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ABSTRACT

Commercial capture-based aquaculture of the Atlantic bluefin tuna (ABT), Thunnus
thynnus (L.), has been prominent in the Mediterranean for over a decade. Owing to
several limitations encountered in working with the species, including its high
commercial value, there has been little research carried out relating to this species. The
objective of this study was to examine several health parameters of captive ABT. These
included an examination of coronary artery lesions, haematology, plasma biochemistry,
assessment of immune function and changes in fatty acid (FA) flesh content through the

on-growing period.

Arteriosclerosis in fish is a pathologic condition of uncertain etiology and involves the
main coronary artery in teleosts. Apart from reports of their widespread occurrence in
salmonids, they have been described from a restricted number of wild ABT specimens
but have not received further attention. This investigation analysed the effect of size
and period of net-pen rearing on the prevalence and severity of arteriosclerotic lesions
in ABT. Coronary arteries from wild and captive fish were investigated and prevalence
was 100 %, but increasing structural degradation was observed with increasing fish size,
suggesting that lesions progress throughout the life of the fish. Due to the limited
availability of wild specimens, the effect of captivity on arteriosclerosis in ABT could not
be adequately quantified, although observations suggest that the farming process has

no major effect on arteriosclerotic lesions in ABT.

Studies on the haematology, plasma biochemistry and immunology of ABT are limited.
Haematological and plasma biochemical indices are useful in animal health assessment
but use of these requires the establishment of species-specific ranges. Blood was
collected from captive ABT specimens of varying weight (61-361 kg) and the major
haematological (n = 45), plasma biochemical (n = 30) and immunological parameters (n
= 45) were quantified. Size-based differences were found in haematological indices
between experimental sub-groups including increased erythrocyte number and
haemoglobin level in smaller ABT. No differences were found in immunological

parameters except for total IgM levels, which were higher in the smaller individuals.
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Preliminary investigations indicated that disease prevalence in captive ABT is very low.
Epidermal mucus is an important interface between fish and their environment and
comprises immunological components which act as a first barrier against pathogen
entry or colonisation. Mucus was collected from captive ABT and analysed for innate
immune components. The presence of IgM was detected in the mucus of ABT by an
enzyme-linked immunosorbent assay and several different enzymes were detected with
an API-ZYM kit assay. Zymography experiments confirmed the presence of protease-like
enzymes in the mucus, while enzyme assays quantified alkaline phosphatase, protease,
esterase and cathepsin B activities. Lysozyme levels were high. The mucus agglutinated

sheep erythrocytes but did not demonstrate complement or bacteriolytic activity.

There is restricted information on the fatty acid composition of farmed ABT or how this
is influenced when the fish are held under commercial aquaculture conditions. This
study investigated the FA composition of farmed ABT, its variation by dorsal muscle
region and the correlation between dietary FA composition with that of the fish.
Analysis of flesh samples retrieved from farmed ABT did not reveal significant
differences in the FA composition of experimental sub-groups irrespective of size, time
held in captivity or diet. These results indicate that FA metabolism in ABT is substrate-
selective. Gene expression measurements from several organs of ABT showed that
expression of Afad5 and elovl5, genes involved in FA metabolism, were highest in the

brain followed by the liver but no expression of these genes was detected in the spleen.

The findings of this research address aspects of health evaluation and nutritional status
in farmed ABT and are discussed in terms of farming practice. Conclusions from some
of these studies suggest that the practice of holding wild-captured stock in cages for

periods of up to 18 months does not result in significant impact on ABT.
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CHAPTER 1

GENERAL INTRODUCTION

Tunas comprise several species of highly migratory fish that inhabit many of the world’s
oceans. Yellowfin and bigeye tunas are found worldwide, the southern bluefin tuna
(SBT) inhabit temperate and cold seas while the Atlantic (ABT) and Pacific (PBT) bluefin
tunas, although closely related, are restricted to the oceans after which they are named.
They are impressively powerful fish, anatomically streamlined and physiologically
adapted for speed and long migrations. Their scientific family name, Thunnus, originates
from the Greek verb ‘thuno’ meaning ‘rush’, a more than adequate description of their

pace under the water.

Owing to their large size, ABT and PBT are the most iconic members of the tuna family.
The former finds a prominent place in the Mediterranean fishermen’s history books and
there is evidence of fishing for the species dating back thousands of years (Di Natale,
2012a). Its yearly migrations captured the attention of remarkable poets and
philosophers, including Aristotle. It is thought that the ABT was traded in ancient Greece
and that it sustained soldiers of the Roman Empire during times of war. More recently
it has become intertwined in Mediterranean fishing tradition by way of the ‘tonnara’

(Ravazza, 2004), a system of nets designed to trap tunas passing close to the shore.
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General introduction

On the other side of the world, the PBT finds fame in Japan, a country with a long fishing
tradition and the Tsukiji fish market, the largest market of its type in existence. It is
highly prized for its unique meat quality and is a mainstay of Japanese cuisine. Perhaps
this is not more evident than in the annual New Year Tsukiji auction, where traditionally

one prized tuna is sold for an astronomical amount of money.

A high demand for the fish in Japan, and to a lesser extent, its popularity in other
markets around the world stimulated Mediterranean interest in the culture of the ABT
in the late 1990s. At the time, ABT were very abundant and advances in marine
aquaculture technology gave opportunity for this activity. Tuna fattening is a form of
capture-based aquaculture, where seed is sourced from wild fisheries and farmed in
cages to marketable specifications. The attractiveness of the industry was an incentive
for the Mediterranean tuna farms to grow and today several are found scattered along

the Mediterranean coast.

1.1. Brief systematics of the Atlantic bluefin tuna

Tunas are members of the Scombridae family within the Order Perciformes. The Family
Scombridae consists of 15 genera and about 50 species of epipelagic marine fish
(Collette et al., 2001). Several members of this family, which apart from tunas includes
mackerels and bonitos, are the basis of many commercial fisheries throughout the world
and the species contained within possess several morphological and physiological
adaptations that make them of interest to evolutionary biologists and physiologists

alike.
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The larger tuna species belong to the subgenus Thunnus (South, 1845) and are
considered as the most advanced species within the Family Scombridae (Collette et al.,
2001). Species contained in this subgenus are the ABT, Thunnus thynnus (L.), the PBT, T.
orientalis (Temminck et Schlegel), the SBT, T. maccoyii (Castelnau), the bigeye tuna, T.
obesus (Lowe), the yellowfin tuna, T. albacares (Bonnaterre), and the albacore tuna, T.
alalunga (Bonnaterre). The ABT and PBT are morphologically similar but they are
treated as separate species based upon differences in their mitochondrial DNA

sequences (Collette et al., 2001).

1.2. Biology and physiology of the Atlantic bluefin tuna

The ABT is native to both the eastern and western Atlantic. Based on some biological
differences, mostly relating to their reproductive physiology, ABT are treated as two
separate stocks — the eastern and western Atlantic — and the two have been
conventionally separated by the 45°W meridian. Both ABT populations demonstrate
spawning site fidelity with the eastern stock spawning in the Mediterranean and the
western population spawning in the Gulf of Mexico. At present it is widely
acknowledged that the eastern Atlantic ABT reach reproductive maturity at a
significantly earlier age than the ABT in the west (ICCAT, 2011). Although there are more
similarities than differences between the two Atlantic populations, the work in this
study is based on Mediterranean ABT and so the information presented below puts

more emphasis on the eastern stock.
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1.2.1. Range, distribution and ecological characteristics

ABT inhabit the pelagic ecosystem of the North Atlantic Ocean and the Mediterranean
Sea (Mather et al., 1995). It has the widest geographic distribution amongst tuna species
and unique in that it is the only large pelagic fish permanently inhabiting temperate
Atlantic waters (Bard et al., 1998; Fromentin & Fonteneau, 2001). Archival tagging has
established that it can sustain temperatures as low as 3°C and as high as 30°C whilst
maintaining physiological conditions conducive to efficient physiological function (Block
et al., 2001). Satellite tag data indicates that the fish primarily resides in surface waters
but may dive to depths of 500-1,000 m (Lutcavage et al., 2000; Block et al., 2001). For
other tuna species this depth displacement is thought to be linked to foraging behaviour
or for body temperature control (Gunn & Block, 2001; Musyl et al., 2003) and it is
presumed that ABT exhibits this behaviour for similar purposes (Fromentin & Powers,
2005). The spatial distribution and movement of ABT is thought to be controlled by both
temperature gradients and tracts of ocean which offer abundant prey concentrations
(Brill et al., 2002), as in the case of other tuna species (Inagake et al., 2001; Fromentin

& Powers, 2005).

Over the centuries there has been disagreement regarding the movement of ABT
between the Atlantic and the Mediterranean (Fromentin & Fonteneau, 2001). The
theory of migration between the two seas gained strength in the 1920s when hooks
used in the North Atlantic were found in fish captured in the Mediterranean (Fromentin
& Powers, 2005) and confirmed later with the aid of conventional tags (Mather et al.,
1995). The movements of ABT have now been documented extensively and it is now

known that they display homing behaviour and they migrate to spawn in specific and
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well-defined areas (Block et al., 2005; Fromentin & Powers, 2005). Figure 1.1 shows the

movement of ABT, as extrapolated from tagging studies, within the Atlantic Ocean.

In contrast to the data available for spawning migrations, little information is available
for feeding movements. It has been shown, however, that migration patterns vary to a
considerable degree between years, areas and even individuals (Lutcavage et al., 1999;
Block et al., 2001; Lutcavage et al., 2001; De Metrio et al., 2002). Ravier and Fromentin
(2004) have hypothesised that environmental influences on the spatial dynamics of ABT
may have been the cause of the disappearance of the species from established fishing

grounds in the past.

Figure 1.1 Spatial distribution (grey shading) and major migration routes (black arrows) of Atlantic bluefin tuna in
the Atlantic Ocean and adjacent seas (from Fromentin & Powers, 2005). The dashed line illustrates the ICCAT
delineation between eastern and western Atlantic stocks.
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Data from pop-up and electronic tags has shown a higher rate of trans-Atlantic
migrations and a larger degree of mixing between the eastern and western ABT stocks
(Lutcavage et al., 1999; Block et al., 2001). More recently it has also been proposed that
although the two populations are distinct, there is a degree of overlap in their spatial

distribution in the North Atlantic (Block et al., 2005).

1.2.2. Tuna physiology and anatomy: distinguishing features

There are several differences between the anatomies and physiologies of tunas and
other teleosts, and these are presumably linked to the unique lifestyle of thunnids.
Differences exist at the level of the gills, cardiovascular system and muscle aerobic

capacity (Korsmeyer & Dewar, 2001).

Tunas are obligate ram ventilators and therefore rely on a constant stream of water
over the gills for blood oxygenation (Brown & Muir, 1970). Metabolic measurements
indicate that metabolic rates in tunas are elevated compared to those in most other
teleosts (Korsmeyer & Dewar, 2001), and the cardiovascular system is capable of
delivering oxygen and metabolites at sufficiently high rates to tissues (Brill & Bushnell,
2001). To meet the high oxygen demands of their metabolism, their gills have a large
surface area and have additional supporting tissue, fusing lamellae on adjacent
filaments to protect them from damage against a high velocity water flow (Muir &

Kendall, 1968).

Perhaps the most distinguishing feature of tunas, apart from their endothermic
capabilities, are the characteristics of their red and white muscles. The total aerobic

capacity of the white muscle tissue is higher than that of the red muscle (Korsmeyer &
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Dewar, 2001). While the oxidative red muscle is adapted for sustained aerobic muscle
activity during long-distance swimming, the white muscle has a high anaerobic capacity
for powerful activity bursts of short duration (Hulbert et al., 1979). Recovery from such
strenuous activity during burst swimming is facilitated by the white muscle’s aerobic
capacity, which is relatively high in tunas, as is lactate dehydrogenase activity (Dickson,
1996; Korsmeyer et al., 1996). Both capillary densities within tuna muscle and
myoglobin content are higher than those found in other fish (Mathieu-Costello et al.,

1992; Dickson, 1996).

In comparison to other teleosts, tunas have a higher proportion of slow-twitch aerobic
red muscles which sustain the requirements of continuous swimming (Graham et al.,
1983). Tunas differ from other fish species in that their red muscle is located nearer to
the vertebral column and is completely surrounded by white muscle (Graham et al.,
1983) and their requirement for constant motion generates metabolic heat within their
red muscle. To prevent heat loss through the body surface and the gill-water interface,
tunas possess a system of counter-current heat exchangers, termed retia mirabilia (sing.
rete mirabile), present at critical locations throughout their body. These consist of a
parallel arrangement of juxtaposed arterial and venous blood vessels. As the venous and
arterial blood meet in the retia mirabilia, heat generated through aerobic metabolism
and carried in the former is transferred to the colder arterial blood across a temperature
gradient (Graham & Dickson, 2001). Thermal diffusion is rapid and although the retia
mirabilia of tuna red muscle contain more arterioles than venules, the latter occupy a
larger volume owing to their larger size (Graham, 1975; Graham & Diener, 1979; Graham

et al., 1983). Apart from their red muscle, Thunnus spp. are also able to maintain
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elevated temperatures within their viscera (Carey et al., 1984) and their brains (Graham
& Dickson, 2001). This ability to conserve metabolic heat gives tuna species considerable

thermal tolerance enabling them to inhabit various environments (Brill, 1994).

Tuna species have anatomies adapted for their active lifestyle and this gives them
superior swimming ability amongst teleosts (Magnuson, 1978). Their body has a
streamlined form and an anatomical and mechanical build which is specialised for both
high performance swimming and migrations over long distances (Westneat &
Wainwright, 2001). Their body thickness to length ratio approaches optimal values for
minimum drag (Altringham & Shadwick, 2001) while their elliptical profile limits lateral
movement and increases stability during vigorous activity (Lighthill, 1970). The paired
finlets found before the caudal peduncle aid to maintain flow over the tail, augment lift
and reduce drag (Lindsey, 1978; Magnuson, 1978), while their narrow tail reduces loss
of kinetic energy (Lighthill, 1970). Their muscle, tendon and bone form a biomechanical
system able to support their significant power and differs in several key features from
the locomotory mechanisms found in other teleosts (Westneat & Wainwright, 2001). To
reduce turbulence, they have smooth skin and relatively small scales (Altringham &

Shadwick, 2001).

1.2.3. Reproduction

ABT are oviparous and undergo multiple reproductive cycles throughout their lifetime
(Schaefer, 2001). They display asynchronous oocyte development and are multiple
batch spawners, with spawning frequency estimated at 1-2 days in the Mediterranean
(Medina et al., 2002). Larger females appear to produce a larger number of eggs than

smaller specimens and a 5 year old female produces 5 million eggs as compared to the
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45 million eggs carried by a 15-20 year old female (Rodriguez-Roda, 1967). Both eastern
and western ABT stocks are annual spawners and the eastern stock reaches maturity at
a younger age than its western counterpart (Corriero et al., 2005; ICCAT, 2011). They
spawn at restricted and specific locations, around the Balearic Islands and the waters
off Sicily in the Mediterranean, once water temperatures exceed 24°C (Schaefer, 2001;
Heinisch et al., 2008), although there is evidence that spawning within the basin is more
dispersed than this (Picinetti & Picinetti Manfrin, 1993; Karakulak et al., 2004; Damalas
& Megalofonou, 2012; Koched et al., 2013). Spawning occurs directly in the water
column and fertilised eggs hatch following a 2-day incubation period, with hatched
larvae being relatively undeveloped, 3-4 mm in size and typically pelagic (Fromentin &

Powers, 2005).

1.2.4. Feeding and growth

Characteristic of many marine fish, ABT larvae feed mainly on small zooplankton,
primarily copepods and nauplii (Uotani et al., 1990), whilst juveniles and adults are
opportunistic feeders. Juveniles tend to prey on crustaceans, small fish and cephalopods
while adults feed on fish including herring, anchovy, sardines and mackerels (Ortiz de
Zarate & Cort, 1986; Eggleston & Bochenek, 1990; Chase, 2002; Sara & Sara, 2007,

Karakulak et al., 2009; Battaglia et al., 2013).

The growth of ABT juveniles is about 30 cm year and rapid when compared to the rates
observed in other teleost species (Fromentin & Fonteneau, 2001). Remarkably, larvae
hatched in June reach a length of 30-40 cm and weigh 1 kg by October, and grow to 4
kg by the following year (Mather et al., 1995). As the fish gets older, growth in length

decreases and growth in weight increases, so that elongate juveniles become thicker
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and larger with age. At age 10 years, ABT reach a length of 150 cm and weigh 150 kg,
225 kg at 15 years, and at 20 years they will weigh in the region of 400 kg and measure
300 cm (Fromentin & Powers, 2005; Santamaria et al., 2009). ABT are known to grow to
larger weights; a fish of weight 685 kg has been reported from an Italian trap (Sara,
1963) while an individual weighing 726 kg was captured in the Gulf of Maine (Bigelow &
Schroeder, 1953). The largest fish on record from the farm where this study was based

was a male specimen weighing 687 kg and measuring 340 cm (Figure 1.2).

Figure 1.2 The largest Atlantic bluefin tuna specimen on record from the farm where this study was based. The fish
measured 340 cm in length and weighed 687 kg.

Mather et al. (1995) have suggested that male specimens grow at a faster rate than
females and that they are proportionally more frequent in catches of fish of weight in
excess of 250 kg. This is also observed in farmed tuna populations where specimens

exceeding this size, almost in their entirety, tend to be males. This is thought to be
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related to the stress female specimens are subject to during gonadal maturation and

spawning, which may lead to an increased rate of predation or natural mortality.

Endothermy requires metabolic energy so that it is expected that growth in ABT is
subject to seasonal growth patterns due to greater energy expenditure during colder
months. Growth is reported to be rapid and as high as 10 % month™in summer and
autumn but growth during the colder winter months, in wild specimens, is negligible
(Mather et al., 1995; Labelle et al., 1997). Seasonal patterns have also been reported to
occur in the SBT (Eggleston & Bochenek, 1990). Inter-annual variability in growth of ABT
juveniles in the Mediterranean has been reported by Fromentin (2003) while changes
in growth rates over more extended periods of time have been reported in the SBT wild

stock (Polacheck et al., 2004; Farley & Gunn, 2007).

1.3. Fisheries and commercial exploitation

ABT have been fished from the seas for centuries and their exploitation has evolved with
time. Its recent spike in popularity with consumers worldwide has resulted in increased
targeted fishing efforts on the species so that it has evolved from a loosely managed
sector into one with very strict control mechanisms. This section briefly describes the
history of ABT fisheries, its present commercial exploitation, and its control and

management.

1.3.1. A brief history of Atlantic bluefin tuna fisheries

The earliest evidence of fishing for ABT in the Mediterranean dates back to the 7t
millennium B.C. in Cyprus and targeted fisheries, mainly hand lines and beach seines,

were in place during the time of the Phoenician and the Roman Empires (Doumenge,
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1998). From the 16™ century, these fishing methods were gradually replaced by traps
(Ravier & Fromentin, 2001) throughout the Mediterranean and at several locations
around the Straits of Gibraltar (Fromentin & Powers, 2005). These were the first
industrial fisheries in these areas and combined yields of these were significant at an

average of around 15,000 tonnes year (Ravier & Fromentin, 2002).

Traps remained the main fishing method until the 20t™ Century but their efficiency
decreased possibly due to increased marine traffic and coastal pollution (Ravier &
Fromentin, 2001). Progressively, fishing for the species spread to other locations. A hand
line fishery targeting ABT juveniles developed in the Bay of Biscay (Bard et al., 1998),
and fishing also expanded into the North and Norwegian Seas (Fromentin & Powers,
2005). The development of the purse seine system, an active fishing gear, in the 1930s
represented the biggest change in commercial fisheries for this species (Meyer-
Waarden, 1959). Nordic purse seine fleets grew rapidly so that by the middle of the
century catch volume with this fishing system exceeded that of the traditional trap
fisheries (Pursineri et al., 2001), but a sudden decrease in landings in the 1960s caused

the collapse of purse seine fleets operating in this area (Fromentin & Powers, 2005).

Around the same period fisheries for ABT juveniles appeared in the western Atlantic
Ocean with fishing efforts focused on the continental shelf between Cape Hatteras and
Newfoundland, and eventually extending to Cape Cod and Maine (Mather et al., 1995).
At the time, there was no demand for the larger fish so that fisheries for such fish sizes
were not popular. This changed in the 1960s when the Japanese long line fleet started
fishing in the western Atlantic and eventually moved to the Gulf of Mexico to target

larger individuals (Fromentin & Powers, 2005). From here onwards there was a
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progressive replacement of traditional capture fisheries to active fishing methods,

mainly using purse seine and long line methods.

The development of the Japanese sushi and sashimi markets in the 1980s had a great
influence on the ABT fishery and has shaped it into the industry it is today. Due to the
increase in the profitability of the species, there was a renewed effort to increase fishing
capacity and efficiency and this stimulated the modernisation of fishing fleets and the
development of new industries, including captive fattening. Exploitation for the species
expanded from the traditional North Atlantic and Mediterranean fishing grounds into
new areas. This was most evident in the Mediterranean region where purse seine
vessels equipped with modern fishing technology moved away from the coast and
eventually fished for ABT over the entire Mediterranean basin. Simultaneously the
Japanese long line fleets expanded and increased efforts in the central North Atlantic

resulted in increased capture yields (Fromentin & Powers, 2005).

1.3.2. ICCAT: Fishery management

The International Commission for the Conservation of Atlantic Tunas (ICCAT) is a
convention of signatory member nations and was established in 1969 in the face of
increased fishing pressure on tuna species by the fleets of several countries. It is a
regional fisheries management organisation and its main responsibility lies in the
management of tuna and tuna-like species in the Atlantic Ocean and adjacent seas
(Figure 1.3). It is composed of several contracting parties and incorporates the major
tuna fishing countries including the USA, Japan and those within the European Union.

Its jurisdiction covers several species including ABT and it is responsible for fishery
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management including member and fishery compliance, scientific research and stock

assessments, the latter being used for adjustments of quota levels.
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Figure 1.3 The convention area of The International Commission for the Conservation of Atlantic Tunas (from ICCAT,
2006).

1.3.3. The state of Atlantic bluefin tuna stocks

ICCAT has recently been criticised for improper management of ABT fisheries (e.g. Longo
& Clausen, 2011; Webster, 2011; Longo & Clark, 2012). The major obstacles in the
assessment and management of the ABT stocks are a lack of historical data and alleged
catch under-reporting in recent periods (ICCAT, 2011). For the last few years, the ICCAT
has drastically reduced the total allowable catches (TAC) for ABT to protect the
sustainability of the stock (ICCAT, 2002, 2008, 2010b, 2012, 2013) as a consequence of

which catches have consistently decreased since 2008 (Figure 1.4).
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Figure 1.4 Atlantic bluefin tuna total allowable catch (TAC) levels in metric tons (mt) as set by ICCAT throughout the
last decade (ICCAT, 2002, 2008, 2010b, 2012, 2013).

ABT stock assessments are carried out periodically with the latest analysis being done
in 2012 (ICCAT, 2014). Stock outlook in the last analysis was more positive than previous
assessments and ABT appears to be on its way to recovery. Indicators from several
Mediterranean and eastern Atlantic fishery sectors have also corroborated this
improvement in stock status and these are probably indicative of positive outcomes

from stricter management and control of the ABT fishery.

1.3.4. Historical data and present state of Atlantic bluefin tuna fisheries

The majority of ABT is captured in the Mediterranean although commercial fisheries for
the species operate in both the eastern and western Atlantic, with high seas fisheries

being prominent also in the west (Figure 1.5).

In coastal western Atlantic fisheries, ABT is captured mostly by rod and reel methods.

This type of fishing activity extends along most of the Atlantic coast of the USA and the
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fish is generally air freighted to Japan where it is sold at auction. Japanese large-scale
long line vessels target ABT in the western North Atlantic. On these the fish are gilled,
gutted and frozen on-board the fishing vessels for transport to major markets, generally

Japan.
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Figure 1.5 Atlantic bluefin tuna capture production in metric tons (mt) by region (ICCAT, 2010a).

In the eastern Atlantic, a minor fishery operates in the Bay of Biscay, where hand lines
are used to fish for small ABT. The fish captured here is destined for fresh sale in local
markets. Within the Mediterranean there is a contribution to ABT landings by artisanal
long line vessels, which generally fish in traditional fishing grounds not far away from
the coast, but by far the species is fished by trap net and purse seine systems (Figure

1.6).

Trap nets are the most ancient fishing industry known to date (Di Natale, 2012b). They
were traditionally found along several Mediterranean coasts and the Gibraltar strait but

have decreased in number in recent times. Within the Mediterranean itself, only two
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trap nets in Sardinia were operational in 2013. A trap net system operates in Portugal
although recruitment rates, and consequently catch volumes, are low. Several trap nets
remain in operation on either side of the Gibraltar Strait, along the southern Atlantic
Spanish and northern Atlantic Moroccan coasts, targeting fish entering the
Mediterranean from the Atlantic. Catch volumes in this region are significant and the
traps consistently reach their allocated quotas. Traps consist of a compartmentalised
system of nets anchored to the seabed. Differences in designs between different traps
are minor, but their arrangement is such that it directs fish passing close to the shore
into a labyrinth of nets leading to an enclosed chamber from which the fish are
harvested (Figure 1.7). The systems in this region target larger ABT and the capture of

smaller specimens is uncommon (Abid et al., 2012; Cort et al., 2012).
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Figure 1.6 Mediterranean Atlantic bluefin tuna capture production in metric tons (mt) in the Mediterranean Sea by
gear type (ICCAT, 2010a).
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Figure 1.7 A traditional tuna trap in Bonagia, Sicily. Tunas are enclosed in a chamber prior to the start of the
‘mattanza’ (left) and being hauled aboard (from Ravazza, 2004).

As mentioned previously, the development of the Asian sushi and sashimi markets
towards the end of the last decade, resulted in the development and modernisation of
a purse seine fishing fleet in the Mediterranean. Figure 1.8 shows an example of a
modern purse seine vessel working in the Mediterranean ABT fishery. The catches were
at first landed on the high seas into reefer vessels until new aquaculture technologies
allowed for the placing of tunas in cages. Purse seining is an active fishing method
whereby aggregated schools of fish are encircled using nets and find widespread use in
targeted fisheries for several species. It is now the major fishing gear type in use for

large-scale ABT fisheries and is the only method suitable for the farming of large tunas.

Figure 1.8 A typical purse seine fishing vessel used in the exploitation of Atlantic bluefin tuna in the Mediterranean.

Chapter 1 Page 18



General introduction

1.4. Farming of the Atlantic bluefin tuna

Research on tuna aquaculture started in the 1970s when Japanese government-backed
research attempted to grow PBT juveniles to marketability in marine cages (Ottolenghi
et al., 2004). The first attempts at the commercial farming of the ABT in floating pens
took place in Nova Scotia, Canada, and sourced tunas from mackerel traps (Farwell,
2001). The objectives of this were the same as those of modern tuna farms; to grow and
improve the quality and value of the fish, and to market the product at times of low
commodity availability and a consequent high demand (Miyake et al., 2003). This

operation, however, was abandoned following several years of low catch volumes.

Around the world, all three bluefin tuna species are farmed and at present all are
stocked through wild-capture fisheries. Farms in Japan and Mexico grow the PBT, the
SBT is ranched in Australia and ABT is farmed in the Mediterranean. Of the three, the

Mediterranean ABT industry has the largest production volume.

1.4.1. Origins of Atlantic bluefin tuna farming in the Mediterranean

ABT farming in the Mediterranean has its origins in Ceuta, Spain, in the late 1970s. Post-
spawned lean tuna returning to the Atlantic were captured in traps and transferred to
grow-out cages and marketed after they regained their fat content (Miyake et al., 2003).
Annual production levels at the site were low however, and rarely surpassed 200 metric

tons (mt).

ABT in the Mediterranean were highly abundant and purse seine captures were on the
increase (Figure 1.5), but despite the availability of wild seed technological limitations

restricted the transfer and towage of tunas from high seas to farming sites.
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Developments in aquaculture engineering allowed for the construction of durable cages
that were of adequate dimensions to accommodate large ABT and were resistant to
forces acting on cage structures during towing. Mediterranean ABT farming in its
present form was pioneered in Spain and Croatia in 1996 (Miyake et al., 2003). Farming
operations quickly spread across many Mediterranean countries including Tunisia, Italy,
Greece, Turkey and Malta, the latter being located in close proximity to major fishing
grounds. The increase in the number of tuna farms also stimulated growth in the
Mediterranean purse seine fishing fleet. The industry went through a period of rapid
growth until recent reduction in ABT TAC resulted in a significant decrease in both the
numbers of farms and purse seine vessels. Only 15 Mediterranean tuna farms were
operational in 2013 and only 4 establishments have annual productions exceeding 1,000
mt, with major outputs coming from Malta and Spain. Figure 1.9 shows a typical

Mediterranean ABT farm.

Figure 1.9 The Atlantic bluefin tuna farm, located off the southern coast of Malta, where this study was based.
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1.4.2. Atlantic bluefin tuna farming: catch to market

The premises and methods of tuna farming are similar across different tuna species. As
in the aquaculture of other fish species, it is a three-step sequential process starting
with stocking, followed by farming or fattening, and ending with the marketing of the

fish.

1.4.2.1. Capture and transfer to cage

The Mediterranean purse seine tuna fishing season runs from the 26 May to the 24 June
every year (ICCAT, 2013). Vessels leave port the previous night and navigate to fishing
grounds. There are several of these in the Mediterranean with the major ones found
around the Balearic Islands, in the Tyrrhenian Sea, the Medina Embankment off Malta,
and off the Libyan coast. Vessels locate schooling tunas (Figure 1.10) with scanning
sonars and aggregate them by distributing bait on the sea surface. Once the fish are
sufficiently aggregated a purse seine net is deployed to encircle and capture the fish,

which are then transferred to tow cages through a common opening (Figure 1.11).

Figure 1.10 A single migrating tuna school may extend over larger areas and sardines are supplied to the fish to
aggregate them prior to fishing manoeuvres.
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Figure 1.11 A fishing operation for Atlantic bluefin tuna in the Mediterranean (top) and subsequent transfer of fish
from a purse seine into a tow cage (bottom).

Estimates of catch weights are formulated from analysis of an underwater video of the
transfer operation, weighing of the transfer mortalities and professional observation.
ABT do not school according to size or age and consequently populations transferred to

cages reflect this in having wide-ranging size distributions (40-500 kg). Proper care for a
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few days after catch is crucial for eliminating mortality and acclimatising fish to
domestication so it is essential that cages are properly set up to allow for free
movement of the fish contained within. Once cages have reached their holding capacity,
they start their way back to the farm. Towing speeds are in the region of 1 knot (speeds
beyond this will induce high mortalities) and such voyages may take as long as 3 weeks
to reach their destination, depending on the distance between the capture and farm
sites. Once at their destination, the fish are transferred into a farm cage in a manner

similar to that described above.

1.4.2.2. Farming the fish

Feeding regimes are implemented after a short period of acclimation within farm cages.
Tunas are fattened with a mixture of fish — mackerels, sardines and herrings — and feed
lipid levels range from 8 to 25 %. Some operations also supply squid and cuttlefish
species to the stock, although this is done in minute proportions because of the costs
involved. Figure 1.12 shows ABT feeding from a feeding net in a commercial ABT farm.
Feeding regimes vary across farms and this serves to adjust the quality of the fish to the
different markets and their respective preferences. As is expected, feeding rates vary
with mean fish weight and sea temperature and generally range from 4-10 % biomass

day?in summer and 1-4 % biomass day in winter.

Growth of smaller tunas is remarkable and with careful husbandry, they may double
their weight and beyond within a year (ICCAT, 2009). Originally, the primary aim of tuna
farming was to increase the fat content of the fish rather than to increase biomass
(Miyake et al., 2003; Ottolenghi et al., 2004; Aguado-Giménez & Garcia-Garcia, 2005)

but recent changes in markets have seen this pattern change and several operations
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take advantage of fast growth rates and retain their smaller stock for on-growing and

harvest in subsequent years.

Figure 1.12 Atlantic bluefin tuna are fattened on a controlled combination of mackerel, sardine and herring species.

1.4.2.3. Marketing

Tunas are marketed in fresh or frozen forms once the quality of their flesh meets market
specifications and harvest generally commences after a 5-8 month farming period.
Harvesting is fast-paced to ensure the fish retain their meat quality. Fish destined for
the frozen market are processed aboard reefer vessels and on these the fish are
transformed into product and blast frozen at -60°C. Fish marketed in fresh form are
harvested in a similar manner but gilled and gutted, cooled in ice slurry, packaged and

air-freighted to market within 24 hours.

Figure 1.13 shows a tuna processing vessel and processing operations aboard it, and

frozen or fresh forms of marketable ABT product.
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Figure 1.13 A tuna processing and freezing vessel (top) and tuna processing aboard such vessels (middle). Tunas are
either marketed frozen (bottom, left) or auctioned in fresh form at Japanese markets such as the Tsukiji fish market
in Tokyo, Japan (bottom, right).
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1.4.2.4. Disease

The ABT is a resistant species and to date disease has presented no major problems to
the Mediterranean industry. Tuna seem to be only slightly affected by bacterial and viral
diseases, even when subject to considerable stress (Munday et al., 2003), but little is

known about disease in farmed tuna (Nowak, 2004; Ottolenghi et al., 2004).

Diseases caused by parasites appear to have the most significant effect on the culture
bluefin tunas (Colquitt et al., 2001; Nowak, 2004; Deveney et al., 2005; Aiken et al.,
2006). Encephalitis caused by the scuticociliate parasite Uronema nigricans is one of the
most problematic infections in SBT and on occasion has resulted in mass mortalities
(Munday et al., 1997). A risk analysis conducted on farmed SBT in Australia identified
two parasitic species as deserving attention; the sanguinicolid blood fluke, Cardicola
forsteri, and an unidentified capsalid monogenean gill fluke (Nowak, 2004), but the
latter was not observed in a subsequent parasite survey (Deveney et al., 2005). In
addition to these, Metazoan gill parasites, including Pseudocycnus appendiculatus and
the crustacean copepod Euryphorus brachypterus, are also commonly encountered in
farmed SBT but pose little problem to the welfare of the species (Hayward et al., 2007,
2008). Monogenean and sea lice infections have also been described in cultured SBT

(Deveney et al., 2005; Hayward et al., 2009, 2010).

There are few reports of disease in cultured ABT and in their entirety originate from the
Croatian industry. Wild ABT captures for purposes of farm stocking are subject to a 30
kg minimum size limit, except for the Adriatic where derogation decreases the minimum
catch weight to 10 kg, so that this may partly explain this pattern. An outbreak of

Photobacterium damselae subsp. piscicida is the only report detailing mass mortality in
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farmed ABT (Mladineo et al., 2006) and the bacterial fish pathogen was also detected in
a separate study, although the fish were unaffected (Kapetanovic et al., 2006). Similarly,
the only description of digenean parasites in farmed ABT originates from Croatian-
farmed tuna (Mladineo & Tudor, 2004) while separate research has also identified the
occurrence of Didymocystis wedli on the gills of Croatian cage-reared ABT (Mladineo et
al., 2008). A pan-steatitis outbreak has been reported from captive ABT in Croatia, and
it was believed to be caused by a fatty acid imbalance in the feed (Roberts & Agius,

2008).

1.4.3. Hatchery production of Atlantic bluefin tuna juveniles

The reliance of the tuna farming industry on wild seed has prompted institutions
worldwide to attempt to close the life-cycle of the three bluefin tuna species. Of the
three, only the PBT has been successfully reared from eggs to mature spawning adults
(Sawada et al., 2005). It has not yet reached the commercial stage due to a number of
complications including high mortality rates post hatch, larval and juvenile cannibalism,
issues in swim bladder inflation and collision trauma (Sawada et al., 2005; Ishibashi et
al., 2013; Kurata et al., 2013; Satoh et al., 2013). In addition, high mortality rates are
also observed at transfer to sea cages (Tsuda et al., 2012; Okada et al., 2014). Progress
in the other two bluefin species lags behind and it is likely that these will need to

overcome identical problems to achieve commercial viability (Woolley et al., 2013).

In the case of the ABT, research relies on the collection of fertilised eggs from captive
mature adults held in sea cages. Captive fish generally spawn without intervention
towards the end of June although there is a degree of inter-annual variation. Hormones

have also proven to be effective in the stimulation of the reproductive endocrine system

Chapter 1 Page 27



General introduction

as well as spawning induction in captive ABT (Corriero et al., 2009; De Metrio et al.,
2010; Aranda et al., 2011; Rosenfeld et al., 2012). Eggs are collected with plankton nets
or similar methods but larval survival rates have been reported to be low (de la Gandara

etal., 2010).

1.5. Regulatory and control measures in the Atlantic bluefin tuna
industry

In recent years, the ICCAT has strengthened the enforcement of its regulations in the
ABT industry and these are revised periodically (ICCAT, 2012, 2013). ABT fisheries are
now amongst the most tightly controlled in the world, where every operation is
documented and each harvested fish is traceable to catch. A brief review of present

regulations is given below.

1.5.1. Control measures at catch

Purse seine and towing vessels involved in the ABT fishery are tightly controlled at
several levels to ensure adherence to ICCAT regulations. Both classes of vessels require
authorisation to operate and this is only obtained once they satisfy stringent standards
and controls. Purse seine vessels have individual allocated catch quotas, and these may
be caught during the open fishing season which runs annually for four weeks. No fishing
is allowed after season closure, irrespective of whether catch quotas have been fulfilled
by the fleets. The activities of the fleets are monitored with vessel monitoring systems,

and regularly verified by at-sea inspections and aerial surveillance.

Similarly, transfers from purse seine nets to farm tow cages are rigorously controlled.

Such transfers require fishing vessel masters to seek authorisation from their flag state
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prior to transfer, and only after the approval of the national authority can such transfers
go ahead. Fish transfers are monitored by time-stamped underwater video which is then
used by at-sea ICCAT observers to verify the amounts declared by fishing masters, a
measure to tackle under-reporting of catch quantities. Following verification and the
completion of an ICCAT bluefin tuna catch document — essentially a quota document —
the fish may start being towed back to farm under observation by national authority

representatives aboard the tugboat.

1.5.2. Control measures at farm

From a regulatory point of view, ABT farms are considered as part of the ABT fishery
and thus subject to the same controls as fishing vessels. Simultaneous controls by
national and international authorities are affected during both caging and harvesting
operations. Verifications of the origins of the fish starts whilst the fish are still under tow
and a few days prior to arrival at the farm. Once verification procedures are completed
and the regulatory criteria satisfied, caging procedures are authorised to go ahead. On
arrival of fish to the farm, the tow and farm cages are joined and the fish transferred.
Again this transfer is monitored by time-stamped video as well as a stereoscopic camera
system operated by national authority officials, with transfer footage from the latter
being used by regulators to verify the amounts of tuna declared (Figure 1.14). Once
biomass quantities are confirmed correct, the quota documents are approved and
validated, and the farming process is allowed to commence. In cases where fish biomass
is deemed to be in excess of the quota held, the surplus quantity is released from the
farm back into the sea. In addition to national authority officials, caging operations are

attended in their entirety by ICCAT observers.
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Figure 1.14 Software analysis of size composition of caged Atlantic bluefin tuna.

Control procedures extend to harvesting operations from ABT farms and monitoring by
national authority representatives and ICCAT observers is mandatory, with controls
focusing on numbers and weights of fish harvested. This ensures that harvests do not
exceed a growth-adjusted weight threshold and/or the numbers of fish declared on the
qguota documents. As a final regulatory measure, processed product weights are
measured prior to export and compared against relevant validated harvest quantities.
The countries receiving fish control their imports by comparing validated harvest

guantities against an online database carried by ICCAT.

1.6. Practical limitations in Atlantic bluefin tuna research

There are several practical limitations encountered in research work with ABT and this
contributes to a general lack of knowledge on the species. In fact much of what is known

on the biology of tuna species mainly originates from work on smaller tuna species such

as the yellowfin and bigeye tuna.

Chapter 1 Page 30



General introduction

A major obstacle is the availability of specimens to work with. This is very evident in the
sourcing of wild specimens, which are generally fished at offshore locations so that
sample retrieval is logistically complicated and sometimes impossible due to safety
regulations. For this reason, sample collection from wild ABT samples was not available

in most studies in the present work.

Most of the studies on ABT now rely on fish sourced from traps or farms. This entails
limited flexibility in study design and owing to the commercial nature of both sources,
sampling tends to be opportunistic and needs to conform to commercial harvest
practices or requirements. Commercial commitments and the considerable cost of each
specimen makes farms reluctant to experiment with the stock they hold in cages.
Furthermore, when specimen sampling is permitted post-harvest treatment is time-
critical and retrieval needs to be quick since delays will deteriorate the quality of the
fish, resulting in substantial depreciation in the product’s value and a consequent

decrease in return.

Apart from commercial reasons that limit study design, other factors limit the scope of
research with the ABT. For example tagging trials on small fish have resulted in
significant mortalities (Tic¢ina et al., 2004). In addition, regulations now require the
presence of ICCAT observers during the harvest of any quantity of fish from ABT farms
and costs for these are significant and borne by the farms themselves. Since tunas are
costly, these two reasons make studies investigating temporal changes difficult to

undertake.

Finally, sampling at offshore locations lacking laboratory equipment limit the

downstream processes that can be performed on retrieved samples and this may
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restrict the amount of information that can be gained from research on ABT. This, in
conjunction with the restricted sample availability confines laboratory procedures to

those which are well established and easy to modify.

1.7. Research objectives

Preliminary work and parasite surveying performed during the initial period of study
showed a very low prevalence of disease in captive ABT. Considering this, research
objectives were adjusted to investigate changes as a result of the domestication process
and the mechanisms behind the absence of disease in farmed ABT. Changes in the ICCAT
regulatory framework brought into force in 2010 required 100 % observer coverage for

harvests irrespective of quantity, substantially increasing the cost of periodical harvests.

Given these reasons, the scope of the research was adjusted to investigate several
aspects of ABT farming while trying to maintain focus on the health and immunological
characteristics of captive ABT. There is a general lack of data on ABT and contributions
made by parts of this work may aid in the development of monitoring procedures for

farmed ABT.

The research focused on four areas. The first chapter investigates the effects of farming
on arteriosclerotic lesions within the main coronary artery of ABT and draws on the
availability of wild specimens for comparison between fish of different origins. The
second chapter examines the haematological and plasma biochemical parameters as
well as important immunological properties of the blood of captive ABT, and compares

indices across different size ranges. The third section analyses the immunological
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properties of ABT epidermal mucus as a first line of defence against pathogenic infection

while the final section studies several aspects of lipids in farmed ABT.
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CHAPTER 2

CORONARY ARTERIOSCLEROSIS IN WILD AND
CAPTIVE ATLANTIC BLUEFIN TUNA

2.1. Introduction

Arteriosclerosis in fish was first described by Robertson and Wexler (1960) in several
salmon species including the chinook salmon, Oncorhynchus tshawytscha (Walbaum).
The changes detected in these fish were linked to Cushing’s syndrome — a disorder
caused by prolonged exposure to the stress hormone cortisol in humans —and included
degradation in the salmon’s cardiovascular system, more specifically degenerative
changes featuring myointimal hyperplasia (Saunders & Farrell, 1988) within the arteries
supplying the cardiac system. Early works attributed these changes to senescence in
salmon (Robertson & Wexler, 1960; Robertson et al., 1961a, b; Robertson & Wexler,
1962) while others indicated that the lesions regressed after spawning (e.g. Van Citters
& Watson, 1968; Maneche et al., 1972; Schmidt & House, 1979). The latter stimulated
interest in the use of salmon as models for human atherosclerosis, principally since it
was proposed that the arterial lesions regress after spawning. Later studies disproved
this (e.g. Saunders & Farrell, 1988; Farrell et al., 1990a; Kubasch & Rourke, 1990) and it

is now accepted that lesions do not regress but are considered a progressive condition.
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Most research on arteriosclerosis has focused on salmonids and on the main coronary
artery lying on the bulbus arteriosus due to its accessibility, and also because lesions
appear to be more prevalent within this vessel (Farrell, 2002). In salmonid species
lesions have been described in Pacific salmonids, notably Oncorhynchus spp. (Robertson
& Wexler, 1960; Moore et al., 1976c), in Atlantic salmon, Salmo salar L. (see Saunders
et al., 1992; Seierstad et al., 2005a) and in rainbow trout, O. mykiss (Walbaum) (see
McKenzie et al., 1978; House & Benditt, 1981). Lesions, however, have also been
reported in several other fish species. Eastman (1969) and Duran et al. (2010), for
example, described the presence of lesions in the carp, Cyprinus carpio L., and in the
rabbitfish, Chimaera monstrosa L., respectively. Arterial lesions have been reported also
from several elasmobranch species including the lesser spotted dogfish (syn. small-
spotted catshark), Scyliorhinus canicula (L.) (see Munoz-Chépuli et al., 1991; Garcia-
Garrido et al., 1993), and several shark species including thresher, Alopias vulpinus

(Bonaterre) and blue sharks, Prionace glauca (L.) (see Borucinska et al., 2012).

The occurrence of arteriosclerotic lesions in the ABT was reported by Vastesaeger et al.
(1962). Working on small ABT of age 3-4 years, they reported widespread diffuse fibrosis
within the intima of the main coronary artery in all of the ten specimens they examined.
The intimal lesions reported here were described as consisting mainly of rounded
nodules of fibrous tissue with a fragmented elastic lamina, containing considerable
collagen and a large number of histiocytes. Additionally, and in contrast to findings in
other fish species, lipid deposits were identified in the more severe lesions. To date, no

further research has been carried out on arteriosclerosis in ABT.
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Tuna hearts are s-shaped and as in other teleosts consist of four chambers; the sinus
venosus, atrium, ventricle and bulbus arteriosus arranged in a caudal to rostral direction
(Bone & Moore, 2008). Tuna ventricles are morphologically designed to produce high
ventricular pressures and are large, thick-walled and assume a pyramidal form (Tota,
1983; Farrell & Jones, 1992). Deoxygenated blood is driven forwards from the ventricle
to the passive and compliant bulbus arteriosus which in tunas swells prominently
proximal to the ventricle and tapers towards the ventral aorta. The bulbus contains no
cardiac muscle and is not actively contractile (Braun et al., 2003) and acts as a passive
pressure reservoir, dampening cyclic variations in pressure caused by ventricular
contractions and thus maintaining constant flow in the ventral aorta (Bone & Moore,

2008) which is required for efficient gas exchange.

The coronary artery forms as a branch of the efferent brachial arteries (Farrell & Jones,
1992), and generally lies as an unbranched vessel on the bulbus arteriosus (Farrell,
2002). The orientation of the heart in tuna species differs from that in salmonids so that
the coronary artery runs along the dorsal surface of the bulbus in skipjack tuna,
Katsuwonus pelamis (L.) (see Farrell & Jones, 1992), and in ABT (personal observation)
as opposed to its ventral location on the bulbus of the former. In teleosts possessing a
coronary circulation, it is morphologically associated with the compact myocardium and
serves to deliver a supplemental supply of oxygen to cardiac muscle (Farrell, 2002) and
remove waste (Jones & Braun, 2011). Given the high proportion of compact
myocardium in skipjack tuna (i.e. 60 % as compared with 30-40 % in salmonids), Farrell
et al. (1992) suggest that skipjack tuna might have an obligate dependence on the

supply of oxygen to cardiac muscle through the coronary artery. This is not the case for
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other fish species, including rainbow trout and chinook salmon, where surgical removal
of the coronary artery affected cardiac performance but not specimen survival

(Daxboeck, 1982; Farrell & Steffensen, 1987; Farrell et al., 1990b; Gamperl et al., 1994).

Histologically the structure of the fish coronary artery follows closely that of mammals
and is composed of an endothelium, an internal elastic membrane (syn. lamina) lying on
a media consisting of circular or spirally arranged vascular smooth muscle and elastic
fibres, and an outer layer of connective tissue referred to as the adventitia (Jones &
Braun, 2011). The thinner media in the fish coronary artery, as compared to that found
in mammals, is likely due to the lower coronary arterial blood pressure in the former

(Farrell, 2002; Jones & Braun, 2011).

Typically, lesions in salmonids manifest themselves as intimal proliferations of vascular
smooth muscle (i.e. myointimal hyperplasia) and commonly feature a thickened,
duplicated, disrupted or altogether absent internal elastic lamina (IEL; Maneche et al.,
1972; Moore et al., 1976a; Farrell et al., 1986; Kubasch & Rourke, 1990; Farrell, 2002;
Seierstad et al., 2005b) through which proliferated smooth muscle cells enter the intima
to form focal lesions which, at later stages, may merge to form more severe lesions that
may occlude the lumen by as much as 50 % (Saunders & Farrell, 1988). Several authors
(Moss & Benditt, 1968; Ross & Glomset, 1973; Saunders & Farrell, 1988; Kubasch &
Rourke, 1990; Farrell, 2002) have stated that arteriosclerotic lesions in fish resemble the
early forms of mammalian atherosclerosis. Although these lesions possess
characteristics of smooth muscle cells, they also contain varying amounts of collagen

and elastin, mucopolysaccharides and other amorphous material (McKenzie et al.,
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1978). Eaton et al. (1984) described the presence of degenerative, as opposed to

proliferative, lesions in the coronary arteries of chinook salmon.

The precise aetiology of coronary arteriosclerosis in salmonids is not known (Farrell,
2002). In early investigations, it was believed that sexual maturation and the physiology
of upstream migration (Robertson et al., 1961b) were the primary causes of
arteriosclerosis in salmonids but later studies indicated that well developed coronary
artery lesions are present also in juveniles of several salmon species (Moore et al.,
1976a; McKenzie et al., 1978; House et al., 1979; Farrell et al., 1986; Kubasch & Rourke,
1990; Saunders et al., 1992). Although sexual maturation might play a role, since the
injection of sex hormones has been shown to promote an increase in arteriosclerotic
lesions in rainbow trout (House et al., 1979), it is now perceived to be a secondary rather
than primary factor in the lesion aetiology. Conflicting evidence is available as to the
role of polyunsaturated fatty acids (PUFAs) in arterial lesion progression; Farrell (2002)
suggested that PUFAs and their metabolites stimulate coronary artery vascular smooth
muscle proliferation and may be significant in the promotion of arterial lesions but other
research has found no effect of dietary fatty acid (FA) composition on lesion
development in salmon (Saunders et al., 1992; Seierstad et al.,, 2008). Dietary
cholesterol, more specifically the low-density lipoprotein (LDL) fraction, are central
causative agents of certain types of artery disease in mammals (Brown & Goldstein,
1984), and dietary cholesterol supplements have been shown to increase coronary
lesions in brook trout, Salvelinus fontinalis (Mitchill) (see Farrell & Munt, 1983) while
Eaton et al. (1984) have shown that lesion proliferation follows the natural variation in

blood plasma LDL levels of maturing chinook salmon. It is now widely believed that over-
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distension of the bulbus arteriosus during strenuous activity is the most significant
initiating cause of arterial lesions in fish, and proliferation of the medial vascular smooth

muscle leads to lesion formation (Farrell, 2002).

The limited information there is on arteriosclerotic lesions in ABT indicates that these
are widespread in the species (Vastesaeger et al., 1962). The main objective of this study
was to investigate coronary artery lesions in ABT specimens of varying age and origin,
and to use a semi-automated image analysis method to quantify lesion severity.
Comparison of lesion severity between wild and farmed fish may also reveal the
influence, if any, of the farming process on the prevalence and severity of coronary

artery lesions in farmed ABT.

2.2. Materials and Methods

2.2.1. Study populations

2.2.1.1. Investigating arteriosclerosis in Atlantic bluefin tuna

The main study compared arteriosclerotic lesions in coronary arteries collected from
two separate populations of farmed ABT and a third population consisting of wild-

caught specimens.

The first ABT population (Group 1) had been held under commercial culture conditions
for a period of 6 months. Approximately 1,550 wild ABT individuals were captured in
June 2011 in the Tyrrhenian Sea by ICCAT authorised purse seine fishing vessels (FAO
Statistical Area 10; 39°41’N, 014°41’E) and towed to a farm site located off the southern
coast of Malta (35°49’N, 014°35’E). The fish were harvested after a 6-month fattening

period in November 2011.
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A second ABT population (Group 2) consisted of approximately 1,600 wild ABT
individuals caught by purse seine fishing vessels in June 2010 off the Libyan coast (FAO
Statistical Area 21; 33°31’N, 013°58’E). They were towed to the same farm site (35°49’N,

014°35’E) and harvested after an 18-month farming period.

Seawater temperatures during the culture period ranged from 14°C in winter to 26°C
during the summer period, oxygen was always at or near saturation and average current
speeds were 0.45 m s1. The fish were contained in 150 m circumference cages at

stocking densities of approximately 1.55 kg m™3.

The ABT were fed ad libitum on a mixture of sardine, mackerel and herring at an average
daily rate of 5 % kg biomass™ day. Crude fat content of the feed ranged from 8 to 28

%. Mortalities during the farming period were negligible for both populations.

Coronary arteries from wild ABT (Group 3) were collected to examine the occurrence of
lesions in wild populations. The specimens were fished by ICCAT authorised long line
vessels in the Adriatic Sea (FAO Statistical Area 17; 42°59’N, 014°12’E) in November

2011.

Table 2.1 gives individual data for specimens used in this study and Figure 2.1 shows the
FAO statistical areas for the Mediterranean Sea, where the three ABT populations used

in this study were caught.

2.2.1.2. Investigating the effect of ventricle size on arteriosclerotic lesion severity

Coronary arteries were collected from ABT of varying size to analyse for any correlation

between ventricle size and severity of arteriosclerotic lesions. To reduce the effect of
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differing environmental conditions, artery specimens were collected from fish captured
in a single fishing operation and kept in the same cage until they were harvested. The
fish were caught in the Mediterranean Sea (FAO Statistical Area 14 [Figure 2.1]; 35°10'N,
014°46’E) in June 2012, towed to farm, and harvested in December 2012. Husbandry

conditions were as those described above.

Table 2.1 Individual data for the Atlantic bluefin tuna specimens used to investigate the occurrence of arteriosclerotic
lesions (Group 1, farm 6 months, n = 26; Group 2, farm 18 months, n = 16; Group 3, wild, n = 12).

Group 1 Group 2
Weight (kg) Length (cm) Sex Weight (kg) Length (cm) Sex
46 125 Male 68 141 Male
48 123 Male 70 153 Female
53 147 Female 83 151 Female
59 134 Male 99 181 Male
66 137 Female 103 174 Female
77 157 Male 103 176 Female
94 174 Male 112 168 Male
101 172 Male 117 183 Male
107 180 Female 126 188 Female
108 187 Female 147 223 Male
131 197 Female 166 215 Female
138 197 Male 184 217 Female
173 224 Female 186 224 Male
187 229 Male 191 218 Male
190 220 Female 220 249 Male
210 227 Male 241 247 Female
228 236 Female Group 3
251 265 Female 23 112 Male
260 259 Female 29 113 Female
273 245 Male 30 115 Male
311 248 Female 32 115 Female
314 274 Female 32 117 Male
340 263 Male 34 114 Female
403 282 Male 36 118 Male
442 287 Male 38 133 Female
476 289 Male 38 118 Male
41 121 Female
43 135 Male
49 124 Female
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Figure 2.1 FAO Mediterranean statistical areas. This study was based on Atlantic bluefin tuna speecimens captured
by purse seine vessles in Statistical Areas 10, 14, 17 and 21. Blue shading highlights areas of capture and red shading
indicates location of farm site off Malta (adapted from GFCM, 2014).

2.2.2. Sample collection

Samples were collected from farmed fish during commercial tuna harvests and the size
of individual fish that were processed varied according to commercial demand. Fish
were fasted for one day prior to harvest. They were killed by a shot to the head in the
cage net following standard industry procedures and landed on a harvest boat after
which they were weighed and their fork length measured. Samples from wild long-line
specimens were collected opportunistically as the line was being brought aboard ship.
Since both the farmed and wild fish are commercialised on a whole round basis, the
heart including the intact bulbus arteriosus and the ventricle (Figure 2.2) was excised
from the fish through a small incision made beneath the operculum and at the base of
the gill arches. Samples were collected according to availability and efforts were made
to collect samples discriminately to balance the representation of different weight

classes and specimen sex.
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Figure 2.2 The entire heart as excised through a sub-opercular incision from the Atlantic bluefin tuna (ABT) for
collection of the main coronary artery. The arrowhead shows the location of the coronary artery on which this study
was based. The white lipidic deposits (arrow) on the surface of the ventricle are frequently encountered in the ABT
(bar =25 mm).

The main objective of this study was to investigate lesion occurrence in the main
coronary artery (Figure 2.3), which lies on the dorsal surface of the bulbus arteriosus.
Since the size of the bulbus did not allow for its entire fixation, the entire main coronary
artery (from the distal end of the bulbus up to a location after the major bifurcation)
was excised from the intact bulbus and fixed in 10 % neutral buffered formalin (25 mM
NaH,P04.2H,0, 46 mM NazHPO4, 10 % formaldehyde, pH 7.0). Time between specimen

mortality and fixation of the arterial sample was less than 15 min.

Sampling procedures were identical for both parts of the study except that the ventricle
was separated from the intact heart and weighed for studying the effect of ventricle size

on lesion severity (Section 2.2.1.2).
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Figure 2.3 A, dorsal view of the Atlantic bluefin tuna heart with the atrioventricular sulcus removed. The main
coronary artery lies on the surface of the bulbus arteriosus (arrow) and bifurcates into two daughter branches
(arrowhead) at a point close to the ventricle (bar = 25 mm); B, macro view of the main coronary artery lying on the
dorsal surface of the bulbus arteriosus (bar = 25 mm).

2.2.3. Histological processing

Studies on arteriosclerotic lesions in mature ABT species are very limited to date. The

main coronary artery lies on the ventral surface of the bulbus arteriosus (Figure 2.3).
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The first branching point of the artery occurs at a location close to the ventricle and is
known as the major bifurcation. The two daughter branches branch at several other
points to form a network of vessels which deliver oxygenated blood to the ventricle. To
investigate the occurrence and prevalence of such lesions along different sections of the
main coronary artery (i.e. prior to the major bifurcation), the fixed vessel was arbitrarily
separated into three regions according to distance away from the ventricle (Figure 2.4)
and cut into nine segments (i.e. three segments from each region) of equivalent
thickness. Where possible tissue segments through the major bifurcation and daughter
branches were also made but orientation of the latter was difficult due to a lack of

supporting tissue and consequent distortion during embedding.

Figure 2.4 Excised formalin-fixed artery prior to cassetting for routine processing. The artery was divided into three
regions (proximal, medial and distal) and sections were taken from multiple areas within these regions. The arrow
marks the location where the coronary artery bifurcates into left and right daughter branches (bar = 10 mm).

The tissue samples were subsequently loaded onto an automated tissue processor
(Shandon Citadel 1000, Thermo Scientific, Loughborough, UK), passed through an
ethanol series and cleared using chloroform, wax impregnated and embedded to obtain
transverse section sequences through the main artery axis. The artery sections were
decalcified for 15 min to reduce brittleness (RDC Rapid Decalcifier, Cellpath, Powys, UK)

and 5 um thick sections were cut at close locations from each of the tissue blocks on a
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rotary microtome (Shandon Finesse, Thermo Scientific). The sections were left to dry at

60°C for 2 h prior to staining.

Histology on the arteries collected to examine the correlation between ventricle size
and lesion severity (Section 2.2.1.2) were processed as above except that six tissue
blocks — two each from the proximal, medial and distal regions — were prepared from

each of the artery specimens.

2.2.3.1. Haematoxylin and eosin staining

Sections were stained with a routine haematoxylin and eosin stain. Briefly, the sections
were deparaffinised through two 2 min changes of xylene, hydrated with absolute
ethanol and methylated spirit respectively for 2 min and washed in running tap water
for 5 min. They were then stained for 5 min in haematoxylin (Haematoxylin Z, Cellpath),
washed in running water, dipped twice in 1 % acid alcohol, washed in running water,
differentiated in Scott’s tap water substitute (Cellpath) for 30 sec and placed in water
for 2 min. The sections were stained in eosin (Putt’s Eosin, Cellpath) for 5 min, washed
briefly in water, and dehydrated through methylated spirit (30 sec), and two 2 min
changes of absolute alcohol. They were cleared in xylene for 5 min and cover-slipped

with mounting medium (Pertex, Cellpath).

2.2.3.2. Verhoeff-van Gieson staining

Additional sections were stained with a Verhoeff-van Gieson method adapted from
Woods and Ellis (1994) for demonstration of elastic fibres. They were dewaxed and
rehydrated as above. The sections were placed in Lugol’s iodine (1 % |2, 2 % KI, dH,0)

for 5 min and washed in water. They were treated with 5 % sodium thiosulphate for 2
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min or until the brown colouration imparted to the section by Lugol’s iodine receded.
They were washed in water and stained in Verhoeff’s haematoxylin (2.5[5 % alcoholic
haematoxylin, 100 % EtOH]:1[10 % FeCls, dH,0]:1[Verhoeff’s iodine — 2 % |2, 4 % KI,
dH;0]) for 18 min and rewashed in water to remove excess stain. They were
differentiated in ferric chloride (2 % FeCls, dH,0) for 25 sec, washed in water followed
by 95 % alcohol for 1 min to remove iodine staining. The alcohol was rinsed off in water
and the sections counterstained with van Gieson’s solution (1[1 % acid fuchsin,
dH,0]:10[saturated aqueous picric acid]) for 45 sec. They were dehydrated quickly
through methylated spirits and two changes of absolute alcohol, cleared for 5 min in

xylene and cover-slipped.

2.2.3.3. Masson’s trichrome staining

A Masson’s trichrome stain was used for differentiation of collagen. Slides were
dewaxed and rehydrated to water as described previously. Nuclei were stained with
celestine blue (0.5 % celestine blue B, 5 % ammonium iron(lll) sulphate
[NH4Fe(S04)2.12H,0], 14 % glycerol, dH20) for 5 min, rinsed in water and placed in
haematoxylin (Haematoxylin Z, Cellpath) for 5 min. The sections were rinsed in water
and the nuclear stain differentiated in acid alcohol. The slides were left in a cytoplasmic
stain for 1 h (2[1 % ponceau 2, 1 % acetic acid, dH,0]:1[acid fuchsin, 1 % acetic acid,
dH;0), washed in water and differentiated in 1 % phosphomolybdic acid
(H3[P(Mo03010)4]). The slides were washed in distilled water and collagen was stained in
light green (2 % light green, 1 % acetic acid, dH,0) for 2 min followed by washingin 1 %
acetic acid. Slides were rinsed in water, dehydrated, cleared and mounted as described

above.
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2.2.3.4. Lipid fixation and staining

Although arteriosclerotic lesions in teleost fish species lack lipid inclusions as compared
to similar lesions in mammals (Moore et al., 1976c; McKenzie et al., 1978; House &
Benditt, 1981; Seierstad et al., 2008) the presence of lipid inclusions from lesions in ABT

has been reported by Vastesaeger et al. (1962).

To examine for the presence of lipids in lesions on the tuna, formalin-fixed artery
specimens were pre-processed for lipid fixation according to the procedure described
in Tracey and Walia (2002). Briefly, coronary arteries were cut at thicknesses of 1 mm
or less and placed in a 70 % polyethylene glycol solution containing 1 % linoleic acid and
0.4 % soy lecithin (Holland and Barrett Retail Limited, Nuneaton, UK) for 72 h at 56°C.
They were then rinsed in several changes of 70 % ethanol for 8 h, washed for 8 h in
distilled water and placed in 2 % chromic acid for 24 h at 4°C. Subsequently they were
rinsed in distilled water for 24 h, treated with 5 % sodium bicarbonate for 24 h, rinsed

in water for a further 8 h and processed routinely to obtain paraffin-embedded tissue.

The slides were sectioned as described above and stained for fat with an oil red O
procedure adapted from Woods and Ellis (1994). Slides were deparaffinised and
rehydrated to water. Sections were rinsed in a 60 % iso-propanol solution for 2 min and
stained for lipids by immersion in a solution of 60 % iso-propanol containing 0.25 % oil
red O for 10 min. They were rewashed in 60 % iso-propanol followed by water.
Counterstaining was in haematoxylin (Haematoxylin Z, Cellpath) for 2 min. The sections
were differentiated in 1 % acid alcohol, washed in water and mounted using a
polyvinylpyrrolidone agueous mounting medium (Kiernan, 2008). Positive control was

formalin-fixed liver tissue from ABT.
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2.2.4. Light microscopy and image capture for morphometric measurements

The images were examined for lesion occurrence and morphology under an Optika B-
600 light microscope (Optika, Bergamo, Italy) equipped with a C-mounted Optikam
PRO5 (Optika) still-image capture device. 8-bit RGB images (2592 x 1944 pixels) of the
entire artery cross-section were recorded at a magnification of x40 for image

morphometric measurements.

2.2.5. Morphometric evaluation: quantification of lesion areas by a semi-automated
method

The cross-sectional micrographs of the arteries were used for the evaluation of lesion
size and severity in Imagel) (v 1.47; U.S. National Institutes of Health, Bethesda MD,
USA), an image processing software package, using methods adapted from Seierstad et
al. (2005a). The software was calibrated for measurements against a digital image of a

stage micrometer taken at the same magnification of the micrograph.

To quantify the degree of intimal lesions, area measurements were made to evaluate
the loss of luminal area resulting from the protrusion of arteriosclerotic lesions into the
lumen. The images were loaded into Imagel and the different components of the artery
— the tunica externa, tunica media, tunica intima — were identified. A line was drawn
around the circumferential edge of the tunica intima and the area measured (um?) by a
software command. This area was defined as the maximal potential luminal area (MPA;
Figure 2.5) and represented the area of the lumen in the absence of intimal lesions. To
measure the actual luminal area (ALA), the same procedure was followed but a line was
traced along the actual luminal border of the intimal lesions. In some sections there

were disruptions in the intimal layer and in such instances the line was drawn along a
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presumed path between the two points. The difference between the MPA and the ALA
was termed the percentage lumen loss (PLL) and was expressed as a percentage of the

MPA. Increasing PLL values represented intimal lesions of increasing severity.

® 006 010=2A=40%.jpg (G) (33:3%)
320.00x240.00 pm (2592x1944); RCE; 19ME
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Figure 2.5 Morphometric measurement for percentage lumen loss (PLL) with Image). Maximal potential luminal area
(MPA) is denoted by the blue boundary while the area enclosed with the yellow boundary represents the actual
luminal area. PLL was calculated as the difference between the two indices and expressed as a percentage of the
MPA.

Area measurements were repeated for all the cross-sections from the main coronary
artery of each fish. To obtain a better understanding of the severity of these
proliferations along the entire length of the artery, the nine sections were arbitrarily
categorised into three sequential groups according to their position from the major
bifurcation (i.e. the point closest to the ventricle attachment). The ‘proximal region’
consisted of the three sections occurring immediately prior to the major bifurcation, the
second set was classified as the ‘medial region’ and the three sections furthest away

from the major bifurcation termed the ‘distal region’ (Figure 2.4).
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In an attempt to quantify the lesions in a different dimension, Image) was used to
measure the point of maximal lesion thickness (MLT; Seierstad et al., 2005a). The
location where endothelial proliferation extended furthest into the lumen was visually
identified and a straight line was drawn from the intimal border to the luminal end of
the lesion (Figure 2.6). The MLT was recorded in um and measurements were performed
for all the arterial cross sections except for those through the major bifurcation and

daughter branches.

010-2A-40x.jpg (50%)
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Figure 2.6 Morphometric measurement for maximal lesion thickness with Imagel. The point at which the lesion
showed the largest protrusion into the lumen was visually identified and measured.
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2.2.6. Statistical analysis

Data were analysed statistically for the effects of weight, sex and origin on the PLL and
MLT. All statistical tests were performed two-tailed with significance value of 5 % (p =
0.05). Continuous variables were tested for normality using a non-parametric one-
sample Kolmogorov-Smirnov test. PLL and MLT values were logarithmically (logio)
transformed where distribution deviated from normality. Within individual sample
groups, one-way analysis of variance (ANOVA) was used to analyse for the effects of
artery region and sex on PLL and MLT while Pearson correlation tests were used to
analyse for possible associations between specimen length and weight on PLL and MLT.
Analysis of covariance (ANCOVA) on pooled data from all experimental sub-groups was
used to analyse for the effects of origin and sex on PLL and MLT. Weight of the fish was
used as a covariate in this analysis. A Pearson correlation test was used to examine the
effect of ventricle weight on PLL and MLT indices. All statistical tests were performed

with SPSS Statistics 20 (IBM Corp., New York, USA).

2.3. Results

2.3.1. Investigating arteriosclerosis in Atlantic bluefin tuna: the study populations

Descriptive data for fish used in this study are listed in Table 2.2. Males and females
were equally represented within the individual groups. Recent reports indicate that ABT
reach maturity at a weight of approximately 25 kg and a fork length (FL) between 97-
120 cm (Corriero et al., 2005; ICCAT, 2011, 2014). On the basis of the measured FLs, it
could not be ascertained if the wild ABT samples had reached maturity, and only two
wild specimens had FLs exceeding 130 cm. Only one fish, however, weighed less than

25 kg, so that it was likely that all specimens collected came from fish which were
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mature or close to maturity. With the exception of three specimens from Group 1, all
individuals sourced from the farm had FLs exceeding 140 cm. None of the fish were
thought to be in an active stage of their reproductive cycle since spawning of the eastern
Atlantic stock is known to occur during the period June to July (Mather et al., 1995). This

was corroborated through visual examination of the gonads where possible.

Table 2.2 Descriptive data of Atlantic bluefin tuna specimens used in the study. Values represent mean + standard
deviation and figures in brackets show upper and lower ranges.

Origin Weight (kg) Length (cm)

Farm, 6 months 196 + 124 (46-476) 211 +52 (123-289)
(Group 1; FAO 10; n = 26)

Farm, 18 months 139 £ 52 (68-241) 194 + 33 (141-249)
(Group 2; FAO 21; n = 16)

Wild 3517 (23-49) 120+ 7 (112-135)

(Group 3; FAO 17; n=12)

2.3.2. Histology of the normal coronary artery

All of the artery sections collected from the three different ABT populations were
contained at least one identifiable lesion (i.e. lesion prevalence was 100 %). Several
regions of the artery sections, however, appeared to be free of proliferations and this
was presumed to approach, or indeed represent, the histological arrangement of a
coronary artery free of lesions. Figure 2.7 shows the general structure of a coronary

artery from a wild fish.

Figure 2.8 shows the different layers of the coronary arteries of the ABT. The tunica
adventitia (syn. tunica externa) takes the form of numerous thick elastic lamellae, which
extend around the peripheral circumference of the artery, and appeared to contain
amounts of collagenous material. In most cases there appeared to be minimal
distinction between the adventitial layer of the artery and the adjoining tissues, the

latter appearing to be composed almost entirely of fibrous components.
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Figure 2.7 Low power view of an Atlantic bluefin tuna coronary artery cross-section. Arrowhead refers to locations
on the artery which were classed as being free of lesions (Verhoeff-van Gieson; bar = 200 um).

The tunica media was thick and composed principally of thick elastic fibres with
interspersed collagenous and smooth muscle components around its outer periphery.
Smooth muscle was present towards the inner circumference just before the intima.
The intima was often difficult to distinguish in the main coronary artery and appeared
as a layer of cells resting on a moderately convoluted IEL. Sections through daughter
branches were similar in structure although distinctive in that they had a visibly smaller
amount of elastic fibres than found in the media of sections from the main coronary

artery trunk, these being substituted by smooth muscle cells.
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Figure 2.8 View of an artery cross-section showing the three layers of the Atlantic bluefin tuna coronary artery
(Verhoeff-van Gieson; A, adventitia; B, media; C, intima; bar = 100 um).

2.3.3. Pathology of coronary artery lesions

All coronary artery sections had one or more lesions present so that prevalence was
equivalent to 100 %. Lesions ranged from focal proliferations to growths around the
entire luminal surface of the vessels, were diverse in morphology and for the most part
appeared to increase in severity with increasing fish weight. The structural arrangement
of the artery also appeared to deteriorate with increasing size, and the arterial layers
were more difficult to distinguish with increasing specimen weight. Frequently, lesions
continued between subsequent sections indicating that they spanned the entire
distance between tissue blocks. Generally they were composed of fibrous and
collagenous components and proliferated endothelial and smooth muscle cells towards
the luminal margin. In most sections, the latter three were oriented transversely to the
main artery axis so that lesion areas contrasted heavily with the circular organisation
found in normal artery structures. Microscopic evaluation also revealed that in the
majority of lesions the IEL was thinned, fragmented or altogether absent. Figure 2.9

shows a mild lesion from the coronary artery of a farmed ABT. The media is thinned and
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appears to be losing structural organisation, endothelial cells have proliferated at
locations close to the lumen and the IEL is absent. Masson’s trichrome staining indicated

widespread collagenous deposition within the arteriosclerotic lesions.

¥ { 4 “ Iy ’ ¢ , , " :

‘.l’:: L ,.l", | . . Ll Al

Figure 2.9 Lesion from the coronary artery of a farmed 250 kg Atlantic bluefin tuna. Arrowhead shows location where
the media thins and loses structural arrangement and smooth muscle cells proliferate at right angles to the medial
fibres, giving rise to an arterial lesion (Verhoeff-van Gieson; A, adventitia; B, media; C, intima; bar = 150 um).

More pronounced lesions were characterised by a much higher proportion of
proliferated endothelial cells and a thinned or completely disrupted medial layer. As was
the case for the smaller lesions, Verhoeff-van Gieson and Masson’s trichrome staining
revealed the presence of collagen and fibrous structures within these larger
proliferations. Lesions of this type were more frequently encountered within the larger
fish and Figure 2.10 shows one of the most severe lesions encountered during analysis.
Additionally, some of the cross sections showed lesions which were composed entirely

of thick elastic fibres.
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Figure 2.10 A, severe lesion from the main coronary artery of a 245 kg farmed Atlantic bluefin tuna (ABT), resulting
in a potential lumen loss of more than 40 % (Verhoeff-van Gieson; bar = 300 um); B, coronary artery lesion adjacent
to A. The intense green staining within the proliferation indicates the widespread presence of collagen within
arteriosclerotic lesions in ABT (Masson's trichrome; bar = 300 um).
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Although focal lesions were occasionally observed in the main artery trunk, lesions
generally assumed larger, more diffuse forms and extended over larger lengths of the
luminal margin. Figure 2.11 shows a lesion from the coronary artery of a farmed ABT;
not all lesions expanded over such areas but often were found to be present over most,
or the entire flank, of the artery. There was also a trend for arteriosclerotic lesions to be
more common along the lateral and top edges (i.e. the luminal surface away from the
bulbus arteriosus). Lesions stemming from the edge attached to the bulbus, however,
generally consisted of a deeper cell mass and extended farther into the lumen. There
were also isolated cases, generally in the larger fish, where the lesion extended over the
entire luminal surface (Figure 2.12). In addition, the arterial lesions generally had a
smooth and continuous boundary but there were cases in which focal hyperplastic

nodules were scattered along the entire IEL (Figure 2.13).

Figure 2.11 Additional section through coronary artery of a farmed Atlantic bluefin tuna demonstrating amounts of
collagen within the coronary lesion and in the surrounding bulbus arteriosus parenchyma (Masson's trichrome; bar
=300 um).
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Figure 2.12 Coronary artery from a farmed Atlantic bluefin tuna specimen weighing 440 kg. Lesion extends
continuously along lateral and dorsal periphery of the artery (Verhoeff-van Gieson, bar = 200 um).

Figure 2.13 Focal myointimal proliferations (arrowheads) were present in a small proportion of the coronary arteries
of Atlantic bluefin tuna (Verhoeff-van Gieson; bar = 300 um).
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Some sections exhibited disruptions in the arterial walls suggesting past trauma to the
arterial structure, with some extending from the lumen to the adventitia. In these
sections collagen bridged an abrupt break between the elastic fibres (Figure 2.14) but

some also contained smooth muscle components between the two points.

Figure 2.14 Artery section showing collagen deposition at point of disruption (arrowhead) in the arterial wall of a
coronary artery from an Atlantic bluefin tuna (Verhoeff-van Gieson; bar = 100 um).

Under high-power magnification the lesions exhibited varying morphology and although
consisting of smooth muscle and fibrous structures, the proportion of these within the
proliferations varied greatly between different lesions. In their majority, the lesions
consisted of proliferated smooth muscle but in a minor proportion of pathologies
several fibrous elements were observed to be present within the lesions to differing
degrees. High power micrographs of representative lesions are shown below (Figures

2.15,2.16, 2.17, 2.18, 2.19, 2.20).
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Figure 2.15 Smooth muscle cell proliferations (arrowhead) in the coronary artery of an Atlantic bluefin tuna. They
appeared to originate from within the medial layer of the artery. The media was disrupted and the muscle cells
oriented at right angles to main artery axis (Verhoeff-van Gieson; bar = 50 um).

Figure 2.16 Intimal smooth muscle proliferations (arrowheads) within the Atlantic bluefin tuna coronary artery. In
this artery the proliferation contained several fibrous elements (Verhoeff-van Gieson; bar = 50 um).
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Figure 2.17 An arteriosclerotic lesion within the Atlantic bluefin tuna coronary artery. Generally, lesions had this
appearance and consisted of large proportions of smooth muscle cells (arrow) oriented at right angles to the main
artery axis, and lesser amounts of collagen (arrowhead) and fibrous components (Verhoeff-van Gieson; bar = 50 um).

Figure 2.18 Arterial lesions from the coronary artery of an Atlantic bluefin tuna with an intact medial layer
(arrowhead). Lesions with an intact medial layer were not commonly observed and lesion areas were often
accompanied by a disrupted media (Verhoeff-van Gieson; bar = 100 um).
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Figure 2.19 Fragmentation observed in lesions (arrowhead) from the Atlantic bluefin tuna coronary artery. A large
amount of collagen can be observed within this particular lesion and the elastic lamina is continuous over the recess
(Verhoeff-van Gieson; bar = 50 um).

Figure 2.20 Section through the main coronary artery of an Atlantic bluefin tuna showing multiple focal proliferations
along the endothelial layer. The elastic lamina is disrupted at locations immediately beneath the protrusions
(arrowhead) and uninterrupted at others (arrow) (Verhoeff-van Gieson; bar = 50 um).
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Sections through the major bifurcation showed an arterial structure composed almost
entirely of smooth muscle and collagen (Figure 2.21). Lesions from the daughter
branches were predominantly focal protrusions into the lumen (Figure 2.22). These
were similar in appearance to cases of myointimal hyperplasia in salmonids, and
consisted of proliferated smooth muscle and endothelial cells, and contained numerous
vacuoles (Figures 2.23, 2.24). The IEL was usually present at locations but fragmented

and confined to a point between the media and the hyperplastic protrusions.

4\;\\ .-\‘

Figure 2.21 Section through the daughter branch after the major bifurcation of the coronary artery of an Atlantic
bluefin tuna. Few structural elastic fibres were visible at this region and the structure mainly consisted of smooth
muscle cells and collagen. Focal myointimal proliferations were most commonly observed in this area (Verhoeff-van
Gieson; bar = 100 um).
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Figure 2.22 Section through daughter branch of the coronary artery of an Atlantic bluefin tuna specimen showing
multiple focal myointimal proliferations along the entire luminal circumference (Verhoeff-van Gieson; bar = 200 pm).

Figure 2.23 Focal myointimal hyperplasia in the first daughter branch of the main coronary artery of an Atlantic
bluefin tuna specimen. The arrowhead demonstrates location where the inner elastic lamina is disrupted (Verhoeff-
van Gieson; bar = 20 um).
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Figure 2.24 Section through the daughter branch of an Atlantic bluefin tuna coronary artery showing disrupted

arterial structure with heavy fibrous deposition and multiple focal proliferations along the ventral region of the lumen
(Verhoeff-van Gieson; bar = 200 um).
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Figure 2.25 Section through the daughter branch of the main coronary artery of an Atlantic bluefin tuna. Arterial
structure is non-uniform and there is no clear distinction between the media and intima. Multiple focal proliferations
can be found around the lumen (Verhoeff-van Gieson; bar = 100 um).
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Microscopy also revealed abnormalities within the artery network infiltrating the bulbus
arteriosus (Figure 2.26). The arterioles were observed to have an adventitia composed
of collagenous and elastic fibres, a relatively thick media incorporating smooth muscle
and a small amount of dispersed elastic fibres, and a highly convoluted IEL.
Abnormalities observed within these vessels were of two types. The first consisted of
focal myointimal proliferations within the intima, and in these lesion types the
underlying IEL was thinned and disrupted beneath the smooth muscle growths. The
focal lesions were predominantly composed of endothelial and smooth muscle cells, but
in cases were also found to include considerable amounts of collagen. Hyperplastic
media were also observed and these demonstrated a disproportionately thick medial
layer and a distorted lumen, the latter appearing to be a consequence of the unequal
proliferation of the media along the vessel circumference. The smooth muscle fibres
were arranged transversely to the main vessel axis as opposed to their circular

arrangement in the normal arterial structure.

2.3.4. Lipid staining

Only a small number of coronary artery samples were processed for lipid staining due
to the long pre-processing procedures to fix lipids within the tissue for routine
histological processing. After staining for fats with oil red O, it was quickly evident that
lipid inclusions are not a common feature of arteriosclerotic lesions in ABT. None of the
arteries stained positive for lipid within the arterial structure, and Figure 2.27 shows the

typical negative appearance of oil red O stained arteries.
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Figure 2.26 Focal myointimal proliferation in an arteriole supplying the bulbus arteriosus parenchyma of an Atlantic

bluefin tuna (Verhoeff-van Gieson; bar = 50 um).
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Figure 2.27 Atlantic bluefin tuna coronary artery section pre-processed for lipid fixation. Arteriosclerotic lesions
appeared to be free of lipid inclusions (oil red O; bar = 300 um).
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Figure 2.28 shows the only artery section where the lipid was detected close to the
coronary artery structure. Although the intimal proliferations were free of lipid
inclusions, a considerable number of lipid-impregnated vacuoles were detected at a
location between the media and adventitia. Other artery sections, however, were not
found to have such large amounts of lipid in the supporting tissue of the bulbus
arteriosus, and this suggests that most likely the lipid bodies detected within the arterial
structure are unrelated to the arteriosclerotic process itself, and this is further

supported by the fact that no lipid was found within the proliferations themselves.

R Rt il
Figure 2.28 Micrograph of artery from a 200 kg farmed Atlantic bluefin tuna stained for lipids. Arrowhead indicates
region where numerous lipid-containing vacuoles were detected while arrow shows arterial lesion which stained
negative for lipids (oil red O; bar = 200 um).

The method used to fix lipids in formalin-fixed coronary arteries (Tracey & Walia, 2002)
was validated by treating formalin-fixed liver tissue in the same manner as the artery
specimens. Positive staining with oil red O of the control section indicated adequate

lipid fixation within the fish tissue during pre-treatment.
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2.3.5. Morphometric measurements

Lesion scoring for PLL and MLT was based on the measurement of nine coronary artery
sections (i.e. three sections each from the proximal, medial and distal regions of the
artery) per ABT specimen. Table 2.3 summarises the PLL and MLT values, which were
significantly and positively correlated (p < 0.01), for the coronary arteries evaluated in
this study. Generally, mean values for both PLL and MLT increased with increasing fish
age as represented by weight and length values. The only exception to this trend was
for coronary arteries collected from the Group 2 category where mean PLL and MLT
values were higher than for specimens of a lower mean weight from Group 1. Scatter
plots showing this trend are shown in Figures 2.29 and 2.30 for arteries collected from

captive fish while those for ABT sourced from the wild are presented in Figure 2.31.

PLL figures ranged from 0.5 % in smaller fish to 58.5 % in larger specimens. Similarly, the
lowest MLT value measured within the sample set was from small individuals collected
from the wild and amounted to 8 um, while a larger fish sourced from farm had the

largest MLT at 1,018 pum.

Statistical results are shown in Tables 2.4 and 2.5. Lesion severity did not differ
significantly between sexes (p > 0.05). Mean lesion scores were higher in females in
Group 3 and Group 2 but these were higher in males than females in Group 1.
Interestingly, in all groups there was a statistically significant trend (p < 0.01) for PLL to
increase proximally to distally (i.e. increasing severity with increasing distance from the
ventricle). As expected the same was observed for MLT (p < 0.01) with the exception of
arteries collected from wild ABT (Group 3). Figures 2.32 and 2.33 show mean PLL and

MLT by artery region respectively.
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Table 2.3 Potential lumen loss and maximal lesion thickness of coronary arteries from Atlantic bluefin tuna specimens collected from different sources. Values are given as mean + standard
deviation (SD) and values in parentheses represent upper and lower ranges (Group 1, farm 6 months; Group 2, farm 18 months; Group 3, wild).

Origin Weight (kg)

Length (cm) Potential lumen loss (%) Maximum lesion thickness (um)

Group 1, <120 kg (n=9)

Proximal region
Medial region
Distal region

76 + 23 (46-108)

153 + 23 (123-187)

20.4 +10.6 (0.5-48.5)
14.8 + 10.5 (0.5-47.0)
22.2 +9.8 (6.5-41.3)
24.2 +9.3 (6.8-48.5)

149 + 100 (35-695)
90 + 51 (35-232)
161 + 90 (48-457)
195 + 120 (46-695)

Group 1, 2120 kg (n = 16)

Proximal region
Medial region
Distal region

270 £ 101 (131-476)

245 + 28 (197-289)

24.2 +10.4 (2.9-58.5)
20.7 +10.3 (2.9-58.5)
24.8 + 9.4 (9.2-49.2)

27.1+10.6 (6.5-54.8)

263 + 180 (18-1018)
171 + 110 (18-467)
282 + 180 (50-761)
336 + 201 (35-1018)

Group 2, <120 kg (n = 8)

Proximal region
Medial region
Distal region

94 + 17 (68-117)

166 + 15 (141-183)

18.9 6.5 (7.3-39.1)
16.3 + 4.8 (7.3-25.9)
20.2 6.7 (7.9-36.2)
20.3 +7.2 (10.1-39.1)

119 + 57 (29-273)
107 + 53 (38-287)
123 + 60 (52-273)
126 + 60 (29-250)

Group 2, 2120 kg (n = 8)

Proximal region
Medial region
Distal region

182 + 35 (126-241)

222 + 18 (188-249)

22.9 +10.1 (4.3-46.5)
17.5+ 7.5 (4.3-35.7)
24.8 +11.1 (5.4-44.0)
26.5+9.5 (9.9-46.5)

193 + 132 (26-549)
126 + 74 (26-328)

225 + 146 (83-488)
243 + 138 (55-549)

Group 3 (n=12)
Proximal region
Medial region
Distal region

35 + 7 (23-49)

119 + 7 (112-135)

10.3 + 7.6 (0.8-42.4)
7.4 + 3.4 (0.8-13.9)

10.0 + 7.0 (2.8-37.7)
13.4+ 9.7 (2.8-42.4)

77 + 52 (8-289)
72 + 41 (18-157)
76 + 52 (8-215)
83 + 62 (11-289)

Chapter 2

Page 72



Coronary arteriosclerosis in Atlantic bluefin tuna

45

40

35

30

25

20

Mean percentage lumen loss (%)

15

10

Figure 2.29

O Groupl
O Group2 O
1 Group 1 O
————— Group 2

O
. |
0 50 100 150 200 250 300 350 400 450 500
Fish weight (kg)
Mean percentage lumen loss as a function of weight for arteries collected from farmed Atlantic bluefin tuna (Group 1, farm 6 months, n = 26; Group 2, farm 18 months, n = 16).
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Figure 2.30 Mean maximal lesion thickness as a function of weight for arteries collected from farmed Atlantic bluefin tuna (Group 1, farm 6 months, n = 26; Group 2, farm 18 months, n = 16).
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Figure 2.31 Mean percentage lumen loss and mean maximum lesion thickness as a function of weight for arteries from wild Atlantic bluefin tuna (Group 3, n = 12).
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Within all groups there was a significant positive correlation (p < 0.05) between lesion
severity indices and length and weight values. Pearson correlation coefficients were
higher for weight rather than length values, indicating that weight has a stronger
influence on lesion severity than length. Results from ANCOVA also showed weight to

have a stronger influence on lesion severity than sex.

Table 2.4 Statistical p-values for the effects of various parameters on percentage lumen loss in the coronary arteries
of Atlantic bluefin tuna. Values in parentheses denote Pearson correlation coefficients (Group 1, farm 6 months, n =
26; Group 2, farm 18 months, n = 16; Group 3, wild, n = 12).

Group
Parameter 1 > 3
Sex 0.344 0.003 0.117
Artery region <0.001 <0.001 0.006
Length <0.001 (0.349) 0.014 (0.323) 0.001 (0.031)
Weight <0.001 (0.368) 0.009 (0.385) <0.001 (0.354)
ANCOVA: weight  <0.001 0.002 <0.001
ANCOVA: sex 0.462 0.198 0.235

Table 2.5 Statistical p-values for the effects of various parameters on maximum lesion thickness in the coronary
arteries of Atlantic bluefin tuna. Values in parentheses denote Pearson correlation coefficients (Group 1, farm 6
months, n = 26; Group 2, farm 18 months, n = 16; Group 3, wild, n = 12).

Group

Parameter 1 2 3

Sex 0.971 0.321 0.016

Artery region <0.001 0.007 0.936

Length <0.001 (0.414) <0.001 (0.389) 0.024 (0.217)
Weight <0.001 (0.407) <0.001 (0.359) 0.004 (0.273)
ANCOVA: weight  <0.001 <0.001 0.008
ANCOVA: sex 0.714 0.156 0.034

Statistical analysis on pooled lesion indices found artery region, length and weight to
have significant effects (p < 0.01) on both PLL and MLT values. ANCOVA results indicated
weight and origin as the strongest predictors for PLL and MLT, while sex had the lesser

influence. Results are summarised in Table 2.6.
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Table 2.6 Statistical p-values for various parameters on pooled percentage lumen loss and maximal lesion thickness

data from Atlantic bluefin tuna specimens from all origins. Values in parentheses denote Pearson correlation
coefficients.

Lesion severity index

Parameter Percentage lumen loss Maximum lesion thickness
Sex 0.070 0.031
Artery region 0.000 <0.001
Length <0.001 (0.504) <0.001 (0.557)
Weight <0.001 (0.466) <0.001 (0.518)
ANCOVA: weight  <0.001 <0.001
ANCOVA: sex 0.110 0.035
ANCOVA: origin <0.001 <0.001
30
Group 1
75 B Group 2
W Group 3

20 -

15 A

Mean percentage lumen loss (%)

Proximal Medial Distal

Coronary artery region

Figure 2.32 Mean percentage lumen loss in Atlantic bluefin tuna coronary arteries as a function of artery region and
by specimen origin (Group 1, farm 6 months, n = 26; Group 2, farm 18 months, n = 16; Group 3, wild, n = 12).

2.3.6. Effect of ventricle size on lesion severity

The pathology of lesions was identical to that described in Section 2.3.3 above. All
sections studied had at least one form of identifiable lesion so that prevalence was
equivalent to 100 %. Measurements were taken from artery sections from 57 ABT and

descriptive data for the specimens are provided in Table 2.7.
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Figure 2.33 Mean maximal lesion thickness in Atlantic bluefin tuna coronary arteries as a function of artery region
and by specimen origin (Group 1, farm 6 months, n = 26; Group 2, farm 18 months, n = 16; Group 3, wild, n = 12).

Table 2.7 Descriptive data for Atlantic bluefin tuna specimens. Values are given as the mean + standard deviation
and values in parentheses represent upper and lower ranges (n = 57).

Parameter

Mean values

Specimen weight (kg)

Specimen length (cm)

Ventricle weight (g)

Percentage lumen loss (%)
Maximum lesion thickness (um)

190 + 121 (43-411)
205 + 56 (130-293)
290 + 154 (110-655)
22.9+7.4(2.2-63.1)
266 + 138 (39-1,280)

Ventricle weight was significantly (p < 0.01) and positively correlated with specimen
weight (Pearson = 0.950), length (Pearson = 0.945), PLL (Pearson = 0.190) and MLT
(Pearson = 0.342) values. Figure 2.34 plots ventricle weight as a function of fish weight,
and plots of PLL and MLT as a function of ventricle weight are given in Figures 2.35 and

2.36 respectively.
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Figure 2.34 Ventricle weight as a function of specimen weight for Atlantic bluefin tuna (Pearson = 0.95; n = 57).
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Figure 2.35 Percentage lumen loss as a function of ventricle weight for Atlantic bluefin tuna coronary arteries
(Pearson =0.19; n = 57).
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Figure 2.36 Maximum lesion thickness as a function of ventricle weight for Atlantic bluefin tuna coronary arteries
(Pearson =0.34; n =57).

2.4. Discussion

Vastesaeger et al. (1962) described the common occurrence of arteriosclerotic lesions
in a restricted sample of wild ABT. Based on the results collected from a larger number
of specimens, this study confirms these findings on the basis that all fish examined had

varying degrees of arteriosclerotic lesions along their intimal boundary.

Locations around the arterial circumference that were free of lesions (Figure 2.7) had a
distinctive appearance from the coronary arteries of other fish species. The intima
consisted of a single layer of endothelial cells overlaid by a convoluted IEL, making this
arterial layer similar in histological appearance to that of other teleosts. Remarkable
differences, however, were observed in the medial layer, which in contrast to salmonid

coronary arteries (Farrell, 2002), appeared to have a higher proportion of thick elastic
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fibres. Skipjack and yellowfin tunas have higher blood pressures than ordinary teleosts
(Brill & Bushnell, 2001). According to Farrell et al. (1992), skipjack tunas may also have
an obligate dependence on coronary circulation for efficient cardiac function and have
a well-vascularised myocardium (Tota, 1983). In consideration, this anatomical
difference may be a physical adaptation to meet the extraordinary physiological
requirements of the tuna cardiac system and larger amounts of elastic fibres within the
artery, together with abundant collagen in the adventitia, should aid in maintaining

artery form and function on a highly distensible bulbus arteriosus.

Although information on arteriosclerotic lesions in ABT is limited, the research was
directed towards investigating the occurrence of such pathologies along the main
coronary artery; severe lesions seem to be restricted to the part of the coronary artery
lying on the bulbus arteriosus and ventral aorta in salmonids (Moore et al., 1976a;
Garcia-Garrido et al., 1993). Microscopically the lesions appeared diverse in form but
morphologically similar to those encountered in other teleosts, although generally on a

more substantial scale due to the larger dimensions of the ABT coronary artery.

Lesions varied from focal myointimal proliferations to larger proliferations extending
over large segments of the intimal area and in the most severe cases proliferations
covered the entire intimal border. Lesion morphology was non-uniform but mainly
consisted of elastic fibres, smooth muscle cells, and in the more severe proliferations
significant amounts of collagen. In their majority, the proliferative cells were oriented
at right angles to the medial cells, from which they appear to originate, and this
arrangement is similar to that encountered in salmonid lesions (Moore et al., 1976c;

McKenzie et al., 1978). Most were observed to be highly vacuolated and to possess
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basophilic nucleus-like structures, the latter being classified in other species as
proliferating smooth muscle (Seierstad et al., 2008). As described for arteriosclerotic
pathologies from salmonids (Farrell et al., 1986; Kubasch & Rourke, 1990; Garcia-
Garrido et al., 1993), the IEL was found to be disrupted in lesion areas but in more severe
pathologies it was generally absent. Although reduplication of the IEL has been
documented in other species (Seierstad et al., 2005b; Duran et al., 2010), it was not

encountered in ABT coronary arteries in this study.

In the proximal part of the coronary artery, the lesions were focal myointimal
proliferations, and consisted exclusively of smooth muscle. Further away from the
ventricle, however, these gave way to lesions of increasing width indicating that these
may merge to form larger and more diffuse luminal protrusions. The latter bear a

striking resemblance to mild atherosclerotic lesions in human aortas (Stouffer, 2005).

Even though lesions predominantly took the form of luminal protrusions originating
from the media, the latter appeared to possess decreasing structural integrity in more
acute lesions, and this was more apparent in the larger fish. Similar to lesions described
in salmon (Van Citters & Watson, 1968; McKenzie et al., 1978), the media was thinned
and its usually dense array of elastic fibres was dispersed and infiltrated with smooth
muscle and collagenous components, the Ilatter presumably assisting in the
maintenance and strengthening of the arterial structure (Safar, 2007). This loss in
structural integrity was also observed to increase with increasing fish size, with the
media having increasing proportions of collagen. Interestingly, this is also the case in
humans where collagen is known to replace fatigued elastin with age, thereby increasing

arterial stiffness (Izzo Jr. & Mitchell, 2007).
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Frozen sections are the preferred material for examination of tissues for the presence
of lipids, however facilities for these procedures were not available at the point of
collection and so the tissues were pre-treated to fix lipid for routine histological
processing (Tracey & Walia, 2002). Using this method, control tissues stained positive
for lipids so that it was presumed that lipid fixation was adequate for the purposes of
this study. No lipid deposits were detected in any of the arteriosclerotic lesions in the
coronary arteries and this conflicts with earlier reports of lipid deposits in ABT
(Vastesaeger et al., 1962). Only one artery was found to have lipid deposits within the
bulbus arteriosus tissue but the inclusions were outside the arterial structure so that it
differs from atheroma-type pathologies in that the latter originate from the intima

(Safar, 2007).

Traditionally, arteriosclerotic lesions in salmonids and other teleosts are graded based
on a five-level system developed by (Moore et al., 19764, b, c), based on the number of
cells constituting an intimal proliferation. As expected, the lesions encountered within
the ABT coronary artery are much larger in size (due to the larger size of the artery when
compared with that from smaller fish species) so that using a system of grading lesions
based on cell size might be inadequate in accurately detailing arteriosclerosis in the
species. Although this method is still valid for grading arteriosclerotic lesions, it tends to
give slightly different results to computerised measurements as performed here
(Seierstad et al., 2005a). The procedure used here estimates two parameters — the PLL
and MLT — which when considered together may reflect better the state of the
arteriosclerotic artery. The first gives an estimate of the actual luminal area lost due to

proliferative lesions while the latter reflects the degree of protrusion into the lumen and
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may be considered as an indirect measure of lesion size. These two parameters were
strongly correlated across the entire sample set so that increasing lumen loss was linked

to an increase in lesion size.

Initially changes associated with spawning were thought to bring about these
pathologies in salmonids, but later it was acknowledged that lesions progress with age
and may only be secondarily influenced by other events (Saunders & Farrell, 1988;
Saunders et al., 1992; Farrell, 2002; Seierstad et al., 2008). The results obtained confirm
this is also the case for ABT since in all sample groups lesion severity — in terms of both
PLL and MLT — increased with specimen size indicating that lesions were accumulating

in the artery over time.

Davie and Thorarensen (1996) found no differences in lesion severity between sexes
and the same was observed in the current study with arteries from the ABT. There was
a non-significant trend for lesion scores to be higher in females in wild fish (Group 3)
and fish held in cages for 18 months (Group 2). The opposite was true for fish farmed
for a period of 6 months (Group 1). This may be related to the fact that at weights in
excess of approximately 250 kg the proportion of males to females increases so that the
larger individuals — where lesion severity is expected to be high —are more likely to be
males (personal observation). This trend, where male capture frequency is higher at

larger weights, has also been described in wild capture fisheries (Mather et al., 1995).

Although the aetiopathogenic processes leading to the arteriosclerotic lesions in
salmonids are multifactorial and sometimes speculative, it is widely accepted that these
lesions originate mainly from tissue responses following vascular injury (Farrell, 2002)

and from mechanical stresses on the artery wall caused by the distension of the
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underlying bulbus arteriosus during blood ejection from the ventricle (Saunders et al.,
1992). This so-called ‘response-to-injury’ theory is also recognised to be one of the main
initiating factors of atherosclerosis in humans (Ross, 1999). Lesions were more
pronounced moving away from the ventricle and their occurrence was also observed to
be more common on the luminal surface away from the bulbus arteriosus. Provided that
this pattern in severity was found across all of the coronary arteries inspected, it is
plausible to presume that mechanical stresses play an important role in arteriosclerotic
lesions in ABT and that their influence on the arterial structure increases with distance
away from the ventricle attachment. Lesion progression in fish may also be aided by
haemodynamic factors (Maneche et al., 1972; Muiioz-Chépuli et al., 1991; Farrell, 2002;
Seierstad et al., 2008) and their interaction with the arterial wall. Several studies have
identified hypertension (Kannel, 1996) and several haemodynamic factors such as low
shear stress and high flow oscillation (Glagov, 1972; Stary et al., 1992; Stouffer, 2005)
as significant risk factors in human atherosclerosis since it facilitates endothelial damage
(Berliner et al., 1995). Several tuna species have been documented to have a higher
blood pressure than other teleosts (Brill & Bushnell, 1991) so that they may be
predisposed to arterial lesions, especially during periods of intense activity and their

consequential effects on the coronary artery.

Statistical treatment indicated that fish origin, whether from the farm or wild,
influenced the severity of arteriosclerotic lesions in ABT. Although the statistical analysis
used treats the parameters independently from each other, the outcome may have
potentially been biased by poor sample weight representation across the different

categories. The mean specimen weight of ABT collected from the wild was low when
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compared to individuals sourced from farm, since no large wild ABT were available for
recovery of the coronary artery at the time of study. It was also difficult to assess for
differences in lesion severity between fish held in cages for different periods of time
since fish sizes were different across the two farmed fish categories. Even though efforts
were made so that each category had an adequate representation in terms of size and
sex, sampling ABT specimens is opportunistic and relies upon the availability of these
during commercial harvest. Although fish from the farm and ocean have different
lifestyles, the major differences are expected to be in diets, swimming speed and its
associated demands on the cardiac system, and growth rates. Vastesaeger et al. (1962)
linked lesions in ABT to their diets but findings in salmonids suggest that arteriosclerotic
lesions in these species are not associated with dietary FA composition (Saunders et al.,
1992; Seierstad et al., 2008) and at most, dietary intake plays a secondary role in lesion
progression (Farrell et al., 1986). Swimming speeds are also likely not to differ to a large
degree between wild and farmed specimens since tuna species are obligate ram
ventilators and need to maintain a constant adequate swimming speed for gaseous
exchange through their gills (Brown & Muir, 1970). Although not considered as an
initiating factor, faster growth places higher demand on physiological systems leading
to a more stressful lifestyle and its ensuing effects. Growth rates are expected to differ
between wild and farmed fish due to the higher food availability under captive
conditions and this may stimulate lesion development through vascular injury or

accelerate lesion progression (Farrell, 2002).

Partial correlation analysis demonstrated a significant correlation between ventricular

mass and PLL and MLT values, indicating increasing severity with increasing mass.
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Similar findings have been reported in rainbow trout (Davie & Thorarensen, 1996) and
Atlantic salmon (Seierstad et al., 2005b; Seierstad et al., 2008). Although correlation
between ventricle weights and lesion severity was significant, it was relatively dispersed
for some of the specimens so that some lower ventricle weights showed higher
severities than larger ventricles. The hearts were collected from specimens with
differing weights and ventricle mass varied correspondingly. The correlation between
these two parameters, however, was strong and linear with few outliers indicating that

ventricle weights increase uniformly with increasing fish age or weight.

Although the correlation between ventricle weight and PLL and MLT values was
significant, the correlation was in itself weak. This goes to suggest that ventricle mass is
not the only determinant in lesion severity in ABT and other factors might be involved.
It is important to note also that due to the variability in sample size the ventricle weights
also fluctuated over a wide range so that it is not possible to draw clear conclusions on

the effect of ventricle weight on lesion severity.

2.5. Conclusion

The high value of the fish together with difficulties in conducting controlled
experiments, make ABT a difficult subject to investigate. Although it was not possible to
identify a single parameter as having the most influence on lesion severity, it was clear
that coronary artery lesions in ABT are widespread and structural degeneration
continues throughout the life of the fish. Restrictions in force in the ABT fishery make
experimental design difficult and for example the sample set did not include any
immature fish and only smaller mature specimens could be sourced from the wild. This

necessitates careful interpretation when testing for parameter effects on such lesions.
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Several factors are likely to be involved in the development of arteriosclerotic lesions in
the ABT especially considering that the species is long-lived and is also highly migratory
so that it is exposed to different environments through the course of its life. The
understanding of these warrants further investigation but the scope for this may be

limited unless controlled experiments may be performed.
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CHAPTER 3

DESCRIPTION OF HAEMATOLOGICAL AND NON-
SPECIFIC HUMORAL IMMUNE PARAMETERS FROM
FARMED ATLANTIC BLUEFIN TUNA

3.1. Introduction

The ABT has been fattened commercially for over a decade but owing to several
practical limitations, including their commercial value, little is known about their
physiology when held in captivity. Different fish have different lifestyles and this is
reflected in variations in their physiology. Tunas are high-energy demand teleosts
(Korsmeyer & Dewar, 2001) and so their biological characteristics are expected to be

different from those of less active teleosts.

Blood is one of the major components allowing an organism to function physiologically.
To date there have been few studies examining the haematology or plasma
biochemistry of ABT held under commercial culture conditions. Haematological data is
widely available for other teleosts, showing a wide variation in blood parameters
between species (Ellis, 1977; Hine et al., 1987), so much so that specific investigations

are required to establish functional reference ranges for a particular species.
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Blood is an easily accessible component of the fluid system of vertebrates and it is
routinely assessed to detect changes in the physiological status of an organism
(Houston, 1997). Peripheral blood analysis is used to evaluate the health of several
organisms (De Pedro et al., 2005) but it is necessary to establish normal species-specific

ranges for this routine analysis.

Fish are in close contact with their aquatic environment and respond physiologically to
any changes within it (Casillas & Smith, 1977). Haematological and plasma biochemical
indices are influenced by several exogenous factors and are therefore useful for
monitoring animal health (Adham et al., 2002; Barcellos et al., 2003; Borges et al., 2004),
nutritional status (Spannhof et al, 1979), disease (Rehulka, 2002) and general
management stress (Svobodova et al.,, 2006). For example, changes in erythrocyte
numbers may reveal the presence of infection (Rehulka, 2002) and fluctuation in
leucocyte proportions may be an indicator of disease (Nussey et al., 1995a; Harikrishnan
et al., 2003; Silveira-Coffigny et al., 2004) or environmental toxicants (Nussey et al.,

1995a).

The immune system of teleosts consists of both innate and adaptive components (Du
Pasquier, 2001). The adaptive response is specific, has a lag phase and is based on the
secretion of antibody (Ab) molecules produced by B-cells and the action of T-cells
(Manning & Nakanishi, 1997). In contrast the innate immune response comprises
several non-specific elements that act immediately against foreign bodies and serves to
prevent infection, or delay pathogen establishment until an adequate targeted response

can be developed (Alexander & Ingram, 1992). Innate immunity is an essential
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component of pathogen defence in fish since their specific immune responses are

constrained due to their poikilothermic nature and limited Ab repertoire (Whyte, 2007).

The more prominent non-specific defence components found in the teleost immune
system include natural Ab, lysozyme, haemagglutinins (lectins) and complement (Yano,
1996). To date these non-specific immune parameters have only been investigated in

tuna species other than ABT.

Ab have an important role in teleost immunity and are involved in the resistance of the
fish to bacteria and other pathogens (Uchida et al., 2000). They are expressed on the
surfaces of B lymphocytes (Fillatreau et al., 2013) and can be found in the serum and
mucus of fish. Immunoglobulin M (IgM) is the predominant immunoglobulin (Ig) class
found in teleost serum (Boes, 2001) and is associated with adaptive immunity (Whyte,
2007; Ehrenstein & Notley, 2010) but they are also involved in complement fixation
(Magnadottir et al., 1997; Boshra et al., 2004), agglutination (Arnold et al., 2006) and

moderating cellular cytotoxicity (Magnadottir et al., 1997; Stafford et al., 2006).

Lysozyme is a bacteriolytic enzyme which hydrolyses linkages between molecular
constituents of the peptidoglycan layer in bacterial cell walls and is commonly found in
teleost mucus, serum and tissues (Jolles & Jolles, 1984; Ellis, 1999). Complement
consists of several serum proteins and has two modes of activity. The alternative
pathway is Ab independent and is activated, among other things, by lipopolysaccharide
on bacterial surfaces while the classical pathway is triggered through the presence of
antigen-Ab complexes. Complement activation results in the synthesis or release of
important molecules involved in inflammatory responses which possess opsonising and

bactericidal properties (Yano, 1996). Lectins are responsible for haemagglutination and
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the aggregates they form promote phagocytosis and the clearance of pathogens. They

have been reported in many teleost species (Ellis, 1999).

The main objective of this study was to investigate haematological and plasma
biochemical parameters in farmed ABT. Available data is scarce and new findings may
contribute to the establishment of standard reference values that may aid in welfare
assessment of the animals. Additionally, the research aimed to test for the presence of
several innate immune components in captive ABT. Both haematological and
immunological features are known to vary with fish age (Magnadéttir et al., 1999b).
Since ABT are a species with a large size/age range, this study aimed to analyse for the

effect of size on the measured haematological, biochemical and immune parameters.

3.2. Materials and Methods

3.2.1. Study population

ABT were captured in the Mediterranean (FAO Statistical Area 14 [see Figure 2.1];
35°10’N, 014°46’E) in June 2012 by purse seine vessels, transferred to sea cages and
towed to farm. They were held in offshore marine cages, off southern Malta (35°49’N,
014°35’E) for a period of 6 months and maintained on a trash fish diet — a combination
of mackerel, sardine and herring of varying origin and fat composition. The fish were
fasted for one day prior to harvest, and then killed by a shot to the head as per standard
industry procedures and transferred to a landing boat. Forty-five ABT specimens were
rinsed with running water and blood was withdrawn from the lateral blood vessel
beneath the pectoral recess (Figure 3.1) using a syringe fitted with an 18G needle and

transferred to 6 mL haematology (EDTA), plasma (lithium heparin) or serum (no
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additive) blood collection tubes (Becton Dickson, Oxford, UK). Plasma was separated
from heparinised blood by centrifugation at 400 xg for 5 min, transferred to sterile
cryovials and stored at -70°C until use. For serum collection, the blood was allowed to
clot at ambient temperature for 30 min, stored overnight at 4°C for clot retraction,
centrifuged at 400 xg for 10 min and then stored at -70°C until use. Whole blood for
haemoglobin (Hb) determination was stored at -70°C without separation. Time between

slaughter and blood sample retrieval was 15 min.
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Figure 3.1 Blood collection from the lateral blood vess

tuna.

Average sea temperature during the farming period was 25°C while water temperature
at time of sample collection was 17°C. Oxygen levels within the cages were always at or
near saturation and there were no mortalities attributed to disease during the entire
period the fish were held in cages. All specimens appeared clinically healthy and visual
inspection of the internal organs did not show any apparent signs of infection or other

disorders.
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3.2.2. Measurement of haematological and biochemical parameters

Erythrocyte (EC) and leucocyte (LC) counts were determined from whole blood samples
diluted 1:200 in Natt-Herrick solution (66 mM NaCl, 18 mM NazS04, 11 mM NazHPO4,
2mM KH2POg4, 0.01 % methyl violet, 0.75 % formaldehyde). Counts were made using an

improved Neubauer chamber (Fisher Scientific, Loughborough, UK).

Differential LC counts were made from whole blood smears fixed in 100 % methanol and
stained with a Rapi-Diff staining kit (Raymond Lamb, Thermo Scientific; 10 sec Solution
A, 20 sec Solution B, 15 sec Solution C, 20 sec dH;0). Two hundred white blood cells

were counted under oil immersion at x 1,000.

Packed cell volume (syn. haematocrit; Hct) was calculated following centrifugation at
10,000 xg for 5 min in a microhaematocrit centrifuge. This procedure was performed
within 30 min from sample withdrawal to prevent the influence of external factors on

Hct readings.

Haemoglobin (Hb) levels in whole blood were determined with a cyanmethaemoglobin
assay using Drabkin’s Reagent (DR) containing 0.05 % Brij 35 solution (30 % w/v; Sigma,
Dorset, UK). A Hb standard curve (0-30 g dL!) was prepared using haemoglobin (from
bovine blood, Sigma H2500). Standards and whole blood samples were diluted 1:250 in
DR, mixed and allowed to stand for 15 min at room temperature (22°C). Aliquots of 100
uL of the diluted solutions were then added in triplicate to a 96-well microplate (Sterilin,
Newport, UK) and the absorbance at 540 nm was measured in a microplate reader

(Synergy HT, BioTek, Potton, UK). Negative control was DR without any additions and
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Hb levels in the unknowns were calculated from the absorbance of the standard

concentration curve.

Mean cell volume (MCV), mean corpuscular Hb (MCH) and mean corpuscular Hb
concentration (MCHC) were determined with the following equations:

10 x Hct (%)

MCV (fL) = ————
(fL) EC (10° uL)

Hb (g dL™)
MCH =
(pe) EC (10° pL)
.. Hb(gdLl?
MCHC (g dL™!) = ————
CHC (g dL™) Hct (%)

Frozen plasma samples were submitted to a diagnostic laboratory (Easter Bush
Veterinary Centre, Edinburgh, UK) for biochemical analysis on an automated analyser

(ILab650, Instrumentation Laboratory, Bedford MA, USA).

3.2.3. Measurement of immunological parameters
3.2.3.1. Purification of IgM from serum

IlgM from ABT serum was purified on an AKTAprime chromatography system (GE Life
Sciences, Little Chalfont, UK) equipped with a HiTrap IgM Purification HP column (GE
Life Sciences) according to the manufacturer’s instructions. The column was prepared
for purification by treating with filtered binding buffer (0.02 M PBS [5 mM
NaH;P0a4.2H20, 14 mM NazHPO4.2H;0, 150 mM NaCl, pH 7.2], 0.8 M (NH4)2S04). Serum

samples were diluted 1:1 in binding buffer and eluted through the IgM purification
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column. The purified IgM was collected from appropriate fractions after elution with

0.02 M PBS pH 7.5.

The eluted fractions were washed three times with sterile 0.02 M PBS by centrifugation
at 4,000 xg in 3 kDa centrifugal filter units (Amicon Ultra-25, Millipore, Watford, UK)
and then concentrated in the same buffer until the desired volume was achieved. The
protein concentration of the purified IgM sample was determined using a protein assay
kit (BCA protein assay kit, Pierce Biotechnology, Rockford IL, USA) using bovine serum

albumin as standard and stored at -70°C until use.

3.2.3.2. Electrophoresis and western blotting

Affinity-purified ABT IgM was examined by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE) and western blotting procedures. The IgM was added to an
equal volume of 2x SDS-PAGE sample buffer (125 mM Tris-HCl, 20 % glycerol, 0.4 % w/v
SDS, 200 mM dithiothreitol, 0.01 % bromophenol blue, pH 6.8), heated for 3 min at 95°C,

cooled on ice and centrifuged at 4,000 xg for 3 min.

The sample was separated with an Amersham ECL gel system (GE Healthcare, Little
Chalfont, UK) according to the manufacturer’s instructions. Electrophoresis of the
purified serum was performed on a 10 % precast gel (Amersham ECL Gel System, GE
Healthcare). The precast gel was removed from packaging, rinsed with dH,0 and pre-
run as per the manufacturer’s instructions in 1x SDS running buffer (25 mM Tris-HClI,
192 mM glycine, 0.1 % SDS, pH 8.3) at 160 V for 12 min. Ten microlitres each of pre-

stained broad range protein markers (Spectra Broad Range Protein Ladder, Thermo
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Scientific) and IgM sample (5 pg protein) were loaded onto the gel and proteins

subjected to 160 V for 60 min.

The electrophoresed proteins were transferred to a nitrocellulose membrane
(Amersham Hybond ECL, GE Life Sciences) at 60 V for 45 min in transblot buffer (191
mM glycine, 25 mM Tris, 13.3 % methanol, pH 8.3). The membrane was blocked with 3
% BSA in TBS (20 mM Tris, 0.5 M NaCl, pH 7.5) for 1 h at 22°C and washed three times
for 5 min each with TTBS (20 mM Tris, 0.5 M NacCl, 0.05 % Tween 20, pH 7.5). The
membranes were then incubated for 1 h with either an anti-ABT IgM (AquaMab-F19,
Aquatic Diagnostics Ltd., Stirling, UK) monoclonal Ab (mAb; IgG1 isotype, recognising
the IgM heavy-chain heavy chain; reconstituted in 0.02 M PBS) diluted 1:20 in TBS, or
an anti-ABT IgM polyclonal Ab from mouse (Aquatic Vaccine Unit, Institute of
Aquaculture, University of Stirling, Stirling, UK) diluted 1:250 in TBS. The blots were
washed three times with TTBS incubated for 1 h at 22°C with a 1:200 dilution of anti-
mouse IgG biotin in TBS (Sigma) and rewashed as above. Amplification for the
membrane treated with the mAb was for 1 h at 22°C with horseradish peroxidase
streptavidin (Vector Laboratories, Peterborough, UK; 1:200) and washed with TTBS
incubating for 15 min on the last wash. Signal amplification was not performed for the
membrane treated with the polyclonal Ab. The membranes were developed with a 4CN
membrane peroxidase substrate kit (KPL Inc., Gaithersburg MD, USA), dried and

scanned.

3.2.3.3. Measurement of serum total IgM

Serum was assayed for IgM using a direct enzyme-linked immunosorbent assay (ELISA).

An IgM standard curve (5-2 x 103 ug mL?) was prepared in carbonate-bicarbonate
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coating buffer pH 9.6 (Sigma) from affinity-purified ABT IgM. Serum samples were
diluted 1:6,400 in the coating buffer and serially diluted to 1:25,600 in the same buffer.
Lyophilised anti-ABT IgM mAb (Aquatic Diagnostics Ltd.) was resuspended as described

above and diluted 1:33 in 0.02 M PBS according to the manufacturer’s instructions.

The wells of a 96-well ELISA plates (Immulon, Thermo Scientific) were coated in
duplicate with 100 uL of each standard curve concentration and with an equal volume
of each of the serum dilutions in triplicate. The plate was incubated overnight at 4°C.
Non-fixed antigen was removed by washing five times with low salt wash buffer (LSWB;
20 mM Tris, 380 mM NacCl, 0.05 % Tween 20, pH 7.3), non-specific binding sites were
blocked with 250 pl well* 3 % skimmed milk in LSWB for 2 h at 22°C and then drained
off. The plate was incubated for 1 h at 22°C with 100 pL well* anti-ABT IgM mAb diluted
1:33 in PBS, then washed five times with high salt wash buffer (HSWB; 20 mM Tris, 500
mM NaCl, 0.05 % Tween 20, pH 7.3). The samples were incubated for 1 h at 22°C with
100 pl well! of goat anti-mouse 1gG-HRP (Sigma; 1:2,000), washed five times with HSWB
and treated with 100 pL chromogen (3,3’,5’,5-tetramethylbenzidine; TMB; Sigma) in
substrate buffer (15 mL TMB substrate buffer, 150 yL H,02, 5 uL TMB) for 10 min at
22°C. The reaction was stopped with the addition of 50 uL of 2 M H;S04 and the plate
read at 450 nm. Negative controls (blanks) consisted of wells without serum, primary
and secondary Ab. Blank-adjusted readings were used to construct an IgM standard

curve. The standard curve was used to obtain IgM levels in the serum samples.

3.2.3.4. Measurement of serum lysozyme activity

Serum lysozyme activity was measured using a turbidimetric assay. Frozen sera were

brought to 22°C and 10 plL were added in triplicate to microplate wells. A 0.2 mg mL™*
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Micrococcus lysodeikticus (Sigma) suspension was prepared in 0.04 M PBS (10 mM
NaH2P04.,H;0, 28 mM Na;HP04.2H,0, 300 mM Nacl, pH 7.2). Aliquots of 190 uL of the
bacterial suspension were added to each sample well and the reduction in absorbance
at 540 nm was measured at 5 min intervals with continuous shaking at 25°C on a
microplate reader. One unit (U) of lysozyme activity was defined as the amount of
sample causing a reduction in absorbance of 0.001 min'. Negative control consisted of
200 pL bacterial suspension and results were blanked against PBS absorbance. Lysozyme
activity was assayed at pH 5.8 and 6.2 to determine optimal conditions for enzyme

activity.

3.2.3.5. Measurement of serum complement activity

Complement activity of serum was measured using complement-mediated haemolysis
assay using methods adapted from Marsden et al. (1996) and described in Watts et al.
(2002). Defibrinated sheep red blood cells (SRBC) in Alsever’s solution (Oxoid,
Basingstoke, UK) were washed three times in 0.02 M PBS pH 7.2 by centrifugation at
450 xg, resuspended to 3 % v/v in Hank’s balanced salt solution (HBSS; Thermo
Scientific) containing calcium (Ca) and magnesium (Mg) but without phenol red, and
concentration adjusted for optimal absorbance at 450 nm. The classical complement
pathway requires the presence of both Ca and Mg ions for its activation (Marsden et
al., 1996) but the alternative pathway is only dependent on the latter (Watts et al.,
2002). For measurement of the alternative pathway, 10 mM EGTA (Sigma) were added

to HBSS to chelate free Ca and inhibit the classical pathway.

One hundred microlitres of SRBC suspension were added to 96-well round-bottom

microplate (Sterilin) wells. Serum samples were diluted in assay buffer to give final
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serum concentrations of 2.5, 5, 10 and 20 % and an equal volume of each dilution added
to triplicate wells. Plate preparation was performed at 4°C to preserve complement
activity (Yano, 1992) prior to incubation, which was for 1 h at 25°C to reflect the internal
temperature of endothermic tuna species (Graham & Dickson, 2001). Following
incubation the reaction was stopped by centrifuging the plate at 300 xg for 10 min at
4°C, and 100 pL aliquots of well contents were transferred to a fresh 96-well microplate
and absorbance measured at 450 nm in a plate reader. Background and 100 %
haemolysis readings were obtained by adding equal amounts of the SRBC suspension to

assay buffer and dH,0 respectively.

One unit (U) of activity was defined as the quantity of serum sufficient to generate 50 %
haemolysis of a 1.5 % SRBC suspension at 25°C. Serum dilution curves against mean
haemolysis were plotted individually per sample and CHsp and ACHso U mL! serum were

calculated from this data (Yano, 1992).

3.2.3.6. Measurement of serum haemagglutinating activity

ABT serum was tested for haemagglutinating activity in a round-bottom microplate.
Defibrinated SRBCs were washed three times with 10 volumes of TBS buffer (50 mM
Tris-HCI, 150 mM NacCl, pH 7.2) by centrifugation and resuspended to 2.5 % (v/v) in the
same buffer. Serum samples were inactivated by heating at 56°C for 20 min, double
serial dilutions were made in TBS buffer and 25 uL were added to an equal volume of
2.5 % SRBC suspension. The microplate was incubated for 1 h at 25°C to reflect ABT
internal temperature (Graham & Dickson, 2001) and the reciprocal of the highest

dilution showing visible agglutination expressed as the titre value.
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3.2.3.7. Bacterial inhibition assays

Antibacterial activity in ABT serum was tested with an inhibitory zone assay. Bacterial
fish pathogens were sourced from the Institute of Aquaculture (University of Stirling)
bacterial culture collection. Vibrio anguillarum (NCIMB 6), V. vulnificus (ATCC 27562
biovar I) and Photobacterium damselae subsp. piscicida (SSV1 Greece) stored at -80°C
were revived and cultured in tryptic soy broth (Oxoid) supplemented with 1 % NacCl for
20 h at 22°C. Tryptic soy agar plates (Oxoid) containing 1 % NaCl were inoculated with
the bacterial culture and the bacteria distributed evenly with a sterile spreader. Blank
antimicrobial susceptibility discs (Oxoid) were impregnated with untreated or
complement-inactivated serum (heated at 56°C for 1 h) and aseptically transferred to
the agar plates. Positive and negative controls were 30 ug oxytetracycline antibiotic disc
(Oxoid) and a blank filter disc with sterile PBS respectively. Growth inhibition was

observed after a 24 h incubation period at 24°C.

3.2.4. Statistical analysis
3.2.4.1. Haematological and immune parameters

For statistical purposes and to identify significant parameter difference between fish of
different weights, specimens were classified into two weight classes — Group 1 and

Group 2 — consisting of fish of weight above and below 100 kg respectively.

Data were tested for normality with a one-sample Kolmogorov-Smirnov test and
logarithmically (logio) transformed when it deviated from normality. Pearson
correlation analysis was used to compare haematological, biochemical and

immunological parameters within groups. Student’s t-test was used to analyse
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differences between lysozyme activity at different pH, and differences between classical
and alternative pathway activities. One-way analysis of variance (ANOVA) was used to
test for significant differences in parameter readings between weight classes. Statistical
analysis was performed with SPSS Statistics 20 (IBM Corp.) and significance level was set

at 0.05.

3.2.4.2. Principal component analysis

Principal Component Analysis (PCA) was used to identify structuring within the datasets.
PCA was individually performed on plasma biochemistry, haematological and immune
measurements. All variables were logio transformed to correct for increasing variance
with increasing mean size of the measured variables and then those with coefficient of
variation (CV) values greater than an arbitrarily set level of 20 % were removed prior to

PCA analysis. PCA was performed with Statistica 10 (StatSoft Inc., Tulsa OK, USA).

3.3. Results

The ABT specimens showed significant weight ranges between individual fish. For
purposes of comparing the haematological, biochemical and immunological parameters
across size groups, the fish were classified into two separate classes based on their mass.

Table 3.1 shows descriptive data for the relevant groups.

Table 3.1 Descriptive statistics for Atlantic bluefin tuna specimens used for haematological, plasma biochemical and
immunological measurements. Values represent mean * standard deviation and figures in brackets show upper and
lower ranges (Group 1, >100 kg; Group 2, <100 kg).

Haematological and immunological Plasma biochemical
measurements measurements

Weight (kg) Length (cm) Weight (kg) Length (cm)
Groupl 286142 245+ 11 Groupl 281140 242 £ 12
(n=30) (217-361) (222-263) (n=15) (221-361) (222-263)
Group2 81112 145+ 8 Group2 8112 145+ 8
(n=15) (61-100) (130-157) (n=15) (61-100) (130-157)
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3.3.1. Haematological parameters of Atlantic bluefin tuna

Light microscopy showed ECs to have an elliptical profile with a similarly shaped,
strongly basophilic and central nucleus (Figure 3.2). The different LC types from ABT are
shown in Figure 3.3. The LCs with the highest abundance were the lymphocytes which
were small in size and round, with a large and densely staining basophilic nucleus which
almost occupied the entire cell volume. Thrombocytes were observed to be elongate,
spindle-shaped and less frequently oval in form and their basophilic nucleus always
occupied more than half the cell volume. Granulocytes were round with a central to an
off-central nucleus with a neutrophilic or eosinophilic granular cytoplasm. No basophils
were observed from any of the peripheral blood smears in this study. Monocytes were
the least abundant of the LCs observed. They were of an irregular form, possessed a
large and strongly basophilic nucleus occupying more than 60 % of the cell, and with an

occasionally vacuolar cytoplasm.
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Figure 3.2 Representative Rapi-Diff stained peripheral blood smears from Atlantic bluefin tuna showing the elliptical
morphology of the erythrocytes (arrowheads) and different leucocyte types (bar = 10 um).
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The haematological parameters of ABT measured in this study are listed in Table 3.2.

Mean EC and LC counts, HCT and Hb were higher in Group 2 indicating that these
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haematological characteristics vary with fish size. The variation was statistically
significant for EC (p < 0.05) and Hb (p < 0.05). EC counts were significantly and inversely

correlated with weight (p < 0.01) as were Hb levels (p < 0.01).
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Figure 3.3 Representative Rapi-Diff stained peripheral blood smear from captive Atlantic bluefin tuna showing
different leucocyte types and their morphology (L, lymphocyte; T, thrombocyte; M, monocyte; E, eosinophilic
granulocyte; N, neutrophilic granulocyte; bar = 10 um).

Table 3.2 Haematological parameters and differential counts from Atlantic bluefin tuna. Values represent mean +
standard deviation (SD) and upper and lower ranges (Group 1, >100 kg, n = 30; Group 2, <100 kg, n = 15).

p t Group 1 Group 2

arameter Mean £ SD Range Mean £ SD Range
EC (x10%2 LY)*a 2.53+£0.12 2.28-2.81 2.61+£0.08 2.48-2.73
LC (x10°LY) 199.8 +13.8 172-227 206.9+16.3 180-226
HCT (%) 46.30+ 2.68 41.2-51.6 46.91+3.30 41.18-53.57
Hb (g dL)*2 17.77 £ 0.80 16.30-19.64 19.81+£0.35 19.25-20.27
MCV (fL) 183.51+11.73 153.10-206.60 179.54 +11.71 162.80-201.40
MCH (pg)* 70.48 +45.29  61.29-80.91 75.87 +3.25 70.51-81.10
MCHC (g dL)* 38.54+3.22 33.10-46.40 42.40 £ 3.07 37.00-49.20
Lymphocyte (%)  57.05 + 6.96 45.77-67.82 57.57 +5.83 47.03-66.18
Thrombocyte (%) 30.56 +9.39 14.80-49.25 28.78 £ 8.56 15.08-47.03
Monocyte (%) 210+1.41 0.00-4.08 212 +1.12 0.97-4.02
Neutrophil (%) 4.07+1.79 1.00-7.14 3.78 £ 1.60 1.93-6.09
Eosinophil (%) 6.20 £ 3.52 0.98-11.94 7.75+3.84 1.94-12.14

*p<0.05; a, parameters showing significant Pearson correlation (p < 0.05); EC, erythrocyte; LC, leucocyte; HCT,
haematocrit; Hb, haemoglobin; MCV, mean cell volume; MCH, mean corpuscular haemoglobin; MCHC, mean cell
haemoglobin concentration.

In contrast, there was no clear pattern between the two size groups as regards
differential LC counts. Variation between the group means was minor and no significant

differences were observed (p > 0.05).
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The PCA model explained 70 % of the variation in the haematological variables (Table
3.3) and the principal factors (F1-F2) displayed clustering of haematological parameters

(Figure 3.4) based on the size of the fish.

Table 3.3 Univariate statistics for major haematological variables of 45 farmed Atlantic bluefin tuna specimens. The
component loadings and the percentage of the variance explained by each variable (n = 6) for the first two principal
factors (F1-F2) are shown and component loading values above +0.70 are shown in bold.

Variable Mean + SD CV (%) F1 F2
Weight (kg) 213 + 104 0.12 -0.967 -0.120
Length (cm 209 + 49 0.05 -0.961 -0.153
EC (x10%2 LY) 2.56 £0.12 0.02 0.561 -0.485
LC (x10° L'Y) 2.02+0.15 0.03 0.283 -0.393
HCT (%) 46.51+2.85 0.03 0.195 -0.818
Hb (g dL?) 18.45+1.17 0.03 0.854 0.327
Variance proportion (%) 50.4 20.0
Cumulative (%) 50.4 70.4

SD, standard deviation; CV, coefficient of variation; EC,

haemoglobin.
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Figure 3.4 Plot of F1 and F2 generated by PCA on the major haematological indices of farmed Atlantic bluefin tuna
specimens. There is clear separation in the haematological variables of different size classes along F1. Ellipses
represent 95 % confidence interval of the mean (Group 1, >100 kg, n = 30; Group 2, <100 kg, n = 15).
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3.3.2. Plasma biochemical parameters of Atlantic bluefin tuna

The biochemical parameters measured from ABT plasma are presented in Table 3.4. The
mean biochemical values for alanine aminotransferase, alkaline phosphatase, aspartate
aminotransferase, total bilirubin, direct bilirubin and inorganic phosphate were higher
in Group 1 while others parameters were higher in blood plasma samples of the smaller
specimens from Group 2. Some of the biochemical parameters, notably alanine
aminotransferase, alkaline phosphatase, aspartate aminotransferase and total bilirubin,
varied over a broad range between individual specimens. Statistical analysis showed
that some parameters were significantly different (p < 0.05) between the two groups.
Pearson correlations between several weight and the biochemical parameters were

significant (p < 0.05).

The principal factors generated by PCA accounted for 78.9 % of the variance within the
sample set (Table 3.5). Plots of F1 and F2 showed distinct clustering between fish of

different weight groups (Figure 3.5).
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Table 3.4 Mean plasma biochemical values measured for Atlantic bluefin tuna specimens with an automated analyser. Values represent mean + standard deviation (SD) and upper and lower
ranges (Group 1, >100 kg, n = 15; Group 2, <100 kg, n = 15).

All Groups Group 1 Group 2
Parameter

Mean + SD Range Mean + SD Range Mean £ SD Range
Albumin (g L)*2 24.49 1+ 2.34 19.80-27.90 22.91+£2.09 19.80-27.50 26.07 £1.29 24.20-27.90
ALT (U L)*b 2.86+1.52 1.00-7.00 3.73+1.71 2.00-7.00 2.00+0.53 1.00-3.00
ALP (U L?) 14.67 £15.06 1.00-57.00 19.80+17.45 1.00-57.00 9.53+10.43 1.00-39.00
AST (U L1)*P 61.60+£59.26  18.00-278.00 84.30 £47.67 24.00-185.00 32.20+8.96 18.00-54.00
Tot. bilirubin (umol L1)°  1.84 +1.38 0.10-6.40 2.53+1.15 1.00-6.40 1.16 £1.29 0.10-5.40
D. bilirubin (umol L1)* 0.500.20 0.20-1.00 0.55+0.20 0.20-1.00 0.46 £0.19 0.20-0.80
Calcium (mmol b1)*2 4.94 +0.70 3.68-6.22 4.39+0.45 3.68-5.15 5.491+0.38 4.87-6.22
Chloride (mmol ©1)*2 176.43+9.50 150.00-199.00 172.40+10.11 150.00-191.00 180.47 £ 7.07 171.00-199.00
TCHO (mmol L1)*2 6.69 £ 1.25 4.70-9.40 6.03+1.19 4.70-9.40 7.360.94 6.30-9.20
Creatinine (umol H1)*2 40.93 £5.43 29.00-50.00 38.27£6.10 29.00-50.00 43.60+2.92 39.00-50.00
Globulin (g L')*? 43.84 +5.23 30.90-50.20 41.12 £ 6.00 30.90-50.20 46.57 £ 2.18 41.90-50.00
In. phosphate (mmol L'!) 2.90+0.43 2.21-3.96 3.04+£0.49 2.33-3.96 2.76 £0.33 2.21-3.42
Potassium (mmol L?) 573 +£1.17 4.00-8.70 6.10£1.33 4.40-8.70 5.36 £ 0.89 4.00-6.60
Total protein (g L'1)*2 68.32£7.22 50.60-77.60 64.02+7.71 50.60-76.90 72.63 £ 3.00 66.20-77.60
Sodium (mmol L1)*? 217.73 £13.30 193.00-242.00 207.67 £10.22 193.00-225.00 227.80+£6.70 217.00-242.00
Triglyceride (mmol L)*?  6.07 £1.00 4.36-7.77 5.64£0.91 4.36-6.99 6.50+£0.93 5.18-7.77
BUN (mmol L) 0.86 £0.22 0.40-1.30 0.82 +0.22 0.40-1.20 0.89+0.22 0.50-1.30
Uric acid (mmol L)*2 90.00+31.17 40.00-154.00 69.87 +24.77 40.00-123.00 110.13+23.01  76.00-154.00
Glucose (mmol L) 9.62+2.48 6.6-13.20 9.76 £ 2.08 6.60-13.20 10.00+1.38 8.30-13.40

*p < 0.05; a, significant (p < 0.05) negative Pearson correlation with specimen weight; b, significant (p < 0.05) positive Pearson correlation with specimen weight; ALT, alanine
aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; Tot. bilirubin, total bilirubin; D. bilirubin, direct bilirubin; TCHO, total cholesterol; In. phosphate, inorganic

phosphate; BUN, blood urea nitrogen.
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Table 3.5 Univariate statistics for 20 blood chemistry variables measured on 28 specimens of farmed Atlantic bluefin
tuna. Figures shown in bold with coefficient of variation values greater than 20 % were rejected prior to analysis with
a PCA model. The component loadings and the percentage of variance explained by each variable (n = 15) for the first
principal factors (F1-F3) are shown. Component loading values above +0.70 are shown in bold.

Variable Mean £ SD CV(%) F1 F2 F3
Weight (kg) 170 + 103 0.13 0.848  -0.185 -0.249
Length (cm 189+ 50 0.05 0.850 -0.211  -0.259
Albumin (g L?) 24.53+2.23 0.03 -0.902 0.050 0.050
ALT (U LY 2.86+1.52 0.52 - - -

ALP (U L?) 1411 +15.81 1.28 - - -

AST (U L) 59.50+58.39 0.18 0.704 -0.414  0.096
D. bilirubin (umol L?) 0.49 £0.20 -0.53 - - -

Tot. bilirubin (umol L?) 1.80+1.43 4.05 - - -
Calcium (mmol L) 4.95+0.71 0.09 -0.887 0.058 0.229
TCHO (mmol L) 6.67 +£1.12 0.09 -0.852 -0.156 0.232
Creatinine (umol L?) 41.00 £ 5.45 0.04 -0.659 -0.043 -0.504
Globulin (g L'?) 43.67 £5.30 0.04 -0.857 -0.274 -0.124
In. phosphate (mmol L'Y) 2.89 +0.44 0.14 0.263 -0.765 0.220
Potassium (mmol L?) 572 +1.21 0.12 0.199 -0.864 0.223
Total protein (g L?) 68.19 + 7.25 0.03 -0.901 -0.197 -0.079
Sodium (mmol L) 219.21+12.49 0.01 -0.844 0.109 0.209
Triglyceride (mmol L) 6.09 + 1.03 0.10 -0.677 -0.487 0.175
BUN (mmol L) 0.84 £0.22 -1.35 - - -

Uric acid (mmol L'1)*2 92.29+30.63 0.08 -0.879 -0.122  -0.253
Glucose (mmol L?) 9.84 +1.64 0.07 -0.395 -0.415 -0.679
Variance proportion (%) 56.4 14.4 8.1
Cumulative (%) 56.4 70.8 78.9

SD, standard deviation; CV, coefficient of variation; ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST,
aspartate aminotransferase; Tot. bilirubin, total bilirubin; D. bilirubin, direct bilirubin; TCHO, total cholesterol; In.
phosphate, inorganic phosphate; BUN, blood urea nitrogen.

3.3.3. Western blotting

Purified ABT IgM was separated by electrophoresis, transferred to a nitrocellulose
membrane and incubated with the mAb against the ABT IgM heavy chain. The reaction
between the mAb and polyclonal Ab and the IgM heavy chain were observed at a

molecular weight (MW) of approximately 74 kDa (Figure 3.6).
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Figure 3.5 Plot of F1 and F2 generated by PCA on the plasma biochemical measurements from 28 farmed Atlantic
bluefin tuna specimens. There is clear separation between different size classes along F1. Ellipses represent 95 %
confidence interval of the mean (Group 1, >100 kg, n = 14; Group 2, <100 kg, n = 14).

3.3.4. Total IgM levels, and lysozyme and complement activities in Atlantic bluefin
tuna serum

Results for immunological measurements on ABT serum are presented in Table 3.6.
Total IgM levels in serum from ABT were quantified using an ELISA. IgM levels were
significantly higher (p < 0.01) in sera collected from smaller individuals (Group 2).
Lysozyme activity was marginally higher (p > 0.05) at pH 6.2 than at pH 5.8 while both
classical and alternative complement activities were higher in Group 1 fish but not

statistically different (p > 0.05).

Results from PCA on the immunological measurements described above are shown in

Table 3.7. Plots of the principal components showed clear separation between Group 1
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and Group 2 fish (Figure 3.7) suggesting that the measured immune system indices vary

with fish size or age.
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Figure 3.6 Immunoblot analysis of reactivity of monoclonal (mAb) and polyclonal antibody (Ab) against purified
Atlantic bluefin tuna (ABT) IgM. Lane 1, molecular weight protein marker; Lane 2, immunoblot with anti-ABT IgM
mADb; Lane 3, immunoblot with polyclonal Ab. Arrowheads show reactivity of the antibodies with purified IgM at a
MW of approximately 74 kDa.
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Table 3.6 Measured values for several immune parameters from farmed Atlantic bluefin tuna serum. Values
represent mean = standard deviation (SD) and upper and lower ranges (Group 1, weight >100 kg, n = 30; Group 2,
<100 kg, n = 15).

Parameter Group 1 Group 2

Mean * SD Range Mean * SD Range
Total IgM (mg mL*)* 8.05+0.56 7.12-9.45 9.67+£0.74 8.19-11.99
Lys pH 5.8 (U mL?) 1,866 £ 97 1,705-2,058 1,882 +118 1,715-2,054
Lys pH 6.2 (U mL?) 1,920 £ 142 1,654-2,110 1,894 + 141 1,702-2,105
CHso (U mL?) 91+7 79-101 88+7 75-98
ACHso (U mL?) 52+3 48-59 50+4 46-58

*p < 0.01; Lys, lysozyme activity; CHso, classical complement activity; ACHso, alternative complement activity.

3.3.5. Haemagglutinating activity in Atlantic bluefin tuna serum

All serum samples tested showed strong haemagglutinating activity and titre values
ranged from 16,384 to 32,768. There were no visible differences between the

haemagglutinating capacities of serum from different size classes.

3.3.6. Bacterial inhibition in Atlantic bluefin tuna serum

Bacterial inhibition assays did not reveal any activity against bacterial growth in the
serum samples tested. Positive controls (30 pg oxytetracycline) inhibited the growth of

all species tested.

Table 3.7 Univariate statistics for immunological parameters of 45 farmed Atlantic bluefin tuna specimens. The
component loadings and the percentage of the variance explained by each variable (n = 6) for the first two principal
factors (F1-F2) are shown and component loading values above +0.70 are shown in bold.

Variable Mean + SD CV (%) F1 F2
Weight (kg) 213 +104 0.12 0.962 0.061
Length (cm 209 + 49 0.05 0.968 0.079
Lys (pH 6.2; U mL?) 1911 +139 0.03 -0.074 0.769
CHso (U mL?) 90.6 + 6.8 0.03 0.337 0.492
ACHso (U mL?) 51.6+3.7 0.03 0.472 -0.512
Total IgM (mg mL?) 859+1.0 0.05 -0.891 0.003
Variance proportion (%) 50.0 18.4
Cumulative (%) 50.0 68.4

SD, standard deviation; CV, coefficient of variation; Lys, lysozyme; CHso, complement activity; ACHsg, alternative
complement activity.
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Figure 3.7 Plot of F1 and F2 generated by PCA on immunological measurements from the serum of 45 farmed Atlantic
bluefin tuna specimens. There is separation between different size classes along F1. Ellipses represent 95 %
confidence interval of the mean (Group 1, >100 kg, n = 30; Group 2, <100 kg, n = 15).

3.4. Discussion

Due to their sensitivity towards changes in physiological conditions (Dalmo et al., 1997;
Castillo et al., 1998) reference values for haematological and biochemical indices may
be applied in the evaluation of an organism’s physiological and health status. Data on
haematological parameters for farmed ABT, however, have never been investigated and

limited data is available for plasma biochemical values.

Light microscope observations of stained peripheral blood smears have shown that both
erythrocytes and leucocytes are morphologically similar to those described in other
teleosts and those reported from other tunas including the SBT (Rough et al., 2005), and

yellowfin and skipjack tunas (Alexander et al., 1980).
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Comparison of the data obtained here to those published previously for tunas reveals
similarities to certain species but differences from others. EC counts are similar to those
reported for wild ABT (Becker et al., 1958; Gutierrez, 1967, 1970). The ranges described
here are also comparable to those from the SBT (Rough et al., 2005) but lower than

those reported for yellowfin and skipjack tuna (Alexander et al., 1980).

Similar to results from other thunnids (Gutierrez, 1967, 1970; Alexander et al., 1980;
Rough et al., 2005) high mean Hb levels (18.45 g dL'!) were measured in farmed ABT in
this study. Values for Hct and Hb agree with those of Rough et al. (2005) for wild caught
SBT but are lower (Gutierrez, 1967, 1970; Alexander et al., 1980) or higher (Brill et al.,
1998; Lowe et al., 1998, 2000; Brill & Bushnell, 2001) than reported in other tuna
species. Published reports of haematological values in tunas to date have mostly relied
on the capture of wild specimens and it is well known that tunas demonstrate high
activity when captured using traditional line methods. In contrast, the data reported
here originates from specimens that have been killed by a shot to the head so that death
is immediate and sample retrieval is quick. Stress has been reported to increase the Hct
value in tuna species (Wells et al., 1986; Brill & Bushnell, 1991; Bushnell & Brill, 1991)
and Gallaugher et al. (2001) have described the splenic release of erythrocytes and the
consequent increase in Hct values in chinook salmon following increased activity. Taking
this into account the Hct values reported here may better reflect the actual in vivo
values but a firm conclusion will be presumptive since this may also be due to inter-
species differences, measurement error or the actual physiological status of the

specimens.

Chapter 3 Page 113



Atlantic bluefin tuna haematology and immunology

High EC counts, Hb and Hct values are characteristics of active fish (Cao & Wang, 2010;
Satheeshkumar et al., 2012). MCV (a measure of EC volume), MCH (a measure of the
amount of Hb per EC) and MCHC (a measure of Hb concentration in a standard volume
of EC) were calculated using standard equations to identify variability between the
haematological properties of ABT and other teleosts. These indices have their basis on
EC counts, Hb and Hct values and the latter are normally lower in non-thunnid species
(Sandnes et al., 1988; Sadler et al., 2000; De Pedro et al., 2005; Shigdar et al., 2007; Cao
& Wang, 2010; Hrubec & Smith, 2010). MCV lies towards the median of the accepted
ranges while MCH and MCHC fall outside the higher ranges normally reported from
other teleosts (Hrubec & Smith, 2010). This denotes that mean EC size is comparable to
other fish species but the amount of Hb contained within a cell and a given volume
respectively is much higher, reflecting a necessity for the blood to have a high oxygen-
carrying capacity. In fact there exists an inverse relationship between EC size and the
aerobic swimming ability of fish (Lay & Baldwin, 1999) and these haematological
features allow tunas to support their high metabolic rates (Brill & Jones, 1994) which

have been documented extensively (Korsmeyer et al., 1996).

LC counts in farmed ABT may be considered as relatively high but still fall within ranges
described from other fish species (Hrubec & Smith, 2010). In decreasing order of
frequency, the LCs detected were lymphocytes, thrombocytes, eosinophils, neutrophils
and monocytes and this follows patterns seen in other tuna species (Becker et al., 1958;
Alexander et al., 1980; Rough et al.,, 2005). Lymphocytes are one of the central
components of defensive responses and have roles in Ab production and regulating the

amount of circulating macrophages in the blood in outbreaks of infection (Rough et al.,
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2005; Roberts & Ellis, 2012) so that their high presence may aid in the development of
an immune response under such circumstances. Thrombocytes are important in the
blood clotting process and their presence in tuna blood should promote rapid clotting
when required (Casillas & Smith, 1977; Roberts & Ellis, 2012). The relative percentages
of monocytes, eosinophils and neutrophils were low compared to the major two cell
types as has been reported in other Thunnus spp. (Saunders, 1966; Alexander et al.,
1980; Hine et al., 1987). All of these cell types have phagocytic roles (Ainsworth, 1992;
Roberts & Ellis, 2012) and neutrophils are thought to mediate acute inflammatory

responses (Nagamura & Wakabayashi, 1983; Suzuki, 1986; Suzuki & Hibiya, 1988).

The haematological indices were subjected to PCA and this statistical treatment resulted
in the separation of fish according to their weight (Figures 3.4, 3.5, 3.7). Additionally,
one-way ANOVA has shown significant differences in EC numbers, Hb, MCH and MCHC
between the two size groups. Both in the wild and in captivity, smaller tunas are
observed to be more active and swim at a quicker pace than larger individuals (personal
observations). Higher activity in fish is marked by high Hb levels and a lower MCV (Lay
& Baldwin, 1999) and this may be the reason behind the higher Hb levels measured in
the smaller weight class. Although no statistical differences were found in MCV between
the two groups, the index calculated for the smaller fish was marginally smaller than

that for the other weight class.

Blood is essential for homeostasis and proper physiological function so that it is
expected to reflect the general status of an animal. Consequently, conditions that
impact or require change in an organism’s physiology are likely to result in changes in

several haematological variables. The influence of these factors on the haematology of
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several teleost species has been detailed in several reports. For example disease
outbreaks and general husbandry stress have been reported to result in changes of EC
levels, Hct and Hb levels (Harbell et al., 1979; Waagbo et al., 1988; Pagés et al., 1995;
Rehulka, 2002; De Pedro et al., 2005; Skov et al., 2011) and modify circulating LC
numbers (Ellis, 1981; Roubal, 1986; Mgyner et al., 1993; Tierney et al., 2004; Martins et

al., 2009). Pollutants also cause similar changes (Witters, 1986; Nussey et al., 19954, b).

Apart from the effects above there are also changes brought about naturally without
the influence of external stressors. Changes in haematological variables have been
linked to season (Sandnes et al., 1988; De Pedro et al., 2005; Rough et al., 2005; Pascoli
etal., 2011), environmental temperature (Langston et al., 2002; Magill & Sayer, 2004),
age (Svetina et al., 2002), nutritional status (Rehulka & Adamec, 2004) and photoperiod
(Leonardi & Klempau, 2003). De Pedro et al. (2005) also reported diel rhythms in tench,

Tinca tinca (L.).

Plasma biochemical values have a similar use to haematological parameters in fish
health diagnosis and management (De Pedro et al., 2005; Cao & Wang, 2010), if suitable
biochemical ranges are available. Data on the serum biochemical values of ABT is
restricted and there is an element of uncertainty in comparisons with other teleosts
considering that such values are affected by sampling and measurement variables
(Korcock et al.,, 1988; Barham & Schoonbee, 1990), and environmental factors

(Lochmiller et al., 1989; LeaMaster et al., 1990; Bayir et al., 2007; Campbell, 2012).

Most of the serum biochemical values reported here are higher than those described
for farmed ABT of a similar weight range from the Adriatic Sea (Popovic et al., 2008) but

the particular causes for this are difficult to identify. In contrast to this, the electrolyte
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levels measured in this study compare well with those described by Popovic et al. (2008)
and with those reported from smaller (mean weight = 59 kg) captive ABT in Turkey
(Percin et al., 2010). The serum electrolyte values are also similar to those from other
fish species (Liu et al., 2007) and this inter-species conservation demonstrates their
importance in osmotic, ionic and acid-base regulation in teleosts. In fact serum
electrolyte levels are the best understood among biochemical parameters in fish
(Hrubec et al., 1996) and may be used to investigate gill function or damage to the
branchial epithelium, and are also indicators of stress (Campbell, 2012). Gills are also
the site of urea excretion so that electrolyte levels in serum may reflect improper
function (Campbell, 2012) or elevated protein breakdown in outbreaks of disease

(Rehulka, 2002).

Cholesterol levels were found to be towards the lower range of those generally reported
in teleosts (Sandnes et al., 1988; Lee et al., 2003; Liu et al., 2007; Cao & Wang, 2010).
The long-term effects of these levels on the health status of fish is unknown (Campbell,
2012) although they have been shown to decrease in clinically diseased non-thunnid
species (Rehulka, 2002), may be important indicators towards the nutritional status of
the fish (De Pedro et al., 2005) and do not fluctuate greatly with age (Svetina et al.,
2002). Total cholesterol and triglyceride levels in farmed ABT have been reported to be
higher than those in wild specimens so that it might be affected by nutritional intake
(Jelavic et al., 2012). Cholesterol levels measured from farmed ABT in this study are
similar to comparable sized specimens in Turkey (Percin et al., 2010) but higher than

those reported for farmed ABT from Croatia (Popovic et al., 2008).
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Bilirubin, which originates from the breakdown of Hb in the liver, and ammonia, alanine
and aspartate aminotransferases are linked to liver function but there is little
information on expected ranges in blood from teleosts (Vangen & Hemre, 2003; Zhang
et al.,, 2010a; Campbell, 2012). Therefore, reliable ranges for bilirubin may act as

indicators of proper liver function and are useful in assessment of physiological status.

Albumin and globulin form part of the total serum protein and the latter has been shown
to decline in diseased salmonids (Mulcahy, 1971) and carp (Harikrishnan et al., 2003)
and a similar pattern was observed in fish with restricted nutritional intake (Peres et al.,
2013). It has also been linked to feed intake in tunas where higher concentrations were
found in wild specimens (Jelavic et al., 2012). As for glucose levels, serum protein
concentration reflects the nutritional state of the fish (Vangen & Hemre, 2003) and may

also be useful in assessing fish welfare (Coeurdacier et al., 2011).

Blood glucose concentration is associated with fish activity and more active species
possess higher blood glucose concentrations (Cao & Wang, 2010). The levels measured
in this study are relatively high when compared to available data (Popovic et al., 2008;
Jelavic et al., 2012). It is difficult to identify a reason for this finding considering that
glucose levels are affected by environmental stressors (Svoboda et al., 2001; Lermen et
al., 2004), age (Hrubec et al., 2001; Coz-Rakovac et al., 2005) and nutrition (De Pedro et

al., 2005) but these high values may mirror the high activity shown by the species.

There was pronounced inter-specimen variation in the plasma biochemical values of the
enzymes alanine and aspartate aminotransferases, and alkaline phosphatase. It is
known that plasma biochemical ranges vary considerably in teleosts and it is difficult to

identify a cause for this since such variation is brought about by several endogenous and
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exogenous factors (Campbell, 2012). Amongst the three enzymes, alanine and aspartate
aminotransferases had the lowest and highest concentrations respectively, and this

order of concentration follows that observed in other species (Ferguson, 2006).

Statistical analysis of the data has demonstrated several weight-based differences in the
biochemical values measured. Glucose levels were found to be marginally, but not
significantly, higher in fish of smaller weight and this is in agreement with the results of
other research on farmed ABT (Jelavic et al.,, 2012). Differences were relatively
pronounced when considering that PCA conducted on biochemical values showed clear
separation between fish from different groups suggesting that tunas of different
weights and age have differing physiological requirements, and in consequence differing

biochemical indices.

Several precautions were taken to enable meaningful comparison of haematological
and biochemical parameters between fish of different weights. All the specimens were
kept together from the time of capture until they were harvested so that culture
conditions were identical for all fish used in this study. Furthermore, all samples were
collected on the same day and within the shortest timeframe possible so that readings
would represent a single time point and therefore not be subject to the effect of
external factors or other stressors. As in all other work with tuna species, it is difficult
to carry out controlled experiments and sample collection is generally opportunistic.
Nonetheless, the results obtained here compare well with those reported from other
tuna species and add information to the limited data on useful haematological and
plasma biochemical ranges in tuna species and may contribute to the establishment of

normal reference parameters in ABT.
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Immunoglobulin M (IgM) is the predominant Ab in the serum of teleosts (Bengtén et al.,
2000). Purified 1gM isolated from ABT serum was screened with an anti-ABT IgM mAb
by Western blot analysis. The mAb showed reaction with the heavy chain of the IgM
molecule, showing a single band at a MW of approximately 74 kDa. Expectedly, this is
the same MW reported for the heavy chain of SBT (Watts et al., 2001b) and that of other

teleosts including Atlantic salmon (Havarstein et al., 1988; Magnadottir, 1998).

ELISA results have shown that IgM levels in ABT serum varied between 8 and 9.5 mg mL
L serum in the specimens used in this study. Watts et al. (2002) reported lower levels
ranging from 0.5 to 5 mg mL? in sera from SBT. Data for other species were also
relatively lower than those measured for ABT in this study (Magnadottir, 1998; Nielsen,
1999; Lange et al., 2001) but higher levels have been measured in cod, Gadus morhua

L. (see Magnadottir, 1998).

Given the limited availability of data on IgM levels in tuna species, it is difficult to draw
conclusions from the results obtained here, considering that IgM concentrations are
affected by several factors. Results from studies on other teleosts have shown IgM to
fluctuate with age (Matsubara et al., 1985; Klesius, 1990; Sanchez et al., 1993; Estévez
et al., 1995; Magnadottir et al.,, 1999b), environmental conditions (Klesius, 1990;
Magnadottir et al., 1999a) and disease status (Magnadottir et al., 1995). In SBT higher
levels have been measured in serum from the same cohort when sampled in winter

when sea temperature was lower (Watts et al., 2001a).

Husbandry limitations make investigations into the effect of such exogenous factors on
IgM levels difficult since no suitable methods are presently available to maintain ABT

under controlled conditions. Higher IgM levels were measured from smaller fish as
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compared to larger specimens and this differs from several studies showing increasing
IgM levels with increasing fish age. It is not possible to isolate a single cause for this
considering that the fish were being kept under uncontrolled conditions, but since the
specimens were sampled at a single time point to reduce the effects of exogenous
modulators, these variances may reflect differences between the immune status or
parameters of fish of different age. It is also possible that captivity affects smaller

individuals to a larger extent so that their immune response is more pronounced.

Investigations into the innate immune parameters of ABT in this study have confirmed
that serum possesses complement, lysozyme and haemagglutinating activities as
described in other teleosts (Alexander & Ingram, 1992). These immune components
have been reported already from SBT (Watts et al., 2002) and complement activity has
been demonstrated in yellowfin (Giclas et al., 1981). Activities of all three parameters
were relatively high although it is difficult to compare these against published results

due to the use of different assay procedures.

Using identical methods to those described in Watts et al. (2002), the activities of both
the alternative and classical complement pathways were detected at levels similar to
those found in SBT in the same study. The classical pathway, which showed the higher
activity of the two, is activated by the antigen-Ab complexes (Yano, 1996) but may also
be activated by acute phase proteins such as C-reactive protein, viruses and bacteria
(Holland & Lambris, 2002). In contrast, the alternative pathway is directly triggered
through the presence of foreign bodies such as the lipopolysaccharides of Gram-
negative bacteria (Yano, 1996). Teleost complement has been shown to be bactericidal

(Sakai, 1992), virucidal, opsonic and possess detoxifying properties (Yano, 1996) so that
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itis an important part of the innate immune response. Complement activation generally
results in a depletion in the levels of complement proteins in the blood and synthesis of
the individual components happens at a slow rate so that their activities may be useful

as indicators of the health status of an organism (Yano, 1992).

Similar to findings in the SBT (Watts et al., 2002), lysozyme activity was elevated but
there were no significant differences between the activities of lysozyme at different pH.
Lysozyme has been detected in several teleosts (Alexander & Ingram, 1992) and among
its more important functions is its anti-bacterial and cell lysis activities (Yano, 1996). A
high titre value causing visible haemagglutination against SRBC was observed for the
serum samples. Haemagglutination is mediated by lectins, proteins originating from
outside the immune system, and these have been shown to inhibit the growth of

virulent bacteria although their function is largely unknown (Yano, 1996).

The humoral immune parameters measured in this study are affected by several
exogenous factors including size of the fish, culture conditions, environmental
temperature, and nutritional and disease status of the fish (Alexander & Ingram, 1992;
Montero et al., 1998; Magnadoéttir et al., 1999a, b; Montero et al., 1999; Nikoskelainen
et al., 2004; Dominguez et al., 2005). Although not strictly endothermic, tunas are
capable of maintaining an elevated body temperature with respect to their environment
(Graham & Dickson, 2001) so that the influence of environmental temperature on their
physiology is, to a certain degree, controlled. This has been substantiated by Watts et
al. (2002) who measured higher immune activities in the sera of SBT acclimated to lower

sea temperatures. There are no reports of disease outbreaks or mass mortalities in adult
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captive ABT and this may be due to the quicker response of the immune system made

possible by a constantly elevated body temperature.

PCA of the immunological parameters measured here resulted in separations identical
to those obtained for haematological and plasma biochemical parameters. Except for
IgM levels, none of the other parameters were found to differ significantly between
Group 1 and Group 2 fish, but PCA gave two separate clusters. As for the above, the
degree of clustering between the different groups suggests that important innate

immune parameters in the serum vary with fish size or age.

Serum in bacterial inhibition assays did not demonstrate antibacterial properties against
the fish pathogenic bacteria tested in this study. This may signify that either the serum
did not possess any bacteriolytic activity against the specific bacterial strains used or
that additional components, necessary for the promotion of antibacterial activity, were

absent or not present at sufficient concentrations.

3.5. Conclusion

This study is the first report of several haematological indices in farmed ABT. Blood from
ABT has been shown to have special features that enable it to function in support of the
high metabolic demands of the species. The activities of lysozyme, complement and
haemagglutination were measured and found to be considerably high, although
comparisons with published reports are difficult to perform. Little can be inferred from
the plasma biochemical values measured but these add to limited data on these

parameters in these species. Haematological parameters may find use in the
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assessment of fish welfare, and the data reported in this study should contribute in this

regard.

Owing to restrictions on experimental design and specimen numbers, few conclusions
can be made from the results. Notwithstanding, statistical analysis has shown that there
are clear differences in the haematology of captive ABT based on their size but further
investigations in this field are required to determine the reasons leading to such

separation between size classes.
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CHAPTER 4

NON-SPECIFIC HUMORAL IMMUNE COMPONENTS
IN ATLANTIC BLUEFIN TUNA EPIDERMAL MUCUS

4.1. Introduction

The body surface of teleosts is covered by epidermal mucus, a biochemically diverse
secretion that acts as a distinctive physical and chemical barrier between the organism
and the aquatic environment which it inhabits. Amongst other functions, it has
important roles in maintaining fish health and is involved in ionic and osmotic
regulation, excretion and disease resistance (Shephard, 1994). Mucus is mainly
produced by the epidermal goblet cells, which are sparingly distributed along the fish
epidermis (Pickering, 1974; Laurent, 1984), but is supplemented with secretions from

other subepithelial cells or glands (Shephard, 1994; Thornton & Sheehan, 2004).

The main structural components of mucus are high molecular weight glycoproteins (=
106 kDa) referred to as mucins (Pickering, 1974; Fletcher et al., 1976; Tabak, 1995). They
are similar in structure to mammalian mucins (Alexander & Ingram, 1992) and are
capable of inter-molecular interactions so that they maintain a three-dimensional

structure in water (Shephard, 1994).
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Teleosts are ectothermic and their adaptive immune response is slow and restricted by
the effects of external factors on their metabolism (Bly et al., 1988), so they rely on non-
specific immune defences for initial protection against potential pathogens (Alexander
& Ingram, 1992). Fish are also more susceptible to bacterial infection since their skin is
non-keratinised and offers less resistance to microbial entry (Suzuki, 1985). The
epidermal mucus of fish plays a significant role in this regard. Firstly, it prevents foreign
objects from coming into direct contact with the epidermal layer maintaining the
structural integrity of the latter (Shephard, 1994) and it is impermeable to most
bacterial pathogens (Cone, 2009). In addition, constant mucus production ensures that
pathogens are immobilised and shed prior to their contact with the epithelial surfaces

(Pickering, 1974).

Apart from mechanical protection, fish skin mucus also confers humoral protection and
is a key component of the innate immune defence of fish (Ellis, 2001). Several elements
of the innate immune system are known to exist in the mucus of teleost fish, and these
include lysozyme, immunoglobulins (lg), complement, antimicrobial proteins, several
enzymes and lectins (Hjelmeland et al., 1983; Alexander & Ingram, 1992; Bergsson et

al., 2005; Uribe et al., 2011).

Natural antibodies in fish exist mainly as IgM isotypes (Lobb & Clem, 1981; St. Louis-
Cormier et al., 1984; Salinas et al., 2011) and are found in serum and mucosal secretions
of the skin and gut (Ellis, 2001). They are relatively non-specific and bind with pathogens
even without prior exposure (Baumgarth et al., 2005), and are involved in complement
activation and pathogen neutralisation among other functions. They have been

reported in the skin mucus of several teleost species including carp (Rombout et al.,
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1993), Atlantic salmon (Hatten et al., 2001), channel catfish, Ictalurus punctatus
(Rafinesque) (see Lobb, 1987), and olive flounder, Paralichthys olivaceus (Temminck et
Schlegel) (see Palaksha et al., 2008), and their presence in epidermal skin secretions

must provide some form of protection against invading pathogens.

Another type of Ig, termed 1gT/1gZ, has been discovered in skin mucus of rainbow trout
(Hansen et al., 2005), and zebrafish, Danio rerio (Hamilton) (see Danilova et al., 2005),
respectively. IgT has also been reported to be the major Iginvolved in mucosal immunity

in rainbow trout (Zhang et al., 2010b; Xu et al., 2013).

Lysozyme (syn. muramidase) is a bacteriolytic enzyme found widely within living
systems including fish (Jolles & Jolles, 1984; Alexander & Ingram, 1992). Its lytic action
lies in its ability to hydrolyse linkages in the cell walls of bacteria and its presence in
cutaneous mucus provides a degree of protection against harmful agents. Other
enzymes described in teleost mucus and known to be involved in fishes’ natural
resistance to infection include proteases and cathepsins (Ingram, 1980; Alexander &
Ingram, 1992; Ellis, 2001; Fast et al., 2002) and these have been reported from the
epidermal mucus of several different fish species (Alexander & Ingram, 1992; Aranishi
& Mano, 2000b; Subramanian et al., 2007; Palaksha et al., 2008; Nigam et al., 2012).
These enzymes cleave protein structures within bacteria, thus reducing bacterial
progression, and in turn limiting the opportunity for the bacteria to infect their host
(Ingram, 1980). They may also act indirectly and are known to activate or enhance
synthesis of complement, Ig and antimicrobial peptides, and modify mucus consistency
to increase its shedding rate (Aranishi et al., 1998; Cho et al., 2002a; Morrissey, 2013).

Alkaline phosphatase is another innate immune component identified in teleost mucus,

Chapter 4 Page 127



Humoral immune components in Atlantic bluefin tuna skin mucus

and its levels have been shown to increase in Atlantic salmon mucus during infection
with the salmon louse, so levels of the enzyme may act as a potential stress indicator
(Ross et al., 2000). They are also considered to provide some form of protection during

initial stages of wound healing (Iger & Abraham, 1990).

The complement system is another non-specific response elicited by the vertebrate
innate immune system, and has also been reported from the skin mucus of rainbow
trout (Harrell et al., 1976). It is activated by several external agents such as Gram-
negative bacteria, and its activation stimulates the production of peptides necessary for

inflammatory responses (Yano, 1996).

Agglutinins (lectins) are carbohydrate-binding proteins of non-immune origin able to
agglutinate cells, glycoconjugates and molecules (Denis et al., 2003). They have been
detected in several fish species, but their function in epidermal mucus is not fully
understood although it has been suggested that their action may aid in the prevention

of epidermal colonisation by bacterial pathogens (Ingram, 1980).

At present there is no information on the mucosal immunity of the ABT. Furthermore,
to date there are no reports of disease outbreaks in farmed ABT. The main objective of
this research was to examine the mucus from this tuna species for the presence of non-
specific immune factors, quantify their activity and analyse their antibacterial
properties. Additional information on enzyme levels may be useful in determining the
health of individuals and may aid in the determination of the physiological status of the

fish under captive conditions.
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4.2. Materials and Methods
4.2.1. Collection and processing of Atlantic bluefin tuna skin mucus

Twelve ABT specimens ranging in weight from 220 to 380 kg, held in offshore cages in
Malta (35°49’N, 014°35’E), were killed by a shot to the head and transferred to a landing
boat. The fish were rinsed with running seawater and left untouched for a few minutes
to allow the secretion of fresh epidermal mucus. Mucus was collected with a sterile
spatula moved in a head to tail direction from the dorsal surface of the fish, transferred
aseptically to cryovials and stored at -70°C until used. During collection adequate care
was taken to prevent damage to the epidermal surface in order to prevent
contamination with blood or other subepidermal secretions. Additionally, no mucus was
collected from the ventral surface of the fish to prevent contamination of the specimens
with intestinal flora. Sea temperature at time of collection was 17°C and gross external

and internal inspection of the specimens did not reveal any clinical signs of disease.

The crude mucus was purified in the laboratory following methods adapted from
Palaksha et al. (2008). The mucus samples were thawed, pooled and homogenised
(Ultra-Turrax, IKA, Staufen, Germany) with four volumes of Tris-buffered saline (TBS; 50
mM Tris-HCI, 150 mM NaCl, pH 8.0). The homogenate was centrifuged at 4,000 xg for
25 min at 4°C. The supernatant was collected, transferred to freeze-drying tubes and
lyophilised overnight. The lyophilised powder was reconstituted in TBS buffer and
centrifuged at 4,000 xg for 30 min at 4°C to remove insoluble mucus components. It was
passed through a 0.45 um syringe filter (Minisart, Sartorius, Surrey, UK), transferred to
3 kDa centrifugal filter units (Amicon Ultra-25, Millipore) and concentrated according to

the manufacturer’s instructions at 4°C. The mucus extract (ME) collected was aliquoted
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and stored at -70°C until use. All the procedures above were carried under controlled
temperature conditions to minimise protein degradation and preserve enzyme

activities.

The protein concentration of the extracts was determined spectrophotometrically with
a protein assay kit (BCA protein assay kit, Pierce Biotechnology) using bovine serum
albumin (BSA) as standard and based on the colorimetric detection and quantification
of total protein using bicinchoninic acid (Smith et al., 1985). Briefly, this involved the
preparation of a linear standard curve from the BSA standard provided with
concentrations 0-2,000 pg mL™2. Twenty five microlitres of each standard or ME were
placed into triplicate wells of a microtitre plate (Sterilin). Two hundred microlitres of the
assay kit working reagent were added to each well, the plate was shaken for 30 sec and
then incubated at 37°C for 30 min. The plate was then cooled to room temperature (RT;
22°C) and read at 562 nm in a microplate reader (Synergy HT, BioTek). Readings (with

blanks subtracted) were used to calculate the protein concentration of the ME.

4.2.2. Measurement of immunoglobulin in the mucus extract
4.2.2.1. Total Ig

Total Ig in the ME was measured by Ig precipitation using methods described by Siwicki
et al. (1994). The Ig was precipitated out of the ME by mixing 100 pL with an equal
volume of polyethylene glycol in a microplate and incubating for 2 hrs at 22°C with
constant agitation. The precipitate was separated by centrifugation at 3,000 xg for 15
min. The protein concentration of the supernatant was measured as described in
Section 4.2.1 and the amount of Ig precipitated out was calculated by subtracting the

remaining protein concentration from that of the ME.
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4.2.2.2. Total IgM

The ME was assayed for IgM using an ELISA. An IgM standard curve was prepared from
purified ABT IgM isolated from serum (see Section 3.2.3.1). ME was adjusted to an intial
protein concentration of 100 ug mL* in coating buffer and 2-fold serial dilutions made
in the same buffer (i.e. assay protein concentrations at 10, 5 and 2.5 pg well™). ELISA
procedures were as described in Section 3.2.3.3. Negative controls (blanks) consisted of
wells without added ME, primary or secondary Ab. Blank-adjusted readings were used
to construct an IgM standard curve. The standard curve was used to obtain IgM levels

in the ME.

4.2.3. Electrophoresis and western blotting

The protein composition of the ME was examined by SDS-PAGE and analysed for IgM

with western blotting.

4.2.3.1. SDS-PAGE

ABT ME was subjected to SDS-PAGE under denaturing conditions. The TBS buffer in the
ME was replaced with DNase/RNase-free water using 3 kDa centrifugal filter devices
(Amicon Centricon, Millipore). Ten microlitres of the desalted ME were added to an
equal volume of 2x SDS-PAGE sample buffer (125 mM Tris-HCI, 20 % glycerol, 0.4 % w/v
SDS, 200 mM dithiothreitol, 0.01 % bromophenol blue, pH 6.8), heated for 3 min at 95°C,

cooled on ice and centrifuged at 4,000 xg for 3 min.

A 12 % SDS gel was prepared for protein separation. The separating gel buffer for the
SDS gels was prepared by mixing 5 mL separating buffer (1.5 M Tris, 0.4 % SDS), 7 mL

dH,0 and 8 mL 30 % acrylamide/bis-acrylamide solution (Severn Biotech, Kidderminster,
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UK), and degassed for 15 min in vacuo. Fifteen microlitres tetramethylethylenediamine
(TEMED; Fisher Scientific) and 70 pL of 10 % ammonium persulphate (Sigma) were
added to the buffer prior to pouring into 10 x 8 cm gel casters (Mighty Small, GE Life
Sciences). Two hundred microlitres of iso-butanol (Fisher Scientific) were layered on
top, the gel was allowed to polymerise at 22°C for 1 h and then washed with dH,0 prior
to the addition of a 4 % stacking gel. This was prepared by mixing 2.5 mL stacking gel
buffer (0.5 M Tris, 0.4 % SDS, pH 6.8), 6.1 mL dH,0 and 1.34 mL 30 % acrylamide/bis-
acrylamide solution and degassing for 15 min. Ten microlitres TEMED and 50 pL 10 %
ammonium persulphate were added to the solution prior to pouring onto the substrate
gels. After gel polymerisation was complete the gels were transferred to an

electrophoresis apparatus.

Ten microlitres each of pre-stained broad range protein markers (Spectra Broad Range
Protein Ladder, Thermo Scientific) and sample (10 pg protein) were loaded onto the gel,
and the proteins subjected to 60 V for the first 15 min followed by 160 V until the dye

front reached the bottom of the gel.

The gels were stained overnight with constant agitation in 0.25 % (w/v) Coomassie Blue
R-250 (Fisher Scientific) in ethanol/acetic acid/dH,0 (50:10:40) and destained with
ethanol/acetic acid/dH,0 (40:10:50) until the desired band resolution was achieved. For
increased staining sensitivity the gels were treated with a silver stain kit (ProteoSilver
silver stain kit, Sigma) according to the manufacturer’s instructions. In brief, the
polyacrylamide gel was fixed overnight with constant agitation in ethanol/acetic
acid/dH,0 (50:10:40). The gel was washed in 30 % ethanol for 10 min followed by a 10

min wash in ultrapure H;0. The gel was incubated in a 1 % sensitising solution for 10
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min, washed twice for 10 min in H,0 and equilibrated with a 1 % silver solution for 10
min. The gel was briefly washed in H,O and developed (developing solution: 5 mL
Developer 1, 100 pL Developer 2, 99 mL H,0) for 4 min. Once band staining was
adequate, development was stopped by the addition of 5 mL stop solution, incubated
for 5 min and then washed in H;O. Relative mobility (R¢) values were calculated to

estimate band MW.

4.2.3.2. Western blotting

Additional electrophoresis procedures were performed on the ME for immunoblotting.

Sample preparation prior to loading onto the gel was as described in Section 4.2.3.1.

The proteins were separated with an Amersham ECL gel system (GE Healthcare)
according to the manufacturer’s instructions. Electrophoresis of the ME was performed
on a 10 % precast polyacrylamide gel (GE Healthcare). Electrophoresis and western

blotting procedures were as described in Section 3.2.3.2.

4.2.4. Evaluation of enzymes and their activity in the mucus extract
4.2.4.1. API-ZYM kit assay

The ME was examined for the presence of various enzymes using an API-ZYM kit (Bio-
Merieux, Basingstoke, UK) as per the manufacturer’s instructions with modifications
(Palaksha et al., 2008). In summary, the ME was diluted to a protein concentration of 1
mg mL* and 100 pL of this was added to each cupule. The strip was incubated for 6 h at
25°C in a humidified API strip container. Following incubation, one drop each of ZYM-A

and ZYM-B reagents were added to each cupule and the strip was incubated for 5 min
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at 22°C. The strip was briefly placed under intense light and the results were recorded

according to colour change and intensity according to the manufacturer’s instructions.

4.2.4.2. Protease activity: azocasein hydrolysis assay

Protease activity in the ME was measured by an azocasein hydrolysis assay as outlined
in Ross et al. (2000). The ME was mixed with an equal volume of 100 mM ammonium
bicarbonate buffer containing 0.7 % azocasein (Sigma) in a microplate and incubated for
19 h at 30°C with constant agitation. The reaction was stopped by the addition of
trichloroacetic acid to a final acid concentration of 4.4 % (Fisher Scientific), cooled on
ice, and centrifuged at 5,000 xg for 5 min. One hundred microlitres of the supernatant
was transferred to microplate wells containing an equivalent amount of 0.5 M NaOH
and the absorbance measured at 450 nm in a microplate reader. Positive and negative
controls were trypsin (Sigma) and assay buffer respectively. The protease activity was

guantified as the increase in absorbance.

4.2.4.3. Protease activity: zymography assays

Protease activity in the ME was examined by gelatin and B-casein substrate zymography
with methods according to Ross et al. (2000) with modifications. A 10 % SDS gel was
prepared from a 10 % separating buffer consisting of 5 mL buffer (1.5 M Tris, 0.4 % SDS),
8.35 mL dH,0 and 6.65 mL 30 % acrylamide/bis-acrylamide solution. Other procedures
were as described in Section 4.2.3.1 but 0.1 % gelatin (from porcine skin, Sigma G8150)
or 0.15 % B-casein (from bovine milk, Sigma C6905) was added to the separating

solution prior to pouring into gel casters.
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For zymography, desalted ME was diluted with an equivalent volume of 2x non-reducing
SDS sample buffer (125 mM Tris-HCI, 20 % glycerol, 0.4 % w/v SDS, 0.01 % bromophenol
blue, pH 6.8). The sample was mixed thoroughly but not heated to preserve enzyme
activity. The gel was loaded with 10 uL of pre-stained broad range protein markers
(Thermo Scientific) and 15 pL sample (15 pug protein). The gel was also loaded with 2 pg
trypsin (Sigma) in sample buffer as positive control and a sample buffer blank as a
negative control. The gel was run at 60 V for the first 15 min and at 200 V until the dye
front reached the bottom of the gel in 1x SDS running buffer. System temperature

throughout the procedure was maintained at 4°C to preserve enzyme activity.

Following electrophoresis, the gels were washed three times for 5 min at 4°C with 50
mM Tris-HCl, pH 7.5 containing 2.5 % Triton X-100 (Sigma). After washing the substrate
gels were incubated at 30°C for 19 h in the same buffer containing 5 mM MgCl, and 62.5
mM CaCl,, with frequent shaking. The gels were stained in 0.1 % Amido Black (Sigma) in
methanol/acetic acid/dH;0 (45:10:45) and destained with methanol/acetic acid/dH,0

(50:2:48) until adequate contrast was achieved.

4.2.4.4. Lysozyme activity

Lysozyme activity in the ME was measured using a turbidimetric assay (Ross et al., 2000).
Freeze-dried ME was reconstituted in 40 mM PBS, vortexed and centrifuged at 4,000 xg
for 5 min at 4°C to remove insoluble material. Twenty five microlitres of the
reconstituted ME (0.45 mg mL* protein) were added to triplicate wells with 175 pL of
lysozyme assay substrate, containing 0.75 mg mL™* Micrococcus lysodeikticus (Sigma)
suspended in 0.1 M PBS, in a 96-well flat-bottomed microplate. The reduction in

absorbance at 450 nm was measured continuously every 5 min at 25°C in a microplate
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reader. One unit (U) of activity was defined as the amount of enzyme that catalysed a
reduction in absorbance of 0.001 min at 450 nm and the initial rate of reaction was

used to calculate lysozyme activity in the ME.

4.2.4.5. Alkaline phosphatase activity

Alkaline phosphatase activity in the ME was quantified by incubating 100 pL of ME with
an equal amount of 4 mM p-nitrophenyl phosphate (Sigma) in 100 mM ammonium
bicarbonate buffer with 1 mM MgCl,, pH 7.8 at 30°C as described by Ross et al. (2000).
The increase in optical density (OD) at 405 nm was measured continuously for 3 hiin a
microplate reader. Alkaline phosphatase activity was calculated from the initial rate of
reaction and one unit (U) of activity was defined as the amount of enzyme required for
the release of 1 umol p-nitrophenol product in 1 min. The extinction coefficient of p-

nitrophenol under assay conditions was determined experimentally.

4.2.4.6. Esterase activity

Esterase activity in the ME was determined according to the method of Ross et al.
(2000). One hundred microlitres of ME was incubated with 100 pL of 0.4 mM p-
nitrophenyl myristate substrate (Sigma) in 100 mM ammonium bicarbonate buffer
containing 0.5 % Triton X-100, pH 7.8 at 30°C. Absorbance readings were measured
continuously for 3 h at 405 nm in a microplate reader. The extinction coefficient of p-

nitrophenol under assay conditions was determined experimentally.

4.2.4.7. Cathepsin B activity

Cathepsin B activity in the ME was measured as described in Easy and Ross (2010). Five

microlitres of ME was added to 50 pL of assay buffer (0.1 M NaH,PO4, 0.08 % w/v Brij
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35,1 mM EDTA, pH 6.0), 20 pL of 1 mM dithiothreitol and 60 pL of ultrapure water in a
96-well microplate. The plate was incubated for 5 min at 30°C, and 50 plL of 25 uM
carbobenzoxy-L-phenylalanyl-L-arginyl-4-methylcoumaryl-7-amide (Sigma) was added
after incubation. The fluorescence of 7-amino-4-methylcoumarin (AMC) was measured
continuously for 30 min at 30°C in a microplate reader. Excitation and emission
wavelengths were 380 and 405 nm respectively. The extinction coefficient of AMC under
assay conditions was determined experimentally and the initial rate of reaction was
used to calculate enzyme activity. One unit (U) of activity was defined as the amount of

enzyme required to release 1 umol of AMC in 1 min.

4.2.5. Alternative complement activity of the mucus extract

The ME was assayed for alternative complement by measurement of spontaneous
haemolytic activity with methods adapted from Bagni et al. (2005). Defibrinated SRBC
in Alsever’s solution (Oxoid) were washed three times with 10 volumes of gelatin
veronal buffer, prepared by dissolving a barbitone complement fixation tablet (Oxoid)
and 0.1 g gelatin (Sigma) in 100 mL dH,0, resuspended to 5 % (v/v) in the same buffer
and adjusted for optimal absorbance. Twenty five microlitres of the 5 % SRBC
suspension were added to serial dilutions of ME in 150 pL gelatin veronal buffer in a
microplate and incubated at 25°C for 100 min. One hundred percent lysis was obtained
by adding an equal volume of 5 % SRBC suspension to 150 pL dH,0. Following incubation
the plate was centrifuged at 1,500 xg for 2 min and 50 pL of supernatant was transferred
to a clean microplate. Alternative complement activity was estimated by measuring the

OD of the supernatant at 540 nm in a microplate reader.
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4.2.6. Haemagglutinating activity in the mucus extract

The ME was tested for haemagglutinating activity in a round-bottom microplate
(Sterilin) as outlined in Section 3.2.3.6 but without heat treatment of the ME and with
modifications from Palaksha et al. (2008). Fifty microlitres of ME was serially diluted
with an equal amount of TBS and mixed with 25 pL of 2.5 % SRBC suspension. The
microplate was incubated for 1 h at 24°C and the inverse of the highest dilution showing

visible agglutination was expressed as the titre value.

4.2.7. Antibacterial activity of the mucus extract

Antibacterial activity in the ME was tested by a well diffusion assay in agar plates. The
bacterial fish pathogens used were as described in Section 3.2.3.7. Tryptic soy agar
plates (Oxoid) containing 1 % NaCl were inoculated with the bacterial culture and spread
evenly with a sterile spreader. Twenty microlitres of ME, TBS buffer and dH,0 were
added to separate 4 mm wells made with a sterile pipette. Growth inhibition was

observed after a 24 h incubation period at 24°C.

4.3. Results
4.3.1. Characteristics of the mucus extract

The mean protein concentration of the ME as determined from the protein assay was
1,600 pg mL?, while that for the desalted extract prepared for electrophoretic

procedures was 2,000 pug mL?. The extract was colourless.
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4.3.2. Immunoglobulin in the mucus extract

The ME was separately assayed for total Ig and IgM using a chemical precipitation and

a direct ELISA method respectively.

4.3.2.1. Total Ig

Mucus was assayed for total Ig by precipitation with polyethylene glycol. A protein assay
was used to determine the protein concentration prior to and after precipitation and
the difference between the two measurements was taken as the total Ig value in the
ME. The absorbance of the ME at 562 nm prior to incubation with polyethylene glycol
was measured as 1.227 + 0.002 and decreased to 1.153 £ 0.002 after precipitation (n =
3). The protein assay standard curve (y = 0.0011x + 0.0634; R? = 0.99126) was used to
calculate protein concentrations (ug mL?). Total Ig for the ME amounted to 67.9 + 3.73

pg mL1.

4.3.2.2. Total IgM

Total IgM in the ME was quantified with an ELISA using an anti-ABT mAb. The IgM
standard curve (y = 0.3626x + 0.1366; R?> = 0.977) from the assay is shown in Figure 4.1.
Blank-adjusted readings were used to calculate mean total IgM concentration in the ME
and calculated values are given below (Table 4.1). Blank-adjusted control absorbance
was 0.041 £ 0.001. Absorbance readings for the 1:400 dilution approached the detection
limit of the ELISA assay but the total IgM concentration derived from the equation is
similar to those obtained for lower dilutions indicating that IgM in the ME was still

adequately detected at such concentrations.
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Figure 4.1 ELISA standard concentration curve obtained for Atlantic bluefin tuna IgM purified from serum. The
equation (y = 0.3626x + 0.1366; R2 = 0.977) was used to calculate IgM values in the mucus extract.

Table 4.1 Total IgM concentrations in the Atlantic bluefin tuna ME (n = 3). ODg4s0 values represent blank-adjusted
absorbance values and are expressed as mean + standard deviation.

Protein (pg well?) OD 450 Total IgM (pug mL?)
10.0 0.314 £ 0.003 56.39+0.81
5.0 0.215 £ 0.002 56.89 £+ 0.94
2.5 0.158 £ 0.001 56.04 + 1.38

4.3.3. Electrophoresis and western blotting

SDS-PAGE and western blot results for the ME are shown in Figure 4.2. Staining revealed
a total of 10 bands with MW of 90, 70, 50, 42, 32, 30, 28, 26, 22 and 17 kDa. Highest
band intensity was at the 42 kDa region and the remaining bands had a similar
appearance. A relatively strong background was observed for both the Coomassie Blue

and silver-stained gels.

Immunoblotting with the anti-ABT IgM mAb showed a very faint reaction at
approximately 78-72 kDa on the membrane but negative results were obtained for the

membrane treated with the anti-ABT polyclonal Ab (Figure 4.2).
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Figure 4.2 A) SDS-PAGE protein profile of the mucus extract (ME) prepared from Atlantic bluefin tuna (ABT) specimens. Lane 1, prestained protein marker; lane 2, protein profile stained with

Coomassie Blue R-250; lane 3, protein profile stained with silver; B) western blots of the ME of ABT separated on a 10 % precast gel. Lane 1, prestained protein marker; lane 2, immunoblot
assay incubated with anti-ABT IgM mAb; lane 3, immunoblot assay incubated with anti-ABT polyclonal antibody. Arrowhead shows reaction of the mAb on the membrane at a molecular weight

of approximately 72 kDa.
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4.3.4. Evaluation of enzymes in the mucus extract

The ME was examined for enzymes using an API-ZYM kit. Reaction intensity was
recorded through comparison with a colour chart provided by the manufacturer. After
addition of the developing reagents, the control cupule did not show any colour
changes. The API-ZYM kit tests for 19 enzymes and of these a total of 11 enzymes were
shown to be present in the ME at varying concentrations. A strong reaction (> 3) was
observed for alkaline phosphatase, leucine arylamidase, acid phosphatase, naphthol-
AS-Bl-phosphohydrolase, B-galactosidase and N-acetyl-B-glucosamidase. Weaker
reactions were recorded for esterase, valine arylamidase, trypsin, B-glucoronidase and

a-fucosidase. The ME tested negative for all other enzymes (Figure 4.3).

4.3.5. Protease activity in the mucus extract

Results from the API-ZYM assay indicated the presence of proteases in the ME so it was

assessed further for the activity of protease-type enzymes.

4.3.5.1. Azocasein hydrolysis assay

The azocasein hydrolysis assay confirmed the presence of protease-like activity in the
ME. Mean protease activity in the ME was 28.95 + 0.58 U mg! protein (n = 3). Activities

in the positive and negative control were as expected.
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Cupule Enzyme Result
1 Control e
2 Alkaline phosphatase 4+
3 Esterase (C 4) &
4 Esterase Lipase (C 8) -
5 Lipase (C 14) -
6 Leucine arylamidase 3+
7 Valine arylamidase +
8 Cystine arylamidase -
9 Trypsin 1+
10 a-chymotrypsin -
s Acid phosphatase 4+
12 Naphthol-AS-Bl-phosphohydrolase 4+
13 a-galactosidase -
14 B-galactosidase 3+
15 B-glucuronidase 2+
16 a-glucosidase -
17 B-glucosidase -
18 N-acetyl-B-glucosamidase 3+
18 a-mannosidase -

20 a-fucosidase 1+

Figure 4.3 API-ZYM assay for the evaluation of enzymes in the mucus extract (ME). Values on the right represent the
intensity of reaction and give an indication to the amount of the respective enzyme in the ME.
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4.3.5.2. Zymography

Zymograms were used to visualise protease activity against both gelatin and B-casein
substrates and ME, electrophoresed on gels, showed activity against both substrates
(Figure 4.4). The gelatin substrate gel showed two distinct zones of clearing; the first
was at 260-90 kDa and a second at around 26 kDa and below, indicating that gelatine
was digested by protease-type enzymes in the ME. Zones of clearing were evident at
260-150 kDa, 34-30 kDa and at 22 kDa for the B-casein zymogram. Both zymograms
showed a clear band in the 22-26 kDa region (trypsin molecular weight = 23.8k Da) for
the positive control. Distinct bands did not appear in the zymograms and substrate

degradation was visible over a broad MW range.

4.3.5.3. Cathepsin B activity

Cathepsin B activity was detected within the ME and quantified as 98.322 + 9.148

U mg? protein (n = 3).

4.3.6. Lysozyme, alkaline phosphatase and esterase activity in the mucus extract

The ME was analysed for the activities of lysozyme, alkaline phosphatase and esterase
activity. The activities of these different enzymes in ABT ME are summarised in Table

4.2 (n = 3). Results for positive and negative controls were as expected for all assays.

Table 4.2 Summary of enzyme activities measured in the mucus extract of Atlantic bluefin tuna. Results are expressed
as mean t standard deviation (n = 3).

Enzyme Activity (U mg?! protein)
Alkaline phosphatase 0.511 + 0.002

Cathepsin B 98.322 +9.148

Esterase 0.075 £ 0.002

Lysozyme 198.62 +4.80

Protease 28.947 £ 0.578
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Figure 4.4 A) Gelatin zymogram of the mucus extract (ME) showing substrate degradation at various regions (arrowheads). Lane 1, prestained protein marker; lane 2, trypsin control (2 ug);
lane 3, ME; B) B-casein zymogram of ME showing substrate degradation at various regions (arrowheads). Lane 1, prestained protein marker; lane 2, trypsin control (2 ug); lane 3, ME.
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4.3.7. Alternative complement activity in the mucus extract

ABT ME was analysed for alternative complement activity with a spontaneous
haemolytic activity assay. No haemolysis was observed indicating that no complement

activity could be detected in the ME using this particular assay system.

4.3.8. Haemagglutinating activity of the mucus extract
The ME showed visible haemagglutination activity at a titre value of 8 (Figure 4.5).
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Figure 4.5 Mucus extract haemagglutination assay showing visible agglutination at a titre factor of 1:8 (arrowhead).
Values below the plate represent assay dilution factors.

4.3.9. Bacterial inhibition in the mucus extract

Bacterial inhibition of ME was tested using an agar well diffusion assay. The extract was
tested against Vibrio anguillarum (NCIMB 6), V. vulnificus (ATCC 27562 biovar 1) and
Photobacterium damselae subsp. piscicida (SSV1 Greece). No visible inhibition of
bacterial growth was observed with any of the bacterial species used in the well

diffusion assay.

4.4, Discussion

Fish live in a marine environment containing several different classes of pathogens, and
epidermal mucus represents an important biological interface between the fish and its
environment. In several teleost species, fish epidermal mucus has been shown to exhibit

non-specific response characteristics of the innate immune system (Ingram, 1980;
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Alexander, 1985; Alexander & Ingram, 1992), including Ig, agglutinins and enzymes. The
function of external mucus as a first barrier of protection, and to a degree its
differentiation from internal immune systems, has been demonstrated by Rombout et
al. (1993) who found molecular differences between the serum and mucus Ig in carp.
IgM type natural antibodies in fish cutaneous secretions presumably confer some form
of protection against invading pathogens (Sinyakov et al., 2002; Baumgarth et al., 2005;
Salinas et al., 2011) and have been detected in the mucus of numerous teleost species

(Palaksha et al., 2008; Salinas et al., 2011; Esteban, 2012).

The presence of Ig in the mucus of ABT was analysed using three different experimental
procedures in this study; precipitation with polyethylene glycol and ELISA for total Ig
and IgM respectively, and immunoblots. Results between the former two assays
differed slightly in that total Ig was estimated to be present at slightly higher levels than
IgM, but both indicate that Ig are present in the epidermal mucus of this tuna species.
Both methods gave relatively low values indicating that Ig levels in the mucus are low,
and this is consistent with findings for other teleosts (Lobb & Clem, 1981; Rombout et
al., 1986; Lobb, 1987; Itami et al., 1988; Al-Harbi & Austin, 1993; Hatten et al., 2001;
Palaksha et al., 2008). At such low levels, however, it is always difficult to accurately
estimate the levels of Ig in mucus especially considering that it was processed post-
collection, and the results serve more to confirm the presence of Ig rather than to
estimate their exact concentration. The measured difference between total Ig and IgM
may reflect the presence of an Ig isotype similar to IgT/IgZ found in rainbow trout or
zebrafish skin mucus respectively, but more specific investigations in this field are

required to confirm this, since such differences may be due to assay limitations.
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Natural Ab are present within an organism in the absence of external antigens and are
predominantly of the IgM isotype (Baumgarth et al., 2005). Additionally they are known
to be capable of binding bacterial pathogens actively; teleost fish are capable of
generating IgM-type natural antibodies against exogenous antigens (Whyte, 2007).
Therefore the presence of natural Ab in epidermal secretions should aid in protection
of the organism against infection, or at least delay the onset of infection until an

adaptive immune response is established.

Although the presence of the IgM molecule could be detected by ELISA it was not seen
in the immunoblot using a polyclonal Ab against ABT IgM. In contrast to this, very faint
bands in the region of the IgM heavy were obtained with an anti-ABT IgM mAb, although
it was unclear if this was due to a specific reaction with IgM-type molecules present in
the mucus or background staining. Polyclonal Ab, due to their lower specificity and
recognition of multiple antigen epitopes, would be expected to show a stronger reaction
than mAb, which recognise a single epitope. Consequently it is difficult to explain the
results obtained here. Rombout et al. (1993) reported slight structural differences
between mucosal and serum Ig, because a mAb developed by them against mucosal Ig
did not react with Ig isolated from serum; they attributed this to molecular differences
in the Ig heavy chain. In contrast, other teleost species have been reported to have
identical IgM forms in serum and mucus (Lobb, 1987; Shin et al., 2007). The same anti-
ABT IgM used in ELISA detected the presence of an IgM-like component. Considering
this, it is probable that the negative or slight reactions observed in the immunoblot
assays in this study are more likely to be due to the low concentrations of the natural

Ab in the mucus rather than to any structural differences within the Ig molecule itself.
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Similarly, Jung et al. (2012) observed positive immunoblot reactions when olive flounder

mucosal IgM levels were high but negative reactions when Ab levels were low.

The protein profile of the ME was examined using gel electrophoresis. All protein bands
detected by denaturing SDS-PAGE had a MW below 100 kDa. The MW of the proteins
detected were similar to those described for olive flounder (Palaksha et al., 2008), but
more investigations are required to draw conclusions regarding similarities between
proteins. ABT mucus has a relatively thick consistency and this is probably due to the
presence of a large amount of mucins. This may have given rise to large amounts of
breakdown products following reduction and denaturation of the sample in sample
buffer prior to electrophoresis and may account for the relatively strong background
obtained in protein electrophoresis. The latter, however, may also be due to a degree
of sample breakdrown prior to storage during sample retrieval, or during laboratory

processing.

The presence and possible immunological function of lysozyme, alkaline phosphatase
and proteases in fish skin mucus of species other than tunas has been reported (e.g.
Ingram, 1980; Ellis, 1981; Alexander & Ingram, 1992; Shephard, 1994; Ellis, 2001). An
API-ZYM bacterial enzyme kit was adapted for testing the presence of these and other
enzymes in ABT epidermal mucus. The test strip was set to an incubation temperature
of 25°C to represent their body temperature (Graham & Dickson, 2001) and the average
seawater temperature the fish experience during their time in the cages. The strip
tested positive for the presence of several enzymes with both alkaline and acid
phosphatases showing high concentrations. Positive readings were also obtained for the

protease-type enzymes leucine arylamidase, cystine arylamidase and trypsin. The
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presence of several other enzymes was also detected but there are no reports on their
physiological significance in fish mucus. Cutaneous mucus is in constant contact with a
marine environment containing several bacterial species that may become trapped
within the mucus itself. Considering this, it is difficult to determine whether the enzymes
detected originate from the mucosal secretions or those of the bacterial flora sustained

within (Palaksha et al., 2008).

The activities of some of the enzymes detected by API-ZYM were analysed in more
detail. Proteases have been histochemically localised in mucus-secreting cells (Braun et
al., 1990), are known to have protective function and are an important component of
the innate immune response (Ingram, 1980). Their presence in the ABT epidermal
mucus was investigated using an azocasein assay and substrate gel electrophoresis.
Azocasein hydrolysis detected a relatively potent protease activity (28.9 U mg™ protein)
in the ME and this corroborates the presence of leucine arylamidase and trypsin
detected with the API-ZYM strip. The activity of proteases on protein substrates in
zymography further substantiate these findings and are a clear indicator that proteases
were not only present in the cutaneous ME, but were also active. Diffuse substrate
digestion zones were observed in the zymograms and this is similar to that obtained for
fish mucus post-processed in the laboratory using similar procedures (Palaksha et al.,
2008). Electrophoresis on a 12 % SDS substrate gel did not appear to allow for efficient
separation of reduced non-denatured protein so that final zymography assays were
performed on a 10 % SDS substrate gel. Considering this, it could be that diffuse bands
may have been obtained due to the restricted mobility of the non-denatured proteins

within the gel so that digested bands were obtained over a diffuse area rather than at
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defined MW. Some separation of the clearing zones was still evident and protease
activity at a MW of approximately 100 kDa has been reported from the skin mucus of
other fish species (Subramanian et al., 2007). Low MW protease bands have been found
in extracts prepared from the mucus of rainbow trout (Hjelmeland et al., 1983), Atlantic
salmon (Ross et al., 2000) and others (Subramanian et al., 2007). Significant cathepsin B
activity was detected in the ABT ME. Proteases are known to have bacteriolytic activity
against Gram-negative bacteria; a trypsin-like protease from rainbow trout mucus has
been shown to inhibit the growth of V. anguillarum (Hjelmeland et al., 1983). Cathepsin
B is a cysteine protease which can degrade proteoglycans in bacterial cell walls (Nguyen
et al., 1990) and has demonstrated growth inhibiting activity against Edwardsiella tarda,
Flavobacterium columnare and V. anguillarum (Aranishi, 1999; Aranishi & Mano,
2000a). They are also known to stimulate or enhance the production of several
components of the innate immune system including complement and Ig in mammals
and antibacterial peptides in teleosts (Yoshikawa et al., 2001; Cho et al., 2002a, b;
Morrissey, 2013). In humans, cathepsins are involved in antigen processing (Zavasnik-
Bergant & Turk, 2006), so that they are also important during the generation of adaptive
immune responses. Proteases may also prevent pathogen invasion or attachment
indirectly by modifying mucus consistency so that it is shed at a faster rate (Aranishi et

al., 1998), in consequence reducing opportunity for infection or epidermal attachment.

The presence and activity of other enzymes were confirmed and quantified by the API-
ZYM kit and substrate assays respectively. The specific activity of lysozyme in the extract
was very high (198.6 U mg™* protein) but although present, alkaline phosphatase and

esterase enzymes showed low activities. Results from the API-ZYM assay suggested a
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high activity, but the corresponding microplate assay using a p-nitrophenyl phosphate
substrate showed that this, in fact, was low. Similar discrepancies were found between
API-ZYM and the substrate assay used in the work of Palaksha et al. (2008). Differences
between the two methods may be due to the different substrates and assay conditions
used — 2-naphthyl phosphate and p-nitrophenyl phosphate respectively. Alternatively it
may be that the p-nitrophenyl phosphate is not sensitive enough, especially considering
that Ross et al. (2000) reported low enzyme activities in salmon infected with the
salmon louse, Lepeophtheirus salmonis, and no or low activity was detected in other

work on salmon epidermal mucus (Fast et al., 2002; Easy & Ross, 2010).

Lysozyme is an enzyme ubiquitous within organisms. It is known to demonstrate strong
antibacterial behaviour capable of damaging the peptidoglycan layer of Gram- positive
bacteria, and to act indirectly on Gram-negative bacteria, after action by the
complement system of proteins, on the outer cell wall (Yano, 1996). Alkaline
phosphatase levels have been shown to increase in salmon epidermal mucus following
infection with L. salmonis (Ross et al., 2000) and have been demonstrated in the rodlet
cells of superficially wounded carp (Ilger & Abraham, 1990) so that it is believed that
they confer some form of protection during epithelial repair. Consequently they may
act as indicators of stress (lger & Abraham, 1997; Subramanian et al., 2007). The role of
esterase enzymes in skin epidermal secretions is presently not understood but in higher
vertebrates functions as an inhibitor in the classical complement pathway (Tamura et

al., 1976).

Different studies have used different procedures to quantify enzyme activities so that it

is impractical to make comparison between the specific enzyme activities reported here
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and other research. Inter-species comparison also has limited significance considering
that enzyme levels have been found to fluctuate according to environmental conditions
(Jung et al., 2012), stress and other conditions (Balfry & lwama, 2004). However when
tested in conjunction with other enzymes, lysozyme and proteases have consistently
been found to have high specific activities in comparison to other enzymes (Ross et al.,
2000; Subramanian et al., 2007; Palaksha et al., 2008; Jung et al., 2012; Nigam et al.,
2012). Subramanian et al. (2007) also found lysozyme levels in fish epidermal mucus to
be higher in marine than freshwater species while the opposite was true for proteases.
Enzyme activities were also found to be higher in bottom-dwelling species than those
occupying cleaner habitats by Nigam et al. (2012), perhaps indicating that more

sedentary lifestyles require a higher degree of protection against pathogens.

Complement has an important role in innate immune responses (Alexander & Ingram,
1992) and their mediation is essential for several inflammatory responses (Yano, 1996).
No haemolysis of SRBC was detected in the ME in this study, so it could be that
alternative complement activity is absent in ABT mucus. Components of the
complement system have been found in the mucus of salmonid fish (Harrell et al., 1976),
but similarly the skin mucus of olive flounder did not demonstrate complement activity

(Palaksha et al., 2008).

Fish mucus contains natural agglutinins or lectins (Ingram, 1980), they are non-specific
(Alexander & Ingram, 1992) and may provide a degree of inhibition against bacterial
growth (Yano, 1996) . Haemagglutination of SRBC was visually observed in the ME and
this is similar to findings in the mucus of other teleosts (Suzuki, 1985; Itami et al., 1993;

Palaksha et al., 2008; Jung et al., 2012). Although their exact function in fish epidermal
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mucus is not understood, they have been reported to stimulate phagocytic activity
(Ottinger et al., 1999) and assist in wound healing (Al-Hassan et al., 1983). In mammals,
they are known to be involved in the activation of the complement pathway (Matsushita

etal., 2004).

Although antibacterial activity against both fish and terrestrial pathogens has been
shown to be present in extracts from the skin mucus of several teleosts (Austin &
Mclntosh, 1988; Hellio et al., 2002; Palaksha et al., 2008; Subramanian et al., 2008;
Ruangsri et al., 2010; Balasubramanian et al., 2012), no such activity was evident in
radial diffusion assays with the ME from ABT in this study. This contrasts with results
obtained for the different enzymes, but it is possible that the volumes of ME used in the
assays were too low to inhibit the growth of the bacterial pathogens used in this study,
or that the ME had no activity against these particular bacterial strains. Furthermore,
the lack of bacteriolytic activity observed may be due to other essential components

being absent, or present at insufficient concentrations to inhibit the pathogens.

Tunas are fast-swimming, obligate ram ventilators and their physiology requires them
to sustain their swimming speed for efficient gas exchange (Korsmeyer & Dewar, 2001).
The skin mucus from ABT has been shown to have several non-specific humoral immune
components, which would be expected to work synergistically to defend the organism
against pathogenic attachments or invasions. Being epipelagic species they inhabit open
water and their high swimming speed should make pathogenic invasion or attachment
more difficult so that they may rely less on such a cutaneous defence system. It has been
shown that primitive and sedentary fish have higher enzyme activities and this

presumably compensates for the lack of an adaptive immune response (Subramanian et
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al., 2007) and an increased chance of pathogen attachment respectively. Although tunas
are considered amongst the most evolved teleosts they still possess components of the
innate immune system within their epidermal mucus suggesting that epidermal
secretions must have an important role in defending the organism from pathogen
infection or attachment. Being lower vertebrates, adaptive immune responses in fish
are less sophisticated and diverse than in higher vertebrates (Du Pasquier, 2001; Tort et
al., 2003). Although not strictly endotherms, tunas are able to sustain heat generated
by muscle activity and maintain elevated body temperatures (Graham & Dickson, 2001)
so that in the event of infection they may mount an immune response in a shorter time
than ectothermic fish (Watts et al., 2001a). The innate immune components of the
mucus act without delay (Ellis, 2001) so that their action may serve either to prevent
infection or at least delay pathogen invasion until a proper specific immune response
can be generated. Coupling the possibility of a swift immune response with the immune
components in epidermal mucus, tunas may offer high resistance to disease and in fact

there are no reports of disease in mature captive tunas.

4.5. Conclusion

This is the first report on the innate immune parameters found in ABT epidermal mucus.
Among other non-specificimmune components, the study has assessed the presence of
IgM, lysozyme, protease and alkaline phosphatase. Further studies are required to
better understand the functions and importance of these to the species, and how they
may reflect on the welfare of the animals. Although visual inspection of the specimens
confirmed that they were macroscopically healthy prior to sample retrieval, it was not

possible to ascertain that the fish were entirely free of disease so that more
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investigations are required to relate these parameters to the health status of the fish.
This task is made more complex considering that these immune parameters are known
to show seasonal variation in other fish species (Jung et al., 2012) and also due to the

limitations encountered when working with the ABT.
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CHAPTER 5

STUDIES ON FATTY ACID COMPOSITION AND
LONG-CHAIN PUFA BIOSYNTHESIS GENE
EXPRESSION IN FARMED ATLANTIC BLUEFIN TUNA

5.1. Introduction

Lipids are the preferential energy source for teleosts (Sargent et al., 2002), with the
energy being released from them through oxidative metabolism pathways. Lipids act as
the main metabolic energy source throughout the life of the fish (Tocher et al., 1985),
with FA such as palmitic acid (16:0), oleic acid (18:1n-9), eicosanoic acid (20:1n-9) and
cetoleic acid (22:1n-11) being their major energy source (Sargent et al., 2002). Fish
muscle contains a high proportion of mono- (MUFA) and polyunsaturated (PUFA) FA and
the more prominent PUFA are arachidonic acid (ARA; 20:4n-6) and its metabolic
precursor linoleic acid (18:2n-6) from the n-6 series FAs and eicosapentaenoic acid (EPA;
20:5n-3), docosahexaenoic acid (DHA; 22:6n-3) together with their metabolic precursor
linolenic acid (18:3n-3) from the n-3 series FAs (Sargent et al., 2002). The FA composition
of highly migratory fish, including tunas, contrasts with those of other teleosts in having

higher amounts of DHA, and this is thought to be linked to a form of
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selective FA catabolism during active migration (Medina et al., 1995; Murase & Saito,

1996; Saito et al., 1997, 1999, 2005; Osako et al., 2006).

Tuna species are highly migratory and their muscular arrangement displays
specialisations for high-performance swimming and long-distance cruising (Westneat &
Wainwright, 2001). As in other teleosts, aerobic red muscle is employed for sustained
swimming over long distances, while anaerobic white muscle is active when faster
speeds are required (Altringham & Shadwick, 2001). In ABT, the red muscle constitutes
only a small proportion of the total body mass and has a high concentration of
myoglobin and mitochondria, the former imparting it with its characteristic dark red
colouration (Korsmeyer et al., 1996). In teleosts, lipids are the energy source in red
muscle and energy is released through FA oxidation. To this effect, tuna red muscle
demonstrates high aerobic and metabolic performance to sustain their fast swimming
speeds (Korsmeyer & Dewar, 2001). The white muscle of tuna occupies a larger
proportion of the tuna body weight, but is distinct from that of other teleosts in that it
has a relatively high aerobic capacity and intracellular lipid content (Korsmeyer et al.,

1996; Goiii & Arrizabalaga, 2010).

The FA composition of fish muscle is influenced by various factors, including the
composition of their diet (Hearn et al., 1987; Farndale et al., 1999), and changes in
nutritional state affect their muscle lipid content (Ackman, 1989; Sprague et al., 2012).
At present, the tuna farming industry relies on capture from wild-capture fisheries, and
fish are maintained on a trash fish diet consisting mainly of sardine, herring and
mackerel of varying nutritional composition. Research on other species, including tunas,

has shown that dietary FA intake influences the FA composition of the end product
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(Saito et al., 1996; Farndale et al., 1999; Hemre & Sandnes, 1999; Sargent et al., 2002;

Skog et al., 2003).

The ABT is renowned for its meat quality, particularly with regard to texture and taste.
Lipid content has an important influence on these, and in this regard several studies on
the lipid components of several tuna species have been undertaken (Saito et al., 1997,
1999; Nakamura et al., 2005, 2006; Roy et al., 2010), but information on the lipid
composition of ABT is still limited. Fish lipid levels vary with the size and age of the fish,
and studies on the PBT have shown that younger fish possess lower lipid levels in their
dorsal muscle (Nakamura et al., 2007). It has also been demonstrated that there is
variation in the lipid composition of the different regions of tuna dorsal muscle (Roy et

al., 2010).

Fish, like higher animals, have the ability to biosynthesise C;, long-chain PUFA (LC-PUFA)
from Cis shorter chain PUFA (Sargent et al., 2002). This involves desaturation and
elongation of the FA chain, mediated by fatty acyl desaturase (fad) and elongase (elovl)
enzymes, respectively (Morais et al., 2011). Teleosts have the ability to synthesise
several saturated FA (SFA) de novo (Sargent et al., 2002), but lack certain desaturases
that are essential for the de novo synthesis of PUFA (Tinoco, 1982). The conversion of
linolenic acid to EPA involves desaturation at the A6 position followed by a chain
elongation and a second A5 desaturation (Sprecher, 1981; Sargent et al., 2002).
Although the conversion of EPA into DHA is not entirely understood, it involves an
additional A6 desaturation and 2-carbon chain elongation step so that it involves a Cya

intermediate (Sprecher et al., 1995; Sprecher, 2000).
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Freshwater teleosts are capable of synthesising DHA from linolenic acid (Buzzi et al.,
1997; Bell et al., 2001), but marine species show limited capabilities in this biosynthesis
due to apparent deficiencies in the conversion pathway (Buzzi et al., 1997; Ghioni et al.,
1999; Tocher & Ghioni, 1999; Sargent et al., 2002). Fad genes have been described from
several teleost species and with the exception of A5fad from Atlantic salmon and a
bifunctional A5/A6fad from zebrafish (Hastings et al., 2004), these are of the A6 type
(A6fad) (Zheng et al., 2004a, 2005, 2009; Tocher et al., 2006; Gonzalez-Rovira et al.,
2009). Activity of fad and elovl has been described in ABT larvae (Morais et al., 2011)

and a highly conserved fad has been identified in the SBT (Gregory et al., 2010).

The objectives of this study were to examine the FA profiles of farmed ABT, the effects
of size on lipid levels and composition, and the relationship between diet and ABT FA
composition. Furthermore, there is no information on how the absence of a controlled
diet affects the FA composition of the fish when farmed over longer periods than the
standard 6 to 8 months. For this purpose, flesh samples from specimens farmed for
different durations were collected for comparative analysis of their FA profiles. Finally,
there are no reports on the expression of A6fad and elovl5 genes in farmed ABT, and
this study attempted to quantify the expression of these two genes from several organs
of the fish to acquire a better understanding of the FA metabolism of this species in

captivity.
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5.2. Materials and Methods

5.2.1. Study population and sample collection

Samples were collected from two populations of ABT held in cages for different
durations. They were captured in the Mediterranean in June 2011 (FAO Statistical Area
10 [see Figure 2.1]; 39°04’N, 014°41’E; Groups 1 and 2) and June 2010 (FAO Statistical
Area 21 [see Figure 2.1]; 33° 31’N, 013° 14’E; Group 3) and using purse seine methods,
transferred to sea cages and towed to farm. They were held in offshore marine cages,
off southern Malta (35°49’N, 014°35’E), for a period of 6 or 18 months (depending on
the sample population) and maintained on a trash fish diet. The fish were fasted for one
day prior to harvest. Specimens were killed by a shot to the head as per industry

standards, and transferred to a processing vessel.

Flesh samples for analysis of FA composition were collected from the caudal end of the
fish (n = 17) so that the market value of the dorsal and ventral muscle product was
retained (Figure 5.1). To analyse for differences in lipid composition between the
different regions of the dorsal muscle, a single cross-sectional sample through cephalic
dorsal ordinary muscle (Ce-OM) was collected from a fish weighing 50 kg that was held
in cages for 6 months. Analysis was performed on muscle tissue collected from three
separate body regions termed Ce-OM 1 to 3 (Figure 5.2). The samples were frozen and

stored at -60°C until analysed in the lab.

Tissue samples from the kidney, liver, spleen and brain were collected for quantification
of the expression of A6fad and elov/5 genes. The tissues were excised, transferred into
RNAlater (Sigma) and stored at 4°C for 24 h, after which the RNAlater was decanted and

the organ specimens were stored at -20°C until analysed.
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Figure 5.1 Sampling collection points for: A, caudal muscle and B, dorsal ordinary muscle.

The ABT specimens in this study were maintained on a trash fish diet consisting of
Atlantic herring, Clupea harengus L., Pacific herring, Clupea pallasii Valenciennes,
European pilchard, Sardina pilchardus (Walbaum), and Atlantic chub mackerel, Scomber
colias Gmelin, during the farming period. Representative samples (n =5) of the diet were
collected and homogenised whole (including gonads and internal organs), mixed

thoroughly and stored at -60°C until analysis.

Figure 5.2 Cross-sectional cut through cephalic dorsal ordinary muscle (Ce-OM) of farmed Atlantic bluefin tuna
showing locations at which dorsal ordinary muscle was analysed for fatty acid composition.
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Fish weight ranged from 52-350 kg and 76-116 kg for fish farmed for 6 and 18 months
respectively. All specimens appeared clinically healthy and visual inspection of the

organs did not show any apparent signs of infection or other disorders.

5.2.2. Measurement of total lipid content

Total lipid (TL) from the caudal and dorsal ordinary muscle, and from the homogenised
trash fish samples was measured gravimetrically according to methods from Folch et al.
(1957). One gram of tissue sample was placed in 20 mL of an ice-cold 2:1 (v/v)
chloroform-methanol mixture containing 0.01 % butylated hydroxytoluene (Sigma) as
antioxidant and homogenised with a tissue disperser (Ultra-Turrax, IKA). Five millilitres
of 0.88 % KClI were added, the solution mixed thoroughly and allowed to stand for 1 h
on ice to allow for the separation of the organic phases, containing the extracted lipid,
from the aqueous phase. TL content was determined gravimetrically after evaporating

the solvent with oxygen-free nitrogen gas and desiccating under a vacuum overnight.

5.2.3. Analysis of fatty acids

FA analysis was performed according to Christie (1993). FA methyl esters (FAME) were
prepared through acid-catalysed trans-esterification at 50°C for 16-18 h using
heptadecanoic acid (Sigma) as a standard at 10 % of TL mass. FAMEs were separated
and quantified with gas-liquid chromatography equipment (Vega 8160, Carlo Erba,
Wigan, UK) fitted with a 30 m x 0.32 mm ID capillary column (CP-Wax 52CB, Agilent,
Wokingham, UK) and on-column injection at 50°C. Carrier gas was hydrogen and the

temperature was 50-150°C at 40°C min™! and to 230°C at 2°C min'. Identification of
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unknowns and confirmation of FA identity was performed with gas chromatography-

mass spectrometry.

5.2.4. RNA isolation and cDNA synthesis

RNA was isolated from sampled brain (n = 1), kidney (n = 5), spleen (n = 5) and liver (n
= 5) using a TRIzol RNA purification kit (Applied Biosystems, Paisley, UK) according to
the manufacturer’s instructions. The tissues were partially defrosted and homogenised
in TRIzol (Sigma; 1 mL reagent 100 mg™ tissue) and incubated for 5 min at RT (22°C).
Then 200 pL chloroform (Sigma) mL™* TRIzol were added to the homogenate, mixed
thoroughly and incubated at 22°C for 3 min. The samples were centrifuged at 12,000 xg
for 15 min at 4°C, 600 uL of the upper phase transferred to an RNAse-free container and
600 uL of ethanol were added and the reaction mixture vortexed. Seven hundred
microlitres of the sample was transferred to a spin cartridge and centrifuged at 12,000
xg for 15 sec at 22°C and the flow-through discarded. Seven hundred microlitres of
Wash Buffer | were added to the spin cartridge and the mixture centrifuged and
processed as above. This was followed by the addition of 500 pL of Wash Buffer Il with
identical processing as for Wash Buffer I. The spin cartridge was then centrifuged at
12,000 xg for 1 min at 22°C to attach the RNA to the membrane, and the cartridge
inserted into a recovery tube. Purified RNA was collected after three sequential elutions

with 100 uL RNAse-free water followed by centrifugation for 2 min at 12,000 xg at 22°C.

RNA quality and quantity was assessed with ethidium bromide agarose gel
electrophoresis and spectrophotometry (ND-1000, NanoDrop, Wilmington DE, USA).

Extracted RNA samples were stored at -80°C until analysed.
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RNA was reverse transcribed into cDNA with a cDNA reverse transcription kit (Applied
Biosystems) as per the manufacturer’s instructions. Briefly, an appropriate volume of 2x
reverse transcriptase (20 % reverse transcription buffer, 8 % 25x dNTPs, 20 % 10x
random primers, 10 % MultiScribe reverse transcriptase [50 U pl], 42 % nuclease-free
H.0) was prepared and stored on ice until use. A cDNA archive reaction plate was
prepared at RT by the addition of 50 pL of 2x master mix and an equal volume of RNA
sample (1-2 pg) into wells of a 96-well microplate (Sterilin). The microplate was
centrifuged briefly to eliminate air bubbles, and the cDNA was obtained after thermal

cycling at 25°C and 37°C for 10 and 120 min respectively.

5.2.5. Quantitative polymerase chain reaction

The expression of A6fad fatty acyl desaturase (GenBank: HQ214238) and elovl5
elongase (GenBank: HQ214237), two genes involved in the synthesis of LC-PUFA, was
quantified with real-time quantitative polymerase chain reaction (qPCR) together with
two reference genes, elongation factor-1a (elf-1a; FM995222) and B-actin (GU046791).
Primers used in this procedure are listed in Table 5.1. The amplification efficiency for
primer pairs was evaluated with serial dilutions of cDNA form pooled tissue samples.
Amplifications were performed in a final volume of 20 uL containing 2 or 5 uL cDNA
diluted 1:20 for reference genes and tissue samples respectively, 0.5 uM of each primer
and 10 pL absolute TM gPCR SYBR Green mix (Thermo Scientific). gPCR initial activation
was at 95°C for 15 min and then 30-40 cycles: 15 sec at 95°C, 15 sec at annealing Tm
and 30 sec at 72°C. A 75-90°C melt curve was performed after amplification to confirm
single products in each reaction (Morais et al., 2011). Negative controls consisted of

amplifications without cDNA and these were performed in conjunction with a non-
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template control (NTC). The presence of primer-dimers in the NTC was analysed with
agarose gel electrophoresis. Results were calculated from the cDNA standard curve and

assumed as expression values normalised by the averages of the two reference genes.

Table 5.1 Sequence, annealing temperature (Tm) and fragment size produced by the primer pairs used in quantitative
PCR (gPCR).

Transcript Primer Primer sequence Fragment Tm

A6fad Tt-gD6DES-F  CCGTGCACTGTGTGAGAAAC 152 bp 60°C
Tt-gD6DES-R  CAGTGTAAGCGATAAAATCAGCTG

elovl5 Tt-qElo5-F CCACGCTAGCATGCTGAATA 236 bp 60°C
Tt-gElo5-R ATGGCCATATGACTGCACAC

elf-1a Tt-qEF1-F CCCCTGGACACAGAGACTTC 119 bp 60°C
Tt-qEF1-R GCCGTTCTTGGAGATACCAG

B-actin Tt-gBACT-F ACCCAACACAGTGCCCATCTA 155 bp 61°C

Tt-qBACT-R TCACGCACGATTTCCCTCT
Adapted from Morais et al. (2011); bp, base pairs.

5.2.6. Statistical analysis

Statistical analysis was performed on the results obtained for the FA analysis. For
comparison purposes, the specimens were classified into three categories according to
the time spent in captivity and their weight. Group 1 fish consisted of fish held for 6
months and weighing less than 100 kg, Group 2 of fish held captive for 6 months and
weight exceeding 100 kg and Group 3 represented fish kept in cages for 18 months.
Differences in FA levels between Groups were statistically analysed using one-way
ANOVA and a Tukey post-hoc test for multiple comparisons between parameters where
relevant. Pearson correlation was used to detect correlations between FA levels and
specimen weight in pooled data from Group 1 and Group 2 specimens. One-way ANOVA
was used to test for differences in FA between different regions of the dorsal ordinary
muscle. Significance levels were set at 0.05 and analysis was performed with SPSS

Statistics 20 (IBM Corp.).
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5.3. Results

5.3.1. Fatty acid composition of different groups

A similar FA profile was observed for all farmed ABT muscle tissues analysed. On
average, the major constituents of muscle lipid were SFA at around 29 % of TL,
approximately 41 % MUFA, predominantly in the form of oleic acid (18:1n-9) and 25 %

PUFA, principally as EPA and DHA. The DHA/EPA was close to 1 across all groups.

For purposes of comparing lipid profiles between fish of different size and time in
captivity, the fish were classified into three groups according to these parameters (see
Section 5.2.6). Significant differences between groups were limited to the SFA
docosanoic acid (22:0), which was higher in the larger fish from Group 2, the MUFA
24:1n-9 (nervonic acid), which was lower in Group 2, and total n-6 PUFAs which
increased significantly with farming duration. There was a non-significant increase in TL
and PUFA levels with increasing farming duration, while EPA/DHA was constant
between specimen groups. The EPA/ARA ratio decreased significantly with time spent
in captivity. Table 5.2 lists the FA profile of analysed ABT caudal muscle samples and

Figure 5.3 shows the major lipid classes as a function of specimen groups.
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Table 5.2 Fatty acid composition of Atlantic bluefin tuna tail cuts. Values represent mean * standard deviation (SD)
(Group 1, 6 months captive, weight <100 kg, n = 5; Group 2, 6 months captive, weight >100 kg, n = 7; Group 3, 18

months captive, n = 5).

Parameter Group 1 Group 2 Group 3
Body weight (kg) 67 +13 281 £ 60 96 +17
Total lipid 13.8+2.6 14.2+23 14.8+4.2
14:0 50+04 5.4+0.2 49+0.5
15:0 0.4+0.1 0.5+0.1 0.4+0.1
16:0 18.8+1.4 18.8+1.1 18.2+0.6
18:0 44+0.3 45+04 44+0.2
20:0 0.3+0.0 0.3£0.1 0.3+0.0
22:0%* 0.1+0.0° 0.1+0.0° 0.1+0.0°
Total SFA 28.9+2.0 29.6+1.8 28.4+0.8
16:1n-7 7.7+04 7.8+0.2 7.7+05
18:1n-9 17.4+0.7 16.0+1.5 16.9+0.6
18:1n-7 3.6+0.1 3.4+0.2 36101
20:1n-9 59+1.2 57104 4.8+0.9
20:1n-7 0.3+0.0 0.3+0.0 0.3+0.0
22:1n-11 6.4+0.9 6.4+0.5 55+1.1
22:1n-9 0.6+0.1 0.5+0.0 0.5+0.1
24:1n-9%* 0.7+0.0° 0.7+0.1° 0.7 +£0.0°
Total MUFA 42623 40.8+2.3 39.9+2.0
18:2n-6 1.2+0.1 1.2+0.1 1.3+0.1
18:3n-6 0.2+0.0 0.2+0.0 0.2+0.0
20:2n-6 0.2+0.1 0.2+0.1 0.2+0.0
20:3n-6 0.1+0.0 0.2+0.0 0.2+0.1
20:4n-6 09+0.1 1.0+0.1 1.1+0.1
22:4n-6 0.1+0.0 0.1+0.0 0.1+0.1
22:5n-6 0.2+0.0 0.2+0.1 0.3+0.0
Total n-6 PUFA* 2.9+0.32 2.910.3% 3.3+0.1°
18:3n-3 0.8+0.0 0.8+0.1 0.8+0.0
18:4n-3 1.7+0.1 1.8+0.2 1.8+0.1
20:3n-3 0.1+0.0 0.1+0.0 0.1+0.0
20:4n-3 0.5+0.0 0.6+0.1 0.6+0.0
20:5n-3 9.5+1.3 10.1+1.5 10.5+1.2
22:5n-3 1.5+0.2 1.6+0.3 1.8+0.2
22:6n-3 99+1.2 9.7+15 11.2+0.4
Total n-3 PUFA 24.01+2.7 248134 26.8+1.7
Total PUFA! 28.5%+3.1 29.6+3.8 31.7+21
n-3/n-6 8.4+0.2 8.4+0.7 8.2+8.2
DHA/EPA 1.1+0.1 09z+0.1 1.1+£0.2
EPA/ARA* 10.5+0.6° 10.9 +0.6° 9.7+0.3°

SD values of 0.0 denote values < 0.05; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA,
polyunsaturated fatty acids; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; ARA, arachidonic acid;
1Total PUFAincludes 16:2, 16:3 and 16:4; *denotes significant differences between groups (p < 0.05); b represent
significantly differing parameters.
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Figure 5.3 Major fatty acid groups (as a percentage of the total lipid composition) of the experimental sub-groups of
farmed Atlantic bluefin tuna. Error bars represent standard deviation of the mean (Group 1, 6 months captive, weight

<100 kg, n = 5; Group 2, 6 months captive, weight >100 kg, n = 7; Group 3, 18 months captive, n = 5).

5.3.2. Effect of fish size on fatty acid composition

Pooled data from Group 1 and Group 2 fish were subjected to a Pearson correlation

analysis to examine for variation in FA composition with fish size (Table 5.3). Only 20:3n-

6 (dihomo-y-linolenic acid) had a positive and significant correlation with fish size, while

18:1n-9 (oleic acid) and 18:1n-7 (vaccenic acid), both MUFA, were significantly and

negatively correlated with fish weight. DHA/EPA decreased with increasing fish size (p <

0.05).
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Table 5.3 Pearson coefficients for fatty acid measurements correlated with specimen weight.

Pearson Pearson
Parameter .. p Parameter ..
coefficient coefficient

Total lipid 0.113 0.72 18:3n-6 0.347 0.27
14:0 0.513 0.09 20:2n-6 (0.147) 0.65
15:0 0.040 0.90 20:3n-6* 0.664 0.02
16:0 (0.060) 0.85 20:4n-6 0.379 0.22
18:0 0.144 0.66 22:4n-6 0.338 0.28
20:0 (0.105) 0.75 22:5n-6 (0.049) 0.88
22:0 0.541 0.07 Total n-6 PUFA  0.277 0.38
Total SFA 0.127 0.70 18:3n-3 (0.110) 0.73
16:1n-7 0.339 0.28 18:4n-3 0.381 0.22
18:1n-9* (0.724) 0.01 20:3n-3 0.285 0.37
18:1n-7* (0.638) 0.03 20:4n-3 0.461 0.13
20:1n-9 (0.167) 0.60 20:5n-3 0.397 0.20
20:1n-7 0.328 0.30 22:5n-3 0.425 0.17
22:1n-11 (0.108) 0.74 22:6n-3 (0.005) 0.99
22:1n-9 0.328 0.32 Total n-3 PUFA 0.254 0.42
24:1n-9 (0.486) 0.11 Total PUFA! 0.305 0.33
Total MUFA (0.526) 0.08 n-3/n-6 0.058 0.86
18:2n-6 (0.242) 0.45 DHA/EPA (0.685) 0.01

SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; DHA,
docosahexaenoic acid; EPA; eicosapentaenoic acid; Total PUFA includes 16:2, 16:3 and 16:4; *denotes significant
correlation (p < 0.05); figures in parentheses denote negative correlations.

5.3.3. Fatty acid distribution in farmed Atlantic bluefin tuna cephalic dorsal ordinary
muscle

To examine differences in the dorsal ordinary muscle of farmed ABT, three different
locations from one specimen were sampled and analysed for FA composition. Results
for the major FA components are given in Figure 5.4 and percentage composition of TL
for various FAs are listed in Table 5.4. The levels of TL differed significantly between the
various dorsal muscle regions sampled; the TL was 5.0 % in Ce-OM1 taken close to the
spinal column, but increased to 28.2 % in the outer areas of the dorsal muscle. SFA
showed a decreasing trend between Ce-OM 1 and Ce-OM 3. Significant differences
between regions of muscle were also measured for MUFA, with values of these being
higher in samples from the Ce-OM 1 region. Of the individual monoene components,

only oleic acid (18:1n-3) differed significantly between the different areas of muscle
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sampled. The percentage of MUFA was seen to decrease from Ce-OM 1 to Ce-OM 3,
while PUFA showed an opposing trend. The DHA/EPA ratios were similar in Ce-OM 1

and 2, but differed significantly from that in Ce-OM 3.
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Figure 5.4 Major fatty acid groups (as a percentage of the total lipid composition) from different regions of the
cephalic dorsal ordinary muscle of a farmed Atlantic bluefin tuna. Ce-OM 1-3 represent different regions of the dorsal
muscle (n = 1).

5.3.4. Diet fatty acid composition

Table 5.5 shows the FA composition of the trash fish diet supplied to the fish during their
time in captivity. FA levels varied between the different species. TL varied between 8
and 12 %. SFA levels were highest in chub mackerel. Total MUFA were higher in the
herring species, while maximum PUFA levels were recorded in the pilchard. DHA/EPA

ratios ranged from approximately 0.8 in Atlantic herring to 1.6 in the mackerel.
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Table 5.4 Fatty acid composition of different regions of the cephalic dorsal ordinary muscle of a farmed Atlantic
bluefin tuna specimen. Results are expressed as mean * standard deviation (SD). Ce-OM 1-3 represent different
regions of the dorsal muscle (n = 1).

Parameter Ce-OM 1 Ce-OM 2 Ce-OM 3
Total lipid* 5.0+ 0.4° 7.5+1.9° 28.2 £ 0.6
14:0 4.7+0.3 5.1+0.3 5.3+0.2
15:0 0.5+0.1 0.4+0.0 0.4+0.0
16:0 185+1.3 17.2+0.1 16.7+0.4
18:0* 5.0+0.4° 43+0.1° 3.7+0.1%
20:0 0.3+0.0 0.3£0.0 0.2+£0.0
22:0%* 0.1+0.0° 0.1+0.0° 0.1+0.0°
Total SFA 29.1+2.1 27.3+0.2 26.5+0.3
16:1n-7 6.7+0.2 6.8+0.1 7.2+01
18:1n-9* 19.4+0.8° 17.1+£0.4° 14.8 +0.4°
18:1n-7 3.6x04 3.3+0.1 3.1+0.1
20:1n-9 7.8+0.3 7.6+0.1 7.8+0.1
20:1n-7 0.3+0.0 0.3+0.0 0.3+0.0
22:1n-11 9.5+0.5 9.2+0.2 9.5+0.3
22:1n-9 0.7+0.0 0.7+0.0 0.7+0.0
24:1n-9 0.5+0.5 0.8+0.0 0.7+0.0
Total MUFA* 48.6 + 1.6° 45.8 £ 0.0%° 44.2 £+ 0.8°
18:2n-6 1.3+0.1 1.4+£0.0 1.2+0.0
18:3n-6 0.1+0.0 0.2+0.0 0.2+0.0
20:2n-6 0.2+0.0 0.2+0.0 0.2+0.0
20:3n-6* 0.1+0.0° 0.1+0.0%® 0.1+0.0°
20:4n-6 0.8+0.1 0.8+0.0 0.8+0.0
22:4n-6 1.5+0.2 0.1+0.0 0.1+0.0
22:5n-6 0.1+0.0 0.2+0.0 0.2+0.0
Total n-6 PUFA 2.8+0.3 3.0+0.1 2.7+0.0
18:3n-3 0.8+0.1 0.9+0.0 0.9+0.0
18:4n-3 1.5+0.2 1.9+0.1 2.1+01
20:3n-3 0.1+0.0 0.1+0.0 0.1+0.0
20:4n-3 0.4+0.1 0.5+0.0 0.5+0.0
20:5n-3 6.4+1.2 8.1£0.0 9.7+0.2
22:5n-3 1.0+0.2 1.2+0.0 1.4+0.0
22:6n-3 8.5+1.38 10.1+0.1 10.2+0.4
Total n-3 PUFA 18.6 £+ 3.5 22.7+0.2 249109
Total PUFA! 224138 26.910.2 29.3+1.0
n-3/n-6* 6.7 0.6 7.7 £0.1%* 9.1+0.2°
DHA/EPA* 1.3+0.6° 1.3+0.4° 1.1+0.3°

SD values of 0.0 denote values < 0.05; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA,
polyunsaturated fatty acids; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; 1Total PUFA includes 16:2,
16:3 and 16:4; *denotes significant differences between the various muscle regions (p < 0.05); 2P represent
significantly differing parameters.
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Table 5.5 Mean fatty acid compositions of the different components of the trash fish diet supplied to the tuna during

the farming period (n = 5).

Parameter Atlantic Pacific herring European Chub
herring pilchard mackerel
Total lipid 8.64 8.33 11.95 9.70
14:0 5.35 8.48 10.46 8.49
15:0 0.43 0.47 0.50 1.41
16:0 23.79 15.16 20.50 30.54
18:0 3.30 1.48 3.50 7.09
20:0 0.23 0.29 0.34 0.99
22:0 0.19 0.00 0.13 0.41
Total SFA 33.29 25.89 35.43 48.94
16:1n-7 8.82 4.51 10.58 7.52
18:1n-9 30.16 6.98 7.17 12.38
18:1n-7 4.64 1.78 3.45 3.65
20:1n-9 1.07 14.88 1.42 2.21
20:1n-7 0.20 0.35 0.15 0.37
22:1n-11 1.66 24.95 0.47 1.99
22:1n-9 0.23 0.18 0.29 0.41
24:1n-9 0.33 1.12 0.56 0.94
Total MUFA 47.10 54.76 24.08 29.48
18:2n-6 1.36 1.45 1.19 1.97
18:3n-6 0.14 0.11 0.35 0.16
20:2n-6 0.24 0.23 0.12 0.41
20:3n-6 0.11 0.09 0.25 0.16
20:4n-6 1.14 0.21 1.25 0.88
22:4n-6 0.07 0.10 0.18 0.27
22:5n-6 0.07 0.08 0.13 0.29
Total n-6 PUFA 3.14 2.26 3.46 4.14
18:3n-3 0.63 1.07 0.92 1.17
18:4n-3 1.46 2.68 3.32 1.30
20:3n-3 0.07 0.11 0.00 0.15
20:4n-3 0.22 0.41 0.83 0.35
20:5n-3 7.13 5.13 18.37 4.86
22:5n-3 0.30 0.55 1.77 0.92
22:6n-3 5.66 5.88 6.27 8.04
Total n-3 PUFA 15.47 15.82 31.47 16.78
Total PUFA! 19.61 19.35 40.49 21.58
n-3/n-6 4.93 6.99 9.10 4.05
DHA/EPA 0.79 1.15 0.34 1.65
EPA/ARA 6.27 23.97 14.71 5.56

SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; DHA,
docosahexaenoic acid; EPA, eicosapentaenoic acid; ARA, arachidonic acid; Total PUFA includes 16:2, 16:3 and

16:4.
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5.3.5. Expression of A6 fatty acyl desaturase (A6fad) and fatty acyl elongase (elov/5)
in ABT organs

Quantitative expression of A6fad and elovl5 is shown in Figure 5.5. For both genes,
expression was highest in the brain followed by the liver. No expression of A6fad and

elovl5 was detected in the spleen, while only elovl5 expression was detected in the

kidney.
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Figure 5.5 Normalised gene expression ratios for A6fad and elovl5 in different organs of farmed Atlantic bluefin tuna.
Bars represent mean + standard deviation (kidney, spleen, liver, n = 5; brain n = 1).

5.4. Discussion

Data on the lipid composition of ABT is scarce due to the the costs involved in sourcing
flesh samples for analysis. The main objective of this study was to examine the FA
composition of farmed ABT muscle tissue. Mean total lipid in the caudal muscles of
specimens in this study was in the region of 14 % while SFA, MUFA and PUFA were 29,
40 and 30 % respectively. Several FA, including the SFA palmitic acid (16:0) and the

monoenic FA, 18:1n-9 (oleic acid), 20:1n-9 and 22:1n-11, are known to be important for
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energy generation in fish (Sargent et al., 2002). In addition palmitic and oleic acids,
together with EPA and DHA are important constituents of the cell membrane bilayer
(Sargent et al., 2002). It is expected, therefore, that these would be found in higher
concentrations than other FA. In fact, of the entire FA composition, palmitic and oleic
acids each accounted for 18 %, levels of both EPA and DHA amounted to 10 %, while

20:1n-9 and 22:2n-11 each amounted to approximately 6 % of TL.

Comparison of the FA composition obtained for farmed ABT in this study with that
reported from Croatian specimens (Topic Popovic et al., 2012) revealed more
similarities than differences and all the major FA components (palmitic and stearic acid,
DHA and EPA) were found at approximately similar levels. Also in migrating wild ABT,
levels of SFA, MUFA and PUFA (Sprague et al., 2012) are similar to those found in this

study. This indicates some form of endogenous control over FA metabolism.

This is further corroborated by the lack of difference found in the FA composition of
caudal muscle between fish held in cages for different durations. During the farming
period, the fish are restricted to a controlled trash fish diet but this did not result in any
major differences between the different groups of fish, regardless of the amount of time
they had been maintained in captivity. In addition there were wide variations in SFA,
MUFA and PUFA within the herring, sardine and mackerel supplied to the fish, but these
variations were not reflected in muscle FA profiles. This further supports the hypothesis
that some form of selective FA catabolism may be present in the ABT. Similar results
were obtained in studies on PBT, where the lipid composition of a trash fish diet was

not linked to the FA composition of tuna flesh (Nakamura et al., 2007).
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Selective use of FA for energy generation is widespread in several fish species (Sargent
et al., 2002) and migratory fish selectively retain high DHA levels within their tissues and
organs (Medina et al., 1995; Ishihara & Saito, 1996; Murase & Saito, 1996; Saito &
Ishihara, 1996; Saito et al., 1996; Mourente et al., 2002; Osako et al., 2006) so that
DHA/EPA ratios are high in comparison with other teleost species (Mourente & Tocher,
2009). In fact, relatively high DHA/EPA levels have been reported from ABT from both
wild and farm origins in other studies (Salvo et al., 1998; Mourente et al., 2002; Sprague
et al., 2012; Topic Popovic et al., 2012). Several authors have suggested that the high
DHA/EPA ratio in highly migratory species is due to the retention of DHA during long-
distance migrations (Ishihara & Saito, 1996; Saito et al., 1996, 1999; Mourente & Tocher,
2009). This is reasonable, especially considering that fish have restricted capabilities to
biosynthesise LC-PUFA and n-3 PUFA are not metabolised as efficiently as SFA and MUFA
for energy generation (Tocher, 2003). In addition, DHA may have crucial roles in gonadal
development in female ABT (Mourente et al.,, 2002) and is an essential dietary
requirement in tuna species (Glencross et al., 2002). DHA/EPA reported from wild ABT
after migration and prior to their entry into the Mediterranean for spawning (Mourente
et al., 2002; Sprague et al., 2012) are about two-fold higher than those reported from
farmed ABT specimens in this study and others (Topic Popovic et al., 2012). This
difference arises from the lower EPA levels found in the wild fish muscle following their
annual migration into the Mediterranean (Sprague et al., 2012) rather than differences
in DHA levels. Differences, therefore, exist in the nutritional status between wild and
captive fish and since ABT still undergo sexual maturation in cages (personal
observation) this should be due to the constant nutrient availability and restricted

energy use in captivity.
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There were no statistically significant differences in lipid levels between the different
experimental sub-groups, however there was an expected trend in the results. Among
the different groups, lipid levels were lowest in the smaller specimens and this is
probably because energy is directed towards somatic growth rather than lipid being
retained as an energy reserve. A similar trend was observed in farmed PBT specimens
(Nakamura et al., 2007). Lipid levels were highest in fish held captive for the longer
duration, although the TL difference was minimal between the groups. There are some
variations between the TL quantities reported here and those found in other studies.
Previous studies on farmed ABT have reported lipid levels of 9 % (Topic Popovic et al.,
2012), 16 % (Yerlikaya et al., 2009) and 20 % (Giménez-Casalduero & Sanchez-Jerez,
2006). Studies on wild fish have found muscle TL of 13 % (Mourente et al., 2002) and
8 % (Sprague et al., 2012). TL levels in tuna are known to vary depending on the region
of muscle sampled (Nakamura et al., 2007), and since most of these studies do not
specify the region from where muscle was collected, a direct comparison of results
cannot be made. It is, however, natural to expect TL levels to be influenced by several
other factors including origin (Roy et al., 2010), prey lipid levels (Saito et al., 1996, 1997)

and reproductive cycle stage (Mourente et al., 2002).

In contrast to regional variation in TL levels in tuna ordinary muscle, FA compositions
have been reported to be relatively similar in flesh samples collected from different
locations of the ordinary muscle of PBT (Roy et al., 2010). FA analysis of the different
regions of the dorsal muscle of farmed ABT (Ce-OM 1-3) were analysed in this study and
there were several variations in the major lipid classes between these. Ce-OM 1

corresponds to the dorsal akami region, while Ce-OM 2 and 3 come from the chuo-toro
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region of ABT dorsal muscle (Figure 5.2). Interestingly, tuna dorsal muscle becomes
paler with increasing distance from the spinal column, and this is easily observed and
clearly evident in Figure 5.2. In fact, TL levels were significantly different between the
three regions and increased from 5 to 28 % in Ce-OM 1 and 3 respectively. As for the
variation in the major FA classes between the different regions, SFA and MUFA
decreased between the inner and outer regions but PUFA increased. Although different
FA compositions in dorsal muscle also occur in other fish species (Katikou et al., 2001),
the differences in the dorsal muscle of ABT in this study are more pronounced. The
physiological basis of this phenomenon has not been investigated to date, but it may be
linked to energy generation requirements of the different muscle groups in the fish.
Interestingly this distinction in ABT dorsal and ventral muscle is more pronounced at
lower sea temperatures so that increased lipid levels beneath the skin may be important

in restricting heat loss to the environment and aid in homeothermic regulation.

ABT muscle samples were collected close to the caudal end of the fish in order to limit
value depreciation of the marketable end product. Instead of relying on traditional tail
cuts, dorsal muscle specimens were collected from a region known to be similar in
appearance to the rostral end of the dorsal muscle. This was done in order to achieve a
better representation of the entire tuna muscle. Only a single cross-sectional slice was
collected from the anterior dorsal muscle, and this again is due to marketability reasons.
Sample numbers were also limited, but despite this, variation within the separate
groups of fish was relatively small so that it may be presumed that the results give an

appropriate representation of the FA profile of the captive tuna population.
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There was no opportunity to collect wild ABT specimens for muscle FA analysis.
Considering the restricted energy use and constant feed availability it is expected that
farmed specimens will possess higher TL values in comparison to their wild counterparts
(Hirano et al., 1980; Aoki et al., 1991; Alasalvar et al., 2002; Grigorakis et al., 2002). At
least, this is the case for the PBT, where research has shown that lipid is found at higher
levels in farmed as opposed to wild specimens (Katada et al., 1960; Nakamura et al.,

2006; Tsukamasa et al., 2007).

The expressions of A6fad and elovl5 were quantified with qPCR to analyse variation in
their expression within different organs. Both genes have been previously described in
tuna species including ABT (Morais et al., 2011), while Gregory et al. (2010) isolated a
fatty acyl elongase from the liver of SBT. Brain tissue displayed the strongest expression
for both A6fad and elovl5 and such pronounced expression of these elongase and
desaturase genes within the teleost brain has been described in other species including
Atlantic cod, cobia, Rachycentron canadum L., and Asian sea bass, Lates calcarifer
(Bloch) (see Zheng et al., 2004a, 2009; Tocher et al., 2006; Mohd-Yusof et al., 2010).
Liver had lower expression ratios for both genes while only elov/5 was detected in the
kidney, an expression pattern similar to that reported from the Atlantic cod with the
exception that the liver of the latter displayed the presence of both A6fad and elov/5
(Tocher et al., 2006). A6fad is involved in desaturation of Cya intermediates in the
conversion of EPA to DHA but its exact role in LC-PUFA biosynthesis has been the subject
of conjecture (Tocher, 2010). Their significant expression in the teleost brain has given
rise to the hypothesis that the role of these enzymes in marine fish is that of being

essential to the maintenance of adequate DHA levels in the brain and neural tissues
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(Zheng et al., 2004a, 2009; Tocher et al., 2006). In fact, A6fad and elovi5 levels have
been shown to increase during ABT larval development (Morais et al., 2011). The
important roles these play in the maintenance of the nervous system has been
demonstrated by Monroig et al. (2010) in Atlantic salmon who reported that there are
three types of A6fad genes and considerable expression of all A6fad genes occurs within
the brain. No expression of either transcripts was detected in the spleen for farmed ABT

and reasons for this are unclear.

Nutritional factors are also known to influence the expression of both A6fad and elov/5
(Seiliez et al., 2001; Zheng et al., 2004b; Gonzalez-Rovira et al., 2009; Monroig et al.,

2010) but the experimental design of this study did not allow for such investigations.

5.5. Conclusion

This study investigated lipids in farmed ABT and relatively similar FA profiles were
detected in all the fish studied. Although TL increased slightly with farming duration, FA
profiles remained similar indicating some form of endogenous control or selective FA
use within ABT. The FA composition of the trash fish diet supplied did not result in any
differences in specimen lipids, similarly indicating that FA metabolism in ABT may be
selective towards FA substrates. It has also been shown that lipid levels, and to a much
lesser degree FA compositions, vary by region in the dorsal muscle of the fish with TL
being higher closer to the skin. Finally, the expression of two genes, A6fad and elovl/5,
involved in FA metabolism was examined in organs of ABT. High expression ratios were
measured in the brain suggesting important roles for these within the nervous system

of the ABT.
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GENERAL DISCUSSION

The ABT has been farmed on an industrial scale in the Mediterranean for over a decade,
but owing to several limitations encountered in working with the species, including but
not limited to their value and size (see Section 1.6) there is a paucity of information

relating to the health and welfare of captive ABT.

The health and welfare of captive fish is a subject which has recently gained
international attention and importance. It is of increased significance in the case of
farmed fish sourced from wild-capture fisheries in that their domestication is
accompanied by changes which may affect their lifestyle and wellbeing. The objectives
of this work were to attempt to investigate the effect of captivity on several aspects of

the health and welfare of wild-caught ABT.

6.1. Coronary artery lesions in wild and captive Atlantic bluefin tuna

One study has reported on the occurrence of arteriosclerotic lesions in wild ABT, but
there has been no follow up work to investigate this further. The study outlined in

Chapter 2 investigated the effects of captivity, if any, on coronary arterial lesions in ABT.
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It analysed the occurrence of arteriosclerotic lesions in captive and wild ABT, and used
computer software to measure the severity of these lesions. The coronary arterial
lesions described in this investigation are similar in morphology to those described
previously for wild ABT (Vastesaeger et al., 1962), but lack the lipid inclusions described
in the latter. Lesions in the coronary artery in salmonids are a progressive condition so
that severity generally increases with fish age (Farrell, 2002) and results from this study
indicate that a similar trend exists in the case of ABT since lesion severity increased with
fish size. At the time of study, the only accessible source of wild ABT specimens were
small specimens caught in the Adriatic Sea, and therefore it was not possible to compare
coronary arterial lesions between wild and captive large specimens. Although results
obtained here do not indicate that captivity adversely affects ABT in this regard, such
direct comparisons would have given a clearer indication on the effects of farming on

arteriosclerosis in ABT.

The larger specimens in this study had only been held in cages for 6 months. It may be
possible that the effects of captivity on arterial lesions in ABT become more evident with
an extended farming duration. Further work should attempt to address this in order to
provide a more thorough report on the effects of farming on arteriosclerotic lesions in

the ABT.

Observations of severe lesions in the wild specimens, despite their relatively smaller
size, confirms that the formation of coronary arterial lesions in ABT commences prior to
their capture for farming purposes. This study has attempted to represent a large
proportion of the size/age ranges encountered in ABT farming, but could not source fish

under the minimum catch limit, which presently stands at 30 kg. The wild specimens

Chapter 6 Page 182



General Discussion

sourced in this study were relatively small in size (mean weight = 35 kg) when compared
to those obtained from the farm, and all were found to have some form of identifiable
lesion within their coronary arteries. Additional research into the occurrence and
prevalence of coronary artery lesions throughout the life-cycle of the ABT will be useful
in providing further information on arteriosclerosis in the species, including its origins

and possibly its aetiology.

The origins of arteriosclerotic lesions in salmonids are unknown but it is thought that
vascular injury arising from mechanical stress is the primary initiating factor (Saunders
& Farrell, 1988; Farrell, 2002). In this study, only the main coronary artery lying on the
bulbus arteriosus was examined. Incidentally, several examples of such proliferations
were found in the arterial vessel network within the bulbus arteriosus parenchyma,
indicating that these lesions are not restricted only to the artery investigated here.
Further work should attempt to analyse the vessels supplying the ventricle for lesions
of this type, since these are also subject to mechanical stresses during contraction and

relaxation cycles.

It has been postulated that fast growth, by way of increased demand on the
physiological systems of the fish, promotes arterial lesions (Saunders et al., 1992;
Farrell, 2002). ABT growth is exceptionally high, and investigation of the consequences
of this on lesion severity, and to a lesser degree prevalence, will be of interest in regard

to the welfare of the fish under commercial farming conditions.

To date no research into the origins of arteriosclerosis in fish has been performed but
studies have found that cholesterol (Farrell & Munt, 1983) and sex hormones (House et

al., 1979) may promote lesions in the coronary artery of salmonids. In practical terms,

Chapter 6 Page 183



General Discussion

investigations of the effects of such factors on arteriosclerosis in ABT will be interesting
but may prove complicated to perform considering the constraints which would be
encountered in such experimental designs. For example, wild-captured mature fish feed
exclusively on whole fish so that research on the effects of diet on arteriosclerosis,
requiring the delivery of dietary substances through the feed are, at the moment, not

possible.

Due to time constraints during sampling, it was not possible to collect blood samples
from specimens that had their hearts removed so that correlation of plasma cholesterol,
which is known to promote lesions in mammalian arteries, and lesion severity could not
be performed. Future work in the field should attempt to investigate this in order to
give an indication on the effect of cholesterol levels on the severity of arteriosclerotic

lesions in ABT.

6.2. Haematological parameters and immune components of farmed
Atlantic bluefin tuna

Haematological and plasma biochemical indices are useful in the assessment and
monitoring of animal health but require the availability of species-specific information,
since these parameters vary considerably between fish species. There is only little
information on haematological and plasma biochemical parameters for ABT and the
second part of the thesis examined several parameters from the blood of captive ABT.
It described basic haematological parameters, plasma biochemical values and screened

for non-specific immune parameters in farmed ABT.

It is known that haematological variables show seasonal variation in Atlantic salmon

(Sandnes et al., 1988). It would be expected that the same applies for ABT and further
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research into temporal or seasonal variation is essential to obtain reliable
haematological indices for the species. Considering this the results obtained in this work
should be developed further in this way to obtain more reliable indices which may be

used year-round.

In addition, further research in the field should investigate the relation between
haematological or plasma biochemical indices and the physiological or nutritional status
of the animals. The results obtained from such types of studies can act as a reference in
the welfare assessment of captive ABT, given that post-harvest blood collection is non-

invasive and therefore does not affect the market value of ABT specimens.

Presently there is no information on how haematological and plasma biochemical
indices and immune parameters change once ABT are made captive. Results from
research on the SBT have shown that some haematological and immune parameters
change during the transition of the fish from the wild to captivity (Kirchhoff et al.,
2011b). Similar variation would also be expected to occur in the ABT and investigations
into this field will be of interest in that they may provide a better understanding of the

physiological changes the fish undergo during this transition.

Statistical analysis revealed a clear separation in the haematological and biochemical
indices of different size classes of fish. Similar separation was observed in the immune
parameters measured, and this is mostly due to the higher IgM levels measured in the
blood of smaller fish. The fish were being held in sea cages so that there were several
uncontrolled environmental variables in the experimental setup and so it is difficult to
ascertain whether this separation is due to intrinsic or extrinsic factors. ABT differ from

the majority of teleosts in that they show a large size variation, are long-lived and may

Chapter 6 Page 185



General Discussion

live up to 40 years (ICCAT, 2014), so that it is possible that physiological requirements
change throughout the life of the fish and this is the reason behind the variations
observed here. It may also be, however, that the observed differences are because
animals of different size or age are affected by captivity to differing degrees and the

variations observed here should be investigated further.

There is very low disease prevalence in commercial ABT farming and although disease
has not presented major problems to the industry, the immune responses of tunas to
disease should be an interesting field of research especially considering that their
elevated body temperatures may enable them to mount quicker immune responses.
Such responses to parasitic infection have been demonstrated in the SBT (Aiken et al.,
2008; Kirchhoff et al., 2012) and immunostimulants have been successfully delivered to
the same species through their feed in small-scale experiments (Kirchhoff et al., 2011a),
and so similar studies may be designed for the ABT. To date such studies in the ABT have
not been performed. The reasons for this are several and include the difficulties
encountered in handling large fish and the cost of individual specimens. This, coupled
with the apparent resistance of the species, may provide little justification for such a

considerable research investment.

6.3. Non-specific immune components in Atlantic bluefin tuna epidermal
mucus

Preliminary investigations have shown that disease prevalence in farmed ABT is very
low and fish epidermal mucus is an important interface between the organism and its
environment. Chapter 4 examined the properties of ABT epidermal mucus as a first

barrier against pathogen entry and infection. An epidermal ME, prepared in the lab from
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pooled mucus samples from farmed ABT, was examined for the presence of several non-
specific humoral immune components. Treatment of western blots of the ME with
polyclonal and monoclonal antibodies showed no reaction and faint bands between 78-
72 kDa respectively, so it could not be confirmed if the latter was due to the presence
of an IgM-type moiety or non-specific staining, but the presence of IgM in the ME was
also detected in an ELISA. Precipitation of total Ig with polyethylene glycol detected a
higher concentration of Ig than the ELISA so it may be that the ME contained another Ig
isotype. This has been reported from other teleost species (Danilova et al., 2005; Hansen
et al., 2005), and further investigation is necesary to confirm if this is also the case for

ABT.

The ME was tested for the presence of enzymes with an API-ZYM strip, and the activities
of certain enzymes detected in the former quantified in separate assays. Zones of
clearing in zymograms and activity in azocasein hydrolysis assays confirmed the
presence of proteases in the ME. Lysozyme, alkaline phosphatase and esterase activities
were confirmed in separate assays. The ME also possessed haemagglutinating activity

but did not inhibit bacterial growth in radial diffusion assays.

It has been shown that these immune components vary with season in the olive
flounder (Jung et al., 2012). The mucus in the present study was collected at a single
time point from several specimens and pooled and seasonal variation could not be
studied. Mucus enzyme levels have also been shown to change in disease outbreaks in
the Atlantic salmon (Ross et al., 2000) and due to changes in environmental parameters

in the turbot, Scophthalmus maximus (L.) (see Huang et al., 2011).
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This is the first study describing the non-specific immune parameters of epidermal
mucus of ABT. Further experimentation in this area should attempt to address the
seasonality of the individual components described here, as well as changes in their
levels brought about by general husbandry stress and infection. The ME used in this
study did not appear to show bacteriolytic activity although, it was found to possess
proteases and lysozyme. The antimicrobial activity of crude mucus may show different
results, since the laboratory processing performed on the crude mucus in this study may
have inactivated or removed some of its active components or more probably, diluted

their concentration to insufficient levels for the inhibition of bacterial growth.

This research, especially in relation to IgM and other non-specificimmune components,
will contribute to knowledge on the importance and function of these components in

the skin mucus of ABT.

6.4. Fatty acid composition of farmed Atlantic bluefin tuna and long-
chain PUFA gene expression

In captivity ABT are fed on whole fish, and there is no information on how the absence
of a non-formulated diet affects the species. The final part of this project examined the
FA profile of ABT specimens farmed for different durations, and how prolonged farming
affects the FA composition of the fish. The expression of genes involved in LC-PUFA

biosynthesis in the kidney, spleen, liver and brain of captive ABT was also assessed.

Only slight differences were found in the FA profiles of fish held in cages for different
periods of time. In addition, the final FA composition of the ABT was not affected
significantly by the FA profile of the trash fish diet. These two findings reveal the

presence of a degree of control over the metabolic substrates used by the ABT for
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energy generation. This hypothesis is further supported by the findings of similar FA

profiles in farmed ABT specimens from Croatia.

In addition, the FA composition of the dorsal muscle of the fish differed by location and
TL increased at regions closer to the skin. At lower sea temperatures, the distinction
between outer and inner layers of the dorsal and ventral muscle can be visually
observed. Research investigating the TL and FA profile of different regions of the
cephalic muscle during different times of year may explain this phenomenon better and

give an indication to its relation, if any, with heat conservation in the species.

The expression of genes involved in LC-PUFA biosynthesis differed by organs, implying
that the latter have differing roles in PUFA biosynthesis. Availability of organs in this
study was somewhat restricted, however, and a more exhaustive examination of the
expression in other organs should be done to gain a better understanding of the relation
of these to the physiology of the ABT. It would also be of interest to analyse for

differences in gene expression between wild and farmed ABT.

At present, tunas are being sourced from wild-capture fisheries so that the use of
artificial feed is not possible, and this limits nutritional studies in the species.
Notwithstanding, it would be useful to investigate in detail the effects of varying diet FA
compositions on fish since this would aid commercial operations to better tailor their

end product to different markets.

Comparison of the FA composition of farmed ABT with wild ABT would be useful but

also has its limitations in that FA composition would be expected to vary with several
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conditions, especially considering the significant energy investment that ABT put into

gonadal development and maturation.

6.5. General conclusion

This study has investigated and provided novel information on several aspects of the
health and welfare of ABT held under commercial conditions. It has shown that
husbandry, at least for the durations investigated here, does not have significant
impacts on the ABT as regards coronary arterial lesions and nutritional status. More

detailed investigations into general health and welfare are required to confirm this.

Experimentation with wild-captured ABT encounters several difficulties, and this has
resulted in a general lack of information on the species. New information on the closely
related PBT is becoming available from juveniles sourced from hatcheries in Japan.
Similarly, it is expected that experimentation with ABT will be facilitated once progress
is made in the hatchery production of the species, but several obstacles remain to be
overcome for this to attain commercial viability. Due to this, at present only basic
experimentation is possible with ABT and detailed studies into various aspects of the
species are difficult to achieve since their growth only progresses in sea cages, where

control over husbandry and environmental conditions is always difficult to achieve.

As such there will always be a degree of limitation in the manipulations which can be
performed with large ABT specimens so that understanding of their biology, whether
captive or in the wild, may remain enigmatic and the subject of scientific speculation

until suitable methods for their husbandry in containment are developed.
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