Accepted refereed manuscript of:

Rowlinson P (2015) Star complements and edge-connectivity in finite graphs, *Linear Algebra and Its Applications*, 476, pp. 124-132.

DOI: <u>10.1016/j.laa.2015.03.003</u>

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

STAR COMPLEMENTS AND EDGE-CONNECTIVITY IN FINITE GRAPHS

Peter Rowlinson¹ Mathematics and Statistics Group Institute of Computing Science and Mathematics University of Stirling Scotland FK9 4LA

Abstract

Let G be a finite graph with H as a star complement for a non-zero eigenvalue μ . Let $\kappa'(G)$, $\delta(G)$ denote respectively the edge-connectivity and minimum degree of G. We show that $\kappa'(G)$ is controlled by $\delta(G)$ and $\kappa'(H)$. We describe the possibilities for a minimum cutset of G when $\mu \notin \{-1, 0\}$. For such μ , we establish a relation between $\kappa'(G)$ and the spectrum of H when G has a non-trivial minimum cutset $E \nsubseteq E(H)$.

AMS Classification: 05C50

Keywords: graph, connectivity, eigenvalue, star complement.

¹Tel.:+44 1786 467468; fax +44 1786 464551; email: p.rowlinson@stirling.ac.uk

1 Introduction

Let G be a finite simple graph with μ as an eigenvalue of multiplicity k. (Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0, 1)-adjacency matrix A of G has dimension k.) A star set for μ in G is a subset X of the vertex-set V(G) such that |X| = k and the induced subgraph G - X does not have μ as an eigenvalue. In this situation, G - X is called a star complement for μ in G. We use the notation of [8], where the basic properties of star sets and star complements are established in Chapter 5.

If G has H as a star complement of order t, for an eigenvalue $\mu \notin \{-1, 0\}$, then either (a) G has order at most $\binom{t+1}{2}$, or (b) $\mu = 1$ and $G = K_2$ or $2K_2$ [2, Theorem 2.3]. Thus there are only finitely many graphs with a prescribed star complement H for some eigenvalue other than 0 or -1. In these circumstances, it is of interest to investigate properties of H that are reflected in G: connectedness is one such property, as observed in [11, Section 2]. It was shown in [13] that the vertex-connectivity $\kappa(G)$ is controlled by $\kappa(H)$ and the minimum degree $\delta(G)$. In particular, for each $k \in \mathbb{N}$, there exists a smallest non-negative integer f(k) such that

$$\mu \notin \{-1, 0\}, \ \kappa(H) \ge k, \ \delta(G) \ge f(k) \Rightarrow \kappa(G) \ge k.$$

Here we first establish an analogous result for edge-connectivity: for each $k \in \mathbb{N}$, there exists a smallest non-negative integer g(k) such that

$$\mu \neq 0, \ \kappa'(H) \ge k, \ \delta(G) \ge g(k) \Rightarrow \kappa'(G) \ge k.$$
 (1)

The arguments for $\kappa'(G)$ are quite different from those for $\kappa(G)$, and rely on a property of dominating sets. Moreover, whereas little is known about the function f, we find that g(1) = 0 and g(k) = k for all k > 1. (It was shown in [13] that $k \leq f(k) \leq \frac{1}{2}(k-1)(k+2)$, while f(1) = 0, f(2) = 2, f(3) = 3, f(4) = 5, f(5) = 7 and $f(6) \geq 8$.)

We go on to investigate the nature of minimum cutsets of G when $\mu \notin \{-1,0\}$. Following [9], we say that such a cutset E is *trivial* if E consists of the edges containing a vertex v (necessarily of degree $\delta(G)$). The interesting case is that in which G has a nontrivial minimum cutset E not in E(H), for then we can find an upper bound for $\kappa'(G)$ in terms of the spectrum of H. We note some consequences in the case that H is regular and μ is not a main eigenvalue.

2 Preliminaries

We take $V(G) = \{1, \ldots, n\}$, and write $u \sim v$ to mean that vertices u and vare adjacent. The eigenvaues of G are denoted by $\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G)$, in non-increasing order. For $S \subseteq V(G)$, we write G_S for the subgraph induced by S, and $\Delta_S(u)$ for the S-neighbourhood $\{v \in S : v \sim u\}$. For the subgraph H of G we write $\Delta_H(u)$ for $\Delta_{V(H)}(u)$. An all-1 vector is denoted by **j**, its length determined by context.

The following result, known as the Reconstruction Theorem, is fundamental to the theory of star complements. **Theorem 2.1.** (See [8, Theorem 5.1.7].) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\begin{pmatrix} A_X & B^\top \\ B & C \end{pmatrix}$, where A_X is the adjacency matrix of G_X .

(i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$\mu I - A_X = B^{\top} (\mu I - C)^{-1} B.$$
(2)

(ii) If X is a star set for μ then $\mathcal{E}(\mu)$ consists of the vectors $\begin{pmatrix} \mathbf{x} \\ (\mu I - C)^{-1} B \mathbf{x} \end{pmatrix}$ $(\mathbf{x} \in I\!\!R^k).$

Writing H = G - X, we see that the columns \mathbf{b}_u $(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_H(u)$ $(u \in X)$. Thus G is determined by μ , a star complement H for μ , and the H-neighbourhoods $\Delta_H(u)$ $(u \in X)$. From Eq. (2) we have

$$\mathbf{b}_{u}^{\top}(\mu I - C)^{-1}\mathbf{b}_{v} = \begin{cases} \mu \text{ if } u = v \\ -1 \text{ if } u \sim v \\ 0 \text{ otherwise.} \end{cases}$$
(3)

From Eq. (3) we deduce:

Lemma 2.2. (See [8, Proposition 5.1.4].) Let X be a star set for μ in G, and let H = G - X.

(i) If $\mu \neq 0$ then V(H) is a dominating set in G.

(ii) If $\mu \notin \{-1,0\}$, then V(H) is a location-dominating set in G, that is, the H-neighbourhoods $\Delta_H(u)$ ($u \in X$) are non-empty and distinct.

We shall also need the following observation, which follows from the fact the multiplicity of an eigenvalue changes by 1 at most when a vertex is deleted (cf. [8, Corollary 1.3.12]).

Lemma 2.3. If S is a star set for μ in G and if U is a proper subset of S then $S \setminus U$ is a star set for μ in G - U.

The next lemma extends the result of [2] mentioned in Section 1.

Lemma 2.4. (See [13, Proposition 1.5(ii)] Let G be a graph with X as a star set for μ , and let H = G - X. If $\mu \notin \{-1, 0\}$ and $|\bigcup_{i \in X} \Delta_H(i)| = d$, then $|X| \leq {d+1 \choose 2}$.

Recall that μ is said to be a *main* eigenvalue of G if G has a μ -eigenvector not orthogonal to the all-1 vector in \mathbb{R}^n . From the description of $\mathcal{E}(\mu)$ in Theorem 2.1(ii), we have:

Lemma 2.5. (See [6, Proposition 0.3].) The eigenvalue μ is non-main if and only if $\mathbf{b}_u^{\top}(\mu I - C)^{-1}\mathbf{j} = -1$ for all $u \in X$.

Recall that a (κ, τ) -regular set in a graph G is a set S of vertices such that (i) S induces a κ -regular subgraph, and (ii) every vertex not in S has τ neighbours in S. The following observation is implicit in [12, Proposition 1.5]; an alternative argument is given in [1, Theorem 3.2].

Lemma 2.6. Let G be a graph with a κ -regular star complement H for the eigenvalue μ . Then μ is a non-main eigenvalue of G if and only if V(H) is (κ, τ) -regular with $\tau = \kappa - \mu$.

Proof. Let H = G - X. By Lemma 2.5, μ is a non-main eigenvalue if and only if $\mathbf{b}_u^T (\mu - \kappa)^{-1} \mathbf{j} = -1$ for all $u \in X$, equivalently $|\Delta_H(u)| = \kappa - \mu$ for all $u \in X$.

Several structural conditions sufficient to ensure that $\kappa'(G) = \delta(G)$ may be found in the survey paper [9]. An early example is the following result, due to Chartrand [3].

Lemma 2.7. If the graph G has order $n \leq 2\delta(G) + 1$ then $\kappa'(G) = \delta(G)$.

Finally we note a recent result of Cioabă [4] relevant to our consideration of regular star complements.

Theorem 2.8. (See [4, Theorem 1.3].) Let k, s be integers such that $s \ge k \ge 2$, and let H be an s-regular graph of order t. If $\lambda_2(H) \le s - \frac{(k-1)t}{(s+1)(t-s-1)}$ then $\kappa'(H) \ge k$.

3 Edge-connectivity

Theorem 3.1. Let $k \in \mathbb{N}$, and let G be a graph with H as a star complement for a non-zero eigenvalue μ . If $\kappa'(H) \geq k$ and $\delta(G) \geq k$ then $\kappa'(G) \geq k$.

Proof. The result holds for k = 1 because V(H) is a dominating set by Lemma 2.2(i). Accordingly we assume that k > 1 and suppose by way of contradiction that G has a cutset E with $|E| \leq k - 1$. Let V(G) = $U \cup V$, where each edge in E joins U to V. If V(H) meets both U and Vthen $\kappa'(H) < k$, contrary to assumption, and so without loss of generality, $V(H) \subseteq U$. Let u_1, \ldots, u_p be the vertices of U adjacent to V, and let $V = \{v_1, \ldots, v_q\}$. Since V(H) is a dominating set, each vertex of V is adjacent to U. Now we use an argument of Plesnik [10, Theorem 6].

Let $s_i = |\Delta_U(v_i)|$ (i = 1, ..., q). Since v_i is adjacent to at most q - 1 vertices of V, we have

$$s_i + q - 1 \ge \deg(v_i) \ge k \ge |E| + 1$$
 $(i = 1, \dots, q).$

Hence $\sum_{i=1}^{q} s_i + q(q-1) \ge q(|E|+1)$, that is, $|E| + q(q-1) \ge q(|E|+1)$. Hence $q(q-1) \ge (q-1)|E| + q$. Since $|E| \ge q$, this is a contradiction. \Box

Corollary 3.2. Let G be a graph with H as a star complement for a nonzero eigenvalue μ .

(i) If $\kappa'(H) \ge \delta(G)$ then $\kappa'(G) = \delta(G)$.

(ii) If G is regular and $\kappa'(H) \ge k$ then $\kappa'(G) \ge k$.

Proof. (i) Applying Theorem 3.1 with $k = \delta(G)$, we have $\kappa'(G) \ge \delta(G)$. Always $\kappa'(G) \le \delta(G)$, and so the result follows.

(ii) Here Theorem 3.1 applies because $\delta(G) \ge \delta(H) \ge \kappa'(H) \ge k$.

We see that $\kappa'(G)$ is controlled by $\kappa'(H)$ and $\delta(G)$; explicitly, we have $\min\{\kappa'(H), \delta(G)\} \leq \kappa'(G) \leq \delta(G)$. Moreover, for each $k \in \mathbb{N}$, there exists

a least non-negative integer $g(k) \leq k$ such that the relation (1) holds. The following example shows that g(k) = k for all k > 1. (We know already that g(1) = 0, because G is connected whenever H is connected.)

Example 3.3. For $k \ge 2$, let G_k be the graph obtained from a (k + 1)clique H_k by adding a vertex of degree k - 1, and let $\mu = \lambda_1(G_k)$. Since G_k is connected, we have $\mu > \lambda_1(H_k)$, and so H_k is a star complement for μ in G_k . Now $\kappa'(G_k) = k - 1 = \delta(G_k)$, while $\kappa'(H_k) = k$. Hence $g(k) \ge k$. \Box

In what follows, we investigate the situations in which a strict inequality holds in the hypotheses of Theorem 3.1, that is either (a) $\kappa'(H) \ge k$ and $\delta(G) \ge k + 1$ (see Corollary 3.5), or (b) $\kappa'(H) \ge k + 1$ and $\delta(G) \ge k$ (see Corollary 3.7).

Proposition 3.4. Let G be a graph with H as a star complement for a non-zero eigenvalue μ . If $\kappa'(H) = \kappa'(G)$ and G has a minimum cutset $E \not\subseteq E(H)$ then $\kappa'(G) = \delta(G)$.

Proof. We define U and V as in Theorem 3.1. Again we may take $V(H) \subseteq U$, for otherwise H can be disconnected by removing the edges in $E \cap E(H)$. If $\kappa'(G) < \delta(G)$ then we have

$$s_i + q - 1 \ge \deg(v_i) \ge \delta(G) \ge |E| + 1 \ (i = 1, \dots, q),$$

and we obtain a contradiction as before.

Corollary 3.5 Let G be a graph with H as a star complement for a non-zero eigenvalue μ . If $\kappa'(H) \ge k$ and $\delta(G) \ge k + 1$ then either (a) $\kappa'(G) \ge k + 1$ or (b) $\kappa'(H) = \kappa'(G) = k$ and every minimum cutset of G lies in E(H).

Proof. By Theorem 3.1, we have $\kappa'(G) \ge k$; moreover, (a) holds if $\kappa'(H) \ge k + 1$. If $\kappa'(G) = k$ then $\kappa'(H) = k$, and (b) holds by Proposition 3.4. \Box

We remark in passing that if E is a non-trivial cutset of G in E(H) then the multiplicity of μ is subject to an upper bound which improves that given in [2, Theorem 2.3]. This last result says that if H = G - X of order t > 4then $|X| \leq {t \choose 2}$. On the other hand, if $V(H) = V_1 \cup V_2$, where each edge in E joins V_1 to V_2 , let $|V_i| = t_i$, $X_i = \{u \in X : \Delta_H(u) \subseteq V_i\}$ (i = 1, 2). Then $t = t_1 + t_2$, where $t_1 \geq 2$ and $t_2 \geq 2$ because E is non-trivial. Moreover, $X = X_1 \cup X_2$ and by Lemma 2.3 we may apply Lemma 2.4 to $G - X_1$, $G - X_2$ to deduce that $|X| \leq {t_1+1 \choose 2} + {t_2+1 \choose 2}$. Now when $t_1 \geq 2$ and $t_2 \geq 2$ we have ${t_1+1 \choose 2} + {t_2+1 \choose 2} \leq {t_1+t_2 \choose 2}$, with strict inequality unless $t_1 = t_2 = 2$.

We say that a set E of edges in G is a k-clique matching if E consists of independent edges $u_i v_i$ (i = 1, ..., k) such that the vertices $v_1, ..., v_k$ induce a clique which is a component of G - E. (Note that, in a connected graph, a 1-clique matching is a trivial minimum cutset consisting of a pendant edge.) For a vertex v of G we write E(v) for the set of edges containing v.

Proposition 3.6. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin \{-1, 0\}$. If $\kappa'(H) \ge \kappa'(G) = k$ and E is a minimum cutset of G then one of the following holds:

(a) $\kappa'(H) = k$ and $E \subseteq E(H)$;

(b) E = E(v) for some $v \notin V(H)$;

(c) $E \cap E(H) = \emptyset$ and E is a k-clique matching.

Proof. Note first that if $E \subseteq E(H)$ then $\kappa'(H) = k$, and (a) holds. Now suppose that $E \not\subseteq E(H)$. Since $\kappa'(H) \ge k$ we have $E \cap E(H) = \emptyset$, and we may define U, V as before, with $V(H) \subseteq U$. In the notation of Theorem 3.1 we have

$$s_i + q - 1 \ge \deg(v_i) \ge \delta(G) \ge \kappa'(G) = |E| \quad (i = 1, \dots, q), \tag{4}$$

whence $\sum_{i=1}^{q} s_i + q(q-1) \ge q|E|$, that is,

$$q(q-1) \ge (q-1)|E|.$$

If q = 1, we have case (b). If q > 1 then $q \ge |E|$ and necessarily q = |E| = k. In this situation, $\sum_{i=1}^{q} s_i = q$ and so all s_i are equal to 1. By Lemma 2.2(ii), the edges in E are independent. Since equality holds throughout Eq. (4), the vertices v_1, \ldots, v_q induce a clique, and so E is a k-clique matching. \Box

Corollary 3.7. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin \{-1,0\}$. If $\kappa'(H) \ge k+1$ and $\delta(G) \ge k$ then either (a) $\kappa'(G) \ge k+1$ or (b) $\kappa'(G) = k$ and every nontrivial minimum cutset of G is a k-clique matching.

Proof. We first apply Theorem 3.1: if $\delta(G) \ge k+1$ then $\kappa'(G) \ge k+1$, and if $\delta(G) = k$ then $\kappa'(G) = k$. In the latter case, (b) follows from Proposition 3.6 because a cutset of size k cannot lie in E(H).

Next we investigate case (c) of Proposition 3.6: we establish a connection between k and the spectrum of H when $\kappa'(H) \ge k$ and G has a k-clique matching $E \not\subseteq E(H)$. Recall that the condition $\kappa'(H) \ge k$ ensures that $E \cap E(H) = \emptyset$.

Theorem 3.8. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin \{-1,0\}$, with $\kappa'(H) \ge \kappa'(G) = k > 1$. Suppose that G has a k-clique matching $E \nsubseteq E(H)$, and let $\nu_1, \nu_2, \ldots, \nu_t$ be the eigenvalues of H in non-increasing order.

(i) If $\mu > -1$ then there exists a smallest h such that $\nu_h < \mu$. In this case, $t \ge h + k - 2$ and $\nu_{h+k-2} \ge \mu - \frac{1}{\mu+1}$.

(ii) If $\mu < -1$ then there exists a largest m such that $\nu_m > \mu$. In this case, $m \ge k$, $\nu_{m-k+1} \le \mu - \frac{1}{\mu+1}$ and $\nu_m \le \mu + \frac{1}{k-\mu-1}$.

Proof. As before, we let $V(G) = U \cup V$, where each edge in E joins U to V and $V(H) \subseteq U$. We apply Theorem 2.1 to the graph obtained from G by deleting the vertices in $U \setminus V(H)$; by Lemma 2.3, H remains a star complement for μ . We have

$$(\mu + 1)I - J = B^{\top}(\mu I - C)^{-1}B$$
(5)

where J is the all-1 matrix of size $k \times k$, C is the adjacency matrix of H and without loss of generality, $B^{\top} = (I|O)$. Since $B^{\top}B = I$, the eigenvalues of $(\mu + 1)I - J$ interlace those of $(\mu I - C)^{-1}$ in accordance with [8, Theorem 1.3.11].

(i) The case $\mu > -1$. If $\nu_t > \mu$ then all eigenvalues of H exceed -1 and so $H = \overline{K_t}$, a contradiction since $\kappa'(H) \ge 2$. Hence there is a smallest h

such that $\nu_h < \mu$, and $(\mu I - C)^{-1}$ has t - h + 1 positive eigenvalues, namely $(\mu - \nu_h)^{-1}, (\mu - \nu_{h+1})^{-1}, \dots, (\mu - \nu_t)^{-1}$ in non-increasing order. Now the k-1 largest eigenvalues of $(\mu+1)I - J$ are all equal to $\mu+1$. By interlacing, $\lambda_i((\mu I - C)^{-1}) \ge \mu + 1 > 0$ $(i = 1, \dots, k - 1)$, and so $t - h + 1 \ge k - 1$; moreover $\mu + 1 \le (\mu - \nu_{h+k-2})^{-1}$. equivalently, $\nu_{h+k-2} \ge \mu - \frac{1}{\mu+1}$.

(ii) The case $\mu < -1$. Since $\mu < 0$, we have $\nu_1 > \mu$ and so there is a largest m such that $\nu_m > \mu$. The negative eigenvalues of $(\mu I - C)^{-1}$ are $(\mu - \nu_m)^{-1}, (\mu - \nu_{m-1})^{-1}, \dots, (\mu - \nu_1)^{-1}$ in non-decreasing order, while $(\mu + 1)I - J$ has k negative eigenvalues. Hence $m \ge k$. By interlacing, $\lambda_{t-k+1}((\mu I - C)^{-1}) \le \lambda_1((\mu + 1)I - J)$, that is, $(\mu - \nu_{m-k+1})^{-1} \le \mu + 1$, equivalently $\nu_{m-k+1} \le \mu - \frac{1}{\mu+1}$. Also by interlacing, $\lambda_t((\mu I - C)^{-1}) \le \lambda_k((\mu+1)I - J)$, that is, $(\mu - \nu_m)^{-1} \le \mu + 1 - k$, equivalently $\nu_m \le \mu + \frac{1}{k-\mu-1}$.

Corollary 3.9. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin \{-1,0\}$, with $\kappa'(H) \ge \kappa'(G) = k > 1$. Suppose that G has a k-clique matching $E \nsubseteq E(H)$.

(i) If $\mu > -1$ then k-1 is bounded above by the number of eigenvalues of H in the interval $[\mu - \frac{1}{\mu+1}, \mu)$.

(ii) If $\mu < -1$ then k is bounded above by the number of eigenvalues of H in the interval $(\mu, \mu - \frac{1}{\mu+1}]$.

We see that (in the situation of Corollary 3.9) for any $\mu \notin \{-1,0\}$, we have $\kappa'(G) \leq 1 + e_H(\mu)$, where $e_H(\mu)$ is the number of eigenvalues of H between μ and $\mu - \frac{1}{\mu+1}$ inclusive. We shall give an example in which this bound is attained for $\kappa'(G) = 3$. The example arises in the context of the following result, where we apply Theorem 3.8 in the case that H is regular and μ is non-main.

Theorem 3.10. Let G be a graph with the s-regular graph H as a star complement for the non-main eigenvalue μ . Let $\kappa'(G) = k$, where $s \ge k > 1$ and let $\nu_1, \nu_2, \ldots, \nu_t$ be the eigenvalues of H in non-increasing order. Suppose that G has a k-clique matching $E \not\subseteq E(H)$. Then $\mu = s - 1$ and the following hold.

- (i) If $\nu_2 \leq s \frac{2(k-1)}{s+1}$ then $\kappa'(H) \geq k$.
- (ii) If $\kappa'(H) \ge k$, l > 2 and $\nu_l < s 1 \frac{1}{s}$ then $k \le l 1$.

Proof. We use the notation of Theorem 3.8. Let G^* be the graph obtained from G by deleting the vertices in $U \setminus V(H)$. Note that μ remains a nonmain eigenvalue of G^* by Lemma 2.5. Since V(H) is an (s, 1)-regular set in G^* , we have $\mu = s - 1$ by Lemma 2.6.

Assertion (i), due to Cioabă [4], holds whether or not μ is a main eigenvalue. Indeed, if H has order $t \leq 2s + 1$ then $\kappa'(H) = s \geq k$ by Lemma 2.7, while if $t \geq 2s + 2$ then $\nu_2 \leq s - \frac{2(k-1)}{s+1} \leq s - \frac{(k-1)t}{(s+1)(t-s-1)}$ and we have $\kappa'(H) \geq k$ by Theorem 2.8.

For (ii) we note that $\nu_1 = s$, and so if $\nu_l < s - 1 - \frac{1}{s}$ then H has at most l-2 eigenvalues in the interval $[s-1-\frac{1}{s},s-1)$. By Corollary 3.9(i), we have $k-1 \leq l-2$.

We illustrate Theorem 3.10 with the following example, found experimentally using the computer package GRAPH [5].

Example 3.11. Let H be the 3-regular graph of order 10 which appears as the second graph in the list of exceptional regular graphs given in [7, Appendix A3.3]. Let G be the graph obtained from H by adding a 3-clique and the 3-clique matching E shown in Fig. 1, where the edges in E join white vertices to black. Note that $\kappa'(H) = 3$, either directly or by Theorem 3.10(i), and $\kappa'(G) = 3$ by construction. The spectrum of G is

$$3.2731, 2^{(3)}, 0.8596, 0^{(2)}, -1^{(2)}, -2^{(3)}, -2.1326,$$

where non-integer eigenvalues are given to four decimal places. The spectrum of H is

$$3, 1.8794^{(2)}, 1, -0.3473^{(2)}, -1.5321^{(2)}, -2^{(2)},$$

and so H is a star complement for 2. By Lemma 2.6, 2 is a non-main eigenvalue of G. In the notation of Theorem 3.10, we have $1 = \nu_4 < s - 1 - \frac{1}{s} = \frac{5}{3}$, and so the bound in Theorem 3.10(ii) is sharp for l = 4. Similarly, the bound in Corollary 3.9(i) is sharp for $\mu = 2$.

Fig. 1. The graph of Example 3.12.

References

- [1] M. Andelić, D. M. Cardoso, S. K. Simić, Relations between (κ, τ) -regular sets and star complements, Czech. Math. J. 63 (2013) 73-90.
- [2] F. K. Bell and P. Rowlinson, On the multiplicities of graph eigenvalues, Bull. London Math. Soc. 35 (2003), 401-408.
- [3] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778-781.
- [4] S. Cioabă, Eigenvalues and edge-connectivity of regular graphs, Linear Algebra Appl. 432 (2010) 458-470.

- [5] D. Cvetković, L. Kraus and S. K. Simić, Discussing graph theory with a computer I: implementation of graph-theoretic algorithms, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 716-734 (1981), 100-104.
- [6] D. Cvetković, P. Rowlinson, S. K. Simić, Some characterizations of graphs by star complements, Linear Algebra Appl. 301 (1999) 81-97.
- [7] D. Cvetković, P. Rowlinson and S. K. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press (Cambridge), 2004.
- [8] D. Cvetković, P. Rowlinson and S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2010.
- [9] A. Hellwig, L. Volkmann, Maximally edge-connected and vertrexconnected graphs and digraphs: a survey, Discrete Math. 308 (2008) 3265-3296.
- [10] J. Plesnik, Critical graphs of given diameter, Acta Fac. Rer. Nat. Univ. Comeniana 30 (1975) 71-92.
- [11] P. Rowlinson, Star sets and star complements in finite graphs: a spectral construction technique, in: Discrete Mathematical Chemistry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.51 (eds. P. Hansen, P. Fowler and M. Zheng), American Math. Soc. (Providence, RI) 2000, pp.323-332.
- [12] P. Rowlinson, Regular star complements in strongly regular graphs, Linear Algebra Appl. 436 (2012) 1482-1488.
- [13] P. Rowlinson, Star complements and connectivity in finite graphs, Linear Algebra Appl. 442 (2014) 92-98.