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A b s t r a c t. The Euclidean distance between the eigenvalue sequences of
graphs G and H, on the same number of vertices, is called the spectral distance
between G and H. This notion is the basis of a heuristic algorithm for reconstructing
a graph with prescribed spectrum. By using a graph Γ constructed from cospectral
graphs G and H, we can ensure that G and H are isomorphic if and only if the
spectral distance between Γ and G +K2 is zero. This construction is exploited to
design a heuristic algorithm for testing graph isomorphism. We present preliminary
experimental results obtained by implementing these algorithms in conjunction with
a meta-heuristic known as a variable neighbourhood search.
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1. Introduction

The paper [8] surveys spectral recognition problems for graphs. Among

the topics discussed are the spectral reconstruction problem, based on spec-

tral distances between graphs, and the problem of defining a spectral dis-

tance between cospectral graphs.

The present paper offers an optimization approach to spectral distance

between cospectral graphs and a heuristic algorithm for testing graph iso-

morphism. This algorithm and the spectral reconstruction problem are

treated here in conjunction with a meta-heuristic known as a variable neigh-

bourhood search (briefly, VNS). We present the first experimental results

obtained by using AutoGraphiX (AGX), a programming package for finding

graphs with extremal values of a graph invariant chosen by the user.

The rest of the paper is organized as follows. Section 2 discusses the

spectral reconstruction problem. Some basic results on graph angles are

presented in Section 3, while the graph isomorphism problem is treated in

Section 4. Section 5 is devoted to experimental results and Section 6 contains

tentative conclusions.

2. Spectral reconstruction

The Euclidean distance between the eigenvalue sequences of graphs G
and H, on the same number of vertices, is called the spectral distance be-

tween G and H. Other spectral distances have also been considered, notably

the Manhattan distance (the sum of absolute values of differences between
ordered eigenvalues). Usually the eigenvalues are taken to be those of the ad-

jacency matrix, but other graph matrices (such as the Laplacian or signless

Laplacian) can be used.

Some mathematical results on the Manhattan spectral distance have

been obtained in [16]. An interesting observation from that paper is that

the Manhattan distance arises in connection with graph energy, a graph

invariant much studied in the literature (see [17]). The energy of a graph is

the sum of absolute values of its eigenvalues. Thus the energy of a graph is

the Manhattan spectral distance of the graph from a graph without edges.

Use of the Laplacian and the signless Laplacian matrix in conjunction

with the Manhattan distance seems to be very appropriate when considering

subgraphs. By the interlacing theorems for these matrices (see [8, Section

5]), all eigenvalues decrease or remain the same when an edge is deleted from

the graph. Hence the Manhattan distance between a graph and any of its
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edge-deleted subgraphs is equal to the decrement in the trace of the matrix.

Since for both matrices the trace is equal to the sum of vertex degrees, we

conclude that the distance is equal to the twice the number of deleted edges.

None of these properties holds for the adjacency matrix.

If two graphs are at zero distance, they are not necessarily equal (i.e.,

isomorphic); they are merely cospectral. In the next section we introduce

a metric which in some cases can distinguish cospectral graphs because the

(new) distance between them is positive.

For several reasons it is of interest to construct or generate a graph with

prescribed spectrum: see [5], where an algorithm for such a spectral graph

reconstruction is presented. Given the spectrum of a graph, the algorithm

starts from a random graph and uses the tabu search to reduce the Euclidean

spectral distance between the given and the current spectrum. Both the

metric and the meta-heuristic can be varied. One could use the Manhattan

distance based on the adjacency matrix or on the signless Laplacian. The

tabu search can be replaced by a variable neighbourhood search (see, for

example, [3]) or by some other meta-heuristic.

The variable neighbourhood search is exploited in AGX for finding graphs

with extremal values of a graph invariant chosen by the user. The system

starts from a random graph or from a graph given by the user. This graph is

perturbed to some extent using a variable neighbourhood search and a new

graph is chosen which optimizes the invariant in question. The system AGX

is very useful in formulating conjectures which are treated later by theoreti-

cal means. For example, it has generated several conjectures concerning the

energy of a graph [3] and thirty conjectures concerning signless Laplacian

eigenvalues [12]. See also [1]. It would be interesting to use AGX to treat

some conjectures from [16] concerning spectral distances between graphs.

The system AGX is used here for the spectral reconstruction of graphs.

It is sufficient to require that the system minimizes the distance (of any

kind) between the current graph and a fixed graph. One could compare the

speed of convergence for several distances and for several meta-heuristics.

(We do not give running times here since they are not directly relevant

to our investigation.) More generally, computer programs for the spectral

reconstruction of graphs can be used to generate examples of graphs with

prescribed spectral properties.
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3. The use of graph angles

Cospectral graphs are at spectral distance 0 and if we wish to define some

kind of positive distance between them we can turn to graph invariants

other than eigenvalues. Since eigenvectors are not graph invariants it is

reasonable to extend eigenvalue based techniques by certain invariants of

the eigenspaces called graph angles.

Let G be a graph on n vertices with distinct eigenvalues µ1, µ2, . . . , µm

(µ1 > µ2 > · · · > µm) and let S1, S2, . . . , Sm be the corresponding eigenspa-

ces. Let {e1, e2, . . . , en} be the standard (orthonormal) basis of Rn.

The numbers αpq = cos βpq (p = 1, 2, . . . ,m; q = 1, 2, . . . , n), where

βpq is the angle between Sp and eq, are called graph angles. The sequence

αpq (q = 1, 2, . . . , n) is called the eigenvalue angle sequence corresponding to

the eigenvalue µp (p = 1, 2, . . . ,m). We also define the angle matrix of G as

the m× n matrix (αij): here columns are ordered lexicographically, so that

the matrix is a graph invariant. The rows of the angle matrix are called the

standard eigenvalue angle sequences.

Let xi = (xi1, xi2, . . . , xin) (i = 1, 2, . . . , n) be orthonormal eigenvectors

of G. Define Mp = {j | Axj = µpxj}. We have α2
pq =

∑

j∈Mp

x2jq for squares of

angles of G, and this formula holds for any choice of orthonormal eigenvec-

tors of G (cf. [11], p. 76). The angles between the vector (1, 1, . . . , 1)⊤ ∈ Rn

and the eigenspaces S1, S2, . . . , Sm are called the main angles of the graph.

Graph angles, like graph eigenvalues, can be computed in polynomial time.

An overview of results on graph angles, and their relation to graph structure,

is given in [11]. In particular, the number c4(G) of 4-cycles in G is given by

c4(G) =
1

8

m
∑

i=1

n
∑

j=1

α2
ijµ

3
i

(

µ2
i + 1− 2

m
∑

h=1

α2
hjµ

2
h

)

. (3.1)

It was suggested in [7] that cospectral graphs can be ordered by graph

angles, in particular, lexicographically by their standard eigenvalue angle

sequences. The paper provides an example of 21 cospectral graphs (on

10 vertices with 20 edges) ordered by the first standard eigenvalue angle

sequences.

In defining a spectral graph distance we use differences between corre-

sponding eigenvalues of two graphs. For each spectral graph distance we

can define a corresponding cospectral graph distance by using differences be-
tween the corresponding entries of the angle matrix instead of differences
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between corresponding eigenvalues. For example, the Manhattan cospec-

tral graph distance is the sum of absolute values of differences between the

corresponding entries of the angle matrices of the graphs [8].

An alternative approach to distances between cospectral graphs will be

described in the next section.

4. An optimization approach

Here we use network alignment techniques to define a distance between

cospectral graphs. We note first that one can characterize graph isomor-

phisms in terms of eigenvalues. To be precise, let θ be a bijection V (G) →
V (H), where G,H are disjoint finite graphs and V (G) denotes the vertex-set

of G. We define the recognition graph Γ(G, θ,H) as the graph consisting of

G,H and the edges {v, θ(v)} (v ∈ V (G)). (The terminology is suggested by

a graph-theoretical model for pattern recognition formulated in [2].) With

a suitable ordering of vertices, Γ(G, θ,H) has adjacency matrix

(

A I
I B

)

,

where A,B are adjacency matrices for G,H respectively. If θ is an isomor-

phism then A = B and Γ(G, θ,H) has characteristic polynomial

det((x+ 1)I −A) det((x− 1)I −A);

hence if λ1, . . . ,λn are the eigenvalues of G then those of Γ(G, θ,H) are

λ1 ± 1, λ2 ± 1, . . . ,λn ± 1. The converse holds for cospectral graphs G,H:

a proof of the following result from [19] is reproduced in [11, pp. 52–54].

Theorem. Suppose that G,H are cospectral graphs, with common eigen-

values λ1, . . ., λn, and let θ be a bijection V (G) → V (H). Then θ is an

isomorphism if and only if the eigenvalues of Γ(G, θ,H) are λ1±1, . . . ,λn±1.

Of course, if G and H are not cospectral then there is no isomorphisim

θ : V (G) → V (H). We note in passing that if θ is an isomorphism then

Γ(G, θ,H) is a NEPS (more precisely, the sum of graphs) as defined in [11].

It follows that if θ is “close” to an isomorphism then the spectral distance

between Γ and G+K2 is “small” because eigenvalues are perturbed. Now we

can define the cospectral distance cospd(G,H) between cospectral graphs G
and H as the minimum over all bijections θ of the spectral distance between
Γ(G, θ,H) and G+K2, i.e.,
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cospd(G,H) = min
θ

d(Γ(G, θ,H), G +K2).

Here we can use any “ordinary” spectral graph distance and for each of

them we have a cospectral distance cospd(G,H) between cospectral graphs

G and H.

A disadvantage of this definition is that one should solve an optimization

problem in order to determine the distance. However, one can use meta-

heuristics, and the situation is similar to that in the spectral reconstruction

problems described in Section 2. In particular, if the distance cospd(G,H) is

equal to 0, the graphs are isomorphic. Hence we have a heuristic algorithm

for checking graph isomorphism.

The algorithm.

Given graphs G and H:

– check whether they are cospectral,

– if no, they are non-isomorphic,

– if yes, with the eigenvalues λ1, . . ., λn, form the recognition graph

Γ(G, θ,H) with a random bijection θ, compute its spectrum and the spectral

distance from λ1 ± 1, λ2 ± 1, . . ., λn ± 1,

– using a meta-heuristic repeatedly change θ to diminish the distance

d(Γ(G, θ,H), G + K2) until it becomes 0 or the program has to be

stopped.

We may refine the algorithm by inserting an additional step to confine

the heuristic to cospectral graphs with a common angle matrix. In this case,

G and H have the same number of edges, say e, while Equation (3.1) shows

that they have the same number of 4-cycles, say c. Note that if Z is a 4-cycle

in Γ(G, θ,H) which does not lie in G or H then Z has two vertices in each

of G and H. It follows that the number cθ of 4-cycles in Γ(G, θ,H) is at

most 2c+ e, with equality if and only if θ is an isomorphism. Now we have

the option of maximizing cθ by a variable neighbourhood search, calculating

each cθ from the angles of Γ(G, θ,H). The parameter 2c+ e−maxθ cθ is an

alternative measure of the “closeness” of G and H.

5. Experimental results

5.1. Spectral reconstruction

The package AGX was used for the reconstruction problem, the objective

function being the distance between the spectrum of the current graph and
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the desired spectrum. The optimization algorithm used in AGX is based

upon the VNS metaheuristic [15, 18]. The strategy of VNS is to alternate

local searches and perturbations of variable magnitude; however, in AGX

the local search is replaced by a learning descent that adapts the neighbour-

hoods used within the optimization algorithm according to the problem

under study [4]. Let G∗ be a graph with eigenvalues λ∗i (i = 1, . . . , n) in

non-increasing order. The spectral reconstruction problem is to find a graph

G with eigenvalues λ1, . . . ,λn such that λ∗i = λi (i = 1, . . . , n). It may be

formulated in AGX as:

Min d(G∗, G) =

(

n
∑

i=1

|λ∗i − λi|
p

)1/p

, (5.1)

where p is the Minkowski parameter; thus p = 1 for the Manhattan distance

and p = 2 for the Euclidean distance.

Table 1. Description of the graphs used

n m δ ∆ D
P10 10 9 1 2 9

K1,9 10 9 1 9 2

C10 10 10 2 2 5

G10-1 10 25 4 6 2

G10-2 10 23 3 6 3

G10-3 10 19 1 7 4

Cu12 12 18 3 3 3

R12C4 12 24 4 4 3

G12-1 12 28 2 8 3

G12-2 12 36 3 10 3

G12-3 12 35 3 8 3

H16 16 32 4 4 4

Cu18 18 27 3 3 5

R18C4 18 36 4 4 5

P20 20 19 1 2 19

K1,19 20 19 1 19 2

C20 20 20 2 2 10

Let M be a symmetric matrix (mij) with zero diagonal, and let

Φ(M) = diag(φ1, . . . ,φn),
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Table 2. Description of the random graphs used

Graph Adjacency matrix
G10-1 0 11 110 0011 11001 100001 1110101 11101000

000111110
G10-2 1 01 001 1100 01011 101010 0010011 00101011

010101101
G10-3 1 10 001 1010 10001 110000 0000000 10101000

110011111
G12-1 0 01 010 0000 11110 001001 0101100 00111010

100001010 1111011100 00100000101
G12-2 0 10 001 0110 00011 111010 1000010 10110001

110011001 1110100010 11101111111
G12-3 1 11 000 1011 11110 111110 1101110 01010101

000011011 0010101001 10000100100

where

φi =
∑

j

mij.

We call Φ(M)−M the Laplacian of M , and Φ(M)+M the signless Laplacian

of M . The Laplacian (or signless Laplacian) matrix of a graph G is just the

Laplacian (or signless Laplacian) of the adjacency matrix of G. The distance

matrix of G is the matrix D = {dij}, where dij is the geodesic distance

between vertices i and j. The eigenvalues λi of G are most commonly

computed from the adjacency matrix A, the Laplacian matrix L or the

signless Laplacian matrix SL. We may also use the distance matrix D, its

Laplacian LD or its signless Laplacian SLD.

The algorithm was tested using each of the aforementioned matrices, and

with both Euclidean and Manhattan distances, for the graphs described in

Table 1. Here, m is the number of edges, δ the minimum degree, ∆ the max-

imum degree, and D the diameter. The path, cycle and star of order n are

denoted by Pn, Cn and K1,n−1 respectively. Other graphs are: a cubic graph

on 12 vertices (Cu12), a 4-regular circulant graph on 12 vertices (R12C4),

the hypercube on 16 vertices (H16), a cubic graph on 18 vertices (Cu18),

a 4-regular circulant on 18 vertices and degree 4 (R18C4), three random

graphs on 10 vertices (G10-1,G10-2, G10-3) and three random graphs on 12

vertices (G12-1, G12-2, G12-3). The lower triangular parts of the adjacency

matrices of these random graphs are given in Table 2.

One hundred runs were undertaken, involving 100 000 evaluations of
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Table 3. Results with AGX on the spectral reconstruction problem
with Euclidean distance

Euclidean A L SL D LD SLD
P10 100 100 100 100 100 100
K1,9 98 100 100 82 100 100
C10 90 100 100 100 100 51

G10-1 96 25 98 81 96 90
G10-2 45 27 80 27 100 34
G10-3 63 97 100 85 73 90
Cu12 5 29 47 8 64 55
R12C4 41 89 100 9 97 78
G12-1 0 1 0 0 0 0
G12-2 0 1 0 0 0 0
G12-3 0 0 0 0 0 0
H16 0 0 20 0 0 0
Cu18 0 0 7 0 0 6
R18C4 0 2 2 0 30 29
P20 100 100 100 100 100 100
K1,19 80 100 100 36 35 59
C20 15 100 100 25 3 7

the objective function and starting from a random graph. The number of

successes is given in Tables 3 and 4.

5.2. Graph isomorphism

A routine based upon VNS was implemented within AGX to verify iso-

morphism.

After an appropriate permutation of rows and columns, the adjacency

matrix of Γ(G, θ,H) can be written as

MΘ =

(

A Θ

ΘT B

)

,

where Θ is a permutation matrix. The use of the matrix Θ instead of I is a

means of reducing the computations.

The graphs G and H, each with spectrum λ1, . . . ,λn are isomorphic if

and only if there exists a permutation matrix Θ such that the matrix MΘ

has eigenvalues λi + 1, λi − 1 (i = 1, . . . , n). We order these eigenvalues
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Table 4. Results with AGX on the spectral reconstruction problem
with Manhattan distance

Manhattan A L SL D LD SLD
P10 100 100 100 100 100 100
K1,9 100 100 100 100 100 82
C10 100 100 100 100 100 74

G10-1 98 83 11 100 83 97
G10-2 44 29 69 44 94 40
G10-3 68 100 100 87 90 88
Cu12 2 16 79 1 81 47
R12C4 11 88 99 2 100 56
G12-1 0 0 0 0 0 0
G12-2 0 2 1 0 0 4
G12-3 0 0 0 0 0 0
H16 0 0 18 0 1 1
Cu18 0 0 4 0 0 2
R18C4 0 1 0 0 20 12
P20 100 100 100 100 100 100
K1,19 92 100 100 30 31 8
C20 9 96 97 25 4 0

as λ∗1 ≥ · · · ≥ λ∗2n and denote this sequence by Λ∗. Thus G and H are

isomorphic if and only if there exists a permutation matrix Θ such that

MΘ has eigenvalue sequence Λ∗. Thus the optimization problem can be

formulated as:

Min Z =

(

2n
∑

i=1

|λ∗i − λi(MΘ)|p
)1/p

. (5.2)

Problem (5.2) mirrors Problem (5.1), except that the optimization does

not apply to the graph, but to the permutation matrix Θ. To take advantage

of this matrix, the transformations to be considered in the optimization need

to preserve the structure of a permutation matrix.

Our experiments have been limited to a few obvious transformations of a

permutation matrix. Also the input graphs for experiments have been taken

ad hoc. Therefore our results should be considered as preliminary ones and

further experiments should be undertaken in the future.

We used a local search which implements a variable neighbourhood de-

scent (VND) with the transformation of the matrix Θ to a matrix in one
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of the ‘neighbourhoods’ Nh(Θ) (h = 1, 2, 3, 4) obtained as follows. Each

Nh(Θ) consist of all matrices obtained from Θ by applying a permutation

of a certain form πh to the columns. We take π1 to be a transposition, π2
to be the product of two disjoint transpositions, π3 to be a 3-cycle, and π4
to be a 4-cycle.

The rules of the routine VND(Θ) are as follows.

Routine VND(Θ)

Initialization:

Take Θ = I.

LetNh(Θ), h=1, 2, 3, 4, be the set of neighborhoods of the solution

Θ as defined above.

Main Step:

Set h = 1 and imp = FALSE (improvement indicator);

Until h = 4, repeat the following steps:

(a) Find the best neighbour Θ′ of Θ in Nh(Θ).

(b) If Θ′ is better than Θ,

set Θ← Θ′ and imp = TRUE.

Otherwise set h← h+ 1;

(c) if h = 4 and imp = TRUE

set h = 1 and imp = FALSE.

The VND algorithm may converge to a local optimum. To escape a

local optimum, VND is used within a VNS scheme. The VNS implementa-

tion used was the following, where the perturbation routine PERTURBk(Θ)

applies k random transpositions of columns of Θ.
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VNS implementation of the isomorphism algorithm

Initialization

Let Θ = I be the initial solution.

Let Z∗ the best known objective function, and let Θ∗ be the best

known solution.

Let k = 1, set kmax = 10.

Let c = 0.

Repeat:

Θ← PERTURBk(Θ∗)

Apply VND(Θ)

Let Z be the value of the objective function after VND and let Θ
be the solution.

If Z < Z∗

If Z = 0 STOP : the graphs are isomorphic

Z∗ ← Z,
Θ∗ ← Θ,
k ← 1

else

k ← k + 1

If k ≥ kmax

k ← 1

c← c+ 1

Until c = 10.

A maximum number of evaluations of the objective function is given, so

that the algorithm is terminated when the graphs are found to be isomor-

phic (the objective function value is 0), or when the maximum number of

evaluations of the objective function is reached (100 000), or when c = 10.

For each graph G from Table 1 the algorithm was applied 100 times on

graphs G andH, whereH is a random relabelling of G. The results obtained

with the algorithm are presented in Table 5. For each graph the number of

successful detections of isomorphism is given.

The algorithm was also tested, using Manhattan distance, on pairs of

non-isomorphic cospectral graphs G1, G2 described in [10] (with labels 164a,

164b etc.), and on pairs of isomorphic graphs (G1, G′

1). Here G′

1 is con-
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Table 5. Results with AGX on the graph isomorphism problem

Graph Successes Graph Successes Graph Successes

P10 64 Cu12 87 Cu18 13

K1,9 100 R12C4 100 R18C4 74

C10 100 G12-1 25 P20 0

G10-1 70 G12-2 31 K1,19 100

G10-2 50 G12-3 5 C20 6

G10-3 84 H16 29

structed from G1 by randomly relabelling vertices (or swapping rows and

columns of the adjacency matrix). For each test, the best objective function

value (Value) was recorded, together with the number of evaluations of the

objective function required to obtain this value. As there is an element of

randomness in the algorithm, it was run 100 times on each pair of graphs.

The results of these tests are reported in Table 6. The first two columns

indicate the reference graphs used, columns 3 to 5 indicate the minimum,

average and maximum number of evaluations of the objective function in

the case that the test succeeded, and columns 6 to 8 indicate these values

in the case of failure of the procedure. In all cases, the best objective func-

tion value proved to be the cospectral distance between the two graphs, i.e.

cospd(Graph1, Graph2) . Accordingly, the numbers of successes and failures

among the 100 runs used are not provided.

Table 6. Results on isomorphic graphs and non-isomorphic cospectral graphs

Graph 1 Graph 2 Min S Avg S Max S Min F Avg F Max F Value

164a 164b - - - 0 37.25 234 1.55088

164a 164a 9 9408.71 48091 - - - 0

165a 165b - - - 9 4401.09 33358 1.94835

165a 165a 14 5527.18 39993 - - - 0

166a 166b - - - 3 6813.39 43627 2.14076

166a 166a 19 7836.97 62036 - - - 0

167a 167b - - - 16 11772 72180 1.68145

167a 167a 12 4098.77 22782 - - - 0

168a 168b - - - 0 247.91 896 2.0721

168a 168a 8 5927 29491 - - - 0



36 G. Caporossi, D. Cvetković, P. Rowlinson

The graphs used for these tests are pairs of cospectral graphs described

in [10]. They are listed in Table 7, the first column providing the name of

the graph, the second specifying the lower triangular part of the adjacency

matrix, and the remaining columns giving the spectrum.

Table 7. Description of the graphs used for the results from Table 6

graph adjacency matrix spectrum

164a 1 10 010 1010 01110 101110 1111011 4.6458 1.7321 0.0000 0.0000
164b 1 10 010 1010 01110 111101 1110110 −0.6458 −1.7321 −2.0000 −2.0000
165a 1 10 010 0010 10110 111101 1111111 5.0884 1.0883 0.2467 0.0000
165b 1 10 010 1000 10111 111101 1111011 −1.0000 −1.6693 −1.7451 −2.0000
166a 1 10 010 1010 01110 101110 1111111 4.9095 1.6093 0.0000 0.0000
166b 1 10 010 1010 11010 111110 1011111 −1.0000 −1.5188 −2.0000 −2.0000
167a 1 10 010 0010 10110 111111 1111111 5.2588 1.0000 0.2518 0.0000
167b 1 10 010 1000 10111 111101 1111111 −1.0000 −1.5106 −2.0000 −2.0000
168a 1 10 010 1011 01110 111111 1111111 5.6056 1.0000 0.0000 0.0000
168b 1 10 010 1011 11011 111110 1111111 −1.0000 −1.6056 −2.0000 −2.0000

6. Conclusion

The tests for spectral reconstruction tend to show that the performance

of the adjacency or the distance matrices is rather poor. It seems that the

signless Laplacian matrix performs better than the Laplacian matrix, but the

Laplacian of the distance matrix performs better than the signless Laplacian

of the distance matrix, and the overall best matrix seems to be the Laplacian

of the distance matrix. However these conclusions are tentative because

results vary from graph to graph. As the complexity of building the distance

matrix is higher than that for the adjacency matrix, a reasonable choice for

spectral reconstruction seems to be the use of the signless Laplacian matrix.

For this matrix, Euclidean distance appears to perform slightly better than

Manhattan distance. It is interesting to note that the path Pn and the star

K1,n−1 seem rather easy to reconstruct, while this is not the case for other

graphs.

The results for isomorphism testing are more encouraging. Indeed, in

the case of isomorphic graphs, an isomorphism was found in about 5 000 –

10 000 evaluations of the objective function, and this compares favourably
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with the 40 320 possible permutations for graphs on 8 vertices, even though

the algorithm was not designed to avoid multiple evaluations of the same

configuration. We are not surprised to see that graphs with higher symmetry,

such as the star K1,n−1, are easier to test, since the search space is smaller

in this case.

These conclusions are tentative. One should explain theoretically some

of the results obtained, and also perform additional experiments.
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[8] D. Cvetković, Spectral recognition of graphs, Yugoslav Journal of Operations
Research, 20 (2012), No. 2, 145–161.
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[10] D. Cvetković, M. Lepović, Sets of cospectral graphs with least eigenvalue at
least -2 and some related results, Bull. Acad. Serbe Sci. Arts, Cl. Sci. Math.
Natur., Sci. Math., 129 (2004), No. 29, 85–102.
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[12] D. Cvetković, P. Rowlinson, S. Simić, Eigenvalue bounds for the signless Lapla-
cian, Publ. Inst. Math. (Beograd), 81(95) (2007), 11–27.

[13] D. Cvetković, P. Rowlinson, S.K. Simić, An Introduction to the Theory of
Graph Spectra, Cambridge University Press, Cambridge, 2009.
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