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ABSTRACT
The thesis presents research on the life-history polymorphism in the mite

Sancassania berlesei. Males of this species are andropolymorphic: there are

two distinct male phenotypes. One, the fighter, develops a third thickened

leg pair, with which it kills off other fighters and males which do not exhibit

a third thickened leg pair, the non-fighters.

A review of the life-history of S. berlesei is given, focussing on its general

biology, diet, dispersal and mating behaviour. This is followed by a review of

the andropolymorphism, and the current understanding of the mechanisms

underlying it. The major conclusions from the experimental work presented

in this thesis are that fighters primarily develop at low population densities;

though the proportion of males becoming fighters at any given density may

change over time. This change is likely to be due to condition-dependence.

Data is presented to illuminate these matters and a model is developed linking

fighter development to the costs of being a fighter (in terms of survival) and

the benefits of being a fighter (in terms of fecundity).

The sex ratio in S. berlesei is 1:1, and there is no evidence of density or

frequency-dependent deviations from this. A delay in food supply at mat-
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uration delays the time of maximum fecundity of females for about seven

days and lowers their overall egg output. Density-dependent effects reduce

the overall daily fecundity of females in higher densities. Female survival is

affected by density, food present and rearing conditions. Nearly all eggs laid

by S. berlesei hatch regardless of the conditions. Eggs laid in very poor con-

ditions hatched even earlier than the average time of between day three and

four. At density two, animals do synchronise their frequency, when isolated

together from egg stage. Poor conditions reverse female density-dependence

from convex to concave with the lowest life expectancy at intermediate den-

sities. The trade-off between survival and fecundity is the likely cause.

Amalgamating the results from the previous experiments, the influence

of stochastic population dynamics on male strategy was then modelled. The

results indicate that the fighter morph development rule is sensitive to the

probability of low population densities arising. When low densities occur,

there is a selective advantage to being a fighter. With increasing probability

of lower densities, becoming a fighter is more feasible. The ESS rule changes,

while in a stable high density environment a density-dependent fighter rule

is never selected for. This indicates an influence of stochastic population

dynamics on life-history evolution. Modelling demographic stochasticity in

the fighter rule shows some buffering effect of this form of stochasticity. The

fighter morph determination rule is less sensitive to environmental stochas-

ticity with a high frequency of low densities.

Using an agent based model with diploid genetics, I show that under

high densities a fighter male is less successful at passing on his genes than
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a non-fighter. At a density of one male, the fighter gains no advantage to

developing the fighter phenotype (as he is not competing with other males).

In this case, the advantage may arise through future increases in density (such

as through immigration or maturation of offspring). The density-dependent

fighter development rule is then switched within the model from density-

dependent to frequency-dependent, and the model indicates, that even under

the frequency-dependent rule a possible ratio of fighters to non-fighters could

exist. The system does not reach this state due to condition-dependence in

reality.

Following on from the findings discussed above, that morph determina-

tion has a condition-dependent component, I develop an argument that re-

lates the observed forms of morph determination (density-dependent and

frequency-dependent) in three closely related species of mites via an under-

lying condition-dependence. It is shown that condition-dependence is likely

the linking factor between frequency and density-dependence. This is shown

to be possibly a rule for all species displaying polymorphism which includes

physical alterations of their bodies.
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1. INTRODUCTION

Abstract
1.) The linkages between the study of evolution and the study of diversity will be
discussed.
2.) Mechanisms by which phenotypic and genetic variation are maintained in pop-
ulations will be detailed.
3.) Links between intraspecific variation and speciation will be highlighted.
4.) Concentrating on polymorphism, the concept of andropolymorphism is intro-
duced using a specific animal system, more specifically a mite species.
5.) The question addressed in this thesis is: "What maintains the polymorphism
shown by the mite system?"
6.) I discuss how to assess the adaptive value of traits, contrasting optimality ap-
proaches with those based on invasibility analysis. This includes an introduction
to the modelling approaches taken in this thesis.

1.1 Introduction

Understanding biodiversity and its causes is a focus of biological research

(Diekmann and Doebeli, 1999; Bridle, 2000; Pachepsky et al., 2001). Biodi-

versity has been most generally defined as the" full variety of life on Earth"

(Takacs, 1996). More specifically, the study of biodiversity is the study of

the processes that create and maintain variation. It is concerned with the

variety of individuals within populations, the diversity of species within com-

munities, and the range of ecological roles within ecosystems (Takacs, 1996).
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Ecologists still search for common principles that predict well known re-

sponses of biodiversity to different factors. Such factors include the number

of available niches in space, productivity, area, species' body size and habitat

fragmentation (Richie and Olff, 1999). The maintenance of genetic diversity

within a species can also shed light on the genetic variation between species

(Sole et al., 1999), as ultimately changes within a species have to take place,

for new species to evolve. In extreme cases speciation can be triggered by

just one changed gene. This happens in the Japanese land snail Euhadra,

where one gene alters the chirality of the entire ontogeny. This introduces

chirality constraints on mating (Ueshima and Asami, 2003).

Differences within (and between) species can be described at a genetic

or phenotypic level. The genotype is the internally coded, inheritable infor-

mation carried by all living organisms, the DNA. The DNA information is

used as a set of instructions for building and maintaining all living creatures.

These instructions (the genetic code) are found within almost all cells. They

are copied at the time of cell division or reproduction and are passed from

one generation to the next.

The phenotype would be defined as the physical manifestation of an or-

ganism, like cells, structures, metabolism, energy utilisation, tissues, organs,

reflexes and behaviours. If a species develops several discrete phenotypes,

the term polymorphism is used. In some species one sex develops several

phenotypes (Gross, 1996). If the sex carrying the polymorphism is female

this is called gynopolymorphism and if the polymorphic sex is male (like in

the animal model system of this study) this is called andropolymorphism.
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Besides the detailed description of andropolymorphism, the detailed study

of the evolution of alternate male strategies has not received much attention

(Gross, 1996; Kurdziel and Knowles, 2002) and has been mostly empirical

(Schroeder et al., 1996; Radwan and Klimas, 2001; Cremer and Heinze, 2002;

Kurdziel and Knowles, 2002). Using Sancassania berlesei (an andropolymor-

phic mite with two distinct phenotypes, a so-called "fighter" and a "non-

fighter") as a model organism this study will be a detailed investigation of

the costs and benefits of developing into each morph. The costs and benefits

will be examined over the organisms whole life-history, based on a detailed

empirical study of all aspects of S. berlesei's life-history.

1.1.1 Phenotypic variation

Phenotypic plasticity is the property of a genotype to produce different phe-

notypes when exposed to different environments. Plasticity is therefore a

description of the reaction norm of a genotype, which is the function defined

in environment / phenotype space relating environmental input to pheno-

typic output.
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form of varia- characterist. number number of example
tion of pheno- structural

types in a classes
population within an

individual
unique pheno- channelling 1 1 Scathophaga
type siercoraria,

(Hasken
et al.,
2000)

phenotypic broad depending depending Bordetella
modulation spectrum on envi- on envi- pertussis

of expres- ronment, ronment, Whoop-
sions numerous numerous ing cough

classes, classes, bacterium
normally normally
continuous continuous
variation variation

developmental discrete >=2 1 S. berlesei
conversion expressions

initiated
by the en-
vironment

genetic genetic >=2 1 possibly
morphs specialisa- Rhizo-

tion glyphus
robini

multiple different 1 >=2 hepatitis C
strategies kind of virus

variations
are ex-
pressed in
the same
individual

Tab. 1.1: Forms of phenotypic variation, after Lloyd (1984) with use of the
terminology of Smith-Gill (1983).
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A wide range of forms of phenotypic variation exists. There may be a

single phenotype (this is when development is said to be 'channeled') or there

can be continuous or discontinuous variation (see table 1.1). In a channeled

phenotype, development is buffered against a variation of the genotype and

against variation of the environment (Waddington, 1952).

Developmental conversion occurs when environmental signals influence

the development of an animal into different types (Lloyd, 1984). Here the

development is directed in one or several discrete ways, which can bring

changes in many traits of an organism. S. berlesei, an acarid mite, provides

an example of such a developmental conversion, which is seen to be triggered

by an environmental signal (Woodring, 1969; Timms et al., 1980, 1981a,b;

Radwan, 1992, 1993), where it has been shown that a different phenotype

develops at low population densities. Developmental conversions can also be

found in the larval stages of Nemoria arizonaria which develop mimesis of

pussy willows or twigs (Greene, 1989). Here the environmental trigger is the

tannin concentration, which regulates if the caterpillars develop into mimics

of pussy willows or twigs.

Between the extremes of channelling (single phenotype) and developmen-

tal conversion (phenotype is discrete and depends on the environment), or-

ganisms can show a variety of forms of phenotypic plasticity. Here the differ-

ent traits of an organism can differ in the extent of a variation. This pheno-

typic modulation does not have to be adaptive (Smith-Gill, 1983). Variations

in growth can also occur because of nutritional differences, but the response

to different food levels may be itself adaptive.
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A discrete phenotype can exhibit not only different morphologies but also

differences in behaviour and life-history strategies.

1.1.2 Polymorphism of one sex

Polymorphism in one sex has been found in many taxa, including arthro-

pods, fish, lizards and birds. It can show itself in differences in morphology,

behaviour, physiology as well as life-history (Gadgil, 1972; Gross, 1996). Ex-

amples of the taxa displaying polymorphism in one sex are the amphipods

Jassa marmorata and Jassa falcata (Borowsky, 1985; Conlan, 1989), the

beetle Onthophagus acuminatus (Emlen, 1999), the bird Philomachus pug-

nax (Lank et aI., 1995) and some species of mites (notably from the family

Acaridae)(Evans et al., 1961) (See figures 1.1, 1.2, 1.3).

Andropolymorphism (a species having two or more male phenotypes) in

mites can generally be found in the Astigmata (Zakhvatkin, 1959; Hughes,

1976; Timms et al., 1981a,b) (See figure 1.2).

1.2 Reasons for cause & maintenance of within species

diversity

Fisher (1930) showed that traits linked to fitness would quickly be selected to

fixation. Therefore, on average, the expectation is that intraspecific variation

(in a constant environment) should be very low. That genetic and phenotype

variation is common begs explanation. A number of potential mechanisms

by which variation is maintained are discussed below.
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1.2.1 Genotype x environment interactions

Phenotypic plasticity is exhibited whenever the phenotype of a gene changes

predictably with changes in the environment. The phenotypic variation can

be continuous or discrete. The spectrum of the phenotype across the differ-

ent environments is known as a reaction norm (Johanssen, 1911; Bradshaw,

1965). It is possible to distinguish between two forms of reaction norms. In

the first form, all genotypes react to the environment in a similar manner,

so that along an environmental gradient there is no particular order of "fit-

ness" of the genotypes. With the second form, the genotypes vary in the

extent of their reaction to environmental gradients, so that the phenotypes

change in different ways when the ranking of the genotype's fitness changes.

This variation of reaction norms is called a genotype-environment interac-

tion. As different genotypes do better in different environments, this implies

that environmental variation will maintain genetic variation.

1.2.2 Mutation/selection balance and Fisher's

fundamental theorem

Mutation creates diversity by introducing new alleles. If selection occurs

against a deleterious allele, it will eventually be lost from the population.

This can lead to a balance between selection and mutation. If a deleterious

allele continues to exist, this will be due to a "balance" between mutation

and selection.

The mutation/selection balance can be used to infer indirect (e.g.
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pleiotropic) selection. If a deleterious allele is more frequent than its mu-

tation/selection balance (calculated from the mutation rate and the genetic

fitness while assuming the allele has no indirect effects) then it implies indi-

rect selection is occurring.

Fisher's fundamental theorem states that the intrinsic rate of increase in

fitness (r) of any organism at any time is equal to its genetic variance in

fitness at that time (Fisher, 1930). This essentially means that evolution is

most rapid when diversity is highest, or alternatively, the fittest allele soon

goes into fixation, at which time genetic diversity falls to zero and fitness

becomes constant.

The conclusion from a long-running debate was that Fisher's theorem

would not be applicable to real life populations (Kimura, 1958; Li, 1967;

Karlin and Feldman, 1970). Price (1972) pointed out, however, that this

theorem applies only to a partial increase in T caused by natural selection.

In other words a mutation will cause a transient change in T, not a long-term

change in T.

Witting (2000) negates this view and states that Fisher's r is not a suit-

able measure of selection in environments characterised by density-dependent

competitive interactions.
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1.2.3 Frequency-dependent maintenance of genetic

diversity

Life-history strategies may be maintained by frequency-dependence. Nega-

tive frequency-dependence means the success of a strategy is dependent on

the number of other individuals adopting the same strategy, the more that

adopt the strategy, the less successful is this strategy.

For example in Salmo solar (Atlantic Salmon), smaller males develop

whose success depends on there being a sufficient supply of large males to

parasitise; likewise in digger wasps, where sufficient nests have to exist for

the strategy of parasitism (by 'patrolling' males) to be successful (Frazier,

1997).

Therefore the advantages of a particular strategy become less as the pro-

portion of organisms exhibiting the phenotype that is exploited, become

fewer. This means that the success of strategies is dependent on the ex-

istence of other strategies and is therefore upholding polymorphic diversity.

1.2.4 Density-dependent maintenance of genetic diversity

In addition to frequency-dependence maintaining diversity it is possible for

the expression of different phenotypes to be density-dependent (Sinervo et al.,

2000). In such cases, the presumption is that if population densities are

fluctuating, the genetic diversity is maintained by density-dependent fitness

of the different phenotypes, therefore giving one phenotype better chances of

producing viable offspring than the other at different densities. Sinervo et al.
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(2000) showed that both density and frequency-dependence can exist at the

same time in lizards. Here orange-throated females produced many small eggs

and were favoured at low densities where fitness is most strongly related to the

population growth rate (MacArthur and Wilson, 1967; Charlesworth, 1994).

Conversely yellow-throated females produced large eggs at high density where

fitness is most strongly related to competitive ability. Larger individuals

with fewer larger eggs implies more competitive individuals (K-selection).

The frequency-dependence was shown as being that large eggs had better

survival chances, when rare.

Density-dependent morph determination is also shown in the higher

melanin concentration of the bodies of many insect species in high-density

populations, which give a higher level of protection against pathogens.

Pathogen infection is more likely in higher densities (Reeson et al., 1998).

The model organism in this study (see section 1.3), S. berlesei, exhibits

density-dependent morph determination. In this species, two morphs exist:

a fighter male, which develops at low population densities, and a normal

male, which develops at greater population densities. Morph determination

is primarily thought of to be driven by population density through a chemical

cue related to density (Timms et al., 1980).

1.2.5 Local adaptation

Local adaptation can be seen as a reaction to long term spatial heterogeneity,

which allows a degree of diversification, but not strong enough for allopatric
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speciation. This local adaptation implies that spatial heterogeneity maintains

genetic diversity (Galloway and Fenster, 2000; Lively and Dybdahl, 2000;

Kraaijeveld and Godfray, 2001).

1.2.6 Limiting and stabilising intra-specific diversity

through bet-hedging in fluctuating spatial and

temporal environments

The main consideration of bet hedging (Gillespie, 1974, 1977; Cooper and

Kaplan, 1982; Sibly et al., 1991) is that organisms have adapted to both the

mean of an environmental condition (e.g. wind, temperature), and also its

variability. The term bet hedging was introduced by Slatkin (1974). Here

the unpredictable nature of an environment results in the evolution of phe-

notypes, which are adapted to environmental unpredictability (Seger and

Brockman, 1987; Phillippi and Seger, 1989; Sibly et al., 1991).

Bet-hedging phenotypes arise from selection reducing the variance in fit-

ness across all possible environmental states, even at a cost to arithmetic

mean reproductive success (Gillespie, 1974; Slatkin, 1974; Gillespie, 1977;

Phillippi and Seger, 1989). As, the geometric mean (the nth root of the

product of n numbers) becomes smaller relative to the arithmetic mean as

variance increases, environmental variance favours geometric mean fitness

over arithmetic mean fitness (Gillespie, 1974; Slatkin, 1974; Gillespie, 1977;

Phillippi and Seger, 1989).

The strategy can be seen to work in vernal pool fairy shrimp. The shrimp
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hatch shortly after the pools begin to fill. The shrimp reproduce quickly and

the eggs form a protective coating and settle into the soil as cysts. As a

season begins there is no obvious sign that the pool will remain wet for a

period long enough to allow reproduction. Thus if all the eggs from the

previous generation hatch, the result could be local extinction, so only a

proportion hatch each year. The potential for extinction is a clear example

of how maximising the geometric mean can be seen as superior to maximising

the arithmetic mean (Simovich and Hathaway, 1997).

Seger and Brockman (1987) identified two different bet hedging strategies,

conservative bet hedging versus (vs) diversified bet hedging. The diversified

"bet hedger" assumes randomly the role of two specialist strategies, (i.e.

good year specialist and a bad year specialist). By adopting this strategy, it

has even a higher mean fitness than a conservative bet hedger, as it assumes

(e.g. if the probability for the two specialist strategies is assumed to be 50:50)

the average between the two arithmetic fitnesses. This has been shown for

desert annuals by Cohen (1993), diapause in arthropods by Istock (1981)

and is suspected for offspring size in a theoretical approach by Cooper and

Kaplan (1982).
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1.3 The andropolymorphic study system

Sancassania berlesei has been recorded since 1882 when Berlese (1882) pub-

lished a work on polymorphism in some Acari and describes the polymorphic

male form of Analges sp. Canestrini (1888) showed that a species of Rhizo-

glyphus forms two different types; one whose third pairs of legs is similar

to the females and one with the third pair of legs enlarged and ending with

a claw. Zakhvatkin (1959) states that the polymorphic males found in the

genera Sancassania and Rhizoglyphus are just examples of many genera of

the subfamily Acarina which exhibit andropolymorphism.

1.3.1 General biology

S. berlesei is a mite of about 0.6 - 1 mm adult size. It develops over egg,

larvae, protonymph, tritonymph to an adult (Hughes, 1976) (See figure 1.3).

The development time from egg to adult of the polyphagous S. berlesei was

fixed to 159 hours on yeast at 25 ·C (Hughes, 1976). Maurya (1982) tested

45 different foods and found that dried yeast proved to be most effective to

mass rear S. berlesei. Acarid mites whole development cycle (as death, de-

velopment time, number of offspring) is sensitive to cold temperatures, low

atmospheric pressures, low humidity and excess humidity (Zdarkova and

Voracek, 1993). Field populations of mites are therefore likely to experience

environmentally induced mortality, and so changes in population sizes, in ad-

dition to changes in population size caused by changes in resource availability.
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A

B

Fig. 1.1: Males of the species S. berlesei. A) fighter B) non-fighter with
corresponding picture of one leg of their third leg pair.
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1.3.2 Diet

s. berlesei generally has a broad diet and is recorded as feeding on dead

animals and can even survive, but not grow, on filter paper (personal obser-

vation). In the laboratory, S. berlesei are fed on dried yeast balls.

Additionally it is phoretic on scarab and chafer beetles, during which

time it may take up some nutrients (although the mechanisms are unknown)

(Houck and O'Connor, 1991). S. berlesei is also described as a species which

feeds on root-knot nematodes (Sell, 1988). S. berlesei is generally thought

to be a generalist consumer and detritivore.

Several pictures of the study animal can be found in figure 1.2.

1.3.3 Local dispersal

Dispersal is the movement of individuals away from the area where they were

born/hatched/developed. Typically dispersal is a non-reversible movement,

while migration tends to be reversible movement.

Lapsley (1999) found S. berlesei dispersing locally by walking away from

their birth spot. New arrivals at unpopulated spots had a higher probability

of becoming fighters than animals that stayed put. In an experiment with

different patches connected by tubes, the tested maximum dispersal length

for patches without food was 28 cm. This attracted significantly fewer mites

than closer patches (7,14,21 cm). S. berlesei dispersed more frequently longer

distances for food in an experiment where food was provided in patches

further away from the birth spot. This only occurred when food in the
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birth patch was low. Otherwise the animals dispersed in significantly lower

numbers.

1.3.4 Long distance dispersal

Under adverse conditions a deuteronymph is developed, which does not feed,

is more sclerotised and is the animal's long-distance dispersal form (Hughes,

1976; Crocker et al., 1992). S. berlesei deuteronymps are phoretic and have

been found on 16 species of Scarabidae. Across the 16 species, 0-85% of

individuals had attached hypopi, with up to 25.4 mites per beetle on average

(and a maximum of 300) (Cracker et al., 1992).

Host size, host sex, year and date in some species influenced the mite

densities, but no overall influence over species could be found regarding these

factors (Cracker et al., 1992). The relative ranking of beetle species as hosts

tended to be consistent from year to year and species which reproduced at

the same time in the same habitat, had widely varied levels of infestation

(Cracker et al., 1992).
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.ipe.r ~loc-ent
~U .. to condiUou

1U11\.
Pighter develo~t
in.ensiU ve to
eondiUon.

Fig. 1.3: Life-cycle of S. berlesei. Development goes from egg to larva to
a protonymph, a tritonymph to the adult. Under adverse condi-
tions, optionally, another life stage develops, the deuteronymph
or hypopus. This stage is non feeding and is the (mostly) long
distance dispersal stage of the species. The grey area marks the
region where environmental conditions have an effect on the devel-
opment of fighters/non-fighters. In the white area environmental
conditions have no effect on morph determination.
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1.3.5 Mating

Parthenogenesis is absent (Timms et al., 1981a) in S. berlesei. Mating occurs

continuously from after the last moult. The last male mating with a female

fertilises the most eggs (Radwan, 1991), but the proportion decreases as the

time between first and second mating increases (Radwan, 1991). Virgin males

copulate longer than non-virgin ones (Radwan, 1991). No kin recognition has

been found in S. berlesei (Woodring, 1969), as has been found in Sancassania

anomalus (Radwan, 1993).

1.3.6 Male dimorphism in the model system

Andropolymorphism in S. berlesei occurs through both morphological and

behavioural differences. It is most apparent by the appearance of the 3rd

leg pair (Timms et al., 1981a,b) (see figure 1.1). The fighter possesses a

thickened and sharply terminated third pair of legs, which are used to punc-

ture the cuticle of other males, while non-fighter morphs have unmodified

legs (Radwan, 1995). According to (Woodring, 1969) there are four differ-

ent types of morphs that occur in Acaridae. His classification describes two

basic body shapes. Firstly the homeotype, which has a rounded body and

short dorsal setae and the bimotype, with a more elongated body and longer

setae. The homeotype is further divided in the homeomorph (non-fighter)

and the heteromorph (fighter). Secondly, the bimotype is divided into the

bimorph (non-fighter) and the pleomorph (fighter). Woodring (1969) found

all these types clearly in S. anomalus and found a regular 20% pleomor-
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phic./homeomorphic male ratio of S. anomalus. The classification of the

homeo- vs the bimotype is dubious regarding its biological relevance. It

might reflect environmental effects of age and nutrition and cannot easily be

identified in the laboratory (personal observation). For the rest of this work

only the fighter vs non-fighter polymorphism is considered, as it is readily

identifiable and distinguishable.

There is strong density-dependence in growth; as a result of this ani-

mals reared at low density tend to be larger (Beckerman et al., 2002, 2003).

Therefore males of S. berlesei are larger if they are isolated earlier from stock

cultures (personal observation). Fighter males isolated at the protonymph

stage grew larger than non-fighter males isolated at the tritonymph state.

There was no difference in the size of the two male morphs, if they were

isolated as larvae and raised together in small groups (Radwan, 1992) due

to higher per capita food. This is probably a result of competition for food,

but has not yet been confirmed.

In S. berlesei it is common to find males which are intermediate be-

tween fighters and non-fighters: they have one enlarged 3rd leg with the

other having the normal build (Timms et al., 1981a,b). This morph is called

ambiomorph by Nesbitt (1993) and intermorph by Timms et al. (1981a).

Nesbitt (1993) suggests that ambiomorphism might be associated with the

first division of the zygote into the daughter cells. Since the two sides of the

body of this form are mirror images of each other, except for the hind legs

and the difference in the length and robustness of some of the dorsal setae,

this would be consistent with a non-disjunction of the chromosome pair that
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carry the genes responsible for the heteromorphic type of male. Neverthe-

less this explanation is purely theoretical. Ambiomorphs cannot be reliably

reproduced in the laboratory (personal observation).

Woodring (1969) found the highest rate of fighters at 20° temperature

and this rate decreased below and over this temperature. At any given tem-

perature the rate is highest when the animals were fed on animal tissue,

lowest when fed on yeast. This suggests that morph determination depends

not only on density; this is a subject covered in detail later in this thesis.

1.4 Assessing the outcome of evolution

To predict the outcome of evolution in S. betlesei it is necessary to have a

performance measure to compare different life-history strategies. This value

is usually termed fitness, but what is fitness exactly?

The measures of fitness used fall approximately into four groups [after

(Benton and Grant, 2000)1:

1. based on measures of population growth (such as r)

2. based on measures of reproductive success (such as Ro, LRS (life-time

reproductive success) inclusive fitness)

3. based on population size (such as K)

4. others (such as time to extinction)

Here the most commonly used are one to three (Benton and Grant, 2000).

Brommer (2000) recently reviewed the history of fitness measures.
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1.4.1 Non-dynamic fitness estimates

The use of r assumes that the population size is unbounded and the environ-

ment is constant (Charlesworth, 1994), although Tuljapurkar (1990) derived

a stochastic analogue of r termed a, which allows the relaxation of the con-

stant environment assumption. The use of r as fitness implies a constant

environment, which either has no density-dependence or the density is not

varying over time.

Many populations are in some form of equilibrium where the growth rate

approximates zero. This will give us no indication of the fitness of the ani-

mals, as the population growth rate, and therefore fitness is constrained to

be zero. The same seems to be relevant for measures based on reproductive

success, like LRS. In an equilibrium population the average LRS would be

one as all animals dying could be replaced by one animal. The apparent

paradox that evolution maximises a value that is constrained is illusory. In a

population there will be variation between individuals, as the mean LRS of

the population would be one, but each individual could have an individual

LRS of greater or smaller than one. Therefore LRS cannot be used as fitness

measure on population level, but might be valuable on an individual-based

level.

The population size at equilibrium, the carrying capacity for the trait in

question or K can also be used as a measure of fitness (Brommer, 2000).

The fittest strategy for an equilibrium level population is the strategy which

transforms limited resources into the most individuals (MacArthur and Wil-
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son, 1967; Charlesworth, 1994).

Time to extinction measures an organism's fitness by measuring the time

to extinction of one organism, with one trait, against the time to extinction

of another organism, with another trait. The fitter organism is that which is

assumed to have a longer time to extinction.

Therefore many of these fitness measures require some form of assumption

and are practical for different kinds of biological questions (Stearns, 1992).

However, many of these assumptions are unrealistic in most cases (Benton

and Grant, 2000), as there are few cases where organisms can expect to

live in constant environments over a long period of time, or live in density-

independent environments.

If a mutant grows into a population at equilibrium, it might reach, after

taking over from the previous genotype, also an equilibrium. Being then the

so-called resident, the former mutant might then become increasingly rare,

when invaded by new mutants which are growing into the population. Non-

dynamic fitness estimates, while being able to track short time fitness, do not

take into account that with invading (becoming the resident genotype) they

have actively changed the dynamics and might be susceptible to invasion

themselves (Diekmann et al., 1999).

1.4.2 Dynamic fitness estimates

Evolution proceeds by successive invasions of mutant strategies into popula-

tions of residents. The outcome of evolution is properly, therefore, predicted
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by analysis based on invasion of mutants into resident populations (Metz

et al., 1992; Rand et al., 1994; Ferriere and Gato, 1995; Mylius and Diek-

mann, 1995; Gurney and Middleton, 1996; Benton and Grant, 1999b).

ESS
Invasion analysis is based on a concept called Evolutionarily Stable Strategy

(ESS) which is according to Maynard Smith and Price (1973):

"A strategy such that if all members of the population adopt it,

then no mutation can invade the population under the influence

of selection"

ESS theory, a branch of game theory, is based on the idea of" evolutionary

games", where different strategies "play" over evolutionary time scales, with

gene frequencies evolving towards a stable state (Maynard Smith and Price,

1973).

As an example, the "Hawk-Dove" game uses the analogy of a "Dove"

strategy vs a "Hawk" strategy. The" Dove" (being the "gentle" strategy)

retreats if the opponent escalates the contest, whereas the "Hawk" always

escalates the contest and continues until injured or until the opponent re-

treats. If all individuals are using a "Dove" strategy, this strategy is more

likely to increase individual fitness. However, invading Hawk strategists al-

ways defeat individuals adopting the" Dove" strategy.

So organisms do not necessarily have to optimise their strategy, it is

sufficient to be better than your competitors.
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Estimating ESS using a Lyapunov exponent {}

Invasion is assessed by estimating the rate of spread (= population growth

rate) of a mutant strategy when rare. This quantity is technically the dom-

inant Lyapunov exponent (Metz et al., 1992), termed invasion exponent {)

(Rand et al., 1994). Under constant conditions, {}is equivalent to A = er

(the population rate of increase) and under constant density-dependent con-

ditions {}equals the LRS. Under stochastic or stochastic density-dependent

conditions {}has to be estimated explicitly; either analytical or by numerical

methods. The outcome of evolution will be the strategy that can invade all

others, but is not itself invadable.

Adaptive dynamics

Adaptive Dynamics is the study of adaptation whilst simultaneously consid-

ering the organisms environment, which may include population dynamics.

Adaptive dynamics is based around modelling the invasion of mutant

strategies into populations of residents. It is an extension of ESS analysis, as

it looks for the end points of evolution via successive invasions. A common

method of displaying the analytical results is via Pairwise Invasibility Plots

(PIP), which show when a resident can be invaded, and the invasion functions

give insight into the stability of the singular points (Diekmann, 1996) (see

figure 1.4).

The process when a monomorphic population becomes dimorphic, through

continuous differentiation of the initially similar strategies, is called evolu-
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tionary branching. The singular point (see figure 1.4) at which evolutionary

branching starts is called a branching point (Metz et al., 1996). A prerequisite

for evolutionary branching is that directional selection drives the population

towards a fitness minimum. In sexual populations with random mating, the

continual production of intermediate phenotypes from two branches prevents

evolutionary branching. In contrast, when mating is assortative for the eco-

logical characters under study, evolutionary branching is possible in sexual

populations and can lead to speciation. Doebeli and Diekmann (2000) con-

clude that evolutionary branching offers a general basis for understanding

adaptive speciation and radiation under a wide range of different ecological

conditions.
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Fig. 1.4: Pairwise Invasibility Plot and the classification of evolutionary
singular points. The adaptive dynamics invasion function of a
particular ecological system defines a Pairwise Invasibility Plot
for resident and mutant phenotypes. When the invasion function
is positive for a particular pair of phenotypes, the resident may
be replaced by the invading mutant. Intersections of the invasion
function are zero contour line at these singular points suffice to an-
swer four separate questions: (1) Is a singular phenotype immune
to invasions by neighbouring phenotypes? (2) When starting from
neighbouring phenotypes, do successful invaders lie closer to the
singular one? (3) Is the singular phenotype capable of invading
into all its neighbouring types? (4) When considering a pair of
neighbouring phenotypes to both sides of a singular one, can they
invade into each other? From (Diekmann, 1996)
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1.5 Tools

Mathematical and computational models are used to represent mathemat-

ically the biological questions under observation. Models describe complex

phenomena, and using mathematics, should help to understand functional

relationships within nature, like the ones investigated within this thesis.

Models can help to discover laws and rules of nature. For example a sim-

ple model like the exponential growth model (NtH = Ntert with t=time;

Nt=population abundance at time t; NtH =population abundance at time

t + 1; r=growth rate) can show that if a population would be unbounded

it would grow exponentially. This could lead to a) looking for unbounded

populations, or b) finding limiting factors to population growth, like density-

dependence.

Incorporating density-dependence, for example, in the model above, may

show a more realistic picture of population dynamics. This can be compared

to real life populations and, if a model describes the dynamics of a popula-

tion under investigation, may allow the possibility of predicting population

dynamics.

Stage structured models, like the LPA (Larvae, Pupae, Adults) model

of Tribolium, can describe an arthropod system as used in this study (Con-

stantino et al., 1995; Dennis et al., 2001). Stage structured models, like

matrix models (Caswell, 2000), can split the population into several different

stages. Matrix models operate on predefined stages of a population, being

this age or size or instar. Nevertheless they do not operate in continuous
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but in discrete time. A discrete time matrix model was used in this study to

make predictions about the possible influence of stochasticity on life-history

evolution, concentrating on the several discrete life stages of the study sys-

tem under question, which where grouped into egg, juveniles and adults.

Modelling in discrete time steps was considered to be sufficient detail, as

the data collected to "prime" this study's matrix model could only be taken

realistically is discrete time-steps (days).

To assess the possible outcomes of evolution, invasion based modelling

was used in this study, to be able to predict evolution in a density-dependent

and stochastic environment. Density-dependence was included in the model

after analysis of laboratory data showed that several life-history traits were

density-dependent, although this density dependence was not always linear

(straightforward) on a logarithmic scale. To reflect the animals in the labo-

ratory cultures, an explicit spatial component was not modelled at this stage,

and was only included on a small scale in an individual-based model reflecting

the animal movements as a particle system.

Individual-based configuration models work on an individual basis. They

have their basis in differing individuals, whose diversity influence their sur-

roundings (Batschelder and Williams, 1995; Ferreira, 1995; Axelesen et al.,

1997; Carnahan et al., 1997; Beecham and Farnsworth, 1998). Individual-

based distribution models basically build on individual-based configuration

models, but filter the individual into sub-classes based on certain traits (e.g.

age, height, build) and look at the behaviour and interaction of these sub-

classes (DeAngelis and Rose, 1992). Individual-based models, are widely used
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in population dynamics modelling (Batschelder and Williams, 1995; Ferreira,

1995; Axelesen et al., 1997; Carnahan et al., 1997; Beecham and Farnsworth,

1998).

Given the fighter morph determination where fighters occur in low num-

bers, it seemed to be essential to investigate possible effects of one or a few

individuals on a starting population. An individual-based model, defined by

its very name, seemed to be the most suitable for this purpose. Additionally,

fighting requires spatial interaction. This resulted in a choice of an spatial

individual-based model to investigate the effect of eliminating competitors

from a starting population, where low density or low animal numbers are

common and have a higher influence on future generations. Few fighters in

a starting population should have an advantage, as they father many off-

spring. This should be highly beneficiary for a fighter's genes, as they are

the ancestors of all future populations.

1.6 The study

In this study, a detailed description of the entire life-history will be incor-

porated into evolutionary models that include both density-dependence and

environmental variability. It will therefore be possible to investigate the

mechanisms of cost and benefits that lead to the two coexisting strategies.

As fighters of S. berlesei are commonly found in cultures with low densi-

ties, previous studies have suggested that there is a trade-off between ability

to monopolise females and time spent fighting, such that at higher densities
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fighters get a smaller share of paternity than non-fighters. If the population

has to vary, as seems likely for the fighter morph to be maintained, (such

that the population density is sometimes sufficiently low to make fighting

a profitable strategy), the key question addressed is under what conditions

of variability will fighting be maintained by selection and, if so, what is the

threshold density below which fighters should develop?

To study the influence of population dynamics on polymorphism in

S. berlesei, a density-dependent stochastic matrix model will be used to im-

pose variation on the population dynamics. Using invasion analysis, the

evolutionarily stable strategy (ESS) will be determined by linking the prob-

ability of becoming a fighter to population density.

Using an individual-based matrix model, the possibility that the fighter

morph is determined by frequency rather than by density is investigated.

By investigating frequency-dependent and density-dependent mechanisms, it

will be possible to generalise across different species of mites. In the family

of the study organism several species exhibit a similar polymorphism as the

model organism, but with a different kind of morph determination.

The conclusion will amalgamate the results of the previous chapters and

present a possible scenario for the evolutionary constraints of the different

kinds of morph determination.



2. INCIDENCE, COSTS AND

BENEFITS OF BEING A FIGHTER

Abstract
1.) Fighters primarily develop at low population densities;
2.) Though the proportion of males becoming fighters at any given density may
change over time.
3.) This change is likely to be due to condition-dependence.
4.) Data is presented to illuminate these matters and a model is developed linking
fighter development to the costs of being a fighter (in terms of survival) and
5.) the benefits of being a fighter (in terms of fecundity).

2.1 Introduction

S. berlesei's morph determination shows an environmental influence as found

by Timms et al. (1980), Radwan (1995) and Ballard (1997). At low popula-

tion density fighters develop, and they cannot be found at higher population

densities (Radwan, 1995). Ballard (1997) suggested that with increasing den-

sity the fighter finds less time for mate interactions but is overwhelmed by

fight interactions indicating a density-dependence.

One would define density here as number/area (animals move on flat

ground mostly in two dimensions) and to a small percentage also as num-
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ber /volume (as occasionally animals move over each other). The influence

of density is likely important, as animals have to interact (mate, fight) and

a larger area results in fewer interactions, as the animals meet fewer times.

A fighter has to fight and kill (therefore meet) another male to "cash-in" on

his advantage to be able to kill other males. Lapsley (1999) found fighters

in a large coupled arena, although the numbers of mites exceeded the num-

bers where fighters would usually be found. The animals have to be in close

proximity (or densely packed) to react in the way described in this chapter.

So I interpret this as a density-dependent effect, rather than a population

size effect. As experiments reported in this study use the same size vials,

population density is directly proportional to population size.

The development of fighters at low densities is environmentally condi-

tioned. Timms et al. (1980) investigated the cues and found that a chemical

found in large colonies acted as a suppressor of fighter development. Timms

et al. (1980) also researched whether food texture or the ether extract taken

from a mite population had an influence on fighter development. In both

cases no influence on fighter development was found.

If fighters only develop at low densities, one must ask why this may have

evolved. For it to be adaptive, the costs must be lower than the benefits at low

densities and vice versa at high densities. Costs and benefits are both levied

in fitness terms, so fighters should expect to achieve a higher reproductive

success than non-fighters at low densities, with the reverse at high densities.

A fighter in a low density situation only has to kill its (few) competitors

and can then subsequently monopolise the females. This is facilitated by
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fighters developing faster than non-fighters (Radwan, 1995). Conversely at

high densities, fighters should have a lower reproductive success, perhaps

because they spend more time fighting than mating and competitors are too

common to enable them to monopolise females. One therefore expects a

relationship between population density and fighter fitness, as suggested by

(Radwan, 1993).

Timms et al. (1980) found significant differences between fighters and

non-fighters. The investigation established that populations of fighter males

of S. berlesei live longer than non-fighter males, and fighter males produce

more young earlier than non-fighter males, although there is no difference in

egg numbers laid by females of each type.

Woodring (1969) and Nesbitt (1993) discovered small subtle polymor-

phisms. Fighters and non-fighters may vary (apparently discontinuously) in

size and shape, though Nesbitt (1993) found no difference in their ability to

feed, mate and move in many morphs of various Sancassania species.

Normally fighters only develop if they are reared from pre-tritonymph in-

dividuals. The normal procedure to obtain fighters is to pick pre-tritonymph

larvae from a stock culture and allow them to develop in isolation or at low

densities.

In previous studies it was assumed that the time or stage to the tritonymph

state had no influence on the percentage of fighters developing at certain den-

sities, and that only two discrete states existed. Individuals may "switch"

onto the fighter developmental pathway if they experience the necessary en-

vironment early in development, but after the tritonymph stage, regardless of



2. Incidence. costs and benefits of being a fighter 35

the environment, fighter development is not possible. A relationship between

stage or time and morph determination was assumed to be non existent.

2.1.1 Investigating the occurrence, costs and benefits of

the fighter morph

In this chapter an investigation of the incidence, costs and benefits of devel-

oping into a fighter will be made, lower densities were investigated in more

detail and it is demonstrated with a model of reproductive success, why it

might be beneficial for a mite of the species S. berlesei to become a fighter

not only when it is possible to totally monopolise its opposition (as in den-

sities one or two pairs), but also when the densities are a bit higher or if the

mite faces fighting opposition.

Therefore the following questions will be asked:

1. Is there a threshold density above which fighters do not develop any

more, or is the relationship continuous?

2. Is density the only cue for fighter morph determination?

3. Does the switch in the developmental path of the mite occur at a dis-

crete point in time?

4. Can we measure the benefits of being a fighter in terms of fecundity;

5. and the costs in terms of survival?
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Density-dependent morph determination

At low population density, fighters develop and cannot be found in higher

population densities (Radwan, 1995). This relationship could be continuous

or discontinuous. If discontinuous, there could be a threshold density below

which all males become fighters. If continuous the probability of becoming a

fighter could vary smoothly as density changes, with no 'stepwise' threshold.

Condition-dependent morph determination

As well as the density being a determinant of the probability of becoming

a fighter, Radwan (1995) found an influence of environment, notably food

availability. Poorly fed males were less likely to become fighters.

Fighter fecundity in all environmental conditions

In order to assess the costs and benefits of developing into a fighter, infor-

mation on the fecundity of the different morphs under different conditions

is required. First, the fecundity of the two morphs with females which are

either virgin or non-virgin (but sperm depleted) is assessed. S. berlesei dis-

perses as hypopi (a non-feeding additional life-stage, that develops in adverse

conditions, and is S. berlesei's dispersal stage) on beetles, so fighters devel-

oped at low densities in a newly colonised patch are likely to encounter virgin

females. Fighters, when they develop at high densities, would be more likely

to encounter non-virgin females. On the other hand females at a new patch

at low densities will be more likely to encounter fighters and at high den-
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sity more likely non-fighters. At high densities per capita food availability is

reduced. Females mating with fighters and non-fighters might encounter ani-

mals with different pre-tritonymph life-history. As the individual life-history

up to deutero nymph stage may occur on a different patch from where the

animals actually mate, it is possible, that animals with a low food life-history

(up to dispersal stage) arrive at a high food site, if emigrating from previous

even worse conditions. Although hypopi arise in adverse conditions (Ballard,

1997), this does not mean that they experienced bad conditions before they

became hypopi. This means hypopi could have grown up as eggs and lar-

vae with sufficient conditions, and somewhere in their protonymph stage bad

conditions arose, which would have turned them into hypopi. Therefore a

variety of different feeding conditions can arise at new patches.

Survival probabilities of fighters and non-fighters

If a fighter is in an environment solely with non-fighters, he can kill the non-

fighters and will himself encounter no hostilities. But if a fighter is together

with other fighters he will obviously encounter fighters himself. As fighters

actively seek out other males and initiate fights (personal observation) one

would expect that the probability of survival of a fighter with other fighters

present sinks when compared to a non-fighter, as non-fighters try to evade

fights if engaged in them.
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2.2 Methods

Data analysis was conducted in S-Plus 2000, besides the GLMM (Gen-

eral[isedJ Linear Mixed Model) analyses, which was calculated in Genstat

using the iterative reweighted restricted maximum likelihood method (IR-

REML). GLMMs are generalised linear models with normally distributed

random effects in the linear predictor. Non-linear regression models were

tested and compared with residual least squares. General (or generalised)

linear models (GLM) were used were appropriate and further details about

the form of GLM employed are given when the test results are given. The

residuals were checked for non-violation of normality of the residuals vs the

fitted values and heteroscedacity.

Percentage of fighters developing from isolated individuals at egg stage

To establish any time or stage dependence in the morph determination, 100

eggs and 100 larvae were picked from a 1996 stock culture and placed in 20

mm wide and 50 mm high plastic vials. The vials were lined with Plaster of

Paris (CaS04 .1h H20) which was dampened to maintain humidity. Food

was supplied in the form of a small ball of yeast.

The tubes were placed in a 24 ·C incubator and left for seven days. After

this time the number of males (fighters and non-fighters) and females were

counted.
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Density-dependent morph determination

An experiment was conducted in 1998 with the standard conditions and

equipment described earlier. Two hundred and ten vials were set up with

larvae isolated at pre-tritonymph stage and fed one ball of yeast per day. The

density of animals in these tubes was I, 2, 5, 10. After a week the number

of developed fighters were noted.

Condition-dependent morph determination

An experiment was conducted to consider the number of fighters developing

at different levels of food, differing times and amount of food supplied at

varying densities. Food was supplied in two different regimes, low and high

food, whereby low food consisted of a grain of yeast per day and high food

of five balls of yeast per day.

The food was given either from the beginning of the experiment, or after

a five day delay. Pre-tritonymph larvae were selected from tubes, which had

been taken from the stock cultures. These larvae were then separated into

the experimental tubes. The number of fighters, non-fighters and females

was recorded. The total number of tubes was 40.

Fighter fecundity in a good quality, resource stable environment

To estimate the fecundities and survival probabilities of fighters and non-

fighters an experiment was conducted in which fighters were brought together

at differing densities with non-fighters and females. The number of animals
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and their phenotype was recorded. During the day of the experiment at

hourly intervals the number of matings and fights between fighters and non-

fighters was noted. The animals were put together at the densities 5, 10,

20 and 50. Fighters, non-fighters and females were added according to table

2.1. Detailed information was taken on densities 5 and 10 (see section 2.1.1),

where the advantages for fighters should slowly tail. To get a strong signal

on high extreme combinations detailed information was collected at densities

20 and 50, where the advantage of being a fighter should not be non-existent.

Fighters and their reactions in densities <5 were frequently observed in other

experiments, so were not tested here due to time restrictions.

6= 5 10 20 50
Ij,4nj,5fe" 2 Ij,9nj,10je Ij,49nj,50je
2j,3nj,5je' 2 2j,8nj,10je
3j,2nj,5je' 2
4j,lnj,5je' 2
5"On,,5,e' 2 5"5n,,l0,e

7"3n,,l0,e
1O"On"lOje

20"Onj,20je
50"Onj,50,e

Tab. 2.1: Experimental setup: 6=density; f = fighter; nf = non-fighter; fe =
female; XT = x animal(s) of type T. ·2 = two repetitions. Exper-
iment unbalanced due to time/laboratory restrictions. To gain
equal sized fighters, non-fighters and females and to account for
deaths over 400 tubes had to be reared simultaneously, which was
the maximum possible to handle. Therefore point measurements
were taken.
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Fighter fecundity in all environmental conditions

Animals were taken as larvae from a culture of about 1000 animals which

was itself taken from the stock cultures, to match experimental conditions

of a previous experiment which looked at general life-history parameters,

(described in the next chapter). Non-virgin females were produced by rearing

them as larvae and by then bringing them together for one day with about

ten males, fighters and non-fighters in equal proportions. After one day the

females were isolated, until no more eggs had been laid. Rearing larvae,

in isolation produced virgin females. Rearing larvae in isolation produced

non-fighters and fighters. Sixty four animals were reared using a crossed

experiment using the factors described in table 2.5. Animals were raised on

the designated pattern and where kept on the designed feeding regime (high

and low food). After the animals had been reared the males and females were

paired, resulting in a total amount of 32 tubes. The eggs laid by the females

were counted after five days, this being the peak of female productivity under

optimal conditions (see chapter 3).

Survival probabilities of fighters and non-fighters

To establish if the survival probabilities of fighters at different levels of den-

sities and fighter densities the surviving animals were recorded in the exper-

iment described in section 2.2 and with the experimental setup of table 2.1.

survival probabilities were recorded (see section 2.2).
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2.3 Results

Percentage of fighters developing from isolated individuals at egg stage

Out of 100 animals isolated at egg stage 93 developed into adults. Out of

these 93 adults, 52 developed into males. Out of these 52 males, 39 developed

into fighters. From 100 animals isolated as larvae at pre-tritonymph stage

96 developed into adults. Forty-seven of these 96 adults became males. 37

of these males were fighters. Therefore 75% of males developed into fighters

when individuals where isolated at egg stage compared to 79 % when iso-

lated at pre-tritonymph post egg stage. This difference in percentages is not

significant (X2 = 0.025, df = 1,p = 1).

One can therefore have some confidence that the development switch,

when it is possible to become a fighter given the necessary environmental

indications, occurs at a discrete time, namely within the tritonymph stage.

It is therefore not important at which stage the animal is isolated, given it

is before the tritonymph stage.

Density-dependent morph determination

The results with number of vials, mean and SE are given in table 2.2.
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density N x(Pf) SE(Pf)
1 59 0.72 0.053
2 59 0.27 0.034
5 20 0.14 0.035
10 70 0.02 0.005

L:N 208

Thb. 2.2: Mean percentage x (Pf) and standard error SE (P,) of the prob-
ability of developing into a fighter for S. berlesei isolated at pre-
tritonymph stage at density 1 25 10 in year 1998.

A non-linear regression was performed and a relationship between fighter

morph determination and density in high food conditions was found (RSS =

16.9, SE = 0.032, t = 20.96).

The relationship is represented in equation 2.1 where 8 is density and P,

is the probability of developing into a fighter.

(2.1)

Equation 2.1 is graphically demonstrated in figure 2.1.
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Fig. 2.1: Relationship as calculated by a non-linear regression between the
probability of developing into a fighter (P(fighter)] vs culture
density and data points with standard error bars.
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Condition-dependent morph determination

6 N high food N low food
Mean±SE Mean±SE

1 3 0.667 ± NA 5 0.400± NA
2 2 0.500 ± 0.500 3 0.333 ± 0.167
3 1 0.000 ± NA 3 0.444 ± 0.111
4 2 0.125 ± 0.125
5 2 0.200 ± 0.000 1 O.OOO±NA
6 2 0.250 ± 0.083
7 2 0.143 ± 0.000
9 1 0.111±NA
10 1 0.200 ± NA
12 1 0.167 ± NA
13 1 0.154 ± NA
14 2 0.250 ± 0.03
17 1 0.175±NA
21 1 0.240 ± NA

L:N 16 18

Tab. 2.3: Number, mean and SE of the probability of becoming a fighter
at two different levels of food at different densities 6. NA=Non
available.

The results are summarised in table 2.3. Six tubes did not complete the

experiment, because of premature death of the animals. An analysis of de-

viance table of a generalised linear model with Poisson error and identity link

function (table 2.4) shows a significant effect of food, density and the inter-

action of density with food. Males in high densities with low food supply had

a lower probability of becoming a fighter than with high food provisioning.
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df p(Chi)
food 33

<5 32
food: <5 31

0.023
0.046
0.0015

Thb. 2.4: Analysis of deviance table of generalised linear model with Pois-
son error and identity link function on number of fighters devel-
oped on different levels of food and densities <5.

Fighter fecundity in all environmental conditions

Results are presented in table 2.5. Animals supplied with food at a low rate

and animals experiencing a five-day window without food after birth had

a higher mortality. A total of eight vials did not complete the experiment

(six tubes with non-fighters and two with fighters). This is not significant

(X2 = 2.16, df = 1,P = 0.106). Nevertheless a vial in each category completed

the test.

A Gaussian GLM was performed and the residuals checked for non-

violation of normality of the residuals and heteroscedacity. The model:

Neggs ex Type of male

was the minimum adequate model.

Females fertilised by fighters, pooled over all conditions, laid more eggs

(i :::::80.56) than non-fighters (i :::::65) (Gaussian GLM, n=32, p < 0.02).
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fed at birth fed after 5 days after birth
NF F NF F

V 52±NA 64 ± 19.79 V O±NA 81 ± 33.94
low food n=l n=2 n=l n=2

NV 91±NA 55 ± 21.21 NV 101± NA 56 ± 79.19
n=l n=2 n=l n=2

V 32 ± 45.25 124± 4.24 V 150± 14.14 125± 21.92
high food n=2 n=2 n=2 n=2

NV 34±NA 105± 115.96 NV 60±NA 34.5 ± 40.30
n=l n=2 n=l n=2

Tab. 2.5: Mean ± standard deviation and number of vials (n) for number of
eggs laid by virgin (V) and non-virgin (NV) females on day of first
egg-laying, fed on high and low food which was provided at start
or after five days and mated with fighters (F) and non-fighters
(NF). NA= Non applicable.

Fighter fecundity in a good quality, resource stable environment

As S. berlesei exhibits sperm competition (Radwan, 1991) the order of mat-

ings is relevant. In an experiment comparing reproductive success of males

mating first or second with a female, Radwan (1991) estimates that 86% of

eggs are fertilised by the second and last mating. However this percentage

dropped to 56% when the last mating was more than six hours after the

previous mating.

Mate guarding does not exist in S. berlesei (Radwan, 1991). Therefore, it

seems that one option for S. berlesei to eliminate sperm competition would

be to kill other fighters and non-fighters as fast as possible and postpone

mating for not more than six hours. This pattern could not be recognised

in the laboratory where after introduction of fighters and non-fighters into a
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test tube, both attempt to start mating nearly instantaneously. In fact the

number of matings obtained by fighters is much greater than that of non-

fighters. The non-fighters achieve very few matings with fighters present,

except in tubes where they significantly outnumber the fighter(s) (corrected

for initial fighter/non-fighter numbers and eliminating trials with no non-

fighters in them) (one-sided Wilcoxon rank-sum test, n=13, m=18, p < 0.05)

(see table 2.6).

Median n NA's
fighters

non - fighters
0.37
0.001

18 0
13 5

Tab. 2.6: Median of hourly per capita mating success obtained by fight-
ers and non-fighters over all densities as calculated by animal
numbers by female fecundity and divided by hours. NA's= not
available; no non-fighters in the vial initially.

For simplicity and in order to trace the effect of density-dependence on

survival and fighter reproductive success, it is assumed in the following model,

that the animals present after one week obtain most of the reproductive suc-

cess (as the last mating gains most of the fertilisations), and that, whilst both

phenotypes are alive, they achieve the same amount of matings (and order

of matings). There was no difference in the fecundity of females fertilised

by fighters and non-fighters, when the feeding regime (high food) was the

same and animals with both feeding times were pooled (two-sided Wilcoxon

rank-sum test, n=8, m=6, p » 0.05, see table 2.5). Therefore, when three

fighters and two non-fighters are in a population, fighters should gain 60% of

all matings and therefore the reproductive success of the non-fighters would
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be 40%. After one week the cuticle of the males is sufficiently hardened so

that fighting does not result in any further deaths (Timms et al., 1980), so

that changes in the proportion of fighters and non-fighters in the starting

cohort are unlikely due to fighting after this time period.

Value SE t - value
c
()

8.23 0.714
26.14 1.43

11.52
18.25

Tab. 2.7: Result of non linear regression for female fecundity per day per
density pooled over all feeding regimes (see section 3.3.3 and table
3.1), with value, SE and t-value and residual standard error of
18.55 on 961 df

The relationship between fecundity (mean egg female-I day ") and den-

sity was fitted with a non linear regression (see table 2.7 and equation 2.2),

where c = 8.23, 8=26.14, 6=pair density, y=number of eggs females laid by

female per day pooled over all feeding regimes, to get the effect of density-

dependence in all conditions.

8
y=c+-

6
(2.2)

Although females are able to lay in excess of 80 eggs per day if reared in

isolation and with excess food, the data (see section 3.3.3 and table 3.1) was

collected from mites reared on high and low food sources and the fit therefore

represents the mean of eggs produced over all nutritional conditions on all

days.

The proportion of fighters, <I>F in a total population is:

<I>F= NF
NNF+NF

(2.3)
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Fig. 2.2: Non linear regression and data (see section 3.3.3 and table 3.1)
for female fecundity per day pooled over all feeding regimes vs
6=density in pairs.

where NF is the number of fighters and NN F is the number of non- fighters.

From this one can estimate the number of eggs a fighter can achieve in

competition with non-fighters:

(<PF)' (c+ t!-)
N - Fe

F,eggs - NF

where, NF.eggs = fighter paternity, NF = number of fighters, NNF = num-

(2.4)

ber of non-fighters, NFe = number of females, c = 8.23, 8=26.14 (after equa-

tion 2.2).
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Equation 2.4 shows the number of eggs one fighter can achieve per day

if in competition with other fighters and non-fighters. Using the data from

table 2.9 and the numbers of fighters, non-fighters and females from table 2.1,

one can calculate the NF,eggs initially and after the time period of one week,

when fighters cannot kill other males of its Own cohort. The initial estimate

of fighter paternity arises from the initial densities (and so is an estimate of

paternity if no non-fighters are killed by the fighters). The final estimate of

fighter paternity represents the paternity that occurs after fighting-related

mortality (which occurs in the first days prior to hardening of the cuticle).

Comparison of the two measures estimates the fecundity benefits due to

fighting.

The result of the above calculations can be found in figure 2.3 and 2.4

and table 2.8.

t Median n
o 2.6 18

1 week 6.0755 18

Tab. 2.B: Median fighter fecundity (eggs female-l day-lover densities 5,
10, 20, 50 at start of experiment; therefore without the influence
of any fights) and after one week after cuticle hardening when
fighting ceases to be efflcient to kill other males through cuticle
hardening and therefore the effect of fighting ceases to exist.

The difference in eggs per fighter per female after all fights have completed

is significantly greater than the number of eggs that could have been achieved,

had no fights taken place (Wilcoxon rank sum test, n=18, p<O.OOOl). Fight-

ers that kill other non-fighters have, therefore, an advantage by killing off
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other males and" snatching" their matings.
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Fig. 2.3: Proportion of colony reproduction of fighters per day vs total ani-
mal density IS initial at experiment start (initial = expected repro-
ductive success, by frequency wlo fights, lower line) and after one
week post cuticle hardening when fighting is not successful any-
more (= gained reproductive effort with fights, upper line). w =
with, w/o = without. Fighters gain an increase in overall colony
reproductive success through fighting.
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Fig. 2.4: Fighter fecundity (eggs iemele:? dey:" vs total animal density 8
initial at experiment start (initial = expected reproductive suc-
cess, by frequency wlo fights) and after one week post cuticle
hardening when fighting is not successful anymore (post fights=all
fighting took place). Each fighter has a higher chance of achieving
more reproductive success through fighting.
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Survival probabilities of fighters and non-fighters

This experiment investigated survival of fighters and non-fighters over a pe-

riod of a week within colonies of different densities (see table 2.9).

fighters non - fighters
0 Median n Mean SE Median n Mean SE
5 0.550 10 0.605 0.082 0.000 8 0.1875 0.131
10 0.200 5 0.488 0.021 0.1667 4 0.1667 0.095
20 0.200 1 0.200
50 0.58 2 0.58 0.420 0.408 1 0.408

Tab. 2.9: Mean and SE and Median and n of the percentage of surviving
males vs pair density 0 over five days until cuticle hardening takes
place and fights do not result in killings anymore.

A generalised linear model with binomial error was conducted with the

proportion of surviving fighters as response and the log transformed values of

the initial numbers of fighters and non-fighters as independent variables. The

minimal adequate model for describing the influence of the above parameters,

after evaluating all model combinations, was found to be the model with

the log transformed number of fighters as a single term (binomial GLM,

term=log(n of fighters), df=l1, P(X2)=0.03).

A non-fighter's chances of survival seems to rise when the proportion of

fighters to non-fighters becomes smaller and density increases. In lower den-

sities fighters managed to kill off all non-fighters (table 2.9), while in a density

of 50 with one fighter present, only half of the non-fighters were killed within

a week. Fighters together have a higher percentage of survival over all pair

densities (1-50) and fighter densities than non-fighters (Wilcoxon rank-sum
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test, n=13, m=18, p < 0.0016). Fighters have a survival probability of 55%

while non-fighters have a survival probability of only 20% over all densities.

Generally one would expect fighters having a higher risk of getting killed

as they are actively seeking confrontation, but their armour and aggression

seems to be sufficient to compensate for this.

2.4 Discussion

In a changing environment, phenotypic plasticity leads to changing pheno-

types (Meyers and Bull, 2002). This phenotypic variation can be found

within single individuals (Levins, 1968), among individuals in the popula-

tion at one time (Ballare et al., 1990) or over generations (Gibson et al.,

1992). With its density-dependent morph determination S. berlesei seems to

react to changes in population density caused by intrinsic (e.g. population

oscillations through migration) and extrinsic factors (e.g. temporal and spa-

tial variation - food). In a finely grained heterogenous environment (spatially

or temporally) it seems to be best for the male to delay the decision to be-

come a fighter as long as possible. Presumably the shorter the time period is

between the decision time to become a fighter or not and the time when the

actual adult male emerges, the better a male is prepared for the situation he

encounters. The fighter morph determination decision is possible up to the

deuteronymph stage and is, as has been shown above, highly influenced by

environmental conditions. Long distance dispersal, when it occurs, is via the

deuteronymph (hypopus) and phoresy. Given this, the tritonymph (the stage
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after the proto- or deuteronymph) may well develop on a different patch, at

different population densities, than its natal patch. Conditions then may well

predict the conditions it will experience as an adult. It therefore makes sense

to delay the decision regarding which morph to become, as long as possible.

Presumably development pathways preclude a decision at the time of the last

molt, so that the decision cannot be made later in the development stages.

There is an exponential-like decline in the probability of becoming a

fighter with density, rather than a step like threshold. The reasons lie most

likely in a reduced fecundity for fighters in higher densities and a system in-

herent condition-dependence. This condition-dependence seems to be tightly

coupled with the density-dependence, or simply the higher density leads to

a lower level of food for all animals. Therefore the lower fighter numbers at

lower densities with low food are responding to previous low food conditions,

such as might occur at the time they hatched. Therefore the condition-

dependence is a potential mechanism for delayed density-dependence to oc-

cur. However, even a well-fed isolated male will not develop into a fighter

if olfactory clues from dense cultures are introduced to them (Timms et al.,

1980). Therefore there is some true density-dependence and the condition-

dependence is not the only mechanism of density-dependence.

Condition-dependence on S. berlesei was found by Radwan (1995). Feed-

ing the mites on filter paper led to the same number of fighters when reared

alone as well fed fighters at density = 24. Fighters on filter paper simply

have very little to invest in extra legs. It is more astounding that actually

two fighters developed out of 41 with a very low amount of food. This also
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explains why here even under low food conditions (a minute amount of yeast,

which still is more nourishing than filter paper) at very low densities, fighters

developed with about 40% probability.

Condition-dependence seems to be of major importance in male polymor-

phism and has recently also been found in Jassa marmorata (Kurdziel and

Knowles, 2002). This seems to be highly likely, as in S. berlesei as in J.

marmorata and J. falcata the fighting or aggressive morph needs to build

up extra body mass. Fighters in S. berlesei have to develop extra leg mass

and J. marmorata and J. falcata have larger extra morphs, which need more

biomass to build up. Interestingly there is also a condition-dependence in

Ontophagus spec. where the dominant phenotype has to develop extra horns

(Emlen, 1999). It seems to be therefore a major prerequisite that, for an

andropolymorph to develop, the conditions have to be at least reasonable

for the build up of extra body mass. It seems to be also necessary that

the trade-off between the extra-body mass and reproductive benefits have to

be overcome in the first instance, before one looks at general reproductive

trade-offs, or the condition-dependent trade-off has to be considered much

more strongly.

The fighter" gambles" on being the winner of all fights. This results in the

gains being very high compared to a non-fighter as he not only gains a higher

percentage of all matings and a higher egg number than a non-fighter in the

same condition, but more eggs in an initial low density population. This can

be more important than in an already established population, as these eggs

are the genetic founders of all future generations. A fighter could potentially
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gain a higher percentage of the overall female fecundity than a non-fighter,

dependent on both ratio and density. At density five he could gain 100% more

fecundity than a non-fighter dropping to about 50% at higher densities. A

fighter could therefore achieve (also in higher densities) more fecundity, as

a result of killing other rivals. The variance at lower densities (due to the

random outcome of fights) seems to be substantial, as the mite might be

killed at emergence or he might win all fights. Only in very high densities,

the probability of gaining a high percentage of the overall colony reproductive

success sinks, as there are simply too many competitors being it fighters or

non-fighters. This seems to be therefore an adaptation to the extremes and

a fitness to reduced variance seems unlikely, as fighters do develop at low

densities. There is also an inherent relationship between population-size and

variance. Given that the numbers relate to independent Bernoulli trials,

the variance one Bernoulli trial (become a fighter with probability 0.9) is

higher than in 100 Bernoulli trials according to the law of large numbers

(in repeated, independent trials with the same probability p of success in

each trial, the percentage of successes is increasingly likely to be close to the

chance of success as the number of trials increases). Therefore the risks, but

also the potential gain is much higher for a fighter in lower densities, while

in higher densities, there is as much benefits and potential costs are reduced

and the fighter's fitness will converge on the average for a male.

By actively changing the relation between himself and other individuals

the fighter increases the variance and the chance to gain up to 100% of all

reproductive success, if he kills off all competition. This seems to be the
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reason, why fighters are also relatively often present at densities> 2. Sperm

competition favouring the last to mate therefore promotes a polymorphism

that kills all other males and is highly aggressive. This can be seen as a form

of advanced more effective mate guarding, as it can be found for example in

wasps (Field and Keller, 1993) and in birds (Westneat, 1993).

The overall results show that the effects initiating the density-dependence

as mentioned in Radwan (1991) are not necessarily the only influencing fac-

tors. Radwan (1991) discusses that fighters would gain fewer matings through

increased time spent fighting and that this would be the trade-off in the

fighter morph determination. While this might be the case, a very high in-

fluence on the trade-off of being a fighter in high densities seems to be, that

the reproductive success gained will be very low through simple frequency-

dependence, the chance of being killed and a reduced female fecundity at

higher densities.



3. THE LIFE-HISTORY OF THE

MODEL SYSTEM

Abstract
1.) Fitness is a measure of performance across the whole life-history, so experiments
were conducted to assess both the mean life-history
2.) and how it varies with differences in environmental conditions.
3.) There is considerable plasticity in the life-history, which results in changes in
the vital rates with changes in food availability and density.
4.) Evolutionary models therefore have to take into account the variation in traits,
and not treat them as fixed, density-independent values.

3.1 Introduction

Fitness is a property of the whole life-cycle and not any single component

of it (such as reproductive success or survival) (Benton and Grant, 2000).

Therefore the evolutionary costs and benefits to any life-history decision must

be assessed within the context of the life-history as a whole. This is espe-

cially true where, for example, there may be plasticity in life-history traits

other than the one under investigation. Fighter development is condition-

dependent, and an animal's condition is likely to be influenced by both the

number of competitors, their ages (adults vs juvenile) and their conditions.
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The current state of knowledge regarding S. berlesei 's life-history has been de-

scribed in the introduction of this thesis. However the focus has seldom been

on detailed estimates of its life-history parameters. How long does it need for

an egg to hatch? Does this alter with a change in feeding regime? How many

juveniles actually survive into adulthood? This chapter, the accompanying

paper (Beckerman et al., 2003) and the technical report (Beckerman et al.,

2002) will provide an insight into this.

3.2 Methods

3.2.1 General methods

Populations of S. berlesei were collected from an agricultural muck heap in

autumn 1996. The animals had been kept since in stock cultures in 24°C

incubators. Food was provided in the form of granulated yeast. These were

sieved to reduce variation. One granule averages 1.5 mg ± SD 0.35. Vials

for culture and experiment were glass tubes with a diameter of 20 mm and

a height of 50mm. These were half filled with Plaster of Paris CaS04 . 1/2
H20. This kept humidity when the Plaster of Paris was kept damp.

The mites were monitored using a Leica MZ 8 binocular microscope and

a hand held counter.

Eggs were taken from the aforementioned stock cultures. The juveniles

hatched from these eggs grew up under two conditions. One with ad libi-

tum food (balls of yeast) in low density (20 mites) and one with scarce food

(granulated yeast) and high density (approx. 100 mites). This constituted
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a difference in rearing and eliminated effects due to effects of uncontrolled

population dynamics. Once the mites had matured, they were separated into

three treatments with different densities (1, 20 and 50 pairs), each replicated

eight times. Each set of eight tubes were then assigned to a two by two facto-

rial design. Treatments were the amount of food given on a daily basis (high

[five balls of yeastJllow [20 grains of powder]) and the time when feeding

started (feeding on the first day or after a delay of five days). Each treat-

ment combination was replicated twice. The pairs were used to determine

the fecundity of females under different treatment regimes and the survival

of males and females. Every day after pairing until the last female died, the

eggs, males and females were counted. After counting the adults were trans-

ferred to fresh clean tubes, fed accordingly to their assigned feeding regime

and the eggs were disposed of or kept for the experiments described below. To

maintain a stable density, males from the initial treatment cultures replaced

males and females that died.

Eggs laid by these animals were collected on the sixth and eleventh day

to obtain eggs around the peak of female reproduction and in the declining

phase of the females reproduction, to look at the percentage of juveniles

hatching at different treatment conditions. Each day hatching juveniles were

removed from the experimental vessels.

To look at the time to maturity under different treatment combinations,

eggs were collected from the paired mite tubes on days four, five, nine and

ten, to obtain eggs from the peak and decline of female reproduction. This

also allowed insight into possible differences in female investment over time.
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On the four days 192 tubes were put aside (24 treatment combinations * two

replicates * four days).

Each of these was assigned to one of the four feeding regimes described

above.

3.2.2 Data analysis methods

Parametric survival analysis in S-Plus 2000 was used to estimate half-lives.

Survival analysis uses censor codes for animals which leave the experimental

setup due to various reasons. Different censor codes were applied where

animals did not complete the test for the parameter estimated. As no animals

started the test later than other animals, or started later and left earlier, only

right censoring was applied for events that were not the target event. For

example, in female survival right censoring was applied to events that caused

death through catastrophes, like desiccation. Normal death events were given

the event code. As the ultimate goal of this chapter is to gather data for

several models and there were high event sizes (> 92000 events for Juveniles,

> 1100 for adult survival and> 30000 for eggs), the full interaction model (all

significant terms even explaining very little deviance [a measure of the degree

of fit of a statistical model compared to that of a more complete model]) W8.'l

used to find the appropriate half-lives (as advised by Ken Newman, Reader

in Statistics, St. Andrews University).

It is assumed therefore that all available information would give the most

accurate representation of the data. Although allowing for a slight increase
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of deviance (less than 3%) would not represent any biological realism (Beck-

erman et al., 2002, 2003), it would explain more variation in the data and

would therefore fit the data better.

AIC (Akaike's information criterion is used to test the relative value of

different competing models) was not used for model fitting when all interac-

tions where significant, as it penalises for the number of parameters in the

model, which could also lead to a model which would explain less variation

in the data. This does not apply for cases where sample sizes are relatively

low and penalisation of the number model parameters is more realistic as

more sample (or measurement) error would be introduced with rising num-

ber of factors (parameters) (personal communication Ken Newman, Reader,

St. Andrews University).

Survival analysis data was treated as independent samples after discussion

with Dr. Terry Therneau (Mayo Clinic), Dr. Tim Benton and Dr. Andrew

Beckerman.

A full biological analysis can be found in (Beckerman et al., 2002, 2003)

in Appendix B. Here the models were further reduced even if significance

levels were < 0.05 if deviances (explaining more variation) were very low

(3%), which was deemed biologically non-significant [(Crawley, 1993), per-

sonal communication Ken Wilson]. An example of a full statistical interac-

tion model, using all significant terms can be found in table 3.4, examples

for models selecting for biological significance (not statistical) can be found

in Appendix A and in Beckerman et al. (2002, 2003). So if all interaction

terms were significant the models were not reduced. But if parameters and
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their interaction were found to be insignificant, model reduction techniques

were employed.

Although this chapter focusses more on a descriptive analysis of the pop-

ulation dynamics, the collecting of half-lives for model parameterisation than

on a detailed biological analysis, the overall analysis still entails the biological

processes, just with more statistical detail.

Additionally Kaplan-Meier estimates were calculated to represent the

data graphically, although this analysis was not used in any further mod-

els. Kaplan-Meier survival estimates the probability of surviving to any

point from cumulative probability of surviving each of the preceding time

intervals. Kaplan-Meier plots represent graphically the median probability

of an individual surviving to a certain time point. Kaplan-Meier estimates

are non-parametric form of survival analysis and have as such less statistical

explanatory power, than parametric estimates. As mentioned above these

estimates where generally used to provide a general overview over the data.

The matrix model in a later chapter relies entirely on parametric estimates.

Kaplan-Meier plots and estimates were calculated in S-PLUS. Kaplan-Meier

estimation is based around the movement of individuals from one class to

another (this is usually death, but can be hatching or recruitment to adults).

The survival plots for juvenile hatching therefore represent the time to hatch-

ing, the survival times for juveniles maturation events and for adults actual

death events.
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3.3 Results

3.3.1 Population dynamics of a starting population

Overall 469 population days were counted. A graphical representation can

be found in figure 3.1. The maximum number of eggs was reached on day 16

and was 6025. Six-hundred and ninety larvae were counted on day 16 and

563 protonymphs on day seven. The maximum number of tritonymphs of

470 was reached on day nine. The maximum number of females was 202 the

maximum number of non-fighters was 175, both reached at day 16. Fighters

were not born in any of the vials.
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Fig. 3.1: Friedman super kernel smooth of animal numbers and den-
sity plots of frequency of numbers of the first 10 days of 13
S. berlesei populations. A=eggs, Bs=lervee, C=pmtonymphs,
Ds=tritonymphs, E=fel11ales and F=non-fighters. This pooled
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3.3.2 Sex ratio

In the experiment 13472 females hatched and 13771 males. This is not a

significant difference (X2 = 1.652, df = 1, p = 0.199). The null hypothesis

cannot be rejected looking for a deviation from the expected outcome of 50%

males and 50% females. The sex ratio seems to be 1:1.

3.3.3 Female fecundity

Results over the factors can be found in table 3.1. Egg laying occurred over

a minimum of six and a maximum of 33 days, depending on conditions. The

daily fecundity ranged from 65.909 ± SE 6.92 eggs per day in high feeding

conditions with well fed reared animals and no food delay at density one to

5.620 ± SE 0.728 in low fed, badly reared animals with five days food delay

at density 50 (table 3.1), with average 14.43 ± SE 2.56 eggs per day with an

inter-quartile range of 4.41-14.90 eggs.

The fecundity of females usually peaks at days four to seven (figure 3.2

lower panel). This can be influenced by delay of food, although the maximum

value as with constant food provisioning (46.45 ± SE 11.18 eggs per female

per day on day five) will not be reached any more (26.19 ± SE 5.80 eggs per

female per day on day 12) (see Figure 3.2). This means a delay in giving food

post maturation causes the peak egg production to be delayed (by the length

of the delay), but overall egg production is also decreased. Catastrophic

events like food depletion in the early days of maturity have a severe effect

on maximum fecundity rates. With instant food absorption into resources
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6 = 1 6 = 20 6 = 50
z:s Flee SE nl Flee SE n I Flee SE n

t=O
high:high 65.909 6.972 2 14.637 1.564 2 6.850 0.724 2
high:low 26.578 5.690 2 12.921 1.701 2 8.543 1.098 2
low:high 46.263 8.895 2 12.337 1.191 2 9.570 0.988 2
low:low 30.393 4.956 2 6.840 1.114 2 7.930 0.868 2

t=5
high:high 21.461 4.349 2 7.963 1.142 2 6.868 0.9212 2
high:low 14.000 2.417 2 7.673 1.252 2 6.895 0.780 2
low:high 21.404 3.769 2 10.825 1.466 2 5.231 0.532 2
low:low 12.111 1.820 2 5.382 1.126 2 5.620 0.728 2

Thb. 3.1: Mean, standard error SE and number of eggs laid per female per
day (Flee) for densities 6 = 1,20,50, food delay t = 0,5, food
level z=high (ball of yeast), low (grains of yeast) and food level
while growing up s=high (ball of yeast), low (grains of yeast).
n=tuuubet of repetitions.

for eggs, the maximum should be reached by day ten (day five plus five days

delay), but is in fact reached only at day 12. Therefore the female should

build up first her own energy requirements before investing it in the eggs.

The processes for building up eggs from no resources takes approximately

one to two days. The total egg output of a female in her lifetime sinks from

423.39 to 288.62 eggs.

This difference is significant (GLMM with Poisson error and log link func-

tion on the daily egg numbers, n=1125, df=l, p(X2)<O.0001, Wald test).
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Mean and SE of the density-dependent female fecundity can be found

in table 3.2 and figure 2.2. A non-linear regression on the data has been

analysed in chapter 2.

o Xdep SE n
1 26.62 1.914 576
20 10.213 0.518 528
50 7.091 0.300 521

Tab. 3.2: Mean and SE of daily female egg production in numbers pooled
over all food conditions vs density o.

Females in higher densities lay fewer eggs (GLMM with Poisson error and

log link function on the daily egg numbers, n=1125, df=2, p(X2)<0.000000l,

Wald test) (see figure 3.3). The egg numbers fall with growing age (see figure

3.3).
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The amount of food a female had per day showed an effect on female

fecundity. Females in bad conditions laid fewer eggs than females in good

conditions. This effect was strengthened by the effect of density-dependence,

where females in higher densities were less fecund. A time series can be found

in figure 3.4 A and B.

A detailed analysis of effects of rearing conditions can be found in Beck-

erman et a1. (2002, 2003). The graphical representation of the time series at

density one can be found in figure 3.4.
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Fig. 3.4: Number of eggs per female per day at density one with Friedman
Super kernel smooths. A bad rearing conditions and low food, B
bad rearing conditions and high food, C good rearing conditions
and low food D good rearing conditions and high food.
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The delay of food and the interactions between rearing conditions and

density and density and food delay reduced the amounts of eggs laid by

females per day (see table 3.3).

Df F Pr(F)
rearing conditions 1 10.9741 0.001968
adult density 1 303.3051 0
delay 1 62.325 1E-09
rearing conditions:adult density 1 21.9908 3.17E-05
adult density:delay 1 16.5656 0.000215
Residuals 40

Tab. 3.3: The minimum adequate model for rearing density, delay and food
amount eHects on per capita fecundity (R2 = 0.91).

3.3.4 Non-fighter fecundity

The average non-fighter fecundity will be set in the matrix model of the

following chapter as equaling the female fecundity (see section 3.3.3), unless

low densities do exist, where fighters are present. The difference between

fighter and non-fighter fecundity is presented in section 2.1.1.

3.3.5 Time to egg hatching

Most eggs hatched on day three or four. No eggs hatched after nine days. Low

food rearing conditions and five days food delay led to about one day delay

in some vials (table 3.5). Interestingly eggs from higher densities hatched

slightly earlier (figure 3.5 A). Low rearing conditions caused eggs to hatch
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later on day one and two, while on day three the situation was reversed.

After day four no difference could be established (figure 3.5 B).

The half-lives (here the median time until hatching) of the survival re-

gression model with a logistic distribution are presented in table 3.5. The

lowest half-life can be found with poorly fed animals at density one with five

days food delay and bad rearing conditions, while one of the highest half-

lives can be found at the same conditions, with the only difference that the

animals were fed instantly (table 3.5). This result is surprising, therefore it

has been double checked for accuracy and the underlying distribution was

changed for testing purposes from logistic to Weibull which was the second

best fitting distribution. Although the values changed slightly, the lowest

value was again found at the same position. This seems to be therefore an

accurate representation of the reality. The analysis of deviance table for the

logistic survival regression model can be found in table 3.4. Relatively low

half-lives for eggs can also be found at the same combination (low food, badly

reared parental generation and five days food delay) at higher densities. This

could be some kind of compensation for very bad conditions or having fewer

resources results in less time for the actual biochemical reactions to take

place, as simply less biomass has to be developed.
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Deviance Resid. Df Pr(x2)
NULL 2
DENSITY 190.726 3 0.000000000
SOURCE 1063.950 4 0.000000000
DELAY 103.974 5 0.000000000
FOOD 9.511 6 0.002042706
DENSITY:SOURCE 167.938 7 0.000000000
DENSITY: DELAY 21.512 8 0.000003515
SOURCE:DELAY 143.956 9 0.000000000
DENSITYFOO D 114.792 10 0.000000000
DELAY FOOD 19.467 11 0.000010237
DENSITYSOURCE:DELAY 8.144 12 0.004321195
DENSITYDELAY:FOOD 75.208 13 0.000000000
SOURCE:DELAY:FOOD 768.675 14 0.000000000
DENSITY:SOURCE:DELAY:FOOD 60.627 15 0.000000000

Tab. 3.4: Analysis of deviance table of the full interaction logistic sur-
vival regression model for half-lives of egg hatching rates. DEN-
SITY=density of animals, SOURCE=condition of rearing, DE-
LAY=timing of first food provided, FOOD=rearing conditions.
The table shows, that all parameters and their interactions ex-
plain variation in the data.
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Fig. 3.5: Kaplan-Meier survival curve estimates (predicted median survival
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fed at start 5 days food delay
6=1

z:s HL ±SE HL ±SE
high:high 3.529 0.023 3.607 0.039
high:low 3.718 0.024 3.909 0.036
low:high 3.956 0.023 3.943 0.035
low:low 3.852 0.027 2.785 0.062

<5 = 20
high:high 3.470 0.014 3.491 0.022
high:low 3.806 0.014 3.899 0.021
low:high 3.670 0.013 3.847 0.020
low:low 3.775 0.016 3.097 0.038

<5 = 50
high:high 3.378 0.012 3.308 0.021
high:low 3.946 0.015 3.885 0.014
low:high 3.220 0.011 3.696 0.017
low:low 3.652 0.014 3.589 0.017

Tab. 3.5: Estimated half-lives (HL) and standard error (SE) of a logistic
survival regression of eggs hatching vs density Ii, at different levels
of food while alive z =high (ball of yeast), low (grains of yeast)
and the rearing food level of the parental generation s =high (ball
of yeast), low (grains of yeast) and different start of feeding times,
food given from start on and with five days food delay.
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3.3.6 Survival of eggs &. juvenile hatching rate

The survival rate of eggs was over 99%, Out of 33962 eggs, an estimated ten

did not hatch. Therefore eggs are not laid with insufficient resources to allow

development into a juvenile.

3.3.7 Survival of juveniles

Overall, the survival analysis was made on > 9200 juvenile events, Recruit-

ment percentages ranged from 100% at low juvenile densities to 0% under

some high-density conditions (inter-quartile range=3%-84%). The extremes

of the experiments ranged from individuals fed ad libitum of food during their

development (lots of food) while experiencing low densities ("good track"),

to small amounts of food (" little food") in a one off pulse while experiencing

high densities (" bad track"). So some animals were fed over time ("over-

time") with high and low amounts of food and some animals were fed only

once at the start (" now") with either high or low food amounts. Based on

the highest and lowest 10% of juveniles density, 80% of those individuals

experiencing the lowest densities matured, while fewer than 1% did so under

the poorest conditions.

There was no parametric distribution that fitted the juveniles death events

well at early failure times. The following is calculated as the number of ju-

veniles that actually died and did not mature,

Nevertheless as many animals only started to develop after day four and

to get some estimates on juvenile half-lives, the half-lives for juvenile were
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calculated using a parametric survival regression with log-logistic survival

curve distribution. The log-logistic distribution performs as the log-Gaussian

model at lower failure times but seems to fit better at higher failure times.

The estimated half-lives can be found in table 3.6.

The Kaplan-Meier estimates split after day of egg laying, feeding pattern

and food amount are presented in figure 3.6. According to the non-parametric

Kaplan-Meier estimates, the time age that females laid eggs (day 4, 5, 9 or

10) affects the survival of juveniles, with days 4 and 10 having on average

higher survival than juveniles from eggs laid on days 5 and 9 of adult life.

Batches five and nine survival times lie lower than the extreme values. In bad

conditions it matters when a female lays her eggs, eggs laid later in life have

a longer survival time (see figure 3.6 A and table 3.6). A high amount of food

heightened the probability of survival for juveniles slightly in mid-ranges (see

figure 3.6 B). The strongest effect on juvenile survival seems to be the way

in which the food is provided. Animals given their food over time matured

much earlier than animals fed at the start (see figure 3.6 C).
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batch = 4 batch = 5 batch = 9 batch = 10
z:o HL ±SE HL ±SE HL ±SE HL ±SE
high: overtime 13.57 0.005 10.47 0.006 9.61 0.005 9.40 0.007
high: beginning 10.70 0.007 14.21 0.004 17.08 0.004 17.88 0.005
low:overtime 8.91 0.007 8.95 0.006 9.13 0.005 9.17 0.007
low:beginning 11.95 0.005 12.51 0.004 15.01 0.004 15.71 0.005

Tab. 3.6: Half-lives (HL) and standard error (SE) of parametric log-
logistic survival regression of juvenile survival vs levels of food
z =liigh, low and 0 =feeding pattern: The same amount of food
was given once at the beginning or spread over the whole life
time (overtime), split into different batches indicating the day of
the female life time after maturation, the eggs were taken from
the female.
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the day of the female life time after maturation, the eggs where
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[Now=et. beginning of experiment (in bulk), Overtime=over the
whole experiment time).



3. The life-history of the model system 83

3.3.8 Adult maturation

The time to adult maturation best fitted a log-logistic distribution. In figure

3.7 one can see that there is nearly no difference in male and female time

to maturation. As may be expected supplying resources affects the time to

maturation. A pulse of food at hatching, if it is sufficiently large, can supply

food to allow fast growth and maturation, and so has a similar effect to a

daily large supply of food (figure 3.7 C-F). The situation regarding the time

of life the adults laid the eggs for the new emerging generation is not clearly

distinguishable alone from graphical analysis. The predicted half-lives of the

fully parameterised parametric survival regression are found in table 3.7.

batch = 4 batch = 5 batch = 9 batch = 10
z:o HL ±SE HL ±SE HL ±SE HL ±SE
high:overtime 14.60 0.005 13.04 0.005 14,08 0.003 12.74 0.004
high: beginning 9.84 0.011 15.83 0.016 8.52 0.015 8.66 0.019
low:overtime 14.06 0.005 16.42 0.006 15.51 0.004 14.98 0.005
low:beginning 16.46 0.014 10.23 0.029 10.21 0,036 13.58 0.035

Tab. 3.7: Estimated half-lives (H L) and standard error (SE) of parametric
log-logistic survival regression of adults maturing vs levels of food
z =bigb, low and 0 =Ieediug pattern: The same amount of food
was given once at the beginning or spread over the whole life time
(overtime) and the days eggs were laid in parental generation: 4,
5,9,10.
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3.3.9 Female survival

The estimated half-lives for 1159 events over treatment combinations can

be found in table 3.8. The half-lives of females fitted best an extreme dis-

tribution. Predictions for the density-dependence were made with the full

interaction model (see figure 3.8). Interestingly the tailing off of the density-

dependence can only be found in animals that are well fed (figure 3.8 B.2 and

B.4). Poor food conditions make the curve fit concave or more concave (figure

3.8 A.I-4). The bad rearing conditions dampened the density-dependence of

the good food conditions (figure 3.8 B.l and B.3). The most convex form of

density-dependence can be found where animals were not only fed low, but

were also reared in bad conditions (figure 3.8 A.l and A.3).

The Kaplan-Meier estimates in figure 3.9 show that high densities gen-

erally do not have an adverse effect on female survival (figure 3.9 A). Indi-

viduals from low densities have an advantage early and late in life over high

and intermediate densities. Intermediate densities have the lowest proportion

surviving in the middle of the cohort life span, likely due to a high alloca-

tion of resources into reproduction. Poorly fed animals died earlier than well

fed animals over all treatment conditions (figure 3.9 B). Delaying the food

for five days had nearly no effect on its own on the proportion of females

surviving (figure 3.9 C), but here the interactions are very important, when

controlled for fecundity (Beckerman et al., 2002, 2003).

Females from poor rearing had a higher probability of survival, only be-

tween days 11 and 17 the situation was reversed (figure 3.9 D). This is likely
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due to a high investment into survival, than into reproduction, when condi-

tions are bad.

delay: 0 delay: 5
6 = 1

z:s HL ±SE HL ±SE
high:high 15.02 0.08 18.34 0.08
high:low 15.54 0.08 12.72 0.08
low:high 15.96 0.08 15.34 0.08
low:low 8.62 0.07 15.50 0.09

6 = 20
high:high 17.46 0.05 18.93 0.05
high:low 16.77 0.05 14.95 0.05
low:high 15.92 0.05 16.48 0.05
low:low 11.37 0.05 15.61 0.05

6 = 50
high: high 22.15 0.03 19.90 0.04
high:low 18.91 0.03 19.29 0.03
low:high 15.84 0.03 18.47 0.03
low:low 17.57 0.03 15.79 0.04

Tab. 3.8: Estimated half-lives (HL) and standard error (SE) of paramet-
ric survival regression on the full interaction model of females
survival vs density 6, at different levels of food z =high (ball of
yeast), low (grains of yeast) and rearing food level of the parental
generation s =high (ball of yeast), low (grains of yeast) and dif-
ferent start of feeding times, food given from start on and with
five days food delay.
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3.3.10 Non-fighter survivalwithout fighter presence

In the experiments outlined above, in order to maintain the experimental

densities, as females died, males were added (who had been reared under the

same conditions). One can therefore not take the absolute numbers of half-

lives in this section, as the tubes were progressively filled up with animals

not reared in the experimental test containers. Nevertheless all experimental

tubes were treated in the same way, so that relative effects are likely to be

seen. Nevertheless the result should be viewed with some caution, as it will

represent non-fighters out of a cohort and continuous deaths from animals

that were born nearly at the same time, out of the source tubes, where the

animals were bred for this experiment.

The change in density-dependence from concave (higher survival in lower

and higher densities than in intermediate densities) to convex (lower survival

in lower and higher densities than in intermediate densities) from low to high

food as seen in females cannot be found in males (see figure 3.10). Interest-

ing is the change in density-dependence in (figure 3.10 B.l B.2). It is not

immediately clear how bad rearing conditions would have an opposite effect

on male survival that are well fed. Full investment into reproduction might

be a cost with a strong trade-off as a reaction to the immediate past history,

while males that are in the same situation, but are fed with a food delay

would not react to an improvement in general living condition. Interestingly

B1 (in figure 3.10) is the situation where the difference between low and high

fed rearing becomes the strongest.
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Deviance Resid. Df PreX2)

DensityPairs 32.8080 3 0.000000010
Food 47.4620 4 0.000000000

Density Pairs:Source 9.9993 5 0.001566014
Source.Food.Delay 116.8789 7 0.000000000

DensityPairs:Food:Food.Delay 29.9900 9 0.000000307
Food:Source:Food.Delay 9.3102 11 0.009513065

Thb. 3.9: Analysis of deviance table for half-lives of males from the
minimum adequate regression model with extreme distribution.
DensityPairs=density of animals, Source=condition while being
reared, Food.Delay =timing of first food provided, Food=reeting
conditions.
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The minimum adequate model can be found in table 3.9. In two of the

interaction terms food conditions and source conditions have an influence on

the survival of males. It seems therefore to be apparent that males are under

the effect of bad rearing conditions.

In particular rearing conditions and food delay seem to play a major

role. Reproductive allocation, even in males, may be a mixture of capital

and income expenditure so that rearing conditions, and conditions in early

adulthood affect the trade off between reproductive expenditure and invest-

ment in survival.

So it seems that the sperm allocation is very important when conditions

have been bad and if a food source is found and all energy is allocated towards

reproduction. This behaviour is likely to be favoured in evolutionary terms,

as it would result in a scenario where all is done to overcome previous bad

streaks. Females in the same situation (see figure 3.8) have interestingly the

weakest to non-existent density-dependence. This could mean that daily egg

production is generally low at high densities (see table 3.2) and could be a

reason for the u-shape of the density-dependence.
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3.3.11 Deviation of the expected binomial distribution of

male : female combination at the density of two

animals

When eggs mature it might be possible, that animals adapt their sex ac-

cording to the frequency of their or the other sex. Eggs were isolated in

pairs, fed on balls of yeast and reared until they were adults. Three possible

pair wise combinations of sex were possible: male/male, female/female, and

female/male were recorded. The expected ratio would be 25% male/male,

25% female/female and 50% female/male tubes. The expected numbers of

tubes, out of 72, would therefore be 18, 36 and 18. The observed numbers

were 14, 44 and 14. The difference between expected and observed was not

significant (X2=3.55, df=Z, p=0.169). There is therefore no evidence that

S. berlesei can adapt their sex according to their surroundings.

3.4 Discussion

Fitness is a property of the whole life-cycle (Benton and Grant, 2000), so un-

derstanding the life-cycle of a species is important. Conditions experienced

by one life stage influenced the plastic expression of traits at subsequent

time steps throughout the entire life-cycle. As a result, density-dependence

was complex and highly contingent on current and past environmental con-

ditions. Cohort effects arise throughout the life-cycle indicating that age

structure in S. berlesei can interact with density and stochastic variation in
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the environment to generate delayed life-history effects. As these delayed

life-history effects are linked to density-dependent traits, it is possible that

delayed density-dependence can arise in S. berlesei populations. For the

fighter morph, developing in low densities and in good food conditions, this

means that the offspring produced will benefit from the positive effects of

breeding in these conditions also in the next generations, adding therefore

to an advantage in his density-dependence. Density-dependent morph deter-

mination seems therefore to be coupled with the overall density-dependent

life-history of the whole species.

Females typically lay more eggs under good conditions (high food, low

densities) than under poor conditions. Survival also changes with condition,

in a complex way, related to reproductive output. Females under the best

and worst conditions survive for the shortest time (probably due to a high

reproductive investment under good conditions, and starvation under poor).

With medium conditions females presumably do not have enough resources

to be maximally fecund, so may invest both in survival and reproduction,

thereby living longer.

A scenario with high food and low densities allows females to have the

greatest fecundity, but it also allows males to potentially have a high repro-

ductive success, fertilising the eggs. This scenario reflects also the conditions

under which males are most likely to develop into, and encounter, fighters.

Males become fighters when there is sufficient food to (a) develop fast and

(b) grow big. These conditions match those required for females highest

reproductive success. The short development time, coupled with the high
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fecundity, suggests that fitness will be greatest. Conversely, if there was

no condition-dependence, males may mature at a time that females were not

able to lay many eggs, so the fighters would be risking a lot for little potential

gain.

DeWitt et al. (1998) proposed costs associated with plasticity. Animals

have to maintain the energetic costs of sensory and regulatory mechanisms,

and have excess costs of producing structures plastically (when compared

to the same structures produced through fixed genetic responses). DeWitt

et al. (1998) also proposed that there would be a developmental instability,

as plasticity may imply reduced canalisation of development within each en-

vironment, or developmental" imprecision" and that genetic trade-off comes

to effect as deleterious effects of plasticity genes through linkage, pleiotropy

and epistasis with other genes. It seems as if S. berlesei fighters have cer-

tainly high costs in producing structures plastically. But even the juveniles

and adults show plasticity in size, which is condition and density-dependent.

The fighter has therefore not only condition-dependence working on its trait

but also on his whole life-history and on it's potential reproductive success.

Therefore his own discrete phenotypic plasticity is inevitably linked to the

plasticity in many traits.

A discrete threshold (Roff et al., 1997) in condition-dependence as in

the polyphenism (existence of several phenotypes in a population which are

caused by environmental influences rather than different genetic types) of

O. acuminatus (Emlen, 1999;Moczek et al., 2002) could not be discovered in

the discrete phenotype nor any other trait. The condition-dependence 011 the
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involved traits seems to be continuous. The lack of a discrete threshold of

condition-dependence in the researched traits, could have an influence on the

lack of a noticeable threshold in condition-dependent fighter morph determi-

nation. If reproductive success in females does not have a distinct threshold,

it might not be evolutionary profitable for the fighter morph to establish a

discrete threshold in condition-dependence for himself. From personal ob-

servation it is clear that the size differences in adults generally (Beckerman

et al., 2002) are reflected in fighters. With less food provided, fighters be-

come smaller and appear less often. In extreme low food situations, feeding

on filter paper, the fighter morph nearly ceases to be expressed (Radwan,

1995).

The costly built-up of condition-dependent sexual ornaments like in

Carpodacus mexicanus (Badyaev and Duckworth, 2003) and condition-

dependent pheromone functions in Tenebrio molitor (Rantala et al., 2003)

where condition-dependence is usually discussed in a framework of female

mate choice (David et al., 2000; Badyaev and Duckworth, 2003; Rantala

et al., 2003). The fighter seems to circumvent "ritual" (mate choice by body

ornament display or pheromone output) female choice, by killing off compe-

tition. The high reproductive rates of females ensure for the fighter a high

reproductive rate in females at low densities with high food, and the female

will without "ritual" mate-choice get a partner that is in some sense strong

enough, as he likely survived some fights. Handicap models of sexual se-

lection predict that male sexual ornaments have strong condition-dependent

expression and this allows females to evaluate male genetic quality (David
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et al., 2000). It seems that this is possibly also true for non-sexual, but fight-

ing body alterations like in beetles, mites and amphipods and many more

sexually dimorphic species (Gross, 1996) that show condition-dependence at

least on the polyphenic trait. David et al. (2000) found also other non-sexual

condition-dependent traits but did not find an apparent link to reproduction

or fitness in a sense of quantitative output (like egg numbers).

In conclusion, one can state that the overall life-history of S. berlesei is

complex and shows elements of complex condition and density-dependence,

cohort effects and maternal effects. The fighter morph can use these life-

history parameters for himself, as he does when having the highest probability

of becoming a fighter when females have their highest egg production. One

can also deduct that the condition and density-dependence of other life-

stages and the other sex enforces a density-dependent morph determination,

as reproduction will play directly into the costs and benefits being a fighter

morph.

The plasticity of the life-history, especially regarding changing fecundity,

survival and growth rate with conditions (food and density) is overall com-

plex, the mapping of reproductive success onto fitness is not that straightfor-

ward. As a result, modelling will be used to confirm the results that fighters

develop in an adaptive situation.



4. MODELLING THE EFFECT OF

STOCHASTICITY ON FIGHTER

DEVELOPMENT

Abstract
Amalgamating the results from the previous experiments, the influence of stochas-
tic population dynamics on male strategy is modelled. The results show:
1.) A clear influence of the probability of certain densities occurring on the life-
history of the fighter morph development rule.
2.) With increasing probability of lower densities, becoming a fighter is more fea-
sible.
3.) The ESS rule changes, while in a stable high density environment a density-
dependent fighter rule is never selected for.
4.) This indicates an influence of stochastic population dynamics on life-history
evolution.
5.) Modelling individual variation into the fighter rule indicates some buffering
effect of this form of variation.

4.1 Introduction

In the previous chapters the life-history of S. berlesei was described. Fighters

mostly develop in low densities (section 2.1.1), are affected by condition-

dependence [section 2.1.1 and Radwan (1995)J and are likely to have a higher



4. Modelling the effect of stochasticity on fighter development 99

fecundity in lower densities (section 2.1.1). Furthermore it was established in

chapter 3 that condition, density, rearing effects and time of food provisioning

influence the population dynamics of S. berlesei [see also Beckerman et al.

(2002, 2003)]. Poor living conditions cannot only reduce female daily egg

production [and with this life-time reproductive success (Beckerman et al.,

2002, 2003)] but also severely prolong maturation time in juveniles (section

3.3.8). Density-dependence on female survival is more complex than normally

anticipated. In section 3.3.9 it is shown that in fact intermediate densities

do have the worst effect on female survival.

Therefore one has to see S. berlesei's secondary polymorphism (negative

density-dependent) (Woodring, 1969) not only in stable conditions, either

good or bad, but also in different combinations of those. After all, only in

these stochastic conditions, where low densities occur, secondary polymor-

phism (Woodring, 1969) as opposed to primary (frequency-dependent) poly-

morphism (Woodring, 1969) makes sense. Therefore, trivially, low densities

have to occur to be taken advantage of in evolutionary terms. Low densi-

ties occur either by dispersal and colonising of a new patch after a previous

patch is exhausted, or after catastrophic events or poor living conditions

which lower the overall population density.

Dispersal has been shown to affect polymorphism (Jobst et al., 1999). But

why do S. berlesei develop only secondary polymorphism and not maintain

frequency-dependent polymorphism like other Acaridae, for example

R. robini (Radwan, 1995, 1996; Radwan and Siva-Jothy, 1996; Radwan, 1997;

Radwan et al., 1999; Radwan and Klimas, 2001)?
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So a likely cause for secondary polymorphism, besides dispersal, may

be stochasticity, as this might also ensure that low densities do occur and

a density-dependent phenotype can use the benefits of this environmental

condition. Nevertheless it might also be possible that stochasticity does not

enhance the advantages of secondary polymorphism and dispersal alone is

the only option.

To investigate the likely effect of different levels of variation on secondary

polymorphism, invasibility analysis as outlined in section 1.4 and a matrix

model as described in section 4.1 will be employed. The data and analysis

from chapter 2 and chapter 3 will help to describe the life-history of S. berlesei

in mathematical terms. This life-history data, taken from high and low

densities, bad and good conditions, will be employed in a random fashion

to help to provide an insight into the effect of stochasticity on the fighter

development of S. berlesei,

Populations are structured. To represent this in models, matrices have

been used to represent this structure mathematically (Leslie, 1945; Caswell,

2000). Leslie (1945) pioneered the matrix model approach. The basic idea is

that a state vector of the density of the individuals in each stage is multiplied

with a projection matrix, called here population projection matrix, which

then gives the state vector at the next (time)-step. N(t) = number of animals

at time t. N(t + 1) = number of animals at time step + 1. A = projection

matrix.

N(t + 1) = AN(t) (4.1)
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Entries in the population projection matrix can be constant or consist

of entire functions. One denotes a place in the matrix with a subscript pair

of x, y. Then an element in row two column five is a2,5, whereby a is a

placeholder for a term describing the event taking place at this position.

The matrix is necessarily a square matrix with a dimension that represents

the number of stage or age classes. In a simple case all elements in al,2 to

al,j are terms for the stage classes fertility multiplied with its probability of

survival. Here the transition probabilities (sometimes fertilities) to the next

stage are given with the probabilities that the individuals in this age stage

actually survive to contribute to the next stage. The sub-diagonal from a2,1

to aj_l,j represents the survival probabilities of the individual. Here it is

simply calculated what percentages of animals do survive in this age class.

So the vector Nt,j is the number of organisms in age class j at time t. How

this vector changes with time describes the number of changes in the num-

ber of organisms in each age class as the population develops through time,

following iteration of the matrix multiplication (equation 4.1). Alternatively,

analytical methods [outlined in Caswell (2000)] can be used to explore the

equilibrial properties of a matrix model. Matrix models operate in discrete

time and are therefore an approximation to real continuous time events.

NI,o 0 FI F2 r, NI,o

N2,o PI 0 0 0 N2,o
x (4.2)

N3,o 0 P2 0 0 N3,o

N4,j 0 0 Pj-l 0 N4,j
t+l
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In these (Leslie) matrix models extra terms for stochasticity and density-

dependence can be added to terms describing the individual stages through

the (time)-steps.

Unlike non-stochastic models, stochastic models can only be analysed for

a limited set of equations and circumstances (Tuljapurkar and Caswell, 1996).

The complexity of the biological system under investigation (structured mod-

els with non-linear density-dependence and added noise) mitigates against

finding analytical solutions. Instead, numerical solutions will be sought us-

ing Monte Carlo based methods.

This involves a model that accounts for a structured life-history, works

for populations in density-dependent and stochastic environments and from

which one can calculate invasion exponents. Additionally, the techniques

required will specifically be used to model the evolution of behaviour in

fluctuating environments, where the population sizes may become very small.

4.2 Methods

4.2.1 The matrix

A matrix was developed as in equation 4.3.

The entries in the matrix correspond to:

l=daily survival of eggs, 2=fighter fecundity, 3=non-fighter fecundity, 4=egg to juvenile

recruitment, 5=daily survival of juveniles, 6=juvenile to fighter recruitment, 7=juvenile to

non-fighter recruitment, 8=daily fighter survival, 9=daily non-fighter survival, IOs=fernale
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fecundity, ll=juvenile to female recruitment, 12=daily survival of females

Vectors Nt+l and N, give the state of the system. The vector elements are

Ne= number of eggs, Nj=number of juveniles, Nr=number of fighters, NNF

=number of non-fighters, NFe=number of females

Ne 1 0 2x8 3x9 10 X 12 Ne

Nj 4 5 0 0 0 Nj

NF 0 6 8 0 0 X NF (4.3)
NNF 0 7 0 9 0 NNF

NFe 0 11 0 0 12 NFe
Ht

Pulsed reproduction at the end of each daily time step was assumed.

In every term a formula was entered resulting from experiments described

earlier. The focus of the investigation is the juvenile to fighter recruitment

(6). A trade-off between fighter fecundity and density (successful fighters

monopolise females at low density) and between survival and density (non-

fighters at low density are more likely to be killed than fighters) was assumed.

Then the ESS decision rule is found relating the density to probability of

developing into a fighter.

The model is then run for 3000 time steps to allow the population dynam-

ics to settle on the attractor. Subsequently an invasion is simulated using

an invader strategy, which has the same matrix as the resident, with only a

slight difference in the probability of becoming a fighter at a given density.

The invader experiences exactly the same "environment" as the resident, and

the density-dependence is based on the numbers of residents only (thus the
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system is linearised at the point where the invader population is zero). A

least-squares regression of the logged population size of the invader against

time estimates whether or not it is invading. The mean slope of the regres-

sion of a large number of replicates estimates the invasion exponent (Rand

et al., 1994).

4.2.2 Half-lives to survival estimates

The median half-lives give the estimated time when 50% of all animals have

died.

The survival rates for each treatment combination were estimated using

the negative exponential formula equation 4.4 also cited in Bellows (1981).

Using this continuous time model in a discrete matrix model has the property,

that No· e:" changes between two adjacent integers at the rate of e-r so one

can set e-r = A and can calculate Nt+1 as Ne e-r.

Here r is the rate of population change, No = current density, N

0.5 x No and t = half-life times.

N = No·e-rt

[n(:} N 1
r = 0_ where - =-

t No 2

(4.4)

(4.5)

This gives us the rates of change for different densities. An example of the

calculated survival rate values can be found in table 4.1 using (A = eT) to

allow survival rates to be read more easily.
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Using equation 4.6, one has an estimate of the change in animal numbers

each day.

(4.6)

The calculations were done for two kinds of living conditions of the ex-

perimental animals, reflecting extreme differences in living conditions.

good track bad track
1
20
50

0.9549 0.9562
0.9611 0.9566
0.9692 0.9570

Tab. 4.1: Estimated survival rate of females per day (A = e"}, good and
bad track at different pair densities O.

Calculated were a so-called" good track" and a "bad track". "Good track"

means that the animals from which the data for the calculations stems, had

"ad libitum" food in the parental (rearing) and in the FI generation, and

vice versa. At this point only the extreme conditions were considered, but

the model leaves room for further expansion in the future.

4.2.3 Egg to juveniles transition

Egg to juvenile transition was calculated using the half-life of the eggs and

calculating the number of eggs going from the egg stage to the juvenile stage.

This is formulated as Njuveniles = Neggs' (1 - Aegg-hatching), as it has been

established that nearly 100% of all eggs survive as mentioned in section
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3.3.6. Therefore one uses as daily survival rate the hatching rate as our half-

lives (section 3.3.5). The number of juveniles hatching is the inverse of the

computed exponential r of the half-lives for egg hatching rate as analysed in

section 3.3.5.

8 good track bad track
1 0.1779
20 0.1803
50 0.1854

0.1747
0.1795
0.1886

Tab. 4.2: Estimated A of egg daily hatching rate, good track (parameters
calculated from animals in good conditions) and bad track at
different pair densities 8.

4.2.4 Juvenile survival

The half-lives of the juveniles have been estimated in section 3.3.7. From this

one calculates survival curves for good and bad conditions. The results for

juvenile survival are found in table 4.3. Bad track juveniles survived longer,

due to interactions described in (Beckerman et al., 2002,2003).

good track bad track
0.9320 0.9559

Tab. 4.3: Estimated daily juvenile survival, good and bad track.
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4.2.5 Juvenile to female transition

The number of animals maturing is known from section 3.3.8 as is the half-

lives of the juveniles that matured. Therefore the daily transition of fe-

males is approximated as Nlemales = 0.5: Njuveniles' (1 - Ajuvenile maturation).

Ajuvenile maturation expresses the half-lives as estimated in the survival analy-

sis. A death event is therefore maturation. 1 - Ajuvenile maturation is therefore

the number of adults maturing. Only good and bad track was distinguished

(see table 4.4), as eggs laid by adults were followed through in the numbers

laid.

good track bad track
0.055 0.049

Thb. 4.4: Estimated daily maturation rate (l-Ajuvenile maturation), good and
bad track.

4.2.6 Juvenile to fighter transition

In equation 2.1 the density-dependent rule for fighter development was ap-

proximated as PI = 0.;9 (see chapter 2).

This relationship can also be approximated using

PI = (0.691/E - 0.1806·ln(6))E (4.7)

which will be used, as it gives more flexibility in defining the shape of the

relationship (through the shape parameter E). In previous experiments to
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those described in chapter 2 the fighter rule was determined to be:

Pf = (0.91/E - 0.1806.ln(!5))E (4.8)

Therefore the model was parameterised with this rule as well (which we

term the 0.9 strategy).

In equation 4.7 and 4.8 Pp is the probability of becoming a fighter, r5

is the momentary density and E is a shape parameter. See figure 4.1 for

a graphical representation. By changing the shape parameter in the model

and using invasibility analysis the uninvadable fighter emergence rule in dif-

ferent stochastic scenarios will be investigated. This applies to good track

conditions, as due to condition-dependence in bad environments, fewer to no

fighters (Radwan, 1995) (see chapter 2) emerge, the Pp is set to 0 in bad

track environments.
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Fig. 4.1: The relationship of the probability of becoming a fighter P, = 0.:9
(x.69, square symbol) and a family of curves (P, = (O.691/E -

O.1806·ln( is))E) used in the model that approximate this relation-
ship with different shape parameter E values. E = 4.3 (E.4.3,
diamond symbol) providing a good fit to the original relationship
x.69. It is investigated here whether the shape of relationship of
becoming a fighter is flexible if stochasticity is added. The shape
parameter E is therefore the parameter under investigation, as it
regulates the form of the relationship in the models presented in
this chapter.
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4.2.7 Juvenile to non-fighter transition

The number of animals maturing is known from section 3.3.8 as is the half-

lives of the juveniles that matured. We also know that the sex ratio is

1:1 (section 3.3.2) in higher densities. Additionally, if fighters develop, this

number is subtracted from the developing non-fighters (see section 4.2.6).

Therefore the daily transition of juveniles to non-fighters is approximated as

Nlnales = 0.5·Njuveniles' (1- Ajuvenile maturation) - «O.691/E - O.1806·ln(5))E).

4.2.8 Fighter survival

The values of table 2.9 are used to estimate fighter survival. This can be

expressed as N, = Ps,,. N·).. with Ps,f as the probability of surviving and N)"

numbers of non-fighters surviving (assuming equal survival rates for fighters

and non-fighters without fighting). Female survival is used to estimate non-

fighter (not non-fighter) dependent survival (survival w/ 0 fighter presence).

Ps,f is estimated as 1- 1O~:;:f1f) "IN, > 1,with 5, being fighter density and

N,= fighter number and V = for all. Therefore a fighter's survival probability

sinks with increasing fighter number, excluding density one, as one fighter

does not kill itself.

4.2.9 Non-fighter survival

Non-fighter survival in the absence of fighters is modelled as the female sur-

vival in the absence of fighters. If fighters are present, the values of ta-

ble 2.9 are used to estimate non-fighter survival. This can be expressed as
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Nnf = Ps,nj' N· A with Ps,nf as the probability of surviving and N A non-

fighter survival without fighter influence. Ps,nf will be approximated using

exp(J/) (1 ~) \..I s - 1/\ ~ < 1 \..I ~ > 1 P - Q... _
10+ (r) * - s: V Uf >- c _ . Vc, s nf - , Unf- non-exp U I anI anI anI '

fighters density and Iif= fighter density. This models when there are fewer

fighters than non-fighters. In higher fighter densities (e.g. five fighters ten

non-fighters) a non-fighter's survival chances will rise, as fighter's aggression

towards themselves makes them more likely to attack each other and simply

cannot kill as many non-fighters. Given a state where there are more fighters

than non-fighters a non-fighter's survival is assumed to be zero, as fighters

quite easily overwhelm a smaller number of non-fighters.

4.2.10 Egg and female survival

The density-dependent survival of eggs and females can be seen in figure

4.2. While egg maturation is negatively density-dependent (figure 4.2 A +
B), females in good conditions survive longer in higher densities in good

track conditions (figure 4.2 C), while there is nearly no density-dependence

in bad track conditions (figure 4.2 D). The density-dependence of egg and

female survival in the model was approximated using a linear regression on

actual data on survival. Figure 4.2 suggests a more linear relationship of the

pooled data used here, than a more complicated negative exponential, Ricker

or other highly complex density-dependent model [e.g. Maynard Smith and

Slatkin (1973), Hassell (1975), Ricker (1975) and Beverton and Holt (1993)],

which would instill a more artificial density-dependence than the one actual
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happening (see chapter 3). A simple negative exponential (r = -0.008)

density-dependence was added for densities over 100 so that adult densities

were not unbounded. Adult densities that exceed 100 by a lot are rare. The

estimated values for the linear regressions can be found in table 4.5.

A B

~ ~
9 9

" 8 " ~~ 9

~ 0
N

9 9
10 20 30 40 so 10 20 30 40 so

density density

C D

8 ~
9 '1

" ~ " ~
9 9

iil iil
~ 0

<;>

10 20 30 40 50 10 20 30 40 50

density density

Fig. 4.2: Density-dependent relationship of survival for adult survival and
daily egg survival, A) egg good track B) egg bad track C) adult
good track D) adult bad track.
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type good track bad track
Value SE p Value SE p

egg (Intercept) -0.1917 0.0003 0.0008 -0.1900 0.0007 0.0025
egg (A) -0.0004 0.00003 0.0145 -0.0004 0.00009 0.0388
adult (Intercept) -0.0462 0.0005 0.0068 -0.0447 0.000001 0.000008
adult (A) -0.0003 0.00007 0.0337 -0.00002 0.00002 0.0029

'lab. 4.5: Estimates of the density-dependence of daily egg and adult sur-
vival using linear regression. The dependent variable was daily
survival, the independent variable was density from the experi-
ments described in chapter 2.

Juvenile survival density-dependence was estimated using a survival re-

gression on well and badly fed individuals. The half-life regressions calcu-

lated were for good track 31.28 + exp( -0.020oj) and for bad track 25.27 +
exp( -O.01O!5j) which were calculated into r using equation 4.5.

4.2.11 Male Fecundity

As the main focus of this study is males, the male fecundity was modelled, as

there will be a definite link for the fecundity of males and the presence and

absence of fighters. This will be modelled as the proportions of the measured

female fecundities. This means that although female fecundity is modelled,

the amount attributed to either fighters or non-fighters is split according to

their density and their respective trade-off. As a consequence the model

concentrates on the reproductive success of the males. This is based on last

to mate sperm success as it exists in S. berlesei. Therefore the survivors will

get all the benefits.
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4.2.12 Female fecundity

Density-dependent daily fecundity in good conditions can be approximated

by Fecle=8.23+ 26,/4, with 8=pair density and Fecj, = female fecundity. The

mean fecundity per animal vs density per day (see chapter 3, table 3.2) was

approximated using a non-linear regression (see table 2.7 and figure 2.2) with

the response fecundity (eggs per animal per day) as represented in equation

2.2 (y = c + ~). The proportion of female fecundity between good track

and bad track is in low densities one third and in high densities one (see

table 3.1). This relationship can be approximated as 1- e-O.086, with 8=pair

density, which will be employed in bad conditions. Therefore in this model

it is assumed that animals in bad conditions lay ~ of the eggs of a female in

good conditions.

There should be a link between the fighter phenotype and population

dynamics. So if there are all fighters at high densities, there must be a

trade-off between male strategy (of being a fighter) and fecundity. This

means simply that fighters incur a cost of being a fighter in higher den-

sities, as demonstrated in chapter 2. Therefore one introduces a penalty

in fighter fecundity to model this trade-off. This is modelled as a multi-

plier and the inverse of their probability of becoming a fighter PI, therefore

(1 - PI) * 8all animals * Fecj., which approximates the observed changed in

female fecundity in different densities.

Therefore, as discussed in chapter 2, fighters can monopolise females at

low densities, but as density increases, they spend more time fighting than
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mating. Hence at high densities non-fighters will outperform them reproduc-

tively. This is modelled as (Pf) * Oall animals * Fecj., So fecundity is linked to

the probability of becoming a fighter.

4.2.13 Stochasticity

Two extreme environmental conditions are modelled, good and bad. The

environment condition is E. The stochastic element K, is drawn from a uniform

distribution between 0 and 1. Then a threshold value a is introduced. a was

chosen from 0.1 to 0.99. When K, was bigger than a (K, > a), E was set to

good conditions. If it was smaller, E was set to bad conditions (so the bad

track environmental values were set). If a is 0.5 good and bad conditions are

equally likely to occur on the long run = E(€).

If a = 0.1 was set the good conditions have overall a 90% chance of oc-

curring, this will intrinsically mean that longer periods of good conditions

are likely, the reverse will happen at a = 0.9, when periods of bad track

environmental conditions are more likely. Therefore a threshold value a was

selected non-randomly and then at each time step a value from a uniform

distribution was drawn (K,). The external stochastic switching of two deter-

ministic states of a matrix has the same effect as introducing the stochasticity

intrinsically in the formulas within the matrix (personal communication Dr.

Simon Wood, Reader in Statistics, St. Andrews University), but see Kaye

et al. (2001).
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4.2.14 General model dynamics

The model was constructed using high and low food conditions as two ex-

treme matrices. A 300 day model run for both extreme matrices can be found

in figure 4.3 A & B. A model run with 50% chance of a good or bad day

occurring can be found in figure 4.3 C and a model run with a 10% chance

of a good day occurring can be found in figure 4.3 D.

A

I. )

c

f

B

f

....

o

f

-
Fig. 4.3: A) Good track matrix model run of, B) Bad track matrix model

run C) stochastic run with 0.5 probability of good or bad day, D)
0.9 probability of a bad day. density vs days. NAdults + Njuveniles

vs time.
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4.2.15 Invasion analysis and elasticity analysis

The invasions for the matrix models in density-dependent and stochastic en-

vironments were calculated as described in Grant (1997) and Benton and

Grant (1999b). Invasions were estimated numerically after 3000 days (after

population stability) and an invasion length of ten days using 10000 simula-

tions with 97.5% of the original values for the stochastic runs, using values

as described in Benton and Grant (2000). Elasticity analysis was performed

after Benton and Grant (1999a).

Invasion was therefore assessed by estimating the rate of spread (= popu-

lation growth rate) of a mutant strategy when rare. This quantity is techni-

cally the dominant Lyapunov exponent (Metz et al., 1992), termed invasion

exponent iJ (Rand et al., 1994).

Based on invasibility fitness estimates one models the invasion of a mutant

into a resident population. Here the fittest phenotype is the one which is not

invadable by other strategies.

iJ was estimated numerically as the average slope of a least-squares regres-

sion of the log-transformed invader population size of an invader population

against time since invasion.

The invader was identical to the resident, other than there was a reduction

in the magnitude of E (which measures the steepness of the decline in p(F)

with density): E' = 0.975E. Where a slight change in E termed E' did not

let an invader population grow or decline into the resident population, one

would have a convergent stable strategy. The outcome of evolution will be



4. Modelling the effect of stochasticity on fighter development 118

the strategy that can invade all others but is not itself invadable.

4.3 Results

The model results show clearly (see figure 4.4 and 4.5) that stochastic popu-

lation dynamics make a density-dependent fighter strategy" worthwhile". All

attractors were globally uninvadable and were therefore not local attractors.

When there is a 0% to 30% chance (fighter rule PI = (O.gl/E -0.1806.1n(8))E

further called 0.9 Strategy) of bad times a fighter strategy never invades (see

figure 4.4).

element
0.00234
0.00253
0.2711
0.000123
0.2087
0.1352

fighter fecundity
female fecundity
juvenile survival
fighter survival

non-fighter survival
female survival

value value element
0.11925
0.1281
0.1235
0.001
0.0074
0.00087

egg survival
non-fighter fecundity

hatching
juvenile to fighter

juvenile to non-fighter
juvenile to female

Tab. 4.6: Elasticity analysis of matrix model using fighter rule PI
(0.91/E - 0.1806·ln(c5))E.

If there is a 40% chance of bad times, a fighter strategy has an evolu-

tionary attractor and ESS. The value measured in the laboratory of a fighter

strategy at about E=4.6 is an ESS at around 90% to 95% chance of bad

times. It seems to be feasible that the density-dependent fighter strategy

as found in S. berlesei in the laboratory and when coming fresh out of the

wild is an adaptation to short bursts of food with long stretches of low food

availability. The fact that value that is close to the actual measured value is
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found, shows that the model should achieve some biological reality.

The result of the elasticity analysis can be found in table 4.6. The model

was most elastic to juvenile survival. As juveniles are the main deliverer

of adults, changes here make the most difference in the overall population

dynamics.
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Fig. 4.4: Result of invasion analysis with 0.975 reduction in strategy iP, =
(O.91/E - O.1806·ln( 8))E) through different levels of stochasticity.
0.1 = 10 % chance of a bad day occurring ... 0.5 = 50 % of either
a good or bad day occurring ... 0.9 = 90% chance of a bad day
occurring. At 0.1 a slight decrease in E does not get selected
for. Black dots are attractors. The ESS occurs when the invasion
exponent-et).
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Changing the fighter rule to PI = (0.691/E - 0.1806·ln(c5))E (0.69 strat-

egy) (figure 4.5) shows that the E value of the 0.9 strategy at 90% probability

of bad times is nearly reached with 80% probability of bad times in the 0.69

strategy. This means that with the 0.69 strategy fighters develop when there

is a higher chance of higher densities (good times). This could be a reaction

to higher overall densities of a culture. This value was measured on

S. berlesei when it was constantly in the laboratory for about two years and

could be an adaptation to a constant high density.
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(0.691/ E _ 0.1806. In( 8))E) through different levels of stochasticity.
0.1 = 10 % chance of a bad day occurring ... 0.5 = 50 % of either
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4.4 Adding individual variation

4.4.1 Introduction

Previous modelling in this work has concentrated on environmental stochas-

ticity, which concentrated on the stochasticity of food availability. The mea-

sured population dynamics have been taken from population level analyses,

which do not account for individuality and which did not account for spa-

tial effects. For example a small change in fighter strategy on a population

level model implies that the average fighter has changed its strategy slightly.

Nevertheless what should really happen is that there is already a slight vari-

ation in the fighter development rule, therefore one would have to ask first:

What happens to the model if one adds variation to the fighter development

rule? Secondly will a slightly variable strategy around a different mean in-

vade? How much alteration does one need to actually make a difference to

the population dynamics of the resident population?

4.4.2 Methods

The matrix model has been adapted, using a variable fighter development

rule. A Gaussian distribution around the strategy as mean with a variance

of O.lO*mean was used. Invasions were done with a 0.975*E reduction of the

mean using the same individual variation.
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4.4.3 Results

The results of the model run with individual variation (see figure 4.6) show

that the invasions occur with higher chance of bad times than without indi-

vidual variation. This indicates that the variance around a mean with Gaus-

sian error works as a buffer. Invasion is only possible with higher probability

of bad times. The error bars of the invasion analysis without individual vari-

ation (red in figure 4.6) overlap sometimes with the error bars of the model

with individual variation. As the error bars overlap sometimes, this could

indicate that in these regions the result might not be significantly different.
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Fig. 4.6: Result of invasion analysis with 0.975 reduction of mean in strat-
egy (Pj = (0.691/E - 0.1806·ln(8))E) with standard error of
0.10· mean through different levels of environmental stochastic-
ity. 0.1 = 10 % chance of a bad day occurring ... 0.5 = 50 %
of either a good or bad day occurring ... 0.9 = 90% chance of a
bad day occurring. With higher chances of a bad day occurring,
there is a higher chance of bad times. At 0.1 a slight decrease
in E does not get selected for. Red error bars indicate the shift
from the invasion analysis without individual variation. The ESS
occurs when the invasion exponent=O.
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4.5 Discussion

The detailed study of effects of environmental stochasticity on the evolution

of life-history parameters (e.g. reproductive effort) has started with Cole

(1954) and continued (besides others) with Murphy (1968), Charnov and

Schaffer (1973), Orzack and Tuljapurkar (1989), Tuljapurkar (1990), Benton

and Grant (1999b) and Orzack and Tuljapurkar (2001). These results have

shown a very complex picture on the simple question asked by Cole (1954)

why plants reproduce over several seasons, when the cost on maintaining

life is probably higher than the cost of reproduction? Iteroparity can be

favoured over semelparity, it could be a balance (frequency) and sometimes

semelparity could be favoured. This might well be the same in the evolution

of the density-dependent fighter rule in stochastic conditions. Risk aversion

or 'bet-hedging' in a not entirely predictable world provides an advantage

to strategies that would be inferior in a steady world (Tuljapurkar, 1990).

If this is indeed so, the fighter rule found in stable environments might be

not the one which is best in a stochastic environment. Different life stages

in S. berlesei (eggs, juveniles and adults) respond differently to noise, in

that there are significant differences in the way that environmental variation

changes the mean, variance, shape of distribution and relationship between

environmental and population synchrony (Benton et al., 2002).

The phenotypic plasticity of S. berlesei to the environment (in general)

is exhibited mainly through condition-dependence and density-dependence

(chapter 2). The adaptive advantage of being density-dependent is likely



4. Modelling the effect of stochasticity on fighter development 126

to be a monopolisation of females and by reducing the population density

increasing the output of females in egg mass (see chapter 2 and 3). As growth

progresses to the tritonymph stage, the fighter is able to make a relatively

safe bet on future generations by detecting the density in its environment

[by a chemical cue (Timms et al., 1980)].

The results presented here suggest that the density-dependent morph

determination rule is likely to be sensitive to the pattern of fluctuation in

the environment, and is likely to adaptively change if the environmental

variation changes.

With increasing stochasticity and higher chances of bad track periods,

which would through density-dependent food availability reduce the popula-

tion and therefore generate lower densities more often, an adaptation of the

fighter role would be favourable even considering trade-offs.

Ultimately, condition-dependence will limit this development. S. berle-

sei's morph determination is also condition-dependent, as are other species

which exhibit andropolymorphism and a so-called fighter morph [e.g. J.

marmomta (Borowsky, 1985; Conlan, 1989; Kurdziel and Knowles, 2002)

and O. spec. (Emlen, 1999)]. Any change of the morph determination

rule through often changing densities by stochasticity would therefore likely

also apply to these species' andropolymorphisms too. Essentially, through

density-dependence in food provisioning, a condition-dependent system will

also be limited in the other direction. If densities are too often too low, the

fighter morph determination rule cannot be adapted anymore, as simply no

food is available anymore to build up extra body mass.
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An adaptive fighter rule should be favoured in an unpredictable envi-

ronment. The data was taken from animals in stable laboratory conditions

where the strategy could have adapted to a stable environment (lower prob-

abilities of becoming a fighter in many densities). But when one simulates

a highly varied environment, it changes the fighter morph development rule

(detected in the laboratory) in a way that resembles the one found in freshly

collected animals from the field (higher probabilities of becoming a fighter

in many densities). One could conclude from this that S. berlesei's fighter

morph has adapted to a highly stochastic environment (e.g. the field).

S. berlesei shows a response to environmental variation in its density-

dependent fighter rule. When initially collected in 1996, S. berlesei was fed

constantly. This resulted in fewer males becoming fighters, when the initial

data on fighter morph determination was collected. After the year 2000 the

feeding regime was changed to weekly feeding (by Dr. Benton) and the chance

of becoming a fighter rose again in very low densities. This could be an effect

of different population dynamics affecting the fighter life-history. Therefore,

when assessing the propensity of males to become fighters at low densities,

there was a noticeable change over time. When the stock cultures were fed

daily, fewer males became fighters at a given density. When the stocks were

fed intermittently more males became fighters at a given density, perhaps

because the population fluctuated more. Experimental evidence of long run-

ning cultures suggests that the culturing methodology causes selection on

the fighter rule by changing to opportunity for fitness benefits (Wilson, P.,

2002 unpub. Honours Project, personal communication Tim Benton).
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s. berlesei seems to react also to stochasticity with its additional instar

the hypopus which has a higher probability of becoming a fighter (Ballard,

1997). An impact of stochastic population dynamics does therefore exist.

This exhibits itself also in the special life-history of S. berlesei compared to

Rhizoglyphus echinopus or R. robini. Recently, Radwan (2001) has found the

same morph determination strategy as in S. berlesei in R. echinopus.

R. echinopus does exhibit density-dependent morph determination ill

comparison to R. robini. Both species are bulb mites. The only reported

difference between these species, which are sometimes seen as one species, is:

"Females lay up to 700 eggs each depending on the host. R. robini

tends to form relatively small colonies on narcissus and tulips

whereas R. echinopus forms large colonies on a greater range of

bulb crops."

(http://ipm. ncsu. edu/ A G136/mite2. html)

It is curious that R. robini is said to live in small colonies and yet not

have a density-dependent morph determination. The key issue may be both

the mean and variance in population sizes. R. robini could habitually live at

sufficiently small densities that fighters are always present (and so the benefits

become frequency-dependent), whereas S. berlesei and R. echinopus live in

colonies which are more highly variable in size, such that at the maxima, the

density is sufficiently large to preclude fighter development.



5. ASSESSING THE FIGHTER MORPH

RULE BASED ON INDIVIDUALS

Abstract
1.) Using an individual agent based model it is shown that a fighter in high
densities has, under a density-dependent fighter rule, less chance to transfer its
genetic material to the next generation using simple diploid genetics.
2.) Specifically, the fighter density one is examined where there seems to be no
apparent reason to become a fighter (unless immigration is very important).
3.) Some evidence is presented that the density determining rule might not only
be decided in the immediate present, but also by gambling on future predicted
conditions.
4.) Changing the density-dependent rule to frequency-dependence highlights the
interesting property of theoretical coexistence of both morph determinations,
frequency-dependence and density-dependence.
5.) If fighter could develop at very high densities, frequency-dependent morph
determination would have advantages in reproduction. Nevertheless condition-
dependent morph determination might likely inhibit this as condition-dependence
is inherently a density-dependent process.

5.1 Introduction

Chapter 4 concentrated largely on population level modelling. A matrix

model was parameterised with population-average quantities. In section

4.4 individual variation was introduced and it was demonstrated that this
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stochasticity, which could be interpreted as cohort based variance in a strat-

egy, could have an influence on the life-history of the fighter morph of S.

berlesei. In this chapter some spatial stochasticity and discrete animal sizes

will be added within an individual-based model.

Individual-based models differ from most modelling techniques by mod-

elling the individual entities from which a population is built, rather than

the average traits of a population. As a result, they typically incorporate

more biological detail. This property is especially interesting for this study,

due to the investigation of populations with low-density and a distinctive

type of individual. Additionally, as the model presented here works in terms

of individuals, all arithmetic is integers. Many population-based models,

including the matrix model, use continuous/or real numbers (Gillmann and

Hails, 1997). Therefore it is possible to have situations where population den-

sities decline to fractions of an individual. To circumvent this, a correction,

or rounding factor may be introduced to allow for this "error" (Gillmann and

Hails, 1997), an arbitrary extinction threshold incorporated (Gillmann and

Hails, 1997) or it is left in as a model property (Gillmann and Hails, 1997).

Therefore some individual variation can also be handled in the state-variable

models. Grimm (1999) suggest that an inherent problem of individual-based

models would be, that they could not deliver answers to general questions of

biology because analytical solutions are hard to construct. Individual-based

models are thought to be more realistic then state variable models, as they

are constructed bottom up as opposed to top down. This means that the

system is constructed out of lower level attributes and interactions, where
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the dynamics develop" in situ" as compared to a top down approach, where

the dynamics are imposed by high level instructions.

Individual-based models are a relatively recent development but are in-

creasingly being used (Batschelder and Williams, 1995; Mooij and Boersma,

1996; Ruxton, 1996; Uchmanski and Grimm, 1996; Wilber and Shapiro, 1997;

Beecham and Farnsworth, 1998; Gathmann and Williams, 1998; Santelices,

1999; Keeling and Grenfell, 2000). For example, Swarm (Langton et al.,

1997), is a tool used to develop individual-based models. It has been used

in a number of biological studies, for example to study Anopheles gambiae

(Carnahan et al., 1997), bacteria (Kreft et al., 1998) and evolution (Strand

et al., 2002).

Grimm (1999) suggest that in ten years of individual-based modelling

no general answers to biological problems have been found. He nevertheless

states that it is possible to learn a lot about the system in question. In most

cases the use of IBM's would be forced by pragmatism, as the system in

question could not be studied with state-variable models or that the individ-

ual properties are important for the scientific question, as it is in this study.

Grimm (1999) also states that there is no strong theoretical framework for

individual-based models, as it exists with mathematical models. This could

simply be due to the lack of challenges the role of the individual in population

biology has had.

More recently Strand et al. (2002) finds individual-based models a useful

tool in evolutionary ecology, as it can track genetic properties and handle

complex interactions better than standard model approaches.
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As S. berlesei is diploid (Radwan, 1991), the descendants of a single pair of

mites (one fighter, one female) would receive an average of 50% of their genes

from the fighter. If the mite was one male out of 10, the expectation of the

percentage of fighter genes in the population in the future would therefore be

under the null hypothesis E(Pef) = N,1N,.' with E(Pef) the percentage of

fighter genes, Nf the number of fighters and Nfe number of females. Here it is

investigated, by simulation, if it is possible that this analytical solution holds

when details of the system are modelled explicitly (like space, behaviour).

There will be special concentration on the situation where there is a single

fighter (and no other males). Where, as the fighter has no competition, the

marginal benefits of becoming a fighter are zero. A fighter alone with a female

has as much reproductive chance as a non-fighter on its own. Nevertheless

single reared males have the highest probability of becoming a fighter (see

chapter 2). The advantage of being a fighter here can therefore only lie in

fighting off possible immigrants.

Therefore the following is investigated within this theoretical model frame-

work concentrating on the interactions of the individuals:

1.) if the analytical expectation of gene transference in S. berlesei can be

reliably replicated with the model represented here (i.e. for the fighter strat-

egy to be adaptive, fighters should have more descendants at an arbitrary

time in the future than non-fighters under the same conditions).

2.) does the result indicate something more specific about the density-

dependence?

3.) does switching the density-dependent rule to frequency-dependence re-
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veal possible clues about the underlying principles of morph determination?

5.2 Methods

5.2.1 General methodology

A computer program was written as a framework for the individual-based

model (see picture 5.1). Java has the advantage over C of being, from its

beginning, designed as an object oriented language, which makes it especially

suitable for the individual-based model. To exclude programming language

specific influences on the results, it was therefore logical also to decide for

Java as the programming language for the matrix model developed in chap-

ter 4. Objects (individuals) were completely encapsulated in their class (a

programmatically encapsulated piece of code) and were only able to inter-

act with their environment through specially developed accessor functions.

This represents" animal" senses, where an individual is able to interact with

its environment through senses, while the environment has an influence on

the whole organism. This was modelled as functions regulating the state

of the individual. Each object (individual) has therefore states, properties

and ways to interact with the environment and is able to receive informa-

tion about the state of its surroundings. The system was updated at each

pixel at a screen resolution of 1024x768 pixels. A fully stochastic simula-

tion run with all repetitions took approximately two weeks (two Dual P3 1

Ghz 512 & 1024 MB Memory), depending on system load. A spatial model

was chosen to allow for limitations of movement in high density cultures and
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the growing lack of interactions. When there are many objects in the sys-

tem path blockage is created ("animals" blocking each other from movement;

this happens if many animals are close to each other and block each others

movement through blocking each others paths). Ideally the system would

have to be three-dimensional, but computational restrictions enforced a two-

dimensional approach. Given the general "philosophy" of individual-based

models as being a bottom up approach, many small parts will result in a

bigger picture. This happens in itself by the accumulation of effects of many

small rules. This has the trade-off that smaller parts of the system are easily

explained but the overall effect is described through the results and not in

an overall rule like in top-down models. The accumulation of small events

will build this big picture inherently.
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Fig. 5.1: Java application frame work for an based individual-based model
frame work.
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5.2.2 The environment

The arena size was modelled after the tubes used in the experiments. The

tube diameter was approached by taking the tube diameter of 20mm. The

surface area (sa) is sa = 314.56mm2 (sa = 7rr2) therefore a square has to be

appro 17.73 mm (saO.5) long to have the same surface area. As the maximum

mite length is approximately one mm (see section 1.3.1) the arena size of

the model was adapted by setting the diameter of the objects so that ca. 18

fitted the length of a square arena size (see figure 5.1). The program allowed

for easy resizing via code or simple window resizing. The picture used shows

a larger arena size as actually used for demonstration purposes. The models

were run with the exclusion of condition-dependent morph determination.

To achieve realistic time scales in computing, the model concentrated on

approximating the" animal" sizes. Itwas decided to concentrate on the effect

of killing, in what basically is a random particle movement model. Animal

movements were decided by chance, therefore the" animals" bounced off each

other if the rules of interaction did not imply another course of action (e.g.

a male was killed therefore removed from the system) (see section 5.2.5 for

a description of the interactions).

The objects bounce of each other and when they meet they interact.

In case of non-fighting adults with different sexes this interaction results in

procreation. But if males meet and a fighter is involved fighting occurs.

When a fighter and a non-fighter meet, or a fighter and a fighter, "animals"

can kill each other. When" animals" meet, there are the following rules:
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(1) if both animals are males and at least one is a fighter, then a fight occurs,

and the non-fighter male dies, or one of the fighters if both males are fighters;

(2) if a male and female meet, procreate, (3) otherwise do not interact and

just bounce off each other.

All life-history stages like egg dormancy until hatching, quiescence stages

between nymphs and adults were ignored. Kills/births happened instantly.

This allowed a realistic time frame for the computations. It was assumed that

the random effects of interactions would reach asymptotically the amount of

interactions in real life. Due to the accumulation of many interaction events

it was assumed that these interactions would give a good estimate of the

real effects. With this setup enough repetitions could be run to have a

stochastic estimate of the results and not just one or two realisations. More

complicated stochastic IBM's (Strand et al., 2002) use only two simulations

to draw inference on the result. Nevertheless these could occur by chance on

such a low sample size.

5.2.3 The individuals

The objects that represent an individual of S. berlesei has the following

properties taken from good track animals:

1. A static integer defining the size it can grow. An individual has a size

property which changes which age. This was based on the fact that

S. berlesei can grow from ten J.Lm up to around one mm. This reflects

S. berlesei size properties. Therefore each individual also has an age
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integer which keeps track of its age. The size was approximated using

the adult maximum size and the environmental size. See section 5.2.2.

2. A boolean switch which sets its state as fighter and a boolean switch

setting its state as male or female, drawn from a binomial distribution

with p = 0.5; S. berlesei's sex ratio has been found to be 1:1 (see section

3.3.2).

3. Age at maturity is set, which changes with environmental conditions.

Only after this time interactions between the "animals" lead to off-

spring. This is based on the accumulated half-lives in chapter 3 and

chapter 4.

4. A carrying capacity of 100 adults was set. No reproduction was possible

beyond this point. Nevertheless the total population number could

temporarily be greater if enough animals were born below carrying

capacity. This represents delayed density-dependent effects.

5. A life span is set which determines the" animals" life expectancy ex-

cluding fights. The lifespan had a mean of 30 days with a variance

of five days, according to observations on good track animals in the

laboratory.

6. An integer tracking the past history of an animal is also implemented

to track the" animals genetic" line. This determines if offspring stems

from a fighter or not. The percentage of fighter related genome is, if
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bred with a single female, 50% in the 1st generation. In the 2nd gener-

ation it is 25% and in the 3rd generation it is 12.5%. If a female with

50% fighter gene material is "bred" with another fighter in the second

generation, this "animal" with 50% original fighter gene percentage

would have 50%+212.5% = 31.25 percentage of original fighter genes.

7. Animal speed differed between the four instars used omitting eggs. A

larva had approximately a fourth of the speed of an adult. This means

that a larvae would cross the tube length in about 3.3 minutes while an

adult could do this in about 40 sec. The model therefore implemented

a relative speed difference between larvae, protonymphs, tritonymphs

and adults, by making an adult about five times faster than a larvae

e:~:= 4.95). The speeds of proto- and tritonymphs were fixed at

equidistant (linear) differences between a larva's and an adult's speed.

Individual life-history characters were calculated as in chapter 4, but

using the standard error for bandwidth of individual variation.

5.2.4 The fighters

Males become fighters after the rule established in formula 5.1 and as also

found in chapter 4. If a male "decides" to become a fighter, he develops

faster than those becoming non-fighters. This increase in speed (maturing in

86% of the time) was based on (Radwan, 1995) and personal observation.

Pf = (O.Ol/E - O.1806.Zn(15))E (5.1)
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The probabilities for fighter aggression in case of interactions were used

according to section 2.1.1. In frequency-dependent simulations the fighters

were determined by set frequencies and the density-dependent rule was re-

moved.

5.2.5 The interactions

At each interaction (the coordinate overlapping of two agents / "animals" /

individuals) the properties of the "animals" were assessed.

• When a fighter and a non-fighter meet the non-fighter's probability of

survival was assessed using the data from section 2.1.1 divided by the

time span the data was taken, assuming a linear relationship.

• When a fighter and a fighter meet the fighter's probability of survival

was assessed using the data from section 2.1.1. Since the probabilities

where assessed as the probabilities of one fighter surviving a rule for

this interaction had to be found. Observation in the lab shows that in

most cases the killing is done by one male mounting the other on the

back and killing it. Therefore one animal was selected as the aggressor.

With a probability of 50% the outcome was drawn from a binomial

(1,0.5) distribution. If the outcome was zero the aggressor died, if one

the defender died.

• When a male and a female meet the number of off-spring was assessed
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using data from section 3.3.3 and rules established in section 4.2.11 so

that fecundity varied with food amount available .

• When non-fighter met a non-fighter or a juvenile met with any adult,

no action was taken .

• Eggs were omitted from the model as they do not interact.

5.2.6 Simulations

Estimating the advantage of being a fighter at different densities

applying a density-dependent fighter rule

Fourteen different starting combinations of fighters and non-fighters were run

500 times, using the setup in table 5.1 until the model reached approximately

steady state. One male was chosen (when fighters were in the system) and

assigned a value of his "genetic" material, 100 percent. At each "mating"

interaction, the sum of the" genetic" material of both" animals" (male and

female) was added and divided through two, assuming diploid genetics and

that 50 percent of each" parents" genetics end up in their" offspring". At the

end of the simulation the percentage of genetic material stemming from that

original male was logged for all animals and later analysed with a standard

statistics program, to determine if it transferred more genes than an average

male into future generations.
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nsim f nf fe nsim f nf fe
1 0 1 1 2 1 0 1
3 1 1 2 4 0 6 6
5 6 0 6 6 3 3 6
7 0 10 10 8 10 0 10
9 5 5 10 10 20 0 20
11 1 19 20 12 1 49 50
13 50 0 50 14 0 50 50

Thb. 5.1: Fighter non-fighter starting combinations of simulations with
density-dependent morph determination rule. f = fighter, nf =
non-fighter, fe = females. nsim=label of simulation.

Estimating the stability of the model

To test the elasticity of the model percentage differences to the model pa-

rameters were randomly tested. An individual-based elasticity analysis was

conducted using 95% of the mean values of the traits in question. In the case

of area size, 120% of the original area size was used to see if widening the area

would change the result, as test runs could not determine a change in model

outcome with a change to 95% of the area size. A greater area size reduces

the probability of "animals" meeting and should therefore generally reduce

the probability of animals interacting with each other. This should have an

adverse effect on the advantage of fighters killing other males. Therefore

widening the area should lower the advantages of being a fighter at previ-

ous good densities (densities where the fighter should have a high advantage

as tested in previous chapters). Due to the extensive time these simulation

have to run (appr. two weeks), model parameters (variables) were chosen

to represent the more extreme densities, fighter-non-fighter combinations
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and five defining variables of the model. Fighter kill probability was chosen

as it is one of the main determining components in a fighting system. Area

size was chosen as it was approximated. The interval between life stages,

maturation age and overall life time were chosen as they are important for

the density of one male, where a fighter's advantage of being a fighter de-

pends on killing next generation males. This of course is only possible if

good food conditions prevail and the fighter actually interacts with the next

cohort. By now, no advantage can be seen to become a fighter alone, with no

other males around, when he matures very slowly and dies before the next

cohort arrives. If the chance of generation overlap is lowered, the chance

of encountering next generation males is lowered, and the system should be

sensitive to this. Theoretically, if there was no overlap of generations at all,

there should be no advantage of being born a fighter at this density and the

extra investment of thickened legs should be useless, if no immigration takes

place.

Estimating the advantage of being a fighter with a

frequency-dependent fighter rule

Ten different starting combinations of fighters and non-fighters (density 100,

equal numbers of males and females) were run 500 times, starting the popu-

lation with ten different frequencies (0.1-1.0 in steps of 0.1) until the model

reached approximately steady state. Unlike in section 5.2.6 there was no

density-dependent fighter rule, but frequency-dependent morph determina-

tion. Therefore approximately as many fighters (drawn at each birth from a



5. Assessing the fighter morph rule based on individuals 144

uniform distribution) were born as the frequency chosen in the current run.

One fighter was chosen and assigned a value of his "genetic" material, 100

percent.

5.3 Results

5.3.1 Estimating the advantage of being a fighter at

different densities using a density-dependent fighter

rule

As expected one animal (one non-fighter) manages, in a starting population

with a non-related female, to transfer about 50% of its genetic material into

future generations (figure 5.2 #1). One fighter with one female manages more

than 50% as it can kill also males of the next generation (figure 5.2 #2). With

one fighter, one non-fighter and two females, the fighter's ability to eliminate

competition enables it to nearly reach the levels of genetic transference into

future generations of one non-fighter, but with more extreme values. This can

be interpreted as that a male can have potentially a higher pay-off when he

gambles on being a fighter (figure 5.2 #3). In short, being a fighter pays off at

this level. When a population is started with six non-fighters and six females

the long running expectation is 8.33% of" genetic" material to be transferred

from one individual into the future generations (figure 5.2 #4). This is

indeed the case in this simulation. When six fighters are together the mean

transference sinks dramatically although a fighter has, potentially, the chance
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that he can transfer more of its genetic material into future generations (figure

5.2 #5). If the odds are 50:50 with three fighters and three non-fighters, one

fighter has, at the density of 12 "animals", the chance to transfer more of its

"genetic" material into future generations (figure 5.2 #6), as he kills other

males, but at a risk to be killed himself.

At a density of 20 "animals" the long running" genetic" transference ex-

pectation is 5% (figure 5.2 #7). Again the fighter has potentially the chance

to increase its ability to father a greater proportion of descendants, never-

theless the chances are becoming lower (figure 5.2 #78 9). At even higher

densities, one fighter with many non-fighters, the fighter typically increases

its proportion of descendants compared to non-fighters (figure 5.2 #11,12).

Nevertheless, when it would be beneficial to be one fighter all "animals" might

be deciding on this strategy, which would decrease one" animals" chance of

becoming the father of many generations(figure 5.2 #10, 13), therefore one

would expect that it is not "worth" becoming a fighter at these densities,

due to frequency-dependence.
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Fig. 5.2: Box plots of simulations (n=500 per combination) of the percent-
age contribution to the population of a focal male where several
combinations of fighters and non-fighters were simulated (female
density equaled male density). The percentage of "genetic" ma-
terial of a focal "animal", assuming diploidy, and random mating
wlo sperm precedence vs density combination is portrayed, after
population reached steady state. Combinations: 1=0 fighter 1
non-fighter, 2=1 fighter 0 non-fighters, 3=1 fighter 1 non-fighter,
4=0 fighter 6 non-fighter, 5=6 fighter 0 non-fighter, 6=3 fighter 3
non-fighter, 7=0 fighter 10 non-fighter, 8=10 fighter 0 non-fighter,
9=5 fighter 5non-fighter, 10=20 fighter 0 non-fighter, 11=1 fighter
19 non-fighter, 12=1 fighter 49 non-fighter, 13=50 fighter 0 non-
fighter, 14=0 fighter 50 non-fighter. Black arrows point at ex-
pected mean w/o fighter involvement. Fighters do well at low
densities at low frequencies, except at density one, where the dif-
ference depends in this closed system only on killing their own
offspring and mating with their daughters when there is a genera-
tion overlap. Killing of their own offspring and mating with their
daughters is a biologically observable reality in S. berlesei.
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Simply looking at the fighting aspect of this model clarifies why fighters

should have only an advantage in lower densities. The individual-based elas-

ticities (figure 5.3) show that the above result is relatively stable, in higher

densities. The overall answer of the original run is not altered.

The only interesting change is that all calculated elasticities show that

the combination of one fighter with no competing male gives the same chance

as being a non-fighter on its own.

Therefore for a fighter to be effective at density one male one female, he

has to meet enough next generation males to gain an advantage of being a

fighter.

The advantage of being a fighter in a newly selected patch is density-

dependent (number of other males per area on patch). If the area is too

large, the chance of two males meeting is lowered, reducing the possibility of

monopolising females. So if an increase in area size makes it less likely to meet

next generation males the fighter's advantage of being a fighter is lowered.

One could label this as a delayed density-dependent morph advantage (the

advantage of being a fighter is delayed until the next cohort arrives). So

the morph determination rule at a density of one is not only determined

by present densities but by the selective advantage created by the ability

to kill future generations. The effect will be much stronger in real life, as

fighters can live up to 60 days and possibly have an influence on up to four

or five generations ahead. Depending on the density-dependence then, (more

animals are less good for the fighter morph) the influence will vary, but will

still increase a fighter's probability of transferring more of its genome into
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the future.

Nevertheless, when the immigration of other males is of importance, it

makes sense to be a fighter at density one. The fighter protects its patch.

Here is therefore a split cost benefit scenario. At density one the advantages

of being a fighter is only defined by the probability of encountering new

immigrants and meeting future generations. But if density increases (due to

many eggs hatching at the same time with a fighter) the fighter's advantages

are more and more influenced by the mites already around him. This can

be seen as information that is available to him, in contrast to taking a risk.

Theoretically, ten new fighters could immigrate into a patch where a fighter is

alone, but here the fighter takes a gamble, while with already existing mites

while he is growing up, the future becomes much more predictable.



Fig. 5.3: Box plots of individual-based elasticity simulations (n=500 per
combination) where several combinations of fighters and non-
fighters were simulated (female density equals male density). A)
area size 120%, B) fighter kill probability 95%, C) interval between
life stages 95%, D) life time 95%, E) age at maturity 95%. The
expected percentage of genetic material of one "animal", assum-
ing diploidy, and random mating wlo sperm precedence vs density
combination is portrayed, after population reached steady state.
1=0 fighter 1 non-fighter, 2=1 fighter 0 non-fighters, 3=1 fighter
1 non-fighter, 4=0 fighter 6 non-fighter, 5=6 fighter 0 non-fighter,
6=3 fighter 3 non-fighter, 7=0 fighter 10 non-fighter, 8=10 fighter
o non-fighter, 9=5 fighter 5 non-fighter, 10=20 fighter 0 non-
fighter, 11=1 fighter 19 non-fighter, 12=1 fighter 49 non-fighter,
13=50 fighter 0 non-fighter, 14=0 fighter 50 non-fighter.
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Fig. 5.4: Example time-series of simulations [u=L per combination) of adult
densities where several combinations of fighters and non-fighters
were simulated (female density equals male density). Adult den-
sity, assuming diploidy, and random mating w/0 sperm precedence
vs density combination is portrayed, after population reached
steady state.1=0 fighter 1 non-fighter, 2=1 fighter 0 non-fighters,
3=1 fighter 1 non-fighter, 4=0 fighter 6 non-fighter, 5=6 fighter 0
non-fighter, 6=3 fighter 3 non-fighter, 7=0 fighter 10 non-fighter,
8=10 fighter 0 non-fighter, 9=5 fighter 5 non-fighter, 10=20 fighter
o non-fighter, 11=1 fighter 19 non-fighter, 12=1 fighter 49 non-
fighter, 13=50 fighter 0 non-fighter, 14=0 fighter 50 non-fighter.
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5.3.2 Estimating the advantage of being a fighter with a

frequency-dependent fighter rule

As call be seen in figure 5.5 the strategy with the highest median and the

highest variance towards higher values is 20% fighters in a system, which is

about the frequency of fighters that can be found in the wild (Baker, 1983;

GefS<\llet al., 1983) in R. robini. While a male's expectation of transferring

its g<'lletic material into the next generation would be around 1% within 100

animals (50 males 50 females) a fighter, at an initial frequency of 20% of

males being fighters has double that expectation (mean ~ 2%).
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5.4 Discussion

Figure 5.2 shows the estimated percentage of" genetic material" that one" an-

imal" would transfer into future generations. According to Dawkins (1989)

genes are the focus of evolution and not individuals or species. A gene's

fitness depends on the number of descendant copies at some point in the

future.

In short, if we want to track the fighter gene, it seems to be not important

to follow only the fighter gene itself, but the whole genetic material of the

animal, as firstly, it carries the fighter gene, and secondly, in long running

stochastic systems if fighters benefit from being a fighter, the whole genetic

material would be transferred and not only the fighter gene. This is Dawkins'

"commonality of interest" argument. The fighter gene would therefore be a

carrier for other genes. This means that the fighter gene, or the ability to

dominate other males and to transfer genes would benefit all genes and not

only the fighter gene.

When conditions are stochastic, as it happens with S. berlesei and there

are, through migration to other food sources, extreme density differences and

fast population growth a fighter can achieve a much higher genetic contribu-

tion to future population size, if he is able to adapt to a changing situation

(see figure 5.2).

Although a fighter certainly has a trade-off occurring through not being

to mate as often, when he is fighting more than mating in high densities

(Ballard, 1997), the obvious trade-off is also the simple competition by num-
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bers. The lower fecundity by females in higher densities (see section 3.3.3

and table 3.2) makes each males mating worth less, in terms of fecundity.

Additionally the individual-based model shows that it is possibly impor-

tant to have overlapping generations for the fighter rule to work as it is found

in the laboratory. In non-overlapping generations the fighter would have no

advantage in being a fighter, when paired with one female (at density one

fighter paired with one female) as it's chances of transferring his genetical

material into the next generations would be equal to that of a non-fighter at

this density (50%). A fighter has therefore no advantage of being a fighter

as there are no other animals to fight with, unless immigration brings them.

But this makes the prediction of future densities more insecure. Therefore

the main gamble the fighter takes at this point is that few males immigrate.

If he does not encounter any immigrants, he nevertheless might still profit

from being able to kill his own offspring.

Local mate competition (female bias arises because it reduces competi-

tion among brothers for mates, and because it increases the number of mates

for each of the female's sons) (Hamilton, 1967; Flanagan et al., 1998) can-

not be observed, as S. berlesei has a 1:1 sex ratio. The detailed influence

of local mate competition in delayed density-dependence would have to be

researched in more detail. But as S. berlesei is a diploid species opposed to

the haplodiploid parasitic wasps [which makes sex control easier (Flanagan

et al., 1998)] it is unlikely that a female sex bias can be found.

It has indeed heen statistically tested as not diverting significantly form

1:1 (see section 3.3.2). However, a reduction in LMC could come about by
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fathers killing their sons (reducing both, competition for mates and compe-

tition for food) if there was no genetic mechanism for sex ratio adjustment.

Or, killing one's own offspring (which fighters actually practice) could be

simply maladaptive, and represent the a situation unlikely to arise in the

field (perhaps because there will be sufficient mixing between patches that

the likelihood of encountering your male offspring is sufficiently unusual not

to be selected against).

Therefore there seems to be no great advantage to being a fighter at

density one paired with one or several females in a closed system. In an open

system with immigrating males, it is likely advantageous to be a fighter if

other males invade into a fighters patch and he has actually something to

fight with. Immigration events should therefore be an essential part in

S. berlesei morph determination rule.

Within one density fewer fighters do better than more fighters (see figure

5.2 5 and 6; 8 and 9; 10 and 1; 12 and 13) and even in very high densi-

ties (see figure 5.5) a fighter could potentially gamble on achieving a higher

fatherhood, if there would be a 20% frequency-dependence rule. The mod-

els predict that fighter morph determination should be frequency-dependent

in stable conditions. This matches empirical findings, where one fighter to-

gether with four non-fighters always does better than five fighters together.

Each density seems to have an underlying frequency-dependence. Therefore,

in a stable environment selection on fighters is to respond to the frequency

of fighters rather than population density.

Fighters in S. berlesei in higher densit.ies have until now only been found
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in one uncontrolled laboratory experiment, with high structural stochasticity

(mites in vermacolite) and predator presence (conducted by Dr Benton).

This could nevertheless been seen as an accumulation of many low density

populations in close proximity. A fighter can, through random patch isolation

through the filling structure (in this case vermacolite), defend his patch and

therefore this would approximate low density conditions. They might need

more detailed population dynamics or might be unimportant compared to

the advantages gained by a density-dependent morph determination rule or

might not be evolutionary stable. The most likely reason is, that fighters at

high density levels as experienced by S. berlesei would not develop through

condition-dependence as there would simply not be enough food available to

be invested in the necessary extra leg and body mass to allow a fighter to be

at advantage in a fight.

Therefore in reality, frequency-dependent morph determination could not

exist at high densities even if a frequency-dependent morph determination

rule would give an advantage at certain animal combinations (figure 5.5).

There will simply be not enough food to build up the physical traits to

constitute a different phenotype. This will be discussed in more detail in the

next chapter.

For andropolymorphism (and polymorphism in general) one can therefore

conclude that the cost and benefit structure of a frequency-dependent morph

determination rule as can be found in R. robitu (Radwan, 1996; Radwan and

Siva-Jothy, 1996), O. spec. (Emlen, 1999), Salmon (Garcia-Vazquez et al.,

2002) and other species (Gross, 1996) depends all a more complicated inter-
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play of population dynamics and interactions between the morphs. While the

simple battle by numbers and the frequency of their occurrence seems to be a

sufficient explanation for density-dependent morph determination, this does

not seem to be the case for frequency-dependent morph determination, as

indicated by game theory (negative frequency-dependence = lower numbers

do well), if we see fitness as a game for maximising once own genetic material.

Nevertheless it could be possible that if the population dynamics are cyclic

that both strategies could exist as recently demonstrated in side-blotched

orange lizards (Sinervo et al., 2000).



6. CONCLUSION

The data and the models reinforce the theme present in many life-history

studies: vital rates are sensitive to variation in the environmental condi-

tions that an organism experiences (Stearns, 1992). While it is probably

expected that plasticity will occur at multiple points in an organisms life-

history, detailed assessments of patterns and discrete polymorphism linked

to experimental variation in environmental characteristics, has rarely been

established. Plasticity is generally accepted as a life-history strategy for vari-

able environments. Evidence that a discrete polymorphism can respond to

environmental variation is presented in this thesis. The expression of every

trait examined in the mites' life-history was sensitive to the immediate and

recent historical densities, food amounts and starvation periods experienced

by the organisms (chapter 3) (Beckerman et al., 2002, 2003).

However it is not only the" general" life-history of the mites but also

the discrete phenotype, which has to exist in a varying environment. With

limited time, energy, nutrients available for growth and reproduction, the

S. berlesei fighter morph has to trade-off when maturation and development

is necessary to reach the age of first reproduction. A fighter morph does this

by developing earlier than other males (Radwan, 1995), and he mates and
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feeds continuously (see section 1.3.5 and chapter 2) and reproduces in his

life-time iteropar. Fighters can live very long (Radwan, 1995).

Fighters in S. berlesei develop at lower densities in high food conditions.

If they are alone with no other fighters around they have the possibility of

monopolising all females and can therefore become the fathers of all future

generations. There are two extreme possibilities in this scenario, kill all other

males before they become adults, or kill all adult males.

Fighters develop faster between the last two moults (Radwan, 1995), so

they theoretically have the opportunity to kill non-fighter tritonymphs as

they emerge later from the dormant tritonymph stage. However killing of

tritonymphs was rarely observed, as it should be maladaptive to kill ones

own offspring, or sex recognition is not possible for the fighter at this stage.

Matrix models do not cope well with individual variation, especially in

plastic systems like the one presented in this thesis. While the matrix model

investigated the effect of changes in stochasticity OIl the fighter morph de-

termination rule, the individual based model introduced individual variation

and stochastic interactions. As a result the IBM confirmed the benefits of

a density-dependent fighter morph determination for S. berlesei. Fighters

in lower density make a greater genetic contribution to the future genetic

makeup of a S. berlesei population. The IBl'vI also hinted at the possible

presence of an underlying frequency-dependent fighter rule. Given the knowl-

edge that also a condition-dependent morph determination rule exists in S.

berlesei the results of the matrix model and the individual-based model can

be synthesised into the following hypothesis.
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The phenotypic plasticity of S. berlesei to the environment exhibits through

condition-dependence, density-dependence and frequency-dependence. In

the mite system, males develop into fighters at low population densities,

when typically food is common. However the inverse link between resources

and population density is not always the case (as, for example, following ex-

haustion of resources in a patch the density falls but resources are not freed

up). Given the necessity to devote extra resources to weapons if a male de-

velops into a fighter, it is hypothesised that fighter development is likely to

be condition-dependent as well as density-dependent. Such a situat.ion can

also be found in the amphipod J. falcata (Kurdziel and Knowles, 2002).

In addition to condition-dependence and density-dependence, frequency-

dependence may playa role in determining in a polymorphic system.

Frequency-dependence occurs where the costs and benefits in a system vary

with the frequency of the strategy. For a mixed ESS to occur the fitnesses

of the morphs need to be equal [e.g. lekking ruffs (Lank et al., 1995)].

In a dynamic system with density-dependence acting, the term frequency-

dependence has some ambiguity (Heino et al., 1998). Nonetheless poly-

morphism in the mite fighter jnon-fighter system is likely to involve some

frequency-dependence as the costs involved in defending a harem of females

arc "proportional" to the number of fighters. In the related mite genus

Rhizoglyphus a species is recorded as having a fixed frequency of fighter

morphs in the population (presumably maintained by frequency-dependent

selection) (Radwan, 1995), whereas another species is reported to have density-

dependent morph determination as in S. berlesei (Radwan, 2001).
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It is even possible that, for example, condition-dependence is a contribut-

ing mechanism by which density-dependent morph determination is main-

tained as males at high population densities are likely to have reduced per-

capita resources available. Even when a male acquires stochastically enough

food in a high density low food situation, the law of large numbers predicts

that this will not be the case for all males. Frequency-dependence can there-

fore more likely be expected in animals living in a predictable, non-stochastic

environment as R. robini; which is a pest of grains, onion, garlic and leek

in the field and of bulbs (Gerson et al., 1983; Chen, 1990), and which has

a frequency-dependent morph determination although it is very similar to

S. berlesei (Radwan and Klimas, 2001). Nevertheless if the mean expected

density of a population rises, like in R. echinopus, the morph determination

seems to be density-dependent (Radwan, 2001).

Therefore the following scenario of condition-dependence, population dy-

namics and morph determination for the three mite species out of the Acari-

dae which exhibit the same polymorphism can be fixed as described in table

6.1.

species extra leg mass morph-determ. density environment
S. berlesei yes density dep. often high stochastic
R. robini yes frequency dep. low stahle
R. echuiopus yes density dep. high stable

Tab. 6.1: Representation of the condition-dcpcndent morph determination,
type of morph determination, anecdotal population density and
type of environment.
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Condition-dependence occurs if the fitness costs and benefits depend on

resources. If density is linked to food resources pure frequency-dependent

morph determination, in a phenotype which has to build up extra body mass,

should only exist if the food related density-dependence is very weak or the

costs are very low. Species that experience very high density-dependence

on the trait of physical body mass alteration should only be able to have

a frequency-dependent morph determination if they exist most of the time

substantially below carrying capacity.

A high amplitude in density levels coupled with condition-dependent

morph determination should therefore push the S. berlesei system into density-

dependent morph determination. If we follow this theoretical thought one

could imagine that also the R. echinopus system, which also operates in

higher densities, has to succumb to the pressures of density-dependence.

Furthermore this model system would suggest that the fighter morph de-

termination as found in R. robini can stay in the frequency-dependent as it

operates in medium densities, on very nutritious feeding areas (bulbs). Ample

food is available, so frequency-dependent morph determination is possible.

Other species with body related polymorphism that reduce their body size

can therefore" afford" to have a frequency-dependent morph determination.

Sneakers in Salmon (Garcia-Vazquez et al., 2002) are small and therefore the

physical costs of becoming this morph are low.

If one takes the example of lizards showing T and K selection depending

on polymorphism (Sinervo et al., 2(00), one could imagine this to he et reac-

tion to the essential inrlucncc of condition-dependence. Heino et al. (1998)



6. Conclusion 164

also points out that pure frequency-dependence is essentially not possible in

dynamic systems. Wakano et al. (2002) finds in a computer model chang-

ing frequencies in cannibalistic amphibians, according to the hypotheses that

population cycles could produce polymorphic strategies. Therefore also the

population dynamics of animals have an essential influence on polymorphism

and the kind of morph determination.

One could therefore conclude that through condition-dependence on body

size there is no pure frequency-dependent, density-dependent or condition-

dependent morph determination, but only one polymorphism (thickened

third leg) ruled by a continuous covariate of the trait of density-dependent

body size alteration. This would explain, why in relatively closely related

species, such as R. robini, S. berlesei and R. echinopus the same expression of

two distinct morphs exists, with apparently different morph determinations.

Which morph determination is possible could simply depend on variations of

food allocation.

If the process of splitting the acarid mite polymorphism over several

species involved sympatric or allopatric speciation is yet to be tested. It

seems to be possible that the ancestor(s) of the polymorphism, found them-

selves suddenly through phoresy in a strongly density-dependent system and

had to adapt, or vice versa, that a polymorphism evolved under density-

dependence, suddenly found the bulb habitat. Capua and Gerson (1983)

classified R. robini as an ancient soil mite, therefore the process of R. robini

and R. robini becoming ,.bulb mites" , as their common name suggests could

be a fairly recent event.
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Therefore one could conclude generally that even discrete polymorphism

concentrated on one sex can be a very dynamic inter-species system and

might be an explanation of differences of polymorphism in closely related

species, like the whole Jassa genus (Kurdziel and Knowles, 2002), the lizard

complex (Hews et al., 1997) or the loss of polymorphism as between

Salrno solar and Salrno trutta. Especially interesting should be the study

of polymorphism in the Salmon gender where hybridisation occurs (Garcia-

Vazquez et al., 2002) and polymorphism is lost, if the sneaking polymorphism

is an alternative strategy. Adaptive radiation of polymorphism in several

systems as a marker, might therefore provide more insight into speciation

itself, be it allopatric, sympatric or parapatric.
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APPENDIX



A. ADDITIONAL STATISTICAL

ANALYSIS

As extra information the following statistical analysis is given below and has

been taken from earlier drafts of Beckerman et al. (2002, 2003).

A.1 Methods - survival data

Because survival analysis sample sizes are based on the number of events

that occur, and our sample sizes were extremely large ( 33,000 for egg [n=2

days of sampling] and 95,000 [n=4 days of sampling] for juvenile analyses)

we developed a protocol to maintain some conservatism in our interpretation

of significance levels. Our protocol was as follows:

1) Display the data using Kaplan-Meier estimates of hatching, survival or

recruitment stratified on single treatments. Each graph shows patterns of

survival stratified by a single factor in our experiment, averaging over the

other treatments and does not represent a controlled statistical analysis.

2) Choose an initial distribution using a probability plot; in all survival anal-

yses, the data was compared to seven different distributions.
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3) Specify a model that contains up to 4-way interactions (maximum number

of interactions for adults) or 3-way interactions (maximum number possible

for the juveniles) and use the change in explained deviance caused by moving

to a less specified model to judge the relevance. If by moving from a 4-way

to a 3-way, the change in deviance was significant but less than or equal to

three percent, we assumed that the higher interactions while statistically real

(which often they were given our sample sizes), they were likely to be bio-

logically insignificant [(Crawley, 1993), K. Wilson personal communication].

This was repeated for the 3- to 2-way and the 2- to l-way models generating

a conservative model.

4) Once the order of the model was chosen, AIC values were used to itera-

tively reduce the model. Because an AIC based algorithm [stepAIC function

in the MASS library for S-PLUS 2000 (Venables and Ripley, 1999)] chooses a

best predictive model, the result of the AIC can contain terms with p-values

>0.05. The AIC result was thus further reduced manually based on p-values,

to remove insignificant terms, if they existed, generating the minimum ade-

quate model (Crawley, 1993).

5) Use distribution diagnostics to check assumptions of the model distribu-

tions (e.g. linearity of survival function on a log-log plot for Weibull distri-

bution) and assess fits (e.g. time at which 10,50 90% events happened) vs

raw data.
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A.2 Methods - non-survival data

All non-survival data was analysed with a generalised linear model employ-

ing a similar strategy beginning with model reduction (AIC and or manual

reduction) to generate the minimum adequate model. Data transformations

(e.g. log-transformations) were employed when needed and a Gaussian error

distribution specified. The percentage of mites recruiting was analysed us-

ing a binomial generalised linear model (binomial error distribution), with a

dependent variable coded as a dual response of success (recruits) and failure

(maximum juvenile density recruits).

Given the high number of interactions in our experiments and the subse-

quent possibility of inflated significance, P values in the final models for

both survival and generalised linear models were further validated through

bootstrapping to estimate 95% confidence intervals around the regression

coefficient estimates. If the 95% Cl included zero, then the interaction was

dropped from the model and any adjustment of previously significant terms

reassessed.

All analyses were performed with S-PLUS 2000. Certain functions and tech-

niques were used from the MASS library (Venables and R.ipley, 1999), the

HMISC library (Harrell, 2000) and the DESIGN library (Harrell, 2000) for

S-PLUS.
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Dr F Pr(F)
days laying 53.45728 lE-08

delay 40.55874 1.4E-07
food amount 5.18679 0.028

rearing conditions.adult density 9.32625 0.004
Residuals 40

Tab. A.l: The minimum adequate model for the effects of density, delay
and food on lifetime reproductive success. Descriptions of the
factors used in the models are in the Methods section. Days
laying is a covariate controlling for differences in egg numbers
caused by certain females being alive for longer.

Df Deviance Df Resid. Deviance Pr(x2)
NULL 2 8667.367

egg batch -1 3679.572 3 4987.794 < 0.001

Tab. A.2: The minimum adequate model of birth time effects on the hatch-
ing time of eggs laid earl}' and late in a female's lifetime. The
analysis is from a survival model using a Weibull distribution.
Batch corresponds to an early or late birth time in the mother's
life-cycle.

Df Deviance Resid. Deviance Pr(x2)
NULL 42455.16

egg batch 1 8.65 42446.51 0.003274
juvenile food 3 28891.4 13555.12 0

log(juvenile density) 1 7977.92 5577.2 0
log( age-at- mat urity) 1 1312.43 4264.78 0

juvenile food:log(juvenile density) 3 591.31 3618.59 0
egg batch:log(juvenile density) 16.82 3618.59 4.12E-05

Tab. A.3: The minimum adequate model for the percent recruitment of
adult mites from juvenile stage. Percent recruitment was anal-
ysed with a generalised linear model with binomial errors. The
residual deviance for the last two terms arc the same because
the table was computed using sequentiaJ sums of squares and
the deviance and significance of each of these higher order terms
was estimated independently.
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Df Ale LRT Pr(x2)
NULL 4810.289

strata(rearing conditions) 1 4842.787 34.49762 0
adult density:delay:food 2 4813.585 7.29546 0.02605

rearing conditions:delay:adult food 1 4813.509 5.21975 0.022332
rearing conditions:adult density:adult food 2 4815.79 9.50097 0.008648

Tab. A.4: The minimum adequate model for density, food amount and food
delay effects on adult female survival. The model used survival
analysis of the time of recruitment for individuals in specific
treatments. The model is based on a normal distribution. The
table reports the likelihood ratio tests (LRT) for the higher order
terms evaluated as the last term in the model using sequential
sums of squares.
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the analysis conducted and reported elsewhere.
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Here we show how plasticity in density-dependent demographic traits
throughout the life cycle can lead to cohort effects and that there
can be substantial population dynamic consequences of these effects.
We show experimentally that density and food conditions early in
development can influence subsequent juvenile life-history traits. We
also show that conditions early in development can interact with
conditions at maturity to shape future adult performance. In fact,
conditions such as food availability and density at maturity, like
conditions early in development, can generate cohort effects in ma-
ture stages. Based on these data, and on current theory about the
effects of plasticity generated by historical environments, we make
predictions about the consequences of such changes on density-
dependent demography and on mite population dynamics. We use
a stochastic cohort effects model to generate a range of population
dynamics. In accordance with the theory, we find the predicted
changes in the strength of density dependence and associated changes
in population dynamics and population variability.
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age of an organism will therefore differ from that expe-
rienced in subsequent stages or ages. In such a variable
environment, the conditions at one time can influence life-
history traits and performance of individuals at future
times and, subsequently, population dynamics (Beckerman
et al. 2002). Within a generation, such delayed life-history
effects can lead to demographic patterns such as cohort
effects. Maternal or paternal environmental effects occur
when delayed life-history effects cross generations.

Delayed life-history effects occur within generations
across a wide range of taxa (Roff 1992; Lindstrom 1999;
Metcalfe and Monaghan 2001; Lummaa and Clutton-
Brock 2002). Environmental conditions experienced early
in life can lead to performance differences among well-
defined cohorts within a population. Cohort effects arise
when the variance in a life-history trait within a group of
individuals in a population is significantly smaller than the
variance in the trait among the population, thus making
cohorts statistically distinguishable from each other. They
are population-level responses to common environmental
conditions and are a classical expression of delayed life-
history effects in age- or stage-structured populations.

Examples of cohort effects come from life-history based
studies (Albon et al. 1987; Oghushi 1991; Post et al. 1997;
Lindstrom 1999; Metcalfe and Monaghan 2001; Lummaa
and Clutton-Brock 2002; Wacker and von Elert 2002) as
well as studies linking life history, age structure, and pop-
ulation dynamics (Stenseth et al. 1999; Coulson et al.
2001). More recently, there has been an interest in how
cohort effects can generate and interact with variability in
population dynamics (Beckerman et al. 2002; Lindstrom
and Kokko 2002). In all of these discussions, delayed life-
history effects are synchronized across cohorts and by def-
inition influence life history and population dynamics by
modifying the variability of density dependence among
cohorts in a population .

Population Dynamic Theory of Cohort Effects

Lindstrom and Kokko (2002; their fig. 4) showed that
when density dependence acts in a cohort-specific manner,

mailto:apbl@slir.ac.uk
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a cohort effect can introduce variation among cohorts into
the population. Their model provides the clearest expla-
nation of how variation in density dependence at the pop-
ulation level can be generated by cohort effects. As a simple
example, they imagined that 50% of the individuals in a
population (cohort 1) could be of better quality and 50%
(cohort 2) could be of worse quality than average. If we
assume a nonlinear relationship between performance and
density, then variation among cohorts along this curve can
lead to performance levels that deviated from what might
be expected in the population. This deviance is due to the
geometry of density dependence (Lindstrom and Kokko
2002), where the vital rate in the population, averaged
over cohorts, is either greater or less than the expected
midpoint on the density-dependent function. This can
happen because a chord between points on a density-
dependent curve that represent different cohorts cuts the
corner of the curve.

This averaging across cohorts can produce a different
pattern of density dependence in the population from the
one that assumes all individuals are equal. The direction
of the deviation due to cohort effects is specified by the
underlying shape of density dependence. If the underlying
density dependence is concave (e.g., a saturating function),
the average rate among cohorts can be less than would be
expected from the underlying shape (a chord between
points on the curve for each cohort falls below the curve
at the given total density). If the underlying density de-
pendence takes a convex shape (e.g., an exponentially de-
caying function), then a cohort mixing average can be
higher than the underlying rate. The primary consequence
of these effects is a more linearized relationship between
the vital rate and density at the population level (Lind-
strom and Kokko 2002).

From this demographic perspective, delayed life-history
effects and patterns such as cohort effects can be a key
process influencing variability, stability, and the way that
delayed density dependence influences population dynam-
ics (Beckerman et al. 2002). Lindstrom and Kokko (2002)
showed that when underlying population dynamics are
stable, cohort effects can increase population fluctuations
in much the same way that introducing environmental
variation would. However, cohort effects can decrease tem-
poral variability in population dynamics when the under-
lying dynamics are variable, as they introduce a shallower
form of density dependence than that generating the fluc-
tuations in the first place.

In this study, we focused on the role that environmental
variation, at various life stages, can have on shaping density
dependence among cohorts in a model organism, the soil
mite Sancassania berlesei. As there is now a theory about
the demographic and population dynamic consequences
of cohort effects, we experimentally examined patterns of

density dependence among cohorts of mites exposed to
various environmental conditions. Then, using this
system-specific demographic data, we developed a cohort
effects population dynamics model of the mites to assess
the hypotheses about variability and stability implicit in
the Lindstrom and Kokko (2002) theory.

Our experiments used individuals from laboratory stock
populations of S. berlesei and employed a factorial exper-
imental design that systematically varied the offspring and
parental environment (see fig. 8 in the online edition of
the American Naturalist). The range of treatments varied
density and food availability at various points in the life
cycle, corresponding to changes that populations can ex-
perience in a variable environment (e.g., Benton et al.
2001, 2002a). First, we examined the effects of environ-
mental conditions on juvenile performance during early
development. We examined the effects of initial density
and patterns of food availability on the age at maturity,
the proportion recruiting, size at maturity, and the trade-
off between size at maturity and age at maturity.

Second, we examined the effects of environmental con-
ditions during juvenile development on the expression of
adult vital rates when the adult environment also varies.
In particular, we examined the interaction between juve-
nile rearing conditions and adult density and food avail-
ability on adult survival, fecundity, and the egg size-egg
number trade-off. These two sections comprise a com-
prehensive, longitudinal assessment of delayed life-history
effects and can identify plasticity in life-history traits that
arises from current and historical environments. Finally,
having demonstrated the potential for cohort effects and
developed hypotheses about the consequences of among-
cohort averaging on population dynamics (Lindstrom and
Kokko 2002) in the soil mites, we developed an age-
structured model of mite dynamics to demonstrate the
consequences that such cohort effects can have in this
model system.

Methods 1: Early Juvenile Conditions
and Juvenile Performance

The data reported in this section emerge from observations
of juveniles during a longitudinal experiment that covers
almost two generations (see app. A for full design and
analysis details and fig. 8). To begin the longitudinal ex-
periment, eggs from second-generation mothers reared
from stock cultures were assigned to two parental rearing
treatments (good or bad). On maturation to adulthood,
males and females were paired randomly in three parental
densities (1, 20, 50 pairs) and then assigned randomly to
two parental food amounts (low and high) and two pa·
rental food timings (no delay or a 5-d delay in receiving
food after maturation). Eggs from these parents were then



collected and subjected to a range of offspring treatments.
Newly hatched offspring were subjected to the range of
juvenile densities that they were born into and subse-
quently assigned randomly to high and low juvenile food
amounts that were delivered with two juvenile food tim-
ings throughout their development (over time or in one
pulse at hatching).

This factorial design allows a description of how cohort
level variation in vital rates can arise in a population. We
treat groups of mites as cohorts and examine their vital
rates under different environmental conditions that are
defined by current and historical treatments. From this we
show life-history plasticity can lead to cohort effects and
how the averaging effect specified by Lindstrom and Kokko
(2002) can manifest itself in the soil mites. Now we doc-
ument how conditions during early development affect
juvenile performance.

Results: Juvenile Age at Maturity

We analyzed age at maturity using survival analysis on
data specifying the time of death of individuals experi-
encing different combinations offood and density. Density
was a continuous covariate (maximum density), and food
was a four-level factor determined by the combinations of
the two food manipulations above (high pulse, high over
time, low pulse, low over time; see app. A).

The age-at-maturity data were fitted best by a Weibull
distribution, and the interaction between density and food
was significant (X' = 3,033, df = 3, P < .000. The effect
of increasing density was to extend the age at maturity
(fig. 1, panel A = 50 juveniles through to panel D =
2,000 juveniles). The effect of pulsed food, and in partic-
ular low amounts of pulsed food, was also to extend the
age at maturity. The extension of age at maturity by pulsed
food was substantially stronger as juvenile density in-
creased, leading to the interaction.

According to the cohort theory presented above (Lind-
strom and Kokko 2002), cohort variability could linearize
density dependence at the population level. To see this
pattern in the density dependence, we have plotted the
median half-lives from the different food availabilities
against density (fig. IE). This characterizes both the un-
derlying shape of density dependence and the range of
median age at maturities (half-lives) that could exist
among cohorts and lead to the effect suggested by Lind-
strom and Kokko (2002). As the density dependence in
age at maturity is concave, the effect of variation among
cohorts in a population can be to lower the age at maturity
over moderate densities.

Cohort Effects and Population Dynamics 000

Results: Percent Recruitment

Recruitment rates were analyzed using a generalized linear
model with binomial error structure. As with age at ma-
turity, the interaction between density and the four-level
factor describing food availability for recruitment was sig-
nificant (F = 9.33, df = 3, P < .001; model controls for
age at maturity: F = 21.30, df = I, P < .001; F-test as-
sumes quasi-binomial family and is suitable for overdis-
persed binomial data). Food delivered over time always
resulted in at least 40%-50% recruitment, while a pulse
of food at hatching severely reduced recruitment to near
zero at high densities. High amounts of food delivered in
a pulse resulted in greater recruitment, especially at low
densities, where recruitment rates approached those for
food delivered over time. Again, there is a convex pattern
of density dependence in percent recruitment for each of
the four food treatments (fig. IF). As the relationship be-
tween density and recruitment is always convex, the pre-
dicted averaging effect of variation among cohorts in a
population is to increase recruitment over moderate ju-
venile densities.

Results: Juvenile Size at Maturity

Food and density also interact to affect size at maturity
(generalized linear model with Gaussian errors;
Frood.d,n.ily = 10.26, df = 2,23, P< .001). Increased den-
sity reduced size at maturity and more so when food was
limited (fig. 2). Pulsed food seemed to reduce density de-
pendence by virtue of forcing a possible minimum size at
maturity across all densities (fig. 2; see app. A for justi-
fication of pooled pulsed food treatments). Again, the re-
lationship between size and density is convex, suggesting
that variation among cohorts in a population could lead
to increased size at maturity over moderate densities and
a more linear relationship in the density dependence.

Results: Age- and Size-at-Maturity Trade-off

In order to examine the age- and size-at-maturity trade-
off, we linked data from two separate experiments. First,
we gathered data on age at maturity and size at maturity
from the longitudinal, factorial experiment (app. A). These
data contain information on the slope of the trade-off
under restricted food and a wide range of densities. This
was combined with data from a separate experiment that
varied only food levels, holding density constant. Per capita
food was much higher in the separate experiment, and
density was fixed (s~e app. B for experimental design).

We used the data from both of these experiments to
describe the changes in the slope of the relationship be-
tween the mean size and age at nine different food levels_:



0

¥ CO
0

2
c <0

~ ci
Ql -e->-
0 ci
z
.,e N

ci

0
ci

0

Iopul

i,
,',
\.. -- ...:----------.

10 20 30 40

lime Since Hatching
Adjusted to: mxjd=50

~

al co
0

'2o , <0
Cl cia::
1ii ...>-
0 c:i
z
.,e N

0

0
c:i

0

." ......

"

hipul
\"'IoOT,:.
v.,',

hi TI'
I
I
I'., -,... ',_..._......---------

10 20 30 40

lime Since Hatching
Adjusted to: mxjd= 1000

500 1000 1500 2000
JlJ\4!fIile Density

2,.,0

A ~

¥ CO

ci
'2
rrl <0

a:: c:i
Ql ...>-
~

c:i

,p_ N
ci

0
ci

0

B

50

c

50

=
"

CO

Cl ci
'2c <0

£ c:i
;; -e->-
0 ci
z
"af!. N

0

0
ci

0

E

n2 ~

,.
\'.
(.

\,
""',,.,
"',IoOT ·..,~ipul

"',
hiO \' -.

I'.

\-.,
,..:........-----------

10 20 30 40 50

lime Since Hatching
Adjusted to: mxjd=500

D

-...-:-t---~-....=~_...JQpul
\"
\' h~ul

I'·
v.
\"-.
'. \IoOT
I
I
I

htoT\ "
I
\ .
'....~..:.--------

10 30 5020 40

lime Since Hatching
Adjusted to: mxjd=2000

F

.... hi-Pulse..
- ' •. " ~~-~::_'.:.:~:.: ··t.:~--.::.--i

0-

500 1000 1500 2000

Juvenile Density
2500

Figure 1: Density dependence in age at maturity and percent recruitment. A-D. Density dependence in age at maturity can be shown by plotting
recruitment curves versus time for a variety of densities. Moving from density 50 to 500 to 1,000 to 2,000, A-D show that age at maturity arises
from an interaction between density and food delivery during juvenile development. The vertical line at age = \0 in each panel makes clear the
increases in age at maturity due to density and to food. E, The cohort-averaging hypothesis is dependent on the shape of density dependence among
cohorts. Each curve represents variation in median age at maturity (age) for the different food regimes (see text and app. A). Consistently convex
shapes predict that variation among cohorts in a population could lead to an earlier age at maturity. F, Percent recruitment was a concave function
of juvenile density and food levels. The panel shows the effect of the juvenile food x juvenile density interaction, having controlled for the effect
of age at maturity on recruitment. Each line corresponds to a particular feeding regime. Pulsed food (pu!) was delivered only at maturation, while
over-time food (ot) was delivered continuously over the development period (app. A); 10 and hi correspond to low and high food levels.
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five determined by the independent experiment and four
from the longitudinal experiment (low pulse, high pulse,
low over time, high over time). The independent exper-
iment showed that size at maturity increased linearly with
age at maturity and that size at maturity was larger with
more food (Linear Mixed Effect Model: age, F = 12.41,
df = 1,98, P < .001; food, df = 1,98, F = 206.58, P <
.0001; app. B). This is in contrast to the longitudinal
data, where the relationship between age at maturity
and size at maturity was either not different from
zero or negative (rlow+h;gh pulse = -0.20, df = 7,
P = .6; rlow overume = -0.75, df = II, P < .01;
rh;gh overt ime = -0.68, df = 15, P< .01).
These combined data generate a picture of the trade-

off: when per capita food levels are low (factorial exper-
iment data; fig. 3), we would expect food supply patterns,
along with density, to govern age at maturity. Under these
conditions, size should increase marginally with age from
an asymptotic minimum as food levels gradually increase
(density drops; shallow negative slopes from factorial
data). As food increases, the age at maturity is reduced
faster than size increases until a minimum age is met. At
this point, with more ample food supplies, mites can in-
crease their size at a faster rate relative to age (steep positive

slopes in independent experiment data; fig. 3). Thus, there
is a strategy under good conditions to trade off age at
maturity to gain size. As fecundity is proportional to body
volume (fecundity = -33.25 + 0.0044 x female volume;
F = 48.49, df = 1,55, P < .001, R' = 0.47), this can be
beneficial if growth is fast.

If we assume, as in the univariate density-dependent
curves, that the convexity or concavity of the trade-off can
define a location in trade-off space, this shape can cause
one of three outcomes when there is variability among
cohorts. If cohorts are distributed along the lower flat
portion of the trade-off, the average will lie more or less
on this portion of the trade-off. If the cohorts are dis-
tributed along the lower portion of the inflection area, the
averaging will increase size more than age. Alternatively,
if cohorts are distributed along the upper portion of the
inflection, age can increase more than size.

Our data suggest that the initial density and food avail-
ability that juveniles experience can structure where co-
horts realize age and size along the trade-off-there is
plasticity in vital rates, dependent on conditions at hatch-
ing, that alters the trade-offs that can govern the life history
later in life. Moreover, the effect of multiple cohorts in a
population can have a variety of effects on the population,
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the effect depending on where environmental variability
introduces variation among cohorts.

Methods 2: Early Juvenile Conditions
and Adult Performance

The data reported in this section are from the first half of
the longitudinal data collected according to the design in
appendix A (and see above). Above, we focused on how
conditions during juvenile development can generate co-
hort effects in juveniles. Here, we focus on how these
conditions interact with adult conditions to generate, ex-
tend, or ameliorate the cohort effects at the adult stage.

Adult survival, fecundity, and the egg size-egg number
trade-off were measured in conditions dictated by parental
rearing conditions prior to adulthood (good or bad), adult
density (1, 20, 50 pairs), adult food amounts (low or high)
and adult food timing (no delay or 5-d delay). As above,
we treat groups of mites within a treatment combination
as a cohort and examine the plasticity in vital rates under
different treatment-specified environmental conditions.
With these patterns, we develop a picture of potential co-
hort variation in adults and an understanding of how the

averaging effect specified by Lindstrom and Kokko (2002)
could manifest itself across adjacent life stages.

Results: Adult Survival

We analyzed adult (female) survival using survival analysis,
having followed the fate of all females in a population over
the 35-d period (max) that eggs were laid. With five po-
tential factors in the model, we set three-way interactions
as our maximum model order (app. A). We defined our
minimum adequate model based on Akaike Information
Criterion (AIC) values and then P values (app. A) and
found that rearing x adult density x adult food (X' =
27.01, df = 2, P< .001) and adult density x adult food
timing x adult food (X' = 7.26, df = 2, P = .026) were
significant interactions. Adult rearing thus has a significant
effect on adult female survival by interacting with current
adult conditions. This is clearly a delayed life-history effect.
The survival curves (see fig. 9 in the online edition of the
American Naturalist) show that the effect of adult density
is not consistent and depends on rearing conditions-
those set during early development. Under good condi-
tions-good rearing, no delay, and a lot of food-higher
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densities extend life as competition and reproduction in-
teract (fig. 9A)_ Low densities result in longer lives, though,
when food is low (fig. 9B, 9D, 9F), and this again is me-
diated by adult rearing conditions and current adult food
levels.

The quantiles (e.g., median time to death) of survival
plotted against density (fig. 4) show that the relationship
between survival and density is shallow but concave, with
longer lives commonly occurring at low and high densities
and a minimum at moderate densities. Based on the theory
presented in Lindstrom and Kokko (2002), this would
suggest that in a population with multiple cohorts, the
averaging effect would tend to extend life for the females.
However, the interaction plots (fig. 9) show that a wide
range of rearing, density, and food conditions can result
in very similar death times. Cohort variation in a popu-
lation among these similar rates that arises for different
reasons could lead to very little change in the average life
span.

Results: Fecundity

Fecundity was measured as the averaged daily per capita
fecundity (eggs/female/tube/d). Based on our minimum
adequate model, we found that rearing, adult density,
and the delay in feeding were the most influential
variables for fecundity (Fd",y = 33.31, df = 1,40, P <
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.001; F'''''d,miIY = 5.36, df = 2,40, P = .008). Good rear-
ing conditions tend to increase fecundity, but high adult
density can ameliorate this effect and make fecundity in-
dependent of rearing conditions (see fig. lOA in the online
edition of the American Naturalist). Thus, conditions dur-
ing development only appear to affect fecundity when the
population size of adults is low. There is a delayed life-
history effect that is conditional on current conditions.

Note too that a delay of 5 d in feeding adults after
maturity always reduced fecundity (fig. lOB), indicating
that cohorts of adults that face adverse conditions at the
start of maturity may perform very differently than cohorts
of adults that mature into good conditions. This is a de-
layed life-history effect that originates in the adult stage.
Fecundity and density appear to be related in a negative
exponential fashion (convex), indicating that fecundity can
increase over moderate densities when there is intercohort
variation in the population (fig. 5), though, like the size-
and age-at-maturity trade-off, the increase could be very
small on the near linear right tail of the density
dependence.

50

Results: Egg Size-Egg Number

The egg size-egg number trade-off was examined in an
experiment separate from the factorial, longitudinal ex-
periment. To examine the trade-off, we crossed two ju-
venile rearing conditions (good and bad) with two adult
current food conditions (high and low) and measured the
relationship between egg size and number. We used

o
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l!. ".
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Figure 5: Density dependence in per capita fecundity is convex, pre-
dicting that if cohort variation exists, density dependence would be lin-
earized when fecundity increases Oyer moderate densities.
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ANCOVA (see app. B for experimental details) to inves-
tigate the patterns. We found that good rearing conditions
generated a negative relationship between size and number
of eggs, while poor rearing resulted in a positive egg size-
egg number relationship (F,eadng conditions x 'SS numb" =
11.53, df = 1,31, P = .0019; fig. 6A). Current conditions
did not change the slope of the trade-off; a combination
of good current food and good rearing food leads to higher
egg numbers than any combination experiencing a bad
condition (F.-earing conditions l( current conditjons = 18.65, df =
1,31, P < .OO!; fig. 6B). The contributions of rearing and
current treatments were assessed by examining this model
when either the rearing or the current treatment was re-
moved. When rearing conditions were removed, the ad-
justed R2 was reduced from 45% to 4%, while when current
conditions were removed, the adjusted R2 was reduced
from 45% to 14%. This shows that both current and rear-
ing conditions play a major role in explaining variation
in this trade-off.

Thus, our data show that environmental conditions dur-
ing early development can influence a key trade-off in
adult life histories. Rearing conditions and current con-
ditions combine to influence reproductive allocation de-
cisions. By determining numbers (offspring density) and
size (offspring quality), the egg size-egg number trade-off
is a route by which cohort effects could be transmitted
across generations as a maternal effect. Moreover, as with
the size- and age-at-maturity trade-off, we can hypothesize
what intercohort variation along this trade-off might gen-
erate at a population level. The answer lies in examining
the rearing food x current food plot (fig. 6B). Given the
nature of the interaction, it appears that any intercohort
variation in egg size and egg number would lead to an

invariant relationship in the size of eggs at the population
level because the averaging of sizes among these conditions
could have a slope of zero.

Experimental Summary: Delays, Cohort Effects, and
Population-Level Hypotheses

Our experimental data lead to four conclusions. First, early
developmental conditions for juveniles can affect juvenile
performance and adult performance: the plasticity in de-
mographic traits is sensitive to historical environments.
Our results show that delayed life-history effects can occur
both in the short term and over the whole lifetime within
a generation. Cohort effects can arise in juvenile stages as
a result of conditions at hatching. They can also extend
into and be mediated by conditions in adult stages. For
example, the current adult environment can be a stronger
determinant of performance than past conditions. When
adult densities are low, poor rearing conditions have a
significant effect on fecundity. However, high adult den-
sities cause a much stronger reduction than poor rearing
can at these high densities. Thus, the sequence and timing
of variability in the environment, relative to the path of
development, will determine how and whether delayed
life-history effects arise (Beckerman et al. 2002). This in
turn will affect whether patterns of cohort variation in a
population will be statistically visible against the backdrop
of life-history plasticity to current conditions.

Second, our data show that cohort effects are not re-
stricted to early developmental conditions. A delay in ob-
taming food at the initiation of adulthood had a severe
impact on measures of fecundity and adult survival, high-
lighting that cohort effects can arise anywhere in the life



cycle. While the emphasis to date has been on early de-
velopment (Lindstrom 1999; Metcalfe and Monaghan
2001; Beckerman et al. 2002; Lummaa and Clutton-Brock
2002), certain stage- or age-structured life histories could
contain mature stages and ages that are sensitive to en-
vironmental conditions (e.g., maturation or metamorpho-
sis). These adulthood effects can also be perpetuated across
the rest of the life span and potentially across subsequent
generations (A. P. Beckerman, T. G. Benton, C. T. Lapsley,
and N. Koesters, unpublished manuscript).

Third, these data demonstrate that trade-offs are also
sensitive to conditions during development. This is not
surprising given that trade-offs are composites of univar-
iate fitness measures that can be independently sensitive
to environmental conditions. However, when a life history
is viewed through its trade-offs, the types of predictions
that can be made about the consequences of intercohort
variation may be different from the types of predictions
made from the univariate measures (see below).

Finally, our data demonstrate a wide range of predic-
tions about the consequence of intercohort variation on
density-dependent rates and evolutionarily significant
trade-offs. Lindstrom and Kokko (2002) hypothesized that
intercohort variation in a population could linearize non-
linear density dependence, and our data show that there
is enough plasticity in mite vital rates for this to happen
in mite populations. Density dependence in our data takes
three forms: saturating and increasing (always concave;
e.g., age at maturity, fig. IE), asymptotic decreasing (always
convex; e.g., % recruitment, fig. IF; fecundity, fig. 5), and
hyperbolic with a local minimum (extreme convex; e.g.,
adult survival. fig. 3). According to the theory, convex
surfaces tend to increase vital rates at moderate densities
while concave surfaces decrease them. Thus, in a mite
population experiencing a variable environment, inter-
cohort variation could lead, on average and over moderate
densities, to earlier age at maturity, higher recruitment,
larger size at maturity, a longer life span for adults with
increased per capita fecundity, and lifetime reproductive
success. These increases or decreases would tend to occur
over moderate density ranges and correspond to a line-
arization of density dependence across these vital rates.

It is important to realize that fitness and population
dynamics are unlikely to be defined by single measures of
plasticity in individual traits. Fitness and population dy-
namics are an integrated outcome of many traits, the for-
mer in terms of trade-offs and the latter in terms of density
dependence. Applying the "averaging" logic to the age-
and size-at-maturity trade-off, we can see that the trade-
off shows a far richer range of outcomes from environ-
mental variation than its component univariate measures
due to the complexity of its shape. Variation among co-
horts that occurs within the range of relatively poor con-
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ditions (right asymptote, fig. 3) can have little or no effect
on the size-age relationship, while variation around slightly
better conditions (inflection area, fig. 3) can increase size
but not age. Under good conditions, size could decrease
with age increasing. Alternatively, drastic variation in the
environment leading to cohorts at either end of the trade-
off could lead a linearized and simple negative relationship
between size and age. The range of predictions that can
be made about the population-level consequences of in-
tercohort variation requires an understanding of the tim-
ing and range of environmental conditions that could be
(and are) experienced by a population.

The invariant population level-egg size relationship that
can result from intercohort variability in the mites could
have substantial fitness consequences as well. As egg size
is positively related to subsequent adult size (F = 139.3,
df = 2,62, P < .001, R' = 0.82) and adult size is positively
related to subsequent fecundity (F = 48.49, df = 1,55,
P< .001, R' = 0.47), intercohort variability that can lead
to invariant egg sizes can generate a near constant average
population reproductive output (population level), though
with large amounts of variability. However, this depends
on temporal patterns of environmental variation. A se-
quence of temporally autocorrelated environmental events
will not lead to invariant measures of egg size unless gen-
eration times, and thus the persistence of cohorts in a
population, are longer than the window of variability.

An Age-Structured Model with Cohort Effects

Using the results above, we developed a five-stage model
of mite dynamics that corresponds to the five life stages
of the mites. Our objective was to generate replicate, hy-
pothetical time series from scenarios incorporating the ef-
fects of birth year density and birth year quality, two mea-
sures of environmental quality that can influence the
formation of cohort effects. We then used these time series
to estimate the effects of intercohort variation on the
density-dependent exponent of fecundity and recruitment.
These changes, and their associated population dynamics,
were compared to expectations from previous theory
(Lindstrom and Kokko 2002) that predict changes in the
exponents (see "Population Dynamic Theory of Cohort
Effects").

Our time series were generated following the process
implemented by Lindstrom and Kokko (2002), but our
model had more structure and compared between the ef-
fects of birth year density (traditional delayed density de-
pendence linked to birth year) and birth year quality (den-
sity is current, but the exponent of density dependence is
altered by birth year quality) under stochastic conditions.
According to the theory presented by Lindstrom and
Kokko (2002), it should be possible to statistically compare
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the underlying deterministic exponent of density depen-
dence to the values obtained statistically from replicate
stochastic simulations and judge whether intercohort var-
iation in a structured population can lead to estimates of
density dependence that differ from underlying determin-
istic rates. Table 1 presents the density-dependent func-
tions for fecundity, juvenile survival, recruitment, and
adult survival, estimated from the density-dependent data
collected in the experiments above. Our model had the
following deterministic form:

E'+I = A',_jA, - 'P' E'-4' (l a)

/1'+1 = 'P' E'-4 - /1" (Ib)

/2,+1 = /1, + 11;12, - p;,-J2" (le)

/3'+1 = p;,_J2, + 11;13, - p;,_J3,. (Id)

A'+I = p;,-J3, + l1ai'\" (le)

where A was adult (A) per capita fecundity, 'P was egg (E)
hatch rate, 111_3 were survival rates of juvenile (l) age classes
1-3, 11.was adult survival, PI-3 were the recruitment rates
of juvenile ages 1-3, and iwas the estimate of hatch year
for juveniles or maturation year for adults. We allowed
lags to occur in both juvenile performance affected by
conditions at hatching and in adult performance affected
by conditions at maturity. The hatch year or maturity year
(i) was estimated as the median time to leave an age class:
l/(recruitment rate + mortality rate) time steps
previously.

For each of these lags, there were two routes for envi-
ronmental quality to have an effect: via the quality of the
hatch or maturation year and via the density in the hatch
or maturation year. We implemented quality variation fol-
lowing the recipe of Lindstrom and Kokko (2002). We
adjusted the exponent of density dependence in fecundity
(A) and recruitment (p) by a small positive or negative
amount determined by the quality of that year Q,-N(O,
VarQ}. Year quality generated density independent adjust-
ments of the vital rates (+value = good year = weaker
density dependence). The hatch year or maturation year

Table 1: Vital rate equations used in the model

density variation is classical delayed density dependence
linked specifically to the density at hatch or maturity year.
Fecundity (A.-j ) and recruitment rates (p,_,) are adjusted
to hatch or maturation year density (i) before multiplying
by current year density.

These two routes represent distinct measures of quality
with independent mode of action on performance.
Density-independent factors can improve or reduce per-
formance and are modeled by year quality. Alternatively,
historical variation in density can characterize good or bad
years and lead to future density-dependent responses; these
are modeled by classical delayed density dependence. For
all models, we also include environmental stochasticity
(s, - N(O, Var.) that adjusts population sizes in the cur-
rent year and was added linearly on a log scale (table 1;
Dennis et al. 1995). Note that juvenile class one matures
as a cohort each year and that egg hatching is on a 4-d
delay as the median time to hatch is 4 d.

The deterministic dynamics of this model are decaying
oscillations; this is supported in long-term experimental
times series (Benton et al. 2001). Using this model, we
generated 100 time series of 1,000 time steps from each
of four stochastic scenarios: (1) control: stochastic density
dependent (DD), where the model (eqq. 1) is run with
no delays (i = 0); (2) delayed quality dependence (DQ),
where the exponent of current year density dependence is
adjusted by hatch or maturity year quality; (3) delayed
density dependence (DDD), where the current year density
dependence is adjusted by the exponent of current year
density dependence is adjusted by hatch or maturity year
density; and (4) delayed density and delayed quality de-
pendence (DDDQ), a combination of delayed effects
linked to hatch/maturity year quality and hatch/maturity
year density.

The deterministic rate equations (table 1) provide base-
line estimates of the exponents for fecundity and recruit-
ment. We used nonlinear regression to estimate the in-
tercept of the exponential density-dependent functions
from each of the 100 stochastic simulations from each
scenario. We then used t-tests to make comparisons among
scenanos. Based on the Lindstrom and Kokko theory

Symbol Definition Equation

X Fecundity 1+ 200 x exp(-.05 x total density)"
rp Hatch rate .2
II; Juvenile survival .93 + .01 x juvenile density/(l + .011 x juvenile density')"
p Recruitment .9 x exp (- .007 x juvenile density)
II, Adult survival .85

Note: Rate equations are fitted functions to density-dependent data from the cohort experiments .
• Total density = A, + 113 x (fl, + 12, + /3,).
b Juvenile density = II, + /2, + 13, + 3 x A,.
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A

(Lindstrom and Kokko 2002) and the convex shape of our
fecundity and recruitment functions, we made three pre-
dictions. First, a delay based on year quality (DQ) should
increase the coefficient of variation in the population dy-
namics relative to the baseline (DD) model. Second, a
delay based on year quality (DQ) should linearize the den-
sity dependence in fecundity and recruitment compared
to the baseline model (DD). Finally, if a delay based on
density (DOD) generates cycles and subsequently stronger
estimates of density dependence, the further addition of
a delay based on quality (DDDQ) should linearize density
dependence more than it did without a delay based on
density (DQ) because the chord connecting cohort values
cuts a steeper line (see "Population Dynamic Theory of
Cohort Effects").

Model Results

Cohort effects implemented as delayed quality dependence
(DQ) and delayed density dependence (DOD) have sig-
nificant effects on the estimates of the slope of fecundity
and recruitment in our model (fig. 7; see also fig. II in
the online edition of the American Naturalist). As pre-
dicted, a delay based on birth year quality linearized the
density dependence in fecundity (fig. 7A; mean
exponent ± 95% confidence interval [Cl]; 0.049 ±
001100 vs. 0.044 ± 0.0020Q' df = 99, P<.OOI) and re-
cruitment (fig. 9B, C; stage two: 0.00676 ± 0.000100 vs.
0.00664 ± 0.0002DQ, df = 99, P < .001; stage three:
0.00676 ± 0.000100 vs. 0.00657 ± O.OOOloQ' df = 99,
P < .001). While these are significant but biologically small
changes in the slope, they were capable of generating a
significant increase in the coefficient of variation in the
population (0.2317 ± 0.000300 vs. 0.268 ± 0.0020Q,
df = 99, P< .001).

A delay linked to hatch or maturity year density gen-
erated a significant shift in dynamics (fig. II). Autocor-
relation function patterns moved from a linear decay to
o at 50 d (DD; consistent with decaying oscillations) to
an exponential decay to 0 at 60 d (DQ) to a cyclic pattern
with a 42-d cycle .(000); generation times moved from

Figure 7: We generated data from four scenarios (stochastic density
dependence, delayed quality dependence, delayed density dependence,
delayed density and delayed quality dependence) in our simulation
model. For each scenario, 100 times series of 1,000 time steps were used
to estimate 100 density-dependent exponents of fecundity and recruit-
ment. Each panel presents the baseline shape (solid lille; see table I) for
the density dependence and then the shapes generated by the estimated
shift in the exponent of density dependence corresponding to the four
models: A, fecundity; B, stage two juvenile recruitment; C, stage three
juvenile recruitment. Confidence intervals and significance tests are pre-
sented in the text.
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an average of 8 ± 0.16 d (DD: mean ± Cl; max 15 d) to
11 ± 1.16 d (DOD: max 23 d). The addition of a delay
based on quality to one based on density (DDDQ) had
the further effect of shifting the cyclic period from 42 to
45 d, suggesting an interaction between the types of delay.

A characteristic of this shift in dynamics caused by a
delay based on density was stronger estimates of density
dependence in fecundity and recruitment relative to the
no delay conditions (fig. 7; fecundity exponent: 0.049 ±
001100vs. 0.0658 ± 0.002000' df = 99, P < .001; stage two
recruitment exponent: 0.00676 ± 0.000100 vs. 0.0108 ±
0.0001000' df = 99, P < .001; stage three recruitment ex-
ponent: 0.00676 ± 0.000100 vs. 0.0154 ± 0.0002000'
df = 99, P< .001). As predicted, the further addition of
a delay linked to birth and maturity year quality linearized
density dependence (fig. 7; fecundity: 0.0658 ± 0.002000
vs. 0.057 ± 0.0003000Q' df = 99, P < .001; stage two re-
cruit: 0.0108 ± 0.0001000 vs. 0.0098 ± O.OOOlOOOQ'df =
99, P < .001; stage three recruit: 0.0154 ± 0.0002000 vs.
0.0126 ± 0.0003DOOQ'df = 99, P< .001) and also in-
creased variability (1.83 ± 0.1000 vs. 1.97 ± 0.08000Q)·
Again, there is evidence of an interaction between the
density and quality based lags: quality effects linearized
the density dependence more severely when a lag based
on density had made it stronger (fig. 7). Graphically, the
chord between points on the curve cuts more steeply when
the bends in the curve are sharp. Moreover, the quanti-
tative effect of cohort variability differed among the three
rates we allowed to vary. This is in part a response to the
initial shape of the density dependence. It may also reflect
the way in which delays propagate through the life cycle.
For example, maturity year quality has a larger linearizing
effect on fecundity than does hatch year quality on re-
cruitment (fig. 7A vs. fig. 7E, 7C), and stage two recruit-
ment responds less to hatch year density than does stage
three (fig. 7E vs. fig. 7C).

In conclusion, and in accordance with expectations from
the Lindstrom and Kokko (2002) model, our mite model
with underlying stable dynamics (decaying oscillations)
predicts increased variability and linearized density de-
pendence when a delay based on the quality of hatch and
maturity year are implemented. Thus, a species-specific
model, parameterized from data demonstrating the po-
tential for intercohort variation and containing substantial
age structure, makes a prediction about mite dynamics
consistent with theory from the general model. However,
our assessment of delays linked to hatch and maturity year
density highlight that density and year quality are sub-
stantially different measures of environmental quality. As
the baseline model has shallow density dependence in fe-
cundity and recruitment to begin with, the effects of cohort
variation based on hatch and maturity year quality are
small on their own. However, simulations with a delay

based on density generated stronger density dependence
than shown in baseline models with no delay. Subse-
quently, variation based on quality had a much larger effect
when paired with variation based on density because the
delay based on density increased density dependence. The
effect of year quality (the chord effect) is thus very de-
pendent on the shape/strength of density dependence and,
as discussed above, the structure of the life cycle.

Summary

We have presented data and models from a laboratory
system of soil mites showing that cohort effects, a form
of delayed life-history response to historical environmental
conditions, can be common, can reflect plasticity in the
life history, and can affect population dynamics. Our data
show first that cohorts can vary in response to conditions
at hatching (early development) and that these responses
can be mediated by conditions later in life. Second, they
show that conditions at maturity can also generate "adult"
cohort effects, thus generalizing the current focus in the
cohort literature on early development. Third, the data
support the Lindstrom and Kokko (2002) hypothesis that
intercohort variation can linearize density dependence in
many vital rates. Fourth, cohort -level variability in single
life-history traits can lead to different conclusions about
the effects of cohorts on density dependence than when
considering trade-offs. Trade-offs show a far richer range
of fitness-related outcomes when cohort variability exists.
Fifth, our model predicts that the patterns suggested by
Lindstrom and Kokko (2002) are qualitatively robust to
changes in model structure, that birth year environmental
quality and birth year density are two measures of envi-
ronmental quality for a cohort with vastly different pop-
ulation dynamic effects, and that when age structure is
present, cohort-level variation can have quantitatively dif-
ferent effects on recruitment and fecundity. Finally, the
data and models demonstrate that cohort variability in a
population with associated population dynamics can affect
estimates of density dependence in a population. It is thus
important to consider sources of variability, stage or age
structure, and density-dependent mechanisms when esti-
mating density dependence in a population.
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APPENDIX A

Experimental Design and Analysis

The life cycle of Sancassania berlesei consists of five stages:
eggs followed by a larval, protonymph, and tritonymph
stage, and then adulthood. Experimental mite populations
are maintained in glass tubes (20 mm x 50 mm) three-
quarters filled with plaster of paris that is kept moist to
maintain humidity and kept at a constant 24°C in unlit
incubators with food supplied in the form of granulated
yeast.

The experimental design is a straightforward factorial
expansion of four binary treatments, one three-level treat-
ment, one four-level treatment, and one covariate. The
experiment began with eggs drawn from long-running
stock cultures initiated in 1996. The eggs, and then ju-
veniles, were allowed to develop in one of two parental
rearing conditions: good conditions defined by low den-
sities (-20 mites) and ad lib. food or bad conditions de-
fined by high densities (-100 mites) and restricted food.
When the mites reached maturity, adults were paired into
three parental density treatments (I, 20, or 50 pair), each
replicated eight times at the level of rearing. Four of each
set of eight tubes were then assigned to one of two adult
food treatments (1 or 5 balls) and then two each of these
to one of two adult food delay treatments (fed at pairing
or 5 d after pairing). Thus, there are two replicates of each
of the treatment combinations. This portion of the ex-
periment allowed investigation of the effect of early de-
velopment conditions on adult performance ("Methods 2:
Early Juvenile Conditions and Adult Performance").

Eggs laid by these parents were used in our offspring
experiments ("Methods 1: Early Juvenile Conditions and
Juvenile Performance"). Eggs were collected at days 4-{)
and 9-11. These two timings are considered parental age
and are examined in A. P. Beckerman, T. G. Benton, C.
T. Lapsley, and N. Koesters, unpublished manuscript on
maternal effects. Four of the six sets of eggs (days 4,5,9,
10), comprising two replicates each, were randomly as-
signed a juvenile density score (maximum juvenile num-
bers hatching: 20-2,500) and then to one of four juvenile
food treatments. Food was either pulsed at hatching or
delivered over time throughout development, and it was
provided ad lib. or in a limited manner. This led to four
juvenile food treatments: low pulse, high pulse, low over
time, and high over time.

All data were collected by counting individuals or eggs
in the tubes under a stereo dissecting microscope. All sta-
tistical analyses were implemented in R (lhaka and Gen-
tleman 1996) and use the HMISC and DESIGN libraries
(Harrell 2000) and the MASS library (Venables and Ripley
1999). We generated minimum adequate statistical models
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using the following steps (Crawley 1993). All models were
initially specified at the three-way interaction level. Akaike
Information Criteria were used to reduce this model. The
use of AIC is effective for generating predictive models
but can often retain effects that have P values greater than
.05. From this point on, we reduced the model by hand
using P values of .05 as a cutoff, thus generating a par-
simonious explanatory model.

Survival data (juvenile age at maturity, adult survival)
were analyzed with parametric survival models (our data
do not conform to Cox-proportional hazard assumptions).
Selection of the distribution was based on an examination
of censored model residuals and was compared to theo-
retical null distributions (Harrell 2000). Recruitment data
were analyzed using a generalized linear model with bi-
nomial error structure. F-tests were used to assess signif-
icance. An F-test in a binomial model assumes a quasi-
binomial family and is suitable for overdispersed binomial
data. All other rates were analyzed with ordinary least
squares.

For female size, we aggregated data from low- and high-
pulse food treatments. The two treatments contain less
than five data points each, and based on similarities among
pulsed treatments in other analyses, we felt that we could
increase our power and decrease the possibilities of influ-
ential points by lumping these two groups.

APPENDIX B

Trade-offs and the Egg-Adult-Egg Loop: Age at
Maturity and Size at Maturity, Egg Size-

Egg Number. Egg Size-Adult Size.
and Adult Size Fecundity

In order to get a better view of the influence of past and
present food conditions on the relationship between size
at maturity and age at maturity, we assessed data from the
longitudinal experiment and the following complementary
experiment. We crossed two adult rearing conditions with
five adult food amounts holding density and the timing
of food constant. Twenty eggs were collected from stock
cultures and placed in one of six per capita food treatments
(1, 6, 11, IS, and 21 grains of powdered yeast/mite/d).
Five replicates of each treatment were examined. Eggswere
allowed to hatch, and the juveniles were monitored daily
to maintain moisture conditions and levels of constant per
capita food. The age at maturity and size at maturity were
recorded for each individual within a tube. Size was mea-
sured as mite length using a graticule in the microscope
eyepiece. We measured all mites under a standard mag-
nification. A linear mixed effects model was used with tube
as a random effect.

Our examination of egg size and number began by plac-
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ing stock eggs in plaster-based tubes and rearing subse-
quent juveniles under high and low food conditions to
generate two rearing conditions. At maturity, males and
females were paired within treatments. Each pair was then
assigned to either good (high food) or bad (low food)
conditions. This created a fully factorial 2 (rearing) x 2
(current) design. There were 10 replicate pairs per treat-
ment. Each pair was allowed to reproduce for 4 d. On day
4, adult pairs were transferred to new tubes and fed. The
eggs laid between days 4 and 5 were then counted, and a
sample of 10 eggs from each pair was measured lengthwise
using an eyepiece graticule.

The relationship between egg size and adult size was
assessed in an experiment that examined the fate of 60
eggs. Eggs were collected from the stock cultures, measured
lengthwise, and reared on one ball of yeast/day. On ma-
turity, adults were classified by sex and measured
lengthwise.

The relationship between adult size and fecundity was
assessed by relating the fecundity of females on the fifth
day after maturity to the cube of female body length at
maturity as an index of volume. Forty pairs of adults were
reared from stock juveniles, and the pairs were fed daily
throughout reproduction. The variability in these data sets
arises from food treatments applied to juveniles and adults
associated with other studies, but that generated a range
of adult body sizes.
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In order to predict such events as extinction risk (Heino et al. 1997; Palmqvist and Lundberg

1998; Vucetich et al. 2000), the patterns in epidemics (Finken stadt et a1. 1998; Rohani et a1.

1999), or harvest yield from natural resources (Hastings and Testa 1998), we need to know

how varying environments are "filtered" by behaviour, life history and physiology into the

population dynamics of an organism (Laakso et al. 2001; Ranta et a1. 2000). Yet mapping the

environment to population dynamics is not straightforward. An organism's life history is

clearly a product of its age structure and its current environment. But a life history is also a

product of an organisms' own history of environmental experience and, through parental

effects, the environment of its ancestors (Roff 1992). This environmental history can

generate delayed life history effects. Within a generation, these effects can lead to

demographic patterns such as cohort effects. Maternal or paternal effects occur when delayed

life history effects cross generations. Thus, in a variable environment, the conditions at one

time can influence life history traits and performance of individuals at future times and

subsequently, their population dynamics (Beckerman et a1. 2002b; Ginzburg and Taneyhill

1994; Inchausti and Ginzburg 1998; Lindstrom and Kokko 2002).

Interest in maternal effects has been driven to a large extent, by research on the egg

size or quality vs egg number tradeoff. Many studies have demonstrated that parental

environments can alter resource allocation decisions by parents for offspring that lead to

differential offspring quality (Mosseau and Fox 1998; Mousseau and Fox 1998; Rossiter

1998). More recently, studies have begun to document how parental environments, and these

maternally transmitted delayed life history effects, can alter juvenile performance and fitness

after allocation decisions have been made (LaMontagne and McCauley 2001; Mousseau and

Fox 1998; Sinervo and Doughty 1996) or in the context of trophic interactions (Fox 1994;

Fox 1997; Fox and Savalli 2000). Moreover, recent population dynamics studies have

demonstrated that maternal effects and more generally delayed life history effects can have



significant effects on population dynamics (Ginzburg 1998; Inchausti and Ginzburg 1998;

Lindstrom and Kokko 2002). The common lesson from all of these evolutionary, life

historical and population dynamic studies is that the interactions between environmental

variability and life history can occur both within and between generations (Bjornstad et al.

1998; Coulson et al. 2001; Dennis et al. 2001; Ginzburg 1998; Ginzburg and Taneyhilll994;

Inchausti and Ginzburg 1998; Stenseth et aI. 1999). We may expect then that (st)age

structure, the life cycle and the sequence of environmental variability will be necessary

ingredients in explanations of population dynamics.

How can parental environments affect offspring performance?

Delayed life history effects that have crossed generations are clearly a product of the tradeoff

between offspring size or quality and offspring number. While this tradeoff encompasses

both the quality and the quantity of offspring, each of these measures can influence the

performance of offspring in different ways. The "classic" maternal effect is based on a

genotype x environment interaction affecting the transmission of resources, and thus

"quality", from parent to offspring (Mousseau and Fox 1998; Rossiter 1996; Rossiter 1998).

The maternal environment, acting on the tradeoff parents face between offspring quality and

quantity, can alter resource allocation to individual offspring and can thus affect the

performance of those offspring later in their lives. However, the parental environment also

affects parental fecundity. While linked to allocation patterns by the tradeoff, fecundity

patterns determine the competitive environment that offspring face and as a result, offspring

performance in the future. For example, if parental environments reduce average fecundity,

juvenile population density is subsequently reduced, possibly generating a favorable

environment for juvenile growth and development.

The defining characteristic of the quality route is that patterns of maternal investment

influence individual offspring quality directly. Rossiter (1996; 1998) has examined a wide



variety of routes by which the environment acts on allocation process and pattern, extending

a historically genetic definition to one centred on genotype x environment interactions. Even

with this broader definition, a core requirement remains that there must be maternal

investment in individual offspring quality linked to environmental history (Mousseau and

Fox 1998; Rossiter 1998). The defining characterisitic of the quantity route is that fecundity,

and the numerical changes in offspring density that it represents, alters the competitive

environment that offspring face. The performance consequences of this route are not driven

directly by maternal investment in individuals, but by the number of individuals produced.

The delayed life history response arises as an emergent, density dependent, population level

property of adult performance in the parental environment.

In this paper we provide experimental evidence that parental environments can

influence offspring performance by both a "quality" and "quantity" route. We

experimentally evaluated the effects of variation in the parental environment on the hatching,

growth and recruitment of the offspring generation using a model system of the soil mite

Sancassania berlesei. We manipulated food and density during the development and the

expression of traits in the parental generation as well as the development and expression of

traits in the offspring generation, leading again to adulthood. We statistically partitioned the

relative importance of parental versus juvenile environments to the life history and

performance of offspring, paying special notice to the "quality" and "quantity" routes by

which maternal environments can affect offspring performance. By manipulating food and

density, we are, in effect, examining the interaction between maternal environment and

offspring environment (e.g. Rossiter 1998) on density dependent life history traits. The

design allows us to answer the question: by what routes do parental environments influence

offspring performance?



Effects of parental environments on offspring performance: pattern and process

Our data are collected from a longitudinal laboratory experiment that covers almost

two generations (see Appendix 1 for full design and analysis details, Beckerman et al.

2002a). It is a factorial experiment that varies food and density in a controlled manner

throughout a lifecycle and one in which we measured many life history traits. To begin the

experiment, eggs from second generation mothers reared from stock cultures were assigned

to two PARENTAL REARING treatments (good or bad). Upon maturation to adulthood,

males and females were paired randomly in three PARENTAL DENSITIES (1, 20, 50 pair)

and then assigned randomly to two PARENTAL FOOD AMOUNTS (low and high) and two

PARENTAL FOOD TIMINGS (no delay or a 5 day delay in receiving food after maturation).

Eggs from these parents were then collected at two MATERNAL AGES (young and old) and

the offspring from these eggs subject to a range of OFFSPRING treatments. Newly hatched

offspring were subject to the range of JUVENILE DENSITIES that they were born into, and

subsequently assigned randomly to high and low JUVENILE FOOD AMOUNTS that were

delivered with two JUVENILE FOOD TIMINGS throughout their development (overtime or

in one pulse at hatching). This factorial design allows a description of how variation in the

maternal environment interacts with variation in the current offspring environment to shape

offspring performance. By treating groups of mites as cohorts and examining vital rates

under a range of current and historical treatments, we can develop an understanding of how

life history plasticity can lead to delayed life history effects and how these delays can arise

across generations.

Quantity vs. quality driven effects

The crux of our analysis lies in the statistical separation of maternal environment effects from

offspring environment effects and the subsequent identification of quantity vs. quality routes.

The maternal environment was characterized by PARENTAL REARING CONDITIONS,



PARENTAL DENSITY, PARENTAL FOOD AMOUNTS, PARENTAL FEEDING TIME,

and MATERNAL AGE. The offspring environment was characterised by JUVENILE

DENSITY, JUVENILE FOOD AMOUNT, and JUVENILE FEEDING TIME. We examined

the influence of the "quantity route" on the percentage of juveniles recruiting, the age-at-

maturity and size-at-maturity by statistically examining the effects of the above treatments.

In particular, we were interested in juvenile perfomance patterns when parental environments

altered fecundity and thus the initial density (competive environment) that offspring

experience.

Detecting quality driven effects was slightly more involved. In our constant

temperature experiments, hatching time is only defined by patterns of maternal allocation to

eggs. The patterns of egg hatching can thus be attributed to the interaction between parental

environments and maternal investment in egg quality. On the other hand, the juveniles'

recruitment rate, their age-at-maturity, and their size-at-maturity are density dependent

(juvenile density, see Beckerman et al. 2002a) and are likely to be affected by both the

maternal investment in egg/offspring quality and the patterns of parental fecundity that can

alter the competitive environment that offspring experience.

In order to detect the effects of allocation decisions in these life history traits that are

not a consequence of the responses to density, we examined recruitment rates, age-at-

maturity and size-at-maturity for individuals whose parents experienced poor (bad rearing,

low food, five day delay) versus good conditions. Data from experiments on the tradeoff

between egg quality and egg number in these mites (Benton et aI, MS) indicate that parents

reared under poor conditions produced fewer eggs of high quality than those reared under

good conditions. Subsequently, the higher offspring quality may lead to higher recruitment

rates, an earlier age-at-maturity and a larger size-at-maturity. We examined patterns in



recruitment, age-at-maturity and size-at-maturity in our data set for these quality derived

effects.

Results: Time-to-hatching

We examined the time-to-hatching using survival analysis having followed the fate of

all eggs laid. A Weibull distribution best fit the data (see appendix 1 for distribution

selection methods). Our minimum adequate model for hatching time contained six significant

two-way interactions (all 8 < "l < 2140, dfe l or 2, all P<0.OO3). Interactions featuring

PARENTAL REARING conditions and current adult conditions explained a substantial

amount of hatch time variability. For example, well fed parents (PARENTAL FOOD)

produced eggs that hatch around day four, independent of the rearing conditions

(PARENTAL REARING) that those parents experienced during their development (Fig. la).

However, for poorly fed parents, all eggs hatch earlier, but those parents reared under poor

conditions laid eggs that hatched after -three and one half days vs. well fed parents whose

eggs hatch around day three (Fig 1b; X2 rearing x food = 908.65, df= 1, P<O.OO1). A similar

interaction was detected between PARENTAL REARING and PARENTAL DENSITY

treatments where hatching times for good or poorly reared adults were not different at low

densities, but differed by nearly a day at moderate and high densities (X2 rearing x density =

117.20, df=2, P<O.OOl). These interactions suggest that the time-to-hatching is sensitive not

only to the conditions mothers face as adults, but also to the conditions mothers experienced

as juveniles growing up.

Mothers' age, interacting with the amount of parental food, explained the largest

amount of variance in hatching time (Fig 2a,b; X2 food x maternal age = 2149.86, df=I,P<O.OOl).

Mothers' age may be a clear indicator of quality driven effects in time to hatching as there are

well known changes in provisioning and fitness with age (Benton et al. MS; Fox et al. 2001;



Roff 1992; Steams 1992). In our study, older mothers produced eggs with a median hatching

time of approximately three and a half days, independent of food amounts. Younger mothers,

however, produced eggs with median hatching times that varied from three and a half days

with restricted food to four and a half days with large amounts of food. Thus, food levels

influenced egg development when mothers were young but not when mothers were old. Our

data indicate that the environment that mothers experience as adults and during their

development as juveniles can alter the timing of their offsprings' hatching. As hatching is not

density dependent, these changes can be attributed primarily to allocation decisions made by

mothers in response to their environment and relative to their age.

Results: Proportion Recruiting

We analysed the proportion of juveniles recruiting (proportion of eggs laid becoming

adult, irrespective of age-at-maturity) using a generalized linear model with binomial errors.

We used F-tests rather than Chi-square tests to account for overdispersion in the binomial

data (see appendix 1). As with hatching time, our minimum adequate model contained a wide

range of significant two-way interactions. Controlling for age-at-maturity (Fage-at-maturity=

16.57, dfe l , P<O.OOl), the largest amount of variability in recruitment was explained by the

interaction between PARENTAL REARING conditions and the delay in food provision to

parents (PARENTAL FOOD DELAY; Fig 3; Frearx delay= 30.77, df=l, P<O.OOI). When food

was delivered at the start of adulthood, recruitment rates averaged 60% and were unaffected

by rearing conditions. However, delaying feeding for five days after maturity resulted in a

marked overall increase in recruitment and a sensitivity to adult rearing conditions. When

parental food was delayed, offspring recruitment was just over 85% if parents were reared

well and nearly 95% when they were reared poorly.

This is clear evidence that the quantity route between maternal environments and

offspring performance can be strong. Poor adult rearing and a delay in adult feeding are two



significant factors affecting adult fecundity (Beckerman et al. 2002a). These two treatments

cause significant reductions in fecundity, leading to lowered offspring population densities.

As recruitment to adulthood is density dependent and linked to juvenile food amounts

(Beckerman et al. 2002a), this shows that the maternal environment can alter offspring

performance without classical maternal effects, and independent of juvenile conditions.

These data show that it is possible for a quantitative life history attribute of mothers

(fecundity) to significantly alter the competitive environment of juveniles and thus affect

juvenile performance.

Interactions between parental and juvenile environmental conditions were also

common. PARENTAL REARING (Fparentalrearingxjuvenilefood= 9.38, df=3, P<O.OOI ),

PARENTAL DENSITY (Fparentaldensityxjuvenilefood= 3.24, df=6, P=O.005 ) and the

PARENTAL FOOD DELAY (Fparentaldelayx juvenilefood= 5.72, df=3, P=O.OOI ) all predictably

influenced the effect of juvenile food on recruitment rates. Juveniles fed over time always

showed higher recruitment. However, as above, when parents experienced a delay in

receiving their first food, recruitment was increased. Increasing adult density only reduced

recruitment when food for juveniles was restricted to a single pulse of food. Finally, good

adult rearing tended to increase recruitment, but only when food was restricted during

juvenile development.

The results above have highlighted the quantity route by which maternal

environments can influence recruitment rates in the subsequent generation. The dependence

of fecundity on the parental environment can dramatically alter juvenile population density,

leading to cohorts of offspring that perform differently from each other. However,

controlling for these effects, our analysis also showed that maternal age and the delay in

parental feeding explain the second largest amount of variance in recruitment (Fig 4; Frnatemal

agex adultdelay= 21.07, df= 1, P<O.OO1). When there is no delay in feeding, recruitment rates for



offspring from young or old mothers are indistinguishable. However, when a five day delay

in parental feeding was imposed, young mothers were severely affected by food restrictions,

leading to lower fecundity and subsequently higher offspring recruitment. While this may be

considered evidence of maternal investment patterns, our experimental design allows this

pattern to arise as a quantity effect. Eggs from young mothers were gathered on days four and

five after maturity, meaning that young mothers experiencing a delay had no food to lay their

initial batch of eggs. Not surprisingly, these were very low numbers and as a result, this

effect also represents a demographic effect of the maternal environment.

In order to detect the effects of the quality route, we examined the performance of

offspring from parents that have experience good conditions during development and

throughout their lives vs. parents who have experienced the opposite (see Quantity vs quality

driven effects above). We first classified individuals as coming from good or bad

backgrounds. Good backgrounds were defined by good rearing, high food and no delay in

feeding, while poor backgrounds were defined by bad rearing, low food and a five day delay

in feeding. A binomial regression on recruitment as a function of parental background,

controlling for adult density, juvenile density and juvenile food produced a pattern in

recruitment consistent with our hypothesis: assuming that individuals from a bad background

produce a few, high quality eggs, the offspring from these eggs had higher recruitment rates,

independent of the effects generated by the competitive environment juveniles face (bad

background: 63.2% versus good background: 36.9%; Fbackground = 39.5708, df=l, P<O.OOI

Fadult density =7 .15,df= 1, p<0.05 , Fjuvenile food = 54.8986, df=3, p<O.OO1, Fjuvenile density 23.4880

df=l, P<O.OOl).

Results: Age-at-maturity

We analysed age-at-maturity using survival analysis, having followed the development of

individuals from hatching to maturity. Our data were best fit by a Weibull distribution. Our



minimum adequate model was fully specified at the two - way interaction level. Chi-square

values for the interactions ranged from 5 to 1900. The highest values (X2 > 900) correspond

to interactions between PARENTAL DENSITY and JUVENIEL DENSITY (X2 = 1182,

df=2, p<O.OOl), PARENTAL DENSITY and JUVENILE FOOD (X2 = 1166, df=6, p<O.OOl),

MATERNAL AGE and JUVENILE FOOD (X2 = 1080, df=3, p<O.OOl), PARENTAL FOOD

DELA Y and JUVENILE FOOD (X2 = 911.20, df =3 , P<O.OO1) and JUVENILE FOOD and

JUVENILE DENSITY (X2 = 1961, df=3, p<O.OOl).

For example, increasing juvenile density leads to a later age-at-maturity (compare

Figs. 5a and 5c). This is consistent with previous data on the effects of plasticity in juvenile

performance (Beckerman et al. 2002a). Accounting for adult density (Fig Sa-c) indicates that

the lengthening of the juvenile life span by juvenile density can be contingent on the density

their parents experienced as adults. Compared to low adult densities, medium and high adult

densities lead to proportionately later maturity for a given juvenile density. Higher adult

densities lead to higher offspring densities in our experiments (though per capita fecundity

decreases) maintaining the consistent pattern that age-at-maturity increases with increasing

density, but via a nonlinear interaction between adult fecundity and juvenile density.

Also in line with previous analyses (Beckerman et al. 2002a), we found that

reductions in JUVNENILE FOOD (Pulsed vs. Overtime feeding for juveniles) lengthened the

juvenile stage. However, we also found that an ADULT FEEDING DELAY causes an

increase in age at maturity (Fig. 6). This is interesting because a five day delay in parental

feeding tends to lower juvenile density and lower juvenile density tends to favor an earlier

age at maturity (Fig 5). But, it appears that if your parents were not fed until five days after

they matured, juveniles would mature later for a given amount of food, and much later if they

were under poor food conditions. This may reflect the parents' needing to allocate more

provisions to themselves after a period without food, thereby reducing allocation to the eggs.



Experimental data (A.P. Beckerman, T.G. Benton, unpublished data) suggests that

under low food conditions, such as occurs when a "pulse" of food has been consumed,

individuals can survive for up to a 100 days following the last feeding and mature at this

point. This is, at least in part, because individuals that die are consumed, so there is some

recycling of nutrients. Under such low food conditions, the size of an individual may be an

important determinant of competitive ability, and so the positive "headstarting" given by a

well-provisioned egg may become particularly important. Under conditions when food is

plentiful, the importance of the parental provisioning of the egg may matter less. Thus, as

has been recently found with other tradeoffs (such as the costs of immune defence are

recognisable only in resource-challenged individuals, Moret and Schmid-Hempel 2000), the

costs and benefits of life-history decsisions may be context dependent. Thus, studies which

conclude that maternal effects are not biologically important may draw this conclusion

because the experimental organisms have experienced conditions which do not allow the

effects to be distinguished.

There is a challenge in visualizing the range of significant effects our fully

parameterized model of age-at-maturity where all terms are significant. One method for

visualizing the results of complex designs is to perform a regression tree analysis on the

predicted values from a model (F.A.Harrell, personal communication, SIR-News user group).

When applied to the predicted or fitted values of a model, this becomes a strategy of

visualising the way that variance in the predictions can be apportioned to different factors and

covariates. Figure 7 presents our statistical results as a regression tree. Used this way, a

regression tree analysis is not a rigorous analytic tool, but a way of visualising the importance

of different factors and covariates in our model of age-at-maturity. Regression trees describe

the structure of data by iteratively splitting the data into homogenous groups defined by the

factors and covariates in an experiment. Each homogenous group explains an amount of



variance or deviance at that point in the heirarchy and the same factor can split a node at

different levels in the hierarchy. It is therefore possible to "prune" a tree to an R2 of 95% to

classify the structure of the data based on a set of factors. Our tree analysis employed the

rpart library for R (Therneau and Atkinson 2000).

Clearly, the regression tree and the Chi-square values tell a similar story. Age-at-

maturity is largely determined by the effects of juvenile food and juvenile density. However,

we can see that the effects of the parental delay in feeding, adult density and maternal age all

figure in the explanation of age-at maturity. After juvenile food and juvenile density split the

variation, the predominantly numerical (quantity) effects of the delay in parental feeding

figure strongly and seem to govern the distribution of the very late maturity times (see above

for details). As with the effects of parental environment on recruitment, these data suggest

that parental environments and parental density dependent life history can interact with

juvenile conditions to shape juvenile performance.

Detecting and describing the effects of maternal investment in quality that are

independent from responses to adjustiments of the competitive environment by parents

requires again that we examine the performance of offspring from mothers that had good

backgrounds and mothers that had poor backgrounds, controlling for adult density, maternal

age, juvenile density and, considering our result above, juvenile food. Our premise was that

mothers from poor backgrounds invest more per egg and in fewer eggs leading to eggs that

would hatch earlier. Following a similar protocol to that for recruitment, we performed a

survival analysis to determine the age at maturity of offspring from parents that experienced

good and bad conditions. This model suggests that there can be a 20 day reduction in median

age-at-maturity between the two background conditions, controlling for the effects of current

juvenile conditions (bad background: 17.6 days versus good background: 36.9 days;

X2baCkground= 19.49, df=l, P<O.OOI X2adultdensity=332.8, df= l , p<O.OOI ,X2juvenilefood = 16318.92,



df=3, p<O.OOI, X2jUVeniledensity3318.22, df=l, P<O.OOI, X2matemalage=99.82, df=l, P<O.OOI).

Thus, our data suggest a pattern in age-at-maturity that is consistent with our hypothesis that

maternal investment can influence the growth and development of juveniles independent of

the treatments and conditions that can alter the juvenile competitive environment

And based on the interaction between juvenile food and the delay in parental density

relative to the more general analysis of good and bad backgrounds, variability in juvenile

food may alter the way in which investment by mothers into offspring is expressed. This

suggests a context dependence in "quality" driven effects. Our data indicates that there may

be juvenile environmental conditions that when combined with maternally driven increases in

egg quality and maternally driven differences in the juvenile competitive environment, lead

to substantially shorter or longer development times. Thus, field and lab studies that fails to

demonstrate the influence of maternal environments on juvenile performance are likely

correct, but the generality of these conclusions must be framed in the context of the patterns

of environmental variance that the organism might experience (e.g. Ergon et al. 2001; Moret

and Schmid-Hempel 2000).

Results: Size at Maturity

We analyzed size-at-maturity with a generalized linear model with gaussian errors.

Our data on size are quite sparse relative to the other traits, and as a result we limited our

assessment of size to the question of quality effects. Our best model controlled for

recruitment levels (Frecruit= 11.90, df=l, P=0.002), PARENTAL FOOD (FparentalfoOO=7.49,df=

1, p= 0.011), MATERNAL AGE (Fmatemalage=21.69, df=l, P<O.OOI), JUVENILE DENSITY

and JUVENILE FOOD (Fjuveniledensityx juvenilefood = 5.93, df=3, p=0.0034) and found a

significant interaction between PARENTAL REARING and PARENTAL DELAY (Fparental

rearingx parentaldelay==4.06, df==l, p==0.05) in feeding. We found (Fig. 8) that offspring from

parents that were reared poorly as juveniles were larger when their parents faced a delay in



feeding but smaller when their parents did not face this delay. If our assumption is correct,

then parents facing bad conditions as juveniles and as adults will invest more in fewer eggs

leading to comparitively larger offspring than when conditions are not so poor for the parents.

The route from mother to offspring

We proposed that there are two routes by which maternal environments can influence the

performance of offspring. In the first route, the response of parental fecundity to the adult

environment has a "quantity" effect on the population density of juveniles and thus their

competitive environment. This is not a maternal effect per se, because the route to these

delayed life history effects are not driven by patterns of maternal investment in offspring

quality, even though fecundity is part of the egg size/quality - egg number tradeoff. This

"quantity" route can lead to the formation of cohort effects in offspring life stage via parental

life history responses to maternal environments. In the second route, the maternal

environment affects maternal allocation of energy among survival, current and future

reproduction and egg size/quality and egg number. The ability for parents to invest in the

quality of eggs results in differential offspring performance leading to the classical definition

of a maternal effect.

We have provided evidence that both of these pathways can be important in these soil

mites. Patterns in time to hatching, being independent of juvenile density (and hence adult

fecundity) and juvenile food, show that maternal environments likely lead to differential

maternal investment in eggs. The effects of variable parental food and density, as well as the

parental rearing conditions lead to quite variable hatching times. Percent recruitment and

age-at-maturity show evidence for both routes. The "quantity" route is driven primarily by

plasticity in fecundity arising from a delay in parental feeding but also by variability in

parental density, mothers age and parental rearing conditions. Thus, there are detectable

effects in the performance of juveniles caused by the conditions their parents experienced as



juveniles, a generation in the past. The experimental conditions are similar to the type of

variation that might arise in real world environments and our treatments generated significant

density dependent responses in offspring performance through lowered or raised offspring

density. These density differences can cause large increases in recruitment rate and, under

good conditions, a reduction in the age-at-maturity. These patterns illustrate that plasticity in

parental life history traits can influence the competitive environment that offspring face and

thus their performance.

Our evidence for allocation effects came from statistical evaluation of the premise that

adults that experienced poor conditions will produce fewer, higher quality eggs and that these

higher quality eggs will possess the resources to induce a higher probability of maturing, an

earlier age-at-maturity and a larger size-at-maturity. Our assessment of recruitment patterns

revealed that there could be a 20% improvement in maturation success when parents

experienced extreme bad backgrounds and also up to a 20 day decrease in age-at-maturity

under those same conditions. Moreover, these same bad conditions can increase size-at-

maturity as well. The evolutionary argument for these patterns is straightforward: in

temporally autocorrelated environments, parents that experience poor conditions are more

likely to invest in offspring in a manner that will allow those offspring to handle similar poor

environments (e.g. Sinervo et al. 2000). Our experimental design happened to highlight what

can happen when these better provisioned offspring also experience relatively good

conditions.

Egg quality-egg number tradeoff: a route for transgeneration delayed life history effects

Our data thus support the premise that the parental environment can influence offspring

performance though the "quality" and the "quantity" route. We have in essence proposed

that the egg quality - egg number tradeoff is central to the formation of delayed life history

effects that are expressed in offspring but originate in parental generations. The parental



environment directly influences fecundity and as such can determine the density dependent,

competitive environment that juveniles experience. Combined with food availability for

juveniles, there are clear, fecundity driven links between parent and offspring that define the

"quantity" route. Moreover, the fecundity response is not simply numerical because it is

linked to the tradeoff between number and quality of offspring. The density dependent

responses of parents are intimately linked to allocation patterns such that egg quality

variation may contribute substantially to the patterns of juvenile performance - the "quality"

route. The fitness consequences of these allocation driven relationships can be substantial.

Egg size and quality is positively related to female and male size at emergence (F2•62 = 139.3,

P<O.OOI, R2=O.82) as well as to the timing of hatching and maturity. Larger females also go

on to produced more eggs as measured by peak fecundity (fecundityj., S after maturity = -

33.25+0.0044 x female volume; Fl.5s = 48.49, P<O.OOl, R2 = 0.47), making it clear that

quality and quantity are two distinct but interlinked routes connecting parental environments

to offspring performance,

Summary

Identifying patterns of density dependence in life history traits has been critical to the

advancement of ecological research and to the improved understanding of the processes

underlying population dynamics. Our data highlight that substantial variability in density

dependent life history traits can arise both as a function of current environments, and as a

function of historical environments - in our case, parental environments (see also Beckerman

et al. 2002a). Such parental and maternal effects have been studied for quite some time,

primarily centred around the consequences of allocation decisions between offspring

size/quality and number (Fox et al. 2001; Hendry et al. 2001). Our data add to a small but

growing body of experimental evidence that maternal effects on offspring quality can have

profound and detectable effects on performance characteristics of juveniles throughout their



lives (LaMontagne and McCauley 2001; Mousseau and Fox 1998; Sinervo and Doughty

1996).

Moreover, our data show that the route by which the maternal environment can alter

offspring performance is at least twofold. Rossiter (1998) expanded the range of routes by

which classic maternal effects can arise by focusing on the array of genotype x environment

interactions that can exist between parent genotype, parent environment, offspring

environment and offspring performance leading to variation in investment to individual

offspring. Our experiments highlight an alternative, but complementary route that reinforces

recent conclusions from population dynamic studies about the importance of delayed life

history effects and age structure (Bjornstad et al. 1999; Coulson et al. 2000; Stenseth et al.

1999). Our data show that environmental variability in parental generations can lead to

variability in parental fecundity that subsequently alters the competitive environment that

offspring experience. When this happens, density dependent juvenile traits can be linked

directly to parental environments. Delayed life history effect arise via a quantity and a quality

route.
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Appendix 1. Experimental Design and Analysis

The life cycle of S. berlesei consists of five stages: eggs followed by a larval,

protonymph, and tritonymph stage and then adulthood. Our experimental mite populations

are maintained in glass tubes (20mm x 50mm) *filled with plaster of Paris that is kept moist

to maintain humidity and kept at a constant 24°C in unlit incubators with food supplied in the

form of granulated yeast. The experimental design is a straightforward factorial expansion of

four binary treatments, one three level treatment, one four level treatment and one covariate.

The experiment began with eggs drawn from long running stock cultures initiated in

1996. The eggs, and then juveniles, were allowed to develop in one of two PARENTAL

REARING CONDITIONS: good conditions defined by low densities (-20 mites) and ad

libitum food or bad conditions defined by high densities (-100 mites) and restricted food.

When the mites reached maturity, adults were paired into three PARENTAL DENSITY

TREATMENS (1 pair, 20 pair or 50 pair), each replicated eight times at the level of

REARING. Four of each set of eight tubes were then assigned to one of two ADULT FOOD

TREATMENTS Cl bailor 5 balls) and then two each of these to one of two ADULT

STARVATION TREAMTMENTS (fed at pairing or five days after pairing). Thus there are

two replicates of each of the treatment combinations.

Eggs laid by these parents were used in our offspring experiments. Eggs were

collected at two maternal ages: YOUNG (days 4-6) and OLD (days 9-11). Eggs from days 6

and 11 were used to assess hatching times. The remaining four sets of eggs (days 4,5,9,10)

comprising two replicates each were randomly assigned a JUVENILE DENSITY SCORE

(maximum juvenile numbers hatching) and then to one of four JUVENILE FOOD

TREAMTMENTS. Food was either pulsed at hatching or delivered over time throughout

development and it was provided ad-libitum or in a limited manner, judged by density,

leading to lo-pulse, hi-pulse, lo-overtirne and hi-overtime treatments.



All data were collected by counting or measuring the different life stages under a

binocular microscope (Leica, USA). All statistical analyses were implemented in R (Ihaka

and Gentleman 1996) and use the HMISC and DESIGN libraries (Harrell 2000), the rpart

library (Themeau and Atkinson 2000) and the MASS library (Venables and Ripley 1999).

Our model selection criteria had the following structure for finding the minimum adequate

model (Crawley 1993). Models for hatching and % recruitment were initially specified at the

three-way interaction level. The age-at-maturity was specified at the two way level as the

three way interactions were significant, but predictions nonsensical. AIC criteria were used

to reduce the fully specified models. The use of AIC is effective for generating predictive

models but can often retain effects that have p-values greater than 0.05. From this point on,

we reduced the model by hand using p-values of 0.05 as a cut-off, thus generating a

parsimonious, explanatory model.

Survival data (Time-to-hatching and Age-at-maturity) were analysed with parametric

survival models (our data do not conform to Cox-proportional hazard assumptions).

Selection of the appropriate distribution was based on an examination of censored model

residuals and compared to theoretical null distributions (Harrell 2000). Recruitment data was

analysed using a generalised linear model with binomial error structure. F-tests were used to

assess significance because our data were over-dispersed. An F-test in a binomial model

assumes a quasi-binomial family and is suitable for overdispersed binomial data.
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Figure Legends

Figure 1. Predicted survival curves showing the probability of egg hatching at time t. Panel

A - Well fed mothers: the effect of parental rearing is non-existent. Panel B - Poorly fed

mothers: all eggs hatch earlier and mothers reared well (good) produce eggs that hatch one

half day earlier than poorly reared mothers (bad).

Figure 2. Predicted survival curves showing the probability of egg hatching at time t. Panel

A - Young mothers: High food levels (ball) during reproductions result in later hatching. B -

Old mothers: Food levels during reproduction do not affect hatching time, and median hatch

time is similar to low food (grain) for young mothers.

Figure 3. Changes in percent recruitment (Mean ± SE) as predicted by the interaction

between parental rearing conditions (Bad, Good) and the delay in feeding adults at maturity

(none or 5 days). With no delay in feeding, good and bad rearing did not affect recruitment.

Delaying adult food for five days after maturity greatly increased offspring recruitment and

moreso for poorly reared parents.

Figure 4. Changes in percent recruitment (Mean ± SE) as predicted by interaction between

maternal age (Young and Old) and the delay in feeding adults at maturity (none or 5 days). A

five day delay in parental food increased the recruitment rate of offspring from young

mothers but had no effect on older mothers.

Figure 5. Predicted survival curves documenting age-at-maturity patterns and the effect of the

interaction between juvenile density (A: 250; B: 800; C: 1500) and adult density (2,40,100).

As juvenile density increases age-at-maturity increases. As juvenile density increases (panel



A-C), the difference between adult density also increases. The vertical line references a 10

day age-at-maturity,

Figure 6. Predicted survival curves documenting age-at-maturity patterns and the effect of the

interaction between juvenile food (lopullhipul = lowlhigh juvenile food in a pulse at hatching;

100TlhiOT = lowlhigh juvenile food delivered over time from hatching) and the delay in

parental feeding. In both panels, the effect of a reduction in juvenile food (pulse vs. over

time) is to increase age at maturity. Moving from panel A to B shows how a five day delay

in parental feeding increases the age at maturity for a given food level. The vertical line

references a 10 day age at maturity.

Figure 7. The regression tree of predicted values from the fully parameterized, 2-way

interaction survival analyses of age-at-maturity. The tree is pruned to 95%. Each branch

specifies a homogenous split of variance based on the factor or covariate on the "branch" of

the tree. In most cases only the right branch is labelled, the left being the opposite term.

Bold labels correspond to characteristics of the parental generation. The terminal nodes

present the actual predicted age-at-maturity.

Figure 8. Model fits of the interaction between parental rearing and parental delay in feeding

on the size at maturity of offspring. Data are mean and standard errors of the model fits.

They show that the effect of parental rearing on offspring size at maturity is dependendent on

the conditions that parents face as adults.
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Figure 8.

48
___ No Delay
-0-- 5-Day Delay

46

~.i:: 44
:J~ro
~ 42ca
CD
N 40.-en

38

36~--------------~--------------~--------------~
Good Rearing Bad Rearing



Declaration

This thesis has been composed by me and the work it embodies has been

conducted, unless otherwise stated, by myself and has not been included in

another thesis.

Nils B. Kosters


