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Abstract 

Physically active lifestyles contribute to better executive function. However, it is unclear 

whether high levels of executive function lead people to be more active. This study uses a 

large sample and multi-wave data to identify whether a reciprocal association exists between 

physical activity and executive function. Participants were 4,555 older adults tracked across 

four waves of the English Longitudinal Study of Ageing. In each wave executive function 

was assessed using a verbal fluency test and a letter cancellation task and participants 

reported their physical activity levels. Fixed effects regressions showed that changes in 

executive function corresponded with changes in physical activity. In longitudinal multilevel 

models low levels of physical activity led to subsequent declines in executive function. 

Importantly, poor executive function predicted reductions in physical activity over time. This 

association was found to be approximately 50% larger in magnitude than the contribution of 

physical activity to changes in executive function. This is the first study to identify evidence 

for a robust bidirectional link between executive function and physical activity in a large 

sample of older adults tracked over time. 
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Introduction 

Advancements in medical science in the past century have markedly increased life 

expectancy but have also heralded a broad set of challenges that accompany an aging 

population (United Nations, 2011). Age–related cognitive decline is one such challenge, 

producing wide ranging psychological, social and economic consequences at both the 

individual and population level (Frank et al., 2006; Olesen et al., 2012).  Emerging evidence 

suggests that age-related neurocognitive-decline should not be seen as fixed or immutable 

(Hamer and Chida, 2009). Rather, cognitive function seems to benefit from a healthy 

lifestyle, most notably from regular physical activity (Ku et al., 2012; Hertzog et al., 2009; 

Gow, 2013).  

This study examines whether engaging in physical activity attenuates declines in 

higher level cognitive function (executive functioning) over a period of six years in older 

English adults.  In addition, the current study investigates the more novel prediction that the 

relationship between physical activity and cognitive performance is bidirectional, and that 

executive function will also play a predictive role in shaping activity levels over time (Batty 

et al., 2007; Sabia et al., 2010). The executive functions, in particular, may enable people to 

consistently engage in effortful behaviours like physical activity in order to achieve long-term 

health benefits (Hall and Fong, 2007). As the contribution of executive functioning to 

physical activity has not yet been established in large scale prospective studies, this study 

also aimed to test this pathway in a sample of more than four thousand older English adults.  

Physical activity as a Determinant of Executive Functioning    

 The executive functions are higher level cognitive processes associated with the 

frontal lobe of the brain that control and co-ordinate more fundamental processes in the 

effortful pursuit of goals (Alvarez and Emory, 2006). Complex and multi-faceted in nature, 
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the executive functions include planning, selective attention, sustained attention, the ability to 

deal flexibly with novel situations, and prepotent response inhibition (Hall et al., 2008; 

Hofmann et al, 2012). 

 A substantial body of evidence comprising observational studies, randomised 

controlled trials (RCTs), and meta-analyses, together suggest that physical activity has a 

substantial beneficial influence on cognitive function, and in particular executive function 

(Liu-Ambrose et al., 2010; Lowe et al., 2014). A meta-analysis of eighteen exercise 

intervention studies conducted with older adults (aged 55 – 80) between 1966 and 2001, 

established that fitness training brings about robust benefits to cognition (Colcombe and 

Kramer, 2003). Exercisers experienced greater improvements (g = 0.478, SE = 0.029) in their 

performance on cognitive function tasks compared to control group participants (g = 0.164, 

SE = 0.028). The largest fitness based benefits were associated with improvements in 

executive processing (g = 0.68, SE = 0.052). This was a larger effect than was seen for other 

cognitive processes, namely processes measured using controlled (g = 0.461, SE = 0.035), 

spatial (g = 0.426, SE = 0.062), and speed tasks (g = 0.274, SE = 0.050). Type of fitness 

training appeared to influence the magnitude of benefit to cognitive function, with combined 

strength and aerobic training regimes producing larger effects (g = 0.59, SE = 0.049) than 

aerobic training alone (g = 0.41, SE = 0.037).  

More recently a meta-analysis of 29 RCTs examining the effect of aerobic exercise 

training on neurocognitive performance was conducted. This analysis, including findings 

from large-scale randomized studies, demonstrated that increases in aerobic exercise were 

associated with modest but consistent improvements in executive function (g = .123, [95% 

CI: .021 to .225]) (Smith et al., 2010). This finding suggests markedly weaker effects 

compared to the meta-analysis of Colcombe and Kramer (2003). Several of the studies 

reviewed by Smith et al. (2010) included younger adults (e.g. 18 – 54) than those included in 



Pg. 5 
 

the meta-analysis of Colcombe and Kramer (2003). However, amongst the studies reviewed 

the age of participants was unrelated to improvements in executive function suggesting that 

the difference in effect size observed between the two meta-analyses is unlikely to be due to 

differences in the age composition of the participants included. Interestingly, and in contrast 

to the finding of Colcombe and Kramer (2003), effects did not differ between studies that 

included only aerobic exercise and those that included combined exercise programmes. 

Regards to the quality of the included studies, there were no differences in the effect of 

exercise on neurocognitive performance based on whether assessors were blinded or not, or 

whether intention to treat analysis was used or not.   

Functional brain imaging studies have shed some light on the brain areas that may 

mediate the impact of physical activity on executive function (Hillman et al., 2008). When 

coupled with an RCT design such studies represent a particularly powerful approach to 

identifying cardiovascular training induced changes in brain function.  For instance, a six-

month period of aerobic exercise has been shown to lead to enhanced performance on an 

attentional control task and greater activation of task-related frontal and parietal brain areas 

(Colcombe et al., 2004). A recent review of the literature has verified that physical activity 

appears to be most consistently linked to more efficient patterns of brain activity in frontal 

and parietal areas during tasks gauging executive function (Voelcker-Rehage and Niemann, 

2013). 

In addition to the findings from the meta-analyses of experimental studies outlined 

above, several longitudinal studies have also demonstrated that high levels of physical 

activity can attenuate declines in cognition (Sofi et al., 2011). In their meta-analysis of 15 

prospective studies, Sofi et al (2011) found that those who performed physical activity at 

baseline had a significantly reduced risk of cognitive decline during follow-up. Specifically, 

those who reported a high level of physical activity had a 38% reduced risk of cognitive 
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decline relative to those who reported being sedentary (Hazard Ratio = 0.62, 95% CI: 0.54 to 

0.70). This protective effect was similarly observed for those engaging in low to moderate 

levels of activity. Funnel plots of effect size versus standard error suggested no evidence of 

publication bias. Although this meta-analysis did not discriminate between executive and 

non-executive measures several additional longitudinal studies point to a potential beneficial 

influence of physical activity on executive function (e.g. Barnes et al., 2003; Weuve et al., 

2004).   

Thus, the existing evidence from a broad range of studies shows that physical activity 

can lead to changes in executive function. An initial aim of the current study was therefore to 

verify that physical activity can attenuate age-related decline in executive function in a large 

sample of older English adults. A second aim was to examine dynamic changes in activity 

levels and executive function to rule out the role of unobserved stable confounders in 

explaining any association between physical activity and executive function. Specifically, 

fixed effects multilevel regression analyses were employed to statistically control for the role 

of non-observed time-invariant characteristics (e.g. sex, birth weight, education, genetic 

makeup, personality traits) (Allison, 2005). For instance, it is possible that non-observed 

factors like common genetic variation or childhood factors such as early adversity may 

underlie both adulthood physical activity and executive function and explain why these 

variables are interrelated (e.g. Gow et al., 2012). By examining within-person variation such 

non-observed time-invariant (i.e. factors that do not vary over time, specifically within the 

time-period of the study) confounders are statistically ruled out.  

In contrast to the large number of studies investigating the beneficial effects of 

physical activity on executive function, very few studies have looked at the opposite 

possibility, that is, that executive function facilitates future engagement in physical activity. 

The current study aimed to examine this possibility using longitudinal analyses in order to 
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establish whether executive function may contribute to beneficial changes in physical activity 

over time.  

Executive Function as a Determinant of Physical Activity 

Participation in physical activity typically requires individuals to effortfully overcome 

short term costs in return for long term gains. For example, when beginning a new exercise 

regime, short term costs such as inconvenience and discomfort are initially far more salient 

than long term (but not immediately apparent) benefits like improved fitness, weight loss and 

health (Hall and Fong, 2007). Consequently, it has been argued that efficient executive 

function is essential for both the adoption and maintenance of physical activity (Hall and 

Fong, 2007; Marteau and Hall, 2013). Executive function can be subdivided in different 

ways, but key components include volition, planning, purposive action, performance 

monitoring and inhibition (Lezak, 1995; Stuss and Levine, 2002). The necessity of each of 

these components for initiating physical activity is readily apparent.  To successfully adopt or 

change physical activity behavior individuals must form a conscious intention about what 

activity to adopt (volition), identify the sequence of actions required to achieve the intended 

activity (planning), initiate and maintain focus on the chosen activity over time (purposive 

action), compare actual progress with planned progress over time, identify and correct 

mistakes (performance monitoring) and overcome the temptation to remain sedentary 

(inhibition).  

In line with this, research suggests individuals who perform poorly on tests of 

executive function are less likely to enact physical activity intentions (Hall et al., 2008; Hall 

et al., 2008) and to adhere to regular exercise classes (McAuley et al., 2011). Poor 

performance on executive function tasks has also been shown to prospectively predict low 

levels of physical activity and elevated body mass index (BMI) in children (Riggs et al., 
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2010; Guxens et al., 2009). In a recent study of older women (aged 65 – 75) changes in 

executive function over the course of a year where participants engaged in a resistance 

exercise intervention were positively associated with subsequent exercise adherence over the 

following year (Best et al., 2014). Whilst this evidence is suggestive of a role of executive 

function in contributing to physical activity, large scale nationally representative prospective 

studies have not yet provided evidence that efficient executive function is advantageous in 

the control of activity behaviour, allowing individuals to engage in more physical activity 

over time relative to others.  

The Current Study 

The present study investigates the relationship between executive functioning and 

physical activity measured at four time points over a 6-year period, using data from the 

English Longitudinal Study of Ageing (ELSA) (Marmot et al., 2012).  

This study aims to: 

(1) Replicate the established association between physical activity and executive function in a 

large sample of older English adults. 

(2) Improve on the analytic strategies used in previous studies by statistically controlling for 

non-observed factors (e.g. genetic factors, birth weight, education, early adversity etc.) which 

may underlie both adulthood physical activity and cognitive function and explain why these 

variables are interrelated.   

 (3) Test whether physical activity level predicts subsequent changes in executive function. 

(4) Test whether the efficiency of cognitive function at one point in time can be used to 

predict future engagement in physical activity. 
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Method 

Participants 

The English Longitudinal Study of Aging (ELSA) is a multi-wave longitudinal study 

of health and quality of life in a large sample of adults aged 50 years or older living in 

England. The initial ELSA sample was drawn from participants aged ≥ 50 years who took 

part in the 1998, 1999, and 2000 waves of the Health Survey for England which was designed 

to represent the English adult population. The first wave of data collection was conducted in 

2002 and subsequent waves were carried out every two years using both face-to-face 

interviews/tests and self-completion questionnaires. The sample selection, study design, and 

measures are described elsewhere (Marmot et al., 2003). Ethical approval for all the ELSA 

waves was granted from the National Research and Ethics Committee, and all procedures 

adhered to the Helsinki Declaration. Participants provided informed consent prior to study 

participation. Data on executive function and physical activity participation were collected in 

each of the four waves of the study examined as were details of participants’ age, gender, 

education, wealth, and the presence of long-standing illness, as shown in Table 1. The 

analyses in the present study utilized 18,220 observations from 4,555 participants who took 

part in all four study waves.  

Measures 

Physical activity. The physical activity questions were introduced as follows: “We would 

like to know the type and amount of physical activity involved in your daily life.” Participants 

were then asked three separate questions which gauged how frequently they engaged in 

sports or activities of 1) mild, 2) moderate, and 3) vigorous intensity. A card was then 

presented to participants detailing a broad set of typical daily physical activities considered 

mild (e.g. vacuuming, home repairs), moderate (e.g. walking at a moderate pace, gardening), 
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and vigorous (e.g. running, cycling). The extent to which participants engaged in each type of 

physical activity was gauged using response options capturing activity levels on a monthly 

basis coded as follows: 1 = hardly ever, or never; 2 = one to three times a month; 3 = once a 

week; and 4 = more than once a week.  Responses on the three items (mild, moderate, and 

vigorous activities) were combined to create a composite variable reflecting total physical 

activity participation.  This variable was then standardized so that high scores equate to 

higher levels of activity, and regression coefficients could be easily interpreted. 

  As self-reported measures of physical activity may be affected by misreporting or 

social desirability biases we test whether the ELSA measure correlates with an objective 

indicator of physical functioning.  As part of the ELSA study the time taken for participants 

to walk a distance of 8 feet at their regular or usual pace was recorded at each wave. The 

timed walk was completed with the use of a walking aid where necessary (approximately 4% 

of participants).  The timed walk was repeated and the average of the two assessments was 

calculated. Across 11,711 observations on the study sample the observed correlation between 

self-reported physical activity and walking speed was .42 suggesting a moderate degree of 

correspondence in the current sample.  

Executive function. In each wave participants completed two brief tests of executive 

function – a verbal fluency task and a letter cancellation task. The verbal fluency task used 

was a standard, well normed semantic category fluency test (Lezak, 1995; Tombaugh et al., 

1999) where participants were asked to generate as many exemplars of a reference category 

(‘animals’) as possible in 60 seconds.  Verbal fluency tests, in particular letter fluency tests, 

are routinely used to assess executive dysfunction (Henry and Crawford, 2004; Parker and 

Crawford, 1992; Phillips, 1997). Numerous studies have demonstrated that damage to brain 

regions associated with EF is associated with poor performance on verbal fluency tests (e.g., 

Baldo and Shimamura, 1998; Schwartz and Baldo, 2001). Patients with frontal lobe damage / 
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executive dysfunction reliably show large deficits in verbal fluency task performance, and 

importantly, these patients show differential deficits in verbal fluency tasks relative to more 

general cognitive tests of IQ and processing speed (Henry and Crawford, 2004).  

 As in the current study, verbal fluency tasks typically present participants with an 

unusual, unpracticed task (generating words based on specified orthographic criteria), 

specifying a goal which must be met without giving a strategy for doing so.  Performance on 

verbal fluency tasks requires the successful operation of multiple specific EF processes, 

including working memory updating (keeping track of responses, keeping the target letter and 

rules in mind; Henry and Crawford, 2004), self-monitoring of performance, inhibition (of 

previously given or inappropriate responses) and strategic switching between ‘clusters’ of 

responses (Hirshorn and Thompson-Schill, 2006).  Performance on this animal naming task 

specifically reflects flexible, goal directed searching of semantic memory, performance 

monitoring and inhibition of previously named / inappropriate exemplars, and is sensitive to 

both ageing and the beneficial effects of physical activity (Lindwall et al., 2012).  

 The letter-cancellation task asked participants to locate and cross out as many 

occurrences of the letters P and W as they could on a page printed with 65 randomly ordered 

letters of the alphabet within 60 seconds. Letter cancellation tasks assess a key component of 

executive functioning, selective attention or the ability to focus on relevant stimuli while 

simultaneously ignoring or screening out irrelevant stimuli (Diamond, 2013; Jurado & 

Rosselli, 2007). Cancellation tasks also gauge sustained attention, visual search ability and 

mental speed and have been shown to have high reliability and validity (Uttl and Pilkenton-

Taylor, 2001). 

The ELSA index of executive function is based on the verbal fluency and letter 

cancellation tasks. These two tasks form three scales which are summed to produce a 
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composite executive function score (Institute of Fiscal Studies, 2012) ranging from 0 to 20 

derived as follows: (1) The number of animals named form a scale from 0 (0 – 7 animals 

named) to 8 (30 + animals named), (2) The number of letters reached in the letter cancellation 

task are recoded into a second scale ranging from 0 (0 – 174 letters reached) to 7 (450+ letters 

reached), and (3) The number of target letters missed by the participant in the letter 

cancellation task is recoded into a scale ranging from 0 (9 or more missed) to 5 (0 – 1 

missed). Executive function index scores were standardized (mean = 0, SD = 1) so that 

regression coefficients could be interpreted as indicative of change in SD’s of a unit change 

in the independent variable. 

Covariates. Details of each participant’s age in years, sex, highest educational 

qualification, non-pension wealth, and whether they had been diagnosed with a long-term 

illness were used for descriptive purposes and as control variables in the statistical models. 

The education variable was coded on a seven-point scale ranging from 1 = no qualification to 

7 = degree or equivalent. The wealth measure captured a broad set of wealth sources 

including the value of housing, current and savings account balances, premium bonds, shares, 

and private debt (e.g. credit card debt and outstanding loans). This variable was log-

transformed to reduce skew. The presence of long-standing illness was reported at each wave 

(present/not present).  

Statistical Analysis 

Multi-level random coefficient analyses were used to account for the hierarchical 

structure of the data, whereby non-independent repeated observations across the five waves 

(Level 1) were nested within participants (Level 2). Our analytic strategy was as follows. 

First we examined the cross-sectional association between physical activity and executive 

functioning for individuals (i) across the four waves examined (t). We used multilevel 
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modelling and adjusted for participant age, wealth and the presence of long-standing illness at 

each wave, as well as unchanging characteristics sex and highest educational qualification. 

Dummy variables for each wave were included in the analyses (Model 1). Using standard 

nomenclature these regression models can be summarised as follows: 

Model 1: Level 1: Executive functionit = β0i + β1i(Physical activityit)  + β2i(Age it) + β3i(Wealthit)   

                    + β4i(Long-standing illnessit) + β5(Wavet) +  rit 

     Level 2: β0i = γ00 + γ01 (Genderi) + γ02 (Educationi) + u0i 

 

Next we examined how changes in physical activity relate to changes in executive 

functioning by conducting a fixed effects analysis (Model 2). This analysis exploits the 

longitudinal nature of the data to test whether within-person variation in physical activity 

predicts within-person variation in executive functioning. By examining within-person 

variation such non-observed time-invariant (i.e. factors such as sex, birth weight, education, 

genetics, etc that do not vary over time, specifically within the time-period of the study) 

confounders are essentially ruled out. The fixed effects analyses adjusted for changes in 

wealth and health that could explain any association between within-person changes in 

executive functioning and corresponding changes in physical activity. For example, the 

difference between a person’s executive function level in each participating wave and the 

person’s average level of executive function is represented by ‘Executive functionit   –  

Executive functioni’. This fixed effects multilevel regression analysis eliminates unobservable 

individual heterogeneity (α) that remains stable across waves, thus producing an account of 

the executive function – physical activity relation that is free from the influence of important 

non-observed stable individual factors like genetic variation or experiences of childhood 

adversity. 
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Model 2: Level 1: Executive functionit   –  Executive functioni= β1i(Physical activityit   –      

                    Physical activityi)  + β2i(Ageit  – Agei) + β3i(Wealthit   –  Wealthi) +    

                    β4i(Long-standing illnessit   –Long standing illnessi) + β5(Wavet) + (αi –   α i)+ (rit  – ri) 

 

Finally, having identified whether the relationship between executive function and 

physical activity remains after adjustment for time-invariant factors we tested the direction of 

this relationship. Using multi-level modelling we investigated whether physical activity in a 

given wave (t) predicts executive functioning levels in the subsequent wave (t + 1) adjusting 

for the participant’s executive functioning score and age at baseline (t) along with gender, 

education, wealth and health controls (Model 3). In model 4 longitudinal change in physical 

activity (from t to t + 1) is predicted by executive functioning at baseline (t).  

 

Model 3: Level 1: Executive functionit +1 = β0i + β1i(Physical activityit)  + β2i(Executive  

functionit) + β3i(Age it) + β4i(Wealthit) + β5i(Long-standing illnessit) + β6(Wavet) 

+  rit 

Level 2: β0i = γ00 + γ01 (Genderi) + γ02 (Educationi) + u0i 

 

Model 4: Level 1: Physical activityit +1= β0i + β1i(Executive functionit)  + β2i(Physical activityit)  

+ β3i(Age it) + β4i(Wealthit) + β5i(Long-standing illnessit) + β6(Wavet) +  rit 

Level 2: β0i = γ00 + γ01 (Genderi) + γ02 (Educationi) + u0i 
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Results 

The characteristics of the sample for each of the four waves of ELSA utilized in the 

study are detailed in Table 1. The average age of the sample at baseline was 62.34 years (SD 

= 9.44) and participants were mainly female (56.7%). Approximately 51% of the sample 

reported having been diagnosed with a long-standing illness at baseline.  

[Table 1 about here] 

Cross-sectional Relationship between Physical Activity and Executive Function 

There was little variation in average levels of physical activity across waves (Min = 

2.91, Max = 3.03), as shown in Table 1. Executive function scores also varied little across 

waves, with participants scoring from 10.52 to 10.75 out of 20 on average across the four 

waves. The correlation between physical activity and executive function appeared to 

strengthen as participants aged (Overall: r = .23, p < .001; Wave 1: r = .17, p < .001; Wave 2: 

r = .20, p < .001; Wave 3: r = .25, p < .001; Wave 4: r = .30, p < .001). Our first multilevel 

model (Table 2) showed that higher levels of physical activity were associated with better 

executive functioning (B = .05, SE = .01; t = 8.02, p < .001) after adjusting for age, gender, 

education, wealth and health status. Our analyses indicates that a 1 SD increase in physical 

activity corresponded with a .05 SD increase in executive function scores.  

[Table 2 about here] 

Fixed Effects Model of the Physical Activity–Executive Function Link 

Our fixed effects model showed that within-person changes in executive functioning 

were associated with within-person changes in physical activity levels (B = .03, SE = .01; t = 

3.93,  p < .001). Thus, the relationship between physical activity and executive functioning 

appeared to be robust to strict statistical control for person-level time-invariant factors. 
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However, approximately 45% of the relationship between physical activity and executive 

functioning could be attributed to unobserved time-invariant confounding factors. Our fixed 

effects analyses suggested that an increase of 1SD in physical activity was associated with 

approximately a .03 SD increase in executive function amongst older adults.  

[Table 3 about here] 

Longitudinal Models of the Direction of the Physical Activity–Executive Function Link 

Next, we investigated the direction of the physical activity-executive function 

relationship using longitudinal random-effects models. We tested the impact of physical 

activity on subsequent executive functioning adjusting for age, gender, education, wealth, 

long-standing illness and executive function at baseline. This analysis showed that physical 

activity is linked to an increase in executive function over time B = .03, SE = .01; t = 5.08,  p 

< .001), as shown in Table 3.  

In the opposite direction we found that high levels of executive function predicted a 

longitudinal increase in physical activity levels (B = .05, SE = .01; t = 6.48, p < .001), while 

adjusting for age, gender, education, wealth, long-standing illness and physical activity at 

baseline. A 1 SD increase in executive function was linked to a .05 increase in physical 

activity over time. This increase was found to be equivalent in magnitude to a 2.5 point 

improvement in education (measured on a seven-point scale ranging from 1 = no 

qualification to 7 = degree or equivalent) or moving from pass secondary level education to 

holding a degree. Furthermore, the magnitude of the longitudinal change in physical activity 

associated with elevated executive function levels was 55% greater than the increase in 

executive function associated with high levels of physical activity. 
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Discussion 

In a study of more than 4,500 adults aged 50+ physical activity and executive function 

were closely interlinked. This association remained after controlling for demographic and 

health characteristics. Furthermore, in strictly controlled fixed effects analyses we 

demonstrated that dynamic within-person changes in executive function corresponded with 

parallel changes in physical activity. Critically, our analyses showed that the magnitude of 

the relationship between physical activity and neurocognitive performance appeared to be 

strongest in the direction from executive function to physical activity. Previously, strong 

executive abilities have been found to prospectively predict high levels of physical activity in 

children (Pentz and Riggs, 2013; Riggs et al., 2010) and exercise adherence in older adults 

(McAuley et al., 2011). The current study suggests that executive abilities may have 

favourable effects on activity levels at the population level in older adults. This is in line with 

temporal self-regulation theory (Hall and Fong, 2007) which proposes that prepotent response 

inhibition (a key facet of executive functioning) will be essential for the enactment of 

behaviors like physical activity which require short term effort for long term health gain.  

We found evidence that the relationship between physical activity and executive 

function is bidirectional.  Those with poor executive function showed subsequent decreases 

in their rates of participation in physical activity and older adults who engaged in sports and 

other activities involving physical exertion tended to retain high levels of executive function 

over time. This research strengthens and extends existing evidence demonstrating that 

physical activity can buffer the effects of ageing on cognitive decline, particularly in relation 

to the executive functions (Agrigoroaei and Lachman, 2011; Erickson et al., 2012; Weinstein 

et al., 2012). This bi-directionality is encouraging from a behavior change standpoint as it 

suggests that interventions which promote either physical activity or more efficient executive 

function may have the capacity to produce reciprocal benefits.  
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Physical activity has been successfully increased among older adults using strategies 

such as telephone counselling and group-based programmes (Wilcox et al., 2006); 

pedometer-driven interventions (Talbot et al., 2003); and education-based interventions (van 

der Bij et al., 2002). Although challenging and labour intensive, there is evidence that 

executive function can also be improved through training. Lasting improvements in the 

executive functions have been achieved in older adults using cognitive training techniques 

and mindfulness meditation (Ball et al., 2002; Willis et al., 2006). As the largest beneficial 

effects of these cognitive interventions are typically seen in those with the lowest levels of 

executive function and strong deleterious impulsive tendencies (Hofmann et al., 2012), it may 

be possible to target interventions at those with the greatest capacity to benefit. However, the 

extent to which such interventions can enhance engagement in physical activity and whether 

this could attenuate the declines in physical functioning associated with poor executive 

functioning (Koehler et al., 2011; Watson et al., 2010) remains to be identified.  

 Our study has several strengths. Firstly, this is the first study to explicitly investigate 

the bidirectional nature of the executive function – physical activity relationship over time. 

The finding that there is a reciprocal, mutually beneficial relationship between the two is of 

theoretical and practical importance, aiding the interpretation of cross-sectional studies and 

highlighting new avenues for the design of interventions to facilitate healthy aging. Secondly, 

the large sample provided precise estimates and high statistical power. Thirdly, our estimates 

were independent of factors (e.g. wealth, chronic illness) that are known to independently 

influence engagement in physical activity.  

 Finally, the use of fixed effects regression techniques allowed us to determine that the 

executive function – physical activity association is robust to non-observed stable 

confounding variables. This analysis showed that such non-observed variables explained 45% 

of the association between executive function and physical activity identified in the standard 
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multilevel regression model. The fixed effects regression results point to the need for non-

experimental studies examining the link between executive function and physical activity to 

either measure or econometrically account for stable potential confounding variables 

including childhood adversity, genetic endowment and personality traits. Failure to consider 

these often unobserved variables could lead to inflated estimates of the association between 

physical activity and executive function. This is because such non-observed variables could 

lead to changes in both activity levels and executive function and explain why these variables 

are interrelated. 

 Fixed effects models using panel or sibling/twin data can appropriately account for 

childhood adversity or differences in genetic makeup which cannot change. However, fixed 

effects models cannot fully account for the potential confounding role of personality traits 

which, although highly stable, have been shown to respond to maturation and life events (e.g. 

Boyce et al., in press). It may be more appropriate to measure individual differences in 

personality traits in order to rule out confounding resulting from these variables.  

 In terms of limitations, the fixed effects regression cannot rule out third variables 

which are time-varying and not included in the regression model. For instance, if marked 

changes in health behavior (e.g. increased cigarette or high calorie food consumption) 

occurred between waves this could negatively impact on both executive function and physical 

activity levels. Similarly, pronounced changes in health over time may not be adequately 

captured by the control for chronic conditions included in the analyses. These and other 

unobserved time-varying variables could account for the association between changes in 

executive function and physical activity. It is important that future research utilize 

experimental designs to rule out this potential confounding and to identify whether changes 

in executive function can causally affect physical activity.  
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 Furthermore, the measure of physical activity used in the ELSA study was participant 

reported and may have been prone to response bias (e.g. social desirability effects, 

differential use of response scales). Prior research has shown that the association between 

objectively recorded and self-reported physical activity is typically modest with several 

studies showing that both methods share approximately 25% of common variance (e.g. 

Fahrenberg, 1996; Nagels et al., 2007; Welk et al., 2004). The presence of measurement error 

is therefore likely to have attenuated the link between executive function and physical 

activity in the current study (e.g. Celis-Morales et al., 2012).  

 In the current study we identified a moderate positive association (r = .42, p < .001) 

between the measure of physical activity utilized and a measure of participant walking speed 

demonstrating that this self-report measure correlates with objective differences in physical 

functioning. Furthermore, by including analyses of within-person changes in activity levels 

we can account for individual differences in social desirability bias and in the use of self-

report response scales. This is because we examine changes in response so a systematic 

tendency to over- or underestimate physical activity will be statistically removed. Future 

research capitalizing on the recent inclusion of accelerometry for the assessment of physical 

activity in population representative longitudinal studies (e.g. Griffiths et al., 2013) would 

help verify or challenge the pattern of results identified in the current study.  

 Due to the constraints of a large-scale multipurpose study such as ELSA the present 

analyses utilized brief measures of executive functioning (verbal fluency/letter cancellation). 

While well normed, objective tests, it must be noted that the executive functions are multi-

faceted, and comprehensive measurement of executive abilities requires a full 

neuropsychological test battery. Brief measures such as those utilized in the current study are 

likely to be less reliable and this measurement error may lead to a downward bias in the size 

of the effects observed. Similarly, the tasks used will inevitably reflect an element of general 



Pg. 21 
 

cognitive function in addition to ‘purely’ executive functioning, particularly in terms of 

processing speed.  Future studies would ideally explore a broader range of executive abilities 

to investigate whether particular facets of executive functioning (e.g. planning, sustained 

attention, self-monitoring) are equally predictive of physical activity.  

 Finally, whilst our study has shown that relatively strong executive abilities can lead 

to improvements in activity levels, we were unable to examine the mechanism underlying this 

change in the current study. Previous research points to the role of the executive functions in 

allowing intentions to engage in physical activity to be implemented, potentially by inhibiting 

distractions and facilitating the enactment of behavior (Hall and Fong, 2007). This represents 

a promising direction for further research (Allan et al., 2010; Allan et al., 2011). 

 In conclusion, in this large longitudinal study of older English adults we have 

demonstrated a mutually beneficial, reciprocal relationship between physical activity and 

executive function that cannot be attributed to either observed or non-observed confounders. 

Our study suggests that in old age the relationship between executive function and physical 

activity is dynamic such that changes in executive function can enhance and promote 

physical activity over time and that changes in activity level can improve future executive 

function. This finding points to the potentially reciprocal benefits of intervention strategies 

which aim to concurrently promote executive function and physical activity in older adults. 
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Table 1 

Descriptive Statistics for each Wave of the English Longitudinal Study of Ageing Examined 

Wave  Wave 1 Wave 2 Wave 3 Wave 4 

(N) (N = 4,555) (N = 4,555) (N = 4,555) (N = 4,555) 

Parameter M (SD) / % M (SD) / % M (SD) / % M (SD) / % 

Physical activitya 3.01 (.75) 3.03 (.72) 2.97 (.75) 2.91 (.80) 

Executive functionb 10.75 (3.10) 10.59 (3.14) 10.54 (3.22) 10.52 (3.35) 

Age 62.34 (9.44) 64.66  (9.46)  66.5 (9.46) 68.62 (9.64) 

Female 56.73% 56.73%  56.73%  56.73% 

Educationc 4.33 (2.26) 4.33 (2.26)  4.33 (2.26)  4.33 (2.26) 

Log wealth 5.12 (.66) 5.24 (.63)  5.28 (.61)  5.28 (.63) 

Long-standing illness 50.98% 53.17% 53.08%  53.74% 

a Frequency of engagement in mild/moderate/vigorous activity, ranging from 1 = hardly ever, or never 

to 4 = more than once a week. 

b Composite score based on verbal fluency and letter cancellation task.   

c Highest educational qualification, ranging from 1 = no qualification equivalent to 7 = degree or 

equivalent.                                                           
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Table 2  

Random and Fixed Effects Multilevel Regression Models of the Association Between Physical 

Activity and Executive Function 

Parameter Executive Functiona Executive Functiona 

Model            Random effects          Fixed effects 

 B (SE) t B (SE) t 

Intercept 2.15 (.12) 18.64** 1.34 (.14) 9.45** 

Physical activityb .05 (.01)   8.02**  .03 (.01) 3.93** 

Age     -.03 (.00)  -27.79**     -.01 (.01)    -1.51 

Female .21 (.02) 9.67** - - 

Educationc .11 (.01)   20.67** - - 

Log wealth .08 (.01)     6.80** .03 (.02) 1.49 

Long-standing illness     -.01 (.01)     -.41 .02 (.01) 1.60 

Wave 1d     -.19 (.01) -13.14** -.08 (.01)       -1.37 

Wave 2d -.13 (.01)   -9.90** -.05 (.04) -1.39 

Wave 3d -.07 (.01)   -5.99** -.03 (.02) -1.28 

a Composite score based on verbal fluency and letter cancellation task.   

b Frequency of engagement in mild/moderate/vigorous activity, ranging from 1 = hardly ever, or never 

to 4 = more than once a week. 

c Highest educational qualification, ranging from 1 = no qualification equivalent to 7 = degree or 

equivalent.                      

d Base category for analysis of Wave effects is Wave 4.                   

Notes. * p < .01, ** p < .001.  
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Table 3 

Results of Multilevel Random Effects Models Assessing the Longitudinal Relationship 

between Physical Activity and Executive Function 

Parameter   Executive Function (t + 1)      Physical Activity (t +1) 

              B (SE) t        B (SE)           t 

Intercept (t) 1.07 (.09) 13.94** .46 (.09)     5.20** 

Physical activity (t)a .03 (.01)   5.08** .48 (.01)  65.22** 

Executive function (t)b  .58 (.01) 84.71**  .05 (.01)    6.48** 

Age (t) -.02 (.00) -23.20**  -.01 (.00) -14.88** 

Female (t) .09 (.01)     6.88** -.06 (.01) -4.37** 

Education (t)c .04 (.00)   13.75**  .02 (.00)    5.64** 

Log wealth (t)    .03 (.01)      3.33**  .10 (.01)   8.90** 

Long-standing illness (t)   -.05 (.01)      -3.99**  -.16 (.01)   -11.57** 

Wave 1d   -.06 (.03)    -4.16**   -.04 (.02)     -2.10* 

Wave 2d   -.03 (.01)      -1.96    -.02 (.02)     -1.05 

a Frequency of engagement in mild/moderate/vigorous activity, ranging from 1 = hardly ever, or never 

to 4 = more than once a week. 

b Composite score based on verbal fluency and letter cancellation task.   

c Highest educational qualification, ranging from 1 = no qualification equivalent to 7 = degree 

or equivalent.                                 

d Base category for analysis of Wave effects is Wave 3.                   

Notes. * p < .01, ** p < .001. 

 


