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“It is a capital mistake to theorize before one has data.  Insensibly one begins 
to twist facts to suit theories, instead of theories to fit facts.”   

Sir Arthur Conan Doyle. 
 

Abstract: Modern macroeconomic theory utilises optimal control techniques to model the 

maximisation of individual well-being using a lifetime utility function. Agents face choices 

over current and future consumption (with resultant implied savings decisions) seeking to 

maximise the present value of current plus future well-being. However, such inter-temporal 

welfare-maximising assumptions remain empirically untested. In the work presented here we 

test whether welfare was in (historical) fact maximised in the US between 1870-2000 and find 

empirical support for the optimising basis of growth theory, but only once a comprehensive 

view of what constitutes a country’s wealth or capital is taken into account.  

Keywords: inter-temporal utility maximisation; modern growth theory; US; comprehensive 
wealth 
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1. Introduction. 
 
The popularity of modern growth theory is likely linked to its rigour associated with the 

widespread adoption of optimal control-type techniques, which utilise a traditional micro-

economic theory of inter-temporal welfare maximisation. Armed with this toolkit, modern 

macro-theorists are able to consider a range of issues within an optimising framework.  This 

approach to macroeconomics utilises the technical tools of Ramsey (1928), Weitzman (1976), 

Arrow (1968) and Arrow and Kurz (1970) among others, to produce an elegant, mainstream, 

model of economic growth that is now the basis of modern macroeconomic teaching and 

research as exemplified by the popular works of Acemoglu (2009), Barro and Sala-i-Martin 

(2004) and Aghion and Howitt (2008). Therein, one finds that the 'baseline assumption'2 to the 

building of modern macroeconomics is that the representative infinitely lived individual 

maximises their well-being using a lifetime utility function of the form: 

W =  ∫ e−ρt∞
0 u[c(t)]dt    (1) 

 
 where c(t) is the time path of consumption (this could be an extended consumption vector) , u(.) 

is an instantaneous utility function with positive, yet diminishing marginal utility, and ρ 

represents a positive rate of time preference.   

  

Foreshadowing the work of Stiglitz, Sen and Fitoussi (2010), this version of macroeconomic 

theory sees consumption rather than production as the focus of attention, where economic 

agents face choices over current and future consumption paths (with resultant implied savings 

decisions),  seeking to maximise the present value of current plus future well-being.  

  

The success and elegance of the theory is not, however, matched by empirical testing and 

support. Empirical research into the drivers of economic growth (why country growth rates 

differ for example), remains backward rather than forward looking, focussing upon large panels 

of countries where data are typically constrained to recent, typically post-1945 periods (see for 

example, Durlauf, Kourtellos, and Tan (2008), Brock and Durlauf (2001) and Durlauf, Johnson, 

and Temple (2005)).  

  

                                                 
2 Acemoglu (2009, p.288) 



3 
 

The lack of empirical support for neoclassical growth models, which assume exogenous 

population processes, does not surprise Galor and Weil (2000)3, where they see demographic 

transition, technological change and standard of living as inexorably linked.  In their ‘unified 

growth model’, the pace of technological progress separates Malthusian and Post-Malthusian 

regimes, and demographic transition is the mechanism that shifts economies into a “Modern 

Growth” era where technology and output per capita increase rapidly as population growth 

moderates. The demographic transition, however, is in part, influenced by the pace of 

technological change leading to decisions to invest more in human capital – inducing a 

substitution of quality (more educated) children for quantity. 

   

A clear implication in their unified model is an increasing proportion of human capital in the 

(broadly defined) capital stock as we progress through the Modern era. That is, as economies 

grow, the balance between different types of capital within total wealth is changing (World 

Bank, 2006).  Furthermore, ‘children with high levels of human capital are, in turn, more likely 

to advance the technological frontier or to adopt advanced technologies,’ (op cit., p. 810). 

Fertility and income are also important in their model in relation to the possibility of ‘wealth 

dilution’, where growing populations make higher demands on the availability of (exhaustible 

and fixed) capital availability to future populations.  In contrast to the simple Neo-classical 

model of growth, key elements in the Galor and Weil (2000) approach are thus non-constant 

population growth (with demographic transition as endogenous); the pace of technological 

change (which is affected by the stock of human capital); and the potential effects of wealth 

dilution (of population growth on fixed or exhaustible capital). We incorporate all of these 

features in the empirical work reported below. 

  

Although important differences exist between e.g., Galor and Weil (2000) and the simpler Neo-

classical underpinnings of the benchmark models of e.g., Barro and Sala-i-Martin (2004), 

Acemoglu (2009) and Aghion and Howitt (2008), there is an inter-temporal welfare-maximising 

assumption which underlies both approaches. This remains an untested assumption. The fact 

that no such tests are reported or referred to in any of these seminal texts reflects a striking 

dearth of empirical testing in this crucial area of macroeconomics. 

  

                                                 
3 “Neoclassical growth models with exogenous population are unable to capture this intricate (evolution of 

population, technology and growth throughout human history) transition process.” Galor and Weil, 2000, 
p.809. 
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The work presented here is, we believe, the first to explicitly test the present value optimizing 

assumptions expressed as equation (1) above, the importance of which cannot be over-stated in 

the field of modern macroeconomics.  Utilising the modelling framework of Ferreira and 

Vincent (2005) and Ferreira, Vincent and Hamilton (2008), which is based on a theoretical 

result from Weitzman (1976), we will test whether welfare was in (historical) fact maximised in 

the US over the period 1870-2000. We focus on the USA over this particular time period as it is 

the longest interval over which consistent macro data on investment (broadly defined) and 

consumption can be assembled. 

 

In detail, Section 2 will briefly describe the theoretical model presented by Ferreira and Vincent 

(2005) and Ferreira, Vincent and Hamilton (2008), and demonstrate how its testable 

implications relate to the untested assumptions of for example, Acemoglu et. al. This involves 

us looking at how changes in net investment in multiple forms of capital are related to changes 

in the present value of future consumption (Sala-I-Martin, 1997) over the long run, as well as 

the effects of including technological advances as measured by changes in Total Factor 

Productivity, and changes in the population growth rate (Easterly and Levine 2001; Arrow et al, 

2003).  In Section 3 we describe the data, followed in Section 4 by the econometric testing 

implications.  Section 5 presents the empirical results and Section 6 concludes. 

2. The theoretical model and its testable implications. 
 
We start with the model of Weitzman (1976). He studies an economy which produces a single 

consumption good (or multiple consumption goods representable by an index number) using 

multiple types of capital over infinite time, with a constant discount rate equal to the 

consumption rate of interest, r. Weitzman states that this total stock of capital includes produced 

capital (“..equipment, structures and inventories”..), but also human capital, technology and 

natural resources. He assumes that all sources of growth can be attributed to one of these capital 

stocks. Prices for consumption goods and for investment goods are determined competitively. 

Setting the price of consumption goods equal to one and using these as the numeraire, then the 

national accounting identity states that NNP in period t is by definition equal to the sum of 

consumption and net investment, the latter evaluated at a vector of  prices p: 

 

Y(t) ≡ C(t) + 𝐩(t)𝐈(t)  (2) 
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His most important result is then that Net National Product at time t, Y(t), is equal to a weighted 

average of future consumption, C� (t):  

Y(t) = (C� (t))   (3) 

where the inter-temporal weights used to calculate C� (t) depend on r. He shows that NNP in any 

period is identical to the Hamiltonian of the optimal control problem which maximises social 

welfare W (the discounted value of future consumption): 

𝑊(𝑡) =  ∫ 𝐶(𝑠)∞
𝑡  𝑒−𝑟(𝑠−𝑡) 𝑑𝑠             (4) 

subject to the production possibilities of the economy. NNP, in this optimising economy, is thus 

a forward-looking measure of future well-being as measured by the discounted value of future 

consumption streams. For (3) to correctly describe a dynamic economy, a number of 

assumptions must hold, noted by Weitzman as (i) perfectly competitive markets, including a 

perfect capital market (implying prices used to measure NNP being equal to marginal rates of 

transformation) and (ii) perfect foresight4.  

 

Ferreira and Vincent (2005) adapt (3) by deducting the value of present period consumption 

from each side of (2) to obtain: 

 

C �(t) −  C(t) =  𝐩(t)𝐈(t)   (5) 

 

They then use (5) to derive a reduced form econometric model which enables them to test the 

predictive ability of increasingly-comprehensive measures of net investment (that is, as one 

considers an increasingly wide set of capital stocks) in relation to changes in future 

consumption. This provides the key insight for what we do in the empirical part of the paper.  

 

Based on Hamilton and Hartwick (2005), Ferreira, Hamilton and Vincent (2008) amend (5) to 

the following, to show how current-period net investment5 in all forms of capital (It) is related to 

future well-being:  

 

∫ dC(s)
ds

 ∞
t e−∫ r(τ)dτs

t ds = I(t)  (6) 

 

                                                 
4 Asheim and Weitzman (2001) extend Weitzman (1976) for the case of multiple consumption goods whose 

relative values are expressed using a Divisia index. 
5 They refer to net investment in all forms of capital as “genuine savings”. 
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where C is consumption and r is the consumption rate of discount. Equation (6) states that the 

present value of changes in consumption will be equal to the value of net investment in period t, 

assuming the economy is indeed on a PV-optimal path. Changes in a country’s total capital – its 

comprehensive wealth – are thus related to changes in future consumption relative to the present 

(Weitzman, 2003; Arrow et al, 2012).  If population is growing over time at some constant rate 

γ, then Dasgupta (2001) shows that the relationship in (6) can be re-stated in per-capita terms as: 

 

∫ dc(s)
ds

 ∞
t e−∫ −r(τ)−γdτs

t ds = g(t) (7) 

 

where c is now per-capita consumption, the discount rate is reduced by the rate of population 

growth γ, and g is per capita net investment in all forms of capital (genuine savings per capita, in 

the terminology of Ferreira et al). 

 

As noted in section 1, Galor and Weil (2000) point to the importance of technological progress 

in modelling growth. Arrow et al (2012) include the effects of technological change over time in 

their measure of comprehensive wealth (the value of all capital stocks in the economy), arguing 

that this is “….an increment to knowledge capital beyond what is captured in (changes in) 

human capital” (p 321). Arrow et al accomplish this by using changes in TFP as their measure of 

technological change, adding the TFP growth rate to the year-on-year change in comprehensive 

wealth. In the empirical work reported below, we also include the value of TFP growth in our 

estimates of changes in total capital, albeit using a different approach to Arrow et al.  

 

The specification of the link between changings in inter-temporal welfare (the left hand side of 

(6) and changes in comprehensive wealth (the right hand side of (6) leads to an econometric 

model which can be tested. With population growing at a constant rate, the relationship between 

net investment and future consumption implied by (6) is given in per capita terms by: 

PVΔCt =  β0 + β1gt + ϵt    (8) 

where {PVΔCt} is the present value of changes in consumption in years (t+1, t+2, ….t+T) 

relative to consumption in period t . Net investment per capita is defined as: 

g = K̇
N
− γω      (9) 

where –γω is a wealth dilution effect determined by wealth per capita ω and the population 

growth rate γ for a population of size N in time t. If the population growth rate varies over time, 

then (8) becomes: 
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PVΔCt + PV(Δγtωt) =  β0 + β1gt + ϵt   (10) 

If (6) or (7) describes reality (and therefore that economic agents are present-value maximizing), 

then a testable hypothesis is that β1 = 1 in (8) or (10). We now describe the data used to test this 

hypothesis. 

 

3. The Data 
 

3.1 Measures of net changes in capital stocks over time 
 
This section defines and outlines the components of increasingly comprehensive measures of 

annual investment in the USA, 1869-2000. Further information can be found in the Data 

Appendix. Aggregate wealth comprises produced, human, natural and knowledge capital 

(Arrow et al, 2012). In summary, we have constructed a sequence of net changes in capital 

stocks:  

 

• NETINV:  changes in net produced and net foreign capital.   

• GREENINV:  NETINV plus changes in farmland, renewable and non-renewable 

resources, and the disinvestment associated with CO2 emissions.  

• CI: GREENINV plus net changes in human capital. 

• GREENTFP and CITFP: GREEN and CI augmented with the value of changes in the 

knowledge stock. 

• CITFPW: CITFP less wealth dilution. 

 

 

This increasingly comprehensive view of what constitutes “capital” follows Ferreira et al (2008) 

and Greasley et al (2014) and allows for scrutiny of the hypotheses β1 = 1 with the alternative 

net investment measures. 

 

3.1.1 Changes in produced and net overseas capital (NETINV) 

 

Net produced investment comprises net fixed capital formation, changes in inventories and net 

overseas investment (Figure A1) where these data are shown relative to GDP. Produced capital 

formation fell from around 15-20% of GDP 1870-1900 to around 5% at the start of the 21st 
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century. The initial down-step in the produced investment ratio occurred in the 1920s, and the 

USA experienced a long period of negative investment, which spanned the Great Depression 

and World War 2. There was an upturn in the produced investment after 1945 but the earlier 

highs were not regained. Net overseas investment was generally positive from the 1890s to the 

1970s, while inventory changes gradually diminished relative to GDP. In per capita terms 

NETINV falls after 1929, then it is generally negative until 1945, but the levels of the early 20th 

century were restored in the 1970s (Figure 1).  

3.1.2 Adding changes in natural capital (GREENINV) 

 

The chief elements of natural capital included here are forestry, mining (metals and minerals) 

and agricultural land. Forest area fell to the 1920s but rose over the next half-century to peak at 

around 300 million hectares in the early 1970s. The standing value of the trees also fell to the 

1920s but rose thereafter, partly reflecting the higher timber volumes per hectare after 1945. 

The rental value of forest depletion (valued using the difference between harvest price and 

marginal cost) averaged around 1% of GDP each year in the period 1870-1900; whereas 

afforestation took place during the twentieth century (Table A1). 

 

Increases in the area of farmland or its’ per hectare value are treated as net additions to the 

natural capital stock. The farmland area of the USA more than doubled in size 1870-2000, 

despite a gradual decline from around 1950. Changes in the rental value of farmland generally 

augmented the US natural capital stock before 1950, although there was a brief decline during 

the rural financial crisis after the post-World War 1 boom (Table A2). However, the annual 

changes in the rental value of farmland are small, and peaked at around 0.42% of GDP in the 

1890s. 

 

Over the period 1869-2000 mining output valued at market prices averaged 3.9% of GDP while 

the value of extracted mining rents, which deduct marginal extraction costs from prices, 

averaged 2.8% of GDP. Fuels, including coal, oil and gas account for most of the extracted 

rents (Figure A2). The market value of extracted metals, including iron ore, copper and bauxite 

peaked relative to GDP during World War 1, and fell to below 1% thereafter. Other minerals’ 

output, including, gypsum, stone and salt, had a market value over 1% of GDP in the 1920s, but 

this ratio fell thereafter. Overall, the extraction of mining rents rose above 5% of GDP during 

World War 1, and hit 6% around 1980. Extracted mineral rents never fell below 1% of GDP, 
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and when the produced investment ratio collapsed during the 1930s, the depletion of minerals 

accentuated the marked fall in the US capital stock. 

 

Next we consider the extent to which pollution depletes natural capital. Emissions of 

greenhouse gases add to the stock in the atmosphere, and many authors have included estimates 

of the shadow cost of carbon emissions in comprehensive investment-type calculations (World 

Bank, 2011; Pezzey and Burke, 2013). This value is a deduction from natural capital since it 

represents a using-up of scarce global assimilative capacity.  The estimates here, following 

Kunnas et al (2014), suggest the disinvestment associated with carbon pollution averaged 

around 0.3% of GDP during the 20th century (Figure A3), but pollution costs rose sharply in the 

period to 1920 when energy-GDP ratios were also rising (Devine, 1983). 

 

3.1.3 Adding changes in human capital (CI) 
 

Like the World Bank (2006, 2011), we use annual investment in public education as a measure 

of the change in the stock of human capital. Whilst one could use an alternative approach, based 

on lifetime earnings and changes in worker productivity (Arrow et al, 2012), the expenditure 

approach fits naturally with measures of comprehensive investment. A measure of such 

expenditures would ideally include private spending on education and spending by firms on 

worker training, but consistent, continuous data are not available on either of these. Public 

education investment rose to around 6.5% of GDP by the 1960s, but the ratio levelled thereafter 

(Figure A4). The earlier spike and trough in the ratio reflect that education spending was 

maintained both when GDP collapsed at the onset of the Great Depression and surged during 

World War 2. 

 

Putting together these individual changes in capital stocks for the USA, we see that real CI per 

capita rises by around four times 1869-2000 (Figure 1). Within these years CI per capita shows 

no discernible trend from around 1880-1925. Net produced investment was above CI during 

these years since public education investment was insufficient to offset the effects of natural 

resource depletion. From 1925-1945 the USA witnessed a major slump in CI associated with 

the Great Depression and World War 2, which included spells when the capital stocks included 

in CI fell. After 1945 net produced investment per capita was typically no higher than it had 

been before 1925. The major change after 1945 was that higher public investment in education 
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more than offsets natural capital depletion, hence CI per capita rises, and exceeds the earlier 

1906 peak for the first time in 1965. 

 

 

3.1.4 Adding changes in the value of exogenous technological progress (CITFP) 

    
Trend growth TFP estimates can be used to value exogenous technological progress. Arrow et 

al (2012) simply augment their measure of comprehensive investment with the current value of 

TFP, to show how technological progress increases current income. Strictly, however, treating 

time as an uncontrolled capital stock means TFP’s contribution to the change in wealth in any 

year should be included in the measure of CI. Our approach to gauging how TFP contributes to 

changes in the value of wealth follows Pezzey et al (2006, Equation 14) but calculates the 

present value of future changes in TFP over a 20 years horizon. Trend growth TFP is illustrated 

as Figure A5. Adding the value of TFP to CI results in the more comprehensive measure, 

CITFP per capita (Figure 2), which is always positive. In 2000 CITFP is above $8000 per capita 

or around three-times higher than CI. 

 

Treating technological progress as an uncontrolled stock of capital associated with the ‘passing 

of time’ which can be measured by TFP assumes that all technological progress is exogenous. 

This is clearly not the case empirically, and part of the TFP might arise from, for example, 

R&D spending.  A particular issue for the CITFP measure is its inclusion of public education 

investment, which might be associated with endogenous technological change. This potentially 

introduces an element of double counting into the measure. Accordingly, our empirical tests 

also consider an alternative formulation of technology-augmented investment, GREENTFP, 

which adds the technological progress premium to GREENINV, also shown in Figure 2. 

 

3.1.5 Allowing for wealth dilution (CITFPW) 

Finally, wealth dilution is included in the measure of investment defined as CITFPW, shown in 

Figure 4. The effect arises from the sharing of a given level of total capital across a higher 

population. The wealth dilution effect, measured by the product of the population growth rate 

and wealth per capita, is at is strongest during the baby boom of 1940-60, and led to negative 

rates of CITFPW during these years. 
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3.2 Measuring Changes in Well-Being. 
 
Based on the approach in Ferreira, Hamilton and Vincent (2008) as shown in Equation 7, we 

use the present value of future changes in consumption per capita as a measure of changes in 

well-being. The present value of the change in consumption is calculated over four time 

horizons; 20, 30, 50, 100 years initially using a 3.5% year discount rate. This discount rate is the 

difference between the mean long-term interest rate on US government bonds and the mean 

inflation rate, interpreted here as the real return on risk-free assets (Officer, 2014). Figure 3 

illustrates the present value of changes in future consumption. Finally, to correspond with 

Equation 10, we have incorporated a wealth dilution effect where the values of the future well-

being changes are adjusted, including by subtracting the average population growth rate from 

the discount rate. 

 

4. Econometric testing  
 

The long spans of the univariate macroeconomic time series data used in the estimation and 

testing of the various models have the potential to exhibit non-stationary properties.6 Thus, 

without appropriate methods, estimates may be inefficient or spurious and the usual 

significance tests may be invalid. Engle and Granger (1987) show that a linear combination of 

two or more series that are integrated of order 1 may be stationary. The linear combination, if it 

exists, defines a cointegrating relationship where the resulting vector characterises the long-run 

relationship between the variables. A cointegration estimation approach: (i) resolves the 

problem of non-stationary time series data and the inference issues of its neglect, (ii) has the 

interpretation that the cointegrating relationship (if it exists) can be regarded as a (potentially) 

unique long-run economic equilibrium relationship, (iii) has the properties that the estimates are 

'super-consistent' i.e. they are consistent with much smaller sample sizes, (iv) 'washes-out' in the 

long-run random errors that may exist in one or both series and, (v) means inferences can be 

made on the levels of the series. If cointegration exists, the power of its long-run properties 

dominates short-run variations, which by definition are going to be stationary. Cointegrating 

relationships, however, and their benefits and properties, do not exist with all combinations of 

non- stationary series – there is a need to test for their existence. Furthermore, not all estimators 

are efficient in the presence of strong endogeneity, although they are typically super-consistent. 

                                                 
6 This contrasts with the samples of e.g., Ferreira, Hamilton and Vincent (2008) where they explicitly rule-out 

any investigation of cointegration given the small t component of their panel dataset. 



12 
 

 

There are a range of methods available to test for the existence of cointegration ranging from 

the simple and popular Engle-Granger (1987) 'two-step' approach which appraises the time 

series properties of the residuals in a levels OLS regression and where the null hypothesis is of 

no-cointegration; to the maximum likelihood-based tests of Johansen (1995) and the 

adjustments made by Phillips and Hansen's (1990) Fully Modified OLS (FMOLS).  The time 

series properties of the residuals are investigated using the unit root test of Elliott, Rothenberg 

and Stock (1996). 

 

When translated into a (potentially) cointegrating regression environment, the approaches of 

Engle and Granger (1987), Phillips and Ouliaris (1988) and Johansen (1995) are not the best to 

use if there are breaks in the cointegrating vector as the methods fail to reject the null 

hypothesis of no cointegration less often than they should.  In an attempt to counteract this 

potential problem we consider the cointegration test associated with Hansen (1992) which 

explicitly involves testing the cointegrating relationship for parameter stability. In contrast to 

the residual based tests underpinning Engle-Granger, etc., Hansen's test does not rely on 

estimates from the original equation. 

 

One important issue that arises in the ‘wealth dilution’ versions of the tests is the issue of 

endogeneity (see Ferreira, Hamilton and Vincent (2008) pp. 241-42 for a discussion). Their 

response was to use a generalized two-stage least squares ( 2 S L S )  estimator.7  We also 

report 2SLS-based results, where appropriate, but in addition provide both OLS and 

FMOLS8, cointegration-based results given the long spans of the data.  As is well known, 

ordinary 2SLS estimates will be less efficient than OLS, but will account for any 

endogeneity-based bias. We utilise the Durbin-Wu-Hausman test to evaluate whether 2SLS 

is appropriate, where we use instruments similar to those of Ferreira, Hamilton and Vincent 

(2008)9.  In addition, however, given the efficiency loss of 2SLS, we also report FMOLS 

results. Although estimates from a cointegrated model will be superconsistent, in small 

samples they may be biased, although this will disappear asymptotically. In order to 

eliminate second-order bias in small samples, Phillips and Hansen (1990) correct the single-
                                                 

7 The set of  instruments  they used included lagged values of green savings, produced capital, the 
percentage of the population of working age, the population growth rate, and a time trend.  

8 We also considered Dynamic OLS (DOLS) and Canonical Cointegrating Regression (CCR) approaches, 
which provided results that were qualitatively similar in all cases and are not reported here. 

9The list of instruments included (one period lags of) long run and short run interest rates; population growth 
rates; the relevant measure of savings and a time trend. 
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equation estimates non-parametrically to obtain median-unbiased and asymptotically normal 

estimates.  

 

It should be stressed however, that a finding of non-cointegration does not invalidate the results, 

but they are potentially less robust. As will be seen in what is presented below, coefficient 

estimates in (statistically) non-cointegrated models, and the inferences made, are generally very 

similar to cases where cointegration (in a similar model) has been established. At this point we 

also reiterate that in the results presented below we are specifically and solely concerned with 

consideration of the results as tests of the size and sign of β1. Estimation and testing is restricted 

to testing this implication, and as such the results should not to be construed as structural 

models of the growth process, which would clearly entail much richer models with additional 

variables drawn from a wide range of candidates. 

5. Results 
 

Firstly, the welfare-maximising assumption of the standard neo-classical growth model is 

investigated. This model includes a constant population growth rate and implies a relationship 

between changes in future consumption and changes in capital as defined in Equation 7. The 

increasingly broad measures of net investment g discussed in section 3 are introduced 

sequentially in the estimation of Equation 8, with the results for net produced and 

comprehensive investment shown in Table 1 for consumption horizons spanning from 20-100 

years. The estimates of β1 for the narrower measure of produced investment NETINV offer 

scant support for the neo-classical model with a maximum value of 0.401. Given the 

imprecision (the high standard errors) of the estimates, the hypothesis β1 = 1 is not rejected over 

the 20 and 30 years horizons, but, in all cases, the tests for no cointegration fail to reject the 

null. The broader investment measure CI, which adjusts for changes in natural and human 

capital, offers more support for the standard theory, with the non-cointegration null rejected 

over 20 or 30 years, and the estimates of β1 falling in the range 1.24-1.34. However, the 

theoretical model incorporates an infinite consumption horizon and the β1 estimates over the 50 

and 100 years horizons do not support the standard neo-classical model. One possibility for the 

lack of support for the theoretical model over the longer horizons is that the measures NETINV 

and CI define net investment too narrowly. One missing element from the changes in wealth 

assessed so far is the value of technological progress (Weitzman, 1997). 
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The adjustment for changes in TFP on net investment is undertaken using the method outlined 

in Greasley et al (2014). We focus just on the more inclusive measures of changes in total 

capital, namely CI and GREENINV. Augmenting these measures of net investment with a value 

for changes in the stock of knowledge, measured here by the discounted value of TFP, yields 

estimates of β1 that are closer to unity, especially over the 30 years consumption horizon, with 

coefficients of 0.86 and 1.04 (Table 2). The difference depends on whether or not education 

investment is included, as in the case of CITFP, or not, as for GREENTFP, where human 

capital formation will be simply reflected in TFP. The null of non-cointegration is not rejected 

over the 20-50 years horizons for any of the technology-augmented measures, further 

highlighting the case for including changes in knowledge’s value in net investment. Generally, 

the estimated coefficients for technology-augmented investment have lower standard errors, 

compared to those for NETINV and CI, and the hypothesis that β1 = 1 is rejected in all cases 

except for GREENTFP over the 30 years horizon.  

 

Next, the implications of extending the standard neo-classical model to allow varying 

population growth are examined. Relaxing the assumption of a constant population growth leads 

to the relationship between investment and future consumption being defined as Equation 10, 

where net investment is reduced by wealth dilution if the population is growing. Since Equation 

10 also embeds wealth in the dependent variable, a potential endogeneity issue arises. The results 

in Table 3 focus on CITFP, given the demonstrated utility of including changes in the value of 

knowledge in net investment, but the estimated coefficients are from OLS, 2SLS and FMOLS 

methods, to allow investigation of the possible bias from endogeneity. 

 

The OLS results (Estimates A-D) in Table 3 modify the findings of Tables 1 and 2 to allow for 

the effects of wealth dilution associated with varying population growth. The estimates of β1 are 

generally closer to unity with the adjustment for wealth dilution, and in all cases (A-D) the 

hypothesis that β1 = 1 is not rejected. The tests for the null of no-cointegration are less clear-

cut10 with the ERS adjusted Dickey-Fuller statistics rejecting the null only over 30 and 100 

years horizons. The utility of Estimates A-D also need to be judged in relation to the choice of 

                                                 
10 See fn. 11. 
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discount rate, which is not adjusted for population growth, and possible OLS estimation bias 

from endogeneity. 

 

To investigate the possible bias of the OLS estimates 2SLS estimates are also reported 

(Estimates E-H). An additional modification in the 2SLS estimates is the reduction of the 

consumption discounting factor by the population growth rate, which has averaged 1.48%/year 

since 1870. Ferreira, Hamilton and Vincent (2008, p.236) articulate the consequences for 

Equation 8 above of relaxing the restriction of constant population growth, including for the 

consumption discount rate. One distinctive feature of the 2SLS results presented here is the 

support they offer to the extended, varying population, neo-classical growth model over the 100 

years horizon, where the null of non-cointegration is rejected by the DF-ERS test, but the 

hypothesis β1 = 1 is not rejected. Further, the W-D-U test null for an exogenous independent 

variable is only rejected in the case of the 30 years consumption horizon.  

 

Accordingly, further, more efficient OLS estimates, are reported (Estimates I-L), and these only 

differ from the OLS Estimates A-D in their use of the population growth adjusted discount rate 

of  1.98%/year for all the variables. The use of the lower discount rate adds to the support for 

the population varying neo-classical model over the 100 years horizon, with estimated β1 = 1.1  

and non-cointegration rejected by the DF-ERS statistic. These results may be contrasted with 

those of Tables 1 and 2 where the estimated coefficients over the 100 years horizon for CI and 

CITFP were 0.24 and 0.36. Collectively the results highlight the importance of including a 

value for changes in technology and population-related wealth dilution in tests of the welfare 

maximizing assumption of the neo-classical growth model. The findings here are supportive of 

the premises of the neoclassical model, but there are a few caveats. 

 

First, the results are sensitive to the choice of discount rate, especially over the longer 50 and 

100 years horizons. And while adjusting the standard neo-classical model for varying 

population is important, it introduces a possible bias in the empirical estimates of β1 arising 

from endogeneity. To an extent the findings of cointegration and their support for the existence 

of long-run equilibrium relationships lessen the concerns surrounding endogeneity. Further, the 

W-D-U tests only rejected an exogenous independent variable for the 30 years horizon. FMOLS 

estimation, which is robust where endogeniety exists, over the 30 years horizon (Estimate N) 

gives a β1 = 0.91, although the P-O statistic does not reject no-cointegration. The P-O test is 

known to bias in favour of non-rejection of a unit root where there are structural breaks in the 
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sample period. This provides a salutary reminder that the post-1870 sample used here contains 

two world wars and a great depression, with inevitable consequences for the shorter-run 

variations in the measures of net investment and future consumption. Hence our preference for 

the results over the longer 100 years horizon, including Estimate L, which do not reject 

cointegration and provide an estimate of β1 =1.11, which accords closely with the assumptions 

of the neo-classical model adjusted for varying population growth. 

 
 
6. Conclusions  
 
The idea that (macro) economic agents are rational, welfare optimisers who base their savings 

and consumption decisions on present value maximisation is a powerful one in economics. 

Modern theories of economic growth revolve around this basic assumption. However, the extent 

to which it has been empirically tested over the long run is very limited to date. In this paper, 

we make use of a framework for testing the predictions of the “new economics of wealth and 

well-being” (Hamilton and Hepburn, 2014) to examine the properties of a data set from the 

USA which traces year-on-year changes in produced, human and natural capital  from 1869 to 

2000. Deriving a number of increasingly inclusive indicators of changes in total capital 

(comprehensive wealth: Arrow et al, 2012), we examine the relationship between these 

indicators and the present value of changes in future consumption, up to 100 years ahead. The 

Weitzman/Ferreira/Hamilton/Vincent framework generates testable hypotheses on the 

parameter relating changes in total capital to this present value of changes in future 

consumption, conditional on the assumption of an economy which is competitive in the sense of 

Dixit et al (1980).  This testing procedure has previously been applied to the examination of the 

forward-looking properties of sustainable development indicators such as Genuine Savings 

(Arrow et al, 2003). 

 

The main results that emerge are that we once the measures of changes in total capital are 

extended to include human and natural capital, then the β1 parameter is found to be close to 

unity (as predicted by the theory). Cointegration (and thus a long-run equilibrium relationship) 

also exists between these indicators of changes in total capital and future consumption up to 30 

years ahead. Once a measure of the value of technological progress is included in net 

investment, β1 moves even closer to unity, and evidence of cointegration is found up to 50 

years ahead. Adding in the effects of varying population growth rates over time with 

consequent wealth dilution effects improves the fit between theory and reality even more.  
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Overall, then, 130 years of data from the USA provides support for the basic building block of 

modern growth theory, but only once a sufficiently comprehensive view of what constitutes a 

country’s wealth or capital is taken. Caveats are many: we have very partial measures of 

changes in natural and human capital; no account is taken of changes in social capital; our 

measure of technological progress is easy to criticise. Nevertheless, we argue that the paper 

provides interesting and important findings which are genuinely novel. 
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Data Appendix  
 
GDP, GDP deflator, population: Johnston and Williamson (2013). 
 
Consumption: 1869-1900 from Rhode (2002), 1901-1962 from Carter et al (2006) and 1963-
2012 from ERP (2012). Nominal series are deflated with CPI from Johnston and Williamson 
(2013). The present value of the change in consumption adopts 3.5%/year (or 1.98%/year in the 
varying population growth model) discount rate based on Officer (2014).  
 
Net Investment: Net investment consists of produced capital, inventories and overseas 
investment.  Gross fixed capital formation, inventories and net overseas investment for 1869-
1909 are from Rhode (2002), for 1909-1929 from Kuznets (1961), for1929-1992 from Carter et 
al (2006) and for 1992-2000 from the ERP (2011). Capital consumption from Kuznets (1961) 
for 1869-1929, from ERP (1963, 1995, 2011) for 1929-2000.  
 
Green Investment:  
 
Forestry: Changes in forestry stock are estimated by the product of the area of forests and the 
standing volume of timber (m3). Forest area is from Carter et al (2006, series CF101-118 and 
Cf135-144) and standing volume from (Zon (1910), Zon &Sparhawk (1923), Clawson (1979), 
Oswalt et al. (2007), USDA (1997), Smith & Darr (2002), Smith, et al. (1997), USDA (1997) 
and Carter et al (2006). The earliest estimate of standing volume of 94.59 cubic metres per 
hectare in 1920 is adopted for 1850-1920. The change in the standing volume of timber is 
valued at market prices minus average costs. For the period 1869-1904 forestry prices are 
derived from Warren & Pearson (1932) and stumpage prices for 1905-2000 from Carter et al 
(2006). Employment and annual lumbering estimates are derived from the Carter et al (2006) 
and Lebedys (2004), the wage cost per m3 use unskilled wages from Officer (2012) and David 
and Solar (1977).  
 
Land: Changes in the volume of farmland are valued using the present value of rents looking 
forward 30 years. Land values are from Carter et al (2006), DA17.  Lindert (1988) shows that 
rental values average 15% of the land values, a ratio used here to estimate annual rental values. 
Rents to 2030 are forecasted using an ARIMA (5,1,1).  
 
Non-renewables: 1880-2000 mining (fuel, metals and minerals) data are from Carter et al 
(2006).  Fuel comprises Coal Bituminous, Coal Subbituminous, Coal Lignite, Coal 
Pennsylvania Anthracite, Crude Petroleum, Natural Gasoline and Cycle Products, and Liquefied 
Petroleum Gases, Natural Gas Marketed, Uranium Concentrate. Metals included are Iron Ore, 
Copper, Zinc, Manganese Ore, Chromite, Tungsten Concentrates, Molybdenum Ores and 
Concentrates, Vanadium Ores and Concentrates, Nickel, Bauxite, Aluminum Primary, 
Magnesium Primary, Gold, and Silver.  Minerals are comprised of Crude Gypsum Mined, 
Lime, Sand and Gravel, Stone, Sulfur Production from Frasch Mines, Pyrites Production, Salt, 
Potash sold by producers, and Phosphate Rock. 1869-1880 mining production estimates are 
from Herfindahl (1996), (Gallman 1960) and Carter (2006 and valued at international prices. 
Commodities included are iron ore, copper, lead, zinc, gold, silver, coal and crude petroleum.  
Mining wage costs per tonne are based on coal wages and the relative productivity of coal and 
other mining. Over the period 1869-2000 the mean relative labor productivity difference 
between coal and all forms of mining was 1.06. Employment and wage data are from Carter et 
al (2006).  
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Carbon Emissions: US carbon pollution estimates are taken from Andres et al (1999) and 
Boden et al (1995) and the price series from is derived from Tol (2012). The 2015 price of $29 
per tonne of carbon is discounted by 1.99%/year to 1869.  
 
TFP: The present value of future changes in TFP is measured over 20 horizons using a 
3.5%/year discount rate (or 1.98%/year in the case of varying population growth model). Trend 
TFP growth rates are estimated for the period 1870 to 2013 with the Kalman filter (Figure A5). 
The TFP estimates include the real capital stock data of Gallman (1992), Kendrick (1963) and 
BEA (2014). Labour and hours worked are taken from Margo (2000), Greasley & Madsen 
(2006), and BLS (2014). Real GDP are from Johnston and Williamson (2013) and factor shares 
used from Greasley and Madsen (2006). 
 
Wealth dilution: Wealth is calculated from the above estimates of private and public 
consumption. The net present value of consumption is calculated over a 25 years horizon 
discounted at 3.5%/year (or 1.98%/year in the case of varying population growth model). For 
measures of wealth from 1988-2010 it is necessary to estimate future consumption for t+25. 
This was done using an ARIMA (3,1,2). Wealth dilution is calculated as the product of wealth 
per capita and the population growth rate.  
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Figure 1: Comprehensive investment (CI) per capita 

 

Figure 2: CITFP and GREENTFP per capita 
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Figure 3 Present value consumption $(2000 price level, discounted at 3.5%) 

 
 
 
 
 
 

Figure 4: Wealth dilution effect 
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11 The cvs for the DF-ERS statistic have not been corrected for the fact that residuals from equations 8 or 10 
have been used in the calculation.  This is likely to mean that the null hypothesis of no cointegration is less 
likely to be rejected than if true standard errors had been used representing a standard generated regressor 
problem. 

        Table 1. OLS Estimates of β0 and β1 for Two Investment Series 
 (3.5% per annum discount rate) 

 

Dependent Independent β0 β1 β1=1 DF-ERS 
CONS 20 NETINV 2267.4* 0.154 3.39 -2.47 

  (412.1) (0.459) (0.06)  
CONS 30  2660.2* 0.401 2.16 -1.84 

  (553.1) (0.684) (0.14)  
CONS 50  3916.6* -0.854 14.5* -1.22 

  (390.2) (0.487) (0.00)  
CONS 100  2270.6* 0.308 10.5* -2.68 

  (172.1) (0.214) (0.00)  
CONS 20 CI 1289.8* 1.242* 0.38 -3.25* 

  (496.3) (0.392) (0.54)  
CONS 30  1845.2* 1.343* 1.44 -2.87** 

  (293.8) (0.285) (0.23)  
CONS50  3399.8* -0.068 1.21 -0.99 

  (663.6) (0.971) (0.27)  
CONS 100  2335.5* 0.243 10.1* -2.51 

  (212.3) (0.238) (0.00)  
Notes: CONS=Net Present Value of Consumption per capita for 20-100 year horizons, * and ** 
denote significant at the 5 and 10% level respectively. DF-ERS = Elliott, Rothenberg and Stock DF 
statistic11.  
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 Table 2. OLS Estimates of β0 and β1 for technology-augmented investment series 
 (3.5% per annum discount rate) 

 
 
 
 
 
 
 
 
 
 

 
Dependent Independent β0 β1 β1=1 DF-ERS 
CONS 20 CITFP 123.4 0.628* 28.0* -2.92** 
  (330.7) (0.070) (0.00)  
CONS 30  208.1 0.856* 7.26* -2.82** 
  (200.9) (0.053) (0.00)  
CONS50  -127.4 1.405* 13.9* -2.87** 
  (301.0) (0.108) (0.00)  
CONS 100  1922.9* 0.360* 37.6* -2.75 
  (215.3) (0.104) (0.00)  
CONS 20 GREENTFP -122.7 0.791* 5.72* -3.19* 
  (367.0) (0.087) (0.02)  
CONS 30  -53.7 1.043* 0.22 -3.06* 
  (426.9) (0.092) (0.64)  
CONS50  -140.5 1.500* 9.39* -2.88** 
  (551.9) (0.163) (0.00)  
CONS 100  1941.8* 0.357* 35.5* -2.75 
  (217.4) (0.107) (0.00)  
Notes: As for Figure 3 
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Table 3:  Wealth Adjusted Estimates of β0 and β1 for technology-augmented investment 
(Estimates A-D 3.5%/year and Estimates E-Q 1.98%/year discount rates) 

OLS Dependent Independent β0 β1 β1=1 D-W-H DF-ERS 
A CONSWP 20 CITFPW 1744.7* 1.064* 0.340  -2.59 
   (149.0) (0.110) (0.56)   
B CONSWP 30  2397.2* 1.191* 1.88  -2.81** 
   (160.1) (0.139) (0.17)   

C CONSWP50  3120.2* 1.080* 0.08  -2.48 
   (213.9) (0.268) (0.77)   

D CONSWP 100  2327.2* 0.700* 2.73  -2.89** 
   (118.7) (0.182) (0.09)   

2SLS        
E CONSWPAD 20 CITFPWAD 2679.1* 0.630* 7.80* 0.20 -3.18* 
   (168.3) (0.132) (0.00) (0.88)  

F CONSWPAD 30  3746.5* 0.753* 1.46 4.53** -2.67 
   (219.2) (0.204) (0.23) (0.10)  

G CONSWPAD50  4825.6* 0.286 2.60 3.66 -0.92 
   (366.1) (0.443) (0.11) (0.16)  

H CONSWPAD 100  6018.0* 1.430* 1.20 1.89 -3.64* 
   (332.7) (0.392) (0.27) (0.17)  

OLS        
I CONSWPAD 20 CITFPWAD 2646.4* 0.646* 9.59*  -3.14* 
   (166.2) (0.114) (0.00)   
J CONSWPAD 30   3727.6* 0.756* 2.09  -2.76** 
   (217.3) (0.169) (0.15)   

K CONSWPAD50  4810.2* 0.267 5.26*  -1.38 
   (338.2) (0.319) (0.02)   
L CONSWPAD 100  5756.8* 1.114* 0.19  -3.52* 
   (242.0) (0.263) (0.66)   

FMOLS   β0 β1 β1=1 P-O  
 M CONSWPAD 20 CITFPWAD 2630.4* 0.767* 1.00 -2.28  

   (348.2) (0.239) (0.32)   
N CONSWPAD 30  3735.1* 0.909* 0.06 -1.32  
   (466.0) (0.363) (0.80)   

P CONSWPAD50  4879.9* 0.376 1.04 0.85  
   (645.2) (0.611) (0.31)   

Q CONSWPAD 100  6143.2* 1.590* 1.73 -9.22  
   (409.7) (0.449) (0.19)   

 
 
Notes:  CONSWP =  PVΔCit + PV(Δγitωit) from Equation 8, with 3.5%/year discount rate, for 20-100 
years horizons.  CONSWPAD = CONSWP with 3.5%/year – population growth discount rate.  CITFPW 
= CITFP less wealth dilution with 3.5%/year discount rate.  CITFPWAD = CITFPW with population 
growth adjusted discount rate, 1.98%/year. W-D-H = Durbin-Wu-Hausman J test. DF-ERS = Elliott, 
Rothenberg and Stock DF statistic. P-O = Phillips and Ouliaris cointegration test. 
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Figure A1: US net fixed capital formation, inventories and net overseas investments. 

 
 

Figure A2: Depletion of minerals. 
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Figure A3: Carbon emissions and carbon share of GDP, 1869-2000 
 

 
 
 
 

Figure A4: Public investment in education 
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Figure A5: Trend Total Factor Productivity (%) 

 
 

Figure A6 US consumption 
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Table A1: The value of US forest stocks (decade average) 

 Area 

Volume 
per 
hectare 

Standing 
volume 

Change 
in 
Standing 
volume 

Price - 
cost 

Value 
of 
change 
in 
volume 

Value of 
change in 
volume 
/GDP 

 Million 
hectares 

M3 per 
hectare 

Million 
M3 

Million 
M3 

$ M3 $ 
million 

% 

1861-1870 256.06 94.86 24289.05 -97.00 0.25 -24.18 -0.31 
1871-1880 237.14 94.86 22494.33 -243.59 0.24 -58.04 -0.68 
1881-1890 220.44 94.86 20909.75 -92.13 0.23 -21.46 -0.17 
1891-1900 176.60 94.86 16751.08 -644.90 0.21 -137.30 -0.84 
1901-1910 145.21 94.86 13773.59 -49.90 0.48 -23.61 -0.08 
1911-1920 137.23 94.86 13016.88 -95.97 0.74 -71.45 -0.16 
1921-1930 137.23 94.86 13016.88 -95.97 0.74 -71.45 -0.16 
1931-1940 147.34 89.94 13251.84 -37.67 0.44 -24.15 -0.02 
1941-1950 151.27 86.90 13139.04 167.66 0.88 232.23 0.08 
1951-1960 201.09 86.35 17400.32 689.77 3.05 2043.01 0.45 
1961-1970 239.80 92.87 22271.17 272.42 2.63 981.51 0.10 
1971-1980 291.88 102.50 29941.73 724.68 12.64 5912.80 0.40 
1981-1990 294.74 110.91 32691.59 231.54 11.79 2477.30 0.05 
1991-2000 298.21 115.55 34458.02 119.52 29.33 3436.64 0.05 
Sources: see Data Appendix 
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Table A2: Changes in farmland rental value, decade averages 

 

Present 
value of  
rent per acre 

 
 
Total 
farmland 

Change in 
farmland 

Change in 
rental value 

Change in 
rents/GDP 

 $ Million acres Million acres $ m % 
1861-1870 1.27 407.74 0.52 0.66 0.00 
1871-1880 3.27 536.08 128.35 419.64 0.40 
1881-1890 5.73 623.22 87.14 499.15 0.33 
1891-1900 4.00 841.20 217.98 872.93 0.42 
1901-1910 2.18 881.43 40.23 105.22 0.03 
1911-1920 4.17 923.38 7.72 32.37 0.06 
1921-1930 6.94 950.70 3.14 31.58 0.03 
1931-1940 12.14 1044.65 7.50 81.38 0.12 
1941-1950 35.57 1132.03 9.63 270.04 0.13 
1951-1960 52.82 1144.49 -4.06 -198.25 -0.04 
1961-1970 65.90 1091.85 -6.73 -468.95 -0.06 
1971-1980 94.49 1019.34 -5.29 -492.57 -0.03 
1981-1990 101.58 971.79 -4.76 -481.00 -0.01 
1991-2000 111.40 936.03 -2.94 -326.91 0.00 
Sources: see Data Appendix 
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