Accepted refereed manuscript of:

Rowlinson P (2015) Star complements and edge-connectivity in finite graphs, Linear Algebra and Its Applications, 476, pp. 124132.

DOI: 10.1016/j.laa.2015.03.003
© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/

STAR COMPLEMENTS AND EDGE-CONNECTIVITY IN FINITE GRAPHS

Peter Rowlinson ${ }^{1}$
Mathematics and Statistics Group
Institute of Computing Science and Mathematics
University of Stirling
Scotland FK9 4LA

Abstract

Let G be a finite graph with H as a star complement for a non-zero eigenvalue μ. Let $\kappa^{\prime}(G), \delta(G)$ denote respectively the edge-connectivity and minimum degree of G. We show that $\kappa^{\prime}(G)$ is controlled by $\delta(G)$ and $\kappa^{\prime}(H)$. We describe the possibilities for a minimum cutset of G when $\mu \notin\{-1,0\}$. For such μ, we establish a relation between $\kappa^{\prime}(G)$ and the spectrum of H when G has a non-trivial minimum cutset $E \not \subset E(H)$.

AMS Classification: 05C50
Keywords: graph, connectivity, eigenvalue, star complement.

[^0]
1 Introduction

Let G be a finite simple graph with μ as an eigenvalue of multiplicity k. (Thus the corresponding eigenspace $\mathcal{E}(\mu)$ of a (0,1)-adjacency matrix A of G has dimension k.) A star set for μ in G is a subset X of the vertex-set $V(G)$ such that $|X|=k$ and the induced subgraph $G-X$ does not have μ as an eigenvalue. In this situation, $G-X$ is called a star complement for μ in G. We use the notation of [8], where the basic properties of star sets and star complements are established in Chapter 5.

If G has H as a star complement of order t, for an eigenvalue $\mu \notin\{-1,0\}$, then either (a) G has order at most $\binom{t+1}{2}$, or (b) $\mu=1$ and $G=K_{2}$ or $2 K_{2}$ [2, Theorem 2.3]. Thus there are only finitely many graphs with a prescribed star complement H for some eigenvalue other than 0 or -1 . In these circumstances, it is of interest to investigate properties of H that are reflected in G : connectedness is one such property, as observed in [11, Section 2]. It was shown in [13] that the vertex-connectivity $\kappa(G)$ is controlled by $\kappa(H)$ and the minimum degree $\delta(G)$. In particular, for each $k \in \mathbb{N}$, there exists a smallest non-negative integer $f(k)$ such that

$$
\mu \notin\{-1,0\}, \kappa(H) \geq k, \delta(G) \geq f(k) \Rightarrow \kappa(G) \geq k .
$$

Here we first establish an analogous result for edge-connectivity: for each $k \in I N$, there exists a smallest non-negative integer $g(k)$ such that

$$
\begin{equation*}
\mu \neq 0, \kappa^{\prime}(H) \geq k, \delta(G) \geq g(k) \Rightarrow \kappa^{\prime}(G) \geq k \tag{1}
\end{equation*}
$$

The arguments for $\kappa^{\prime}(G)$ are quite different from those for $\kappa(G)$, and rely on a property of dominating sets. Moreover, whereas little is known about the function f, we find that $g(1)=0$ and $g(k)=k$ for all $k>1$. (It was shown in [13] that $k \leq f(k) \leq \frac{1}{2}(k-1)(k+2)$, while $f(1)=0$, $f(2)=2, f(3)=3, f(4)=5, f(5)=7$ and $f(6) \geq 8$.)

We go on to investigate the nature of minimum cutsets of G when $\mu \notin$ $\{-1,0\}$. Following [9], we say that such a cutset E is trivial if E consists of the edges containing a vertex v (necessarily of degree $\delta(G)$). The interesting case is that in which G has a nontrivial minimum cutset E not in $E(H)$, for then we can find an upper bound for $\kappa^{\prime}(G)$ in terms of the spectrum of H. We note some consequences in the case that H is regular and μ is not a main eigenvalue.

2 Preliminaries

We take $V(G)=\{1, \ldots, n\}$, and write $u \sim v$ to mean that vertices u and v are adjacent. The eigenvaues of G are denoted by $\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$, in non-increasing order. For $S \subseteq V(G)$, we write G_{S} for the subgraph induced by S, and $\Delta_{S}(u)$ for the S-neighbourhood $\{v \in S: v \sim u\}$. For the subgraph H of G we write $\Delta_{H}(u)$ for $\Delta_{V(H)}(u)$. An all-1 vector is denoted by \mathbf{j}, its length determined by context.

The following result, known as the Reconstruction Theorem, is fundamental to the theory of star complements.

Theorem 2.1. (See [8, Theorem 5.1.7].) Let X be a set of k vertices in G and suppose that G has adjacency matrix $\left(\begin{array}{cc}A_{X} & B^{\top} \\ B & C\end{array}\right)$, where A_{X} is the adjacency matrix of G_{X}.
(i) Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$
\begin{equation*}
\mu I-A_{X}=B^{\top}(\mu I-C)^{-1} B \tag{2}
\end{equation*}
$$

(ii) If X is a star set for μ then $\mathcal{E}(\mu)$ consists of the vectors $\binom{\mathbf{x}}{(\mu I-C)^{-1} B \mathbf{x}}$ $\left(\mathrm{x} \in \mathbb{R}^{k}\right)$.

Writing $H=G-X$, we see that the columns $\mathbf{b}_{u}(u \in X)$ of B are the characteristic vectors of the H-neighbourhoods $\Delta_{H}(u)(u \in X)$. Thus G is determined by μ, a star complement H for μ, and the H-neighbourhoods $\Delta_{H}(u)(u \in X)$. From Eq. (2) we have

$$
\mathbf{b}_{u}^{\top}(\mu I-C)^{-1} \mathbf{b}_{v}=\left\{\begin{array}{c}
\mu \text { if } u=v \tag{3}\\
-1 \text { if } u \sim v \\
0 \text { otherwise }
\end{array}\right.
$$

From Eq. (3) we deduce:
Lemma 2.2. (See [8, Proposition 5.1.4].) Let X be a star set for μ in G, and let $H=G-X$.
(i) If $\mu \neq 0$ then $V(H)$ is a dominating set in G.
(ii)If $\mu \notin\{-1,0\}$, then $V(H)$ is a location-dominating set in G, that is, the H-neighbourhoods $\Delta_{H}(u)(u \in X)$ are non-empty and distinct.

We shall also need the following observation, which follows from the fact the multiplicity of an eigenvalue changes by 1 at most when a vertex is deleted (cf. [8, Corollary 1.3.12]).
Lemma 2.3. If S is a star set for μ in G and if U is a proper subset of S then $S \backslash U$ is a star set for μ in $G-U$.

The next lemma extends the result of [2] mentioned in Section 1.
Lemma 2.4. (See [13, Proposition 1.5(ii)] Let G be a graph with X as a star set for μ, and let $H=G-X$. If $\mu \notin\{-1,0\}$ and $\left|\cup_{i \in X} \Delta_{H}(i)\right|=d$, then $|X| \leq\binom{ d+1}{2}$.

Recall that μ is said to be a main eigenvalue of G if G has a μ-eigenvector not orthogonal to the all-1 vector in \mathbb{R}^{n}. From the description of $\mathcal{E}(\mu)$ in Theorem 2.1(ii), we have:

Lemma 2.5. (See [6, Proposition 0.3].) The eigenvalue μ is non-main if and only if $\mathbf{b}_{u}^{\top}(\mu I-C)^{-1} \mathbf{j}=-1$ for all $u \in X$.

Recall that a (κ, τ)-regular set in a graph G is a set S of vertices such that (i) S induces a κ-regular subgraph, and (ii) every vertex not in S has τ neighbours in S. The following observation is implicit in [12, Proposition 1.5]; an alternative argument is given in [1, Theorem 3.2].

Lemma 2.6. Let G be a graph with a κ-regular star complement H for the eigenvalue μ. Then μ is a non-main eigenvalue of G if and only if $V(H)$ is (κ, τ)-regular with $\tau=\kappa-\mu$.
Proof. Let $H=G-X$. By Lemma 2.5, μ is a non-main eigenvalue if and only if $\mathbf{b}_{u}^{T}(\mu-\kappa)^{-1} \mathbf{j}=-1$ for all $u \in X$, equivalently $\left|\Delta_{H}(u)\right|=\kappa-\mu$ for all $u \in X$.

Several structural conditions sufficient to ensure that $\kappa^{\prime}(G)=\delta(G)$ may be found in the survey paper [9]. An early example is the following result, due to Chartrand [3].

Lemma 2.7. If the graph G has order $n \leq 2 \delta(G)+1$ then $\kappa^{\prime}(G)=\delta(G)$.
Finally we note a recent result of Cioabǎ [4] relevant to our consideration of regular star complements.

Theorem 2.8. (See [4, Theorem 1.3].) Let k, s be integers such that $s \geq$ $k \geq 2$, and let H be an s-regular graph of order t. If $\lambda_{2}(H) \leq s-\frac{(k-1) t}{(s+1)(t-s-1)}$ then $\kappa^{\prime}(H) \geq k$.

3 Edge-connectivity

Theorem 3.1. Let $k \in I N$, and let G be a graph with H as a star complement for a non-zero eigenvalue μ. If $\kappa^{\prime}(H) \geq k$ and $\delta(G) \geq k$ then $\kappa^{\prime}(G) \geq k$.
Proof. The result holds for $k=1$ because $V(H)$ is a dominating set by Lemma 2.2(i). Accordingly we assume that $k>1$ and suppose by way of contradiction that G has a cutset E with $|E| \leq k-1$. Let $V(G)=$ $U \dot{\cup} V$, where each edge in E joins U to V. If $V(H)$ meets both U and V then $\kappa^{\prime}(H)<k$, contrary to assumption, and so without loss of generality, $V(H) \subseteq U$. Let u_{1}, \ldots, u_{p} be the vertices of U adjacent to V, and let $V=\left\{v_{1}, \ldots, v_{q}\right\}$. Since $V(H)$ is a dominating set, each vertex of V is adjacent to U. Now we use an argument of Plesnik [10, Theorem 6].

Let $s_{i}=\left|\Delta_{U}\left(v_{i}\right)\right|(i=1, \ldots, q)$. Since v_{i} is adjacent to at most $q-1$ vertices of V, we have

$$
s_{i}+q-1 \geq \operatorname{deg}\left(v_{i}\right) \geq k \geq|E|+1 \quad(i=1, \ldots, q)
$$

Hence $\sum_{i=1}^{q} s_{i}+q(q-1) \geq q(|E|+1)$, that is, $|E|+q(q-1) \geq q(|E|+1)$. Hence $q(q-1) \geq(q-1)|E|+q$. Since $|E| \geq q$, this is a contradiction.

Corollary 3.2. Let G be a graph with H as a star complement for a nonzero eigenvalue μ.
(i) If $\kappa^{\prime}(H) \geq \delta(G)$ then $\kappa^{\prime}(G)=\delta(G)$.
(ii) If G is regular and $\kappa^{\prime}(H) \geq k$ then $\kappa^{\prime}(G) \geq k$.

Proof. (i) Applying Theorem 3.1 with $k=\delta(G)$, we have $\kappa^{\prime}(G) \geq \delta(G)$. Always $\kappa^{\prime}(G) \leq \delta(G)$, and so the result follows.
(ii) Here Theorem 3.1 applies because $\delta(G) \geq \delta(H) \geq \kappa^{\prime}(H) \geq k$.

We see that $\kappa^{\prime}(G)$ is controlled by $\kappa^{\prime}(H)$ and $\delta(G)$; explicitly, we have $\min \left\{\kappa^{\prime}(H), \delta(G)\right\} \leq \kappa^{\prime}(G) \leq \delta(G)$. Moreover, for each $k \in \mathbb{N}$, there exists
a least non-negative integer $g(k) \leq k$ such that the relation (1) holds. The following example shows that $g(k)=k$ for all $k>1$. (We know already that $g(1)=0$, because G is connected whenever H is connected.)

Example 3.3. For $k \geq 2$, let G_{k} be the graph obtained from a $(k+1)$ clique H_{k} by adding a vertex of degree $k-1$, and let $\mu=\lambda_{1}\left(G_{k}\right)$. Since G_{k} is connected, we have $\mu>\lambda_{1}\left(H_{k}\right)$, and so H_{k} is a star complement for μ in G_{k}. Now $\kappa^{\prime}\left(G_{k}\right)=k-1=\delta\left(G_{k}\right)$, while $\kappa^{\prime}\left(H_{k}\right)=k$. Hence $g(k) \geq k$.

In what follows, we investigate the situations in which a strict inequality holds in the hypotheses of Theorem 3.1, that is either (a) $\kappa^{\prime}(H) \geq k$ and $\delta(G) \geq k+1$ (see Corollary 3.5), or (b) $\kappa^{\prime}(H) \geq k+1$ and $\delta(G) \geq k$ (see Corollary 3.7).
Proposition 3.4. Let G be a graph with H as a star complement for a non-zero eigenvalue μ. If $\kappa^{\prime}(H)=\kappa^{\prime}(G)$ and G has a minimum cutset $E \nsubseteq E(H)$ then $\kappa^{\prime}(G)=\delta(G)$.
Proof. We define U and V as in Theorem 3.1. Again we may take $V(H) \subseteq$ U, for otherwise H can be disconnected by removing the edges in $E \cap E(H)$. If $\kappa^{\prime}(G)<\delta(G)$ then we have

$$
s_{i}+q-1 \geq \operatorname{deg}\left(v_{i}\right) \geq \delta(G) \geq|E|+1 \quad(i=1, \ldots, q)
$$

and we obtain a contradiction as before.
Corollary 3.5 Let G be a graph with H as a star complement for a non-zero eigenvalue μ. If $\kappa^{\prime}(H) \geq k$ and $\delta(G) \geq k+1$ then either (a) $\kappa^{\prime}(G) \geq k+1$ or $(b) \kappa^{\prime}(H)=\kappa^{\prime}(G)=k$ and every minimum cutset of G lies in $E(H)$.
Proof. By Theorem 3.1, we have $\kappa^{\prime}(G) \geq k$; moreover, (a) holds if $\kappa^{\prime}(H) \geq$ $k+1$. If $\kappa^{\prime}(G)=k$ then $\kappa^{\prime}(H)=k$, and (b) holds by Proposition 3.4.

We remark in passing that if E is a non-trivial cutset of G in $E(H)$ then the multiplicity of μ is subject to an upper bound which improves that given in [2, Theorem 2.3]. This last result says that if $H=G-X$ of order $t>4$ then $|X| \leq\binom{ t}{2}$. On the other hand, if $V(H)=V_{1} \dot{\cup} V_{2}$, where each edge in E joins V_{1} to V_{2}, let $\left|V_{i}\right|=t_{i}, X_{i}=\left\{u \in X: \Delta_{H}(u) \subseteq V_{i}\right\}(i=1,2)$. Then $t=t_{1}+t_{2}$, where $t_{1} \geq 2$ and $t_{2} \geq 2$ because E is non-trivial. Moreover, $X=X_{1} \dot{\cup} X_{2}$ and by Lemma 2.3 we may apply Lemma 2.4 to $G-X_{1}$, $G-X_{2}$ to deduce that $|X| \leq\binom{ t_{1}+1}{2}+\binom{t_{2}+1}{2}$. Now when $t_{1} \geq 2$ and $t_{2} \geq 2$ we have $\binom{t_{1}+1}{2}+\binom{t_{2}+1}{2} \leq\binom{ t_{1}+t_{2}}{2}$, with strict inequality unless $t_{1}=t_{2}=2$.

We say that a set E of edges in G is a k-clique matching if E consists of independent edges $u_{i} v_{i}(i=1, \ldots, k)$ such that the vertices v_{1}, \ldots, v_{k} induce a clique which is a component of $G-E$. (Note that, in a connected graph, a 1-clique matching is a trivial minimum cutset consisting of a pendant edge.) For a vertex v of G we write $E(v)$ for the set of edges containing v.
Proposition 3.6. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin\{-1,0\}$. If $\kappa^{\prime}(H) \geq \kappa^{\prime}(G)=k$ and E is a minimum cutset of G then one of the following holds:
(a) $\kappa^{\prime}(H)=k$ and $E \subseteq E(H)$;
(b) $E=E(v)$ for some $v \notin V(H)$;
(c) $E \cap E(H)=\emptyset$ and E is a k-clique matching.

Proof. Note first that if $E \subseteq E(H)$ then $\kappa^{\prime}(H)=k$, and (a) holds. Now suppose that $E \nsubseteq E(H)$. Since $\kappa^{\prime}(H) \geq k$ we have $E \cap E(H)=\emptyset$, and we may define U, V as before, with $V(H) \subseteq U$. In the notation of Theorem 3.1 we have

$$
\begin{equation*}
s_{i}+q-1 \geq \operatorname{deg}\left(v_{i}\right) \geq \delta(G) \geq \kappa^{\prime}(G)=|E| \quad(i=1, \ldots, q) \tag{4}
\end{equation*}
$$

whence $\sum_{i=1}^{q} s_{i}+q(q-1) \geq q|E|$, that is,

$$
q(q-1) \geq(q-1)|E|
$$

If $q=1$, we have case (b). If $q>1$ then $q \geq|E|$ and necessarily $q=|E|=k$. In this situation, $\sum_{i=1}^{q} s_{i}=q$ and so all s_{i} are equal to 1 . By Lemma 2.2(ii), the edges in E are independent. Since equality holds throughout Eq. (4), the vertices v_{1}, \ldots, v_{q} induce a clique, and so E is a k-clique matching.
Corollary 3.7. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin\{-1,0\}$. If $\kappa^{\prime}(H) \geq k+1$ and $\delta(G) \geq k$ then either (a) $\kappa^{\prime}(G) \geq k+1$ or (b) $\kappa^{\prime}(G)=k$ and every nontrivial minimum cutset of G is a k-clique matching.
Proof. We first apply Theorem 3.1: if $\delta(G) \geq k+1$ then $\kappa^{\prime}(G) \geq k+1$, and if $\delta(G)=k$ then $\kappa^{\prime}(G)=k$. In the latter case, (b) follows from Proposition 3.6 because a cutset of size k cannot lie in $E(H)$.

Next we investigate case (c) of Proposition 3.6: we establish a connection between k and the spectrum of H when $\kappa^{\prime}(H) \geq k$ and G has a k-clique matching $E \nsubseteq E(H)$. Recall that the condition $\kappa^{\prime}(H) \geq k$ ensures that $E \cap E(H)=\emptyset$.
Theorem 3.8. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin\{-1,0\}$, with $\kappa^{\prime}(H) \geq \kappa^{\prime}(G)=k>1$. Suppose that G has a k-clique matching $E \nsubseteq E(H)$, and let $\nu_{1}, \nu_{2}, \ldots, \nu_{t}$ be the eigenvalues of H in non-increasing order.
(i) If $\mu>-1$ then there exists a smallest h such that $\nu_{h}<\mu$. In this case, $t \geq h+k-2$ and $\nu_{h+k-2} \geq \mu-\frac{1}{\mu+1}$.
(ii) If $\mu<-1$ then there exists a largest m such that $\nu_{m}>\mu$. In this case, $m \geq k, \nu_{m-k+1} \leq \mu-\frac{1}{\mu+1}$ and $\nu_{m} \leq \mu+\frac{1}{k-\mu-1}$.
Proof. As before, we let $V(G)=U \dot{\cup} V$, where each edge in E joins U to V and $V(H) \subseteq U$. We apply Theorem 2.1 to the graph obtained from G by deleting the vertices in $U \backslash V(H)$; by Lemma 2.3, H remains a star complement for μ. We have

$$
\begin{equation*}
(\mu+1) I-J=B^{\top}(\mu I-C)^{-1} B \tag{5}
\end{equation*}
$$

where J is the all- 1 matrix of size $k \times k, C$ is the adjacency matrix of H and without loss of generality, $B^{\top}=(I \mid O)$. Since $B^{\top} B=I$, the eigenvalues of $(\mu+1) I-J$ interlace those of $(\mu I-C)^{-1}$ in accordance with [8, Theorem 1.3.11].
(i) The case $\mu>-1$. If $\nu_{t}>\mu$ then all eigenvalues of H exceed -1 and so $H=\overline{K_{t}}$, a contradiction since $\kappa^{\prime}(H) \geq 2$. Hence there is a smallest h
such that $\nu_{h}<\mu$, and $(\mu I-C)^{-1}$ has $t-h+1$ positive eigenvalues, namely $\left(\mu-\nu_{h}\right)^{-1},\left(\mu-\nu_{h+1}\right)^{-1}, \ldots,\left(\mu-\nu_{t}\right)^{-1}$ in non-increasing order. Now the $k-1$ largest eigenvalues of $(\mu+1) I-J$ are all equal to $\mu+1$. By interlacing, $\lambda_{i}\left((\mu I-C)^{-1}\right) \geq \mu+1>0(i=1, \ldots, k-1)$, and so $t-h+1 \geq k-1$; moreover $\mu+1 \leq\left(\mu-\nu_{h+k-2}\right)^{-1}$. equivalently, $\nu_{h+k-2} \geq \mu-\frac{1}{\mu+1}$.
(ii) The case $\mu<-1$. Since $\mu<0$, we have $\nu_{1}>\mu$ and so there is a largest m such that $\nu_{m}>\mu$. The negative eigenvalues of $(\mu I-C)^{-1}$ are $\left(\mu-\nu_{m}\right)^{-1},\left(\mu-\nu_{m-1}\right)^{-1}, \ldots,\left(\mu-\nu_{1}\right)^{-1}$ in non-decreasing order, while $(\mu+1) I-J$ has k negative eigenvalues. Hence $m \geq k$. By interlacing, $\lambda_{t-k+1}\left((\mu I-C)^{-1}\right) \leq \lambda_{1}((\mu+1) I-J)$, that is, $\left(\mu-\nu_{m-k+1}\right)^{-1} \leq \mu+1$, equivalently $\nu_{m-k+1} \leq \mu-\frac{1}{\mu+1}$. Also by interlacing, $\lambda_{t}\left((\mu I-C)^{-1}\right) \leq$ $\lambda_{k}((\mu+1) I-J)$, that is, $\left(\mu-\nu_{m}\right)^{-1} \leq \mu+1-k$, equivalently $\nu_{m} \leq \mu+\frac{1}{k-\mu-1}$.

Corollary 3.9. Let G be a graph with H as a star complement for an eigenvalue $\mu \notin\{-1,0\}$, with $\kappa^{\prime}(H) \geq \kappa^{\prime}(G)=k>1$. Suppose that G has a k-clique matching $E \nsubseteq E(H)$.
(i) If $\mu>-1$ then $k-1$ is bounded above by the number of eigenvalues of H in the interval $\left[\mu-\frac{1}{\mu+1}, \mu\right)$.
(ii) If $\mu<-1$ then k is bounded above by the number of eigenvalues of H in the interval $\left(\mu, \mu-\frac{1}{\mu+1}\right]$.

We see that (in the situation of Corollary 3.9) for any $\mu \notin\{-1,0\}$, we have $\kappa^{\prime}(G) \leq 1+e_{H}(\mu)$, where $e_{H}(\mu)$ is the number of eigenvalues of H between μ and $\mu-\frac{1}{\mu+1}$ inclusive. We shall give an example in which this bound is attained for $\kappa^{\prime}(G)=3$. The example arises in the context of the following result, where we apply Theorem 3.8 in the case that H is regular and μ is non-main.

Theorem 3.10. Let G be a graph with the s-regular graph H as a star complement for the non-main eigenvalue μ. Let $\kappa^{\prime}(G)=k$, where $s \geq$ $k>1$ and let $\nu_{1}, \nu_{2}, \ldots, \nu_{t}$ be the eigenvalues of H in non-increasing order. Suppose that G has a k-clique matching $E \nsubseteq E(H)$. Then $\mu=s-1$ and the following hold.
(i) If $\nu_{2} \leq s-\frac{2(k-1)}{s+1}$ then $\kappa^{\prime}(H) \geq k$.
(ii) If $\kappa^{\prime}(H) \geq k, l>2$ and $\nu_{l}<s-1-\frac{1}{s}$ then $k \leq l-1$.

Proof. We use the notation of Theorem 3.8. Let G^{*} be the graph obtained from G by deleting the vertices in $U \backslash V(H)$. Note that μ remains a nonmain eigenvalue of G^{*} by Lemma 2.5. Since $V(H)$ is an $(s, 1)$-regular set in G^{*}, we have $\mu=s-1$ by Lemma 2.6.

Assertion (i), due to Cioabǎ [4], holds whether or not μ is a main eigenvalue. Indeed, if H has order $t \leq 2 s+1$ then $\kappa^{\prime}(H)=s \geq k$ by Lemma 2.7, while if $t \geq 2 s+2$ then $\nu_{2} \leq s-\frac{2(k-1)}{s+1} \leq s-\frac{(k-1) t}{(s+1)(t-s-1)}$ and we have $\kappa^{\prime}(H) \geq k$ by Theorem 2.8.

For (ii) we note that $\nu_{1}=s$, and so if $\nu_{l}<s-1-\frac{1}{s}$ then H has at most $l-2$ eigenvalues in the interval $\left[s-1-\frac{1}{s}, s-1\right)$. By Corollary 3.9(i), we have $k-1 \leq l-2$.

We illustrate Theorem 3.10 with the following example, found experimentally using the computer package GRAPH [5].
Example 3.11. Let H be the 3 -regular graph of order 10 which appears as the second graph in the list of exceptional regular graphs given in $[7$, Appendix A3.3]. Let G be the graph obtained from H by adding a 3 -clique and the 3 -clique matching E shown in Fig. 1, where the edges in E join white vertices to black. Note that $\kappa^{\prime}(H)=3$, either directly or by Theorem $3.10(\mathrm{i})$, and $\kappa^{\prime}(G)=3$ by construction. The spectrum of G is

$$
3.2731,2^{(3)}, 0.8596,0^{(2)},-1^{(2)},-2^{(3)},-2.1326
$$

where non-integer eigenvalues are given to four decimal places. The spectrum of H is

$$
3,1.8794^{(2)}, 1,-0.3473^{(2)},-1.5321^{(2)},-2^{(2)}
$$

and so H is a star complement for 2. By Lemma 2.6, 2 is a non-main eigenvalue of G. In the notation of Theorem 3.10, we have $1=\nu_{4}<s-1-\frac{1}{s}=\frac{5}{3}$, and so the bound in Theorem $3.10(\mathrm{ii})$ is sharp for $l=4$. Similarly, the bound in Corollary 3.9(i) is sharp for $\mu=2$.

Fig. 1. The graph of Example 3.12.

References

[1] M. Andelić, D. M. Cardoso, S. K. Simić, Relations between (κ, τ)regular sets and star complements, Czech. Math. J. 63 (2013) 73-90.
[2] F. K. Bell and P. Rowlinson, On the multiplicities of graph eigenvalues, Bull. London Math. Soc. 35 (2003), 401-408.
[3] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778-781.
[4] S. Cioabă, Eigenvalues and edge-connectivity of regular graphs, Linear Algebra Appl. 432 (2010) 458-470.
[5] D. Cvetković, L. Kraus and S. K. Simić, Discussing graph theory with a computer I: implementation of graph-theoretic algorithms, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 716734 (1981), 100-104.
[6] D. Cvetković, P. Rowlinson, S. K. Simić, Some characterizations of graphs by star complements, Linear Algebra Appl. 301 (1999) 81-97.
[7] D. Cvetković, P. Rowlinson and S. K. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press (Cambridge), 2004.
[8] D. Cvetković, P. Rowlinson and S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press (Cambridge), 2010.
[9] A. Hellwig, L. Volkmann, Maximally edge-connected and vertrexconnected graphs and digraphs: a survey, Discrete Math. 308 (2008) 3265-3296.
[10] J. Plesnik, Critical graphs of given diameter, Acta Fac. Rer. Nat. Univ. Comeniana 30 (1975) 71-92.
[11] P. Rowlinson, Star sets and star complements in finite graphs: a spectral construction technique, in: Discrete Mathematical Chemistry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 51 (eds. P. Hansen, P. Fowler and M. Zheng), American Math. Soc. (Providence, RI) 2000, pp.323332.
[12] P. Rowlinson, Regular star complements in strongly regular graphs, Linear Algebra Appl. 436 (2012) 1482-1488.
[13] P. Rowlinson, Star complements and connectivity in finite graphs, Linear Algebra Appl. 442 (2014) 92-98.

[^0]: ${ }^{1}$ Tel.: +441786 467468; fax +441786 464551; email: p.rowlinson@stirling.ac.uk

