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ABSTRACT

Much work has been done on the ll—algebras of groups, but
much less on zl—algebras of semigroups. This thesis studies those
of invérse semigroups, also known as genéralised groups, with
emphasis on the involutive structure. Where results extend to

the semigroup ring, I extend them.

I determine the characters of a semilattice in terms of its
order structure. The simplest suffice to separate its ll-algebra.

I also determine the algebra's minimal idempotents.

I introduce a generalisation of Banach *-algebras which has
good hereditary properties and includes the inverse semigroups
rings. These latter have an ultimate identity which can be used
to test for representability. Involutive semigroups with s*s an
idempotent yield inverse semigroups when quotiented by the congruence

induced by their algebras' *-radical.

The left regular *-representation of inverse semigroups is
faithful and acts like that of groups. The corresponding idea of
amenability coincides with the traditional one. Brandt semigroups
have the weak containment property iff the associated group does.
The relationship of ideals to weak containment is studied, and
inverse semigroups with well ordered semilattices are shown to have
the property if all their subgroups do. The converse is extended

for Clifford semigroups.

Symmetry and related ideas are considered, and basic results
proved for the above mentioned generalisation, and a better version

for a possibly more restricted generalisation. The symmetry of



an %l-algebra of an E-unitary inverse semigroup is shown to depend
on the symmetry of the ll—algebra of its maximal group homomorphic
image if the semilattice has a certain structure or the semigroup
is a Clifford semigroup. Inverse semigroups with well ordered
Semilattice_s are shown t‘o have symmetric %l-algebra if all the

subgroups do.

Finally, some topologically simple zl-algebras and simple
semigroup rings are constructed, extending results on simple

inverse semigroup rings.



INTRODUCTION

In this thesis I study semigroup rings and their ll—completions,
semigroup algebras. Nearly all the semigroups studied are inverse
semigroups, that is, semigroups in which each element has a unique

(von Neumann) inverse.

First I examine the simplest type of inverse semigroups, the
semilattices, that is, commutative semigroups of idempotents.
Hewitt and Zuckermann [14] thoroughly examined the ll—algebras of
commutativé semigroups, so we already know that 21(E) is semisimple,
and has a unit only if E is the union of finitely many principal
ideals. I determine the characters in terms of the algebraic
structure of the semilattice and also in terms of the simplest
characters. We show that these suffice to separate the elements of
the ll—algebra. I then use the algebraic descriptions of the

, 1 . ,
characters to determine the % ~algebra's minimal idempotents.

Next I sketch the elementary theory of positive functionals
and representations on Hilbert space of *—algebras. Then I study
the class of *-algebras that have enveloping C*-algebras and all of
whose positive functionals are admissible. I show that this class,
the uniform admissibility algebras, is closed under most of the
methods used to obtain new algebras from old. Then I establish the
most comprehensive result I know on extending non-degenerate
*-representations from ideal-like *-algebras. I then establish
relationships between enveloping C*-algebras and *-algebras

manufactured from others.



I then sketch the elementary *-representation theory of inverse
semigroups, and develop a test for the representability of positive
functions on the semigroup ring using not bounded approximate

identities, but ultimate identities.

Then I examine the'left regular *-representation of an inverse
semigroup introduced by Barnes [1]. I prove that it is faithful,
and produce a decomposition in terms of the semilattice. I then
show that it provides a satisfying generalisation of the convolution
of ll(G) and QP(G) for a group G , and that the corresponding
notion of amenability agrees with the traditional one. As Wilde and
Argabright (but see Duncan & Namioka [9] for a quicker proof) have
already determined when an inverse semigroup is amenable, there is

little gain from this fact.

Now the amenability of G is equivalent to two interesting
properties. G is amenable if and only if Rl(G) is amenable
([4] Proposition 43.3). For S an E;unitary inverse semigroup,
Duncan and Namioka determiﬁe precisely when 11(8) is amenable.
Secondly, G is amenable if and only if G has the weak containment
property, i.e. the left regular representation of Rl(G) on 22(G)

. 1
produces the greatest B*-seminorm on & (G) .

gufficient conditions for weak containment seem easier to
establish than necessary ones. I establish that if I is an ideal
of S, then I has the weak containment.property if S does, and
S does if I and S/I do. Paterson [25] proved that for Clifford
semigroups (i.e. inverse semigroups whose idempotents are central)
these norms coincide if all the subgroups are amenable. The converse
has yet to be settled; I establish it in the case where every

element of the semilattice has a minimal idempotent associated with



it in the semilattice algebra. Next I determine when a Brandt
semigroup has the weak containment property, and hence prove that
semigroups with’well—founded semilattices have the weak containment
property if all their subgroups are amenable. On the way I establish
that every inverse semigroup with zero has a greatest ideal with the

weak containment property.

A group is called Hermitian if its group algebra is symmetric.
The investigation of the symmetry of group algebras has been greatly
advanced by Leptin. From the algebraic viewpoint a nice study of
symmetry is provided by Wichmann [29]. We undertake an investigation
of various generalisations of the notion of symmetry for uniform
admissibility algebras using Leptin's characterisation of symmetry

for Banach *-algebras.

Leptin has alreadyestablished that the algebra of a Brandt
semigroup is symmetric if and only if its associated group is
Hermitian. Calling a semigréup Hermitian if its algebra is symmetric,
‘we establish that every inverse semigroup has a greatest Hermitian
ideal, and thus an inverse semigroup with well-founded semilattice
is Hermitian if and only if all its subgroups are Hermitian. For
an E-unitary inverse semigroup S , I am inspired by the hypothesis
that S is Hermitian if GS is. This is shown to be the case if

S 1is a Clifford semigroup, and also if the idempotent semilattice

has a certain structure.

I then push these results through for the complete symmetry
of semigroup rings. As the group ring of the integers is not even
symmetric, there are very few completely symmetric group rings,

and finiteness plays a large role.



Finally sufficient conditions are found for contracted inverse
semigroup rings and algebras to be simple and topologically simple
respectively. These generalise the earlier results of Munn [23]
on inverse semigroup rings. So that many examples may be found, we
investigate inverse semigroups constructed from-left cancellative
semigroups and translate these sufficient conditions into conditions

on the left cancellative semigroups.

All the algebras I consider will be associative and, except in
Chapter 4 where arbitrary fields are considered, will be over the
complex field. For a set of vector spaces or algebras

A e A} , its direct sum ) A, will be the set of
Aed

and f(A) # 0 for finitely many X} with

{AA

{f ¢ (X AA)A : £(A) € AA

pointwise operations. Their #FP-direct sum is the closure in the

are Banach spaces. A

norm ||f|| = (ZI]f(A)!lp)l/p if the A,
A

directed union of subobjects {AA : A € A} where A 1is a directed

set and AA c A if A<y is % AA . An algebra is simple if it
M

has no ideals; an algebra with a topology is toplogically simple if

it has no closed ideals. An idempotent e of an algebra A over

F 1is called minimal if eAe = Fe .

Unless confusion may be caused by taking it out of context, the
identity of a semigroup or algebra will be denoted 1 , and in an
algebra with identity Al and XA will be used interchangeably for
e . For a complex algebra A with identity and x € A ,

SpA(x) ={Ael : A - x is not invertible} . For a complex

algebra A without identity we define SpA(x) = sz(x) where

A=a® C1 with multiplication (x + My + ) = (xy + Ay + ux) + Ap .
Alternatively, noting that (1 - x)(1L -y) =1 - (x+y - xy) , we

define a multiplication °o on A by X °y=x+Yy - Xy .



X € A 1s said té be left quasiregular if there exists y € A such
that y ¢ x =0 , and left quasisingular if there is not. X € A

is said to be quasiregular if it is both left and right quasiregular,
and quasisingular if it is not. Then Sp,(x) = 0 v {X ¢ C \{0}

A Tx is quasisingular} . Hence if T : A > B is'an algebra morphism,
Sp(Tx) < {0} v Sp(x) . The spectral radius, pA(x) , is

sup{lkl : Xe SpA(x)} . It may be infinite, or if SpA(x) =9,
undefined, neither of which can happen in a Banach algebra. The
subscript will be dropped when it is clear which algebra we are
considering. A modular left ideal of an algebra A is a left ideal
for which there exists e € A such that x - xe ¢ L for all x ¢ A .
Such an e is called a right modular unit for L . e 1is a modular
unit for some proper modular left ideal if and only if it is left

quasisingular. By a maximal (modular) (left) ideal we mean a

maximal proper (modular) (left) ideal.

An involution on cbject X is a bijection whose square is the
identity with, denoting the image of x by x* , (xy)* = y*x* if
X has a multiplicafion, (x + y})* = x* + y* if X has an addition,
and if X is a real or complex vector space, (Ax)* = A*x* where )\*
is the complex conjugate of A An object with a distinguished
involution is called involutive. A *-algebra is an algebra with a
distinguished involution; a *-ideal is an ideal closed under the
involution. The quotient of a *-algebra by a *-ideal inherits the
involution. If A and B have distinguished involutions * and
T, homomorphism ¢ : A > B 1is a *-homomorphism if o (x*) = ¢(x)+ .
An element h 1is called self-adjoint if h = h* , and the set of
self-adjoint elemeﬁts of A 1is denoted sym(a) . A Banach *-algebra

is a Banach algebra with a distinguished involution.



Following Wichmann [29] and Palmer [24], we refer to hereditary
radical properties. A property (P) of rings is said to be a
hereditary radical property if

(i) Quotients of rings with property (P) by ideals

have property (P) .
(ii) Every ring A has a greatest ideal with property (P) ;
we denote it P-rad(a) .
(iii) No non-zero ideal of A/P-rad(A) has property (P) .

(iv) If I 1is an ideal of A , then P-rad(I) = I n P-rad(d) .
When we study algebras rather than rings, we use the definition with
algebras in place of rings, and ideals remain in it. If *-algebras,
*-algebras replace rings and *-ideals replacé ideals. If Banach
algebras, Banach algebras replace rings and closed ideals replace
ideals. If Banach *-algebras, Banach *-algebras replace rings and
closed *-ideals replace ideals. A 1is called P-semisimple if
P-rad(a) = {0} . Our most important example is the Jécobson radical,

for which we use "rad" and "semisimple" unprefixed.

et A and B be linear (sub)spaces Wwith a linear space ¢
such that ab is defined to be an element of C for a € A and
beB vunder some linear coﬁposition. For example, A and B might
be subalgebras of C , or A might be an algebra of linear operators
on vector space B = C . Then AB will denote the linear span of

fab : a e A and b e B} . Otherwise AB will denote that set itself.

Let T be a representation of an algebra A by bounded
operators on a Banach space X . It is called degenerate if 1w = 0
or (n(A)x)_ is a proper subspace of X . An element £ of X is
called a c¢yclic vector if & € (T(A)X)  and (W(A)E)— = (1(A)X) ;

then g 1is called a cyclic representation.



An element x of a semigroup S 1is called its zero if xy = yx = x

for all y e S . We will denote it by 8 . We can adjoin an
identity to a semigroup S , and we denote the new semigroup sl .
We may adjoin a zero to a semigroup S ; we denote the new semigroup

sO . A subset I © S 1is called a left ideal if sx ¢ I for all

s €S and x € I ; it is called an ideal if it is both a left and
right ideal. If I is an ideal of S we define its (Rees)

quotient S/I to be, assuming for notational reasons that I is not

an element of S , (S\I)'U {1} with I the zerc and for s, t e‘S\I ’
s ot==st if st g I and I 1if st ¢ I . A subsemigroup G of

S 1is called a subgroup if G is a group.

An element s of semigroup S 1is called invertible if S has
an identity and there exists t € S such that st = ts =1 . t es
is called a (von Neumann) inverse of s if sts = s and tst = t .
A semigroup is called regular if every element has an inverse. It
is called an inverse semigroup if every element has a unique inverse.
A regular semigroup is an inverse semigroup if and only if its
idempotents commute, in which case the idempotents form a subsemigroup.
A commutative semigroup of idempotents is called a semilattice; we
define an order on it by e £ £ if e = ef . For S an inverse
semigroup we denote its set of idempotents by ES ; or where no
ambiguity may arise, E . For s € S we denote its inverse by s* .
Then (st)* = t*s* . A homomorphic image of an inverse semigroup is
an inverse semigroup, and thus a semigroup homomorphism is a

*~homomorphism. For proofs see [15] §V.1.

A Clifford semigroup S 1is an inverse semigroup in which the

idempotents are central. Then for e ¢ ES , let Ge ={s €S : s* = e} .

Then each Ge is a group, S = LJ Ge and GeG c G A

e€E £ ef *



Clifford semigroup is also known as a semilattice of groups. An

inverse semigroup has a minimal group homomorphism, which we denote
its

XS , and we denote/image by Gs . It is given by s ~ t if there
is e € ES such that es = et . It is called E-unitary if
xs_l(l) = ES . Green defined equivalences f,, @R , }6 and

i) on an arbitrary semigroup. For an inverse semigroup, a I_ b
iff a*ta=b* , a® b if aa*=bb* , a ¥ b if a [ b and

a 6%]3 , and a JJ b if there exists c¢ such that a*a = c*c

and cc* = bb* . For details see [15] .

An idempotent u of an inverse semigroup is called primitive
if the only idempotent it exceeds is the zero element. The Brandt
semigroup )40(1, G) 1is {(g)ij :geG,1i, je 1} v {6} with o
its zero and

(gh),. if 3 =k
(g)..(h) . = 11

+J kl ] otherwise
where G 1is a group. I could not find an explicit proof of our
first theorem. It is well known.

Theorem 0.1
Let u be a primitive idempotent of inverse semigroup S
Then SuS is a group or Brandt semigroup.

Proof

Let u be a primitive idempotdnt of K . If u is the only
idempotent of SuS then Su$S is a group. Suppose u is not its

only idempotent.

Let v ¢ (SuS n ES)\{G} . Then v = xuy for some x and y € S .
Then v = v*v = y*ux*xuy = y*uy as v # 8 , ux*xu < u and u is
Primitive. Then as yvy* # 6 , u = yvy* . Then if e € Eg
ev(y*y) = y*(yey*) (yvy*)y = y*((yey*}u)y, = so ev =106 or

ev

ev = y*uy = v , so Vv 1is also primitive.



et I = ESuS\{e} + and G be the subgroup of SuS containing

u . For e € 1 pick x, € S such that e = x*euxe . Let

£ ;/40(1, G) - SuS and ¢ : SuS 4~/¢O(I, G)

* * * -
(g)ij > xfox, z > (uxizxju)ij where xfux, = zz*

and x;ux. z*z ,

J
and f£(8) =06, ¢$(6) =6 . Then f and ¢ are mutually inverse,

and (x{ng)(xﬁhxl) (x;gxy(x§uxj)(XEuxk)(xihxl) as (x;uxe)2 # 0

and hence ux x*¥ =y, =8 if j #k and (ngxj)(x§uxk)(Xthl) = x¥ghx,

if 3 =k . 0

For S a semigroup we define a multiplication on ll(s) by
fg(s) = Z{f(t)g(u) : tu = s} . This makes zl(s) a Banach algebra,
the semigroup algebra. We imbed S in 21(8) as the co-ordinate
vectors. The semigroup ring k(S) = {f € zl(s) : £(s) = 0 except
for finitely many s} inherits this multiplication, and for an
arbitrary field F , we define FS to be {f ¢ FS : £(s) =0
except for finitely many s} and define multiplication as before.
Now if S has a zexro 0 , ® 1is an ideal of ll(s) and k(S) .

We regard the guotients lé (s) and ke(S) as functions with domain
S\{8} rather than as cosets. The same multiplication formula holds,
so we Qay write zl(s\{e}) or k(s\{6}) rather than Zé (s) or
kekS) . Similarly we define Fes to be functions on S\{8} , and

it is isomorphic to FS/F6 . If I 1is an ideal of s ,

é (S/I) and similarly for k(S) and FS . If s

1
2 (S)/Zl(I) >~k
. 1
has an involution we extend it to & (S) etcetera by f*(s) = f(s*)*

. .. . 1
This involution is isometric on £ (S) .
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CHAPTER 1

SEMILATTICES

Here we establish some basic properties of semilattices, which

we shall use later.

Definition 1.1

A subset J of E 1is called a filter if:
(1) when e 2 f and f € J then e € J ;

(1i) when e and f € J then ef € J ; and

(iii) JT#9 .

Proposition 1.2

There is a one-one correspondence between the characters on E

and its filters, given by
¢ <> {e ¢ E : ¢(e) =1} .
Proof
If ¢ 1is a characteron E , ¢ : E = {0, 1} .

Let J¢ ={eeE : ¢(e) =1} . Then J¢ is a filter, and

1l if e € J
¢

0 1if e ¢ J¢

¢ (e)

let J be a filter. Let
1 if e e J

Y_(e) =
J 0 if e g J

If ef ¢ J then e, £ € J and so wJ(ef) = wJ(e)wJ(f) .
If ef ¢ J then e ¢ J or f £ J , and then wJ(ef) = wJ(e)wJ(f) .

Thus §; is a character. a

1 if f =2 e

For e, £ ¢ E let we(f) =
0 otherwise.
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Proposition 1.3

et J be a filter. Direct J by = . Then for all e ¢ E ,

P_(e) = lim yY_(e) .
J fed £

Proof

Let J be a filter. If £, ge J then fge J and £, g = fg .
Therefore (J, 2) 1is a directed set, and so for each e, f » ¢f(e)
is a net. If e € J, we(e) = 1 and wf(e) = 1 whenever f < e ,

so lim ¥

(e) =1 . If e ¢ J , then wf(e) =0 forall feag. [
fed )

£

The following lemma is but a watered down version of Theorem 3.4,01[}4]
but the proof is simpler.

Lemma 1.4 (Wordingham [30])

1
{we : e ¢ E} segarates 1L (E) .

Proof
Without loss of generality, E 1is infinite.

Let X € zl(E) with we(x) =0 for all ee€¢ E, yet x # 0 .

n
Let ¢ = gm(E) with ¢(e) = f_q wu (e) for all e ¢ E . Such
i=1 i
a product will be called a product of we's . Let

F={eeE:ez2 u, for 1 <r <n}. Then F is a filter .
emply . If omply, 0&=0 for ol €EE, 50 Q=0 . If F i o fbr, thn
¢ =¢_ . Then for all e € E , ¢(e) = Lim y_(e) . JTh‘e 0 are
) feF £ £

uniformly bounded and converge pointwise on E , so they converge

weak*ly. So ¢(x) = lim wf(x) =0 .
feF

o
let x= ) ae_ with a e€ , a #0 and the e distinct.
& r r 1 r

r=1 *
@
Then Z a = wE(x) = lim we(x) =0 . For r 2 2 there exists f
r=1 * ecE r
such that . (e)) # ¥, (e) . Define ¢ < 27(E) by
r r

n wf (e) "wf (er)

¢n(e) = [—_7 3 z

_ Y. (e)) - Yple)
r=2 £.1 *«r

for e ¢ E .
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Then ¢_(e)) =1, ¢,(e ) =0 for 2 <r<n  and [|¢“H°° =

Then ¢n(x) =0 as ¢n is a sum of multiples of we's and wE ’
so lall < ) |ar[ - Thus a; =0, which is a contradiction. [J
r=n+l
1 . . . . 2 ,
x € 17 (E) is a minimal idempotent if x = x and, since
xex € Cx, xe=x or xe=0 for all e € E . Now if u, v € E
and u >v , then u - v is an idempotent. Then if w € E and

wasv,wu-v) =0, andif w2u , wu-v) =u-v.

Proposition 1.5

Let u € E . If Eu\{u} is the union of finitely many principal
n
ideals Evi , 1 <4i<n, then r—l (u - vi) is a minimal idempotent.
i=1
The value of this expression depends only on u and not on the choice
of principal ideals. All the minimal idempotents of ll(E) but the
zero of E (if it exists) are of this form.

Proof

Let ue E and Eu\{u} = }~/ Ev, . Then v, <u, so

n
r‘7 (u - v, ) 1is an idempotent. let weE. If wu=u, then
i=1

n

n

r“j (u - Vl = [ J(u - vi) . If wa<u, then wu e Ev for
i= i=1 *

some r . Then w(u - vr) = Wu - Wy, = wav, - wuv o= o . Thus

M - vi) is a minimal idempotent.

Now if X; <u, ue Supp(rj (u - X5 ). So if
171

s

m
Eu\{u} = \/ Ew, , (u - vi))(f—l(u - wj)) #0 , so

j=1

-
il
=

n

f'W (u - v, [~7(u - w.



Iet A A B denote
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(A\B) U (B\A) . We shall now determine the

minimal idempotents of £1(E) . Let O be the character space of

¢bE) . For ¢ e let g

S let

¢

1 if
Y, (e) =
S 0 if

for e ¢ E and extend to Zi(E) .

={ecE: dle) =1}

e e J
eg J

For e € E let Je

14

and for filter

{feE: £

A
Iet x be a minimal idempotent of $HE) and let X be its

Gelfand transform.

¢l(x) = ¢2(x) =

9, (xy) # ¢, (xy)

an open singleton.
non-empty subset U of E

for all ue U} ={¢ € Q :

1

Then %(Q) = {0, 1} .

Suppose

’ ¢l(y) # ¢2(y) for some vy € liiE) . Then

although xy ¢ Tx .

be Q\{y} , (3, AT)NnUFF.

¢

v

Therefore there exists

such that {y} = {¢ e

The proof splits into two cases.

Suppose Jw

element of E .

SO there exists

is a singleton, say {ul . The

Q

n

p(u) = Y(u) for ue W} .

Therefore Q_l(l) = {y} is
€ € (0, 1) and finite

[$(w - vw| < ¢

So for all

u 1is a maximal

Whenever g < u, Jg A J¢ ={e€eE:e#u and e >

e ¢ U such that

B={eu:ec U e#ul. Then B

Suppose J
1
there exists f

Un (Jf A Jw) c

€

U

eFu and e 2

g

. Let

is finite and non-empty.

is not a singleton. Suppose UnJ =@ . Now

¥

n Jw = @ , which

Jw such that J

u=)lle ;eeund,} . Then u €

U
n (Ju A Jw)

Suppose u

8]

¥

n (J \Ju) =g .

b

is not the minimal

# Je - Then
is impossible.
J, , and so

1

Therefore Ju

element of E

J
u

’

J

v

Let

CJ],’)

v

for if it is then

X =u. Then there exists f < u , and so Jf # Iy - But

el .

gl ,
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g # (g, 8 Jg) nU=-UnN {eeE:ex2f, e2u}= (U\Jw) n{eeE :e2=f}

Therefore there exists v € U such that v Zu and v =2 f , indeed

vu > f . Let B={vu : v e (U\J¢)} .

In either case, suppose u 1is not the minimal element of E .
Leg J be a filter distinct from Ju = Jw . If g £33 ,ue JA Ju .
If u e J there exists w e J such that w Zu , i.e. wu # u .
But there exists v € B such that v 2wu e J . Then v e J.

But v Z2u, so vedA Ju . Thus in either case,

({u}uB) n (T A Ju) A9 .

Now x is the unique solution to wu(x) =1, ¢J(X) =0 if

J # Ju . If ugJ, then v ¢gJ for all v e B, so

wJ(r1 (u-wv)) =0. If u e J and there exists v e B n J, then
veB

wJ(!_1(v -u)) =0. If ued and B n J =@ then
veB

({u}uB)n (JAJ)=¢, so J=J_ . But ¢y ([ Ju-v)) =1,
u u uVGB

SO x = r_](u -v) .

veEB

But if f <u , £ € BE , so Eul\{u} = \,} Ev , so all minimal
veB

idempotents are as described. 0
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CHAPTER 2

REPRESENTATIONS AND POSITIVE FUNCTIONALS

§1 Elementary Theory

First I give an account of the elementary theory of *-representations

and positive functionals.

Definition 2.1.1

Let A be a *-algebra. Then a Hilbert A-module is a Hilbert

space H with a module action such that <ag, n> = <&, a*n> and

{{lagl| : ||gl] < 1} is bounded for each a € a .

Definition 2.1.2

A *-representation of a *-algebra A is a *-homomorphism
from A to the bounded linear operators on some Hilbert space H .
A *-representation ® of A on H will be called irreducible if

T # 0 and the only closed subspaceskof H such that T(A)K < K are

O and Hm .

Given a *-representation 7 of A on H , we may equivalently

view H as a Hilbert A-module by af = m(a)t , and vice versa.

Definition 2.1.3

A positive functional f on *-algebra A is a linear functional

on A such that f(x*x) 20 for all x € A. Let f be a positive

functional on a *-algebra A . Then f is said to be Hermitian if
f(x*) = f(x)* for all x € A, and admissible if for all Y € A

there exists Ky > 0 such that f£(x*y*yx) < szf(x*x) for all x € A .

We shall now see the significance of the constant K above.
: Yy
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Let f be a positive functional on A . Then we can define an
inner product on A by <x, y>f = f(y*x) , and let
L = {ean: f(x*x) = 0} . Let Xe = A/L; . Then X, is a

pre-Hilbert space inheriting the above inner product. Let ]] llf

be the associated norm. Then we define an A-module structure on

Xf by a(x + Lf) = ax + Lf . Then

<a(x + Lf), y + Lg> = f(y*ax) = <x + Le, a*(y + Lf)> . But

H ax + Lfll 2f = f(x*a*ax) ; sSo A acts as bounded operators on H

if and only if f 1is admissible. Suppose f is admissible. Then
let H_ be the completion of Xf . Then the action of A extends to

£

make Hf a Hilbert A-module.

Now every non-degenerate Hilbert module can be decomposed into
an 2°-sum of cyclic Hilbert modules [25] Theorem 4.48. Let &

generate cyclic Hilbert module H . Then define f on A by

f(a) = <ag, &> . Then if 7 is the corresponding *-representation,

IN

supf || axe|| 2 : || x£]]? < 1)

”n(a*aﬂ{= sup{||an|12 : I‘nllz < 1}

A

sup{f (x*a*ax) : f(x*x) 1} .

Definition 2.1.4

A positive function £ 1is representable if there exists cyclic

Hilbert module H with cyclic vector & such that f(x) = <x£, &> .

Theorem 2.1.5

Let f and g be representable positive functions on *-algebra
A . Then if f(xy) = g(xy) for all x, y e A, then f =g .
Proof

[26] lemma 4.5.10.

The next result is well known.
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Lemma 2.1.6

let f be a positive functional on A . Then £ extends to
a positive functiond| on A if and only if it is self-adjoint and
there exists «k = 0 such that ]f(x)l2 < xf(x*x) for all x € A .

s fRe Aot x ‘ﬁv HRed (Lo

the least such extensionl ) is

VV\E'VA c% /\ueols

Proof

et g extend £ to Z . Then £ is self-adjoint, and
g((A1 + x)*(A1 + x)) = |A[2g(1) + A*£(x) + Af(x*) + £(x*x) 2 0

for all A e L . Therefore |£(x)|% < g(1)£(x*x) .

Conversely, let E(l) =K . Then

£((AL + x)*(A1 + x)) = |A[Zk + A*E(x) + A£(x)* + £(x*x)

v

[A]2¢ = 2{A[[(£(x))] + £(x*x)

[A]2c - 2|A|éf<x*x)5 + £(x*x)

v

1 1
(JAle? - £x*=0B220. O

Definition 2.1.7

If f can be so extended, the least such « is'called its

"essential norm" and denoted || £|| . ‘

Theorem 2.1.8

f 1is representable if and only if it can be extended to Z and

is admissible.

Proof
Necessity is clear. Let £ be the least extension to K .

Then the construction after definition 2.1.3 provides the representation.

g
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Definition 2.1.9

A linear seminorm [ | on a *-algebra is a B*-seminorm if
Ia*al = |a|2 for all a e a. A norm ] I on a *-algebra is a

C*-norm if it is a B*-seminorm.

Theorem 2.1.10 (Sebestyén [27]

Every B*-seminorm l l on a *-algebra satisfies

lab| < |a][p] .

§2  Uniform Admissibility Algebras

For a *-algebra an important consequence of having a complete
algebra norm is that every positive function is admissible and the
corresponding constants are independent of the function. This

follows from Ford's square root lemma, [4] proposition 12.11.

We examine the class of algebras with this property, and sidestep

the problems of completing and then examining the result.

Definition 2.2.1

A *-algebra A is a uniform admissibility algebra if for all
Yy € A there exists K _ 2 0 such that f(x*y*yx) < Kif(x*x) for

all x ¢ A whenever f 1is a positive functional on A .

Thus all positive functionals on a uniform admissibility
algebra are admissible and, by the argument after definition 2.1.3,
there is a greatest B*-seminorm, namely Iyl is the least K
satisfying the above definition. Examples are Banach *-algebras
([4] lemma 37.6), Husain and Warsi's BP*-algebras [15], Palmer's
U*-algebras [24], and inverse semigroup rings ovef C , as we

shall see below.
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Theorem 2.2.2

let G generate *-algebra A . Then if for all g € G there
2
exists Kg >0 such that £(x*g*gx) < Kgf(x*x) for all x € A
and positive functionals £ on A, A is a uniform admissibility

algebra.

Proof
let B = {z ¢ A : there exists Mz > 0 such that
f(x*z*zx) € M f(x*x) for all x € A and positive functionals £ on
z

B is closed under scalar multiplication. If f is positive, then

f(x*(g - h)*(g - h)x) = f(x*g*gx) + f(x*h*hx) - £(x*(g*h + h*g)x) 2 0 .

So if g, h e B then

£(x*(g + h)*(g + h)x) f(x*g*gx) + f£(x*h*hx) + f(x*(g*h + h*qg)x)

IA

2f (x*g*gx) + 2f(x*h*hx)

IA

2(Mg + Mh)f(x*x)

whenever x ¢ A and f 1is a positive functional on A ,so B is

14
closed under addition. If g, h € B then
< *
£(x*g*h*hgx) < M f(x*g*gx) < MM £{x*x) ,
so B is closed under multiplication.
-1 2
Mgf(x*x) - f(x*gg*x) = Mg f(X*((Mg - gg*) + g(Mg - g*g)’*IX) 20

if ge B, so B is closed under involution. Thus B = A . O

It is immediate that unitisations, direct sums (by decomposing
the positive functionals onto the summands), directed unions
(because the bounding constant is given by the greatest B*-seminorm.
and every B*-seminorm restricts to a B*-seminorm on each *-subalgebra)
and images, because positive functionals induce positive functionals
on the original algebra, are all uniform admissibility algebras.
Subalgebras need not be, for let S be the free semigroup in one
indeterminate. Then k(S8) < ll(S) , but the former has inadmissible

positive functionals and no greatest B*-seminorm.

al} .
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Proposition 2.2.3

et A and B Dbe uniform admissibility algebras. Then
A ® B is a uniform admissibility algebra.
Proof

Iet A and B be uniform admissibility algebras and £ be

a positive functional on A ® B , and let x = z X, ®y, € AB®B.
i
Then for ue€e A and v € B,

f(x*(u ® v)*u @ v)x) = X f(xj”fu*uxj ® yi*v*vyj) .

i,3

Now 2z - z f(x;zxj [ y;v*vyj) is a positive functional on
i,

~

A , and thus

izjf(xzu*uxj ® y;v*vyj) < ]u*u] izjf(xzxj ® y;v*vyj)
’ 7

where | | is the greatest B*-seminorm on A . Similarly

2 f(xij ® y;v*vyj) < Iv*v] Z_ f(x*ix. ® y*yj)

i3 i3 bt
where [ | is the greatest B*-seminorm on B . Thus
£(x*(u ® v)*(u ® v)x) < |u]2|v]|2f(x*x) . But the u ® v span

A ® B, so the positive functionals on A ® B are uniformly

admissible. O

Proposition 2.2.4

Let I be a *-ideal of a uniform admissibility algeﬁra.
Then I 1is a uniform admissibility algebra.
Proof

let £ be a positive functional on I . For x ¢ I, y € X,
let fx(y) = £(x*yx) . Then fx is a positive functional on X .
Let I ] be the greatest B*-seminorm on A . Then as fx is

representable, fX(y*y) < |y|2fx(1) = [ylzf(x*x) .
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Therefore, for all positive functionals £ on I and elements,

vy, x of I, f(x*y*yx) < ly[zf(x*x) . 4

Definition 2.2.5

let A be a *-algebra with a greatest B*-seminorm l ) .

Then the enveloping C*-algebra of A 1is the completion of

(A/I, | I) where I = {x e A : |x] = 0} , and is denoted C*(Aa) .
If I =0, A is called *-semisimple and will often be regarded
as a subalgebra of C*(a) . I 1is known as the *-radical, and is

a hereditary radical.

Then every *-representation 7 of A extends to a unique
*—representation T of C*(A) , and every *-representation =
of C*(A) induces a *-representation of A, and Tm is
irreducible if and only if ; is. Then for x € A ,
|x| = sup{||m(x)|| : ™ is a *-representation} = sup{||n(x)|] : =
is an irreducible *-representation:} , where sup g is defined

to be O .

Closely related to the idea of the proof of proposition 2.2.4
is the problem of extending *-representations from ideals to
algebras. Results using approximate identities can be found in
{7} and [17]. For arbitrary Banach *-algebras the result may be
found in Leptin [18]. Sebestyén [27] determines when a particular

representation may be extended.

A linear operator S on algebra A is a left multiplier if
S(xy) = (Sx)y for all x,y ¢A and similarly a linear operator T
on algebra A 1is a right multiplier if T(xy) = x(Ty) for all

X, Yy e A.
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The double centraliser [17] of A is the algebra of pairs

(S, T) of linear operators on A such that S 1is a left and T
a right multiplier and x(Sy) = (Tx)y with

A(S, T) = (AS, AT) for A1 e €

(S, T + (U, V) = (S+ U, T+ V)

(s, ™(U, V) = (su, VvT)
For x= (S, T) and a, b e A, let xa = Sa, ax = Ta , and
axb = a(Sb) = (Ta)b . Then any formal product of at least one
element of A and elements of the double centraliser is well

defined and independent of the bracketing.

Any involution on A can be lifted to the double centraliser

by (S, T)* = (T*, S*) where V*(x) = (V(x*))* .

Theorem 2.2.6

Let A be a uniform admissibility *-subalgebra of the double
centraliser of *-algebra B . Then any non-degenerate

*—representation m of B on H determines a unique *-representation

1?# of A on H such that w(ab) =nb(a)1r(b) .

Proof

I use the method of [28]4.1.

let A, B, H and 1 be as above. Without loss of generality,

A has a unit. Let I I be the greatest B*-seminorm on A .

For & = 2 m(b,)E, where b, ¢ B, £, ¢ H define f_ on A by
i 1771 i i £

fg(x) = g <n(xbi)6i, £> . Now for b € B, n € H,

<} m(xb,)E,, Moo = J <vomm e, no = ] <m(b)g,, m(x*b)n> ,
i i i

so f is well defined. Now

g
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£, (x*x) = iZj <m(x*xb )€y, MD,) £y i?j <m(bXx*xb )£, £

2
Hz w(xbi)EiH >0,

so f is positive. By hypothesis £ is admissible, and hence

g g

£, (x*x) < |x|2f (1) = |x|2]l5|]2 . Therefore

g g

T (x)(Z n(bi)gi) = 2 n(xbi)gi defines a bounded operator on w(B)H ,
i i

so can be extended to H = w(B)H , so ﬂb is a *-representation of

A on H .

Suppose T(a) were another such representation. Then
T{(a)g = nb(a)g for all £ ¢ w(B)H , which is dense in H ,

b

SO T =T . g

Corollary 2.2.7

Let I be a *-ideal of uniform admissibility algebra A .
Then every non-degenerate *-representation m®™ of I on H extends

to a unique *-representation of A on H .

Proof

et A, I, 7 and H be as above. We shall produce a
*~homo$morphism from A to the double centraliser of I , and thus

extend w .

For a € A define linear operators La and Ra on I by

Lax = ax and Rax = xXa . Then x(Lay) = x(ay) = (xa)y = (Rax)y

for x, y e I . L;x (Lax*)* = (ax*)* = xa* = R X , SO

* = * *
(Lar Ra) (Ral La) (La*l Ra*) . Now

(Lab' Rab) = (LaLb' RbRa) = (La' Ra)(Lb' Rb) + so T : a-~ (La’ Ra)

is a *-homomorphism from A to the double centraliser of I .
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Let WL be the *-representation of T(A) on H induced by w .
Then define ;r‘ on A by ;(a) = Wb(Ta) . No'w for x, ye I, Ee€H.
TA(TX)T(Y)E = T(TX)Y)E = T(x)m(Y)E , so m(x) =nm B = T
Then if a ¢ A and x € I , w(ax) = w((Ta)x) = ﬂb(Ta)n(x) = ;(a)w(x) .
Let 0 be a *-répresentation of A on H extending w . Then if
ae€dA and x € I, o(ax) =o(a)o(x) =o(a)m(x) , so

(6(a) - m(a))m(D)H = {0} so o(a) = m(a) . 0

Corollary 2.2.8

: A
Iet A and B be Banach *-algebras. Then C*(A ® B) = C*(A ® B) .

Proof
) ) A ) A
A®B 1is dense in A 8 B . Every *-representation of A @ B
restrictes to a *-representation of A ® B . Every *-representation
7 of A ®B gives rise to *-representatims Ta of A and TS

of B such that 7w(a ® b) = nA(a)wB(b) = nB(b)nA(a) , which extends

A .
to A ® B by the continuity of 7 and T and the nature of the

A B
norm of A8 B . g
A norm ]I || on the tensor product of normed spaces A and
B is called a cross-norm if [Ia ® bll = l]allllbll for all

aeA and b € B

Corollary 2.2.9 (Guichardet [12])

The greatest B*-seminorm on the tensor product of C*-algebras

is a cross-norm.

Definition 2.2.10

The completion of the tensor product of C*-algebras A and B

in the greatest B*-seminorm (which is a norm) will be denoted by

A8 B .
max
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Corollary 2.2.11

C*(A ® B) = C*(A) ®max C*(B) for uniform admissibility algebras.

Proof

(8/,

. ) . .
*rad (a) ) is dense in C*{(A) ® C*(B) . Every

) ® (B/ rada(s)
*-representation of C*(A) Qmax C*(B) restricts and then lifts to

a *-representation of A ® B . Every *-representation m of A ® B
gives rise to *-representatiors L of A and s of B such that

m(a ® b) = nA(a)ﬂB(b) = nB(b)WA(a) , which induces a *-representation

of C*(A) ® C*(B) , and then extends to C*(A) Qmax C*(B) . 4

Ieptin et alii [2] established the next result for Banach

*-algebras.

Let I be a *-ideal of A . Now let | ]A be the maximal
B*-seminorm on A , and | II be the maximal B*-seminorm on I .
Then for x e I, |x|I = |x|A y S0 C*(I) naturally embeds as a

*~ideal of C*(A)-. If A -+ A/I is the gquotient homomorphism, then
A+ A/I » C*(A/I) 1is a *-homomorphism where the second map is the
natural one to the enveloping C*-algebra. Then this induces a

natural map C*(A) - C*(A/I) . L

Corollary 2.2.12

Let I .be a *-ideal of uniform admissibility algebra A .

Then if all the maps are canonical,

0 vy T — A ——+ A/ ——— 0
0 ——— C*(I) — ¢&*(A)— C*(a/I) — 0

commutes and the horizontal sequences are exact.

Proof

Let us label some of the maps as follows:
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0 — C*(I) ——» C*(A) ——5———§ c*(a/1I) —> 0
2 2
All that remains to be established is that i2(C*(I)) = Ker B -

Now “Qplll =0, so p212nI =0, so i nI(I) c Ker p, - But

2
nI(I) is dense in C*(I) , so i2(C*(I)) c Ker p, -

Let x € Ker(pz) . Then there exists (an) € A such that
. .
ﬂA(an) -+ X . Then ﬂQpl(an) >0 . Any representation w® of A
such that KerTr > I gives a *-representation of C*(A/I) . Define
Yy on A by y(z) = nA(z) + wA(I) ;, SO Y : A > wA(A)/wA(I) .
Then w(an) -0 . Therefore there exists (in) c I such that

HTrA(an) - TrA(in)H +0 . Therefore x e m,(I) =i (Ccx(1)). O

§3 Inverse Semigroup Rings

We now apply some of this theory to inverse semigroup rings.

Theorem 2.3.1

Let S be an involutive semigroup in which for all s € S ,
s*s 1is an idempotent. Then

(i) if k(S) has proper involution, i.e. x*x = 0 only

if x =0, then S 1is an inverse semigroup, and

(ii) k(S) is a uniform admissibility algebra.

Proof

(1) Let s € S . Then

(s - ss*s)*(s - ss*s) = (s* - s*ss*) (s - ss*s) = g*s - 2(s*s)2 + (s*s)3 =0 .

Thus s = ss*s ., et e = e2 €S . Then
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(e - e*)3 = (e -~ e*) (e — e*e - ee* + e*) = e - ee*e - ee* + ee*
- e*e + e*e - e*ee* + e* = 0 .
. . . 4 2
But h = i(e - e*) is self-adjoint, and h =0 . So h =20,
so h=0, so e=e*. Thus the idempotents commute. Suppose
aba=a , bab=b and aca = a, cac =c¢ . Then
ab = (aca)b = (ac) (ab) = abac = ac , and similarly ba = ca . Then

b = bab = bac = cac = c , so S is an inverse semigroup.

{

(ii) Let s € S and x € k(S) and f be a positive functioﬁ\on
5

k(s) . Then . (1 - s*s)” = (1 - s*s) , so

f(x*(1 - s*s)x) = f(x*x) - £(x*s*sx) 20 for all x ¢ k(S) . Then

K<) o Mi}(&?m ﬂa‘t'hhsi'&&k% O'Z’j‘ bhewr EZ thoerem 2.2.2, . 0

Some conditions must be imposed to force inverseness, Since

there exists semigroups such that s*s is idempotent but s = ss*s

may fail, and semigroups such that s*s is idempotent and s = ss*s

yet are not inverse semigroups.

Proposition 2.3.2

tnvelv b )
Let S Dbe an inwerse semigroup with S = S . Then every

positive functional on k(S) is Hermitian.

Proof

et s = tu . Then f(s)* = £(tu)* = f(u*t*) = f(s*) , the
conbraf m&g res«/ﬁ:? ﬁ—m L4 lmma 37 6],

Definition 2.3.3

A net (ua) is an ultimate identity if uax = xua = x

eventually.

Lemma 2.3.4
Let S be an inverse semigroup. Then k(S) has a self-

adjoint idempotent ultimate identity.
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Proof

Let £ Dbe the set of finite subsets of E ordered by inclusion.

S
For Fe £, let u_=1- r—](l -e) . Then (u_) is a
F F ' Fek
e€eF
self-adjoint idempotent ultimate identity. 0

This contrasts strongly with the fact that 21(5) may lack a
bounded approximate identity, for Duncan and Namioka [9] proved
that il(s) has a bounded approximate identity if and only if there
is a finite k such that every finite s;bset of E lies in the

S
union of k principal ideals of ES . When it exists, their
bounded approximate identity is an ultimate identity for k(S) .

We can use these self-adjoint idempotent ultimate identities to

test for representability.

Lemma 2.3.5

Let S be an inverse semigroup and (ua) be a self-adjoint
idempotent ultimate identity for k(8) . Then for positive £
and ¢ 2 0 , the following are equivalent:

(1) |£(x) |2 s cf(x*x) for all x € k (8) ;

(ii) l&m f(ua) <k ;

‘s <
(iii) sgp f(ua) <K .

Proof

(i) ===> (iii)

Assume (i) holds. Let E be an extension of f with

(1) = «. Then £(1 - u,) 20, so sup f(u) < F(1) =«

(iii) ==» (ii)

Assume (iii) holds. Given o there exists B8 such that for

I
=
1
[
n
(o}

> = = - 2_
all vy =28 , uYua uauY u, - Then (uY ua)

A
P2

> 1 =
f(uY) 2 f(ua) . Therefore lém f(ua) sgp f(ua)
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(ii) === (i)

Assume (ii) holds. Given x € k(S) , uax =xu, =X for a
large enough. ‘Then

0 < flu - Ax)*(u - Ax)) = £(u ) = AE(x) - A*E(x)* + [A]2£ (x*x) .
so |£(x)]2 < £(u ) E(x*x) . Thus

l£(x) |2 < lim £(u )£ (x*x) £ f(x*x) . 0

We now extend a result of Godement [13] from groups to

involutive semigroups.

Lemma 2.3.6
Let (aij) and (bij) be positive n x n matrices, i.e.

2 E* E. 2 0 for all (£,)._. . ‘Then (a, b,.) is also

iTij’3 i"i=1 ij 1]
positive.
Proof
I - i siti h LL) = L) * (e,
£ (alj) s posi }ve, then (alj) (clj) (clj) for some
matrix (c..) , where (c..)* = (c*.) , and if (b,.) 1is positive
ij i ji ij

then (b,.) = (4,.)*(d,.) , say . Then
ij ij ij

It

)  E*c*.c .d*.d .E.

.b
z gl ij ng] iki'kj 11 1373 -

i,3 i,j.k,1

2 X(C d,.£.)* Ec d, L&,
x,1 i ki 1i~i 3 kj 1375

2
kgllz ¢, d4;;8 1220 . 0

Corollary 2.3.7

For £ and g positive functionals on k(S) , define fg

by £fg(s) = f(s)g(s) . Then fg 1is a positive functional.
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Proof

Iet x € k(S) and £ and g be positive functionals on

k(s) . et I = supp(x) . Then let a_, = f(s*t) and

b, = g(s*) . Then fg(x*x) 20 by lemma 2.3.6. U

§4 The Left Regular *-Representation of Inverse Semigroups

In this section S will be an inverse semigroup. We will

study the analogue of the left regular representation of a group.

By the proof of theorem 2.3.1, every *—-representation of
ke(s) extends to zé(s) , and vice versa by restriction. We will
now show that zé(s) is *-semisimple. The proof is very similar

to that for groups.

For a homomorphism T from one algebra to another, T* will
denote the corresponding algebraic adjoint, and will be used solely
as a notational device. For Banach space homomorphismsit will

denote the topological adjoint.

Definition 2.4.1 (Barnes [1])

We can define the left regular "*-representation" of ke(s)

on ke(s) by

ab if a*ab = b
As(a)b =
0 otherwise
for a -rand b in S , and extending by linearity. Then we extend
it to the left regular *-representation of Qé(s) on lg(s) by
continuity. Note that if ab =6 and a*ab=Db then b =268 .
Now for a, b, c € S, AS(a)b =¢c &€=> ab = ¢ and

a*ab = b <= b = a*c and aa*c = ¢ &> b = ks(a*)c , SO it is

*-representation. We shall sometimes write Ax for As(x) .
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Theorem 2.4.2 (Wordingham [30])

The left regular *-representation of 2%(8) on 2%(8) is

faithful.

Proof

We shall regard 2%(8) as a subspace of 2%(8) .

Let x ¢ z%(S) and suppose Ax =0 . Then for all
e € E\{8} , Axe =0 . For e ¢ E\{8} , define X, by xe(s) = x(s)
if s*s = e and 0 otherwise. Then xe € JLle(S) and

X = Z_ Xg For £ ¢ E ,
ecE\{6}

x f if e =2 £
e

e 0 otherwise .

Pick u € E\{f} and let F={ee€E : e 2 u} . Then F is

a semilattice. Then for £ ¢ F, A f = 2 xf=0, so
b e
exf
0= (le)u = z xefu = 2 X u . Now
e2f exf

nglleulI < fgFllell < [l=ll

so let us define w_ e 1Y(F) by @ (£) = (x0)(s) . But for all
fePF, Z ws(e) = Z xeu(s) =0, so by lemma LIV w, = 0 .
exf ex>f
Now xu = xuu , SO xu(s) = xuu(s) = ws(u) =0, so xu =0
But u was arbitrary, so x =0 . g

Barnes [1] proved 2%(5) had a faithful *-representation by
imbedding it in an inverse semigroup algebra whose semilattice was
a lattice, and proving that the latter's left regular *-representation

was faithful. The fiddlity of the corresponding representation of

ke(s) is easier to show, (W.D. Munn, personal communication).
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The following theorem makes the structure of the left regular

*~representation easier to examine. Recall the Green's equivalences

1, and 3) .

Theorem 2.4.3

For e € E , let Le ={s €85 : s*s = e} . Each 2?(Le)
with e # 6 is a Hilbert 2YS)-module under the left regular
*—representation, and if e t)f then 2?(Le) and 2?(Lf) are

isomorphic Hilbert modules.

Proof
let s €S and e € E . Then if t € Le ' Ast =0 or st.

If Aét = st , then s*st =t , so t*s*st = t*t , so st e L, -

Therefore gz(Le) is an zé(s)-module, and thus a Hilbert

lé(s)-module.

If e {f then by definition there exists x € S such that
e = xx* and f = x*x . Then if s*s = e , x*s*sx = x*ex = f
Let e Le > Lf by w(s) = sx . Now Tm(s)x* = sxx* = se = s

for s ¢ Le + SO w 1is an injection. If t e Lf , EX* € Le

and w(tx*) = tx*x = tf =t , so 7 is a bijection. Thus w

lifts to a Hilbert space isomorphism. Let s € Le and t e S .

Then
tsx 1f t*t 2 sxx*g* = sg*
A lm(s)) = At(sx) = . = W(KtS) '
0] otherwise
so EZ(Le) and Rz(Lf) are isomorphic Hilbert modules. 0
Note that if I is an ideal and e € E , then Le c I or
LNI=¢g. Then 2°(s) =22(s\1) @ 22(I) is a Hilbert

2! (s) -module decomposition.
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The claim of the left regular *-representation to be a

generalisation of the left regular representation of a group is

further strengthened by the following two results.

Proposition 2.4.4

Let A(p) denote the left regular representation of S on
gp(s) defined as in definition 2.4.1. Then for

*
l<p<wx, AS(P) = Asiq) , where

1]
=
&
Q
b

=+
P

Qaj-

Proof
Let £ € zp(s) -and g € zq(s) .

Then

<g, As(p)f> T{g(t) £(s*t) : ssat = t}

*

[{gtew e : s*su=u} = o Pg, & . 0

Theorem 2.4.5

Let & be left translation by s . (Then for f 11 (s) ,
ls(f)(t) = E{f(u) : t = su} .) Let 4 be ameanon S . Then u

is f-invariant if and only if it is A-invariant.

Proof

et s, x€ 85 . Then Qx*xs = x*xs . Now (x*x)x*xs = x*xs

so Af. s = xx*xs =xs =4 s .
XX*x X

X*xs 1if x*xs = s

A ,,S =
x*x .
0 otherwise .
xs 1if x*xs = x
L Ax*xs = =. \As .
X ¢} otherwise X
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Therefore A 2 = 2 and 2 A =X . Therefore
X X*x X X X*x X
A * k% = gkk gnd QEFAXE = Hkk Let p be an %-invariant
X T X*x X X X*x X

mean. Then

Ax* 4y = X*; lgzxu by %-invariance
X
= Q%%
= gx u

It

v by 2-invariance,
so u 1is A-invariant. Similarly, if u 1is A-invariant, y

is f-invariant. O

Let C*(S) denote C*(k(S)) = C*(21(s)) and Cg(s) denote
C*(ke(s)) = c*(zé(s)) . We may write C*(S\I) for Ca(S/I) .
Let C;(S) denote the completion of As(ll(s)) , and
C;’G(S) denote the completion of XS(Ré(S)) , etc.. The

question naturally arises of when C*(S) = C;(S) , or

cz(s) = C;,e(S) .

A *-representation S of *-algebra is said to weakly contain

another *-representation T if there is a *-homomorphism U such

that
S(A)
S
A U
< ’
T (A)

commutes. Proposition 2.4.8 and theorem 2.4.9, from Fell [10],
are the crucial lemmas in the discussion of this gquestion.

Recall my definition of essential norm, definition 2.1.7.

Notation 2.4.6

For A a *-algebra, let A*t be the set of positive
functionals on A and let P(A) be the set of positive functionals

on A of essential norm < 1 .
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The importance of these results is that we need only consider
positive functionals on the *-algebras. If T is a *-representation
of A and f a positive functional on E?KT ' then £ induces
a positive functional on -A , namely x > £(Tx) , of the same
essential norm, as we show beiow. The set of such functionals is

denoted T*(T(A)*+) rather than (T(A)*H)T .

Proposition 2.4.7

Let m be a *-representation of *-algebra A and let £ be

a positive functional on w(Aa) . Then ]]n*(f)l] = ]]f]] .
Proof
Clearly Ilw*(f)ll < lLfI] . Now
| £(m @) |2 < [[nx() || £(mix*x)) .
Therefore || £]| = || m*(£)|| by continuity of £ on T(A) . 0

Proposition 2.4.8

Let m™ be a *-representation of A on H . Then
™ (P(w(A))) is the weak*-closure of the convex hull of

{x > <m(x)g, £> : £ e H and ||g|] <1} .

Proof

Fell {10] theorem 1l.1. O

Theorem 2.4.9

Let S and T be *-representations of A . The following
are equivalent:

(1) S*(S(@)**) > T*(T(A)*)

(i) S*(P(S(A))) > T*(P(T(A)))

(1ii) s weakly contains T .
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Proof

(i) e (ii)

By proposition 2.4.7.

(ii) === (iii)

Suppose (ii) holds. Then

|| 7x|| = sup{f(x*x) : £ ¢ T*(P(TA)))} < sup{f(x*x) : £ e S*(P(5(A)))}
= [l sx|| .
Define U : S(A) - T(A) by U(S(x)) = Tx . Then U 1is continuous,

so it can be extended to S(A) by continuity.

(iii) == (i)

Suppose (iii) holds. Then

A
s T
s(a) > T(A)
U
commutes, and U is a *-homomorphism. Let ¢ € T(RA)*t . Then

u*¢ € S(A)*t . Then for x € A, T*$(x) = ¢(Tx) = ¢(USX) = S*U*¢p(x) ,

so T*¢ = S*(U*p) . u

One says an inverse semigroup S has the weak containment
property (abbreviated w.c.p.) if AS weakly contains all other

*-representations of S , i.e. if C*(S) = C;(S) , regarding the

algebras as completions of zl(S) . I will not equate them if

they should be isomorphic but with no isomorphism of this form.

Lemma 2.4.10

Let A be a C*-algebra, I an ideal theéof, and H a faithful
Hilbert A-module. Then if x € annA(I) , either x = 0 or there

exists £ € H such that =x& ¢ H .
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Proof

annA(I) is a closed ideal, so it is a *~ideal. Let

X € AnnA(I) ' g € H . Suppose x& € IH for all & € H. Then

N
n
$ = 1lim a
x§ n>® r=1 n,r gn,r
where a c I and c .
( n,r) n (En,r) H Then
*x ll * = .
xIXE = 3 rgl xTay, rgn,r 0
Therefore x*x =0, so x =20 . 0

Theorem 2.4.11

Let I be an ideal of inverse semigroup S . If

C*(I) = c;(I) and Cg(S/I) = C; e(S/I) then C*(S) = C;(S)

Proof

Suppose C*(I) = C;(I) and Cg(S/I)= C;'e(S/I) .

Let x € C*(S) . Now there exist (yn) c ke(S/I) and
= 1 1 *
(zn) c k(I) such that x lﬁm (yn + zn) in C*(S) . Suppose

As(x) =0 . Then As(xa) =0 for all a e€ C*(I) . xa € C*(I) ,

so A_(xa) = A (xa)l =0 . But C*(I) = C*(I) , so xa =0 .

I S 42 r

(1)
Similarly ax = 0 for all a € C*(I) . Thus x € annc*(s)c*(l) .
2.2 0L 5
By corollary £2, C*(S)/C*(I) = C;(S/I) . Let £ € &7(S/1) . Then
* = 1 + * =

AS/I(X + c*(I))¢ %5§ S/I(y z * C*(I)) ¢ ll S/I(y )€

It
o

= lim Agly, + 2 )€ = A (0

Therefore x € C*(I) . Therefore x =0 . O
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Theorem 2.4.12

let S be an inverse semigroup with zero. Then

C*(8) = C;(S) if and only if cg(S) = C* _(S) .

Proof

cg(s) = C; (S) implies C*(S) C;(S) by theorem 2.4.11.
Suppose C*(S) = C;(S) . let % € C*¥(S) and & ¢ zg(s) .

We shall use coset notation.

AS\{e}(x +TC 0)(E+L o) = Ag(x) & + a e .

Suppose AS\{G}(X +C 0)f =0 for all £ e 22(s\{8}) . Then
A (R)E € Co for all £ e 22(s) . TLet ud = Ag(x)8 .  Then

As(x - 1) € ‘ann (€CH) . But Xs(x - u8)g ¢ €98 for all

C*(S)
£ e 22(S) , so by lemma 2.4.10, x = p8 . Therefore AS\{G}
is faithful on cg(s) . 0

Theorem 2.4.13

Let I be an ideal of inverse semigroup S . If

C*(S) = C*(S) , then C*(I) = C*(I)
r r

Proof

Suppose C*(S) = C;(S) .

Now 22(S) = 22(s\I) @ 22(I) , and this is a Hilbert module

decomposition. For x e 21(s) ’

'IXIIC*(S) = I)ASXII SUP{IIAXE,lZ A 22(5)
ma [lell, = 1)

So for x € 21(1)

’ llxllc*(l) = llx‘lc*(s) by corollary 2.2.7,
= max{sup{[[ A, &][ , : £ € 22(D) and Nell, =11, =
sup{,]kxgllz : £ € 2%(s\I) and ],gllz =1} = ],AI(x)[, . g

We have not in general been able to decide whether Rees

quotients of semigroups with the w.c.p. have the w.c.p..
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Theorem 2.4.14

ILet S have w.c.p. and I Dbe an ideal of S with C*(I)
having an identity u, and S\I a subsemigroup. Then S\I

has the w.c.p.

Proof

Let S, I and u be as above. Let R = S\I . Then
2 2 2 .
27(8) = L7(R) & 27 (I) , and this decomposes AS . Now for
x € k(R) , As(x(l - u))kz(l) =0 , and

Agx(1 - w)) | = Ag(x) = A (x) IQZ(R) . Let P : k(S) > k(R

22(R)
be the canonical homomorphism. Then P is a *-homomorphism, so
XSP is a *-representation of k(S) , so for all =z ¢ k(I) ,

IIASP(x)II < ||As(x +2z)|| . Now AP 1is a *-representation of

S, so for x € k(R) < k(S) ,

A ] = [[agx@ - an || = [[age || = |[apeal] < |[ageall -

Let T be a *-representation of R . Then TP 1is a
*-representation of S , so for x € k(R) ,

| || = || ex|| < |‘AS(X)l| = llkk(x)[! , so R has w.c.p. O

Let us recall the structure of the minimal idempotents of

ll(E) (proposition 1.5).

Corollary 2.4.15

Let S be a Clifford semigroup with the weak containment
property. Then every subgroup of S is amenable if
(i) S is E~unitary, or

(ii) for all e € E_, , there exists el, ceey en € E

S S

such that for all f < e , there exists i ¢ {1, ..., n}

such that f < ei < e and each e.l < e .
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Proof
(i) is [25] proposition 3.7(i) .

(ii) Theorem 2.4.14. 0

Notation 2.4.16

For C*-algebras A and B , let A ®min B be the closure

of A ® B in the least C*-norm, which exists by [28] 4.9.

Lemma 2.4.17

C;(S) ® in C;(T) = C;(S x T) .

Proof
By [28] 4.9, (Ag, 22(s)) ® (s 22(T)) is a faithful
*~representation of C*(s) ® . C*(T) . But for s, ue S
r min r

and t, veT,

su ® tv if s*su = u
= = * =
(AS(S) ® AT(t))(u ® V) As(s)u ® AT(t)v t*tv u
0 otherwise.
and

(su, tv) if s*su=u and t*tv=v
Ag pl(s, ©) (8, v) =

0 otherwise.

But 2%8 x T) is the Hilbert space tensor product of  22(S)

and 2%(T) . d

For I an index set, let MI be the Brandt semigroup

/%0(1, {1}) . Now ke(MI) = y{k (MF) : FcI and F is finite} .

Let A be a C*-algebra.: For F £finite, ke(MF) ® A is
complete under any C*-norm. But
ke(MI) ® A = U{(ke(MF) ®A4) : FcI and F is finite} which is

an upwards directed union of C*-algebras, so ke(MI) has a

and



41

unique C*-norm and so does C;(MI) @ A ., Thus in particular,

* =C* (M) ® ., A.
Ce(MI) @max A r'e( I) in

lemma 2.4.18

Let,ﬂ{o(I, G) be the Brandt semigroup with index set I and
group G . Then ﬂLO(I, G) has the weak containment property iff

G is amenable.

" Proof

ke()AO(I, G)) =k (MI) ® k(G) , so

8
* = =

Ce(xtogI.G)) C*(ke(MI) ® k(G)) cg(MI) @max C*(G) .

As in lemma 2.4.17,

* = . =
Cr’e(ﬁLo(I,G)) C;’G(MI) @min C;(G) cg(MI) @max C;(G) .

If these two algebras induce the same C*-norm on k(jmo(I, G)) then
C*(G) = C;(G) , SO0 G 1is amenable. Similarly, they are equal

if G is amenable. B

This result can alsco be proved by following the method for

groups, using lemma 2.3.5 with the ultimate identity 2 e.; -
ieF

Recall corollary 2.2.7.

Lemma 2.4.19

Let. I be a *-ideal of uniform admissibility algebra A .
Let S be a *-representation of A , and let T be a non-degenerate
*-representation of I . Then if S I weakly contains T ,

S weakly contains the extension T of T to a *-representation of

A on the same Hilbert space.
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Proof
Let T represent I non-degenerately on H . ILet U be

the *-homomorphism such that

(1)
S
I U
T(I)
commutes. Then U is a *-representation of S(I) on H . Let
U be its extension to §(a) . Let x € A . Then for all

Y e I, U(Sx)Ty = U(Sx)U(Sy) = U((Sx*Sy)) = U(Sxy) = Txy = TxTy
///////;L//////Qas
\
¥
T ()

Then G(Sx) = Ex , SO

(a)

al

A

commutes. B

Corollary 2.4.20

Let J and K be ideals of an inverse semigroup S which have

the w.c.p. Then J u K has the weak containment property.

Proof

Let T be an irreducible *-representation of J U K on H .

But T(J)H and T(K)H are invariant subspaces of H , so
H= T(J)H or H = T(K)H . Suppose the former. By hypothesis,
AJUK] = AJ weakly contains TIJ . But T 1is the extension of
K{J)
| 2k
T| to JUK, so A contains T by lemma 69. Similarly in

J JuK
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the other cases. Therefore AJUK weakly contains every irreducible
*-representation of J 8 K , and thus every *-representation

thereof. ' g

Theorem 2.4.21

Let K be an inverse semigroup. Then either no ideal of S
has the weak containment property, or S has a greatest ideal with

the weak containment property.

Proof
Suppose S does have an ideal with the w.c.p. Let
I={1cs: 1 is an ideal and has the w.c.p.} . Let M=yt .

Then M is an ideal of S .

Suopose M lacks the weak containment property. Then there

exists *-representation T of M and x € k(M) such that

n
IllMxll < lx|] . Let x = izlgisi , and say s €I, ¢ T .

n .
Then J = kj Ii has the weak containment property by corollary 2,4.20
i=1

so ||AMx|| 2 |[ij|] > || x|l > ]l}Mxll , which is absurd. [

Definition 2.4.22

A semilattice is well-founded if every non-empty subset has a

minimal element.

Corollary 2.4.23

Let S be an inverse semigroup with well-founded semilattice

and all of its subgroups be amenable. Then S has the w.c.p.

Proof
Without loss of generality, S has a zero element.

Now {6} has the weak containment property.
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et M be the greatest ideal of S having the weak contain-
ment property. Suppose M# S . Now S/M is an inverse semigroup
with well-founded semilattice, and all of its subgroups are
amenable. Let e be a primitive idempotent of S/M . Let
I = (S/M)e(S/M) . Then I 1is a Brandt semigroup by theorem 0.2,
so has the w.c.p.. Then I\{M} u:M is an ideal of S , and has

the w.c.p. by theorem 2.4.10, contradicting the maximality of M . [J
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CHAPTER 3

SYMMETRIC SEMIGROUP ALGEBRAS

§1 Symmetry and its Analogues

A *-algebra A 1is said to be symmetric if -x*x 1is quasi-

[0, ©») for all

regular, or, equivalently, if Sp(x*x) c IR+
X € A . A *-algebra is said to be Hermitian if Sp(h) < IR
whenever h = h* . For a Banach *-algebra these properties are
equivalent. In general they are not. In a symmetric Banach
*-algebra the spectral radius of a self-adjoint element is its norm
under the greatest B*-seminorm, and this inequality implies symmetry

for Banach *-algebras.

First we shall examine equivalent conditions to the last
mentioned inequality. I start by establishing some technical

results.

Definition 3.1.1

A non-empty subset W of a real vector space is a wedge if for
+
all x, yeW and ae IR , x, x+veW. We will write x 2 vy

if x -y e WwW. We do not require that W n (-w) = {0} .

Theorem 3.1.2 - The Krein Extension Lemma

Let M be a subspace of real vector space X wifh wedge W
with e € M n W such that for each x € X, e + Ax € W for small
enough X . Then if f is a linear functional on M with
f(x) =20 .for all xe MnW , f extends to a linear functional g
on X with g(x) 2 0 for all x € W .

Proof

Bourbaki demands that W be a cone.



46

Let M, X, W, e and f be as above. Let

S={gcXx IR ; g is a function, dom(g) is a linear subspace
of X containing M , g is linear, gIM = f , and g(x) 20
for all x € dom(g) n W} . Now f € s . Then ordering s

by inclusion, by Zorn's lemma S has a maximal element g .

Suppose dom(g) # X .

Now let h ¢ X\dom(g) . Without loss of generality, e + x ,
e - X €W. Then if m, n e M and m - x, X - n € W, g(m) 2 g(n) .
Thus inf{g(m) : me M and m - x € W} 2 sup{g(m) : x - m e W and
m e M} . Let K be any number between these values. Then define
E on dom(g) + IRx by g(y + oax) = g(y) + aK for y € dom(g), o € IR .

Then g € S , contradicting the maximality of g . Thus

X = dom(g) . 0

This result can be applied to *-algebras because functionals on

the self-adjoint part extend to the whole algebra by linearity.

Now for A a uniform admissibility algebra, let K(A) be
{h € sym(Aa) : £(h) 2 0 whenever f is a representable positive
functional} . Let | | be the greatest B*-seminorm on A . Then
if A ‘has no representable positive functions, KX(A) = sym(A) .
Now suppose A has an identity. If A has representable positive
functionals, |1| =1 . Then if h e sym(d), |h| - h and

lh| + h 1lie in K(a) .

Lemma 3.1.3
Let A be a uniform admissibility algebra. Then if h € K(A)

and x € A then x*hx € K(a) .
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Proof

ILet h e K(A) and x € A . et T : A= C*¥(A) be the natural
map. Then for every positive functional £ on C*(A), £(Th) =2 0 .
Thus Th =2 0 , so there exists y € C*(a) such that Th = y*y .
Now every representable positive function f on A extends to a

positive function f on C*(Aa) . Then

£(x*hx) = £((Tx)*(Th) (Tx)) = £(Tx)*y*y(Tx)) =0 , so x*hx e K(a) . O

The characterisation of symmetry of Banach *-algebras by

positive functionals as below is due to Leptin [19].

Theorem 3.14

Iet A Dbe a uniform admissibility algebra. The following are

equivalent:
(i) sp(h) n IR ¢ IRT for all h e K(A) .
+ ~
(ii) sp(h) n IR ¢ IR for all h € K(a) .,

(iii) sp(h) © IR’ for all h € K(a) .

N

(iv) Sp(h) < IR+ for all h € K(X) .
(v) Every proper left ideal of Z is annihilated by a
non-zero positive functional.

(vi) Every proper modular left ideal of A is annihilated
by a non-zero representable positive functional.

(vii) Every proper modular left ideal of A is annihilated
by a non~zero positive functional.

(viii) p(h) = |h| for all h e sym(n), where p(h) =0 if

Sp(hy = ¢ .

Proof

(i) s> (ii)

As Doran [8], we remove characters from the argument of Civin
and Yood [5]. Suppose (i) holds. et o + h € K(X) with

o e IR and h € sym(d) .
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Since ¢(x + A) = A for x e A and A €U 1is a positive
function on X , o =20 . (a)
Also h(a + hyh € K{(a) . (b)

Suppose A € Sp(h) n IR . Then A(a + A)A =2 0 by hypothesis,

+
so A=0 or a+XA 20, so Sp{a +h) nIR < IR .

(ii) == (iii)

Suppose (ii) holds and a + iB € Sp(h), o, B € IR and h e K(Aa) .
Then iB ¢ Sp(h - a) , so -B2 e splh - @)2) . But (h - a)2 € K(A) ,

+
so -82 20, so B=20. Then o 20, so Sp(h) ¢ IR .

(iii) => (iv)

As (i) ==» (iii).

(iv) == (v)

Assume (iv) and let L be a proper left ideal of a . Define
f on sym(L + IR1) by £(x + A1) = A for x € sym(L) y € IR
Now either f(z) 2 0 when 2z € sym(L + IR1) n K(K) or there exists
x € sym{(L) and A > 0 such that x - A =w € K(X) . Then
X = A +w which is invertible, so x ¢ L . Then f extends to a
positive function on 2 by theorem 3.1.2. Then for y e L ,

|£(y) |2 < £(L)E(y*y) =0 .

(v) ==> (vi)

Assume (v) and let L be a proper left ideal of A with right

modular unit e . Then L + L (1 - e) is a proper left ideal of

A . Let f be a non-zero positive functional on A annihilating

L+ (1 -¢e). Then f(e) = £(1) # 0 , so £ A is a non-zero

representable positive functional on A annihilating L .
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(vi) ose==> (vii)

A fortiori.

(vii) ===> (vi)

Assume (vii) and let L be a proper left ideal of A with
right modular unit e . Let f Dbe a non-zero positive functional
on A annihilating L . Then for x € A , f(x) = f(xe) . Then
f(x) = f(xe) = (f(e*x*))* = (f(e*x*e))* = f(e*xe) , so f 1is a

representable positive functional.

(Vi) smemmp (i)

Let h € K(A) and suppose -h is left quasisingular. Then

L =2A(1 + h) is a proper modular ideal. Suppose f is a

fl
(@]

representable positive functional annihilating L . f(h + h2)

0o . Then for x € A ,

But f£(h) , £(h°) 20 , so £(h) = £(h%)
2

|£(xh) |2 < £(xx*)£(h°) =0, so f(x) = f(x+xh) =0, so £=0

Thus (vi) fails.

(iv) == (viii)

Assume (iv) . Let h e sym(a) . If yu > lh]2 , then there
exists v € IR such that u > v > |h|2 ,

so v - |h|2 € K(R) . (c)

Then yu - |h|2 = (- v) + (v - |h|2) which is invertible, so
b ¢ Sp(h®) . Now if In] # 0, |n]2 e sp(h?) . - Then

In]2 = p%) = pm)? .

(viii) ==> (i)

Let h € K(a) . Suppose o € Sp(h) and o < 0 . Then there
exists real polynomial £ such that £(0) = 0 and If(a)| >|f(x)|

for x e [0, p(h)] .



50

Let T : A+ C*(A) be the natural map. Now

ltm?] = pem?) = (2 > pe(m? = |£m?| , which is

. . . +
impossible, the strict inequality following from Sp(Th) ¢ R . [

K(A) lacks a pleasant algebraic description. The convex hull
KO(A) of {x*x : x € A} is more natural. To replace K(A) by
KO(A) in theorem 3.1.4, we must be able to use theorem 3.1.2 and

justigy assertions (a), (b) and (c) of the proof of theorem 3.1.4.

Then the proof holds with KO(A) in place of K(a) .

Definition 3.1.5

A *-algebra A 1is a positive neighbourhood algebra if for all

h € sym(a) then 1 - Ah € KO(A) for small enough real A , or
equivalently since 1 - Ah = 3(L - A) + 3(L -2 h%) + 2a(L - h)?

for h € sym(A) , 1 - Ax*x € KO(X) for small enough real A .

Theorem 3.1.6

Let G generate *-algebra A . Then if for all g € G there
exists Kg > 0 such that K; - g*g ¢ KO(X) , A 1is a positive

neighbourhood algebra.

Proof
As for theorem 2.2.2 with f(x* ... X) stripped from the

expressions.

As with uniform admissibility algebras, unitisations, direct
sums and directed unions of positive neighbourhood algebras are
positive neighbourhood algebras. The examples I gave of uniform
admissibility algebras are all positive neighbourhood algebras, and

I do not know whether the classes are distinct.
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Theorem 3.1.7

Let A be a *—algebra and I a *-ideal thereof. Then A is

a positive neighbourhood algebra if and only if A/I and I are.

Proof

|

Suppose A 1is a positive neighbourhocod algebra. It is
immediate that A/I 1is a positive neighbourhood algebra. Let
n
yeTl. Then there exists u > 0 such that 1 - uyy* = 2 b 4
where x; € A . Then y*y - u(y*y)2 = Z y*x{xiy .
i=1
But xiy € I
2 - 2
Now (1 - uy*y) =1 = 2uy*y + u“y*yy*y , so

2 2 ~
1 - py*y = p(y*y - p(y*y) ) + (1 - py*y) e KO(I) .

=
Suppose A/I and I are positive neighbourhood algebras.

let vy e A . Then there exists M 2 0 such that

n n
- * = * = -
M y*y + I .z X¥x, + 1. Iet h yv*y + 'z x;xi M. Then
. 1=1 i=1
is a self-adjoint element of I . Then N - h ¢ KO(E) for some
n
N20. Then M+ N-y*y =N -h + *x, ) .
n y*y N ilelxl € KO(A) O

Corollary 3.1.8

A tensor product of positive neighbourhood algebras is a

positive neighbourhood algebra.

Proof
Let A and B be pogitive neighbourhood algebras. A®B
an ideal of A ®B . Let u € X and v € B . Then there exist

+ ~ ~
M, N e IR such that M -~ u*u ¢ KO(A) and N - v*v ¢ KO(B) .

h

is

S
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Then MN@®L - u*u ® v*v = M1 ® (N - v*v) + (M - u*u) ® v*v € K(A ® B) ,

so A®B is a positive neighbourhood algebra. 0

Theorem 3.1.9

Let A Dbe a positive neighbourhood algebra. Then theorem

3.1.4 holds with KO( ) in place of K( )

Proof
We now justify the assertions (a), (b) and (c¢) of the proof

of theorem 3.1.4.

(a) Suppose a + h € Ko(z) with a ¢ C and h € A . Then

there exists (Ei) c and _(xi) cA and n € N such that
n n
= * = * >
a+h= ] (g +x)*E +x), so a _z E2E, 20 .
i=1 i=1

(b) Then h(a + h)h =
i

"t~

l(gih + xih)*(gih + xih) € KO(A) .

More complicated is (c). We evaluate the maximal B*-seminorm

in terms of KO(K) .
Let xe€¢ A and let y = inf{M > 0 : M - x*x ¢ Ko(z)} .

Now if f is a positive functiomfon A with £(1) = 1 and

M- x*x € KO(X) , E(x*x) < M. Thus |x|2 <M, so |xl2 £u .

Conversely we will produce a positive functioﬁdon A with

£(1) =1 and f(x*x) = p . Then |x]|?2'>2.4 . Define ,&- on the

real span of {1, x*x} by f(al + Bx*x) a + By . If o < 0 then
ol + px*x ¢ K (&) . If a 20,8320 then f(al + Bx*x) 2 0 .

This only leaves the case a 20 , B <0, so.we need only consider
the case of o - x*x with a 2 0 . If ol - x*x € KO(X) P = VR

so f(ol - x*x) 20 . Then by theorem 3.1.2, f extends to a

positive functional on a . d
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A *-algebra is called completely symmetric if every element of

- K(A) is quasiregular. It is called k-symmetric if

—(x*lxl + ...+ xk*xk) is quasiregular for all such expressions.
Recall that the quasi-inverse of an element of an ideal lies in
that ideal. Thus *-ideals of completely (respectively k=)
symmetric *-algebras are themselves completely (respectively k-)
symmetric *-algebras. Now if I 1is a *-ideal of uniform
admissibility algebra A , KO(I) c KO(A) so if A satisfies the
conditions of theorem 3.1.4, so does I . For Banach *-algebras

a key point is that symmetry implies complete symmetry ([4] lemma

41.4). The next result was proved by Leptin for Banach *-algebras

[20].

Theorem 3.1.10

Let I be a *-ideal of uniform admissibility algebra a .
Then A satisfies the conditions of theorem 3.1.4 if and only if

A/I and I do.

Proof
Let A and I be as above.

Suppose A satisfies the conditions. Let 1 be a modular

left ideal of I with right modular unit e . Then L + A(l - e)

is a proper modular left ideal of A , so there exists non-zero

positive functional f annihilating L + A(l1 - e) . Now if

f(e*e) =0 , f(xe) =0 for all x € A, so  f(x) f(x - xe) =
which is not so. Thus f(e*e) # 0 , so fII is a non-zero

positive functional on I annihilating L .

Let I be a proper modular left ideal of A/I (regarded as

cosets of I) with right modular unit e + I . Then M =(yL is

0

r
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a proper modular left ideal of & . let f Dbe a non-zero positive
functional on A annihilating M . But M>>I, so f induces

a non-zero positive functional on A annihilating L .

Suppose I and A/I satisfy the conditions and let L be a
maximal modular left ideal of A with right modular unit e .
Suppose I ¢ L . Then L/I 1is a proper modular left ideal of A/I
with modular unit e 4+ I , so there exists non-zero positive

functional f on A/I annihilating L/I , which induces a non-zero

positive functional on A annihilating L . Suppose I ¢ L .
Then A =L+ I, soif e=x+3j with xe¢ L, jeI, J is a

left modular unit for L and indeed for LO =L nI. Then LO

\

is a proper modular left ideal of I , so there exists non-zero

positive function fO on I annihilating LO . Then define

positive function £ on A by £f(z) = fo(j*zj) . Then £

extends fO . If xe L , £(x) = fo(j*xj) = fo(j*x), because

J*x € I,= 0O because Jj*x e I nL =1

0

There is also an algebraic version.

Theorem 3.1.11 (Wichmann [29])

Let I be a *-ideal of *-algebra A . Then A 1is k-symmetric
if and only if A/I and I are, and hence the same holds for

complete symmetry.

From this and the k-symmetry of radical *-algebras it follows
that completely symmetric *-algebras and k-symmetric *-algebras form
ddc '
hereditary ra al classes of *-algebras. He then proves that the
symmetric radical of a Banach *-algebra is closed, and thus that
symmetric Banach *-algebras form a hereditary radical class of

Banach *-algebras.
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§2 Hermitian Inverse Semigroups

We shall now investigate the symmetry of inverse semigroup
algebras. Wé shall call an inverse semigroup S Hermitian if
21(5) is symmetric. Then as images of symmetric *-algebras are
symmetric and closed subalgebras of symmetric Banach *-algebras are
symmetric, S 1is Hermitian only if all its subgroups and GS are
Hermitian. If ¢ 1is a character on S , then for
s €S ¢s) = ¢(s)d(s*)¢(s) , so ¢(s) = ¢(s*) =0 or ¢(s)* = ¢(s¥%) ,
so commutative inverse semigroups are Hermitian. Finite inverse

semigroups are Hermitian because they have an equivalent C*-norm.

Theorem 3.2.1

If A is a commutative symmetric Banach *-algebra, and B is

. A . .
a symmetric Banach *-algebra, then A ® B 1is symmetric.

Proof

Bonic [3] Corollary 3.3. O

Corollary 3.2.2

Let § be an E—unitary semilattice of groups. Then if

1 , .
[) (GS) is symmetric, so is gl(s) .

Proof

S 1is a subsemigroup of ES X GS . Therefore zl(s) is a

A
closed algebra of ILl(ES x GS) ;:zl(ES) ] £1(GS) ' which is

symmetric. Therefore Ql(s) is symmetric. 0

The key lemma in this section, used by Leptin in [ 23], is:

Lemma 3.2.3

Let A be a Banach *-algebra with a family of closed

4 Sui—algebras {Aa : a e A } such that:



56

(1) z AAa is dense in A ;
e R

(ii) A AA c A
a [6 o

(iii) Aa‘ is symmetric;

(iv) each Aa has an approximate identity (e_,) such

aX

that ean converges for all x € AAa ;
(v) f(x*x) 2 0 for all x ¢ AAa whenever f is a

continuous positive functional on Aa .

Then A is symmetric.

Proof
Assume conditions (i) to (v) hold for A . As they hold for
A/rad(d) , we may assume A 1is semisimple and has isometric

involutiom [4] theorem 25.9.

Let L be a maximal modular left ideal of A . Then there
exists o such that L P AAa . Therefore A =1L + AAa , so L
has a modular right unit e € AAa . Ln Aa is a proper left ideal

of a . For xe€¢ A ,
o o

X - Xe = x - (lim xea

A)e = X - X lim(eale) = x - X0

where n = lim eale € Aa . Thus L n Aa is a modular left ideal

of A .
(v}

Let f Dbe a non-zero continuous positive functional on Aa
annihilating L n Aa . (Such a function exists by theorem 3.1.4.)
Define F on A by F(x) = f(e*xe) . If x e L , then
xe € L, e*xe € L n Aa , S0 F(x) = f(e*xe) =0 . By (v), F

is positive on A . Suppose F =0 and let x ¢ Aa‘
f * = 1 f * = l 1 1 kak = 1 1 *
(n*n) lim (n eake) jm lim f(e*e ) l*m lﬁm F(e aueak

Then |f£(xn)|2 < f(xx*)f(n*n) =0 . But f(x - xn) =0 , so

aueake

f(x) =0 . Therefore f = 0 , which is a contradiction.



57

Thus F is a positive functional on A annihilating L .

Then A is symmetric by theorem 3.1.4.

Corollary 3.2.4

1 . .
A Brandt semigroup has symmetric ¢ -algebra if and only if

its subgroups are Hermitian.

Proof

Let M beo Brandl semy wibh assecidid g G . We prow Lj(fn)
b f 116 1. We fokt as s beas  the (1;; 0/ )lil o,hz(e 1), eM T

are Lsamer o L6, amd os o L LZL)&dE 2
mﬁ@mlﬁﬁMﬁ&WM@w ?W M‘Wﬁ m¢ﬂ%SJ%

Recall that a semilattice is well-founded if every non-empty

subset has a minimal element.

Theorem 3.2.5

Let S be an inverse semigroup with well-founded semilattice
L. 1 .
and all of whose subgroups are Hermitian. Then ¢ (S) 1is

symmetric.

Proof
1 .
Suppose 4 (S) were not symmetric.
Let ¥ be its greatest symmetric ideal, which is closed.
(It exists by Wichmann [29].) Let M= {s €5 :5 ¢€l}

. Then

M is non-empty as it contains the minimal element of ES

M is an ideal of §S . Suppose M # S .

Now S/M 1is an inverse semigroup with a well-founded
semilattice, and all of its subgroups are Hermitian. Let e be
a primitive idempotent of S/M . et I = (S/M)e(S/M) . Then

zé(r) is symmetric by theorem 0.1 and corollary 3.2.4.

But T (IN{M}) U M is an ideal of S , and

2y 2t )

[

1
JLé(l) , So L47(T) is symmetric. But T c M,

which contradicts the existence of e . 0
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Comment 3.2.6

A semilattice of groups with Hermitian group algebras need not
be symmetric. Using the notation of generators and relations,
= < : i Z+ 2—l x = x x.x X, for i, j <« k>
let G = xi 1€ ;) X i < ’ xi kxjxk " jxk i | .
1 .
Fountain, Ramsay and Williamson [1l] have proved that & (G) is

not symmetric, although ll(Gn) is, where Gn = <xi €G:1<n> .

Definition 3.2.7

Let A be a Banach *-algebra with isometric involution and G

be a discrete group acting on A by *-isometries. Then the Leptin
algebra ¢ (G, a) is {f : G+ & : Y £(e)]] < =} with norm
geG
llf || = z ||f(g)|| , multiplication induced by
geG
(x, g9)(y, h) = (xg(y), gh) where x, y e A, g, he G, and

involution given by f*(g) = g(f(g—l))* .

Now Civin and Yood [5] have proved that any Banach *-algebra
with dense socle and proper involution (i.e. x*x = 0 only if
x = 0) is symmetric. Merely as a foretaste of the main theorem
to come, we esﬁablish the next theorem. Recall that if H 1is a
subgroup of G , then T c G is a right transversal for H in
G if G= u[Ht : t € T} and for s, t € , Hs = Ht only if

s =t.

Theorem 3.2.8

If A 1is a commutative Banach *-algebra with dense socle
and isometric proper involution (i.e. x*x = 0 implies x = 0) ,

(G, B) is symmetric if 2Y(G) is .

Proof

Let A be as above and let zl(G) be symmetric. Iet

E=1{e €A :e=e* is a minimal idempotent} and let
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e} Then for e € E ,

H, = {ge G: gle) =
Ql(He, Ce) ;:Ql(He) , which is symmetric. We shall apply
lemma 3.2.3 using these subalgebras.
0 if ggH
e
= aeg(e) ® g =
eae ® g if g ¢ He

(e 8 1)(a ® g)(e 8 1)

® 1) < ,Q,l(Hera-_ e) .
-1 1 1 .
(e®g)(g (e) 81) =e®g, so & (G AL @, Ce) is
ecE

so (e @ 1)gl(G, A) (e

by [26] 4.10.1.

dense in ll(G, A)
:heH,teT}
e

(e ® 1) () a, @ q) = gZGAge 8 g=]{A e ®ht

geG
where T 1s a right transversal for He in G . Then
(Jre®a(lreeg*= ] (] A.e®h(] A esn)*.
geG geG teT heH heH
e e
g

1
Therefore & (G, A) 1is symmetric.

Theorem 3.2.9 ( McAlister ([22])
Then ES can

et S be an E-unitary inverse semigroup.
made to act on

be imbedded as an ideal of some poset X and G

X by order automorphisms in such a way that

-1
sz {(e, g € Eg X Gg : g (e) € ES} , and
e € ES} under the same automorphism, where
r

ES - {(er 1)
(e, g)(f, h) = (g.1l.b.{e, g(£f)}, gh)

multiplication is defined by
this being well defined because g—l(e) and f = g-l(g(f))

are elements of ES

Definition 3.2.10

be a poset.

X is said to cover y if

Let (X, <)

If x,ye X,
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(1) x>y
and (ii) for all =z >y , z 2 x ,

and x is said to support y if it covers y in (X, 2) .

Poset (X, £) 1is tree-like if for all x, y € X there
exist 2z and finite sequences (ui) and (vi) starting in x

and y respectively and ending in 2z such that ui+l covers

u, and v, covers v, . Poset (X, £) 1is dually tree-like
i i+l i

if (X, 2) 1is tree-like.

Notation 3.2.11

For vector spaces A and B with subsets C and D
we shall identify C x D and {c ®de A®B :ce C and d e D}

A
and vector space ll(U) ® ll(V) with 21(U x V) .

Iet X be a partially ordered set, with partial multipli-
cation defined by x ° y being the greatest lower bound of x
and y if it exists. let E = :;( Ei be a subsemilattice
and ideal of X with the Ei duzliy tree-like semilattices and

let G be a group acting on X by order automorphisms.

21(X X G) will be endowed with the partial multiplication
induced by (x, g)(y, h) = (xg(y), gh) whenever xg(y) is
defined. let S = P(G, X, E) as defined by McAlister [22],
i.e.. {(x, g) € E x G : g-l(x) € E} , with the multiplication

of Rl(X x G) .

To motivate the general case we do the case of ES a

dually tree-like semilattice.
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Theorem 3.2.12

Iet S be an E-unitary inverse semigroup with dually tree-
like semilattice and zl(Gs) symmetric. Then zl(s) is

symmetric.

Proof

Let ES be dually tree-like and zl(Gs) be symmetric.

Let ; extend ¥ : S > GS to Ql(s) - Ql(GS) . Then by theo-
rem 3.1.10 it will suffice to prove ker(;) symmetric. For

ueB; let H = {ge G: g(u =ul. Then H is a group.

Let Au be the linear span of {(u-v) ®g:qgc€ Hu} where

v supports u . Now ((u-v) ® g)((u=-v) ®h) = (u-v) ®gh

1 .
if h H s ~ S A is s tric. We
i g, € . o Au ~1 (Hu) ' o a is symmetric

shall apply lemma 3.2.3 to the set of subalgebras Au .

Now for e®ges ,’

((u-v) 81)(e B8 q((u-v) 81) = ((u-v) 81)(e &g (g (e) ®1)
((u=-v) ®&1)

(lu - v) ®1l)(e 8 g)((u-v) 1) if e 2 g(u))

0 . otherwise

((u-v) ®1)((g{u - g(v))® g) if e = g(u))

0 otherwise

(u-v) ® g if u= g(u)

0] otherwise,

sO A AA A .
u u u

Now keryxy is the closed linear span of

{(u-v) ® g:u,g-l(u) € ES and v supports u } . But

((u-vjeghlg (W -g (v) el =(u-v)8g, so

) BA  is dense in A .
u .
Uu€E
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Now
((u-v) 1)) o (e8g) =(w-v)el ] B (e86qg
e€E 9 ecE_u -9
S S
geG geG
-1 = -1 S
and g ~(e)eE and g ~(e)e€E
S S
= - 1 e ® gt
((u-v) 1) |} Be gt g
e€eE
S
geH |
teT
here R =0 less = d t_l -l(e) € E and T 1is a
wher e, gt unless e = u an g s !
right transversal of Hu in G. Then
*
((u-v) ®1) ZBe’gtu®gt ZBe,gtqut (u-v) 8l
geH geH
u u
= ] B B* _ -1 -1 -1, -1,
e,gtl e,gtz((u v) @ l)(ugtlt2 h " (u) @ gtlt2 h ™)

g,heHu

((u -v) @ 1)

0 if tl # t2 , and if tl = t2 it is

-1
> - ® - ®
g,geﬁ Be,gtlse,gtl((u v) 8 1){u® gh ") {({a - v) 1)
u

‘ *
= gZH Be’ tl((u -v) & g)){ng Be,gtl((u -vegqg . 0
u u

. .. . 1
Let mln(Ei) be the set of minimal idempotents of 2 (Ei)

other than the zero of Ei (if it exists), which have been determined

in proposition 1.5.

n
tet M= X (£, Umin(E)) v {0} 21 (E) . . Extend order <

i=1
on E to < on M by es f &> e =ef . For X, € min(Ei)
n
or x, =E, , let F ... = X 2Z, where Z, 6 =E, if x, = E,
i i X x, 41 i i i i

d Z I3 = . i . i 1 L]
an i ‘&1} if X, € mln(El)
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Corollary 3.2.13

Mu {0} and F eee &m are semilattices under < .

x X

, 1 S
n-m

Let Mm ={]~1 (u - Vr) :u, v.€E, the v are distinct,
r—_—

u > v, and there is no w € E such that u > w > vr} .

Then M_= u{F . F cem} ,um < \J M u o},
m Xy eee X Xy ees X m mp rAmS<p r
and if Fx x ! F c Mm , then
1o %, Yy ee- ¥
13 % if FX x=F v
Xy een X 10t ¥ Y, e Y
F x F c
¥p oo ¥y Ypoeee ¥y L) MU {0} otherwise.

r<m

Proof

Immediate.

Lemma 3.2.14

1
For all g e G, g(Mm) n g (E) ¢ Mm .

Proof
n-m

M = {1_1 (uw-v) :u, v € E, the v_ are distinct, u>v
m =1 r r r x

and there is no w € E such that v, <w < ul .

n-m 1
If g(r—] (u - Vr)) € L£°(E) , themn g(u) ¢ E, so
r=1

-m n-m
g(rlj1 (w=-v)) =[] (gw - glv)ien . 0

r=1

Lemma 3.2.15

{g € G : There exists u such that

1
.”x}—{geG:ﬂ#g(Fx x) N L(E) cF

u; g(u) € F
xl n l LN BN n l

see X

and this set, Hx x ! is a subgroup of G .
1° n

n

}

4



64

Proof
{g € G : There exists u such that u, g(u) € F x }
Xy eee X
>{geG: @ #gl(F )y n ll(E) cF }
X, eee X X, ... X -
1 n 1 n
Suppose u, g(u) € FX L cAMm
1 n
(i) If u<veVF , g{u) = g(uv) = g(v)g(u) . Then if
Xy eee X
1
g(v) ¢ L°(E) , g(v) € Mm by lemma 3.2.14, so g(v) € Fx <
1" *n
by corollary 3.2.13.
(ii) If u =2ve Fx % supp(g(v)) has a greatest element,
1t X

which is bounded above by an element of supp(g{u)) ¢ E , so

1
g(v) ¢ 17 (E) . vV € FXl e c Mm , So g(v) € Mm .

Therefore g(uv) = g(u)g(v) = g(v) ¢ F .
X) eee X

Now,if v ¢ F , then uv e F and
X ee. X X, +e. X
1 n 1 n

uv £ u, uv £ v ., By (ii), gl(uv) € Fx x Then by (i), if
1 o0 Xy
g(v) € ll(E) , gl(v) € Fx x Thus the two sets are equal.
1ot X

Let g, he Hx x t Say
1 n

-1 :
u, g(u), v, h(v) ¢ F . glu), g (g(u)) € F '
X ... X, .es X
1 n 1 n
-1
so g € H . uh(v) € F x ° Now
1 n *1 " "n

h-l(u)v < ve ll(E) , So h-l(u)v € ll(E) , So

h—l(u)v € Fx x .gh(h—l(u)v) = g(u)gh(v) € ll(E) ' so
1 0 X,

g(u)gh(v) e M , so g(u)gh(v) € F . Therefore
m Xy eee X

gh € Hx ce. X ° 0
1 n
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Iet F M .
X, .. X m
1 ’ n
Iet B < = {u®ge Fx . x Hx <
Xy oeee X 1 0 Xy 1 oett X
-1
g "(u) € F } .
X, vee X
1 n
. 1
Then (i) B < L7 (S) ;
X, «ee X
1 n
(ii) Bx . is an E-unitary inverse semigroup whose
10 %

semilattice of idempotents is the product of m dually

tree-like semilattices.

(iii) If u ® g ¢ (Mm X G) n Ql(s) , then

B (u® g) B c U (M x G) u {0} unless
X, «es X X, ea. r
1 n 1 n r<m

u®geB .

Xy eee xn
Proof
Let F=PF < ! H=H x ! and B =B < .
X ese X Xy eee X X eee X

. -1, 1

(1) If u®geB, g (M) e€¢F, so u®gey (S) .

(ii) Let u® g, v®heB.

Then g

so ug(v) =

so htgtwntw) e M, so h

ug(v) ® gh €

Suppose
and (v ® h)
Then ug(v)

so v®h-=

-l(u)v e F . Now ug(v) € zl(E) , so ug(v) € Mm ,

2 - -1 - - 1
ug(v) e F. h l(v) e F, so h lg l(u)h l(V) € L (B) ,
lg_l(u)h_l(v) € F . Therefore

B so B is a semigroup.
’ g

u®g, v®@8heB and (udg){veh{udg) = (u®qg)
(u® g)(veh) = (veh). Then ghg=g, so h=g
= u and vg—l(u) =v, so u< g(v) and v < g (u) ,

g—l(u) ® g-l . But this is an element of B , so B

is an inverse semigroup. The rest is clear.

’
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(iii) Iet v®h,wekeB and u®ge (M xG) n 2l(s) .

gl eM , so g T(wwe U M u {0} . But ugw) e 2|y,
m r<m r

so ug(w)e € \) MU {o} . h_l(v) €M , SO

r<m
h T (vuge) ¢ \J M u {0} . mhen vh(whgtw) e |J M_u {0} .
r<m r<m
Suppose vh(u)hg(w) € Mm . Then h-l(v)ug(w) € Mm , So
h_l(v)ug(w) € F, so ug(w) € F . Then g_l(u)w € Mm ;, So

g-l(u)w € F, so g_l(u) e F .

1-1 1

Now k Yo th vk tg b (wk T w) e 11(E) and so is an element
of F, so hgke H, so geH. But u € ll(E) ;, SO

u = g(g-l(u)) e F . Therefore u ® g € B . |

Theorem 3.2.17

If S is E-unitary, zl(Gs) is symmetric and ES is the
product of finitely many dually tree-like semilattices, then Zl(s)

is symmetric.

Proof
Let ES be the product of n dually tree-like semilattices
and Ql(Gs) be symmetric. Let I-\.m be the closed subspace of

Ql(s) generated by \V/ (Mr X G) n zl(s) for m =2 0, and let

r<m
A % be the closed subspace of zl(S) generated by :
Xy eee X
Bx .
] e X

Iet u®ge (Ms x G) c Ql(S) and v ® h ¢ (Mt X G) < gl(s) .

Then ug(v) ® gh < 21(s) . g (e) e M,

g_l(ug(v)) = g—l(u)v € Mth c \,) Mr u {0} . ug(v) € zl(E) so
’ r<snt

SO
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]
ug(v) € \J Mr u {0}, so Am is a closed *-subalgebra of zl(s)
r<sAt

and Ar is an ideal of AS if r < s .

Ax % is a closed *-subalgebra by lemma 3.2.16
1 vt X
et R = A /A and let be the canonical homomorphism. Let
m m m-1 m
Rx x 1Tm(Ax X ) -
1ot X 10t X,

Iet us define the product of 0 dually tree-like semilattices
to be a singleton. Let Pr be "If S is E-unitary, ll(GS) is

symmetric and E is the product of r dually tree-like semilattices,

S
1 . . 1 . .
then &7(S) is symmetric." Now An/An—l ;:l (Gs) ' which is
symmetric so it will suffice to prove An 1 is symmetric.

I shall now inductively prove A.m is symmetric and Pm+l is
true for 0 < m < n . Now A 1 is trivially symmetric and PO is
true a priori.

Suppose O < m <n , Am—l is symmetric and Pm . First I

prove Rm = nm(Am) is symmetric. I shall show that

{R : F c M satisfies conditions (i) to (v)
Xl ° s Xn Xl ae Xn m

of lemma 3.2.3 with respect to R.m . By lemma 3.2.16 condition (ii) is

R 1l ,
satisfied, and as A ~ 2 (B ) , R is
X .o b X eee X X eese X
1 n 1 n 1 n

symmetric by Pm , So condition (iii) is satisfied. Now

ﬂm(F < x {1} is a singleton, so condition (iv) is trivially

xl n
satisfied. Now if u®g G(Mm X G) n zl(s) , then g-l(u) € Mm ’
SO g—l(u) ® 1l eB for'some F cM . Then
X, «se X X, +es X m
-1 1 n 1 n
(u® g)(g "(u) 1) =u® g, so condition (i) is satisfied.

Now we come to the most difficult condition, condition (v).

Iet F=PF and H =H . Let vebF. Then
X b'4 X .
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vel+ A is an identity for R . Thus
m-1 X, ... X
1 n
R R =R7m_ (v®1l) . let T be a right transversal for
m x eee X mm
1 n
H in G_. . Then elements of R R are of the form
S m X, ... X
1 n
Zau’h't(u ® ht)*(v 8 1) + Am—l where u € Mm , h e H and t e T.

Now ((u @ ht)*(v®1l))*= (v 8 1)(u®ht) = vu® ht . Thus u € F

or (u® ht)*(v ® 1) € Am Suppose the former. Now h e H ,

-1 °

so there exists w € F such that h-l(w) eF . Then uw € F and

h_l(uw) € F . Now (u - uw) ® 1 € A

m-1 * S°
((u - uw) ® 1)(u ® ht) = (u ® ht) -~ (uw ® ht) € Am—l , So
u® ht + A = uw ® ht + A . Let x € RR . Then
m—-1 m-1 M X, ... X
1 n
x= ) o (u ® ht)*(v ® 1) + A with h™7(w) e F
u,h,t m-1
ueF
heH
teT .
€ whenever au,h,t # 0
Then
* * *
) O, (0 @hS)*(vel +a [ o p@ebtisvel) «+a
uF uekF
heH heH
-1 ~1 -1 - -
= ) « a (v 8 1) (u(gst *h T (w)) 8 gst Th ™) (ve 1) + A
u,g,s w,h,t m-1
u,weF
g,heH
= ( * *
) O n,s (2 @RV el +A
uekl
heH
(1
a (u®h)*(vel + A
UeF u,h,s m~-1
{heH
and the latter factor lies in Rx x Thus condition (v) is
100 X

satisfied, and thus R is symmetric.
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But Am is symmetric, so Am is symmetric. Then

-1

is true.
Pm+l ru U

§3 Completely Symmetric Semigroup Rings

All the results of the preceding section can be pushed through
for the complete symmetry of inverse semigroup rings. Now if S
is a finite inverse semigroup, k(S) is completely symmetric. A
semigroup is called locally finite if every finitely generated

subsemigroup is finite.

Theorem 3.3.1

. . . 1
Suppose S is a locally finite involutive semigroup and & (S)

is symmetric. Then k(S) is completely symmetric.

Proof

Let S be as stated. Let us adjoin an identity to it.
n
.+« X € k(S5) and let h = Z x¥*x, . Then XA - h is
n g2, 171

Let xl,

invertible in -£l(S) for A e C\IO, ||h|]] . ret

B = supp(h) u {1} . Now for é € S let L be the coordinate
projection. Let R(A) = (X - h)-l for A e C\I0o, ||h|]]]1 . RO
and hgnce T R are amnalytic in C\ (o, [|h]]1 . 1et T be the
subsemigroup of S generated by B . Then if s ¢ S\T and

(Al > |In]| . TR(A) =0, so wR=0. Thus supp(R(A)) T for

all A ¢ Q’_‘\IR+ so R(A) € k(S) for all 1 € (\m+ . d

Theorem 3.3.2

Let S be an involutive semigroup such that k(S) is completely
symmetric and T be an involutive subsemigroup. Then k(T) 1is

completely symmetric.
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Proof
Iet 8§ and T be as stated. Adjoin a common identity
element to S and T . Let Xpp eeer X € k(T) and let
n
h = Z x‘i‘xi . For s € S let T be the coordinate projection.
i=1
-1 . 1
Let R(A) = (X - h) for A eC\[O, ||h|]|] in £(s) . R and

hence ﬂsR are analytic in C\][O, []h||] . Then if s e S\T
and [A] > ||n]] , mR() =0, so mR=0. Then
supp(R(A\)) < T u {1} for i e C\[0, [|n|| . Then if

1

A€ C\]R+ ; (A - h) ~ e ll(T) n k(s) = k(T) . O

Now k(Z) is not even symmetric, for consider its characters.
From this and theorems 3.3.1 and 3.3.2 it follows that if G 1is
an Abelian group, k(G) is completely symmetric if and only if
G is locally finite, or equivalently, if and only if G contains

no copy of Z .

Theorem 3.3.3

Let A be a positive neighbourhood algebra with a family of posi-

tive neighbourhood subalgebras {Aa : o €A} such that:

(1) } A =a
e

(ii) A AA c A
a o a
(iii) Aa is completely symmetric
{(iv) Aa has an identity
(v) f£(x*x) 2 0 for all x € AAa whenever f is a positive

functional on Aa . Then A 'is completely symmetric.

Proof

As theorem 3.2.3, save that it is slightly simpler. 0
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Corollary 3.3.4

~The semigroup ring of a Brandt semigroup is completely
symmetric if and only if the semigroup rings of its subgroups

are.

Proof

Apply theorem 3.3.3 with subalgebras the semigroup rings. O

Theorem 3.3.5

let S be an inverse semigroup with well-founded semilattice
and all of whose subgroups have completely symmetric group rings.

Then k(S) 1is completely symmetric.

Proof

As theorem 3.2.5. 0

Corollary 3.3.6

let S be a semilattice of groups with completely symmetric

group rings. Then k(S) is completely symmetric.

Proof

let x ceer X € k(s) . Let T be the inverse-subsemigroup

l'
n

of S generated by \_/ supp(x,) . Then T has finitely many
i=1

idempotents and all its subgroups have completely symmetric group

rings. t

Theorem 3.3.7

If S is E-unitary, k(GS) is completely symmetric and Es
is the product of finitely many dually tree-like semilattices,

then k(S) 1is completely symmetric.

Proof

As theorem 3.2.17, but slightly simpler. 0
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CHAPTER 4

SIMPLE SEMIGROUP ALGEBRAS

‘Certainly ll(s) is not a simple algebra, for it has the
character Zass > Zas. But gé(s) may be simple. We shall
give sufficient conditions on the semigroup for the algebra to be
topologically simple, and give some recipes for creating such

semigroups.
A semigroup possessing an identity is known as a monoid.

Definition 4.1

uesS is a relative left identity for t e 8 if ut =1t ;

it is non-trivial if u # 1 .

Definition 4.2

A semigroup is O-simple if its only proper ideal consists of

the zero element. A semigroup is O-bisimple if aai)b whenever

neither a nor b 1is the zero element.

Definition 4.3

A semigroup with zero is strongly disjunctive if for every

finite set A = {a., ..., an} disjoint from {6} there exist

l'
u, v e S such that |uAv\{6}| = 1 and ua v = ua,v # 6 implies

For a semilattice E this may be formulated as: if e, < e
for 1< i <n , then there exists u € E such that ue ¥ 0

and uei =68 for 1 <i<n.

Definition 4.4

An inverse semigroup is fundamental if it has no idempotent

separating homomorphisms but isomorphisms. The greatest idempotent
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separating homomorphism is p : S - End(E) by u(s)(e) = ses* ,

See [ 15] for further details.

Definition 4.5

A semigroup S 1is left cancellative if ab = ac implies
b=c. An inverse semigroup is gquasicancellative if and only if

for all a, b, ce § ab =ac # 6 and bb* = cc* imply b =c .

Perhaps a more revealing formulation is given by the next

proposition.

Proposition 4.6

Inverse semigroup S with zero is quasicancellative if and

only if e2 =e=es § 6 implies s € ES .

Proof

Suppose S 1s quasicancellative and e = e =es # 0 .

I
(0]
0

*
m
tr)

Then es* = ss*e ss*es = ess*s = es , SO s

e =es # 6 implies s ¢ Eg - Suppose at = au # 0

Suppose e2

and tt* = uu* . Then 6 # a*(aﬁ)t* = a*aut¥* a*aut*(tt*) = (a*att*) (ut*)

so ut¥* ¢ ES . Then (t*u)3 = (t*u)2 #06 . If
x3 = x2 # 0 , (x*2x2)x = (x*zxz) #0, so X e€ ES , SO t*u' € ES .
Then u*t = t*u . Then

t = tt*tt*t = t(t*u) (u*t) = tt*u = uu*u = u . , 0

Corollary 4.7

Suppose X $:S~>+G, a group, and yx(st) = x(s)x(t)

whenever st # 6 , and x(s) = 1 implies s ¢ ES . Then S is

guasicancellative.
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Proof

Immediate from the above. U

It follows that the quotient of any E-unitary inverse semigroup
by an ideal is quasicancellative; it has been conjectured that the
converse is true. It would suffice to prove the existence of a
partial homomorphism to a group as above. We now consider a

weaker cancellation property.

Theorem 4.8
Let S be an inverse semigroup. Then the following are
equivalent:
(1) if ag=ah #6 and g and h lie in the same
subgroup then g = h ;

(i1) if egf = ehf ¥ 6 and g#f h then g=h .

Proof

(ii) = (i)

Suppcse ag = ah # 6 and g and h lie in the same subgroup,

and (ii) holds. Then 6 ¥ ag = agg*g = ahg*g , so g=h .

(1) wmdp (ii)

ehf # 6 . Then

 suppose (i) holds, g#h and egf
6 # egf = egg*gf = e(gh*)hf = e(hh*)hf . Then
0 # e*e(gh*)hf(hfff = e*e(hh*)hf(hf)* , so vkv = v # 8§ where

u = hh*, k = gh* and v = e*ehf(hf)*(hh¥*) .

Now k*k = hg*gh* = hh* = u , and kk* = gh*hg* = gg* = u .
Then v(k*vk)v = (vk*v)({vkv)= v , and

(k*vk)v(k*vk) = k*(vkv) (vk*v)k = k*vk , so k*vk = v¥ = v ,

Now vk(vk)* = vkk*v = vuv k*vk = v .

v , and (vk)*vk
2
But 6 # v =vkv , so v = vk . But 6 # v=vu=vk , so

k=u. Then g = gg*g = gh*h = kh = uh = hh*h = h . O
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Definition 4.9

An inverse semigroup is said to have property (A) if it has

the above properties.

Definition 4.10

The inverse hull of a left cancellative semigroup is the
inverse subsemigroup of the symmetric inverse semigroup of partial
one-one mappings of the semigroup generated by maps of the form

As = {(x, sx) : x € S} where s € S .

We shall now examine some of the properties of inverse hulls
in terms of the original semigroups. The relationship is most

straightforward for O-bisimple inverse monoids.

Theorem 4.11

There exists a one-one correspondence between O-bisimple
inverse monoids with a zero and left cancellative monoids U whose
principal right ideals and @ form a semilattice under inter-
section. This semilattice is isomorphic to the semilattice of
idempotents of the inverse semigroup. The inverse semigroup is
the inverse hull of the left cancellative semigroup with a zero
adjoined if need be, and the left cancellative semigroup is the
left unit semigroup of the inverse semigroup, i.e.

{xes : x*x =1} .

Proof
[6] lemma 8.41, corollary 8.43 and theorem 8.4.4. The

omission of a zerc from their proofs is readily rectified.

Proposition 4.12

ILet £ be the inverse hull of left cancellative monoid §S .
Then ¢ is fundamental if 1 is the only invertible elementi{cf S

such that uR = R for every (principal) right idealkof S .
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Proof
Let p Dbe the greatest idempotent separating homomorphism

on [ .

Suppose ¥ is fundamental and uR = R for every right ideal
in s . Then for any idempotent P of % , A;Pku =P , so

Auuk ;, So u=1.

1

Conversely, suppose 1 is the only such element of S . Let
P and Q Dbe non-zero elements of Y such that PuQ . Then
P*P = Q0*Q , so dom(P) = dom(Q) # & . Let x € dom(P) . Let
y =Px and z = Qx . Then Ay = PAx and Az = le , So
Ayukz ; SO rge(Ay) = rge(Az) ; So there exists u € S such that

z = yu , and similarly there exists v € S such that y = zv .

Then y1 =2zv =yuv , so uv =1 and similarly vwvu=1.

Then for s € S , A _A_A*A* = (A*X )X _A* A*X ) = A A* as
u's's'u yz 's's(z'y s s

= * *>\ . * = * i 1 =
Al Ayxy U Ay z But Auskus Asxs implies usS sS , so
UR = R for every principal right ideal of 8§, so u=1, so
y=2, so P=¢Q . Therefore I is fundamental. 0

Proposition 4.13

Let I be the inverse hull of a left cancellative monoid S .
Then I is quasicancellative if S can be imbedded in a group

and only if S is cancellative.

Proof
Suppose I is guasicancellative and ac = bc . Then

= * = * = =
AA =AM # @ and AAA = MA, so A =) , so a=b.

Suppose ¥ : S -+ G is an imbedding. Extending x to I

~ -1 -1

* * = .

by x(lslltl N As At ) X(sl) X(tl) cee x(sn) x(sn) if
n n
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Ax X ceo A X # @, and 1 if it is @ . Suppose

1 1 n n
A*x A ce AF A = A* A eee A* A # 0 . Then there exists
s, t s t u, v u v
1 1 n n 1 1 m m
(a.)® and (b.)? such that s.a. . = t.a, and u,b, . = v.b
i’o 370 Such that 845 4 % M9 iPi-1 T Vit)
for i1 > 0, a, = bO and a = bm . Then

-1 -1
x(ao) x(sl) x(tl) e X(Sn) x(tn)x(an) and

~

-1 -
x(bo) = x(ul) x(vl) .o x(um) lx(vm)x(bm) , SO X is well

defined.

Now suppose P e I\{@} and ;(P) =1. Then for

s € dom(P) , x(Ps) = i(P)x(s) ;, so x(Pps) x(s) , so Ps =5 .
Thus P 1is an idempotent. Then by corollary 4.7, I is

quasicancellative. N

A O-bisimple inverse monoid is gquasicancellative if and only
if its left unit semigroup is cancellative, but for our purposes

property (A) 1is more interesting.

Proposition 4.14

The left unit'semigroup of a O-bisimple inverse monoid has no
non-trivial invertible relative left identities for any of its

elements if and only if the inverse semigroup has property (&) .

Proof

Let U be the left unit semigroup of inverse semigroup S .

Suppose S has property (A) and s € U is an invertible
relative left identity for t e U. Then st = 1t , and

ss* = s*s =1 , so s =1 by property (A) .

Conversely, suppose U has no non-trivial invertible relative

left identities, and suppose sa = ta # 6 with s and t 1lying
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in the subgroup with unit e . Then 6 # s*sa = s*ta , and

(5*t)*(s*t) = ¢BEPE= e F O

There exists g € U such that gg* = e . Then
(g*s*tg) (g*t*sg) = g*s*tet*sg = 1 and (g*t*sg) (g*s*tg) =1 ,
so g*s*tg lies in the subgroup of units. Now
b #¥ s*ta = s*sa = gg*a , so 6 # g*a = g*s*ta = jg*gltg)g*a, so
(g*s*tg) (g*aa*g) = g*aa*g # 6 . But then there exists wu € U such
that uu* = g*aa*g , so (g*s*tg)u = u . Then g*s*tg =1 .

Then s = se = sgg* = sg(g*s*tg)g* = ses*te = ete = t , g

We now come to a very useful lemma in the study of inverse

semigroup rings.

Lemma 4.15

let S be an inverse semigroup, F be a field, and let I
be a non-zero ideal in Fes . Then there exist x € I ang
e € ES\{S} such that e € supp(x) c eSe .

Proof

S has a partial order defined by s < t if there exists
e € ES such that s = et . (This is known as the natural order.

See [15] for details.)

Iet I be a non-zero ideal and pick x e I\{6}.. Then supp(x)
has an element s which is maximal in supp(x) under this order.
Then I claim s*s ¢ supp(s*xs*s) . let x = as + zBiti , a # 0, Bi # 0 .

For suppose t € supp(x) and s*ss*s = s*ts*s , Then

s* s*tg* | But s = ss*s = g(s*ts*)s = ss*t(t*t) (s*s) = ss*(ts*st¥)t ,
so s £t . Therefore s = t . Then

S*s € supp S*xs*s c s*sSs*s . But s*xs*s e I . 0
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Lemma 4.16
Let S Dbe an inverse semigroup, and let I Dbe a non-zero

ideal of a *-algebra A contained in C; e(S) and containing
14

AS(S) . Then there exist x € I and e € ES\{G} such that
<xe, e> # 0 and x € AeAAe where As is the regular left
1

*-representation of le(S) on 12(8) .

Proof
Let I be as above, and let x e I\{O0} . Then xX*x # 0 .
Suppose <x*xs, s> = 0 for all s € S . Then xs = 0 for all

0. Therefore there exists t € S such that

s €8S, so X
<x*xt, t> # 0 . But t = Att*t , So <(A€x*xkt)t*t, t*t> # 0 .

*yk = JA*yx*k
But At*t(Atx XA )2 Atx XA, € I. O

t*t

The next theorem was proved by Munn [23] with guasicancellativity

in place of property (A) .

Theorem 4.17

Let S be a fundamental O-simple inverse semigroup with
property (A) and strongly disjunctive semilattice of idempotents,

and let F Dbe a field. Then Fes is a simple algebra.

Proof
et F and S be as above, and let I be a non-zero ideal

of F,5 . For ec¢ E\{8} , 1let '
L5

M ={x €I : exe=x and e € supp(x)} . By lemma #, there

exists e € E\{8} such that Me g .

let o = min U {|supp(x)| : x e M} . Then o >0 .
eeE\{6} €

et M= U {x e M : x(e) =1 and |supp(x)| = o} , and
e
ecE\{8}
pick x e M, say with x ¢ M, . Let

Vv = {ss*, s*s : s ¢ supp(x) }\{el} .
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Suppose V # ¢ . Then v < e for all v € V , so there
exists u e E such that uv =06 for all veV and ue # 6 .
Then ]supp(uXu)| < Isupp(x)[ . But if s € supp(x) and wusu = ueu ,
then s*s = ss* =e , s0O s =¢e . Then eu € supp(uxu) and so
uxu € Meu n M, contradicting the minimality of |supp(x)| ; SO

v

g . Thus x e€ M n Me implies that ss* = s*s = e for all

s € supp(x) .

Suppose supp(x) # e . Let s € supp(x)\{e} . Then as S
is fundamental there exists f ¢ E such that sfs* ¥ efe . As
they are unequal, neither is 6 . If sfs* > ef ,

s«*(sfs*)s = efe < sfs* . Let

£ if sfs* ¥ ef . Then sus* Z eu # 6 .

0T sfs* if sfs* > ef . Then s*us Zeu= 0.
et z = uxu . If tt* = t*t and utu =ueu # 6 , then t =e .
Therefore z ¢ M n Mue . If utu = uvu and t*t = tt* = v*v = vv* =
then t =v . Thus wusu € supp(z) , so (usu)(usu)* = eu ,
so sus* 2 eu , and (usu)*(usu) = eu sO s*us = eu . This is
impossible by the choice of u . . Therefore supp(x) = {e} .
But S is O-simple, so I > S . O

Theorem 4.18

let S be a fundamental O-simple inverse semigroup with
property (A) and strongly disjunctive semilattice of idempotents,
and let A be a *-subalgebra of C;,G(S) containing AS(S) with
an algebra norm bounded by the Ll—norm.' Then A 1is topologically

simple. In particular, z;(s) is topologically simple,.
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Iet I be a non-zero ideal of A . Pick € > 0 . For
e € E\{8} 1let M, = {x € k(S) : exe = x, x(e) =1 and d(kx, I) < ¢}
where 4 is the distance in the norm of A . By lemma 4.16,
there is z € I and e € E\{6} such that A zA, =z and

<ze, e> =1 . Then there is w ¢ k(S) such that

v~ 2l < T e

and ewe = W . Now if ese = s and <Ase, e> =1 then se = e

and s*se = e . Then s = ese = e , 8O

_ _ £
lwie) - ll - <“‘w z)e, e> < 1+¢+ ||z]

SO d(w%e) >‘w’ I) <eg . Thn Mq""¢.

let

¢ = min \j {|supp(x)] : x € M, and e ¢ supp(x)} .
ecE

This is well defined. Let

M= \q/{x €M : x(e) =1 and |supp(x)| = al .
eeE €

let x e M, say with x € Me . Then as in theorem 4.17, x =e ,
so d{e, I) < e . Therefore d(s, I) < e for all s e s\{6}

as S is O-simple. But ¢ is arbitrary, so I oS . 0

Now we produce some examples of fundamental O-simple inverse
semigroups with property (A) and strongly disjunctive semilattice

of idempotents.

Example 4.19

S =_}10(I){l}) for I a non-empty index set, Its semi-lattice
of idempotents is strongly disjunctive, and O-bisimple. For e a

non-zero idempotent, the ideal of z;(S) generated by e can be
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faithfully represented (theorems 2.4.2 and 2.4.3) as the subalgebra
2 o dimensional

of BL(& (I)) whose kernels are orthogonal to finite / subspaces of
1 , ‘ .
£ (I) and whose range is in Ql(I) ;, and the ideal of C; e(S)

[ 4

2

can be faithfully represented as the subalgebra of BL(& (I))
consisting of finite rank operators. Suppose I 1is infinite.

Then by Baire's category theory applied to their ranks, neither

algebra is a Banach algebra, so both are dense ideals.

We shall now produce some left cancellative monoids whose
inverse hulls are fundamental, O-bisimple, satisfy property (A)

and have strongly disjunctive semilattices.

Example 4.20

Let FS(I) be the free semigroup on an infinite set I .
Then FS(I)l , its unitisation, is a cancellative monoid whose
principal right ideals and @ are closed under intersection.
The corresponding semilattice is strongly disjunctive. Its
subgroup is trivial, so its inverse hull is fundamental and

satisfies property (A) .

There are many images of FS(I) with the same properties as
listed above, save that the image is left cancellative and not right
cancellative, e.g. the quotient under the congruence generated by

ab = b2 where a, b e I .

We will now produce examples with non-trivial subgroups. Let
G be a group acting on semigroup S by automorphisms. Then
sdcec=sx¢ with.multiplication given by

(s, g)(t, h) = (sg(t), gh) .
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Theorem 4.21

Let S be a monoid with group of invertibles U and group
G acting-upon it by automorphisms. Then

(i) S is left cancellative if and only if S 4 G is
left cancellative.

(ii) R ~> (R\{6} x G) v {6} 4is an isomorphism from the
semilattice of right ideals of SO to the semilattice of
right ideals of (S ] G)O carrying principal right ideals to
principal right ideals.

(iii) U 3 G is the group of invertibles of S {1 G .

{iv) If J is the set of relative left identities of
s eSS, Jx {1} is the set of relative left identities of
(s, g es ] G.
(v) If S is 1left cancellative and U = {1} , then the
inverse hull of S 1 ¢ is fundamental if and only if G

acts on S faithfully.

Proof

let S, U and G be as above.
(i) Suppose S is left cancellative and (a, g) (b, h) = (a, g)(c, k) .
Then 'ag(b) = ag(c) and gh =gk , so h=k and g(b) = g(c) ,

sO b =rc.

Suppose S 9 G is left cancellative and ab = ac . Then

(a, 1), (b, 1) = (a, 1) (¢, 1) , so (b, 1) = (¢, 1), so b=c.

(ii) sSuppose R is a right ideal and x e R\{6} . Then for
g, he G and ye s, (x, g9)(y, h) = (xg(y), gh) , so xg(y) € R.
Thus R~ ((R\{6}) x G) u {6} is a semilattice morphism for the

stated semilattices. It is a monomorphism; all that remains to be
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proved is that it is a surjection for it to be an isomorphism.
Iet T be a right ideal of S J G, and let
R={68}u-{ses : (s, g €T for some g € G} . Then if
(s, gle T, then (s, g)(1, g—lh) = (s, h) , so

T= ((R\{6}) x G) v {8} . Suppose s e R. Then if
tesS, (s, 1)(t, 1) = (st, 1) e T, so ste R. Thus the

morPﬁism is a surjection, and thus an isomorphism.

If R is a principal right ideal, so is ((R\{6}) x @) u {8} ,
and 1f ((R\{6}) x G) u {8} 1is generated by (s, g) , R is

generated by s .

(iii) (1, 1) 1is the identity of S 3 G . Suppose

(s, 9)(t, h) = (£, h)(s, g) = (1, 1) Then h =g " , and

sg(t) = th(s) =1 . Then 1

g(l) g(t)s , so s 1is invertible.

g tw™, oY .

If (u, g) e U G, (u, g)-_l

(iv) sSsuppose (t, h)(s, g) = (s, g) . Then hg=g, so h=1.

But then s = th(s) = ts .

(v) We shall use proposition 4.12. let s e S . Suppose

(t, 1)(s 4§ @) (s, (sq406) . Then there exist u, v e S

such' that su t and tv=s8, so suv=s and tvu=t ,

so uwv=wvu=1, 80 s=4t . Now (1, g)(s, 1)(s q G)

(1, g99(s, 1)(S 16 = (g(s), g9(sJ G = (g(s), 1)(s §G) . Then
if (1, )R =R for every principal right ideal of s J G,

g(s) = s for all s € S, so the inverse hull of S ] G is

fundamental if and only if G acts on S ‘faithfully. O
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Corollary 4.22

Let S be a O-bisimple monoid whose subgroups are trivial and
whose semilattice is strongly disjunctive. Then if U is its
left unit semigroup and G acts faithfully on U then the inverse
hull of U { G 1is a fundamental O-bisimple monoid satisfying

property (A) and having strongly disjunctive semilattice.

By Theorem 4.11 and theorem 4.21 (i), U { G is a left
cancellative monoid. Let I be its inverse hull. By theorem
4,21 (ii) I is O-simple with strongly disjunctive semilattice.
I satisfies property (A) by proposition 4.14 and theorem 4.21
(iii) and (iv). L is fundamental by proposition 4.12 and

theorem 4.21(v).
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