

the fundamental set given in figure 4.4.
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-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Fig. 4.2: Fundamental set for ω = [1, 1, 1, . . .]

• This example was discussed in section 4.2.2.
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Fig. 4.3: Renormalization strange set for ω = [2, 2, 2, . . .].
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Fig. 4.4: Fundamental set for ω = [2, 2, 2, . . .].
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Fig. 4.5: Renormalization strange set for ω = [3, 3, 3, . . .].
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Fig. 4.6: Fundamental set for ω = [3, 3, 3, . . .].
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4.5.3 Periodic case ω = [a1, . . . , ap], a = (ak)k∈Z, ak+p = ak

Here we present the numerical results for period 2, 3, 4, and 5 continued frac-

tions consisting of 1’s and 2’s only. Higher entries in the continued fraction

expansion are found to cause greater numerical error.

Taking a closer look at the period 2 case, with continued fraction ω = [1, 2],

we find that the period 2 orchid (figure 4.8) consists of two copies of each

of the fundamental sets given in figure (4.7) with orientation given by the

corresponding sign-pairs. We find the following permitted sign-pairs:

n even n odd

(−1,−1) (+1, +1)

(+1,−1) (+1,−1)

Thus for n even we have two copies of the fundamental set for n even cor-

responding to the sign-pairs (−1,−1) and (+1,−1) and for n odd we have

two copies of the fundamental set for n odd corresponding to the sign-pairs

(+1, +1) and (+1,−1). These four fundamental sets are combined in fig-

ure (4.8).

Recall table 4.1, which, for convenience, we reproduce here.

Now, recalling the theory of section 4.2.2, the following table lists the group

element M̄ as defined in that section. Note that when ω = [1, 2], we have

a = (ak)k∈Z with ak = 2, k even, ak = 1 otherwise. Thus

n ≡ 0 n ≡ 1

BA = AB2 AB

This table is easily seen to correspond to the sign-pairs given above.
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Element Order Action on Invariant sign-pair sets Number of

M̄ sign-pair other than {(−1, 1)}. copies of

(su, st) fundamental set

I 1 (su, st) {(1,1)}, {(1,-1)} , {(-1,-1)} 1

B 3 (−st,−sust) {(1,1), (1,-1), (-1,-1)} 3

B2 3 (sust,−su) {(1,1), (1,-1), (-1,-1)} 3

A 2 (−st,−su) {(1,1), (-1,-1)}, {(1,-1)} 1 or 2

AB 2 (sust, st) {(1,-1), (-1,-1)}, {(1,1)} 1 or 2

AB2 2 (su,−sust) {(1,1), (1,-1)}, {(-1,-1)} 1 or 2

Tab. 4.2: Action of group elements on sign-pairs.

The fundamental sets in figure (4.7) were obtained by using the sign-pair

(−1, +1) which is invariant under the block to block transitions. The fun-

damental set in figure (4.7) (left) corresponds to n odd and is given in the

period 2 renormalization strange set figure (4.8) with orientation given by the

sign-pairs (+1, +1) and (+1,−1). This is easily seen since the transformation

(−1, +1) → (+1, +1) and (−1, +1) → (+1,−1) are given by a reflection in

the x–axis and in both the x and y axes respectively.

Similarly the fundamental set figure (4.7) (right) corresponds to n even and

is shown in figure (4.8) with orientations given by sign-pairs (−1,−1) and

(+1,−1). As before this is easily seen by noting that the transformations

(−1, +1) → (−1,−1) and (−1, +1) → (+1,−1) are given by a reflection in

the y axis and in both the x and y axes respectively.
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We now turn to the case ω = [1, 1, 2]. The renormalization strange set shown

in figure (4.9) is a combination of the sets shown in figures (4.10–4.12) which

are for n ≡ 0, 1, 2 (mod 3). Iterating Lbn we find that starting with n = 0

with the sign-pair (+1, +1), the following are the permitted sign-pairs:

n ≡ 0 n ≡ 1 n ≡ 2

(+1, +1) (−1,−1) (+1,−1)

Note that in this case there is no need for re-orientation of the figures (4.10–

4.12) since they were not generated by the invariant sign-pair (−1, +1).

We remark that it is possible to obtain renormalization strange sets with

two copies of the fundamental sets by starting the map Lbn at n = 0 with

the sign-pair (−1,−1) or (+1,−1). In this case the permitted sign-pairs are

given by the following table:

n ≡ 0 n ≡ 1 n ≡ 2

(−1,−1) (+1, +1) (−1,−1)

(+1,−1) (1,−1) (+1, +1)

We note that this accords with the theory of section 4.2.2. For, as above, M̄

is given by

n ≡ 0 n ≡ 1 n ≡ 2

B2A = AB AB2 ABA = A

For ω = [1, 1, 1, 2], we have two copies of the fundamental sets for each of

the residual classes n = 0, 1, 2, 3 (mod 4), corresponding to the following

permitted sign-pairs:
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n ≡ 0 n ≡ 1 n ≡ 2 n ≡ 3

(−1,−1) (+1, +1) (1,−1) (+1, +1)

(+1, +1) (−1,−1) (−1,−1) (+1,−1)

Inspecting the sign-pairs in the above table we have the following symmetries,

for n ≡ 0 reflection in x and y axes, for n ≡ 1 reflection in x and y axes,

for n ≡ 2 reflection in x axis, and for n ≡ 3 reflection in y axis. These

symmetries and the order can be clearly seen in figures (4.14–4.17).

This result agrees with the theory in 4.2.2. For we have the following table

listing the group element M̄ in that section.

n ≡ 0 n ≡ 1 n ≡ 2 n ≡ 3

AB3 = A B3A = A B2AB = AB2 BAB2 = AB

which corresponds to the sign-pairs given above.

Similarly for the case ω = [1, 1, 1, 1, 2] the period 5 renormalization strange

set, figure (4.18), consists of two copies of each of the fundamental sets

figures (4.19–4.23) which correspond to each of the residual classes n ≡
0, 1, 2, 3, 4 (mod 5). Iteration of the sign-pair (+1,−1) starting with

n = 0 gives the permitted sign-pairs in this case to be:

n ≡ 0 n ≡ 1 n ≡ 2 n ≡ 3 n ≡ 4

(1,−1) (+1,−1) (+1, +1) (−1,−1) (+1,−1)

(+1, +1) (−1,−1) (+1,−1) (+1, +1) (−1,−1)

with the following symmetries, for n ≡ 0 reflection in y axis, for n ≡ 1

reflection in x axis , for n ≡ 2 reflection in y axis, for n ≡ 3 reflection in x

and y axes, and for n ≡ 4 reflection in the x axis.
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Again, this result agrees with the theory in section 4.2.2. For we have the

following table listing the group element M̄ in that section.

n ≡ 0 n ≡ 1 n ≡ 2 n ≡ 3 n ≡ 4

B4A = AB2 AB4 = AB BAB3 = AB2 B2AB2 = A B3AB = AB

which corresponds to the sign-pairs given above.

Obtaining the renormalization strange sets for higher period becomes difficult

numerically due to the build up of error in the projection. Hence the orchid

corresponding to period 3, 4, and 5, (figures 4.9, 4.13, and 4.18) become

increasingly fuzzy. The reasons for the build up of numerical error are as

follows.

• Firstly the evolution of the zeros and the rotation number are governed

by the map Gn and the Gauss map γ. These maps are both chaotic

which leads to the build up of numerical error.

• The renormalization strange sets are repellors in function-pair space be-

cause of the expanding eigenvalues and therefore a projection is needed

to prevent divergence. This projection is increasingly hard to calculate

as the period of the continued fraction ω increases, this can be seen in

appendix F.

• The operator Rn becomes increasingly complex for large an which

makes the program increasingly inefficient and makes it difficult to

take polynomial approximations.
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Fig. 4.7: Fundamental sets for ω = [1, 2].
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Fig. 4.8: Renormalization strange set for period 2 ω = [1, 2].
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Fig. 4.9: Renormalization strange set for period 3 ω = [1, 1, 2].
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Fig. 4.10: Fundamental set for period 3 ω = [1, 1, 2].
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Fig. 4.11: Fundamental set for period 3 ω = [1, 1, 2].
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Fig. 4.12: Fundamental set for period 3 ω = [1, 1, 2].
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Fig. 4.13: Renormalization strange set for period 4 ω = [1, 1, 1, 2].
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Fig. 4.14: Renormalization strange set, n ≡ 0, for period 4 ω = [1, 1, 1, 2].
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Fig. 4.15: Renormalization strange set, n ≡ 1, for period 4 ω = [1, 1, 1, 2].
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Fig. 4.16: Renormalization strange set, n ≡ 2, for period 4 ω = [1, 1, 1, 2].
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Fig. 4.17: Renormalization strange set, n ≡ 3, for period 4 ω = [1, 1, 1, 2].
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Fig. 4.18: Renormalization strange set for period 5 ω = [1, 1, 1, 1, 2].
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Fig. 4.19: Renormalization strange set, n ≡ 0, for period 5 ω = [1, 1, 1, 1, 2].
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Fig. 4.20: Renormalization strange set, n ≡ 1, for period 5 ω = [1, 1, 1, 1, 2].
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Fig. 4.21: Renormalization strange set, n ≡ 2, for period 5 ω = [1, 1, 1, 1, 2].
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Fig. 4.22: Renormalization strange set, n ≡ 3, for period 5 ω = [1, 1, 1, 1, 2].



4. Periodic continued fractions 132

-7.5 -5 -2.5 2.5 7.5

-2

-1

1

2

3

4

5

Fig. 4.23: Renormalization strange set, n ≡ 4, for period 5 ω = [1, 1, 1, 1, 2].



5. GENERAL CONTINUED FRACTIONS

We now consider general continued fractions and give some conjectures based

on work of Mestel and Osbaldestin on a the likely structure of the renormal-

ization strange set.

5.1 Number theoretical preliminaries

Let I∗ = (0, 1)\Q, the irrationals in the unit interval, and let γ : I∗ → I∗ be

the Gauss map,

γ(x) =

{
1

x

}
=

1

x
−

[
1

x

]
. (5.1)

For a general continued fraction ω ∈ (0, 1), we define ω0 = ω and for n ≥ 1,

ωn = γ(ωn−1). Setting, for n ≥ 1,

an =

[
1

ωn−1

]
, (5.2)

then we have

ωn = [an+1, an+2, an+3, . . .] (5.3)

with convergents pn/qn given by the recurrence relations (A.3).
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Definition. Let C : NZ → IZ

∗ be given by

C(a) = (ωn = [an+1, an+2, . . . ])n∈Z , (5.4)

where a = (an)n∈Z.

The map C is a continuous.

Extending the Gauss map we have

γ : IZ

∗ → IZ

∗ , γ((ωn)n∈Z) = (γ(ω)n)n∈Z , (5.5)

where C ◦ σ = γ ◦ C so that the following diagram commutes

NZ

C
��

σ �� NZ

C
��

IZ

∗
γ �� IZ

∗

5.2 function spaces

Let ω = (ωn)n∈Z ∈ IZ

∗ . For c ∈ C and r > 0, let D(c, r) denote the disc

centered at c with radius r. Let V n
1 = D(cn

1 , r
n
1 ) and V n

0 = D(cn
0 , r

n
0 ) be the

discs in C where

cn
0 = 1 − ω−1

n−1

2
, rn

0 =
ω−1

n−1

2
, cn

1 =
1

2
− ω−1

n−1, rn
1 =

1

2
(5.6)
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The function spaces Fn are defined by:

Fn = {(u, t) : u : V n
1 → C, t : V n

0 → C, u, t real analytic and

‖(u, t)‖ = ‖u‖1 + ‖t‖1 < ∞}, (5.7)

so that we have

Rn : Fn → Fn+1 . (5.8)

5.3 Extension to sequence space

Let a ∈ NZ be fixed, and let ω= (ωn)n∈Z = C(a). All the following con-

structions are either explicitly or implicitly dependent on a. Let F = F(a)

= (Fn)n∈Z, where Fn is as above. Let Fa be the extended function-pair

sequence space

Fa = {(a,h) | h ∈ F(a)}. (5.9)

We may define an extended renormalization map R. Let

(a,h) = ((an)n∈Z, (hn)n∈Z) ∈ Fa. (5.10)

Then

R(a,h) = (σ(a),R(h)) (5.11)

where R(h) = (Rn(hn))n∈Z, and Rn is as is usual. Note that Rn(hn) ∈
Fn+1(a) = Fn(σ(a)).

We can reformulate this map in terms of ω. Let Fω = {(ω,h) | h ∈ F(ω)}
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where F(ω) = (Fn)n∈Z and Fn is the function space with parameters ωn−1.

We can define R : Fω → Fω by R(ω,h) = (γ(ω),R(h)), and R(h) =

(Rn(hn))n∈Z where

Rn(un(x), tn(x)) = (tn(−γ(ωn)x),

(
an−1∏
i=0

tn(−γ(ωn)x − i)

)
un(−γ(ωn)x−an))

(5.12)

and where an = [ω−1
n ].

5.4 Conjectures

Let a ∈ NZ be fixed. All the following constructions are either explicitly or

implicitly dependent on a.

Define the code space

ΣM(a) = {c = (ci)i∈Z : ci ∈ {0, 1, . . . , ai}, ci = ai =⇒ ci−1 = 0} , (5.13)

and

ΣE = {{a} × ΣM(a)} . (5.14)

We extend the shift map σ in the obvious way.

For each a ∈ N and b ∈ N0, we define the map La,b : {−1, +1}2 → {−1, +1}2

by

La,b(s
u, st) = (st, (−1)b(st)ansu) . (5.15)

Let us now consider a biinfinite sequence of sign-pairs: s = (su
i , s

t
i)i∈Z, and,



5. General continued fractions 137

in a slight abuse of notation, we may write, s = (su, st), where su = (su
i )i∈Z

and st = (st
i)i∈Z. For a given (a, c) ∈ ΣE, we define La,c : {−1, +1}Z →

{−1, +1}Z by

La,c(s) = (Lai,bi
(su

i , s
t
i))i∈Z , (5.16)

where bi = ci + c̃i mod 2 and s = (su
i , s

t
i)i∈Z.

We call a sign-pair sequence s compatible with (a, c) if La,c(s) = σ(s) where

σ is the usual left-shift map.

Let us now define an extended model space

Σe
E = {(a, c, s) | s is compatible with (a, c)}, (5.17)

and let σ denote the usual shift.

Conjecture 1. There exists an onto continuous map β : Σe
E → Fa such that

R(β(a, c, s)) = β(σ(a, c, s)) (5.18)

so that the following commutative diagram holds.

Σe
E

β

��

σ �� Σe
E

β

��
Fa R �� Fa

The map is two-to-one with β(a, c, s) = β(a′, c′, s′) if and only if a = a′,

s = s′, and c = c′ or c̃′.
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The model space Σe
E splits into two disjoint pieces that are invariant under σ,

viz., ΣO
E and ΣB

E, i.e., satisfying σ(ΣO
E) = ΣO

E and σ(ΣB
E) = ΣB

E. The space ΣO
E

is the model for the orchid-like sets and corresponds to those sequence-triples

(a, c, s) for which (su
i , s

t
i) ∈ {(+1, +1), (−1,−1), (+1,−1)} for each i at the

start of a block (as defined for the partnering operation). ΣO
E consists of the

remainder of ΣB
E . Likewise the images β(ΣO

E) and β(ΣB
E) are disjoint. The

first is a renormalization strange set O corresponding to the orchid-flower for

the special case of golden-mean ω. We have R(O) = (O) and R is chaotic

on O.

In terms of ω the conjecture becomes as follows:

Conjecture 2. There exists an onto continuous map β : Σe
E → Fω such that

R(β(a, c, s)) = β(σ(a, c, s)), (5.19)

so that the following commutative diagram holds.

Σe
E

β

��

σ �� Σe
E

β

��
Fω R �� Fω

The map is two-to-one with β(a, c, s) = β(a′, c′, s′) if and only if a = a′,

s = s′, and c = c′ or c̃′.

The model space Σe
E splits into two disjoint pieces that are invariant under σ,

viz., ΣO
E and ΣB

E, i.e., satisfying σ(ΣO
E) = ΣO

E and σ(ΣB
E) = ΣB

E. The space ΣO
E

is the model for the orchid-like sets and corresponds to those sequence-triples
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(a, c, s) for which (su
i , s

t
i) ∈ {(+1, +1), (−1,−1), (+1,−1)} for each i at the

start of a block (as defined for the partnering operation). ΣO
E consists of the

remainder of ΣB
E . Likewise the images β(ΣO

E) and β(ΣB
E) are disjoint. The

first is a renormalization strange set O corresponding to the orchid-flower for

the special case of golden-mean ω. We have R(O) = (O) and R is chaotic

on O.



6. DISCUSSION AND CONCLUSIONS

In this thesis we have used renormalization methods, based on those of

Mestel, Osbaldestin and coworkers, to analyse fluctuations for quasiperiodic

systems. We have applied the theory to the fluctuations in a generalized

Harper equation in the strong-coupling limit. For quadratic-irrational ω, we

have constructed a dense set of points in the renormalization strange set in

function-pair space (corresponding to periodic points) and have shown that

the corresponding parameter values for the generalized Harper equation re-

sult in convergence to the strange set under renormalization. We have also

extended the theory for irrational ω having non-periodic continued fractions

and in section 5.4 we have given some conjectures based on work of Mestel

and Osbaldestin on a the likely structure of the renormalization strange set

in this case.

Clearly, there are two directions in which to take this research further. First,

our construction for periodic continued fractions is only for periodic codes.

The next step would be to consider all codes in the periodic continued fraction

case, as was done in [45]. Whilst a non-rigorous theory would be relatively

straightforward to formulate, there are considerable technical obstacles to

overcome to justify the theory rigorously. These obstacles arise from the
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possibility of small divisors as the zeros of the functions un and tn approach

the boundaries of V n
1 and V n

0 respectively. Secondly, there are other physical

and mathematical problems involving similar renormalization operators of a

similar type, and an investigation of their properties, and, perhaps a general

theory of these type of renormalization operators might usefully be explored.

We conclude with some brief remarks concerning the physical application

of the theory that has been developed in this thesis. Models such as the

Harper and generalized Harper equations provide not only valuable insight

into the phenomena that occur in real systems, but, perhaps somewhat sur-

prisingly, often capture the actual behaviour of real systems more accurately

that might be reasonably expected. This remark is especially relevant to the

renormalization theory, since systems within the same universality class will

exhibit the same universal behaviour.

Strictly speaking, the results considered in this thesis apply only in the

strong-coupling limit λ → ∞. However, it is likely that the theory also

succeeds for large and finite λ. This is known from numerical simulations

in the case of golden-mean ω. The restriction to the measure-zero set of

quadratic irrationals is also less of a problem, as such numbers frequently

organize the wider dynamics. A greater concern, perhaps, is the importance

of the symmetry of the cosine potential in the results considered here. A

potential having period-1, but without the additional symmetry about the

midpoint, would not be in the same universality class as the generalized

Harper equation and would converge to a different strange set.

It would certainly be interesting to see whether the results presented here



6. Discussion and conclusions 142

could be observed in a real-life system. Such an observation would present

quite a challenge, not least because the fluctuations in the exponentially

decaying wave function would need to be obtained from statistical data from

repeated experiments.
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APPENDIX



A. CONTINUED FRACTIONS AND NUMBER THEORY

A.1 Introduction to continued fractions

Continued fractions are a way of expressing any real number, x ∈ R, as a

fraction:

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

(A.1)

usually abbreviated by x = [a0, a1, a2, . . . ], where a0 ∈ Z and a1, a2, . . . ∈ N.

The terms a0, a1, a2, . . . are known as the partial quotients and may be finite

or infinite in number corresponding to rational or irrational x.

Theorem 13. x is rational if and only if it can be expressed as a finite con-

tinued fraction. x is irrational if and only if its continued fraction expansion

is infinite [55].
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A.2 Convergents

The continued fraction expansion x0 = [a1, a2, a3, . . .] of a real number has

partial quotients an and partial remainders xn calculated by the recursion

xn = an +
1

xn+1

(A.2)

where an = �xn� is the largest integer less than xn. The process stops if

some xn = an as occurs when x is rational. The convergents cn = pn/qn =

[a1, a2, . . . , an] are given by

pn+1 = anpn + pn−1 and qn+1 = anqn + qn−1, (A.3)

with p−1 = 1, p0 = a0, q−1 = 0, and q0 = 1.

They are exactly the set of best rational approximations to x, i.e. p/q is a

convergent to x if and only if

0 ≤ |qx − p| < |q′x − p′| (A.4)

holds for all integers p, q, p′, q′ with 0 < q′ < q. The partial remainders xn

satisfy

xn+1 = γ(xn) (A.5)
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where γ : (0, 1) 
→ (0, 1) is the Gauss map given by

γ(x) =




0 if x = 0

{1/x} otherwise
(A.6)

where {} denotes the fractional part.

Theorem 14. Any two consecutive convergents satisfy the relation

piqi−1 − qipi−1 = (−1)i, (A.7)

where pi and qi are defined by the recurrence relations in (A.3).

For example, if we take i = 2 then we know from above that p1 = a1, q1 =

1, p2 = a2a1 + 1, and q2 = a2, so

p2q1 − q2p1 = (a2a1 + 1) − a2a1 = 1 = (−1)2. (A.8)

Theorem 15. The convergents, ck, k < n, of the continued fraction x =

[a1, a2, . . .] are alternately less than and greater than x.

Proof. Writing (A.7) in the form

pi

qi

− pi−1

qi−1

=
(−1)i

qi−1qi

, (A.9)

we see that the right hand side is positive if i is even and negative if i is odd.

Since the value of q1, q2, q3, . . . increases, the difference in (A.9) decreases as

i increases. Thus, p2/q2 is greater than p1/q1, and p3/q3 is less than p2/q2
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but greater than p1/q1, etc. Since pn/qn → x as n → ∞ it follows that all

the even convergents are greater than x and all the odd convergents are less

than x.

A.3 Quadratic irrationals

The continued fraction, x = [a1, a2, . . . ], is said to be eventually periodic if

there exists positive integers N and k such that for all n ≥ N, an = an+k.

This can be written

x = [a1, a2, . . . , aN , aN+1, . . . , aN+k−1, aN , aN+1, . . . ] (A.10)

or abbreviated by

x = [a1, a2, . . . , aN , aN+1, . . . , aN+k−1]. (A.11)

Theorem 16. (Euler) An irrational solution of a quadratic equation with

integer coefficients has an eventually periodic continued fraction.

Conversely,

Theorem 17. (Lagrange) Any x with eventually periodic continued fraction

expansion satisfies a quadratic equation with integer coefficients.

Example 1. The simplest example of this is the continued fraction for the

(positive) root of the quadratic equation x2 − x − 1 = 0. Rearranging this

gives x = 1+ 1
x
, repeatedly replacing the x on the right-hand-side by its equal
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gives the continued fraction

x = 1 +
1

1 +
1

1 +
1
. . .

(A.12)

A.3.1 Reverse periodic continued fractions

Theorem 18. (Galois) If a quadratic irrational x1 has the continued fraction

expansion x1 = [a1, . . . , ak] then

− 1

x1

= [ak, . . . , a1] (A.13)

where x1 is the quadratic conjugate to x1, i.e. the other root of the quadratic

equation satisfied by x1.

A.4 Euclidean algorithm

The Euclidean algorithm is a method for finding the continued fraction ex-

pansion, [a1, a2, a3 . . .], of a number x. Initially a1 is set equal to �x�, the

integer part of x, this may be positive, negative, or zero, and x1 is set equal

to {x}, the fractional part of x. Thus,

x =
1

a1 +
1

a2 +
1

a3 +
.. .

(A.14)

=
1

a1 + x1

, (A.15)
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so that x1 = [a2, a3, a4, . . .]. In the next step a2 is set equal to �x−1
1 �, the

integer part of the reciprocal of x1, and x2 equal to the fractional part, {x−1
1 }.

This process is repeated so that

ai+1 = �x−1
i � and xi+1 = {x−1

i }, i = 0, 1, 2, . . . . (A.16)

Note that ak is positive for k = 1, 2, . . ., and that since xk is the fractional

part, each xk is in the interval (0, 1). This process gives a unique continued

fraction for each real number x, and the process terminates if and only if x

is rational.

This algorithm is related to the Euclidean algorithm for finding the greatest

common divisor of two integers m and n [48]. If this method is used to

find the continued fraction of m/n, then the quotients from the Euclidean

algorithm are the integers, a0, a1, a2, . . ., that make up the continued fraction,

and the last nonzero remainder from the Euclidean algorithm is the greatest

common divisor of m and n.

As an illustration we calculate the first entries of the continued fraction for π,
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for which there is no known general formula. We have, x0 = π = 3.14159 . . .,

x−1
0 = 0.31830 . . . a1 = 0 x1 = 0.31830 . . . (A.17)

x−1
1 = 3.14159 . . . a2 = 3 x2 = 0.14159 . . . (A.18)

x−1
2 = 7.06251 . . . a3 = 7 x3 = 0.06251 . . . (A.19)

x−1
3 = 15.99659 . . . a4 = 15 x4 = 0.99659 . . . (A.20)

x−1
4 = 1.00341 . . . a5 = 1 x5 = 0.00341 . . . (A.21)

x−1
5 = 292.63459 . . . a6 = 292 x6 = 0.63459 . . . (A.22)

so the first entries of the continued fraction for π are given by π = [0; 3, 7, 15, 1, 292, . . .].

A.5 The Gauss map

The Gauss map γ : (0, 1) → (0, 1), defined in equation (A.6), is an example

of a chaotic discrete dynamical system. In terms of the Gauss map γ, the

above algorithm (A.16) becomes

xi+1 = {x−1
i } = γ(xi) (A.23)

ai+1 = �x−1
i �, i = 0, 1, 2, . . . . (A.24)

Thus the continued fraction xk = [xk+1, xk+2, xk+3, . . .] is generated as a

byproduct of the iteration of the Gauss map.

Taking the continued fraction, x0 = [a1, a2, a3, . . .], we see that γ(x0) = x1 =

[a2, a3, a4, . . .], γ(x1) = x2 = [a3, a4, a5, . . .], γ(x2) = x3 = [a4, a5, a6, . . .], and
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so on. This relates the Gauss map to the shift map discussed in appendix C.



B. DYNAMICAL SYSTEMS

B.1 Continuous dynamical systems

A continuous dynamical system is a set of first order differential equations

dx

dt
= F (x, t), x ∈ X (B.1)

the system is said to be autonomous if it does not vary with time, i.e. Fn =

Fn(x).

The set of curves given by the solutions xn(t) n = 1, 2, . . . are known as

trajectories or orbit.

B.2 Discrete dynamical systems

A discrete dynamical system is described by a function f : X → X and its

iterates. The dynamics of the system is given by the behaviour of the points

x ∈ X under iteration, i.e. the properties of the sequence x, f(x), f 2(x) =

f(f(x)), f 3(x) = f(f(f(x))) . . . and the limit limn→∞ |fn(x)|.
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B.3 Invariant sets

If the orbit of a point xt remains within a particular region of phase space

for all t ∈ R then it constitutes an invariant set. The following definition is

given in [1].

Definition. A set Λ ⊆ M is said to be invariant under f if fm(x) ∈ Λ for

each x ∈ Λ and all m ∈ M .

B.3.1 Fixed points

A fixed point of a function f is one which remains under iteration of f.

Definition. If f is a function and f(c) = c then c is a fixed point of f .

B.3.2 Periodic points

Definition. If f is a function and fk(x) = x, and fn(x) �= x for 0 < n < k,

then x is a periodic point of f with period k.

Definition. If x is a periodic point of f with period k then the iterates

x, f(x), f 2(x), . . . , fk−1(x) are called a periodic orbit.

Definition. The point x is an eventually periodic point of f with period k if

there exists N such that fn+k(x) = fn(x) whenever n ≥ N .

Example 2. Let f(x) = |x − 1| then f has a periodic orbit {0, 1} since

f(0) = 1 and f 2(0) = f(1) = 0. For any integer starting value, this map is

eventually periodic ending in the periodic orbit {0, 1}.
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Fixed points and periodic orbits are examples of invariant sets which are

periodic. A more complex example of an invariant set is Smale’s horseshoe

[60]

B.3.3 Horseshoe map

Smale’s horseshoe is a diffeomorphism of the plane h : S → S where S

is a square capped by two semi discs (figure B.1). The action of the map

is to contract the square vertically and elongate it horizontally to make a

thin strip which is then bent into a horseshoe shape and placed back onto

S (figure B.2). The curved part of the horseshoe overlaps the square, and

under iteration the points in this region have orbits which are attracted to a

fixed point outside the square. Most orbits leave the square under iteration,

the points which remain form a fractal invariant set.

Fig. B.1: Original square S0 capped by two semi discs.

Concentrating on the square, under forward iteration the original square is

mapped to two horizontal strips as in figure B.3. Let Hn = hn(S0)∩S0 be the

two horizontal strips created at time n where S0 is the original square. Under

backward iteration it is revealed that these strips Hn come from vertical strips

Vn of the original square where Vn = h−n(Hn). For a point to remain in the
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Fig. B.2: Smale’s horseshoe.

square indefinitely it must belong to a set Λ which maps to itself. The squares

where the horizontal and vertical stripes intersect Hn ∩ Vn converge to this

invariant set,

lim
n→∞

(Hn ∩ Vn) = Λ. (B.2)

V1 V1

H1

H1

Fig. B.3: Illustration of H1 ∩ V1.
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B.3.4 Solenoid attractor

Another example of an invariant set is the solenoid attractor. Consider the

map on the solid torus given by

Fβ(θ, x) = (2θ, βx +
1

2
eiθ) (B.3)

The map describes a torus which is cut to get long cylinder. The cylinder is

stretched to twice its length while contracting its width by β. The resulting

long, thin cylinder is wrapped around itself twice, the ends are rejoined and

it is replaced inside the original space.

Iterating the solenoid map n times results in a very long, thin tube that winds

around the inside of the torus 2n times (as shown in figure B.4). Notice

F n(T ) is a closed set contained completely inside the interior of F n−1(T ).

Thus ∩n≥0F
n(T ) = Λ. It can be shown that F is a homeomorphism on Λ.

Since limn→∞ F n(x) ∈ Λ for any x ∈ T , Λ is the attractor for F [63].

B.4 Chaos and strange attractors

A dynamical system is said to be chaotic if it has the following properties

[11]:

1. it displays sensitive dependence on initial conditions,

2. it is transitive

3. its periodic orbits are dense.
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Fig. B.4: Smale’s solenoid map [63].

B.4.1 Sensitivity to initial conditions

A map f displays sensitive dependence on initial conditions if points arbi-

trarily close become separated under iteration.

Definition. Let X be the phase space for the map f , then f displays sensitive

dependence to initial conditions if there is a δ > 0 such that for every point

x ∈ X and any neighborhood N containing x there exist a point y from that

neighborhood N and a time τ such that the distance

d(f τ (x), f τ (y)) > δ. (B.4)

This means that for each x there are points arbitrarily close to x whose orbits
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eventually move far away from the orbit of x.

B.4.2 Transitive orbits

Definition. A dynamical system is transitive if for any pair of points x, y

and any neighbourhood U � x and V � y, there exists a third point z ∈ U

with an orbit fn(z) ∈ V for some n ≥ 0.

If a dynamical system has a dense orbit then it is transitive since this orbit

comes arbitrarily close to all points. There is also the following theorem

given in [1]

Theorem 19. A dynamical system is transitive if and only if it has a dense

orbit.

B.4.3 Density of periodic orbits

For a map f : X → X an orbit is said to be dense if the set {fn(x) : n =

1, 2, . . .} is dense in X.

Definition. Let A be a subset of space X. A is said to be dense in X if for

any point x ∈ X, any neighborhood of x contains at least one point from A.

If X is a metric space then A is dense in X if every x ∈ X is a limit of a

sequence of elements in A.

B.4.4 Strange attractors

The four main properties of a strange attractor according to [54] are:
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• There is a trapping region within which all initial points have orbits

leading to the attractor,

• the orbits display sensitive dependence on initial conditions,

• it contains a dense orbit, its periodic orbits are dense,

• the attractor has a fractal structure.

A trapping region, R, is a region of phase space from which no orbit can

escape, each orbit started in R remains in R for all iterations. The basin of

attraction is the set of all points that have orbits that are eventually caught

by this trapping region.

Strange attractors occur in both continuous dynamical systems such as the

Lorenz system [38] (see figure B.5) and in discrete systems such as the Hénon

map [20] (see figure B.6) .

B.5 Lyapunov exponents

The Lyapunov exponent is used to study the stability of dynamical systems.

It gives the rate of exponential divergence from a perturbed initial condi-

tion. The larger the Lyapunov exponent, the greater the rate of exponential

divergence.

There is whole spectrum of Lyapunov exponents, the number of them is

equal to the number of dimensions of the phase space. For an n-dimensional

system there are n Lyapunov exponents σ1 ≥ σ2 ≥ . . . ≥ σn dominated by

the largest one which determines the stability of the system.
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Fig. B.5: Lorenz attractor [39].

Consider the orbit around a point x∗(t) with average perturbation u(t) at

time t and let x(t) = x∗(t) + u(t) then for an n-dimensional mapping the

Lypanunov exponent is given by [67]

σi = lim
N→∞

ln |λi(N)|, (B.5)

for i = 1, . . . , n, where λi = εσi is the Lyapunov number. For an n-

dimensional linear map, xn+1 = Mxn, the Lyapunov numbers λ1, . . . , λn

are given by the eigenvalues of M .
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Fig. B.6: Hénon attractor [21].



C. SHIFT SPACES

Shift spaces are used to model dynamical systems, in particular they are the

objects of study in symbolic dynamics.

C.1 The shift operator

The shift operator σ maps a sequence (. . . , sn, sn+1, sn+2, . . .) to another

sequence, (. . . , sn+1, sn+2, sn+3, . . .), by shifting all symbols to the left, i.e.

σ(sn) = sn+1. If the sequence is infinite in one direction, it is called a one-

sided shift and its action is to cut off the first symbol so that σ(s0, s1, . . .) =

(0, s1, s2, . . .). If σ acts on a bi-infinite sequence, it is called a two-sided shift

and σ(. . . , s−1, s0, s1, . . .) = (. . . , s0, s1, s2, . . .). Only the two-sided shift is

invertible.

C.2 Full shifts

Let A = {0, 1, . . . , N −1} denote an ordered set of symbols. The phase space

ΣN of this system is the space of all biinfinite sequences of elements from the
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set of N symbols given by:

ΣN = {s = (sn)n∈Z|sn ∈ A}. (C.1)

The full N-shift is given by the pair (ΣN , σ) where σ : ΣN 
→ ΣN is the shift

transformation defined above.

The distance between two distinct sequences s and t is given by

d(s, t) =
1

|n| + 1
(C.2)

where n is the coordinate of smallest absolute value where they differ. Thus

if d(s, t) < 1/n for n > 0, then sk = tk for −n < k < n.

C.3 Subshifts

Restricting the shift transformation of a full shift ΣN to a closed shift-

invariant subspace Σ, gives the subshift (Σ, σ). A subshift can be any sub-

space of the full shift that is invariant under the action of the shift operator.

An example of a subshift is the one-sided version of the full N -shift,

Σ+
N = {s = (s0, s1, . . . )|sn ∈ A, n = 0, 1, 2, . . . }. (2.3.3)

On this space the shift transformation σ is similarly defined by σ(sn) = sn+1

but now only for non-negative n.

Some subshifts can be characterized by a transition matrix which determines
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the allowed sequences, these are called subshifts of finite type, or topological

Markov shifts.

C.3.1 Topological Markov shifts

Let A = {0, 1, . . . , N − 1} be a finite set of symbols and let M be an N ×N

matrix with entries in {0, 1} which determines the allowed transitions. If σ

is the shift operator acting on the set X of all allowed sequences then the

subshift of finite type is defined to be the pair (X, σ).

For a one-side sequence the shift space is given by:

Σ+
M = {(s0, s1, . . .)|sn ∈ A,Msnsn+1 = 1, n ∈ N}. (C.3)

This is the space of all allowed sequences, it says that the symbol p can be

followed by the symbol q if and only if the (p, q)th entry of the matrix M is

1.

Similarly, for a two-sided shift of finite type the shift space is given by:

ΣM = {(. . . , s−1, s0, s1, . . .)|sn ∈ A,Msnsn+1 = 1, n ∈ Z}. (C.4)

Example 3. The Fibonacci shift, so-called because the number of allowed

blocks of length n are the Fibonacci numbers, has two 1-blocks, three 2-blocks,

five 3-blocks, . . . .

Here the alphabet A = {0, 1} consists of 0’s and 1’s. The space ΣM is given
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by (C.4) where the allowed transitions are determined by the matrix

M =


1 1

1 0


 . (C.5)

This says that only sequences of 0’s and 1’s with 1’s separated by 0’s are

allowed.

C.4 Symbolic dynamics

Symbolic dynamics provides a way of obtaining a deeper insight into the

nature of chaotic orbits. The dynamics are coded in terms of sequences of

symbols. The basic idea is to divide up the set of possible states into a finite

number of intervals, and keep track of which interval the state of the system

lies in at each time step. Each interval is associated with a symbol, and in

this way the evolution of the system is described by an infinite sequence of

symbols called a symbolic trajectory that reflects the properties of the original

dynamical trajectory.



D. SPECTRAL THEORY OF COMPACT LINEAR

OPERATORS ON BANACH SPACES

In this section we give a brief synopsis of the Banach space theory that we use

in the thesis. Further details may be found in [27], on which this appendix

is based.

D.1 Banach spaces

Definition. Normed vector space. For a real or complex vector space X, a

norm is any function ‖x‖, defined for all x ∈ X, which satisfies the following

conditions:

• ‖x‖ ≥ 0, ‖x‖ = 0 if and only if x = 0,

• ‖αx‖ = |α|‖x‖ (homogeneity), α scalar.

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).

A norm gives rise to a topology on the vector space X as follows, in a normed

vector space X the convergence xk → x is defined by ‖xk − x‖ → 0 this

implies the Cauchy condition ‖xn − xm‖ → 0 is satisfied and {xk} is a

Cauchy sequence.
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Definition. Cauchy convergence. A sequence {xk} is said to be a Cauchy

sequence if for each ε > 0 there exists an integer K, depending on ε, such

that

|xm − xn| < ε (D.1)

for all m,n ≥ K [33].

If X is a finite dimensional vector space then the Cauchy condition is suffi-

cient for the existence of a limit x ∈ X. For an infinite dimensional space

X a Cauchy sequence need not have a limit in X. Those spaces X for which

every Cauchy sequence has a limit in X are called complete.

Definition. A normed vector space X is said to be complete if every Cauchy

sequence contained in X has a limit x ∈ X. A complete normed vector space

is called a Banach space.

D.1.1 Lp Spaces

We now give some important examples of Banach spaces which we use in the

thesis.

Let X̃ be a Banach space with norm ‖.‖ and let X be a space of sequences,

finite, infinite, or biinfinite, of elements of X̃. For a vector x ∈ X, x = xj,

xj ∈ X̃, the p–norm is defined for p ≥ 1 to be

‖x‖p =

(∑
j

|xj|p
)1/p

(D.2)

.
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The space Lp is defined to be the set of all infinite sequences such that the

p–norm is finite i.e. the series {|xj|p} converges.

The p–norm is defined on the Lp space for 1 ≤ p ≤ ∞, where the ∞–norm

is given by ‖x‖∞ = sup |xj| and

‖x‖∞ = lim
p→∞

‖x‖p. (D.3)

The Lp spaces are examples of Banach spaces.

Especially relevant to this thesis is the case p = 1. An example of this are

the analytical function spaces defined on discs in C that we use in equation

(3.73).

D.2 Bounded linear operators

A bounded linear operator is a linear transformation L between Banach

spaces X and Y for which the ratio of the norm of L(x) to that of x is

bounded by the same number, over all non-zero vectors x ∈ X. In other

words, there exists some M > 0 such that for all x ∈ X,

‖L(x)‖Y ≤ M‖x‖X . (D.4)

The smallest such M is called the operator norm of L.

On a Banach space a linear operator is bounded if and only if it is continuous.
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D.3 Compact operators

A special class of linear operator is the compact operator.

Definition. A compact operator is a linear operator L from a Banach space

X to another Banach space Y , such that the image under L of any bounded

subset of X is a relatively compact subset of Y . Such an operator is neces-

sarily a bounded operator, and so continuous.

Definition. A subset S ⊂ X is said to be compact if any sequence of ele-

ments of S has a subsequence converging to an element of S [27].

Let T and A be operators with the same domain space X. Assume that

D(T ) ⊂ D(A) and , for any sequence un ∈ D(T ) with both un and Tun

bounded, Aun contains a convergent subsequence. Then A is said to be

relatively compact with respect to T .

D.4 Spectral values

Let X be a Banach space, then the set of all bounded linear operators on X

forms a Banach algebra, B(X). Let T ∈ B(X) be a bounded linear operator,

then the spectrum of T , denoted by σ(T ), consists of those λ for which λI−T

is not invertible in B(X).

If T is a compact operator, then it can be shown that any nonzero λ in the

spectrum is an eigenvalue. Therefore σ(T ) is bounded and consists of discrete

eigenvalues plus possibly 0.
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Theorem 20. Let T ∈ B(X) be compact. σ(T ) is a countable set with

no accumulation point different from zero. Each nonzero λ ∈ σ(T ) is an

eigenvalue of T with finite multiplicity.

D.4.1 Properties of the spectrum

Definition. An operator is said to have discrete spectrum if it has a finite set

or a countable set of eigenvalues. An operator with non-discrete eigenvalues

has a continuous spectrum.

The spectrum σ(T ) of an operator T consists of those λ for which (T −λI)−1

does not exist.

σ(T ) has the following properties:

• σ(T ) is always compact and non-empty.

• σ(T ) is bounded and closed, σ(T ) ≤ B(0, ‖T‖).

• For λ ∈ σ(T ), λ is an eigenvalue if there exists a vector x �= 0 such

that Tx = λx, however, not all spectral values are eigenvalues.

Example 4. Let v =
∑∞

i=0 fix
i = f(x), Tf(x) = 2f(x/2), then vn = xn

is an eigenvalue with eigenvector λn = 2−(n+1) → 0 as n → ∞. Therefore

λ = 0 is an example of a spectral value that is not an eigenvalue.



E. PROOF OF LEMMA 2

Here we give the proof of Lemma 2.

Proof. We have that Rp
0,n is analyticity improving on the domains V n

1 × V n
0 .

It is then a standard result that such operators are compact. Indeed the

arguments in, for example, [42] may be readily adapted to the case considered

here. Let us now give an outline of the calculation of the spectrum. The

arguments given here are also analogous to those found in [42, 9].

Recall that

R0,n(U(x), T (x)) = (T (θn
0 (x)),

an−1∑
i=0

T (θn
i (x)) + U(θn

an
(x))) , (E.1)

and R�
0,n = R0,n+�−1R0,n+�−2 . . . R0,n.

We may obtain the spectrum directly by noting that the eigenfunction pairs

consist of polynomials. The arguments of [42] may be readily adapted in this

case. Letting U(x) = Umxm + Um−1x
m−1 + . . . + U0 and T (x) = Tmxm +

Tm−1x
m−1 + . . . + T0 for m ≥ 0 then
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R0,n(U, T ) =




Tm(−ωnx)m + Tm−1(−ωnx)m−1 + . . . + T0

(∑an−1
i=0 Tm(−ωnx − i)m + . . . + T0

)
+ Um(−ωnx − an)m + . . . + U0


 .

(E.2)

Considering the coefficients of the xm-terms we have

R0,n


 Um

Tm


 = Mn


 Um

Tm


 , (E.3)

where

Mn = (−ωn)m


 0 1

1 an


 , (E.4)

so that

Rp
0,n


 Um

Tm


 = Mn+p−1


 Um

Tm


 , (E.5)

where

Mn+p−1 = (−1)pm(ω0ω1 . . . ωp−1)
m


 0 1

1 an+p−1





 0 1

1 an+p−2


 . . .


 0 1

1 an


 .

(E.6)



E. Proof of Lemma 2 181

Now for k ∈ Z,


 0 1

1 ak





 1

−ωk−1


 = −ωk−1


 1

−ωk


 , (E.7)

so we see that


 0 1

1 an+p−1


 . . .


 0 1

1 an





 1

−ωn−1


 = (−1)pω0 . . . ωp−1


 1

−ωn+p−1




(E.8)

gives the eigenvalue (−1)pγp
0 . Similarly,


 0 1

1 an


 . . .


 0 1

1 an+p−1





 ωn+p−1

1


 = ω−1

0 . . . ω−1
p−1


 ωn

1


 (E.9)

gives the second eigenvalue (γp
0)

−1 since, for all j,


 0 1

1 aj




t

=


 0 1

1 aj


 . (E.10)

Thus (E.9) also gives the eigenvalues for the product


 0 1

1 an+p−1


 . . .


 0 1

1 an


 . (E.11)

Now from (E.6) we see the eigenvalues of Rp
0,n are given by

{(−1)p(m+1)(γp
0)

m+1, (−1)pm(γp
0)

m−1,m = 0, 1, 2, . . .}. (E.12)
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Setting m = 0 gives the two eigenvalues of Rp
0,n outside of the unit disc in

C.



F. CONSTRUCTION OF THE PROJECTION OPERATOR

In this appendix we prove the existence of the projection P0,n given in section

4.1.2 by constructing vn
0 and vn

1 explicitly so that they satisfy equations (4.6)

and (4.7).

Let vn
0 = (An, Cn), so that,

R0,n−1(v
n
0 ) = (Cn−1, an−1Cn−1 + An−1) (F.1)

= ω−1
n−1(An, Cn), (F.2)

which implies that

An = ωn−1Cn−1, (F.3)

and

an−1Cn−1 + An−1 = ω−1
n−1Cn. (F.4)

Now, the condition (4.8) together with (F.3 - F.4) gives the recursion:

ω−1
n−1Cn + ωn−1Cn−1 = 1. (F.5)
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Similarly, we let V n
1 = (Anx + Bn, Cnx + Dn), then

R0,n−1(v
n
1 ) =




Cn−1(−ωn−1x) + Dn−1

∑an−1−1
j=0 Cn−1(−ωn−1x − j) + Dn−1

+An−1(−ωn−1x − an−1) + Bn−1




= −(Anx + Bn, Cnx + Dn) (F.6)

implies that

Bn = −Dn−1, (F.7)

and

Dn =
1

2
(an−1 − 1)an−1Cn−1 + an−1An−1 − an−1Dn−1 + Dn−2 (F.8)

= Λn−1 − an−1Dn−1 + Dn−2, (F.9)

where Λn = 1
2
(an − 1)anCn + anAn.
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F.1 Period 1

If ω is a period 1 continued fraction then a is fixed and there is no time

dependence, thus we have:

A = ωC, (F.10)

B = −D, (F.11)

C =
1

ω + ω−1
, (F.12)

and D =
Λ

a
=

1

2
(a − 1)C + A, (F.13)

giving,

v0 =
1

ω + ω−1
(ω, 1), (F.14)

and

v1 =
1

ω + ω−1

(
ωx − ω − (a − 1)

2
, x + ω +

(a − 1)

2

)
, (F.15)

as given in [46].
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F.2 Period 2

Now for a period 2 continued fraction an = an−2, and we obtain

An = ωn−1Cn−1, (F.16)

Bn = −Dn−1, (F.17)

Cn = ωn−1 − ω2
n−1Cn−1 =

ωn−1

1 + ωn−1ωn

, (F.18)

Dn = Λn−1 − an−1Dn−1 + Dn (F.19)

= Λn/an (F.20)

= (
1

2
(an − 1) + ωn)

ωn−1

1 + ωn−1ωn

. (F.21)

Thus,

vn
0 =

1

1 + ωn−1ωn

(ωn−1ωn, ωn−1), (F.22)

and

vn
1 =

1

1 + ωn−1ωn(
ωn−1ωnx − ωn

(an−1 − 1)

2
− ωn−1ωn, ωn−1x + ωn−1

(an − 1)

2
− ωn−1ωn

)
.

(F.23)

F.3 Period-p

For a general period-p continued fraction we have that an = an−p, this leads

us to the following: again An = ωn−1Cn−1 and Bn = −Dn−1, but now we
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have,

Cn = ωn−1 − ωn−2ω
2
n−1 + . . . + (−1)p−1ωn−pω

2
n−1 . . . ω2

n−p+1

+(−1)pω2
n−1 . . . ω2

n−pCn−p (F.24)

=

∑p−1
j=0 ωn−1−j

∏j
i=1(−ω2

n−i)

1 − ∏p
k=1(−ω2

n−k)
. (F.25)

.

For Dn we write the recurrence


 Dn−1

Dn


 =


 0 1

1 −an−1





 Dn−2

Dn−1


 +


 0

Λn−1


 (F.26)

as

xn = Mn−1xn−1 + bn (F.27)

where

Mn =


 0 1

1 −an


 and M−1

n =


 an 1

1 0


 . (F.28)

Using the convention ωk = [ak+1, ak+2, . . .] and ω̂k = [ak, ak−1, . . .] with

γ̂t
s =




ω̂s . . . ω̂t, t ≥ s;

1, t < s,
(F.29)

we see that

Mn


 1

ωn−1


 =


 ωn−1

1 − anωn−1


 = ωn−1


 1

ωn


 (F.30)
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and

M−1
n


 −ω̂n

1


 =


 1 − anω̂n

−ω̂n


 = −ω̂n


 −ω̂n−1

1


 . (F.31)

We use

v1
n =


 1

ωn−1


 and v2

n =


 −ω̂n−1

1


 (F.32)

as a basis at n. Writing

xn = x1
nv

1
n + x2

nv
2
n (F.33)

and

bn = b1
nv

1
n + b2

nv
2
n, (F.34)

equation (F.27) becomes:

x1
nv

1
n + x2

nv
2
n = Mn−1(x

1
n−1v

1
n−1 + x2

n−1v
2
n−1) + b1

nv
1
n + b2

nv
2
n (F.35)

= ωn−2v
1
nx

1
n−1 − ω̂−1

n−1v
2
nx

2
n−1 + b1

nv
1
n + b2

nv
2
n, (F.36)

which gives the two first order recurrences:

x1
n = ωn−2x

1
n−1 + b1

n (F.37)

x2
n = −ω̂−1

n−1x
2
n−1 + b2

n (F.38)
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where bn is given by


 0

Λn−1


 = b1

nv
1
n + b2

nv
2
n =


 1

ωn−1


 b1

n +


 −ω̂n−1

1


 b2

n, (F.39)

so that

b1
n =

Λn−1

ωn−1 + ω̂−1
n−1

, and b2
n =

Λn−1

ωn−1ω̂n−1 + 1
. (F.40)

The solution of (F.37) is given by:

x1
n = b1

n + ωn−2b
1
n−1 + ωn−2ωn−3b

1
n−2 + . . . + ωn−2 . . . ωn−p−1b

1
n−p

+ωn−2 . . . ωn−p(ωn−p−1x
1
n−p + b1

n−p+1) (F.41)

=
b1
n + . . . + ωn−2 . . . ωn−pb

1
n−p+1

1 − ωn−2 . . . ωn−p−1

(F.42)

=
1

1 − γp
0

p−1∑
s=0

b1
n−sγ

n−1
n−s−1 (F.43)

while the solution of (F.38) is given by:

x2
n = −ω̂nx2

n+1 + ω̂nb2
n+1 (F.44)

= ω̂nb
2
n+1 − ω̂nω̂n+1b

2
n+2 + . . . + (−1)p−1ω̂n . . . ω̂n+p−1b

2
n+p

+(−1)pω̂n . . . ω̂n+p−1x
2
n+p (F.45)

=

∑p−1
s=0(−1)sb2

n+s+1ω̂n . . . ω̂n+s

1 − (−1)pω̂n . . . ω̂n+p−1

(F.46)

=
1

1 − (−1)pγ̂p
1

p−1∑
s=0

(−1)sb2
n+s+1γ̂

n+s
n . (F.47)
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Now equation (F.33) becomes


 Dn−1

Dn


 = x1

n


 1

ωn−1


 + x2

n


 −ω̂n−1

1


 (F.48)

then

Dn =
ωn−1

1 − γp
0

p−1∑
s=0

γn−1
n−s−1Λn−s−1

ωn−s−1 + ω̂−1
n−s−1

+
1

1 − (−1)pγ̂p
1

p−1∑
s=0

(−1)sγ̂n+s
n Λn+s

ωn+sω̂n+s + 1
.

(F.49)

Then vn
0 = (An, Cn) and vn

1 = (Anx + Bn, Cnx + Dn) are determined for any

period p.

We conclude that the spectral radius of Rp
0,nPn is (ω0 . . . ωp−1), and further

deduce that there exist constants K > 0 and 0 < ρ < 1 such that

‖R�
0,n‖ ≤ Kρ� , for � ≥ 0. (F.50)

F.4 General ω

For non-periodic ω equations (F.43) and (F.47) become:

x1
n =

∞∑
s=0

γn−1
n−s−1b

1
n−s (F.51)

and

x2
n =

∞∑
s=0

(−1)sγ̂n+s
n b2

n+1+s. (F.52)
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Thus (F.49) becomes:

Dn = ωn−1

∞∑
s=0

γn−1
n−s−1Λn−s−1

ωn−s−1 + ω̂−1
n−s−1

+
∞∑

s=0

(−1)sγ̂n+s
n Λn+s

ωn+sω̂n+s + 1
. (F.53)

For Cn equation (F.25) becomes:

Cn =
∞∑

j=0

ωn−1−j

j∏
i=1

(−ω2
n−i) (F.54)

We also have An = ωn−1Cn−1 and Bn = −Dn−1 as before to give vn
0 and vn

1

for any ω .



G. PROOF OF LEMMA 5

Here we give the proof of Lemma 5, which states that there exist δ > 0 and

L > 0 (depending on a and c) such that the function Hn,1 = (u1
n+1, t

1
n+1) ∈

F δ
n+1 satisfies

1. u1
n+1(x) > 0 for x ∈ V

n+1

1 ∩ R, and t1n+1(x) > 0 for x ∈ V
n+1

0 ∩ R;

2. ‖Hn,1‖ ≤ L.

Proof. If we let Hn,1 = log(u1
n+1, t

1
n+1), then comparing with equations (4.45–

4.51) we show that u1
n+1(x) > 0 for x ∈ V

n+1

1 ∩ R, and t1n+1(x) > 0 for

x ∈ V
n+1

0 ∩ R in the following way: For case (i) and (ii) u1
n+1(x) = ωn > 0

for all x and it remains to show that yn − θn
i (x) > 0 for x ∈ V

n+1

0 ∩ R where

(i)i = 1, . . . , an, and (ii)i = 1, . . . , an − 1. For x ∈ V
n+1

0 ∩ R we have

θn
i (x) ∈ [−ωn − ωnδ − i, 1 − ωn + ωnδ − i], (G.1)

so that for (i)

θn
i (x) ∈ [−ωn − an − ωnδ,−ωn + ωnδ], (G.2)
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and for (ii)

θn
i (x) ∈ [−ωn − (an − 1) − ωnδ,−ωn + ωnδ], (G.3)

then yn − θn
i (x) > −ωnδ in each case since yn ∈ (−ωn, 1).

Since (ak)k∈Z and c = (ck)k∈Z are periodic, we can choose δ > 0 sufficiently

small such that yn − θn
i (x) > 0, i.e. t1n+1 > 0 as required.

Now for cases (iii) and (iv), u1
n+1 = θn

0 (x)− yn. We need to show that this is

greater than zero for x ∈ V
n+1

1 ∩ R. Here we have

θn
0 (x) = [1 − ωn − ωnδ, 1 + ωnδ] (G.4)

and yn ∈ (−ωn − cn,−ωn − (cn − 1)), so we see that yn < θn
0 (x) so that

u1
n+1 > 0.

Finally,

t1n+1(x) = ωn(
cn−1∏
i=0

θn
i (x) − yn)(

k∏
j=cn+1

yn − θn
j (x)), (G.5)

where for case (iii) k = an, so that

θn
j (x) ∈ [−ωn − an − ωnδ,−ωn + ωnδ − cn], (G.6)

and for (iv) k = an − 1, and

θn
j (x) ∈ [−ωn − (an − 1) − ωnδ,−ωn + ωnδ − cn], (G.7)
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for x ∈ V
n+1

0 ∩ R, in either case:

yn − θn
j (x) > −ωnδ, (G.8)

then as before we may choose δ such that yn − θn
j (x) > 0. It can also be

shown that
∏cn−1

i=0 (θn
i (x) − yn) > 0 since

θn
i (x) ∈ [−ωn − (cn − 1) − ωnδ, 1 − ωn + ωnδ], (G.9)

for x ∈ V
n+1

0 ∩ R, so that θn
i (x) − yn > ωnδ, if we choose δ sufficiently small

such that θn
i (x)− yn > 0, thus in case (iii) and (iv) t1n+1 > 0 as required.

Part 2 of the lemma is proved separately. See Lemma 9, Appendix I.



H. DETAILS OF THE CONSTRUCTION OF E

In this section we give the details of the construction of En. Recalling the

definitions given in section 4.1.3, we define En = hn exp(Kn) where Kn =

Kn(c) ∈ F δ
n, and satisfies the equation Hn,1 +R0,nKn = Kn+1 in F δ

n+1. This

equation is derived as follows. From (4.36) we have

RnEn = κcn(+1, +1)En+1 (H.1)

= κcn(+1, +1)hn+1 exp(Kn+1), (H.2)

and, from (4.41), we obtain

RnEn = Rn(hn exp(Kn)) (H.3)

= κcn(+1, +1)hn+1(c) exp(Hn,1(c)) exp(R0,nKn) (H.4)

= κcn(+1, +1)hn+1 exp(Hn,1 + R0,nKn). (H.5)

Comparing (H.5) with (H.2) we see that we require

Kn+1 = Hn,1(c) + R0,nKn . (H.6)
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We now construct Kn. Defining Hn,0 = log |hn| we confirm that

R0,nHn,0 = Hn+1,0 + Hn,1 (H.7)

where Hn,1 ∈ F δ
n+1 is as before.

Making use of the relation Rn exp(U, T ) = exp R0,n(U, T ) and (4.41) we have:

R0,nHn,0 = log |Rn exp Hn,0| (H.8)

= log |Rnh
n| (H.9)

= log |κcnhn+1 exp(Hn,1)| (H.10)

= log |hn+1| + Hn,1 (H.11)

= Hn+1,0 + Hn,1. (H.12)

Using the notation R�
n = Rn+�−1Rn+�−2 . . . Rn and similarly for R�

0,n, we

define:

Hn,� = R�−1
0,n+1H

n,1 ∈ F δ
n+�, (H.13)

and

Ĥn,� = R�−1
0,n+1P0,n+1H

n,1. (H.14)

From (H.14) we have that

Ĥn−k,k = Rk−1
0,n−k+1P0,n−k+1H

n−k,1. (H.15)
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Now, if we let

Ĝn =
∞∑

k=1

Ĥn−k,k, (H.16)

then Ĝn converges and R0,nĜn + Ĥn,1 = Ĝn+1 since:

R0,nĜn =
∞∑

k=1

R0,nĤn−k,k (H.17)

=
∞∑

k=1

Ĥn−k,k+1 (H.18)

= −Ĥn,1 +
∞∑

k=0

Ĥn−k,k+1, (H.19)

then replacing k by k′ = k + 1 we have,

R0,nĜn + Ĥn,1 =
∞∑

k′=1

Ĥn+1−k′,k′
(H.20)

= Ĝn+1, (H.21)

as required.

Finally, defining Kn = Ĝn − (I − P0,n)Hn,0 ∈ F δ
n, we can show that Hn,1 +
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R0,nKn = Kn+1 as follows:

R0,nKn = R0,nĜn − R0,n(I − P0,n)Hn,0 (H.22)

= Ĝn+1 − Ĥn,1 − (I − P0,n+1)R0,nHn,0 (H.23)

= Ĝn+1 − Ĥn,1 − (I − P0,n+1)(H
n+1,0 + Hn,1) (H.24)

= Ĝn+1 − (I − P0,n+1)H
n+1,0 − Ĥn,1 − (I − P0,n+1)H

n,1 (H.25)

= Ĝn+1 − (I − P0,n+1)H
n+1,0 − P0,n+1H

n,1 − Hn,1 + P0,n+1H
n,1

(H.26)

= Kn+1 − Hn,1, (H.27)

where we have made use of equations (H.21), (4.52), and (H.14) and the fact

that Ĥn,1 = P0,n+1H
n,1. From (H.27) we see that

R0,nKn + Hn,1 = Kn+1, (H.28)

as required.



I. PROOF OF LEMMA 9

Here we prove lemma 9.

Lemma 9. There exists a constant L > 0 (independent of k and n) such

that ‖Hn−k,1‖ ≤ L, provided δ > 0 is chosen sufficiently small.

Proof. Let Hn−k,1 = (U, T ) where Hn−k,1 ∈ F δ
n−k+1. Then

‖Hn−k,1‖ = ‖U‖1 + ‖T‖1, (I.1)

where U and T are given by equations (4.45), (4.47), (4.49) and (4.51).

We make use of the identities (3.73) and letting n′ = n − k we take first the

case cn′ = 0 then ‖U‖1 = | log ωn′|. Since the sequence ωj is periodic with

period p we may choose

L

2
≥ max

1≤j≤p
| log ωj|, (I.2)

then clearly ‖U‖1 ≤ L/2 independently of n′ and k.

If cn′ �= 0 then ‖U‖1 = ‖ log(θn′
0 (x) − yn′)‖1. Now,

log(θn′
0 (x) − yn′) = log(θn′

0 (x) − θn′
0 (θn′

0 )−1(yn′)) (I.3)

= log ωn′ + log((θn′
0 )−1(yn′) − x), (I.4)
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thus, ‖ log(θn′
0 (x) − yn′)‖1 ≤ | log ωn′ | + ‖ log((θn′

0 )−1(yn′) − x)‖1.

Now since yn′ ∈ (−ωn′ − cn′ ,−ωn′ − cn′ + 1), then (θn′
0 )−1(yn′) ∈ (1 − ω−1

n′ +

cn′ω−1
n′ , 1 + cn′ω−1

n′ ), and in this case cn′ �= 0 so (θn′
0 )−1(yn′) ∈ (1, 1 + an′ω−1

n′ )

and then |(θn′
0 )−1(yn′) − cn′+1

1 | > 1. Recalling that U is defined on V n′+1
1 , we

now make use of the following result from [45]:

Lemma 10. Let c, r ∈ R, r > 0 and let y ∈ R, y /∈ D(c, r). Let

f(x) =




log(y − x), y > c + r;

log(x − y), y < c − r.
(I.5)

Then as a function of x ∈ D(c, r),

‖f‖1 = | log |y − c|| + log |y − c| − log(|y − c| − r) (I.6)

Hence, we see that

‖ log((θn′
0 )−1(yn′) − x)‖1 = log

|(θn′
0 )−1(yn′) − cn′+1

1 |2
|(θn′

0 )−1(yn′) − cn′+1
1 | − rn′+1

1

, (I.7)

which assumes that (θn′
0 )−1(yn′) > −ωn′+1 − an′+1 + 1 + δ, i.e. cn′ω−1

n′ > δ.

This is true since cn′ �= 0 in this case, provided δ < 1 which we assume from

now on.

So now,

‖U‖1 = | log ωn′| + log
|(θn′

0 )−1(yn′) − cn′+1
1 |2

|(θn′
0 )−1(yn′) − cn′+1

1 | − rn′+1
1

. (I.8)
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For δ < 1/2, there clearly exists δ1 > 0 such that |(θn′
0 )−1(yn′) − cn′+1

1 | −
rn′+1
1 > δ1 since |(θn′

0 )−1(yn′) − cn′+1
1 | > 1 and rn′

1 = 1
2

+ δ. We also see that

|(θn′
0 )−1(yn′) − cn′+1

1 | < 1
2

+ (cn′ + 1)ω−1
n′ < K for constant K, independently

of n′, since c′n ≤ max1≤j≤p aj and ω−1
n′ ≤ (min1≤j≤p ωj)

−1. Then,

‖U‖1 ≤ max
1≤j≤p

| log ωj| + log

(
K2

δ1

)
(I.9)

≤ L/2, (I.10)

for some choice of L.

Firstly, for cn′ = 0 :

T (x) = log(ωn′

�∏
i=1

(yn′ − θn′
i (x))), (I.11)

where � = an′ for cn′−1 = 0 and � = an′ − 1 for cn′−1 �= 0. We can write this

as

T (x) = log ωn′ +
�∑

i=1

log(yn′ − θn′
i (x)). (I.12)

Then

‖T‖1 ≤ | log ωn′ | +
�∑

i=1

‖ log(yn′ − θn′
i (x))‖1. (I.13)

Now,

log(yn′ − θn′
i (x)) = log(θn′

i (θn′
i )−1(yn′) − θn′

i (x)) (I.14)

= log ωn′ + log(x − (θn′
i )−1(yn′)), (I.15)
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where 1 ≤ i ≤ �. Thus,

‖ log(yn′ − θn′
i (x))‖1 ≤ | log ωn′ | + ‖ log(x − (θn′

i )−1(yn′))‖1. (I.16)

Since cn′ = 0 we have yn′ ∈ (−ωn′ , 1) and (θn′
i )−1(yn′) ∈ (−ω−1

n′ − iω−1
n′ , 1 −

iω−1
n′ ), and since T is defined on V n′+1

0 we require that (θn′
i )−1(yn′) < 1 −

1
2
ω−1

n′ − 1
2
ω−1

n′ − δ i.e. 1 − iω−1
n′ < 1 − ω−1

n′ − δ which is true for i > 1

provided δ > 0 is sufficiently small. Since we have i ≥ 1 then in principle

(θn′
i )−1(yn′) could get arbitrarily close to V n′+1

0 . However, assuming a periodic

code (ck)k∈Z as well as a periodic continued fraction, we can say that there

exists δ2 > 0 such that

min
n′

|(−ωn′+1 − an′+1 + 1) − (θn′
i )−1(yn′)| − rn′+1

0 > δ2, (I.17)

again provided δ is taken small enough. Now making use of lemma 10,

‖ log(x − (θn′
i )−1(yn′)‖1 = | log |(θn′

i )−1(yn′) − 1 +
1

2
ω−1

n′ ||

+ log |(θn′
i )−1(yn′) − 1 +

1

2
ω−1

n′ |

− log(|(θn′
i )−1(yn′) − 1 +

1

2
ω−1

n′ | − 1

2
ω−1

n′ − δ).

(I.18)

Now if |(θn′
i )−1(yn′) − 1 + 1

2
ω−1

n′ | > 1 then

‖ log(x − (θn′
i )−1(yn′))‖1 = log

(
|(θn′

i )−1(yn′) − 1 + 1
2
ω−1

n′ |2
|(θn′

i )−1(yn′) − 1 + 1
2
ω−1

n′ | − 1
2
ω−1

n′ − δ

)
,

(I.19)
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where |(θn′
i )−1(yn′)−1+ 1

2
ω−1

n′ | < |(1
2
− i)|ω−1

n′ < K for some constant K then

‖T‖1 ≤ max
1≤j≤p

| log ωj| +
(

�∑
i=1

(
max
1≤j≤p

| log ωj|
)

+ log

(
K2

δ2

))
(I.20)

≤ (1 + �) max
1≤j≤p

| log ωj| + � log

(
K2

δ2

)
(I.21)

≤ L

2
, (I.22)

for some L independent of n′ and k. If |(θn′
i )−1(yn′) − 1 + 1

2
ω−1

n′ | ≤ 1, then

‖T‖1 ≤ (1 + �) max
1≤j≤p

| log ωj| + � log

(
1

δ2

)
(I.23)

≤ L

2
, (I.24)

again for some L independent of n′ and k.

Finally, for cn′ �= 0

T (x) = log


ωn′

cn′−1∏
i=0

(θn′
i (x) − yn′)

�∏
j=cn′+1

(yn′ − θn′
j (x))


 , (I.25)

where, as before, � = an′ or an′ − 1. Then

‖T‖1 ≤ | log ωn′ | +
cn′−1∑
i=1

‖ log(θn′
i (x) − yn′)‖1 +

�∑
j=cn′+1

‖ log(yn′ − θn′
j (x))‖1.

(I.26)

Now for 0 ≤ i ≤ cn′ − 1, log(θn′
i (x) − yn′) = log ωn′ + log((θn′

i )−1(yn′) − x),

thus,

‖ log(θn′
i (x) − yn′)‖1 ≤ | log ωn′ | + ‖ log((θn′

i )−1(yn′) − x)‖1. (I.27)
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Now since cn′ �= 0 then yn′ ∈ (−ωn′ − cn′ ,−ωn′ − cn′ + 1) and (θn′
i )−1(yn′) ∈

(1 − ω−1
n′ (1 − cn′ + i), 1 + ω−1

n′ (cn′ − i)). Using lemma 10 and the fact that T

is defined on V n′+1
0 we have:

‖ log((θn′
i )−1(yn′) − x)‖1 = | log |(θn′

i )−1(yn′) − 1 +
1

2
ω−1

n′ ||

+ log |(θn′
i )−1(yn′) − 1 +

1

2
ω−1

n′ |

− log(|(θn′
i )−1(yn′) − 1 +

1

2
ω−1

n′ | − 1

2
ω−1

n′ − δ).

(I.28)

We have that (θn′
i )−1(yn′) > 1, since i ≤ cn′ − 1 then (θn′

i )−1(yn′) > 1 but

(θn′
i )−1(yn′) could be arbitrarily close to V n′+1

0 . However, following the above

argument, if we assume a periodic code c then we can say there exists δ3 > 0

such that minn′ |(θn′
i )−1(yn′) − 1 − δ| > δ3, provided δ is chosen sufficiently

small.

Now since |(θn′
i )−1(yn′) − 1 + 1

2
ω−1

n′ | < ω−1
n′ (cn′ − 1

2
) < K for some constant

K > 1, we have that

‖ log((θn′
i )−1(yn′) − x)‖1 = log

(
max{1, |(θn′

i )−1(yn′) − 1 + 1
2
ω−1

n′ |2}
|(θn′

i )−1(yn′) − 1 + 1
2
ω−1

n′ | − 1
2
ω−1

n′

)

≤ log

(
K2

δ3

)
. (I.29)

So now we have

‖T‖1 = | log ωn′ | +
cn′−1∑
i=0

(
| log ωn′ | + log

K2

δ3

)
+

�∑
j=cn′+1

‖ log(yn′ − θn′
j (x))‖1.

(I.30)
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Writing for cn′ + 1 ≤ j ≤ �, log(yn′ − θn′
j (x)) = log ωn′ + log(x− (θn′

j )−1(yn′))

then ‖ log(yn′ − θn′
j (x))‖1 ≤ | log ωn′ | + ‖ log(x− (θn′

j )−1(yn′))‖1, where again

yn′ ∈ (−ωn′ − cn′ ,−ωn′ − cn′ + 1) and (θn′
j )−1(yn′) ∈ (1−ω−1

n′ (1− cn′ + j), 1 +

ω−1
n′ (cn′ − j)). Using lemma 10 we have:

‖ log(x − (θn′
j )−1(yn′)‖1 = | log |(θn′

j )−1(yn′) − 1 +
1

2
ω−1

n′ ||

+ log |(θn′
j )−1(yn′) − 1 +

1

2
ω−1

n′ |

− log(|(θn′
j )−1(yn′) − 1 +

1

2
ω−1

n′ | − 1

2
ω−1

n′ − δ),

(I.31)

and since T is defined on V n′+1
0 we require that (θn′

j )−1(yn′) < 1 − ω−1
n′ − δ.

Given that j ≥ cn′+1, we have (θn′
j )−1(yn′) ≤ 1−ω−1

n′ i.e. (θn′
j )−1(yn′) could be

arbitrarily close to V n′+1
0 . However, again, using the periodicity of c, we can

say that there exists δ4 > 0 such that minn′ |1− ω−1
n′ − δ − (θn′

j )−1(yn′)| > δ4,

provided, as before, that δ > 0 is taken sufficiently small.

Finally (θn′
j )−1(yn′)−1+ 1

2
ω−1

n′ > (1
2
−�)ω−1

n′ , hence |(θn′
j )−1(yn′)−1+ 1

2
ω−1

n′ | <

(� − 1
2
)ω−1

n′ < K, for some constant K > 1, larger than the K above. We

then have, for cn′ �= 0:
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‖T‖1 ≤ max
1≤m≤p

| log ωm| +
cn′−1∑
i=0

(
max

1≤m≤p
| log ωm| + log

K2

δ3

)

+
�∑

j=cn′+1

(
max

1≤m≤p
| log ωm| + log

K2

δ4

)
(I.32)

≤ (1 + �) max
1≤m≤p

| log ωm| + cn′ log
K2

δ3

+ (� − cn′)

(
| log K| + log

K

δ4

)
(I.33)

≤ L/2, (I.34)

for some L using the periodicity of ωn′ to ensure that log K is bounded, as

is log ωm.

For all cases then we see that

‖Hn−k,1‖ = ‖U‖1 + ‖T‖1 (I.35)

≤ L/2 + L/2 (I.36)

≤ L, (I.37)

for some L > 0 independent of k and n.


