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ABSTRACT

Much work has been done on the t1-algebras of groups, but

much less on t1-algebras of semigroups. This thesis studies those

of inverse semigroups, also known as generalised groups, with

emphasis on the involutive structure.

the semigroup ring, I extend them.

Where results extend to

I determine the characters of a semilattice in terms of its

order structure. The simplest suffice to separate its t1-algebra.

I also determine the algebra's minimal idempotents.

I introduce a generalisation of Banach *-algebras which has

good hereditary properties and includes the inverse semi groups

rings. These latter have an ultimate identity which can be used

to test for representability. Involutive semigroups with s*s an

idempotent yield inverse semi groups when quotiented by the congruence

induced by their algebras' *-radical.

The left regular *-representation of inverse seroigroups is

faithful and acts like that of groups. The corresponding idea of

amenability coincides with the traditional one. Brandt semi groups

have the weak containment property iff the associated group does.

The relationship of ideals to weak containment is studied, and

inverse semigroups with well ordered semilattices are shown to have

the property if all their subgroups do.

for Clifford semigroups.

The converse is extended

Symmetry and related ideas are considered, and basic results

proved for the above mentioned generalisation, and a better version

for a possibly more restricted generalisation. The symmetry of



an iI-algebra of an E-unitary inverse semi group is shown to depend

on the symmetry of the iI-algebra of its maximal group homomorphic

image if the semilattice has a certain structure or the semigroup

is a Clifford semigroup. Inverse semi groups with well ordered

semilattices are shown to have symmetric iI-algebra if all the

subgroups do.

Finally, some topologically simple iI-algebras and simple

semigroup rings are constructed, extending results on simple

inverse semigroup rings.
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INTRODUCTION

In this thesis I study semigroup rings and their iI-completions,

semigroup algebras. Nearly all the semi groups studied are inverse

semigroups, that is, semigroups in which each element has a unique

(von Neumann) inverse.

First I examine the simplest type of inverse semigroups, the

semilattices, that is, commutative semigroups of idempotents.

Hewitt and Zuckermann [14] thoroughly exarninedthe iI-algebras of

commutative semigroups, so we already know that il(E) is semisimple,

and has a unit only if E is the union of finitely many principal

ideals. I determine the characters in terms of the algebraic

structure of the semilattice and also in terms of the simplest

characters. We show that these suffice to separate the elements of
1the i-algebra. I then use the algebraic descriptions of the

characters to determine the iI-algebra's minimal idempotents.

Next I sketch the elementary theory of positive functionals

and representations on Hilbert space of *-algebras. Then I study

the class of *-algebras that have enveloping C*-algebras and all of

whose positive functionals are admissible. I show that this class,

the uniform admissibility algebras, is closed under most of the

methods used to obtain new algebras from old. Then I establish the

most comprehensive result I know on extending non-degenerate

*-representations from ideal-like *-algebras. I then establish

relationships between enveloping C*-algebras and *-algebras

manufactured from others.
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I then sketch the elementary *-representation theory of inverse

semigroups, and develop a test for the representability of positive

functions on the semigroup ring using not bounded approximate

identities, but ultimate identities.

Then I examine the left regular *-representation of an inverse

semigroup introduced by Barnes [1]. I prove that it is faithful,

and produce.a decomposition in terms of the semilattice. I then

show that it provides a satisfying generalisation of the convolution

of ~l(G) and ~p(G) for a group G, and that the corresponding

notion of amenability agrees with the traditional one. As Wilde and

Argabright (but see Duncan & Namioka [9] for a quicker proof) have

already determined when an inverse semigroup is amenable, there is

little gain from this fact.

Now the amenability of G is equivalent to two interesting

properties. G is amenable if and only if ~l(G) is amenable

([4] Proposition 43.3). For S an E-unitary inverse semigroup,

Duncan and Namioka determine precisely when ~1(S) is amenable.

Secondly, G is amenable if and only if G has the weak containment

property, i.e. the left regular representation of ~l(G)

produces the greatest B*-seminorm on ~1(G)

on

Sufficient conditions for weak containment seem easier to

establish than necessary ones. I establish that if I is an ideal

of S, then I has the weak containment property if S does, and

S does if I and SII do. Paterson [25] proved that for Clifford

semigroups (i.e. inverse semigroups whose idempotents are central)

these norms coincide if all the subgroups are amenable. The converse

has yet to be settled; I establish it in the case where every

element of the semilattice has a minimal idempotent associated with
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it in the semilattice algebra. Next I determine when a Brandt

semigroup has the weak containment property, and hence prove that

semigroups with well-founded semilattices have the weak containment

property if all their subgroups are amenable. On the way I establish

that every inverse semigroup with zero has a greatest ideal with the

weak containment property.

A group is called Hermitian if its group algebra is symmetric.

The investigation of the symmetry of group algebras has been greatly

advanced by Leptin. From the algebraic viewpoint a nice study of

symmetry is provided by Wichmann [29]. We undertake an investigation

of various generalisations of the notion of symmetry for uniform

admissibility algebras using Leptin's characterisation of symmetry

for Banach *-algebras.

Leptin has alreaqyestablished that the algebra of a Brandt

semigroup is symmetric if and only if its associated group is

Hermitian. Calling a semigroup Hermitian if its algebra is symmetric,

we establish that every inverse semigroup has a greatest Hermitian

ideal, and thus an inverse semigroup with well-founded semilattice

is Hermitian if and only if all its subgroups are Hermitian. For

an E-unitary inverse semigroup S, I am inspired by the hypothesis

that S is Hermitian if GS is. This is shown to be the case if

S is a Clifford semigroup, and also if the idempotent semilattice

has a certain structure.

I then push these results through for the complete symmetry

of semigroup rings. As the group ring of the integers is not even

symmetric, there are very few completely symmetric group rings,

and finiteness plays a large role.
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Finally sufficient conditions are found for contracted inverse

semigroup rings and algebras to be simple and topologically simple

respectively. These generalise the earlier results of Munn [23]

on inverse semigroup rings. So that many examples may be found, we

investigate inverse semigroups constructed fromlert cancellative

semigroups and translate these sufficient conditions into conditions

on the left cancellative semigroups.

All the algebras I consider will be associative and, except in

Chapter 4 where arbitrary fields are considered, will be over the

complex field. For a set of vector spaces or algebras

its direct sum I AA will be the set of
AEA .

{f E (~ and f(A) 'f 0 for finitely many A} with

pointwise operations. Their ~P-direct sum is the closure in the

norm IIfll = (IIIf(A) IIP)l/p if the AA are Banach spaces. A
A

directed union of subobjects {AA A E A} where A is a directed

set and A c AA 11
if A < 11 is An algebra is simple if it

has no ideals; an algebra with a topology is toplogically simple if

it has no closed ideals. An idempotent e of an algebra A over

F is called minimal if eAe = Fe .

Unless confusion may be caused by taking it out of context, the

identity of a semigroup or algebra will be denoted 1, and in an

algebra with identity Al and A will be used interchangeably for

A E C For a complex algebra A with identity and x EA,

{A Ea:: A - x is not invertible} . For a complex

algebra A without identity we define where

A = A ~ C 1 with multiplication (x + A)(y + 11) = (xy + AY + llx)+ All.

Alternatively, noting that (1 - x) (1 - y) 1 (x + y xy) we

define a multiplication o on A by x 0 Y = x + y - xy



5

X E A is said to be left quasiregular if there exists YEA such

that y 0 x = 0, and left quasisingular if there is not. X E A

is said to be quasiregular if it is both left and right quasiregular,

and quasisingular if it is not. Then SPA (x) = 0 U {A E ~ \{O} :
-1A x is quasisingular} Hence if T: A + B is an algebra morphism,

Sp(Tx) c {oJ U Sp(x) . The spectr~l radius, PA(x)

It may be infinite, or if SPA (x) = ~ ,
is

undefined, neither of which can happen in a Banach algebra. The

subscript will be dropped when it is clear which algebra we are

considering. A modular left ideal of an algebra A is a left ideal

for which there exists e E A such that x - xe E L for all x EA.

Such an e is called a right modular unit for L. e is a modular

unit for some proper modular left ideal if and only if it is left

quasisingular. By a maximal (modular) (left) ideal we mean a

maximal proper (modular) (left) ideal.

An involution on object X is a bijection whose square is the

identity with, denoting the image of x by x* , (xy)* = y*x* if

X has a multiplication, (x + y)* = x* + y* if X has an addition,

and if X is a real or complex vector space, (AX)* = A*X* where A*

is the complex conjugate of A • An object with a distinguished

involution is called involutive. A *-algebra is an algebra with a

distinguished involution; a *-ideal is an ideal closed under the

involution. The quotient of a *-algebra by a *-ideal inherits the

involution. If A and B have distinguished involutions * and

t , homomorphism ~ : A + B is a *-homomorphism if ~(x*) ~(x)t

An element h is called self-adjoint if h = h*, and the set of

self-adjoint elements of A is denoted sym(A) . A Banach *-algebra

is a Banach algebra with a distinguished involution.
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Following Wichmann [29] and Palmer [24], we refer to hereditary

radical properties. A property {P} of rings is said to be a

hereditary radical property if

{i} Quotients of rings with property {P} by ideals

have property {P} •

{ii} Every ring A has a greatest ideal with property {P}

we denote it P-rad(A) .

(iii) No non-zero ideal of A/P-rad(A) has property (P) .

(iv) If I is an ideal of A, then P-rad(I) = I n P-rad(A) .

When we study algebras rather than rings, we use the definition with

algebras in place of rings, and ideal~ remain in it. If *-algebras,

*-algebras replace rings and *-ideals replace ideals. If Banach

algebras, Banach algebras replace rings and closed ideals r~place

ideals. If Banach *-algebras, Banach *-algebras replace rings and

closed *-ideals replace ideals. A is called P-semisimple if

P-rad(A) = {o} • Our most important example is the Jacobson radical,

for which we use "rad" and "semisimple" unprefixed.

Let A and B be linear (sub)spaces with a linear space C

such that ab is defined to be an element of C for a E A and

b E B under some linear composition. For example, A and B might

be sUbalgebras of C, or A might be an algebra of linear operators

on vector space B = C

{ab : a E A and b E B}

Then AB will denote the linear span of

Otherwise AB will denote that set itself.

Let IT be a representation of an algebra A by bounded

operators on a Banach space X. It is called degenerate if IT= 0

or (IT(A)X) is a proper subspace of X illl element ~ of X is

called a cyclic vector if ~ E (IT(A)X) and (IT(A)~) = (IT(A)X)

then is called a cyclic representation.
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An element x of a semigroup S is called its zero if xy = yx = x

for all YES . We will denote it bye. We can adjoin an

identity to a semigroup S and we denote the new semi group sI
We may adjoin a zero to a semigroup S i we denote the new semigroup

sO A subset I c S is called a left ideal if sx E I for all

S E S and x E I it is called an ideal if it is both a left and

right ideal. If I is an ideal of S we define its (Rees)

quotient S/I to be, assuming for notational reasons that I is not

an element of S , (S\I) U {I} with I the zero and for s, t E S\I ,

sot = st if st ¢ I and I if st El. A subsemigroup G of

S is called a subgroup if G is a group.

An element s of semigroup S is called invertible if S has

an identity and there exists t E S such that st = ts = 1 . t E S

is called a (von Neumann) inverse of s if sts = s and tst = t .

A semigroup is called regular if every element has an inverse. It

is called an inverse semigroup if every element has a unique inverse.

A regular semigroup is an inverse semigroup if and only if its

idempotents commute, in which case the idempotents form a subsemigroup.

A commutative semigroup of idempotents is called a semilatticei we

define an order on it by e ~ f if e = ef • For S an inverse

semigrou.pwe denote its set of idempotents by ES or where no

ambiguity may arise, E. For s E S we denote its inverse by s*.

Then (st)* = t*s* . A homomorphic image of an inverse semigroup is

an inverse semigroup, and thus a semigroup homomorphism is a

*-homomorphism. For proofs see [15] §V.l.

A Clifford semigroup S is an inverse semigroup in which the

idempotents are central. Then for e E E
S let G = {s E S : s*s = e}e .

Then each Ge is a group, Ge and A
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Clifford semigroup is also known as a semilattice of groups. An

inverse semigroup has a minimal group homomorphism, which we denote
its

Xs' and we denote/image by Gs. It is given by s ~ t if there

is such that es = et . It is called E-unitary if
-1Xs (1) = ES . Green defined equivalences and

~ on an arbitrary semigroup. For an inverse semigroup, alb

iff a*a = b*b a et b if aa* = bb* a &e b if alb and

a ~ b, and a fj b if there exists c such that a*a = c*c

and cc* = bb* . For details see [15] •

An idempotent u of an inverse semigroup is called primitive

if the only idempotent it exceeds is the zero element. The Brandt

semigroup .}10(I,G) is {(g) ..
~J

g E G, i, j E I} u {e} with e

its zero and
(gh)il

e

if j = k

otherwise

where G is a group. I could not find an explicit proof of our

first theorem. It is well known.

Theorem 0.1

Let u be a primitive idempotent of inverse semigroup S .

Then SuS is a group or Brandt semigroup.

Proof

Let u be a primitive idempotint of Ii'. If u is the only

idempotent of SuS then SuS is a group. Suppose u is not its

only idempotent.

Let v E (SuS n Es)\{e} . Then v = xuy for some x and YES .

Then v = v*v = y*ux*xuy = y*uy as v ~ e ux*xu ~ u and u is

primitive. Then as yvy* ~ e , u = yvy* . Then if

ev = ev(y*y) = y*(yey*) (yvy*)y = y*«yey*)'u)y, so ev = e or

ev = y*uy = V I so v is also primitive.



9

Let I = ESuS\{a}, and G be the subgroup of SuS containing

u • For eEl pick XES
e such that e = x* uxe e Let

f :)10 (II G) -+ SuS and <P

(g).. -+ x'!<gx.
~J ~ )

and f (a) = a, <p ( a) = a .

z -+ (ux.zx~u) .. where x'!<ux.= zz*~ J ~J ~ ~

and x~ux. = z*z
J )

Then f and <p are mutually inverse,

and (x'!<gx.)(xkhx )
~ J I

and hence ux x* = u =e e I

if j =k . D

For S a semigroup we define a multiplication on il(S) by

fg(s) = I{f(t)g(u) : tu = s} . This makes il(S) a Banach algebra,

the semigroup algebra. We imbed S in il(S) as the co-ordinate

vectors. The semigroup ring k(S) = {f E il(S) : f(s) = 0 except

for finitely many s} inherits this multiplication, and for an

we define FS to be {f E FS : f(s) = 0arbitrary field F

except for finitely many s} and define multiplication as before.

Now if S has a zero a, a is an ideal of il(S) and k(S) •

We regard the quotients il (S)a and ka(S) as functions with domain

s\{a} rather than as cosets. The same multiplication formula holds,

so we may write il(s\{a}) or k(S\{a}) rather than il (S) ora
ka(S) . Similarly we define FaS to be functions on s\{a} , and

it is isomorphic to FS/Fa . If I is an ideal of S ,

il (S)/iI (I) ~ i~ (S/I) and similarly for k (S) and FS . If S

has an involution we extend it to il(S) etcetera by f*(s) = f(s*)* .

This involution is isometric on il(S) .
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CHAPTER 1

SEMILATTICES

Here we establish some basic properties of semilattices, which

we shall use later.

Definition L 1

A subset J of E is called a filter if:

(i) when e ~ f and f E J then e E J

(ii) when e and f E J then ef E J; and

(iii) J ~ ~ •

Proposition 1.2

There is a one-one correspondence between the characters on E

and its filters, given by

ep +-+ {e E E ep (e) = l} .

Proof
If ep is a character on E, ep : E + {a, I} .

Let J = {e E E : epee) = I} .
ep

{ 0

1
epee) =

if

is a filter, and

if

Let J be a filter. Let

{ 1 if e E J
ljiJ(e)=

0 if e ~ J

If ef E J then e, f E J and so ljiJ(ef)= ljiJ(e)ljiJ(f).
If ef i J then e i J or f i J , and then ljiJ(ef)= ljiJ(e)ljiJ(f)

Thus ljiJ is a character. 0

{ 1 if f ~ e
For et fEE let lji(f) =e 0 otherwise.
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Proposition 1.3

Let J be a filter. Direct J by ~. Then for all e E E ,

t/IJ (e) = lim t/If (e) •
fEJ

Proof

Let J be a filter. If f, g E J then fg E J and f, g ~ fg •

Therefore (J,~) is a directed set, and so for each e, f ~ t/lf{e)

is a net. If e E J t/le{e)= I and t/lf(e)= I whenever f $ e

If e i J, then t/lf(e)= 0 for all f E J. 0so lim t/lf(e)= I .
fEJ

The following lemma is but a watered down version of Theorem 3.4,l' j [14 J
but the proof is simpler.

Lemma 1.4 (Wordingham [30])

{t/le: e E E} se~rates ~l(E) •

Proof

Without loss of generality, E is infinite.

Let X E with for all e E E , yet xt-O .

Let ~
cc

~ (E)
n

with ~(e) = r-l t/I (e)
i=l ui

for all e E E . Such

a product will be called a product of t/I 's.e Let

F = {e E E e ~ u for I $ r $ n} . Then F is a filter ,-,-
~. If ~) d>(e);~ ?- 011 et:E, s::o CP~),=O If F 16 Cl

~) Iktt
~ = t/lF• Then for all e E E , ~ (e) = lim t/lf(e) . The t/lf are

fEF
Uniformly bounded and converge pointwise on E , so they converge

weak*ly. So ~ (x) lim t/lf{x)= 0 .
fEF

co

Let x = I a e with a Ec[ , al t- O and the e distinct.r r r rr=l
ee

Then I ar = t/lE(x)= lim t/I (x) = 0 . For r ~ 2 there exists fe rr=l eEE
t- t/lf(e ) Define ocsuch that t/lf(el) r 4>n E ~ (E) by

r r

~ (e)
n

n=nr=2
for e E E .
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Then <pn(el)= 1 , <Pn(er) = 0 for 2 ~ r s n .and II <pf\II",= 1 .

Then <pn(x)= 0 as <Pn is a sum of multiples of We 's and WE ,
co

so lall ~ L la I . Thus al = 0 , which is a contradiction. 0
r=n+l r

1
x E 1 (E) is a minimal idempotent if 2x = x and, since

xex E ex, xe = x or xe = 0 for all e E E . Now if u, VEE

and u > v then u - v is an idempotent. Then if WEE and

wu ~ v , w(u - v) = 0 and if w ~ u , w(u - v) = u - v

Proposition 1.5

Let u E E . If Eu\{u} is the union of finitely many principal

ideals Ev. ,~ 1 :0; i :0; n ,
n

then n (u - v.)
. 1 ~~=

is a minimal idempotent.

The value of this expression depends only on u and not on the choice

All the minimal idempotents of !l(E) but theof principal ideals.

zero of E (if it exists) are of this form.

Proof
n

Let u E E and Eu\{u} U Ev. Then v. < u , soa. .i,i=lnn (u - v.) is an idempotent. Let w E E . If wu = u , then
i=l ~

n nwn (u - v . ) = n(u - v . ) If wu < u , then WU E Ev for~ ~ ri=l i=l
some r Then w(u - v ) = wu - wv = wuv - wuv 0 .r r r rnn (u - v . ) is a minimal idempotent.
i=l ~

Thus

P
Now if x. < u , U E Supp(n (u - xi» • So if~ i=l

m n m
Eu\{u} V Ew. (n(u - v.» (\/ (u - w.» t 0 , so~ ~ . 1 Ji=l i=l J=
n mn (u - Vi) n(u - w.) .

i=l j=l J
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Let A ~ B denote (A\B) U (B\A) • We shall now determine the

minimal idempotents of t~(E) . Let ~ be the character space of

For ~ E ~ let J~ = {e E E

~s(e)~ {:
if e E J

if e ~ J

~(e) = I}, and for filter

S let

for e E E and extend to t~(E) . For e E E let J = {f E Ee f ~ e} .

Let x be a minimal idempotent of and let A
X be its

Gelfand transform. AThen x(~) = {O, I} . Suppose

~l(x) = ~2(x) = 1, ~l (y) ~ ~2(Y) for some y E t~(E). Then

~l (xy) ~ ~2(xy) although xy E ex Therefore A-I
x (1) = {1jJ} is

an open singleton. Therefore there exists E E (0, 1) and finite

non-empty subset U of E such that {1jJ} = {~ E ~ I~(u) - ljJ(u)I < E

for all u E U} = {~ E ~ ~(u) = ljJ(u) for u E UJ So for all

The proof splits into two cases.

Suppose JljJ is a singleton, say {u} Then u is a maximal

Whenever g < u, Jg ~ JljJ= {e E E : e F u and e ~ g} ,

So there exists e E U such that e ~ u and e ~ g. Let

element of E

B = feu : e E U, e ~ u} . Then B is finite and non-empty.

Suppose JljJ is not a singleton. Suppose U n JljJ ~ . Now

there exists f E JljJ such that JljJ~ Jf . Then

U n (Jf ~ JljJ)c U n J = ~ , which is impossible. Let
1jJ

u =1f(e e E U n JljJ}. Then u E JljJ, and so J C JljJu
U n (J

u
U n Therefore

Suppose u is not the minimal element of E, for if it is then

x = u . Then there exists f < u , and so But
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fJ 1- (J /),Jf) n U =-U n {e E E : e ;::f, e ;::u} = (U\J1jJ)n {e E E : e ;:: f}u .
Therefore there exists v E U such that v "t- u and v ;::f , indeed

vu ;::f . Let B = {vu V E (U\JI/I)}.

In either case, suppose u is not the minimal element of E.

Let J be a filter distinct from Ju = JI/I If u t J , U E J /),J
u

If u E J there exists w E J such that w "t- u , Le. wu 1- u .
But there exists v E B such that v ;::wu E J . Then v E J .
But v "-u , so V E J /), J Thus in either case,u
({u} uB) n (J /), J ) 1- ~ .u

Now x is the unique solution to 1/1 (x) = 1 1/1J(x) = 0 ifu
J 1- J If u t J , then v t J for all v E B , sou
1/lJ(Il (u - v)) = 0 If u E J and there exists v E B n J , then

VEB
I/IJ(II (v - u)) = 0 . If u E J and B n J = ~ then

VEB

({u} u B) n (J /),J ) = ~ , so J = J But 1/1 (n (u - v)) = 1u u u VEB
,

so x = n (u - v) .
vEB

But if f < u f E BE , so Eu\{u} = U Ev , so all minimal,
VEB

idempotents are as described. 0
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CHAPTER 2

REPRESENTATIONS AND POSITIVE FUNCTIONALS

§l Elementary Theory

First I give an account of the elementary theory of *-representations

and positive functionals.

Definition 2.1.1

Let A be a *-algebra. Then a Hilbert A-module is a Hilbert

space H with a module action such that <a~, n> = <~, a*n> and

{ II a~ II II ~II ~ I} is bounded for each a EA.

Definition 2.1.2

A *-representation of a *-algebra A is a *-homomorphism n

from A to the bounded linear operators on some Hilbert space H.

A *-representation n of A on H will be called irreducible if

n ~ 0 and the only closed subspacesKof H such that n(A)K C K are

o and H.

Given a *-representation w of A on H, we may equivalently

view H as a Hilbert A-module by CI.~ = n(a)~ and vice versa.

Definition 2.1.3

A positive functional f on *-algebra A is a linear functional

on A such that f(x*x) ~ 0 for all x EA. Let f be a positive·

functional on a *-algebra A. Then f is said to be Hermitian if

f (x=) = f(x)* for all x E A , and admissible if for all y E A

there exists K ~ 0 such that f(x*y*yx) s K2 f (x*x) for all x E A.Y Y

We shall now see the significance of the constant K above.y



16

Let f be a positive functional on A. Then we can define an

inner product on A by <x, y> = f (y*x) ,
f

Let Xf = A/Lf

and let

f(x*x) = a} • Then is a

pre-Hilbert space inheriting the above inner product.

X
f

Let II II f
be the associated norm. Then we define·an A-module structure on

Xf by a(x + Lf) = ax + Lf . Then

<a(x + Lf>, y + Lf> = f(y*ax> <x + Lf, a*(y + Lf» . But

II ax 2+ Lfll f = f(x*a*ax) ; so A acts as bounded operators on H
if and only if f is admissible. Suppose f is admissible. Then

let Hf be the completion of Xf• Then the action of A extends to

make a Hilbert A-module.

Now every non-degenerate Hilbert module can be decomposed into

an ~2_sum of cyclic Hilbert modules [25] Theorem 4.48. Let ~

generate cyclic Hilbert module H. Then define f on A by

f(a) = <aE;,E;>. Then if ~ is the corresponding *-representation,

il~(a*a)ll=sup{llanl12 : Iln112::;I} = sup{lIaxE;1I2 : IIxE;1I2s l}

= sup{f(x*a*ax) : f(x*x) ::;I}

Definition 2.1.4

A positive function f is representable if there exists cyclic

Hilbert module H with cyclic vector E; such that f(x) = <xE;, ~> .

Theorem 2.1.5

Let f and g be representable positive functions on *-algebra

A. Then if f(xy) = g(xy) for all x, YEA, then f = g .

Proof

[26] lemma 4.5.10.

The next result is well known.
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Lemma 2.1.6

Let f be a positive functional on A. Then f extends to

a positive functio~1 on A if and only if it is self-adjoint and

there exists
E..

K ;:::0 such that 1f (x)12 ~ Kf (x*x) for all x EA.

f~ .~c.r t k frv L.;-I{~ (~
the least such extension~ ~v is

w.i.7r~~ ~s'.

Proof

Let g extend f to A. Then f is self-adjoint, and

g«A1 + x)*(A1 + x)) = IAI2g(1) + A*f(x) + Af(x*) + f(x*x) ;:::0

for all A E a: Therefore If(x)12 s g(1)f(x*x) .

~Conversely, let f (1) = K • Then

f«A1 + x)*(A1 + x)) = IAI2K + A*f(x) + Af(x)* + f(x*x)

;::: IAI2K - 2IAII(f(x))1+ f(x*x)
;::: IAI2K - 21A 1J f(x*x)~ + f(x*x)

Definition 2.1.7

If f can be so extended, the least such K is called its

"essential norm" and deno·ted II f II

Theorem 2.1.8

f is representable if and only if it can be extended to A and

is admissible.

Proof

Necessity is clear. Let f be the least extension to A

Then the construction after definition 2.1.3 provides the representation. 0



18

Definition 2.1.9

A linear seminorm I I on a *-algebra is a B*-seminorm if

la*al = lal2 for all a E A A norm I I on a *-algebra is a

C*-norm if it is a B*-seminorm.

Theorem 2.1.10 (Sebestyen [27J

Every B*-seminorm I I on a *-algebra satisfies

§2 Uniform Admissibility Algebras

For a *-algebra an important consequence of having a complete

algebra norm is that every positive function is admissible and the

corresponding constants are independent of the function. This

follows from Ford's square root lemma, [4] proposition 12.11.

We examine the class of algebras with this property, and sidestep

the problems of completing and then examining the result.

Definition 2.2.1

A *-algebra A is a uniform admissibility algebra if for all

there exists such that f(x*y*yx) 2y E A K ~ 0 -s K f (x*x) fory y
all x E A whenever f is a positive functional on A .

Thus all positive functionals on a uniform admissibility

algebra are admissible and, by the argument after definition 2.1.3,

there is a greatest B*-seminorm, namely iyi is the least K
y

satisfying the above definition. Examples are Banach *-algebras

([4] lemma 37.6), Husain and Warsi's BP*-algebras [15], Palmer's

U*-algebras [24], and inverse semigroup rings over ~ as we

shall see below.
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Theorem 2.2.2

Let G generate *-algebra A. Then if for all g E G there

exists K ~O
g

such that 2f(x*g*gx) ~ K f(x*x)g
for all X E A

and positive functiona1s f on A, A is a uniform admissibility

algebra.

Proof

Let B = {z E A there exists M > 0 such that
Z

f(x*z*zx) s M f(x*x)
Z

for all X E A and positive functionals f on A} •

B is closed under scalar multiplication. If f is positive, then

f(x*(g - h)*(g - h)x) = f(x*g*gx) + f(x*h*hx) - f(x*(g*h + h*g)x) ~ 0 •

So if g, h E B then

f(x*(g + h)*(g + h)x) = f(x*g*gx) + f(x*h*hx) + f(x*(g*h + h*g)x)

~ 2f(x*g*gx) + 2f(x*h*hx)

~ 2(Mg + ~)f(x*x)

whenever x E A and f is a positive functional on A ,so B is

closed under addition. If g, h E B then

f(x*g*h*hgx) ~ ~f(x*g*gx) ~ ~Mgf(x*x)

so B is closed under multiplication.
-1 2M f(x*x) - f(x*gg*x) = M f(x*«M - gg*) + g(M - g*g)f*(x) ~ 0g g g g J

if g E B, so B is closed under involution. Thus B = A • n

It is immediate that unitisations, direct sums (by decomposing

the positive functionals onto the summands), directed unions

(because the bounding constant is given by the greatest B*-seminorm

and every B*-seminorm restricts to a B*-seminorm on each *-subalgebra)

and images, because positive functionals induce positive functionals

on the original algebra, are all .uniform admissibility algebras.

Subalgebras need not be, for let S be the free semigroup in one

indeterminate. Then I
k (S) c I (S) , but the former has inadmissible

positive functionals and no greatest B*-seminorm.
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Proposition 2.2.3

Let A and B be uniform admissibility algebras. Then

A ® B is a uniform admissibility algebra.

Proof

Let A and B be uniform admissibility algebras and f be

a positive functional on A ® B and let x = I
i

x. s s, EA®B~ ~

Then for u E A and v E B ,

f(x*(u®v)*('u®v)x) = If(x~u*ux. ®y.*v*vy.).
.. ~ J ~ Ja , J

Now z -+ I
i,j

f(x~zx. ® y~v*vy.)
l. J ~ J

is a positive functional on

A, and thus

I f(x~u*ux. ® y~v*vy.)
.. l. J l. Ja , J

:s; lu*ul I f(x~x. ® y~v*vy.)
" l. J ~ Jl. , J

where I I is the greatest B*-seminorm on A. Similarly

I f(x~x. ® y~v*vy.) :s; Iv*vl I f(x*.x. ® y~y.)
.. l. J l. J .. l. J l. Jl.,J l.,J

where 1 1 is the greatest B*-seminorm on B. Thus

f(x*(u ® v)*(u ® v)x) :s; luI2IvI2f(x*x) . But the u ® v span

A ® B, so the positive functionals on A ® B are uniformly

admissible. o

Proposition 2.2.4

Let I be a *-ideal of a uniform admissibility algebra.

Then I is a uniform admissibility algebra.

Proof

Let f be a positive functional on I. For x E I, YEA,

let f (y) = f(x*yx) •x
Then f is a positive functional on A.x

Let 1 1 be the greatest B*-seminorm on A. Then as f isx

representable, f (y*y) :s; lyl2f (1) = lyI2f(x*x) •x x
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Therefore, for all positive functionals f on I and elements,

y, x of I, f(x*y*yx) ~ lyI2f(x*x) . o

Definition 2.2.5

Let A be a *-algebra with a greatest B*-serninorm I I .
Then the enveloping C*-algebra of A is the completion of

(All, I I) where I = {x EA: Ix I = O}, and is denoted C* (A) .

If I = 0 t A is called *-semisimple and will often be regarded

as a subalgebra of C*(A) I is known as the *-radical, and is

a hereditary radical.

Then every *-representation n of A extends to a unique

*-representation n of C*(A) , and every *-representation n

of C*(A) induces a *-representation of A, and n is

irreducible if and only if n is. Then for x EA,

Ix I = sup{ II n (x) II : n is a *-representation} = sup{ II TI (x) II n

is an irreducible *-representation:}, where sup ~ is defined

to be O.

Closely related to the idea of the proof of proposition 2.2.4

is the problem of extending *-representations from ideals to

algebras. Results using approximate identities can be found in

[7] and [17]. For arbitrary Banach *-algebras the result may be

found in Leptin [18]. Sebestyen [27] determines when a particular

representation may be extended.

A linear operator S on algebra A is a left multiplier if

S(xy) = (Sx)y for all x, y EA and similarly a linear operator T

on algebra A is a right multiplier if T(xy) = x(Ty) for all

x, YEA .
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The double centraliser [17] of A is the algebra of pairs

(S, T) of linear operators on A such that S is a left and T

a right multiplier and x(Sy) = (Tx)y with

A(S, T) = (AS, AT) for A E <C

(S, T) + (U, V) = (S + U, T + V)

(S, T) (U, V) = (SU, VT)

For x = (S, T) and a, b EO A , let xa = Sa, ax = Ta , and

axb = a(Sb) = (Ta)b . . Then any formal product of at least one

element of A and elements of the double centraliser is well

defined and independent of the bracketing.

Any involution on A can be lifted to the double centraliser

by (S, T)* = (T*, S*) where V*(x) = (V(x*»* •

Theorem 2.2.6

Let A be a uniform admissibility *-subalgebra of the double

centraliser of *-algebra B. Then any non-degenerate

*-representation

;, of

1T of B on H determines a unique *-representation

1T(ab) = )b(a)1T(b) •A on H such that

Proof

I use the method of {28]4.1.

Let A, B, H and 1T be as above. without loss of generality,

A has a unit. Let I I be the greatest B*-seminorm on A

For ~ = L 1T (b . ) ~ . where b. E B, ~. E H define ft' on A by. ~ ~ ~ ~ '"~

ft'(x) =2<1T(xb.)~., F;,>
'" . .L ~~

Now for b EO B, n EO H,

<2 1T(xb.)e. , .f.1\n>~ ~
i

2 <1T(b*xb.)F;,., n>~ ~
i

2 <1T(b.)F;,.,'TT(x*b)n> ,~ ~i

so is well defined. Now
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fl;(x*x) = Ii,j <1T(x*xb.)I;., 1T(b.) 1;.> =
1. 1. J J Ii,j <1T(b~x*xb.)I;., 1;.>

J 1. 1. J

= II I 1T(xb . ) ~. II 2 ~ 0 ,.1.1.1.

so f~ is positive. By hypothesis f~ is admissible, and hence

f!;(x*x) s IxI2f!;(1) = Ixl211 !;1I2 .

1Tb(X) (L 1T(b.)~.) = L 1T(xb.)~. defines a bounded operator on
.1.1. . 1. 1.1. 1.

Therefore

1T(B)H ,

so can be extended to H = 1T(B)H , so is a *-representation of

A on H.

Suppose T (a) were another such representation. Then

T(a)!; 1T~(a)i; for all I;E 1T(B)H , which is dense in H I

b Dso T = 1T

Corollary 2.2.7

Let I be a *-ideal of uniform admissibility algebra A.
Then every non-degenerate *-representation 1T of I on H extends

to a unique *-representation of A on H.

Proof

Let A, I, 1T and H be as above. We shall produce a

*-homo~orphism from A to the double centraliser of I, and thus

extend .1T •

For a E A define linear operators L and R on I bya a
L x = a~ and R x = xa . Then x(L y) = x (ay) = (xa)y (R x)ya a a a
for x, y E I . L*x (L x*)* = (ax*)* = xa* = R *x , soa a a
(L I R )* (R* L*) (La*, R *) . Nowa a a' a a

so T: a + (L , R )a a

is a *-homomorphism from A to the double centraliser of I.
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Let ~b be the *-representation of

Then define n on A by ;(a) = ~h(Ta)

~b(TX)~(Y)~ = ~(Tx)y)~ ~(x)~(y)~ so

T(A) on H induced by ~.

Now for x,

~(x) =~ b(TX) =

Y E I, ~ EH.

~(X)

Then if a E A and X E I I ~ (ax) = n«Ta)x) = Jb(Ta)~(x) = ~(a)~(x)

Let cr be a *-representation of A on H extending ~. Then if

a E A and x E I I cr(ax)= cr(a)cr(x)= cr(a)~(x) I so

(c (a) - ~ Ca) ) ~ (I) H = {O} so o (a) = ~(a) • o

Corollary 2.2.8

Let A and B be Banach *-algebras. AThen C*(A ® B) = C*(A ® B) .

Proof

A ® B is dense in A
A ® B • Every *-representation of A

A ® B

restrictes to a *-representation of A ® B • Every *-representation

~ of A ® B gives rise to *-representaticns ~A of A and ~B
of B such that ~(a ® b) = ~A(a)~B(b) = ~B(b)~A(a) I which extends

A by the continuityto A ® B of lTA and lTB and the nature of the
Anorm of A ® B . o

A norm II lion the tensor product of normed spaces A and

B is called a cross-norm if II a ® bll = II alillbll for all

a E A and b E B .

Corollary 2.2.9 (Guichardet [12])

The greatest B*-seminorm on the tensor product of C*-algebras

is a cross-norm.

Definition 2.2.10

The completion of the tensor product of C*-algebras A and B

in the greatest B*-seminorm (which is a norm) will be denoted by

A ® B.max
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Corollary 2.2.11

C*(A ® B) = C*(A) ® C*(B) for uniform admissibility algebras.max

Proof

(A/~ad(A» ® (B/~ad(B» is dense in C*(A) ® C*(B) . Every

*-representation of C* (A) ® C* (B)max restricts and then lifts to

a *-representation of A ® B • Every *-representation TI of A ® B

gives rise to *-representatio~ TIA of A and of B such that

of C*(A) ® C*(B) , and then extends to C*(A) ® C*(B).max D

Leptin et alii [2] established the next result for Banach

*-algebras.

Let I be a *-ideal of A. Now let I I be the maximal
A

B*-seminorm on A II be the maximal B*-seminorm on I.
Then for x E I, IxlI = IxIA' so C*(I) naturally embeds as a

and

*-ideal of C* (A).• If A + A/I is the quotient homomorphism, then

A + A/I + C*(A/I) is a *-homomorphism where the second map is the

natural one to the enveloping C*-algebra. Then this induces a

natural map C*(A) + C*(A/I) .

Corollary 2.2.12

Let I .be a *-ideal of uniform admissibility algebra A.

Then if all the maps are canonical,

A A/I
! !

C*(A)----+ C*(A/I)

oo I

!
C*(I) oo

commutes and the horizontal sequences are exact.

Proof

Let us label some of the maps as follows:
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O~
il ) A Ii ) A/I > 0I

1'If I 1'IfA l'Q
o ----+ C*(I) ) C* (A) C* (A/I) ----+ 0

i2 P2

All that remains to be established is that i2(C*(I» = Ker ~ .

Now so But

'IfI (I) is dense in C*(I) , so i2(C*(I» c Ker P2 •

Let x E Ker(p2) • Then there exists (a) c A such thatn

Any *-representation 'If of A

such that Ker ~ I gives a *-representation of C*(A/I) •
'If

Define

so tjJ A + 'lfA(A)/'lfA(I)

Then tjJ(a)+ 0 .
n Therefore there exists (i) c I such that

n

Therefore x E 'lfA(I)= i2(C*(I». o

§3 Inverse Semigroup Rings

We now apply some of this theory to inverse semigroup rings.

Theorem 2.3.1

Let S be an involutive semigroup in which for all s E S ,

s*s is an idempotent. Then

(i) if k(S) has proper involution, i.e. x*x = 0 only

if x = 0 then S is an inverse semigroup, and

(ii) k(S) is a uniform admissibility algebra.

Proof

(i) Let s E S . Then

(s - ss*s)*(s - S5*5) = (5* - S*55*) (s - S5*S) 2 3= S*5 - 2(S*5) + (5*S) = 0 •

Thus s = ss*s . Let 2e = e E S • Then
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(e - e*)3 = (e - e*) (e - e*e - ee* + e*) = e - ee*e - ee* + ee*

- e*e + e*e - e*ee* + e* = 0 •

But h = i(e - e*) is self-adjoint, and 4
h = 0 • So 2

h = 0 ,

so h = 0 so e = e* Thus the idernpotents commute. Suppose

aba=a bab = b and aca = a, cac = c • Then

ab = (aca)b = (ac)(ab) = abac = ac, and similarly ba = ca . Then

b = bab = bac = cac = c, so S is an inverse semigroup.

(ii) Let s E S and x E k(S) l'\~and f be a positive function on

k (S) • Then
2 .

(I - s*s) = (I - s*s) , so

f(x*(l - s*s)x) = f(x*x) - f(x*s*sx) ~ 0 for all x E k(S)

k(S) I.€. (J lW~f1m nJ"Jj~.b~(':~ ol:1b-u b.g ~QC'Ye.tn 2.2.4.

Then

o

Some conditions must be imposed to force inverseness, since

there exists semigroups such that s*s is idempotent but s = ss*s

may fail, and semigroups such that s*s is idempotent and s = ss*s

yet are not inverse semigroups.

Proposition 2.3.2
(-"'V~/IIt,·'v~

Let S be an i~~ semigroup with S = s2 . Then every

positive functional on k(S) is Hermitian.

Proof

Let
cenJ;al

s = tu. Then
~ reMJli;~ [rom

f(s)* = f(tu)* = f(u*t*) =
[4-J itmma 37 b (ij .

f (s*)

Definition 2.3.3

A net (u )
Cl

is an ultimate identity if u x = xu = x
Cl Cl

eventually.

Lemma 2.3.4

Let S be an inverse semigroup. Then k(S) has a self-

adjoint idempotent ultimate identity.
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Proof

Let ~ be the set of finite subsets of ES ordered by inclusion.

For F E ~ , let u = 1 -n (1 - e) . Then (uF)FE~ is aF eEF
self-adjoint idempotent ultimate identity. 0

This contrasts strongly with the fact that ~l(S) may l~ck a

bounded approximate identity, for Duncan and Namioka [9] proved

that il(s) has a bounded approximate identity if and only if there

is a finite k such that every finite subset of ES lies in the

union of k principal ideals of ES. When it exists, their

bounded approximate identity is an ultimate identity for k(S) .

We can use these self-adjoint idempotent ultimate identities to

test for representability.

Lemma 2.3.5

Let S be an inverse semigroup and (u )
a.

be a self-adjoint

idempotent ultimate identity for k(S) . Then for positive f

and K ~ 0, the following are equivalent:

(i) 1f (x) 12 $; Kf (x*x) for all x E k (S)

(ii) lim f (u ) s K ;a. a.

(iii) sup f (u ) ::;;K •
a. a.

Proof

(i) ===0 (iii)

Assume (i) holds. Let f be an extension of f with

K • Then f(l - u ) ~ 0a. so sup feu ) $; fell = Ka. a.

(iii) ~ (ii)

Assume (iii) holds. Given a. there exists S such that for

all y ~ S , u u = u u = uyo. o.y a. Then (u - u )2
y a. u - uy a. so

feu ) ~ feu )y a. Therefore lim f (u ) = sup f(u ) s Ka. a. a. a.
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(ii) =-==> (i)

Assume (ii) holds. Given x E k(S) , u x = xu = x for ~~ ~

large enough. Then

o ~ feu - AX)*(U - AX» = feu ) - Af(x) - A*f(x)* + /A/2f(x*x) .
~ Cl Cl

so 1f (x) 12 s f(u )f (x*x) •
Cl

Thus

If (x)12 ::; lim f (u )f(x*x) a:: Kf (x*x) .
~ ~

o

We now extend a result of Godement [13] from groups to

involutive semigroups.

Lemma 2.3.6

Let (a..) and (b..) be positive n x n matrices, Le.
~J ~J

Li,j ~:'<b .. t;.~ 0
~ ~J J

for all Then (a .. b .. )
~J ~J

is also

positive.

Proof

If (a .. )
~J

is positive, then (a..) = (c..)*(c ..)
~J ~J ~J

for some

matrix (c..) , where (c..)* = (c~.) , and if (b .. ) is positive
~J ~J J~ ~J

t.hen (b..) = (d..) * (d. .)
~J ~J ~J

say Then

L t;~a..b .. t;.=
. . ~ ~J ~J Ja , J

L t;~ck*·ck·dl*·dl·t;·
"kl~~J~JJa , J, ,

= I I(ck .d1. c. ) * ICk .d. .i; .
k . a, a, a, . J l.J J
,1 a J

= I II ck·dl·t;·12 ~ 0 .~ ~ ~k,l i
o

Corollary 2.3. 7
For f and g positive functionals on k(S) , define fg

by fg(s) = f(s)g(s) Then fg is a positive functional.
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Proof

Let x E k (S) and f and g be positive functionals on

k(S) • Let I = supp(x) . a = f(s*t)st
Then fg(x*x) ~ 0 by lemma 2.3.6.

Then let and

bst = g (s*t) • o

§4 The Left Regular *-Representation of Inverse Semigroups

In this section S will be an inverse semigroup. We will

study the analogue of the left regular representation of a group.

By the proof of theorem 2.3.1, every *-representation of

ke(S) extends to 2~(S) , and vice versa by restriction. We will

now show that 2~(S) is *-semisimple. The proof is very similar

to that for groups.

For a homomorphism T from one algebra to another, T* will

denote the corresponding algebraic adjoint, and will be used solely

as a notational device. For Banach space homomorphisns it will

denote the topological adjoint.

Definition 2.4.1 (Barnes [1])

We can define the left regular "*-representation" of ke (S)

on ke (S) by

~ {~if a*ab = b
AsCa)b

otherwise

for a -and b in S , and extending by linearity. Then we extend

it to the left regular *-representation of 2~(S) on 2~(S) by

continuity. Note that if ab = e and a*ab = b then b = e •

Now for a, b, c E S, \Ca)b = c 4===> ab = c and

a*ab = b ~ b a*c and aa*c = c <===> b = A Ca*)c
S

so it is

*-representation. We shall sometimes write AX for AS(X) .
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Theorem 2.4.2 (Wordingham [30])

The left regular *-representation of 2~ (S) on Q.~ (S) is
faithful.

Proof

We shall·regard t~(S) as a subspace of

Let x E Q.~(S) and suppose Ax = 0 . Then for all
e E E\{e} A e = 0

x
For e E E\{e} define x by x (s) = xes)e e

if s*s = e and 0 otherwise. Then x E t~ (S) ande
x = L xe . For fEE ,

eEE\{e}

{ x f if e ~ f
A f e=x 0 otherwisee

pick u E E\{e} and let F = {e E E : e ~ u} Then F is

a semilattice. Then for f E F A f = I x f = 0 sox e~f e
0 = (A f)u = L x fu = L x u . Nowx e~f e e~f e

so let us define Ws E 11 (F) by MIs(f) = (xfu)(s) . But for all

f E F, 2 Ws (e) = L x u(s) = 0 ,
e~f e~f e

so by lemma ~W w = 0 .s

Now x = x uu u' so x (s) = x u(s) = Ws (u) = 0u u so x = 0 .u

But u was arbitrary, so x = 0 o

Barnes II] proved ~~(S) had a faithful *-representation by

imbedding it in an inverse semigroup algebra whose semilattice was

a lattice, and proving that the latter's left regular *-representation

was faithful. The fi~lity of the corresponding representation of

ke(S) is easier to show, (W.D. Munn, personal communication).
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The following theorem makes the structure of the left regular

*-representation easier to examine. Recall the Green's equivalences

:t and 1)

Theorem 2.4.3

For e E E , let L = {s E S : s*s = e}e Each

with e f e is a Hilbert ~l(S)-module under the left regular

*-representation, and if e!) f then ~2(Le) and R,2(Lf) are

isomorphic Hilbert modules.

Proof

Let s E Sand e E E . Then if tEL ,A t = 0 or st.e s

then s*st = t , so t*s*st = t*t , so st E Le
Therefore R,2(L) is ane R,§(S)-module,and thus a Hilbert

R,~(S)-mOdule.

If e t f then by definition there exists XES such that

e = xx* and f = x*x Then if s*s = e , x*s*sx = x*ex = f .

Let rr:Le + Lf by rr(s)= sx . Now rr(s)x*= sxx* = se = s

for s E Le so rr is an injection.

and rr(tx*)= tx*x = tf = t so rr is a bijection. Thus rr

lifts to a Hilbert space isomorphism. Let s ELand t E S .e

Then

= { tosxAt(SX)
if t*t ~ sxx*~* ss*

otherwise

Note that if I is an ideal and e E E , then LeI ore

L n I = fJ •e Then ~2(S) = ~2 (S\I) e ~2 (I) is a Hilbert

~l (S)-module decomposition.
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The claim of the left regular *-representation to be a

generalisation of the left regular representation of a group is

further strengthened by the following two results.

Proposition 2.4.4

Let A (p) denote the left regular representation of 5 on

').P(5) defined as in definition 2.4.l. Then for

1 < p < 00 A (p) *
= A (q) where, s s*

1 1
1 and \(00)*1 A (1)-+-= , =p q

Q,1(5) s*

Proof

Let f E tP(5) .and gEt q(5) .
Then

A (p) f> I{g (t) f (s*t)
.,.

t}<g, = sf.t =s

= I{g(su)f(u) s*su = u} = <A (q)g f> 0s* I

Theorem 2.4.5

Let ~ be left translation by s. (Then for f E £1 (5) I

Q,s(f)(t) = L{i(u) : t = su} .) Let ~ be a mean on 5 Then ~

is t-invariant if and only if it is A-invariant.

Proof

Let S, x E 5 . Then Q, * s = x*xs •x x Now (x*x)x*xs = x*xs

so Ai sxx*x = xx*xs = xs = t. sx

{ x*xs if x*xs = s
A * sx x

0 otherwise

{ xs if x*xs = x
Q, A s = = A Sx x*x 0 otherwise x



34

Therefore A t = t and t A = Ax x*x x x x*x x Therefore

A** ~** = ~**x x*x x and ~**A** = A**x x*x x Let ~ be an ~-invariant

mean. Then

A** ~x A** il.** 11x x*x by 9~-invariance

= R,**~x

= 11 by il.-invariance,

so ~ is A-invariant. Similarly, if ~ is A-invariant,
is R,-invariant. o

Let C*(S) denote C*(k(S)) = C*(t1(S)) and Ca(S) denote

We may write C*(S\I) for CS(S!I)

Let C;(S) denote the completion of AS(t1(S) and

C;,e(S) denote the completion of AS(~~(S) , etc.. The

question naturally arises of when C*(S) = C*(S) ,
r

or

Ce*(S) = C* (S) .r, e

A *-representation S of *-algebra is said to weakly contain

another *-representation T if there is a *-homomorphism U such

that

A u

cormnutes. Proposition 2.4.8 and theorem 2.4.9, from Fell [10],
are the crucial lemmas in the discussion of this question.

Recall my definition of essential norm, definition 2.1.7.

Notation 2.4.6

For A a *-algebra, let A*+ be the set of positive

functionals on A and let peA) be the set of positive functionals

on A of essential norm ~ 1 .
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The importance of these results is that we need only consider

positive functionals on the *-algebras. If T is a *-representation

of A and f a positive functional on T(A) , then f induces

a positive functional on -A, namely x ~ f(Tx) , of the same

essential norm, as we show below. The set of such functionals is

denoted T*(T(A)*+) rather than (T(A)*+)T.

Proposition 2.4.7

Let n be a *-representation of *-algebra A and let f be

a positive functional on neAl . Then IIn* (f)II = IIf II

Proof

Clearly IIn*(f) II ~ II.fll Now

If(n(x»12 s IIn*(f)lIf(n(x*x»

Therefore II fll ~ "n*(f)" by continuity of f on n(A). 0

Proposition 2.4.8

Let n be a *-representation of A on H. Then

~(P(n(A») is the weak*-closure of the convex hull of

{x ~ <n (x)~, ~> : ~ E H and II~II s I}

Proof

Fell [10] theorem 1.1. o

Theorem 2.4.9

Let S and T be *-representations of A.

are equivalent:

(i) S*(S(A)*+) ~ T*(T(A)*+)

(ii) s*(P(S(A») ~ T*(P(T(A»)

(iii) S weakly contains T.

The following
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Proof

(i) ~ (ii)

By proposition 2.4.7.

(ii) :=> (iii)

Suppose (ii) holds. Then

II Txll = sup{f(x*x) : f E T*(P(TA»)} ::;sup{f(x*x) f E S*(P(S(A»)}

= II Sx"
Define U: SeA) + T(A) by U(S(x» = Tx . Then U is continuous,

so it can be extended to SeA) by continuity.

(iii) ~ (i)

Suppose (iii) holds. Then

A/~
S (A) -----~T(A)

U

commutes, and U is a *-homomorphism. Then

Then for x EA, T*~(x) = ~(Tx) = ~(USx) = S*U*~(x)

so T*~ = S*(U*~) . o

One says an inverse semigroup S has the weak containment

property (abbreviated w.c.p.) if AS weakly contains all other

*-representations of S , i.e. if C*(S) = C*(S) , regarding the
r

algebras as completions of t 1(S) . I will not equate them if

they should be isomorphic but with no isomorphism of this form.

Lemma 2.4.10

Let A be a C*-algebra, J.I an ideal therof, and H a faithful

Then if x E annA(I) , either x = 0 or there

exists l; E H such that xl;i IH .

Hilbert A-module.
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Proof

annA (I) is a closed ideal, so it is a *-ideal. Let

X E:AnnA(I) , l; E:H . Suppose xl;E:IH for all l;E:H. Then

N
n

x·~ = lim L a t;n~ n,r n,rr=l

where (a ) c I and ( l; ) c H . Thenn,r n,r
Nn

x*xl;= lim I x*a t; = 0
"'-~ r=l n,r n,r

Therefore x*x = 0, so x = 0 . o

Theorem 2.4.11

Let I be an ideal of inverse semigroup S. If

C*(I) = C*(I)r
and C*(S/I) = C* 6(S/I)

6 r, then C*(S) = C*(S)
r

Proof

Suppose C* (I) C* (I) and
r

Let x E:C*(S) • Now there exist (Yn) c ke(S/I) and

(z ) c k(I) such that x = lim (y + z) in C*(S)n n n n Suppose

AS(x) = 0 .

so AI (xa)

Then AS(xa) = 0

= As(xa) I = 0 .
.{2(I)

for all a E:C* (I) • xa E:C* (I) ,

But C*(I) = C*(I)
r

so xa = 0

Similarly ax = 0 for all a E C*(I) . Thus

'}...,1, 11-
By corollary~, C*(S)/C*(I) = Ce(S/I) . Let 2

f; E R, (S/I) • Then

Therefore x E C*(I) . Therefore x = 0 . o
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Theorem 2.4.12

Let S be an inverse seroigroup with zero. Then

C*(S) = C;{S) if and only if· Cs(S) = C;,e(S) •

Proof

C* 6(S)r, implies C* (S) = C* (S)
r

by theorem 2.4.11.

Suppose C*(S) = C*(S) •r Let x E C*(S) and t; E Q,~(S) •

We shall use coset notation. As\{e} (x + er:.. e) (t; + <C e)

Suppose As\{e}(x +~ e)E; = 0 for all t; € ,Q,2(s\{e}) • Then

AS(x).; € a: 6 for all .; € ,Q,2 (S) • Then

AS(x - j.1e ) e: ann C* (S) (d: e ) But As(x - j.1S)E;€ deS for all

so by lemma 2.4.10, x = j.1e . Therefore

is faithful on Cs(S) • o

Theorem 2.4.13

Let I be an ideal of inverse semigroup s. If

C* (S ) = C* (S ) , then C* (I ) = C* (I ) •r r

Proof

Suppose C* (S) = C*(S)
r

Now Q,2(S) and this is a Hilbert module

decomposition. For x E ,Q,1 (S) ,

II xii C*(S) = II Asxll = sup{11 \E;112 : .; € ,Q,2(S)

and II .;II 2 = n
So for x E Q,l(I) , II xii C*(I) = II xii C*(S) by corollary 2.2.7,

= max{sup{11 1..21;112
I; E Q,2(I) and III; II 2 = I}

sup] II Ax';112 : I; € ,Q,2(S\I) and II .;II 2 = l} = II \ (x) II 0

We have not in general been able to decide whether Rees

quotients of semi groups with the w.c.p. have the w.c.p ••
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Theorem 2.4.14

Let Shave w.c.p. and I be an ideal of S with C*(1)

having an identity u, and S\1 a subsemigroup. Then S\1

has the w.c.p.

Proof

Let S, I and u be as above. Let R = S\1 . Then

~2(S) = i2(R) ~ ~2(1) , and this decomposes "S.

x E k(R) , "s(x(l - u»k2(1) = 0, and

"S(x(l - u) 12_2(R)= "R(x) = "s(x) 1R,2(R).

Now for

Let P : k(S) -+ k(R)

be the canonical homomorphism. Then P is a *-homomorphism, so

ASP is a *-representation of k (S) , so for all Z E k(I) ,

" ASP (x)II s "As(x + z) II Now "RP is a *-representation of

S, so for x E k(R) c k(S) ,

Let T be a *-representation of R. Then TP is a

*-representation of S, so for x € k(R) ,

so R has w.c.p. o

Let us recall the structure of the minimal idempotents of

il(E) (proposition 1.5).

Corollary 2.4.15

Let S be a Clifford semigroup with the weak containment

property. Then every subgroup of S is amenable if

(i) S is E-unitary, or

(ii) for all there exists

such that for all f < e, there exists i E {I, .•., n}

such that f ~ e. < e and each e. < e .~ ~
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Proof

(i) is [25] proposition 3.7(i) .

(ii) Theorem 2.4.14. o

Notation 2.4.16'

For C*-algebras A and B , let A ®. B be the closurem~n
of A ® B in the least C*-norm, which exists by [28] 4.9.

Lemma 2.4.17

C*(S) s . C*(T)r mi.n r
C* (S x T) •r

Proof

By [28] 4.9, (AS' 22 (S» ® (AT' 22 (T» is a faithful

*-representation of C*(S) ®. C*(T). But for s, u e S
r nu.n r

and t, veT,

if s*su = u
t*tv = u

and

otherwise.

and

(su, tv) if s*su = u and t*tv = v
o otherwise.

But 22(S x T) is the Hilbert space tensor product of 22(S)

o

For r an index set, let Mr be the Brandt semigroup

Let A be a C*-algebra.' For F finite, is

complete under any C*-norm. But

Fer and F is finite} which is

an upwards directed union of C*-algebras, so ke(Mr) has a
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unique C*-norm and so does Ce(Mr) ~ A • Thus in particular,

Ce*(Mr) ® A = C* (M) ®. A.max r,e I nu.n

Lemma 2.4.18

Let ~O(I, G) be the Brandt semigroup with index set I and

group G. Then )1. 0-( r , G) has the weak containment property iff

G is amenable.

Proof

ke(}1o(r, G» = ke(MI) ® keG) , so

C8(/~O~I,G» = C*(ke(MI) ® keG»~ = Ca(MI) ®max C*(G) •

As in lemma 2.4.17,

Cr*,e(rlO(I,G» = Cr*,e(MI)®m;n Cr*(G)= C*(M) 0 C*(G)... eI maxr

If these two algebras induce the same C*-norm on k0VL (I, G»o
then

C*(G) = C*(G) so G is amenable.
r '

Similarly, they are equal

if G is amenable. o

This result can also be proved by following the method for

groups, using lemma 2.3.5 with the ultimate identity 2 e.. •
iEF ~~

Recall corollary 2.2.7.

Lemma 2.4.19

Let I be a *-ideal of uniform admissibility algebra A.

Let S be a *-representation of A, and let T be a non-degenerate

Then if slI weakly contains T,

S weakly contains the extension T of T to a *-representation of

*-representation of I.

A on the same Hilbert space.
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Proof

Let T represent I non-degenerately on H. Let U be

the *-homomorphism such that

I

SCI)

U

T(l)

commutes. Then U is a *-representation of SCI) on H . Let

U be its extension to SeA) Let x EA • Then for all
....

Y El, U(Sx)Ty = U(Sx)U(Sy) U«Sx*Sy» = U(Sxy) = Txy = TxTy

Then U(Sx) = Tx, so

A U

commutes. 0

Corollary 2.4.20

Let J and K be ideals of an inverse semigroup S which have

the w.c.p. Then J U K has the weak containment property.

Proof

Let T be an irreducible *-representation of J U K on H.

But T(J)H and T(K)H are invariant subspaces of H, so

H .,.T(J)H or H = T(K)H . Suppose the former. By hypothesis,

A I = A weakly contains TIJ . But T is the extension of
JUK K(J) J

~ ·4,)Q
TIJ to J UK, so A contains T bv lemma ~. Similarly inJUK
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the other cases. Therefore AJUK weakly contains every irreducible

*-representation of J 0 K, and thus every *-representation

thereof. o

Theorem 2.4.21

Let 6 be an inverse semigroup. Then either no ideal of S

has the weak containment property, or S has a greatest ideal with

the weak containment property.

Proof

Suppose S does have an ideal with the w.c.p. Let

I = {I c S I is an ideal and has the w.c.p.} . Let M = ut

Then M is an ideal of S.

Suopose M lacks the weak containment property. Then there

exists *-representation T of M and x E k(M) such that
n

Let x = I ~.s. ,
. 1 ~ ~~=

and say S. E I. E "~ ~
n

Then J = U I. has the weak containment property by corollary 2.4.20
i=l ~

so II AMxl1 ~ II AJxl1 ~ II Txll > II ~Mxll which is absurd. 0

Definition 2.4.22

A semilattice is well-founded if every non-empty subset has a

minimal element.

Corollary 2.4.23

Let S be an inverse semigroup with well-founded semilattice

and all of its subgroups be amenable. Then S has the w.c.p.

Proof

Without loss of generality, S has a zero element.

Now {e} has the weak containment property.
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Let M be the greatest ideal of S having the weak contain-

rnentproperty. Suppose MTi S • Now S/M is an inverse semigroup

with well-founded semilattice, and all of its subgroups are

amenable. Let e be a primitive idempotent of 8/M. Let

I = (8/M)e(8/M) • Then I is a Brandt semigroup by theorem 0.2,

Then I\{M} U.M is an ideal-of S, and hasso has the w.e.p ..

the w.c.p. by theorem 2.4.10, contradicting the maximality of M. 0
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CHAPTER 3

SYMMETRIC SEMIGROUP ALGEBRAS

§l Symmetry and its Analogues

A *-algebra A is said to be symmetric if -x*x is quasi-

regular, or, equivalently, if +Sp(x*x) C IR = [0, 00) for all

X EA. A *-algebra is said to be Hermitian if Sp(h) c IR

whenever h h* For a Banach *-algebra these properties are

equivalent. In general they are not. In a symmetric Banach

*-algebra the spectral radius of a self-adjoint element is its norm

under the greatest B*-seminorm, and this inequality implies symmetry

for Banach *-algebras.

First we shall examine equivalent conditions to the last

mentioned inequality. I start by establishing some technical

results.

Definition 3.1.1

A non~empty subset W of a real vector space is a wedge if for

+ClEIR ,ax,X+YEW.all x, YEW and We will write x ~ y

if x - YEW . We do not require that W n (-W) = {o} •

Theorem 3.1.2 - The Krein Extension Lemma

Let M be a subspace of real vector space X with wedge W

with e E M n W such that for each x E X, e + AX E W for small

enough A Then if f is a linear functional on M with

f(x) ~ 0 for all x E M nw, f extends to a linear functional 9

on X with -g(x) ~ 0 for all x E W .

Proof

Bourbaki demands that W be a cone.
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Let M, X, W, e and f be as above. Let

S = {g c X x IR g is a function, dom(g) is a linear subspace

of X containing M, g is linear, glM = f, and g(x) ~ 0

for all x E dom(g) n W} .

by inclusion, by Zorn's lemma

Suppose dom(g) ~ X •

Now f E S Then ordering S

S has a maximal element g.

NoW let h E X\dom(g) . without loss of generality, e + x ,

e - x E W . Then if m, n E M and m - x, x - nEW g (m) ;::: g (n)

Thus inf{g(m) : m € M and m - x E W} ~ sup{g(m) x - mEW and

m E M} • Let K be any number between these values. Then define

g on dom(g) + IRx by g(y + ax) = g(y) + aK for y E dom(g), a E IR .

Then g E S contradicting the maximality of g Thus

X = dom(g) • 0

This result can be applied to *-algebras because functionals on

the self-adjoint part extend to the whole algebra by linearity.

Now for A a uniform admissibility algebra, let K(A) be

{h E sym(A) f(h) ~ 0 whenever f is a representable positive

functional} • Let I I be the greatest B*-seminorm on A Then

if A has no representable positive functions, K(A) = sym(A) •

Now suppose A has an identity. If A has representable positive

functionals, III = 1 .

Ihl + h lie in K(A) .

Then if h E sym(A), Ihl - h and

Lemma 3.1.3

Let A be a uniform admissibility algebra.

and x E A then x*hx E K(A) .

Then if h E K(A)
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Proof

Let h E K(A) and x E A Let T: A ~ C*(A) be the natural

map. Then for every positive functional f on C*(A), f(Th) ~ 0 •

Thus Th ~ 0, so there exists y E C*(A) such that Th = y*y

Now every representable positive function f on A extends to a

positive function f on C*(A). Then

f (x*hx) = f ((Tx)*(Th)(Tx» = f(Tx)*y*y (Tx» ~ 0, so x*hx E K (A) • 0

The characterisation of symmetry of Banach *-algebras by

positive functionals as below is due to Leptin [19].

Theorem 3.lA

Let A be a uniform admissibility algebra.

equivalent:

The following are

Sp (h) +nmcm for all(i)

(ii)

(iii)

(iv)

Sp(h) +nlRclR for all

h E K (A) •

h E K (A)

Sp (h)

Sp{h)

+
c m

+c lR

for all

for all

h E K(A) .

h E K{A) .

(v) Every proper left ideal of A is annihilated by a

non-zero positive functional.

(vi) Every proper modular left ideal of A is annihilated

by a non-zero representable positive functional.

(vii) Every proper modular left ideal of A is annihilated

by a non-zero positive functional.

(viii) p Ih) = Ihl for all h E sym(A), where p(h) = 0 if

Sp{h) = lO •

Proof

(i) ~ (ii)

As Doran [8], we remove characters from the argument of Civin

and Yood. ISJ. Suppose (i) holds. Let a + h E K(A) with

a E m and h E sym (A) .
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Since cp(x+ A) = A for x E A and A EC is a positive

function on A , a ~ 0 . (a)

Also h(a + h)h E K(A) . (b)

Suppose A E Sp (h) n m . Then A(a + A)A ~ 0 by hypothesis,
+so A = 0 or a + A ~ 0 , so Sp(a + h) n m em

(ii) ~ (iii)

Suppose (ii) holds and a + is E Sp(h), a, S E IR and h E K(A) .

Then is E Sp(h - a)

so -S2 ~ 0, so S
But (h - a)2 E K(A) ,

o . +Then a ~ 0 , so Sp(h) e m

(iii) ~ (iv)

As (i) ~ (iii).

(iv) ~ (v)

Assume (iv) and let L be a proper left ideal of A. Define

f on syrn(L+ m1) by f(x + Al) = A for x E syrn(L),y E m

Noweither fez) ~ 0 when z E syrn(L+ m1) n K(A) or there exists

x E syrn(L) and A > 0 such that x - A = W E K(A). Then

x = A + w which is invertible, so x i L •

positive function on A by theorem 3.1.2.

If(y)12:5: f(l)f(y*y) = 0 •

Then f extends to a

Then for y EL,

(v) =-=+ (vi)

Assume (v) and let L be a proper left ideal of A with right

modular unit e. Then L + ([ (1 - e) is a proper left ideal of

A Let f be a non-zero positive functional on A annihilating

L + (((1 - e) • Then f(e) = fell ~ 0 so flA is a non-zero

representable positive functional on A annihilating L.
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(vi) ~ (vii)

A fortiori.

(vii) ~ (vi)

Assume (vii) and let L be a proper left ideal of A with

right modular unit e. Let f be a non-zero positive functional

on A annihilating L. Then for x EA, f(x) = f(xe) . Then

f(x) = f(xe) = (f(e*x*»* = (f(e*x*e»* = f(e*xe) I so f is a

representable positive functional.

(vi) ~ (i)

Let h E K(A) and suppose -h is left quasisingular. Then

L = A(l + h) is a proper modular ideal. Suppose f is a

representable positive functional annihilating L

But so f(h) = f(h2) = 0 . Then for x EA,

If(xh))2 ~ f(xx*)f(h2) = 0, so f(x) = f(x + xh) = 0 so f = 0
Thus (vi) fails.

(iv) ~ (viii)

Assume (iv) . Let h E sym(A) • If ~ > Ih12, then there

exists v E IR such that ~ > v > Jhl2 ,

so v - Ih12 E K(A) • (c)

Then ~ - Ihl2 = (~ - v) + (v - Ih12) which is invertible, so

~t Sp(h2) •

Ihl2 = p(h2) =
Now if Ihl ~ 0 , Ihl2 E Sp(h2) .

p(h)2 •

Then

(viii) ===> (i)

Let h E K(A) Suppose ~ E Sp(h) and ~ < 0 . Then there

exists real polynomial f such that f(O) = 0 and If(~)I > If(x)I

for x E [0I P (h)] •
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Let T: A + C*(A) be the natural map. Now

If(h)21 = p(f(h)2) ~ f(a)2 > P(f(Th)2) = if(h)2] , which is

impossible, the strict inequality following from +Sp (Th) c lR o

K(A) lacks a pleasant algebraic description. The convex hull

KO(A) of {x*x: X E A} is more natural. To replace K(A) by

KO(A) in theorem 3.1.4, we must be able to use theorem 3.1.2 and

justify assertions (a), (b) and (c) of the proof of theorem 3.1.4.

Then the proof holds with KO(A) in place of K(A) .

Definition 3.1.5

A *-algebra A is a positive neighbourhood algebra if for all

h E sym(A) then 1 - >"hE KO (A) for small enough real x , or

equivalently since I - >"h= ~(l - >..)+ ~(l _>..h2) + ~A(l _ h)2

for h E sym(A) , I - >..x*xE KO (A) for small enough real A .

Theorem 3.1.6

Let G generate *-algebra A. Then if for all g E G there

exists Kg > 0 such that K~ - g*g E Ko(A)

neighbourhood algebra.

A is a positive

Proof

As for theorem 2.2.2 with f(x* ..• x) stripped from the

expressions.

As with uniform admissibility algebras, unitisations, direct

sums and directed unions of positive neighbourhood algebras are

positive neighbourhood algebras. The examples I gave of uniform

admissibility algebras are all positive neighbourhood algebras, and

I do not know whether the classes are distinct.
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Theorem 3.1.7

Let A be a *-algebra and I a *-ideal thereof. Then A is

a positive neighbourhood algebra if and only if A/I and I are.

Proof

Suppose A is a positive neighbourhood algebra. It is

immediate that A/I is a positive neighbourhood algebra. Let
n
I x~x.

i=l l. l.
Then there exists

where x. EA.
l.

Then y*y

~ > 0 such that 1 - ~yy* =
. n
- ~(y*y)2 = I y*x~x.y

. 1 l. l.
l.=

Y E I

But x.y El.
l.

Now (1 - ~y*y)2 = 1 _ 2~y*y + ~2y*yy*y , so
2 21 - ~y*y = ~(y*y - ~(y*y) ) + (1 - ~y*y) E KO(I) .

Suppose A/I and I are positive neighbourhood algebras.

Let y E A . Then there exists M z 0 such that
n n

M - y*y + I = I x~x. + I Let h = y*y + Ix~x. - M Then h
i=l l. l. i=l l. l.

is a self-adjoint element of I

N ~ 0 •
n

Then M + N - y*y = N - h + I x~x. E KO(A)
i=l l. l.

Then N - h E KO(I) for some

o

Corollary 3.1.8

A tensor product of positive neighbourhood algebras is a

positive neighbourhood algebra.

Proof

Let A and B be P04itive neighbourhood algebras. A ® B is

an ideal of A ® B . Let u E A and v E B . Then there exists
+M, N E IR such that M - u*u E KO(A) and N - v*v E KO(B) •
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Then MNQ. ~1) - u*u ~ v*v = Ml ~ (N - v*v) + CM - u*u) ~ v*v E K(A ~ B)

so A ® B is a positive neighbourhood algebra. o

Theorem 3.1.9

Let A be a positive neighbourhood algebra. Then theorem

3.1.4 holds with KO() in place of K( ) .

Proof

We now justify the assertions (a), (b) and (c) of the proof

of theorem 3.1.4.

(a) Suppose a + h E KO(A) with a E C and h EA. Then

there exists (~i) c4: and .(xi) c A and n E IN such that
n n

a + h = I (~.+ x.)*(~. + x.) , so a = I~~~.~ 0 .
. 1 1 1 1 1 . 1111= 1=

(b) Then h(a + h)h =
n
L (~.h + x.h)*(~.h + x.h) E KO(A) •
'1111 11=

More complicated is (c). We evaluate the maximal B*-seminorm

in terms of KO(A) .

Let x E A and let ~ = inf{M > 0

Now if f is a positive functiom!on A with f(l) = 1 and

M - x*x E KO(A) , f(x*x) $ M . Thus Ixl2 $ M, so Ixl2 $ ~

Conversely we will produce a positive functio~/on A with

f(l) = 1 and f(x*x) = ~ . Define ...f on the

real span of {l, x*x} by f(al + Bx*x) = a + B~ • If a < 0 then
,..,

al + Bx*x i. KO(A) • If a ~ 0 , B ~ 0 then f(al + Bx*x) ~ 0 .

This only leaves the case a ~ 0 , B < 0, so we need only consider

the case of a - x*x with a ~ 0 .

so f(al - x*x) ~ 0

If al - x*x E KO(A) , a ~ ~

Then by theorem 3.1.2, f extends to a

positive functional on A. o
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A *-algebra is called completely symmetric if every element of

- K(A) is quasiregular. It is called k-symmetric if

-(x*lxl + .•• + xk*xk) is quasiregular for all such expressions.

Recall that the quasi-inverse of an element of an ideal lies in

that ideal. Thus *-ideals of completely (respectively k-)

symmetric *-algebras are themselves completely (respectively k-)

symmetric *-algebras. Now if I is a *-ideal of uniform

admissibility algebra A, KO(I) C KO(A) so if A satisfies the

conditions of theorem 3.1.4, so does I. For Banach *-algebras

a key point is that symmetry implies complete symmetry ([4] lemma

41. 4) •

[20] •

The next result was proved by Leptin for Banach *-algebras

Theorem 3.1.10

Let I be a *-ideal of uniform admissibility algebra A.

Then A satisfies the conditions of theorem 3.1.4 if and only if

A/I and I do.

Proof

Let A and I be as above.

Suppose A satisfies the conditions. Let L be a modular

left ideal of I with right modular unit e. Then L + A(l - e)

is a proper modular left ideal of A, so there exists non-zero

positive functional f annihilating L + A(l - e) . Now if

f(e*e) = 0 , f(xe) = 0 for all x € A

which is not so. Thus, f(e*e) ~ 0 ,

so .f(x) = f(x - xe) = 0 ,

flI is a non-zeroso

positive functional on I annihilating L.

Let L be a proper modular left ideal of A/I (regarded as

cosets of I) with right modular unit e + I . Then M = uL is
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a proper modular left ideal of A.

functional on A annihilating M.

Let f be a non-zero positive

But M ~ I, so f induces

a non-zero positive functional on A annihilating L.

Suppose I and A/I satisfy the conditions and let L be a

maximal modular left ideal of A with right modular unit e.

Suppose I CL: Then L/I is a proper modular left ideal of A/I

with modular unit e + I, so there exists non-zero positive

functional f on A/I annihilating L/I, which induces a non-zero

positive functional on A annihilating L. Suppose I ¢ L .

Then A = L + I, so if e = x + j with x E L, j E I, j is a

left modular unit for L and indeed for La = L n I .

is a proper modular left ideal of I, so there exists non-zero

positive function fa on I annihilating La. Then define

positive function f on A by f(z) = fO(j*zj) . Then f

extends fa If x E L

j*x E I,= a because j*x E I n L = La .

There is also an algebraic version.

Theorem 3.1.11 (Wichmann [29])

Let I be a *-ideal of *-algebra A. Then A is k-symmetric

if and only if All and I are, and hence the same holds for

complete symmetry.

From this and the k-symmetry of radical *-algebras it follows

that completely symmetric *-algebras and k-symmetric *-algebras form

hereditary raldcal classes of *-algebras. He then proves that the

symmetric radical of a Banach *-algebra is closed, and thus that

symmetric Banach *-algebras form a hereditary radical class of

Banach *-algebras.
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§2 Hermitian Inverse Semigroups

We shall now investigate the symmetry of inverse semigroup

algebras. We shall call an inverse semigroup S Hermitian if

tl(S) is symmetric. Then as images of symmetric *-algebras are

symmetric and closed subalgebras of symmetric Banach *-algebras are

symmetric, S is Hermitian only if all its subgroups and Gs are

Hermitian. If ~ is a character on S, then for

S E S 4>(s) = ~(s)4>(s*)4>(s) , so 4>(s) 4>(s*)= 0 or 4>(s)*= 4>(s*)

so commutative inverse semigroups are Hermitian. Finite inverse

semigroups are Hermitian because they have an equivalent C*-norm.

Theorem 3.2.1

a symmetric Banach *-algebra, then

If A is a commutative symmetric Banach *-algebra, and B is
1\

A ® B is symmetric.

Proof

Bonic [3] Corollary 3.3. o

Corollary 3.2.2

Let S be an E-unitary semilattice of groups. Then if

is symmetric, so is 1
9., (S) •

Proof

S is a subsemigroup of
Iclosed algebra of t (ES x Gs)

symmetric. Therefore t
1(S)

ES x Gs . Therefore £ 1 (S) is a

;: 9., I(ES) 1\ tI (GS)® which is

is symmetric. 0

The key lemma in this section, used by Leptin in [21], is:

Lemma 3.2.3

Let A be a Banach *-algebra with a family of closed

-I. 5U ~-algebras {A
et

et E?'\- } such that:
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(i) I AA is dense in A
aEA a

(ii) A AA c Aa a a
(iii) A is symmetric;a

(iv) each Aa has an approximate identity (eaA) such

that converges for all X E AA a
(v) f(x*x) ~ 0 for all X E AA whenever f is aa

continuous positive functional on A
a

Then A is symmetric.

Proof

Assume conditions (i) to (v) hold for A. As they hold for

A/rad(A) , we may assume A is semisimple and has isometric

involution [4] theorem 25.9.

Let L be a maximal modular left ideal of A. Then there

exists a such that L ~ AAa Therefore A = L + AAa so L

has a modular right unit e E AAa L n A is a proper left ideala

of Aa For x E Aa

where Thus L n A is a modular left ideal
a

of Aa

Let f be a non-zero continuous positive functional on Aa

annihilating L n Aa (Such a function exists by theorem 3.1.4.)

Define F on A by F(x) = f(e*xe) . If x € L, then

xe € L , e*xe € L n A ,a so F(x) = f(e*xe) = 0 • By (v), F

is positive on A. Suppose F ~ 0 and let X € Aa •

= lfn lim F(e* e X) = 0 .
II all a

- xn) = 0 so

f(n*n) = lim f(n*e ,e) = lim lim f(e*e* e ,e)
A aA A II all aA

Then If(xn)12 ~ f(xx*)f(n*n) = O. But f(x

f(x) = 0 • Therefore f = 0 , which is a contradiction.
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Thus F is a positive functional on A annihilating L.

Then A is symmetric by theorem 3.1.4.

Corollary 3.2.4
1

A Brandt semigroup has symmetric £ -algebra if and only if

its subgroups are Hermitian.

subset has a minimal element.

Theorem 3.2.5

Let S be an inverse semigroup with well-founded semilattice

and all of whose subgroups are Hermitian. Then 1
£ (S) is

symmetric.

Proof

Suppose £l(S) were not symmetric.

Let r be its greatest symmetric ideal, which is closed.

(It exists by Wichmann [29].) Let M = {s € S : S € E} •

M is non-empty as it contains the minimal element of ES' Then

M is an ideal of S . Suppose M::f 8 .

Now 8/M is an inverse semigroup with a well-founded

semilattice, and all of its subgroups are Hermitian. Let e be

a primitive idempotent of S/M. Let I = (S/M)e(S/M) . Then

£~(I) is symmetric by theorem 0.1 and corollary 3.2.4.

But T = (r\{M}) U M is an ideal of 8, and

R,~ (1) , so is symmetric. But T eM,

which contradicts the existence of e . o



58

Comment 3.2.6

A semilattice of groups with Hermitian group algebras need not

be symmetric. Using the notation of generators and relations,

let i z '. 2
1 for i, j -G: k>G = <x. : E X = , XiXkXj~ = XkXj~Xil. i

Fountain, Ramsay and Williamson Ill] have proved that R,1(G) is

not symmetric, although R,l(G ) is, where G = <x. E G i ~ n>n n l.

Definition 3.2.7

Let A be a Banach *-algebra with isometric involution and G

be a discrete group acting on A by *-isometries. Then the Leptin

algebra 1
t (G, A) is {f : G ~ A : III f(g) II < oo} with norm

g~
multiplication induced byII f II = L II f (g) II

gEG
(x, g) (y, h) = (xg (y), gh) where x, YEA, g, h E G, and

involution given by -1f*(g) = g(f(g »*.

Now Civin and Yood IS] have proved that any Banach *-algebra

with dense socle and proper involution (i.e. x*x = 0 only if

x = 0) is symmetric. Merely as a foretaste of the main theorem

to come, we establish the next theorem. Recall that if H is a

subgroup of G, then T eGis a right transversal for H in

G if G = u{Ht : t E T} and for s, t E T, Hs = Ht only if

s = t .

Theorem 3.2.8

If A is a commutative Banach *-algebra with dense socle

and isometric proper involution (i.e. x*x = 0 implies x = 0) ,

tl(G, A) is symmetric if tl(G) is.

Proof

Let A be as above and let R,lCG) be symmetric. Let

E = {e EA: e = e* is a minimal idempotent} and let
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H = {g E G : gee) = e}. Then for e E E ,
e
1 . 1t (He' ([e) :, £, (He) , which is symmetric. We shall apply

lemma 3.2.3 using these subalgebras.

(e ~ 1) (a ~ g) (e ® 1) aeg(e) ®. g
g i He

if g E He

11.so (e ~ 1).Q, (G, A)(e e 1) C Q, (H ,([e) •
e

(e ~ g) (g-1 (e) ® 1) = e ® 9 SO L £, 1 (G,
eEE

dense in R,l(G, A) by [26] 4.10.1.

is

(e ® 1) ( L a ® g)
gEG g

h EH, t E T}e

where T is a right transversal for He in G . Then

( L A e ~ g) ( L A e ® g)* =
gEG 9 gEG 9

1Therefore R. (G, A) is symmetric.

Theorem 3.2.9 (McAlister [22])

Let S be an E-unitary inverse semigroup. Then can

be imbedded as an ideal of some paset X and Gs made to act on

X by order automorphisms in such a way that

S :::.{(e,g) -1
E ES} andE ES x G : 9 (e) ,S

ES ~ ice, 1) : e E ES} under the same automorphism, where

this being well defined because -1
9 (e)

(g.l.b. {e, g(f)},
-1

f = g (g (f) )

gh) ,multiplication is defined by (e, g) (f, h) =

and

are elements of

Definition 3.2.10

Let (X,~) be a poset.

If x, Y EX, x is said to cover y if
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(i) x > y

and (ii) for all z > y, z ~ x

and x is said to support y if it covers y in (X,~).

Poset (X, $) is tree-like if for all x, y E X there

exist z and finite sequences (u. )~ and (v.) starting in x~

and y respectively and ending in z such that u. 1~+ covers

u.~ and v. 1~+ covers v. .~ Poset (X, $) is dually tree-like

if (X,~) is tree-like.

Notation 3.2.11

For vector spaces A and B with subsets C and D

we shall identify C x D and {c ® d E A ® B C E C and d E D}

and vector space with 1£ (U x V) •

Let X be a partially ordered set, with partial multipli-

cation defined by x 0 y being the greatest lower bound of x
n

Let E = X E. be a subsemilattice
. 1 ~~=

and y if it exists.

and ideal of X with the E. dually tree-like semilattices and
a,

let G be a group acting on X by order automorphisms.

1£ (X x G) will be endowed with the partial mUltiplication

induced by (x, g) (y, h) = (xg(y), gh) whenever xg(y) is

defined. Let S = peG, x, E) as defined by McAlister [22],

i.e. -1{(x, g) E E x G : g ex) E E}, with the multiplication

of 1
i (X x G) •

'Ib m::>tivate the general case we do the case of ES a

dually tree-like semilattice.
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Theorem 3.2.12

Let S be an E-unitary inverse semigroup with dually tree-

like semilattice and £l(Gs) symmetric. Then £1(S) is

symmetric.

Proof

Let be dually tree-like and be symmetric.

Let X extend x:S-+G S
to Then by theo-

rem 3.1.10 it will suffice to prove ker(x) symmetric. For

let H = {g E G : g(u) = u}
u

Then H is a group.
u

Let A be the linear span of {(u _,v) ® 9 : 9 EH} whereu u
v supports u. Now «u - v) ® g) «u - v) ® h) = (u - v) 0 gh

so A is symmetric.
u

We

shall apply lemma 3.2.3 to the set of subalgebras A
u

Now for e®gES,·
-1«u - v) ® 1) (e ® g) «u - v) 0 1) = «u - v) 0 1) (e 0. g) (g (e) ® 1)

t tu - v) ~ 1)t- v) ® 1) (e ® g) «u - v) ® 1) if e ~ g(u»

0 otherwise

{ «u - v) ® 1) ((g(u) -g(v»®g) if e ~ g(u»
=

0 otherwise

{ (u - v) ® 9 if u = g(u)

0 otherwise,

so A AA = Au u u

Now kerx is the closed·linear span of
-1

{(u - v) ® g : u, g (u) E ES and v supports u}.

«u - v)® g»«g-l(u) - g-l(v» ® 1) = (u - v) 0 9 ,

But

so

I AA is dense in A.
uEE u



62

Now

((u - v) ® 1) L
eEES
gEGn

-1 .::.
g (e)EEs

a (e ® g)e,g ((u - v) ~ 1) L
eEEsu
gEGS

-J
g (e)EEs

S (e ® g)e,g

and and

= ((u - v) ® 1) L S t e ® gt
eEE e,g

S
gEH

u
tET

where S = 0 unless e = u ande,gt
-1 -1
t g (e) E ES ' and T is a

right transversal of Hu in G . Then

((u - v) ® 1)[L Se gt u ® gt] I L Se t u ® gt]*(U - v) ~ 1
gEH ' gEH ,g

u u

= L Se gt9 hEH ' 1, u
S* -1 -1 -1 -1e,gt2 ((u - v) s 1) (ugtlt2 h (u) ~ gtlt2 h )

((u - v) ~ 1)

and if tl = t2 it is

\ -1
L S Se*gt ((u - v) ® 1) (u ® gh )«~-- v) ® 1)hEH e,gtl ' 1g, u

= I L S C(u - v) ® g) 1 (L S ((u - v ® g) 1* 0gEHU e,gtl gEH
u

e,gtl

Let minCE.)~ be the set of minimal idempotents of

other than the zero of E. (if it exists), which have been determined
~

in proposition 1.5.

n
2,1 (E)Let M= X(E. U min (E.)) u {O} Extend order s

i=l ~ a,

on E to s on M by e s f ~ e = ef . For x. E min (E.)~ ~n
or x. = E. , let F = Xz. where Z. = E. if x. = E.~ ~ xl x i=l ~ a a ~ ~n
and Z. =~.} if x. E min (E.) .~ ~ l l
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Corollary 3.2.13

M u {o} and ... ~
.1"

are sernilattices under

Let
n-rn

M ={ nrn r=l
(u - v )

r
u, vEE ,

r
the vr are distinct,

u > v and there is no W E E such that u > W > v }r r
Then M = u{F F CM} MM C U M u {o} ,rn xl x xl x rn rnp rn n rl\rnS;p
and if F F C M then

Xl x Yl ... Yn rnn

F if F F
xl x xl x Yl ... Ynn n

x
n

C u M
r

u {o} otherwise.
r<rn

Proof

Irranediate.

Lemma 3.2.14

For all 1g E G , g(M) n ~ (E) C Mrn rn

Proof
n-rn

M = {n (u - v ) : U, V E E the v are distinct, u > v,rn r=l r r r r

and there is no wEE such that v < W < u} .rn-rn
~1(E)If g(n (u - v )) E , then g(u) E E , so

r=l r

n-rn
g(n (u - v ))

r=l r
n-rn

= n
r=l

(g(u) - g(v ) E Mr m o

Lemma 3. 2 • 15

{g E G There exists u such that

u; g(u) E F
xl x

n
} = {g E G : 0 ~ g (F

xl
1x ) n £: (E) C F

n xl xn
}

and this set, x
n

is a subgroup of G.
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Proof

{g E G There exists u such that u , g(U) x
n
}

::J {g E G 1) n 1 (E) e F
xn xl Xn

}

Suppose u, g(u) E F
xl

eMx mn

(i) If xn
, g(u) = g(uv) = g(v)g(u) . Then if

1g(v) E .Q, (E) , g(v) E Mm by lemma 3.2.14, so g (v)
X
n

by corollary 3.2.13.

(ii) If • .• x
n

, supp(g(v» has a greatest element,

which is bounded above by an element of supp(g(u» c E so
1g(v) E 1 (E) • x

n
eM,m so g (v) E M

m

Therefore g(uv) = g(u)g(v) = g(v) E F
xl xn

NOw, if then and
X
n

X
n

uv ~ u, uv ~ v . By (ii), g(uv) E FXl ••• xn
Thus the two sets are equal.

Then by (i), if

g(v) E 11(E) , g(v) .E F
xl Xn

Let g, h E H
xl

u, g(u), v, h(v) E F
xl

Xn
Say

• •. x
n

-1
• 9 (u) , 9 (g (u) E F

xl X
n

so -1
g E H

xl
• uh (v) E F.•. xn "i

Now
• •• X

n

-1 1so h (u) vEl (E) , so

-1 -1
E 11 (E)h (u)v E F • gh (h (u)v) = 9 (u)gh (v) so

xl Xn

g(u)gh(v) E M so g (u)gh (v) E F Therefore
m Xl xn

gh E H 0xl Xn
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Then (i) B
xl

65

c MX mn

= {u ® g E F x HX Xl X xl Xn n n

-1 }g (u) E F .
xl Xn

X c ~l(S)
n

(ii) B is an E-unitary inverse semigroup whose
xl··· xn

semilattice of idempotents is the product of m dually

tree-like semilattices.

(iii) If 1u ® g E (M x G) n ~ (S) ,
m then

X
n

(u ® g) B
xl cU

r.<m
unless

X
n

(M x G) u {a}
r

u ® g E B
Xl Xn

Proof

Let F = F H = H and B = Bxl X xl X xl Xn n n

(i) If u ® g E B , g-1 (U) E F , so u ® g E ~l(S) .
(ii) Let u ® g , v ® h E B .

Then -1
g (u) v E F •

so 2ug(v) = u g(v) E F .

Now ug(v) E

-1
h (v) E F ,

1~ (E) , so ug(v) EM,m
-1 -1 -1 1so h g (u)h (v) E ~ (E) ,

-1 -1 -1so h g (u)h (v) E M
m

so Therefore

ug(v) ® gh E B, so B is a semigroup.

Suppose u ® g, v ® h E B and (u ® g)(v ® h) (u ® g) = (u ® g) ,

h = g-land (v ® h) (u ® g) (v ® h) = (v ® h) so

Then ug(v) = u

Then ghg = g

and -1vg (u) = v, so u < g (v) and -1
v s g (u)

so so BBut this is an e:ement of B

is an inverse semigroup. The rest is clear.



66

(iii) Let v ® h, w ® k E B and u ® g E (M x G) n £l(S) .m
-1 -1 U {OJ ug(w) £l(E)g (u) E M , so g (u)w E M u . But E ,m r:5;mr

so ug(w)e E U M u {oJ h-1 (v) E M sor mr:5;m
-1 U M {oJ Then vh(u)hg(w) U M u {O}h (v)ug(w) E u . E .

r:5;mr r:5;mr

Suppose vh (u)hg(w) EM.
m

Then -1h (v) ug (w) E Mm so
-1h (v)ug(w) E F , so ug (w) E F • Then -1

g (u)w E Mm so
-1

g (u)w E F
-1so g (u) E F •

Now k-lg-lh-l(v)k-lg-l(u)k-l(w) E 11(E) and so is an element

11(E) ,0:: F, so hgk EH,
-1

g (g (u) E F • Therefore u ® g E B . o

so g EH. But u E so

u =

Theorem 3.2.17

If S is E-unitary, il(Gs) is symmetric and ES is the

pr~duct of finitely many dually tree-like semilattices, then il(S)

is symmetric.

Proof

Let ES be the product of n dually tree-l{ke semilattices

and £1 (Gs) be symmetric. Let A be the closed subspace ofm
£l(S) generated by \j (M x G) n £l(S) for m ;::0 , and let

r:5;m r

x
n

be the closedsubspace of generated by

xn

Let u ® g E (MS x G) C £l(S) and v ® h E (Mt x G) C £l(S) •
1 -1Then ug(v) ® gh E £ (S). g (~) E MS' so

-1 -1 U 1g (ug(v» = g (u)v E M M eMu {O}. ug(v) E £ (E) sos t rr:5;snt
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ug(v) E
~I M u {o} , so A is a closed *-subalgebra of £l(S)r mr::;SAt

and A is an ideal of A if r < s .r s

xn
is a closed *-subalgebra by lemma 3.2.16

Let and let TI be the canonical homomorphism.m
Let

x
n

x )
n

Let us define the product of 0 dually tree-like semilattices

Let Pr be "If S is E-unitary, .e,l(Gs)isto be a singleton.

symmetric and ES is the product of r dually tree-like semilattices,

then £1(S) is symmetric." 1Now A lA 1~ £ (Gs) ,n n- -
which is

symmetric so it will suffice to prove An-l is symmetric.

I shall now inductively prove A is symmetric and Pm ~l is

true for 0::; m < n • Now A_l is trivially symmetric and Po is

true a priori.

Suppose O::;m<n,A
m+L

is symmetric and p
m

First I

prove R = 1T (A )m In In
is symmetric. I shall show that

{R : F c M
Xl xn xl'" xn m

of lemma 3.2.3 with respect to

satisfies conditions (i) to (v)

satisfied, and as

R
In

1
- £ (B= X

1

By lemma 3.2.16 condition (ii) is

• •• Xn
is

• •• X
n

symmetric by P so condition (iii) is satisfied. Now
In

7i (F x {l}) is a singleton, so condition (iv) is trivially
m xl Xn

satisfied. if €CM x G) 1 -1Now u ® 9 n 1 (S) , then 9 (u) E M
In m

-1 for some Thenso 9 (u) ® 1 E B F c M
Xl ... X xl ... X m

-1
n n

(u ® g) (g (u) ® 1) = u ® 9 , so condition (i) is satisfied.

Now we come to the most difficult condition, condition (v).

Let and Let V E F . Then
X
n

Xn
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v Bl 1 + A 1 is an identity for R Thusm- xl ... xn
R R R 7T (v ® 1) Let T be a right transversal for
m xl x m mn

H in GS . Then elements of R R are of the form
m "i ... xn

La h t(U @ ht)*(v ® 1) + A where u E M h E H and t E T .
U, I m-l m

Now «u ~ ht)*(v @ 1))* = (v ® 1) (u ~ ht) = vu ~ ht • Thus u E F

or (u ® ht)*(v ® 1) E A 1 . Suppose the former. Now h E H Im-
there exists such that -1 Then andso w E F h (w) E F • uw E F

-1 (u - uw)h (uw) E F Now ~ 1 E A 1 I som-
((u - uw) ® 1) (u ® ht) = (u @ ht) - (uw ® ht) E A 1 I som-
u ® ht + A 1 = uw @ ht + Al'm- m- Let x ERRm xl Thenxn

x = L a h (u @ ht)*(v @ 1) + A 1u, , t m-uEF
hEH
tET

with -1
h (u) E F

whenever a h t ~ 0 .u, ,

Then

! L
liEF
hEH

a h (u ® hs)*(v @ 1) + A -1]* ! L a h t(u ® ht)*(v ~ 1) + A -1]u, ,s m F u, , mu~
hEH

= L a a
F

u,g,s w,h,tU,WE
g,hEH

-1 -1 -1 -1 ",(v ~ 1) (u(gst h (w)) ~ gst h )(v ~ 1) + Am-I

a h (u ® h)*(v ® 1) +A 11*u, ,s m-

a h (u @ h)*(v ® 1) + A 1)u, ,s m-

and the latter factor lies in R
xl

satisfied, and thus R is symmetric.

xn
Thus condition (v) is
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But A is symmetric, so A is symmetric.m-l m Then

P is true.m+l o

§3 Completely Symmetric semigroup Rings

All the results of the preceding section can be pushed through

for the complete symmetry of inverse semigroup rings. Now if S

is a finite inverse semigroup, k(S) is completely symmetric. A

semigroup is called locally finite if every finitely generated

subsemigroup is finite.

Theorem 3.3.1

Suppose S is a locally finite involutive semigroup and tl(S)

is symmetric. Then k(S) is completely symmetric.

Proof

Let S be as stated. Let us adjoin an identity to it.
n

Let xl' X E k(S) and let h = I x=x. Then >.. - h isn . 1 ~ ~~=

invertible in .£l(S) for >.. E ([\ [0, II h II 1 . Let

B = supp (h) u {l} . Now for s E S let 7T be the coordinates
projection. Let R( >..) = (A _ h)-l for >.. E ([\ [0, IIhill . R(>")

and hence 7T R are analytic in d:\[0, IIhill . Let T be thes
subsemigroup of S generated by B. Then if s E S\T and

Ix I > II h II , 7T R (x ) = 0, so 7T R = 0 •s s

all >.. E C\IR+ so R(>") E k(S) for all

Thus supp (R(>..) ) c T for
+x E C\IR. 0

Theorem 3.3.2

Let S be an involutive semigroup such that k(S) is completely

symmetric and T be an involutive subsemigroup. Then k (T) is

completely symmetric.
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Proof

Let S and T be as stated. Adjoin a common identity

element to S and T. Let Xl' .•. , xn E k(T) and let

h =
n

I
i=l

X"!'X..~ ~
For S E S let 1T

S
be the coordinate projection.

Let R(A) = (A - h)-l for A E([\[O, II hll in 11 (S) R and

hence 1T R are analytic in q:\ [0, II h II ] . Then if s E S\Ts
and I AI > II hll , 1T R(A) = o , so 1T R = 0 Thens s
supp (R(A) ) c T u {I} for A E ([\[0, II hll Then if

+ (A - h)-l E 11(T) 0A E c\m , n k(S) = k (T) .

Now k(~) is not even symmetric, for consider its characters.

From this and theorems 3.3.1 and 3.3.2 it follows that if G is

an Abelian group, keG) is completely symmetric if and only if

G is locally finite, or equivalently, if and only if G contains

no copy of Z

Theorem 3.3.3

Let A be a positive neighbourhood algebra with a family of posi-

.tive neighbourhood subalgebras {A
et

et E1\} such that:

(i) AA =A
et

(ii) A AA c A
et et et

(iii) A is completely symmetric
et

(iv) A has an identity
et

(v) f(x*x) ~ 0 for all X E AA whenever f is a positive
et

functional on A
et

Then A 'is completely symmetric.

Proof

As theorem 3.2.3, save that it is slightly simpler. 0
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Corollary 3.3.4

The semi group ring of a Brandt semigroup is completely

symmetric if and only if the sernigroup rings of its subgroups

are.

Proof

Apply theorem 3.3.3 with subalgebras the semigroup rings. 0

Theorem 3.3.5

Let S be an inverse sernigroup with well-founded sernilattice

and all of whose subgroups have completely symmetric group rings.

Then k(S) is completely symmetric.

Proof

As theorem 3.2.5. o

Corollary 3. 3.6

Let S be a sernilattice of groups with completely symmetric

group rings. Then k(S) is completely symmetric.

Proof

Le t xl' ..., xn E k (S) • Let T be the inverse-subsernigroup

of S
nU supp(x,) •

i=l ~
idempotents and all its subgroups have completely symmetric group

generated by Then T has finitely many

rings. o

Theorem 3.3.7

If S is E-uni tary, k (Gs) is completely symmet.ri,c and ES

is the product of finitely many dually tree-like semilattices,

then k(S) is completely symmetric.

Proof

As theorem 3.2.17, but slightly simpler. o



72

CHAPTER 4

SIMPLE SEMI GROUP ALGEBRAS

Certainly 1£. (S) is not a simple algebra, for it has the

But £.!(S) may be simple. We shallcharacter LaS + La; •s s

give sufficient conditions on the semigroup for the algebra to be

topologically simple, and give some recipes for creating such

semigroups.

A semigroup possessing an identity is known as a monoid.

Definition 4.1

U E S is a relative left identity for t E S if ut = t

it is non-trivial if u ~ 1 .

Defini Han 4.2

A semigroup is O-simple if its only proper ideal consists of

A semi group is O-bisimple if a t, b wheneverthe zero element.

neither a nor b is the zero element.

Definition 4.3

A semigroup with zero is strongly disjunctive if for every

finite set A = {al, ..., a } disjoint from {e} there existn
u, v E S such that I uAv\ {e} I = 1 and ua,v = ua,v ~ e implies

~ J

i = j .

For a semilattice E this may be formulated as: if e, < e
a,

for 1 $ i $ n, then there exists u E E such that ue ~ e

and ue, = 6 for 1 $ i $ n •~

De fini tion 4.4

An inverse semigroup is fundamental if it has no idempotent

separating homomorphisms but isomorphisms. The greatest idempotent
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separating homomorphism is ~ : S + End(E) by ~(s) (e) = ses* .

See [15] for further details.

Definition 4.5

A semigroup S is left cancellative if ab = ac implies

b = c • An inverse semigroup is quasicancellative if and only if

for all a, b, c E S ab = ac ¥ e and bb* = cc* imply b = c .

perhaps a more revealing formulation is given by the next

proposition.

Proposition 4.6

Inverse semigroup S with zero is quasicancellative if and

only if 2e = e= es =f e implies

Proof

Suppose S is quasicancellative and 2e = e = es ¥ e •

Then es* = ss*e = ss*es - ess*s = es so s = ss* E ES

Suppose 2e = e = es ¥ e implies Suppose at = au ~ 8

and tt* = uu* Then e ¥ a*(at)t* = a*aut* = a*aut* (tt*) = (a*att*)(ut*)

ut* E Then 3 (t*u)2 of. 8so ES (t*u) = . If

x3 = x2 ~ e , (x*2x2)x = (x*2~ ) ¥ e, so x EO ES so t*u- € ES
Then u*t = t*u . Then

t = tt*tt*t = t (t*u)(u*t) = tt*u = uu*u = u . 0

Corollary 4.7

Suppose X : S + G, a group, and X(st) = X(s)X(t)

whenever st of. e , and Xes) = 1 implies s € ES • 'lben S is

quasicancellative.
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Proof

Immediate from the above. o

It follows that the quotient of any E-unitary inverse seroigroup

by an ideal is quasicancellative; it has been conjectured that the

converse is true. It would suffice to prove the existence of a

partial homomorphism to a group as above. We now consider a

weaker cancellation property.

Theorem 4.8

Let S be an inverse seroigroup. Then the following are

equivalent:

(i) if ag = ah "I e and g and h lie in the same

subgroup then g = h

(ii) if egf = ehf "I e and g J-e h then g = h •

Proof

(ii) ~ (i)

Suppose ag = ah "I e and g and h lie in the same subgroup,

and (ii) holds. Then e "I ag = agg*g = ahg*g, so g = h .

(i) ...... (ii)

Suppose (i) holds, g!eh and egf = ehf "I e . Then

e "I egf = egg*gf = e(gh*)hf = e(hh*)hf • Then

e "I e*e(gh*)hf(hf~¥ = e*e(hh*)hf(hf)*, so vkv = v"l e where

u = hh*, k = gh* and v = e*ehf(hf)*(hh*) •

Now k*k = hg*gh* = hh* = u, and kk* = gh*hg* = gg* = u •

Then v(k*vk)v = (vk*v) (vkv) = v, and

(k*vk)v(k*vk) = k*(vkv) (vk*v)k = k*vk so k*vk = v* = v •

Now vk(vk)* = vkk*v = vuv = v, and (vk)*vk = k*vk = v •
2e "I v = vkvBut so v = vk But e "I v = vu = vk , so

k = u • Then g = gg*g = gh*h = kh = uh = hh*h = h • o
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Definition 4.9

An inverse semigroup is said to have property (A) if it has

the above properties.

Definition 4.10

The inverse hull of a left cancellative semigroup is the

inverse subsemigroup of the symmetric inverse semigroup of partial

one-one mappings of the semigroup generated by maps of the form

A = {(x, sx) : XES} where s E S •
S

We shall now examine some of the properties of inverse hulls

in terms of the original semigroups. The relationship is most

straightforward for O-bisimple inverse monoids.

Theorem 4.11

There exists a one-one correspondence between O-bisimple

inverse monoids with a zero and left cancellative monoids U whose

principal right ideals and 0 form a semilattice under inter-

section. This semilattice is isomorphic to the semilattice of

idempotents of the inverse semigroup. The inverse semigroup is

the inverse hull of the left cancellative semigroup with a zero

adjoined if need be, and the left cancellative semigroup is the

left unit semigroup of the inverse semigroup, i.e.

{x E S : x*x = l} •

Proof

[6] lemma 8.41, corollary 8.43 and theorem 8.4.4. The

omission of a zero from their proofs is readily rectified.

Proposition 4.12

Let ~ be the inverse hull of left cancellative monoid S.

Then I is fundamental if 1 is the only invertible elemenUUof S

such that uR = R for every (principal) right idealRof S •



76

Proof

Let ~ be the greatest idempotent separating homomorphism

on L:

Suppose I is fundamental and uR = R for every right ideal

in S Then for any idempotent P of L: A*PA = P, so
u u

so u = 1 .

Conversely, suppose 1 is the only such element of S. Let

P and Q be non-zero elements of L: such that P~Q. Then

P*P = Q*Q, so dom(P) = dom(Q) ~ ~ . Let x E dom(P) . Let

y = Px and z = QX . Then A = PAY x and QA ,x so

A ~A , so rge(A) = rge(A ) , so there exists u E S such thaty z y z

z = yu, and similarly there exists v E S such that y = zv •

Then yl = zv = yuv, so uv = 1 and similarly vu = 1 .

S E S , A A A*A* = (A*A )A A* A*A ) = A A*u s s u y z S s( z y s s
Al = A*A u A*A • But A A* = A A* implies usS = sS, soy y. y z uS uS s s

Then for as

uR = R for every principal right ideal of S, so u = 1, so

y = z, so P = Q . Therefore L: is fundamental. o

Proposition 4.13

Let t be the inverse hull of a left cancellative monoid S .

Then L: is quasicancellative if S can be imbedded in a group

and only if S is cancellative.

Proof

Suppose L is quasicancellative and ae = be Then

by

Extending X to L:

-1
X(s) x(s)

n n
if

Suppose X : S + G is an imbedding.
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A* At ~ ~ , and 1 if it is ~ . Supposesn n

A* At A* A A* A ~ ~ . Then there existss ul vl u vn n m m
n such that and u,b, 1 v,b,and (bj)0 s,a, 1 = t.. a, =

l. l.- l. l. l. l.- l. l.

for i > 0 aO = bO
-1

= X (sl) X(tl)
-1

= X(ul) X(vl)

and a = b Thenn m
-1X (s) X(t )X (a) andn n n
-1X (um) X (vm)X (bm) so X is well

defined.

Now suppose P E L\{~} and X(P) = 1 • Then for

S E dom(P) , X(Ps) = X(P)X(s) , so X(Ps) = X(s) , so Ps = s •

Thus P is an idempotent. Then by corollary 4.7, L is

quasicancellative. o

A O-bisimple inverse monoid is quasicancellative if and only

if its left unit semigroup is cancellative, but for our purposes

property (A) is more interesting.

Proposition 4.14

The left unit semigrottpof a O-bisimple inverse monoid has no

non-trivial invertible relative left identities for any of its

elements if and only if the inverse semigroup has property (A) •

Proof

Let U be the left unit semigroup of inverse semigroup S.

Suppose S has property (A) and s E U is an invertible

relative left identity for t E U • Then st = It, and

ss* = s*s = 1, so s = 1 by property (A) •

Conversely, suppose U has no non-trivial invertible relative

left identitie~, and suppose sa = ta ~ e with s and t lying
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in the subgroup with unit e. Then e". s*sa s*ta, and

(s*t)*(s*t) = ~JZ' e *@

There exists g E U such that gg* = e . Then

(g*s*tg)(g*t*sg) = g*s*tet*sg = 1 and (g*t*sg)(g*s*tg) = 1 ,

sog*s *tg lies in the subgroup of units. Now

e ".s*ta = s*sa = gg*a , +so e ~ g*a = g*s*ta = 19*s(tg)g*a, so

(g*s*tg)(g*aa*g) = g*aa*g ".e . But then there exists u E U such

that uu* = g*aa*g so (g*s*tg)u = u • Then g*s*tg = 1

Then s = se = sgg* = sg(g*s*tg)g* = ses*te = ete = t . 0

We now corneto a very useful lemma in the study of inverse

sernigrouprings.

Lemma 4.15

Let S be an inverse sernigroup, F be a field, and let I

be a non-zero ideal in FeS •

e E ES\{e} such that e E supp(x) c eSe •

Then there exist x E I and

Proof

S has a partial order defined by s $ t if there exists

e E ES

See [15) for details.)

such that s = et • (This is known as the natural order.

Let I be a non-zero ideal and pick x E 1\{e} .• Then supp (x)

has an element s which is maximal in supp(x) under this order.

Then I claim s*s E supp(s*xs*s) • Let x = (lS + 's.t./. ~ ~ , (l ~ 0, 13. ". 0 .~

For suppose t E supp(x) and s*ss*s = s*ts*s • Then

s* = s*ts* But s = ss*s = s(s*ts*)s = ss*t(t*t) (s*s) = ss*(ts*st*)t ,

so s $ t . Therefore s = t • Then

s*s E supp s*xs*s c s*sSs*s • But s*xs*s El. o
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Lemma 4.16

Let S be an inverse semigroup, and let I be a non-zero

ideal of a *"":algebraA contained in C* e(S)r, and containing

AS(S) . Then there exist x E I and e E Es\{e} such that

<xe, e> :f a and x E A AI.e e where Ag
2on Ie (S) •

is the regular left

*-representation of l~(S)

Proof

Let I be as above, and let x E I\{a} • Then x*x:f a •

Suppose <x*xs, s> = a for all s E S • Then xs = a for all

S E S, so x = a . Therefore there exists t E S such that

<x*xt, t> :f a . But t = A t*t
t '

so

But A*x*xA E I •t t o

The next theorem was proved by Munn [23] with quasicancellativity

in place of property (A) •

Theorem 4.17

Let S be a fundamental a-simple inverse semigroup with

property (A) and strongly disjunctive semilattice of idernpotents,

and let F be a field. Then FeS is a simple algebra.

Proof

Let F and S be as above, and let I be a non-zero ideal

of FeS . For e E E\{e} , let
4,'5

M = {x E I : exe = x and e E supp(x)} . By lemma ~, theree
exists e E E\{e} such that M :f I3 •e

Let Cl. = min U {Isupp(x) I x EM} . Then Cl. > a •
eEE\{e} e

Let M = \J {x E M : x (e) = 1 and Isupp(x)I = CI.} , andeeEE\{e}
pick x E M , say with x E M Lete
V = {ss*, s*s : S E supp(x)}\{e} .
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Suppose V 'f ~ . Then v < e for all v E V, so there

exists u E E such that uv = e for all v E V and ue 'f e

Then Isupp (uxu)I < I supp (x)I . But if s E supp(x) and usu = ueu ,

then s*s = ss* = e so s = e Then eu E supp(uxu) and so

UXU E M n M, contradicting the minimality of Isupp (x)I , soeu
V = ~ Thus x E M n M implies that ss* = s*s = e for alle

S E supp(x) .

Suppose supp(x) 'f e . Let s E supp(x)\{e} Then as S

is fundamental there exists f E E such that sfs* 'f efe . As

they are unequal, neither is e . If sfs* > ef ,

s'*(sfs*)s= efe < sfs* Let

{ f if sfs* "I ef . Then sus* ~ eu 'f e .
u =

sfs* if sfs* > ef Then s*us ~ eu = e

Let z = uxu If tt* = t*t and utu = ueu 'f e then t = e .
Therefore Z E M n Mue If utu = uvu and t*t = tt* = v*v = vv* = e ,

then t = v . Thus usu E supp(z) , so (usu)(usu)* = eu ,

so sus* ~ eu and (usu)*(usu) = eu so s*us ~ eu This is

impossible by the choice of u. Therefore supp(x) = {e} •

But S is a-simple, so I ~ S • 0

Theorem 4.18

Let S be a fundamental a-simple inverse semigroup with

property (A) and strongly disjunctive semilattice of idempotents,

and let A be a *-subalgebra of C* e (5)r, containing As(S) with
1an algebra norm.bounded by the t -norm.· Then A is topologically

In particular, i!(S) is topologically simple.simple.
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Let I be a non-zero ideal of A pick E: > a . For

e E E\{e} let M = {x E k (8) exe = x, x(e) = 1 and d (Ax' I) < c Ie

where d is the distance in the norm of A • By lemma 4.16,

there is z E I and e E E\{e} such that A ZA = z ande e
<ze, e> = 1 . Then there is w E k(8) such that

II A - ziiA
E:< II zllw 1 + E: +

and ewe = w . Now if ese = s and <A e, e> = 1 then se = es
and s*se = e . Then s = ese = e , so

Iw(e) -11 «A - z)e, e> <w 1 + E: +
E:

II z II

so d(_l__ A I) < E:
w(e) w'

Let

a = min \) {I supp (x) I : x E M and e E supp(x) }eeEE
This is well defined. Let

M = t) {x E M x(e) = 1 and 1supp(x) I = a}
eEE e

Let x EM, say with X E Me Then as in theorem 4.17, x = e ,

so d (e, I) < E: • Therefore d(s, I) < E: for all s E 8\{e}

as 8 is a-simple. But € is arbitrary, so I ~ 8 • o

Now we produce some examples of fundamental O-simple inverse

seroigroups with property (A) and strongly disjunctive sernilattice

of idempotents.

Example 4.19

8 = .f'la(I){l}) for·I a non-empty index set. Its semi-lattice

of idempotents is strongly disjunctive, and O-bisimple. For e a

non-zero idempotent, the ideal of ~!(8) generated by e can be
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faithfully represented (theorems 2.4.2 and 2.4.3) as the subalgebra

of 2BL(£ (1)) dimensionalwhose kernels are orthogonal to finite / subspaces of
1

£ (1) and whose range is in and the ideal of C* 8(S)r,
BL(£2 (I))qan be faithfully represented as the subalgebra of

consisting of finite rank operators. Suppose I is infinite.

Then by Baire's category theory applied to their ranks, neither

algebra is a Banach algebra, so both are dense ideals.

We shall now produce some left cancellative monoids whose

inverse hulls are fundamental, O-bisimple, satisfy property (A)

and have strongly disjunctive semilattices.

Example 4.20

Let FS(l) be the free semigroup on an infinite set I.

Then FS(I)l, its unitisation, is a cancellative monoid whose

principal right ideals and ~ are closed under intersection.

The corresponding semilattice is strongly disjunctive. Its

subgroup is trivial, so its inverse hull is fundamental and

satisfies property (A) •

There are many images of FS(I) with the same properties as

listed above, save that the image is left cancellative and not right

cancellative, e.g. the quotient under the congruence generated by

where a, b € I •

We will now produce examples with non-trivial subgroups. Let

G be a group acting on semigroup S by automorphisms. Then

S 1G = S x G with multiplication given by

(s, g) (t, h) = (sg(t), gh) •
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Theorem 4.21

Let S be a monoid with group of invertibles U and group

G acting upon it by automorphisms. Then

(i) S is left cancellative if and only if S.~ G is

left cancellative.

(ii) R + (R\{e} x G) u {e} is an isomorphism from the

semilattice of right ideals of Sa to the semilattice of

right ideals of (S ~ G)O carrying principal right ideals to

principal right ideals.

(iii) U ~ G is the group of invertibles of S ~ G •

(iv) If J is the set of relative left identities of

s E S I J x {I} is the set of relative left identities of

(s I g) E S ~ G •

(v) If S is left cancellative and U = {l} I then the

inverse hull of S J G is fundamental if and only if G

acts on S faithfully.

Proof

Let S, U and G be as above.

(i) Suppose S is left cancellative and (a, g) (b, h) = (a, g) (c, k) .

Then ag(b) = ag(c) and gh = gk, so h = k and g(b) = g(c) ,

so b = c .

Suppose S ~ G is left cancellative and ab = ac. Then

(a, 1), (b, 1) = (a,l) (c, 1) I so (b, 1) = (c, 1) I so b = c •

(ii) Suppose R is a right ideal and' x E R\{e} . Then for

g I h E G and YES I (xI g) (yI h) = (xg(y)I gh) I so xg (y) ER.

Thus R + «R\{e}) x G) u {e} is a semilattice morphism for the

stated semilattices. It is a monomorphism; all that remains to be
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proved is that it is a surjection for it to be an isomorphism.

Let T be a right ideal of S Q G, and let

R = {e} u {s E S : (s, g) E T for some g E G} • Then if

(s, g) E T then -1(s, g) (1, g h) = (s, h) , so

T = «R\{e}) x G) u {e} . Suppose s ER. Then if

t E S , (s, 1) (t, 1) = (st, 1) ET, so st ER. Thus the

mor~kism is a surjection, and thus an isomorphism.

If R is a principal right ideal, so is «R\{e}) x G) u {e} ,

and if «R\{e}) x G) u {e} is generated by (s, g) , R is

generated by s .

(iii) (1, 1) is the identity of S ~ G • Suppose

(s, g) (t, h) = (t, h) (s, g) = (1, 1) Then h = g-l and

sg(t) = th(s) = 1 . Then 1 = g(l) = g(t)s, so s is invertible.

If -1 -1 -1 -1
(u, g) E U ~ G , (u, g) = (g (u ), g )

(iv) Suppose (t, h) (s, g) = (s, g) • Then hg = g, so h = 1 .

But then s = th(s) = ts •

(v) We shall use proposition 4.12. Let s E S . Suppose

(t, l)(S ~ G) = (S, l)(S oj G) Then there exist u, v E S

such that su = t and tv = s , so suv = s and tvu = t ,
so uv = vu = 1 , so s = t . Now (1, g) (5, 1) (S ~ G)

(1, g) (5, 1) (S j G) = (g(s), g) (S j G) = (g(s), 1) (S j G) . Then

if (1, g)R = R for every principal right ideal of S J G ,
g(s) = s for all s E S , so the inverse hull of S ~ G is

fundamental if and only if G acts on S "faithfully. 0
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Corollary 4.22

Let S be a O-bisimple monoid whose subgroups are trivial and

whose semilattice is strongly disjunctive. Then if U is its

left unit semigroup and G acts faithfully on U then the inverse

hull of U ~ G is a fundamental O-bisimple monoid satisfying

property (A) and having strongly disjunctive semilattice.

Proof

By Theorem 4.11 and theorem 4.21 (i), U ~ G is a left

cancellative monoid. Let L be its inverse hull. By theorem

4.21 (ii) L is O-simple with strongly disjunctive semilattice.

L satisfies property (A) by proposition 4.14 and theorem 4.21

(iii) and (iv).

theorem 4.21(v).

L is fundamental by proposition 4.12 and
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