Comment on Traill et al.

Title: Managing wildlife for ecological, socio-economic and evolutionary sustainability

Alternative title: Incorporating evolutionary considerations into models for sustainable wildlife management

Nils Bunnefeld, Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, UK, nils.bunnefeld@stir.ac.uk

Aidan Keane, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, a.keane@imperial.ac.uk

Predicting the consequences of selective harvesting

Selective harvesting of animals is widespread throughout the marine, freshwater and terrestrial environments, and affects a diverse list of species, including fish, mammals, birds and reptiles (1). Such harvesting can cause changes in the distribution of phenotypic traits within target populations, often with undesirable biological and economic consequences. For example, selective harvesting has been linked to declines in the size of trophy horns in two antelope species in Zimbabwe (2) and of antlers in red deer (Cervus elaphus) in Europe (3, 4) as well as to earlier maturation in some fish species (5). However, the extent to which these changes are the result of ecological or evolutionary mechanisms has been much debated (1). Traill et al. (this issue) approach this question from a novel angle by developing stochastic two-sex integral projection models (IPMs) capable of differentiating between the ecological and evolutionary effects of selective harvest. Their finding that evolutionary mechanisms contribute relatively little to observed changes in the body mass of bighorn sheep (Ovis *canadensis*) is an intriguing contribution to the debate over the evolutionary consequences of selective offtake, contradicting earlier studies (6). In addition, Traill et al. suggest that their method could be adopted more widely to allow wildlife managers and conservation practitioners to incorporate the potential evolutionary effects of selective harvesting into their management planning. In this comment, we explore this suggestion by discussing key challenges that would need to be addressed to translate Trail et al.'s approach from a purely biological model to an effective management model, focussing particularly on issues of data availability and the incorporation of different forms of uncertainty.

Long-term individual based data

The first challenge, if IPMs are to achieve widespread use in the management of harvested species, is their dependence on long-term individual based data. Traill et al.'s model is parameterised for a species, the bighorn sheep (Ovis canadensis), which has been the subject of extensive study (6). However, the combination of long-term, individual trait-based data and detailed records of harvesting offtake is likely to be rare for 1) the species of most conservation concern and 2) species of social, cultural and economic importance (e.g. those targeted by fisheries, recreational and subsistence hunting). For example, one of the longest published data sets for trophy hunted species of conservation concern suggests that declines in lion (Panthera leo) and leopard (Panthera pardus) populations are linked to trophy hunting (7), yet even here it is not clear whether the individuallevel trait data needed to construct an IPM are also available. In the absence of such data, Traill et al. suggest that allometric relationships could be used to parameterize IPMs, but acknowledge that further work would be needed to determine how reliable this approach would be. In principle, technologies such as GPS collars and satellite imagery might allow long-term data to be collected for other species in the future (8). However, the trade-offs arising from any large scale investment in long-term monitoring should always be considered (9). In particular, managers should seek to determine whether the benefits gained from understanding long-term evolutionary effects outweigh those that could be achieved if resources were invested to reduce uncertainties in other components of the harvesting system (e.g. the behaviour of resource users, see below).

The importance of uncertainties in the management process

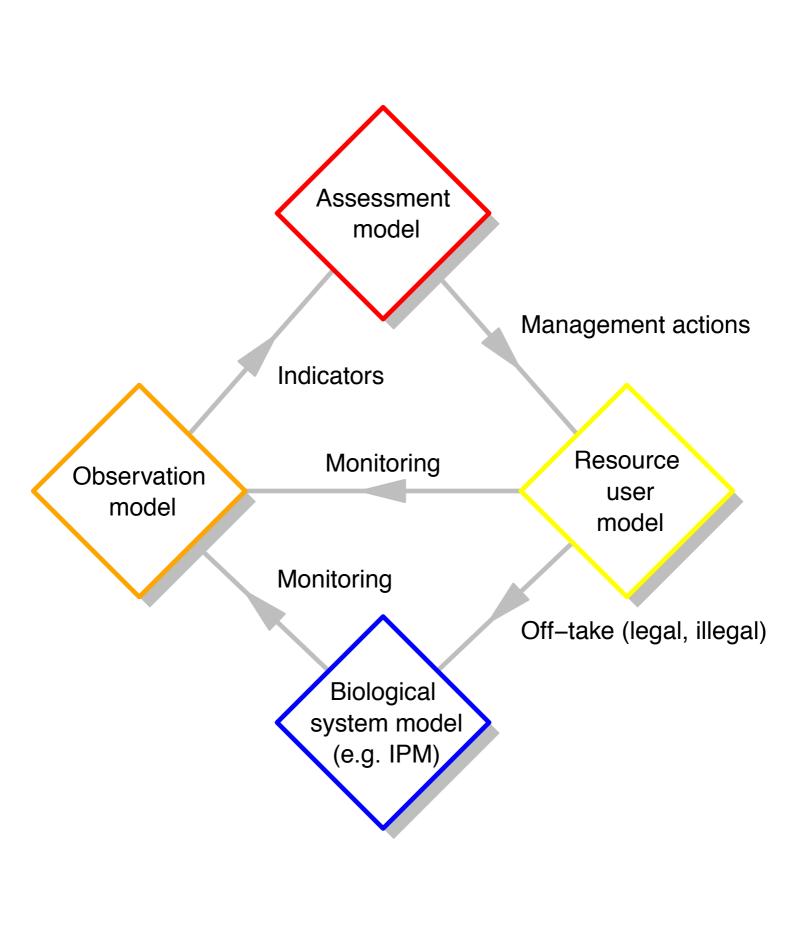
In their model, Traill et al. assume a simple proportional harvesting strategy and test their method for harvest pressures ranging from 1% to 85% of males in the bighorn sheep population. Similar assumptions are common in harvesting models, but fail to capture important sources of uncertainty present in real-world systems. The outcomes of harvesting arise from the interactions between management authorities, legal and illegal resource users, the exploited resource and the environment, and the effectiveness of management strategies can be

strongly influenced by uncertainty arising from any one of these components (10, 11). An illustrative example concerns the effects of uncertainties in the observation process. The true size of a population is never known and can only be estimated with error by managers through monitoring. In some cases, this observation error (e.g. the discrepancy between the expected offtake and actual offtake) can be substantial and dramatically increase the risk of population collapse, as shown for hunted ungulate and bird species (10).

A second example concerns uncertainty in the implementation of management strategies. Managing a harvested resource successfully depends on being able to manage the behaviour of resource users (11). Yet there remains a tendency for harvesting models to incorporate only simplistic representations of harvester behaviour (e.g. assuming a proportional offtake). Failures to properly account for economic, social and cultural processes can lead to unintended and unexpected consequences. For example, a comparison of reported sales data with recorded catch data for the Southern Bluefin Tuna (Thunnus maccoyi) found that total catches were up to 50% higher than had been assumed due to a large proportion of catches going unreported. These unreported catches arose because of the difficulty involved in monitoring compliance with catch quotas for a high-value fish and contributed to the collapse of the resource (12). Another example comes from grizzly bear (Ursus arctos horribilis) hunting in Canada, where realised offtakes were higher than set by management plans in 19% of populations studied (13). In many cases the incentives underlying the illegal and unreported harvest remain poorly understood because case studies have focused entirely on ecological data, despite the fact that harvesting is also a topic of considerable interest in the social sciences (14). An important and often-cited challenge for wildlife management is how to combine the diverse expertise, data and insights available from social scientists, ecologists and evolutionary biologists together to achieve effective outcomes.

Moving towards social-ecological-evolutionary modelling?

One approach to integrating the multiple processes, dynamics and sources of uncertainty associated with harvesting within a common framework is termed


Management Strategy Evaluation (MSE, Figure 1) (15, 16). MSE was pioneered by fisheries scientists and its strength comes from explicitly modelling harvesting as a set of interconnected subsystems: a biological resource model, simulating the dynamics of a species or natural system; an observation model, incorporating uncertainties from the monitoring process; and an assessment model reflecting the management decision-making process based on the monitoring. Recent developments have also included an additional decision-making model for the resource user based on their economic incentives (17). In most applications to date, the biology of the harvested species has generally been represented in MSE by matrix population models (18). However, if data requirements can be met, it would be straightforward for future MSE models to adopt the type of IPMs developed by Traill et al. as their biological resource model, thereby allowing managers to examine ecological, evolutionary and economic criteria together when making decisions on harvest strategies (Figure 1).

Understanding and predicting how to manage harvested resources effectively and sustainably is one of the central challenges facing wildlife managers, applied ecologists and social scientists. Models can undoubtedly play an important role in disentangling the complexity inherent in harvesting systems, but our ability to model management decisions under uncertainty for ecological, evolutionary and socio-economic sustainability is still in its infancy. To date models of harvesting have predominately focussed on its ecological effects; few tools exist for predicting its evolutionary consequences and none has yet combined ecological and evolutionary considerations with realistic representations of harvester behaviour. Novel approaches, such as the IPMs outlined in Traill et al., represent another valuable step towards a broader, multi-dimensional understanding of harvesting systems.

- 1. Fenberg PB & Roy K (2008) Ecological and evolutionary consequences of size-selective harvesting: how much do we know? *Mol Ecol* 17(1):209-220.
- 2. Crosmary WG, *et al.* (2013) Trophy hunting in Africa: long-term trends in antelope horn size. *Animal Conservation* 16(6):648-660.

- 3. Rivrud IM, *et al.* (2013) Hunter selection and long-term trend (1881-2008) of red deer trophy sizes in Hungary. *J Appl Ecol* 50(1):168-180.
- 4. Milner JM, *et al.* (2006) Temporal and spatial development of red deer harvesting in Europe: biological and cultural factors. *J Appl Ecol* 43(4):721-734.
- 5. Jorgensen C, *et al.* (2007) Ecology Managing evolving fish stocks. *Science* 318(5854):1247-1248.
- 6. Coltman DW, *et al.* (2003) Undesirable evolutionary consequences of trophy hunting. *Nature* 426(6967):655-658.
- 7. Packer C, et al. (2011) Effects of Trophy Hunting on Lion and Leopard Populations in Tanzania. *Conservation Biology* 25(1):142-153.
- 8. Wikelski M & Kays R (2014) Movebank: archive, analysis and sharing of animal movement data. (http://www.movebank.org).
- 9. McDonald-Madden E, et al. (2010) Monitoring does not always count. *Trends in Ecology & Evolution* 25(10):547-550.
- 10. Fryxell JM, Packer C, McCann K, Solberg EJ, & Saether BE (2010) Resource Management Cycles and the Sustainability of Harvested Wildlife Populations. *Science* 328(5980):903-906.
- 11. Fulton EA, Smith ADM, Smith DC, & van Putten IE (2011) Human behaviour: the key source of uncertainty in fisheries management. *Fish Fish* 12(1):2-17.
- 12. Kolody D, Polacheck T, Basson M, & Davies C (2008) Salvaged pearls: lessons learned from a floundering attempt to develop a management procedure for Southern Bluefin Tuna. *Fish Res* 94(3):339-350.
- 13. Artelle KA, *et al.* (2013) Confronting Uncertainty in Wildlife Management: Performance of Grizzly Bear Management. *Plos One* 8(11).
- 14. Fischer A, et al. (2013) On the multifunctionality of hunting an institutional analysis of eight cases from Europe and Africa. *J Environ Plann Man* 56(4):531-552.
- 15. Smith ADM, Sainsbury KJ, & Stevens RA (1999) Implementing effective fisheries-management systems management strategy evaluation and the Australian partnership approach. *Ices J Mar Sci* 56(6):967-979.
- 16. Bunnefeld N, Hoshino E, & Milner-Gulland EJ (2011) Management strategy evaluation: a powerful tool for conservation? *Trends in Ecology & Evolution* 26(9):441-447.
- 17. Milner-Gulland EJ (2011) Integrating fisheries approaches and household utility models for improved resource management. *P Natl Acad Sci USA* 108(4):1741-1746.
- 18. Bunnefeld N, Edwards CTT, Atickem A, Hailu F, & Milner-Gulland EJ (2013) Incentivizing Monitoring and Compliance in Trophy Hunting. *Conservation Biology* 27(6):1344-1354.

Figure 1: Management Strategy Evaluation framework for the sustainable harvest management of wildlife. The framework includes a biological system model that simulates the dynamics of a wildlife species or system, an observation model that monitors the wildlife as well as the people involved, the assessment model that is used to make decisions based on the indicators from the observation model and the resource user model that represents the cultural, social and economic incentives driving people's decisions and therefore offtake.

