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Abstract 
A methodology is presented that combines a multi-objective evolutionary algorithm and 

artificial neural networks to optimise single-storey steel commercial buildings for net-zero 

carbon impact. Both symmetric and asymmetric geometries are considered in conjunction 

with regulated, unregulated and embodied carbon. Offsetting is achieved through 

photovoltaic (PV) panels integrated into the roof.  Asymmetric geometries can increase the 

south facing surface area and consequently allow for improved PV energy production. An 

exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south 

facing PV roof is considered. It was found in most cases that regulated energy offsetting can 

be achieved with symmetric geometries. However, asymmetric geometries were necessary 

to account for the unregulated and embodied carbon. For buildings where the volume is 

large due to high eaves, carbon offsetting became increasingly more difficult, and not 

possible in certain cases. The use of asymmetric geometries was found to allow for lower 

embodied energy structures with similar carbon performance to symmetrical structures. 

 

 

Keywords: Portal frames; Genetic algorithms; Artificial neural network; Optimization; Energy 

efficiency   
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1 Introduction 

Photovoltaic panels (PV) are being used increasingly to reduce the carbon impact of new 

single-storey industrial buildings. This paper investigates the application of PV panels in 

conjunction with an asymmetric building shape to optimise the design of a single-storey 

building for net-zero carbon (Figure 1). 

The United Kingdom (UK) has a legal commitment to an 80% reduction of greenhouse gases 

by 2050 compared to 1990 levels [1].  Of these emissions, approximately 45% of the carbon 

dioxide (CO2) is attributed to buildings [2] while 18% of the UK’s total emissions are 

attributed to non-domestic buildings [3].  In order to meet the 2050 target the UK 

government has projected that the building sector as a whole would need to be almost net-

zero carbon [4].  

Through new and tighter building regulations it is expected that all new residential buildings 

will be net-zero carbon from 2016 under level six of the Code for Sustainable Homes and 

from 2019 for commercial buildings [5, 6].  This will account for an estimated 30% 

(maximum) of buildings by 2050 dependent on the replacement rate [7].  Any new building 

should have the lowest environmental impact whilst still performing well as a building. The 

industry has expressed concerns as to whether these targets are achievable; it has been 

observed that there are significant gaps between the aspirations and realities foreseen by 

the sector [8]. 

One of the most common structural types of non-domestic building is steel portal frames 

that account for 90% of single-storey commercial buildings in the UK [9]. In the UK, these 

buildings are normally rented and used for a variety of occupancy types and end uses.  In 

order for a building to be net-zero carbon, the building must offset or mitigate its carbon 

emissions.  In principle, this can be done in two main ways, i.e. either through on-site 

renewables or by offsetting the building’s carbon by investment in an external carbon saving 

scheme (for example offshore wind).  In reality it will depend very much on the legislative 

definition of net-zero carbon at the planning stage, which is still uncertain. 

Three different levels of net-zero carbon offsetting compliance are considered in this paper 

as follows. 
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• Regulated carbon offsetting 

• Regulated and unregulated carbon offsetting 

• Regulated, unregulated and embodied carbon offsetting 

Regulated energy is the energy used in the heating, cooling and lighting of a building.  

Unregulated energy is used in industrial processes, electrical appliances and equipment [2]. 

The embodied energy and carbon is a tally of the materials used in the construction of the 

building. Regulated energy is the current standard in determining whether a building has 

achieved net-zero carbon status through offsetting by renewable energy sources.   The wide 

variety of building end-uses and consequent uncertainty at the design stage makes it 

difficult to determine unregulated energy.  For rented buildings in particular, uncertainty 

about end-use at the design stage is common.  Where a building changes ownership, the 

unregulated energy usage might change dramatically. 

Non-domestic buildings in industrial or commercial areas have a limited number of 

renewable energy generation options available. A consortium of UK organisations found 

that out of all building types, single-storey buildings have the greatest potential to achieve 

net-zero carbon [10]. This can be attributed in part to the topography of the building as the 

ratio of the roof surface area to usable floor area is relatively very large. 

This paper investigates how the optimisation of the building topography in conjunction with 

PV panels on the roof can be used to achieve net-zero carbon. The building topography can 

be adjusted to maximise PV panels on the southward side by varying the midpoint ratio 

(Figure 1).  Photovoltaic panels are confined to the building rather than placing additional 

panels on adjacent land or on the front facade.  Where a building is unable to achieve net-

zero carbon through roof based PV, additional capacity could be placed on the south facing 

wall or external on-site structures. However these additional options are not considered in 

this article.  Some other common properties of low-carbon buildings include high 

efficiency/air tight materials; the use of sky lights in conjunction with tri-dimming control; 

high efficiency lighting; and the use of passive cooling. 

Photovoltaic technologies can be integrated into existing building designs normally as part 

of the roof with no additional sound pollution. The alternatives, such as wind and 

geothermal, have significant disadvantages in comparison.  For example, wind turbines 
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require satisfactory wind speeds along with residential buffers to reduce the sound 

pollution impact on local residents. This tends to preclude their adoption in a significant 

proportion of the UK, particularly inland and in proximity to urban areas. 

In this paper, a large retail unit is considered, since it is the most likely scenario where both 

unregulated and embodied energy could be accounted for due to the relatively low 

operational energy and the high number of occupiers willing to accept additional cost for 

lower carbon impact.  Annual energy renewable energy production yields and building 

energy usage, including building comfort values, are calculated using the dynamic energy 

simulation package EnergyPlus [11]. 

As part of a decision support system, simulation-based optimisation has potential to assist 

the designer.  This paper proposes a novel methodology to optimise the design of high 

efficiency asymmetric single-storey buildings for net-zero carbon incorporating many of the 

low carbon technologies outlined in previous studies of symmetric structures [10].  This 

paper focuses on a steel framed building. However the methodology proposed is generic 

and the frame could be made of other materials. 

2  Literature review and optimisation framework 

2.1  Literature review 

Surveying the literature, examples of domestic building carbon optimisation exist [12, 13], 

including the more advanced information driven optimisation [14].   However few examples 

exist of topography optimisation coupled with dynamic energy modelling.  Furthermore, 

there is little work on surrogating multiple objectives as in the approach proposed here with 

artificial neural networks.  

Building energy optimisation has been well-established, with genetic algorithms (GAs) being 

the dominant form [15, 16].  GAs are very effective in building optimisation due to their 

capability of handling both continuous and discrete variables.  GAs are also very robust in 

handling discontinuity, multi-modal and highly constrained problems without being trapped 

at a local minimum [17]. As GAs operate on populations of candidate solutions, a high 

degree of parallelisation can be leveraged for very efficient implementation including 

multiobjective optimisation based on Pareto dominance.   
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For example, low energy homes have been optimised for annual energy consumption in 

Sydney [18]. This example included multiple building geometries and material parameters as 

design variables.  Also, dwellings have been optimised over their lifecycle [19] considering 

the embodied energy and cost benefits. The shape of the building has also been considered 

taking account of building volumes and geometries [20]. In these cases Multi Objective 

Evolutionary Algorithms (MOEAs) have been used with Pareto-dominance to handle the 

optimisation of multiple objectives simultaneously. 

A genetic algorithm requires thousands of energy simulation runs (i.e. function evaluations) 

to reach an optimum solution.  This is a very computationally intensive and time consuming 

endeavour.  Indeed it is common practice to execute an evolutionary optimisation algorithm 

multiple times to increase the likelihood of identifying near optimal solutions. 

An established method of mitigating the excessive time requirements of the optimisation is 

to use a response surface approximation model (RSA) in conjunction with a GA [21-24].  This 

significantly reduces the computational time required for each function evaluation by 

running the optimisation from the RSA model rather than directly from an EnergyPlus 

simulation.  Thus fast optimisation of different factors multiple times within realistic time 

constraints can be achieved whilst maintaining a reasonable accuracy with respect to the 

actual EnergyPlus simulations. There are multiple different types of RSA. A feed forward 

artificial neural network (ANN) [25] was chosen as it has been previously shown to be 

accurate in building optimisation studies [21-24]. 

2.2 Optimisation framework 

The optimisation framework of this study is summarised in Figure 2.  It is divided into two 

sequential steps.  EnergyPlus is used to generate a large data set for a variety of parameters 

and configurations outlined in Table 1. This data set is then used to train and validate the 

ANNs. The ANN is trained on a wide range of building configurations. However, individual 

optimisations use fixed column heights and spans, with the glazing areas and insulation 

thicknesses varied by the optimisation engine. Subsequently, as an extension to the 

optimisation problem solved, in Subsection 5.2, the midpoint ratio is allowed to vary as an 

additional design variable the value of which is also optimised. 
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It was found that a single network encompassing all of the identified inputs and target 

outputs performed very poorly for various reasons e.g. a disjointed relationship between 

specific inputs and outputs. Therefore, parameters that could be represented easily using a 

linear relationship from single input variables were removed and replaced with linear 

equations.    For the remaining variables, individual tailored ANNs were used.  

3 Description and simulation of the building 

A single-storey portal frame building located in Belfast (UK) is considered in this article.  The 

length of the building is 200m with spans of 20m to 50m and column heights of 4m to 10m. 

The building is south facing with skylights on both sides.  The southward side is the store 

front with a glass façade (see the EnergyPlus model in Figure 3.  The building has a large PV 

system on the south side, covering the maximum possible southward roof area available.  

The heating, ventilation and cooling (HVAC) system comprises of a gas air handling unit. The 

building has no direct cooling, relying upon natural ventilation for passive cooling in the 

summer. 

A computer model of a single-storey building was developed in EnergyPlus.  The simulation 

was carried out over an annual period with a 6-25 (min/max) number of start-up days and a 

time step of 15 minutes.  Annual weather files for the Belfast location were used [26].  

3.1 Design variables  

3.1.1  Building usage 

It is assumed that the building is a large retail store or split into multiple stores with 

identical usage and opening hours (see Table 2).  The building has an occupancy of 0.1169 

persons/m
2 

during periods of occupancy. The building is conditioned by a natural gas air-

handling unit with a coefficient of performance (COP) of 0.65 [27], operating from 7am (i.e. 

two hours before occupancy) to a set point of 23
o
C.    

It is assumed that the building is not actively cooled. In addition to a minimum fresh air per 

person of 34m
3
/h, where temperatures exceed the natural ventilation set point of 24

o
C, an 

air exchange rate of up to 6 ACH is utilised.  It is assumed that automated louvers in the roof 

and walls are installed in sufficient quantities to achieve this air exchange rate. 
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No provision is made for mechanically driven natural ventilation.  During periods of high 

ACH, the building would still be occupied.  There are a number of solutions available for 

achieving the high ACH rate including e-stacks [28] and automated louvers. The impact of 

high ACH rates on the occupants can be minimised [29]. However, this was not directly 

considered in the present study.  Hot water is provided by an instantaneous hot water only 

supply with COP of 0.85 and a delivery temperature of 65
o
C. Water usage is calculated 

based on an assumed usage of 0.0102l/h/m
2
 during occupied hours.  The building is lit 

electrically using suspended tri-step high efficiency LED lighting with a lighting energy of 

4W/m
2
.  The lighting stepping is controlled by a single sensor placed in the centre of the 

building and offset so as not to be directly under a skylight. 

3.1.2 Building construction 

The building envelope consists of a steel skinned polyisocyanurate (PIR) core cladding 

system, where the thickness of the core is variable and coupled with best practice double 

glazing. The infiltration rate is determined based on proprietary testing values for PIR based 

cladding products. This is modified to include an approximation of the infiltration of doors 

and windows. In this study, a value of 1.1m
3
/m

2
/h is used.  Infiltration for cladded buildings 

has been calculated previously at 0.32m
3
/h/m

2
 [30]. However, this does not include the high 

number of openings required for natural ventilation through automated opening windows 

and louvers.  Based on the above surface infiltration rate, the total building ACH is 

calculated from the internal volume and total building surface area (total side walls, gable 

walls and roof). 

The glazing in the skylights in the roof and the south wall is double glazing with low solar 

gain with high light emission.  It is constructed from based on best practice consisting of two 

layers of 6mm glass (external colour, internal clear) with a 13mm air gap.  The size of the 

roof glazing for the north and south sides of the building is considered separately, specified 

as a ratio of roof surface area.  Within the model this area is represented with seven thin 

longitudinal windows, representing multiple windows that would run parallel to the span 

(see Figure 3). 

A photovoltaic system is implemented with a peak operating capacity of 200W/m
2
. This is 

fed into a simple power inverter with an efficiency of 15%.  It is assumed that no energy is 

stored on site but bought and sold on the grid as required.   This is represented by 8 large 
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panels placed on the southward side of the building.  The maximum available PV is utilised, 

based on the area used for glazing and an additional 10% for window frames a PV support 

structures.  Annual photovoltaic energy generation yields are calculated through EnergyPlus, 

with the predicted value used in the carbon offsetting. 

3.2 Embodied energy and carbon 

3.2.1 Building energy conversion  

Table 3 shows the unit conversion factors for carbon (kgCO2e) and energy consumed by the 

building [31].  EnergyPlus predictions of energy are annual totals.  For comparative 

purposes, energy is converted into thousand watt hours per meter squared floor area over 1 

year’s operation (kWhPA/m
2
) and kilograms carbon dioxide equivalent per meter squared 

floor area over 1 year’s operation (kgCO2e/m
2
).  The conversion factors for grid electricity 

were used to determine carbon generated by the PV system used in carbon offsetting.  

3.2.2 Embodied energy and carbon calculation 

Table 4 shows the embodied energy (EE) and carbon (EC) values calculated for the building. 

These values are based on a range of sources [32-35] that are considered sufficiently 

accurate for the comparisons made here. Values based on cradle to gate methods were 

used due to the difficulty in determining disposal and waste streams and the general 

availability of cradle to gate values.  Additionally, the construction, maintenance, fixture and 

fitting phases of the building life cycle are omitted.   

The cladding values are interpolated based on existing Environment Product Declarations 

(EPD) [32]. These are modified to include the variation in the thickness of the 

polyisocyanurate (PIR) foam. PIR is chemically similar to polyurethane, allowing for the 

substitution of values taken from the ICE database [33].  The windows and skylights are 

taken directly from a glazing facade system EPD [34].  Photovoltaic values are for a CdTe PV 

system, which have a very short energy payback time and some of the lowest environmental 

impacts compared to other types of solar technologies [35]. 

Steel weight values for fabricated sections include an average recycled content [33]. No 

account is taken for the additional fabrication and welding of the steel into frames. Primary 

steel member weights are based on optimum primary frame weights for symmetric portal 

frames using rolled sections [36].  Where the building is asymmetric, a linear presumptive 
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penalty is used for primary member weight.  The penalty is calculated based on a linear 

assumption that a 0.75 midpoint will have 20% more weight.  It is assumed that the purlins 

and side rails that support the cladding have a constant mass of 4.5kg per m
2
 of the building 

envelope (roof, gables and sides).  From this assumption the embodied energy is calculated 

based on the Coil (Sheet), Galvanised - UK (EU) Average Recycled Content [33]. 

The building is assumed to have a 125mm concrete floor slab, including the screed insulated 

with 240mm of insulation.  It is assumed that 0.5% of the slab is reinforced with steel rebar.    

The floor slab is calculated based on the volume of materials using the Bath ICE database 

values [33].  Pad volumes are calculated based on the assumption that the pad foundation 

system is governed by uplift caused by the wind.  The volume of the concrete pad 

foundation is calculated based on a column spacing of 6m and an uplift force of 0.5kN/m
2
 

(1kN/m
2 

uplift and 0.5kN/m
2 

self-weight).  Each pad is assumed to be reinforced with 1% 

steel reinforcement. 

3.3 Selection of the ANN variables and training data 

A range of building geometries is considered.  The number of decision variables is kept to a 

minimum in order to reduce the size, complexity and number of EnergyPlus simulations 

required. This is achieved by omitting HVAC design variables and control parameters, such 

as heating set points that fall outside the scope of this study.  A grid sampling plan (Table 1) 

totalling 224,000 unique EnergyPlus models was run for 8 different decision variables.  The 

primary topographical variables are the span, column height and midpoint.  The building 

fabric construction variables include the percentage glazing on the roof and front wall.  The 

core thickness of both the wall and the roof is also included independently.  The percentage 

glazing of the north and south roof parts is varied separately to give better solar and heat 

loss control. 

From each EnergyPlus simulation the energy used for heating, lighting and equipment 

within the building was determined, as well as the PV generated energy.  In addition to the 

energy usage, the building’s thermal comfort was determined in three ways: 

i. ASHRAE simple method counting the number of hours discomfort for summer and 

winter clothing during periods of occupancy 

ii. The number of occupied hours in excess of 28
o
C  
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iii. Fanger Model based on number of occupied hours where the PMV exceed 0.5 

The primary comfort concern is overheating as the majority of building occupants in retail 

environments may be wearing outdoor clothing.  Low building temperature discomfort was 

less of a concern due to the high activity level of the occupants and the availability of 

additional layers of clothing.  Additionally, due to the simplified HVAC implementation, the 

model would always meet the heating set point temperature. The optimisation does not 

extend to variables that could influence the number of cold discomfort hours, for example, 

heating set points or ventilation rates. 

4 Artificial neural network and optimisation models 

4.1 ANN training  

It was found that a single network incorporating all of the identified inputs and target 

outputs performed very poorly due to the large variation and sometimes disjointed 

relationships between the inputs and outputs.  So multiple single objective ANNs were used, 

training performance was further improved by eliminating input variables with no 

relationship to the output variable as well as selecting a training method best suited to the 

output parameters characteristics.  The networks comprised of six or eight neurons in the 

input layer (corresponding to input variables). The internal light energy target ANN output 

required six inputs: span, column height, frame midpoint ratio, front wall window %, and 

skylight % area for both north and south sides.  The three remaining target outputs, District 

Heating, ASHRAE and Fanger PMV, have the core wall insulation thickness of the wall and 

roof as additional input variables. The recorded model outputs and surrogacy methods are 

outlined in Table 5. It was found that a single neural network incorporating all of the 

identified inputs and target outputs was too complex and performed very poorly. The 

internal equipment, water system heating and photovoltaic energy were predicted using 

linear equations. The neural networks for ASHRAE discomfort hours and the predicted mean 

vote (PMV) were generated individually using Bayesian regularisation [37] with 10 neurons 

using a random 70% of the data set for training and the remaining 30% for testing. Interior 

lighting and district heating targets were also individually generated using the Levenberg-

Marquardt training method with 10 neurons using 60%, 20%, 20% of the data set for 
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training, validation and testing, respectively.  Training methods were selected 

experimentally. The noisier data sets were trained with Bayesian regularisation which is 

more capable of dealing with noise [37]. 

It was not possible to surrogate the total number of occupied hours in excess of 28
o
C. In 

practice, however, this requirement is not essential in the present study, as explained in 

Section 4.4.2. 

4.2 Validation  

The regression plots between the simulated targets and ANN outputs for the entire initial 

data set are given in Figure 4.  A good agreement can be seen with a regression coefficient 

above 0.99 for training and validation points combined.   

Two additional validations were made to a Latin hypercube sampling (LHS) group and 

retrospectively to the Pareto curve optimum points in Figure 5.  The LHS group consisted of 

4000 validation models generated within the constraints of the initial grid data set. The LHS 

relative error values are shown in Table 6.  The relative error values are 1.7% for the internal 

lighting, 0.6% for heating and 8.8% for ASHRAE thermal comfort. The PMV prediction is less 

reliable but still reasonable for design purposes.  The larger relative error in predictions of 

the PMV can be attributed to the high sensitivity of discomfort hour prediction methods, 

causing sudden variation in simulation values. 

Figure 5 had 1848 Pareto points which were simulated in EnergyPlus and compared to the 

ANN result.  The R
2
 values are reported in Table 5, with above 0.98 values indicating a very 

good correlation between EnergyPlus and the ANNs.   Therefore, the ANN predictions can 

be considered good enough for design optimisation. 

It is uncertain how the proposed methodology will scale to larger design problems, but this 

would require an increase in the training data size.  The methodology is most applicable to 

small confined problems (at least until it is further developed) where the size of the 

required training set can be kept manageable. 

4.3 Optimisation model 
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The carbon impact of the building is calculated by converting the regulated and unregulated 

energies into equivalent carbon values.  This is then offset by subtracting the carbon 

equivalent of the energy produced by the photovoltaic panels (Equation 1). 

Carbon Impact = Regulated + Unregulated + Embodied – Offset    (1) 

A number of limits for overheating have been proposed including a limit of 80 occupied 

hours exceeding 28
o
C [38].  Within this study this limit was never exceeded so the constraint 

was not considered. This can be attributed to the relatively mild weather in Belfast and that 

the naturally ventilated air was not in excess of 28
o
C.  If the location was in a sunnier 

warmer part of the UK or Europe this constraint would become a significant factor in the 

determination of an appropriate building configuration. 

In general, minimising the number of uncomfortable hours within the simulation is 

recommended.  Due to the simplified heating system, the set point temperature of 23
o
C 

was always met.  Discomfort caused by cold within the ASHRAE can be a significant portion 

of the discomfort.  This occurs particularly in the morning, as the building humidity is 

balancing due to the addition of conditioned air after the period overnight of no 

conditioning.  It is assumed that during these cold periods, occupants would adjust their 

clothing levels, reducing the impact of cold discomfort. Therefore a limit of 10% occupied 

hours for ASHRAE and 5% for PMV exceeding 0.5 is adopted, resulting in 327 and 163 hours 

respectively for the 3276 hours that the building is occupied annually (Equation 2).   

In this paper, the MOEA applied is a variant of NSGA-II [39] as implemented by MatLab [40]. 

The population size was 500. The relatively large population size allowed for better 

consistency and the generation of enough Pareto points to distribute across the curve 

including the extremes.  This is beneficial during the parametric study as it ensured 

intermediate points on the curve can be interpolated accurately.  The GA operators were 

intermediate crossover and adaptive feasible mutation.  The intermediate crossover creates 

offspring by taking a weighted average of the parents and adaptive feasible mutation 

creates a new individual that satisfies the problem bounds. A full MOEA configuration is 

summarised in Table 7.  More details can be found in [40]. 
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Where buildings fall outside these ranges of thermal comfort, a two-step penalty function is 

applied (Equation 2).   The optimisation considers two objectives that are minimised: OA and 

OB, the carbon impact (Equation 1) and embodied carbon respectively, which are scaled by 

the penalty p depending on the values of ASHRAE and PMV: 

�� = 	�� 

�� = 	�� 

where: 

	 = 
 1 �
		������ < 327	ℎ	���	��� < 163	ℎ																																	10 �
			327ℎ < ������ < 654	ℎ		!"		163ℎ < ��� < 326	ℎ	100 	�
			������	 > 654	ℎ		!"		��� > 326	ℎ																																														  (2) 

5 Results and discussion 

5.1 Example building  

A frame of span 40m and column height of 5m is considered with 30% frontal glazing.   The 

building is optimised using two objectives: carbon impact and total embodied carbon.  There 

are four decision variables:  

� North roof % skylights 

� South roof % skylights 

� Wall core insulation thickness 

� Roof core insulation thickness 

 

For the three carbon impact calculation options, Pareto curves are produced for carbon 

impact and embodied carbon with midpoint ratio ranging from 0.5 to 0.8 at 0.05 intervals, 

(see Figure 5).  Embodied carbon values are calculated per annum assuming a 30 year 

building life, as at this point in the building’s life major components, including the PV 

system, will need to be replaced. It is assumed that the replacement materials will be offset 

by the replacement renewable energy system. 

It can be seen for all optimisations that as carbon usage is reduced, the embodied energy 

exponentially increases.  This is characteristic of the diminishing returns of increased 

insulation on reduction of building heating costs.  This is the main finding of the 
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optimisation.  For the Belfast location to achieve regulated net-zero carbon offsetting it is 

clear that asymmetric building shapes are not required. However, if operational energy is 

included a midpoint ratio of 0.55 to 0.6 would be beneficial (although not required). In 

Figure 5 a symmetric 0.5 midpoint configuration could be net-zero carbon but would 

consume significantly more resources than an equivalent performing frame with a 0.6 

midpoint ratio.  When embodied carbon is included the necessary degree of asymmetry is 

increased significantly, with a midpoint ratio of 0.75 or larger required. This shows how the 

designer can identify net-zero carbon impact buildings solutions where symmetric 

configurations do not exist through asymmetry and reduce the embodied carbon of those 

solutions.  

For each of the carbon Pareto curves in Figure 5 the equivalent embodied and operational 

energy curves were produced (Figure 6).  There are significant differences between the 

carbon and energy in achieving net-zero energy offset status.  This is due to the difference in 

carbon to energy conversion factors for the different energy streams.  A significant 

proportion of the building’s energy usage is attributed to the gas heating which has 

significantly lower carbon impact than utilising grid electricity.  This resulted in a significantly 

larger effort being required to offset the regulated energy requiring a 0.75 midpoint.  A 

large number of buildings configurations with small roof surface areas to volume failed to 

achieve net-zero energy offsetting with any midpoint. 

An example carbon calculation is shown for a point selected from Figure 5 for a building 

offset using the regulated, unregulated and embodied carbon criteria. As embodied carbon 

is an indicator of material quantities, and therefore a cost, the lowest possible embodied 

carbon is advantageous. The 0.8 midpoint curve is selected as it has relatively low embodied 

carbon that is not within the steep exponential gradient.  

The building has a span of 40m, column height of 5m, midpoint of 0.8, front window of 30%, 

skylights south of 6.3%, north of 16.5% and core insulation thicknesses of 76.2mm walls and 

101.6mm roof.  The surrogacy predictions of the chosen optimum configuration are shown 

in Table 8. Table 9 shows the calculation of the carbon impact. The regulated (+19.1 

kgCO2ePA/m
2

floor) unregulated (+6.96 kgCO2ePA/m
2

floor) and embodied (+9.09 

kgCO2ePA/m
2

floor) carbon are offset by the PV (-35.1 kgCO2ePA/m
2

floor) over an assumed 30 
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year lifetime.  The carbon impact is calculated in Equation 1.  This results for the chosen 

exemplar configuration in a carbon impact of approximately net-zero. 

A breakdown of both the carbon and energy is shown in Figure 7.  It is clear that the most 

significant building aspect is the heating of the buildings followed by the embodied 

energy/carbon.  The embodied energy of the 30 year lifecycle is significant, accounting for 

26% of the carbon within the building. It is therefore important to include this within the 

design decision making process.  

Each GA optimisation run took around 10 minutes CPU time to complete on a Workstation 

running on a single thread at 3.2GHz.  It took approximately 2 weeks to generate the 

training data set and approximately 3 hours to train each ANN.  The function evaluation 

time of the ANN is under 0.001 second whereas the time to generate, simulate and extract 

the result of a single EnergyPlus model is 24 to 28 seconds.   If the ANN was not 

implemented and the optimisation was run directly with EnergyPlus, each GA optimisation 

run would have taken more than 10 days (based on the number of evaluations performed). 

The time saving associated with ANN based optimisation approach is significant, particularly 

if the ANN has already been created.  Relatively minor modifications to the present 

methodology, for example adding additional parameters such as roof orientation, would 

make the ANN reusable for multiple projects for a specific geographic location. 

5.2 Parametric study  

A parametric study was conducted to identify the necessary building shape modification for 

a range of building spans and column heights.  Buildings were optimised on a grid of 13 

spans and 5 column heights across the ANN input range.  The insulation core thickness was 

limited to 200mm in order to prevent configurations with unrealistically high embodied 

carbon. 

In the example building (Figure 5) the objective was to create Pareto curves of carbon 

impact and embodied carbon for one frame topography with multiple midpoint ratios.  In 

the parametric study the objective is to identify the midpoint ratio for net-zero carbon of a 

topographical range of spans and column heights.  In order to achieve this GA optimisation 

objectives were reconfigured from the example frame to carbon impact and midpoint ratio. 

The midpoint ratio was thus added as a fifth decision variable to the optimisation. Embodied 
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carbon was removed as an objective.  Instead its maximum value was limited by the 

constraint on the insulation thickness.  The MOEA was run 5 times. From the Pareto curves 

produced, a solution equating to net-zero carbon impact was selected with the most 

symmetric midpoint ratio from the 5 curves.  This midpoint is then reported in the contour 

plots (Figures 8-10).  This indicates the extent of asymmetry required to achieve a net-zero 

carbon impact for different building topographies while still limiting embodied carbon to 

feasible levels. 

Where the building topography failed to meet net-zero carbon at the maximum (0.8) 

midpoint ratio or meets it under the minimum midpoint ratio (0.5), the carbon impact value 

is reported in place of the midpoint ratio.  The change between contour plot values 

switching between reporting midpoint and carbon impact values is represented by a thick 

black line. 

The offsetting of regulated carbon was found to be very achievable with the majority of 

spans and column heights achieving below net-zero carbon status in symmetric shaped 

buildings. The exception is tall short span frames (Figure 8).  This is indicative of the larger 

heating requirements of taller buildings coupled with limited roof area for carbon offsetting 

through PV panels.  A similar observation can be made about offsetting regulated and 

unregulated carbon (Figure 9). The low height buildings with long spans achieve below net-

zero carbon without asymmetry, whereas the taller and shorter span buildings require some 

degree of asymmetry to meet net-zero carbon impact. 

When embodied energy is included (Figure 10), only low buildings were able to achieve net-

zero carbon impact with a significant midpoint offset.  Tall buildings offset to the maximum 

offset ratio of 0.8 had positive carbon impacts of up to 10kgCO2e/m
2

floor.   In the cases where 

the building failed to achieve a net-zero carbon impact, additional methods could be taken. 

The operational carbon could be reduced by increasing the insulation thickness optimisation 

upper limit, or more practically, the offsetting carbon can be increased.  This can be 

achieved by incorporating additional PV panels to the front of the building or to additional 

structures, for example, car park and walkway covers. 

6 Conclusion  
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This paper used an optimisation methodology based on a combination of artificial neural 

networks and a multi objective evolutionary algorithm. Its aim was to identify the optimal 

net-zero carbon configurations for novel asymmetric single-storey steel buildings of differing 

spans and column heights. First, the ANN was trained and validated using simulation results. 

The database of cases was created using grid sampling followed by multi-objective 

optimisation in MatLab. The ANN proved to be able to provide acceptable approximations 

of the simulation results, with average relative errors below 2% for both the total lighting 

and district heating energy, and below 15% for the average thermal comfort scores.  

The optimisation successfully selected buildings with multiple different midpoint 

configurations with net-zero carbon impacts for different net-zero definitions. The spread of 

the solutions reflects the large number of potential configurations.  The optimisation 

process was useful in identifying solutions with minimal embodied energy, which not only 

reduce carbon in buildings but generally decrease the cost of the building due to the 

reduction in use of materials.  This methodology could prove useful not only in identifying 

the optimum midpoint asymmetry of new buildings but also in the selection of building 

materials based on their embodied energy.  

It was found that regulated energy could be offset with minimal asymmetry; whereas when 

operational energy was included the majority of structures could be offset successfully with 

asymmetry.  Where embodied energy was included only low frames could be offset without 

the inclusion of additional PV panels outside the scope of this analysis.  This method would 

be used in designing new single-storey buildings that strive to achieve a completely net-zero 

carbon impact.   With government incentives, PV is very economically competitive and 

capable of repaying the additional investment over their lifetime.  For clients aiming for 

completely net-zero carbon impact buildings or who have higher regulated carbon 

requirements caused by inclusion of active cooling, this methodology could be used to 

provide design solutions that far surpass current building regulations for regulated carbon  

in a manner where the additional investment can be recovered through additional 

generated PV energy. 

In future work, this method could be expanded to include more building locations and 

orientations.  This will be a particular challenge in locations where thermal gains may 
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overwhelm the natural ventilation requiring the inclusion of active cooling.  The embodied 

energy could be expanded to include the lighting, heating and cooling systems. Structural 

steel mass could be improved through a separate structural steel optimisation rather than 

relying on assumed mass values based on symmetric building designs. 
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Figure 1 Topographic effect of the midpoint ratio 

 

 

Figure 2 Optimisation framework  
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Figure 3 EnergyPlus simulation model representation  

 

Figure 4 Comparison between ANN outputs and simulated targets 
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Figure 5 Pareto-optimal curves for different midpoint and carbon objectives 
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Figure 6 Energy equivalent of the carbon Pareto-optimal curves in Figure 5 
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a) Embodied Carbon           b)  Embodied Energy 

Figure 7 30 year life time breakdown of building energy and carbon 
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Figure 8 Regulated carbon offsetting 
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Figure 9 Regulated and unregulated carbon offsetting 
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Figure 10 Regulated, unregulated and embodied carbon offsetting 
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Table 1 Creation of the training data set  

Decision variables Candidate values  Number of options 

Span (m) 20, 25, 30, 35, 40, 45, 50 7 

Column height (m) 4, 6, 8, 10 4 

Model midpoint (ratio) 0.5, 0.575, 0.65, 0.725, 0.8 5 

Wall facade glazing (%) 20, 35, 50, 65, 80 5 

Skylight south side (%) 2.5, 7.5, 12.5, 17.5, 22.5 5 

Skylight side (%) 5, 12.5, 20, 27.5 4 

Core thickness wall (m) 0.05, 0.1, 0.2, 0.3 4 

Core Roof (m) 0.05, 0.1, 0.2, 0.3 4 

 
Table 2 Occupancy and usage schedule 

Time period Weekdays Saturdays Sundays 

24:00 Until 09:00 0 0 0 

09:00 Until 10:00 0.75 0.75 0.75 

10:00 Until 12:00 1 1 1 

12:00 Until 14:00 0.75 0.75 0.75 

13:00 Until 17:00 1 1 1 

17:00 Until 18:00 0.75 0.75 0.75 

18:00 Until 24:00 0 0 0 

 
Table 3 Energy conversion factors [31]  

Original unit Embodied carbon (kgCO2e) Embodied energy (MJ) 

1kWh  N/A 3.6 

UK grid electricity (1kWh) 0.44548 [31] 3.6 

Natural gas (1kWh) 0.18404 [31] 3.6 

 
Table 4 Embodied carbon (EC) and Embodied Energy (EE)  

Component EC EE 

Cladding  0.1704xCoreThickness(mm)+49.77 

kgCO2e/m
2

Envelope 

4.06xCoreThickness(mm)+305 MJ/m
2 

Envelope 

Window/skylights  62 kgCO2e/m
2 

Window 907 MJ/m
2 

Window 

PV 24 gCO2e/kWh generated  1300 MJ/m
2 

PV area 

Primary steel 

member 

1.66 kgCO2e/kg Primary Steel Member 21.5 MJ/kg Primary steel member 

Purling’s 6.93 kgCO2e/m
2 

Envelope 101.7 MJ/m
2 

Envelope 

Floor slab 45.068 KgCO2e/m
2 

floor 474.45 MJ/m
2 

floor 

Foundation 364.1 kgCO2e/m
3 

foundation pad 3147.9 MJ/m
3 

foundation pad 
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Table 5 EnergyPlus recorded outputs and surrogacy method 

Model outputs  Output surrogacy method  R
2 

for the Pareto 

optimal points in Figure 

5 

Interior lights electricity [J] (RunPeriod) Levenberg-Marquardt feed forward ANN 

with 1 hidden layer with 10 neurons   

0.987 

Interior equipment electricity [J] (RunPeriod) 5.624x10
7
 J/m

2
floor     

Heating district heating [J] (RunPeriod) Levenberg-Marquardt feed forward ANN 

with 1 hidden layer with 10 neurons   

0.999 

Water systems district heating [J] (RunPeriod) 6.848x10
6
 J/m

2
 floor     

Photovoltaic electricity produced [J] 

(RunPeriod) 

4.137x10
8
 J/m

2
 PV Roof Area      

ASHRAE 55 simple model Summer or winter 

clothes not comfortable Time 

Bayesian regularization  feed forward ANN 

with 1 hidden layer with 10 neurons   

0.988 

Air hours over 28 (h) Not applicable    

Fanger PMV hours over 0.5 (h) Bayesian regularization  feed forward ANN 

with 1 hidden layer with 10 neurons   

0.986 

 
Table 6 Statistical repatriation of relative error in ANN validation 

Relative error  <1% <2.5% <5% <10%  <25%  <50% Average (%) 

Percentage of 

cases when error 

falls into the range 

 

Initial grid/(LHS 

Sampling Plan) 

Interior Lights 40.9/(46.8) 78/(84) 96/(93.6) 99.7/(98.8) 100/(100) 100/(100) 1.699/(1.643) 

District 

Heating 

81.6/(85.3) 98.9/(92.8) 100/(95.3) 100/(98.7) 100/(100) 100/(100) 0.612/(0.916) 

ASHRAE 55 

Simple 

12.8/(85.3) 30.1/(92.8) 50.3/(95.3) 70.4/(98.7) 92/(100) 99.2/(100) 8.811/(7.977) 

PMV hours 

over 0.5 

27.7/(12.1) 41.8/(28.9) 59.6/(48.7) 74.8/(66.6) 88.2/(80.8) 96/(86.5) N/A 
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Table 7 MOEA Configuration 

Population 

size 

Selection 

method 

Crossover 

type 

Crossover 

probability 

Mutation 

type 

Termination criteria 

 

500 Tournament Intermediate 0.8 Adaptive 

feasible 

Maximum number of generations = 300 

Stall generations limit  = 35 

 
Table 8 Example optimum configuration building energy predictions per annum (from 5 optimisation runs) 

 Surrogacy prediction (GJ)  MJ/m
2 

floor kWh/m
2

floor  kgCO2e/m
2

floor 

Interior lights 142.6 17.83 4.95 2.2 

Interior equipment  449.9 56.24 15.62 6.96 

Heating gas 2488.1 311.01 86.39 15.9 

Water heating  64.5 8.06 2.24 1.0 

Photovoltaic electricity produced  2271.3 283.92 78.87 35.1 

 
Table 9 Embodied energy & carbon calculation over 30 year lifetime 

Component Quantity EC kgCO2e/m
2

floor EE MJ/m
2

floor 

Roof area cladding  7830.59 (m
2
) 65.66 702.27 

Roof area glass 746.07 (m
2
) 5.78 84.59 

Roof area PV 5490.71 (m
2
) 56.78 892.24 

Wall area cladding 2325.70 (m
2
) 18.25 178.65 

Wall area glass 300.00 (m
2
) 2.33 34.01 

Envelope area purlin’s 11202.36 (m
2
) 9.70 142.41 

Ground floor slab 8000.00 (m
2
) 45.07 474.45 

Foundation 0.0212 (m
3
/m

2
floor) 7.72 66.74 

Primary steel members 36.98 (kgsteel/m
2

floor) 61.39 795.15 

  Totals 272.68 3370.5 
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Highlights 

 

• optimisation based on a combination of neural networks and evolutionary algorithm 

• selected buildings with different midpoint configurations with zero carbon impacts 

• regulated energy could be offset with minimal asymmetry 

• with operational energy included the structures could be offset with asymmetry 

• this method could be expanded to include more building locations and orientation 


