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a  b  s  t  r  a  c  t

Reducing  building  energy  demand  is a crucial  part  of the  global  response  to  climate  change,  and  evolution-
ary  algorithms  (EAs)  coupled  to  building  performance  simulation  (BPS)  are  an  increasingly  popular  tool
for  this  task.  Further uptake  of  EAs  in  this  industry  is  hindered  by  BPS  being  computationally  intensive:
optimisation  runs  taking  days  or longer  are  impractical  in a time-competitive  environment.  Surrogate
fitness  models  are  a possible  solution  to  this  problem,  but few  approaches  have  been  demonstrated
for multi-objective,  constrained  or discrete  problems,  typical  of  the  optimisation  problems  in  building
design.  This  paper  presents  a modified  version  of a surrogate  based  on  radial  basis  function  networks,
combined  with  a deterministic  scheme  to deal  with  approximation  error  in  the  constraints  by allowing
ulti-objective
onstraints
urrogate
SGA-II

some  infeasible  solutions  in the  population.  Different  combinations  of  these  are  integrated  with  Non-
Dominated  Sorting  Genetic  Algorithm  II (NSGA-II)  and  applied  to three  instances  of  a  typical  building
optimisation  problem.  The  comparisons  show  that the  surrogate  and constraint  handling  combined  offer
improved  run-time  and  final  solution  quality.  The  paper  concludes  with  detailed  investigations  of the
constraint  handling  and  fitness  landscape  to explain  differences  in performance.

© 2015  Published  by  Elsevier  B.V.
. Introduction

The building and construction industry is one which offers
arge potential for reduced environmental impact and improved
ustainability. Buildings are a large contributor to world carbon
missions, particularly due to their heating, cooling and lighting
nergy demands (for example, over 50% of UK carbon emissions are
elated to building energy consumption [1]). Usual practice, driven
y expectation and building function, is for each individual building
o be designed afresh, losing the benefit of mass-production where

 single optimisation process applies to thousands or millions of
nits. This means that improvements in the building design pro-
ess to aid designers in reducing building carbon emissions are an
mportant area of research. Computer-based optimisation methods
re of rapidly-increasing importance in this area.

Several characteristics of building energy optimisation present

 challenge. Each specific problem has a large decision space,
ith a mixture of continuous and discrete variables determining

aried aspects of a building’s design. Typically there are multiple

∗ Corresponding author. Tel.: +44 01786 467462.
E-mail addresses: sbr@cs.stir.ac.uk (A.E.I. Brownlee), j.a.wright@lboro.ac.uk

J.A. Wright).

ttp://dx.doi.org/10.1016/j.asoc.2015.04.010
568-4946/© 2015 Published by Elsevier B.V.
conflicting objectives and constraints: reducing energy demand
conflicts with reducing the building’s capital cost, and both conflict
with increasing the comfort of the building’s occupants. These
factors motivate the use of evolutionary algorithms (EAs), suc-
cessfully applied to a number of applications in this domain [2],
including: heating, ventilating, and air conditioning (HVAC) system
sizing [3]; fenestration [4]; building envelope [5,6]; and building
form [7,8]. Further to the issues above, the building performance
simulations (BPS) used to estimate energy consumption, occupant
comfort and factors affecting capital cost are time-consuming,
taking minutes to hours depending on building complexity and
the modelling accuracy required. This limits the practicality of EAs
for real-world use in this domain; a highly competitive industry
where submission of design solutions are usually time-critical and
optimisation runs must be completed over a night or weekend.

There are many approaches to improving the run-time of EAs:
parallelisation [9], reducing simulation complexity, and fitness
approximation methods such as surrogates [11]. Parallelisation of
fitness evaluations is easily adopted and can be applied along-
side the latter methods, for a multiplicative speed gain. Reducing

the simulation complexity requires problem-specific knowledge,
and has the negative impact of less accurate simulation results
possibly leading the EA to false optima. Surrogate fitness approxi-
mation, where some solutions (including the final returned optima)

dx.doi.org/10.1016/j.asoc.2015.04.010
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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to-wall ratio, and wall/floor material types. The optimisation
also includes variables for the operation of the building’s HVAC
systems. This allows for the final design to be tuned to a particular
operational pattern, for example exchanging an increased capital
A.E.I. Brownlee, J.A. Wright / Appl

re evaluated by the full simulation while others are evaluated
y a much cheaper model offers potential to improve run times
ithout losing accuracy. There are, however, a limited number

f works featuring surrogates for problems with discrete decision
paces, and still fewer looking at problems with constraints or mul-
iple objectives. This has led to minimal adoption of surrogates
n building optimisation, where the problems often exhibit these
haracteristics. The need for greater efficiency of EAs for build-
ng optimisation motivates further research into surrogates that
an simultaneously handle constraints, multiple objectives and dis-
rete or mixed variable types. If successful, such surrogates will
mprove the practicability of EAs for this application area.

Given the above points, this paper explores the use of radial
asis function networks (RBFN) to reduce the number of calls to
he full building performance simulation, by approximating objec-
ive and constraint values. Several contributions are made. The first
s that an existing approach [12] is adapted for multi-objective and
onstrained problems, with a change to the way that categorical
ariables are handled. A separate RBFN for each constraint and
bjective allows for retraining on each independently. The paper’s
econd contribution is Deterministic Infeasibility Sorting (DIS), a
cheme where infeasible solutions are retained in the population
o deal with two issues. One issue is that estimation of constraints
s difficult because an approximation error can mean that the
lgorithm discards feasible solutions that are in truth feasible: par-
icularly problematic with many constraints. The second issue is
hat approximation errors can also affect the dominance relation-
hip between solutions in multi-objective problems. The paper’s
hird contribution is the comparison of several possible approaches
o integrating the surrogate and DIS within Non-Dominated Sorting
enetic Algorithm II (NSGA-II) [13]. Several variants of NSGA-

I are applied to three versions of a mixed-integer, constrained,
ulti-objective building optimisation problem. Comparisons are
ade in both the quality of the final solution sets and conver-

ence speed. It is found that the best performing NSGA-II variant
ffers a performance improvement for two of the three problems
with no significant difference on the third). The final contributions
re a detailed analysis of the constraint handling, to allow greater
nderstanding of the impact of the techniques, and a study of the
roblem’s fitness landscape to aid analysis of the results.

The rest of the paper is structured as follows. Section 2 describes
elated work in this area. Sections 3 and 4 describe the building
ptimisation problem and the proposed modifications to NSGA-II:
he RBFN surrogate; the constraint handling approach; a number of

inor changes to improve performance; and the resulting variants
f NSGA-II. Section 5 describes and discusses experiments tuning
nd comparing the algorithm variants. Sections 6 and 7 provide
eeper analysis of the constraint handling and fitness landscape,
nd Section 8 concludes the paper.

. Related work

There is a rapidly growing body of work on approximating fit-
ess [14,15,11], whether to: reduce calls to the evaluation function
nd decrease running time or other cost; counteract noise; or over-
ome discontinuities in the fitness function. Techniques include:
tness inheritance [10,16]; co-evolved fitness predictors [17];

uzzy matching against an archive [18]; artificial neural networks
19–21]; linear and polynomial regression [22,23]; Gaussian pro-
esses or Kriging [24,25] and probabilistic distributions [26].

Of particular interest for the present work is the combination

f fitness approximation for problems with discrete variables,
ultiple objectives and constraints. Several of the above papers

eported success with surrogates for multi-objective problems.
 recent review [27] on constraint handling approaches in
t Computing 33 (2015) 114–126 115

evolutionary algorithms (EAs) suggests that the use of surrogate
approaches for constraints remains quite rare, and all for problems
with continuous decision variables.

There has, however, been some work on fitness approxima-
tion for discrete problems without constraints, including [28–32].
Tresidder et al. [33] and Zemella et al. [34], make use of surrogates
in EAs for discrete building design problems. Bajer and Holeňa [35]
also used a RBFN surrogate, for a mixed continuous and discrete
problem. In contrast with the present paper, the RBFs were defined
over only the continuous variables, with centres located in clus-
ters determined by Hamming or Jaccard distance on the discrete
variables.

In [12], an RBFN is used as a surrogate for a mixed-integer search
space. The model is used as a filter; too many offspring are cre-
ated each generation and the model is used to choose promising
ones which are then evaluated with the true fitness function and
retained. The technique was applied to intravascular ultrasound
image analysis; this approach is the basis of the method proposed
in this paper.

This paper also describes an operator which allows infeasible
solutions to remain in the population as a means of improving per-
formance for constrained problems. There are many examples of
work in this area, including [36–40].

3. Application

Variants of NSGA-II were applied to a real-world simulation-
based building optimisation problem; this will now be described in
detail. The aim is to find the trade-off between operational energy
use (for heating, cooling and lighting) and construction cost for
a mid-floor of a small commercial office building (Fig. 1), subject
to constraints relating to the comfort of the building’s occupants.
The floor is divided into five rooms, treated as separate zones for
energy and thermal comfort simulation. The two end zones are
24 m × 8 m,  and the three middle zones 30 m × 8 m.  Floor to ceiling
height throughout is 2.7 m.  Building energy consumption strongly
depends on local climate and the experiments in this work placed
the building in three locations: Birmingham (UK), Chicago (IL, USA),
and San Francisco (CA, USA). A building situated in Chicago (hot
summer, cold winter) would be expected to need better insulation
and more artificial heating and cooling than Birmingham, and even
more so San Francisco (more temperate, flatter climates). Conse-
quently these represent three quite different instances of the same
optimisation problem, albeit sharing the same objectives, variables
and constraints.

The optimisation takes place at the building’s detailed design
stage, with overall form and layout fixed. Construction variables to
be optimised are building orientation, glazing type and window-
Fig. 1. The building floor for the optimisation problem for illustration.
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Table 1
Summary of constraints; the abbreviations are used in subsequent references to
individual constraints in the paper.

Abbreviation Description Limit

NSOH Summer overheating: number of hours per year
where zone temperature exceeds 28 ◦C, for North,
West, East, South and Internal zones respectively

≤30
WSOH
ESOH
SSOH
ISOH

NPMV Predicted mean vote: number of hours per year
where the predicted mean vote for zone occupants
falls below −0.5, for North, West, East and South
zones respectively

≤30
WPMV
EPMV
SPMV
IPMV

NCO2 CO2: maximum concentration of carbon dioxide
(parts per million) in the air of North, West, East
and South zones respectively

≤1500
WCO2
ECO2
SCO2

NACH Maximum air change rate: a practical limit to the
air change rate arising from natural ventilation;
the constraints are on the number of hours per

≤0
WACH
EACH
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year where a zone requires an air change rate of
more than 8 air changes per hour

SACH

ost for a building which can be economically run at a lower tem-
erature range. These are the temperature and air flow set-points
thresholds beyond which HVAC systems are switched on) and
tart-stop times for heating and cooling systems. Overall there are

 integer, 30 continuous and 12 categorical variables (the latter
aking one of 2 or 3 values), summarised in Table 14 (A). Gray
oding is used for crossover and mutation operations, allowing the
ame operators to apply across all variables. This means that the
ontinuous variables are discretised for mutation and crossover;
he step size is also noted in the table.

Energy use is determined by the freely-available whole-building
nergy simulation package EnergyPlus (E+) [41]. This models
eating, cooling and lighting loads required to meet predefined set-
oints for measures such as temperature and light level. Energy use
overs a whole year of operation given the weather patterns at each
ocation. The construction cost objective uses a simple function
ased on the Spon’s [42] costs for the materials used and equipment
ize (determined by E+). A run of the E+ simulation takes 1–2 min  on
n Intel i7 2.7 GHz CPU, depending on the specific building config-
ration. Allowing up to six simulations in parallel, a budget of 5000
valuations completes in approximately 24 h (a practical duration
or real-world use).

The optimisation is also subject to 18 inequality constraints
ased on occupant comfort, determined by E+, and summarised in
able 1. They cover hours of overheating during summer months,
arbon dioxide (CO2) concentration (“freshness” of internal air),
redicted mean vote, and maximum air change rate due to nat-
ral ventilation. Predicted mean vote is an estimation of the mean
esponse of a group of people according to the American Society of
eating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

hermal sensation scale, in which +3 is hot, zero is neutral and −3
s cold.

Several assumptions are made about the final working con-
itions for the building that impact on operational energy use
nd comfort. Working hours are 9:00 to 17:00, outside which the
uilding is unoccupied. Each zone has typical design conditions of

 occupant per 10 m2 floor area and equipment loads of 11.5 W/m2

oor area. Lighting is controlled to provide an illuminance of
00 lux at two reference points located in each perimeter zone;

isible as points on the floor of Fig. 1. Infiltration is 0.1 air changes
er hour, and ventilation rates are 8 l/s per person. Heating and
ooling are modelled using an idealised system that provides
ufficient energy to offset the zone loads and meet the zone
ft Computing 33 (2015) 114–126

temperature set-point during hours of operation; free-cooling is
available through natural and mechanical ventilation.

A simplified version of the same problem formed the basis
for experiments describing an approach to multi-criteria decision
making and visualisation in [43].

4. Algorithms

This section describes the proposed surrogate, constraint
handling technique, a number of minor changes to improve perfor-
mance, and methods by which all of these can be integrated within
NSGA-II.

4.1. RBFN surrogate

Radial basis function networks (RBFN) are fully connected feed-
forward artificial neural networks which can be used for function
interpolation [44], providing a mapping from a set of real-valued
inputs to a set of real-valued outputs. They have been applied as
surrogates for evolutionary algorithms in several previous works
including [45,12,46,47]. Li et al. [12] noted that an RBFN can be used
for approximation in many different decision spaces, as long as an
appropriate distance measure can be defined. This makes RBFNs
particularly suitable for a problem with mixed variable types such
as the example building problems.

For the distance measure, the present research adopts the Het-
erogeneous Euclidean-Overlap Metric (HEOM) approach suggested
by Wilson and Martinez in [48] to combine distances for different
parameter types. Li et al. [12] also used the measure within a RBFN
meta-model for a mixed-integer search space. Solutions are divided
into three components; real/continuous, integer and non-numeric
or categorical parameters. Continuous and integer parameters are
normalised to the range (0,1) prior to calculating the distance met-
ric. The total raw distance � is the combination of the Euclidean �r,
Manhattan �z and Hamming �d distances between these param-
eters respectively:

� =
√

�r + �z + �d. (1)

In normalising the variables to (0,1), categorical variables are
over-weighted compared to integer and continuous variables.
While the mean distance between two normally distributed ran-
dom variables with a range of (0,1) is 1/3, if the variables are
restricted to 0 or 1, the mean distance is 1/2. To correct for this, a
weight that will be termed the Hamming weighting ω is introduced,
changing the distance measure to (2).

� =
√

�r + �z + ω�d (2)

ω is 2/3 so the mean contribution to the total distance that a cat-
egorical variable makes is 1/3, equal to that for the other variable
types. This could also apply to the integer variables but the prob-
lem is much reduced because the lowest cardinality for the integer
variables in the example building optimisation problem is 7, for
which the mean difference between a pair of variables is 0.38. An
experiment exploring the impact of Hamming weighting further is
described in Section 5.4.

4.1.1. Training
Training of the RBFN takes three steps: determining the centres

for the hidden layer nodes, the widths for the Gaussian func-
tions, and the output layer weights. This work adopts the common

practice that the first two steps are unsupervised and the last step is
supervised. For determining the ideal cluster size and determining
when to retrain the RBFN, the fitness prediction correlation (FPC)
[49] is used to measure the model’s accuracy. The FPC is Spearman’s
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evaluated, it is divided into feasible and infeasible solutions, and the
feasible solutions are non-dominating sorted (with crowding dis-
tance applied). The infeasible solutions are sorted using NSGA-II’s
fast non-dominated sort, ignoring the magnitude of their constraint
Fig. 2. Core

ank correlation [50], between the true constraint/objective values
nd the surrogate predicted values, for a solution set.

Typically, a clustering algorithm such as k-means is used to
ocate the centres for RBFN hidden layer nodes, or the centres are
imply the set of training points as in [12]. However, training time
or the output layer weights increases rapidly with the number of
raining points. Karakasis and Giannakoglou [51] also suggested
hat using the training patterns as centres is suboptimal for multi-
bjective problems. The present work uses a clustering algorithm
o determine the centres. k-medoid rather than k-means clustering
s used, so the centres represent real points in the discrete decision
pace. This is necessary as it is impossible to interpolate between
oints separated by categorical values.

To find a suitable number of clusters, 1000 solutions were gener-
ted at random, and the network was repeatedly trained on random
ubsets of solutions (subset sizes matched the population sizes
n Section 5). The FPC was calculated for objective and constraint
redictions of the remaining solutions, and was highest when the
umber of clusters was one third of the population size.

The width for each hidden node RBF is the root mean square
istance from that node’s centre to the centres of the two nearest
eighbours. Least squares fitting is used to determine the output

ayer weights.

.1.2. Integrating the surrogate with NSGA-II
For convenience, the core of NSGA-II [13] is reproduced in Fig. 2.

he important modification is at step 11: too many offspring are
enerated, and the surrogate filters promising solutions for inclu-
ion in the new population (Fig. 3).

The surrogate is initially trained using the starting population
0. Then, in place of the original offspring creation step, standard
rossover and mutation operators are used to generate a surrogate
opulation S, of size |S|, a multiple of the population size |P|. The
urrogate approximates objective and constraint values in S, and
SGA-II’s fast-non-dominated-sort ranks S by feasibility and non-
ominance, with the highest ranking solutions inserted into the
ffspring population R. R is evaluated using the full fitness func-
ion (the building performance simulation), and model accuracy is
hecked to determine if retraining is needed. NSGA-II continues to
he next generation as usual.

.1.3. Model updates
A separate RBFN is used for each objective and constraint,

llowing each to be retrained as needed. FPC determines model
ccuracy for each objective and constraint every generation, using

he filtered offspring solutions (Qt+1), after evaluation by the full
imulation. (This approach is termed evolution control [14].) The
hreshold FPC for retraining was 0.7, representing a strong statisti-
al correlation between predicted and true values. The solutions of
GA-II [13].

the most recent generation (both parents and offspring) were used
as training data.1

4.2. Constraints

In applying an EA to a constrained problem, an important con-
sideration is how constraints are handled alongside the objective
values of solutions. This is further complicated by the possibility of
approximation error caused by the surrogate resulting in solutions
being incorrectly classified as (in)feasible.

Surveys of EA constraint handling approaches [52,53,27] have
identified four categories: penalty functions, decoders, special
operators and separation of objectives and constraints, the last
being used in NSGA-II (classed as a feasibility rule in [27]). The
concept (originally proposed by Deb [13,54]) is simple; when com-
paring solutions (either in tournament selection, or elitism):

1. Of two  feasible solutions, choose the one with the best objective
function(s).

2. Of an infeasible and a feasible solution, choose the feasible one.
3. Of two infeasible solutions, choose the one with the lowest sum

of normalised constraint violations.

Mezura-Montes and Coello [27] describes several new categories
of approach, and of these, the present work builds on stochastic
ranking and use of multi-objective concepts.

A number of studies have shown that inclusion of infeasible
solutions in the population is beneficial (see Section 2). The argu-
ment can be made that often infeasible solutions which are almost
feasible are valuable stepping stones between feasible regions of
the search space. Further, when approximating constraint values,
there is a risk that some solutions will be incorrectly classified as
infeasible, and it is better to increase the chance that they will be
retained.

The method proposed here takes a deterministic approach,
referred to as Deterministic Infeasibility Sorting (DIS). The elitist
component of NSGA-II was  modified to ensure that a fixed propor-
tion  ̨ of the population is taken from the set of infeasible solutions,
unless the set is smaller than the ˛-proportion, in which case all are
copied into the new population. Like [38,39], after the population is
1 A small number of runs of NSGA-II-S (see Section 4.3) with retraining based on
the previous four generations’ worth of solutions found no significant difference
between that and using only the previous generation.
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Fig. 3. Amende

iolations (so, using only objective values). The top ˛|P| solutions
rom the ranking are combined with the highest ranking feasible
olutions to form the next population of size |P|.

This is similar to the approach in [38,39], although simpler. DIS
oes not substitute constraint violation with an extra objective,

nstead ignoring constraint violation completely in the infeasible
opulation. Additionally, selection for reproduction still favours
easible solutions. DIS can be applied in two places; in the elitist
tep of the core algorithm, and in the surrogate filtering step. Both
pproaches are explored.

.3. Algorithm variants

The experiments covered several variants of NSGA-II, including
ifferent approaches to surrogate and constraint handling. NSGA-II
efers to the original algorithm of Deb et al. [13]. Use of the surrogate
s denoted with suffix -S. DIS, if present in the elitist step of NSGA-II,
s denoted by subscript c, and if present in the surrogate filtering
tep, is denoted by subscript d. Overall, we have:

. NSGA-II-S: NSGA-II, with RBFN surrogate, and original NSGA-II
constraint handling;

. NSGA-IIc: NSGA-II, with DIS at elitist step;

. NSGA-II-Sc: NSGA-II, with RBFN surrogate and DIS at elitist step;

. NSGA-II-Sd: NSGA-II, with RBFN surrogate and DIS at surrogate
filtering step;

. NSGA-II-Scd: NSGA-II, with RBFN surrogate and DIS at both elitist
and surrogate filtering steps.

Minor changes were made to the base NSGA-II algorithm and all
ariants. To maximise efficient use of the 5000 evaluation quota,
opulation size was small. An external archive was  added to the
lgorithm to store the Pareto front, allowing a bigger front than the
opulation size to be returned. The algorithm attempts to insert
very solution evaluated into the archive, and the same dominance

ules used by NSGA-II are used to determine which solutions stay
n the archive.

An internal cache of previously-evaluated solutions was  main-
ained for each run, to avoid re-evaluating identical solutions.
 11 in NSGA-II.

Solutions drawn from the cache did not count towards the limit
of 5000. Six threads were used to conduct evaluations in parallel.

Optimisation variables were handled as Gray-encoded bit-
strings during crossover and mutation to simplify operator choice
(bit-flip mutation and uniform crossover). The surrogate operated
directly on the unencoded continuous, integer and categorical vari-
able values.

5. Experiments and results

Three sets of experiments compared the performance of the dif-
ferent approaches to constraint handling and the surrogate. Firstly,
the algorithm variants were tuned on the Birmingham problem.
Secondly, all variants were compared on the Birmingham problem.
Thirdly, a subset were compared on the Chicago and San Francisco
problems. All runs were restricted to 5000 true evaluations, and
comparisons were made of the final Pareto fronts returned. The
goal was to find the algorithm setup returning the highest hypervol-
ume  and lowest spread metric for the same number of evaluations
(i.e., better quality solutions for the same effort). Also given are
comparisons of the effort required to reach the same quality of
solutions.

5.1. Parameter tuning

Preliminary runs aimed to find good parameters for the algo-
rithm and variants: the parameters tuned and the value for each
yielding the highest mean hypervolume is given in Table 2. Each
run was limited to five repeats (limited by the time needed for a
single run: around one day).

5.2. Comparisons for Birmingham

Each NSGA-II variant was run 30 times: Table 3 gives the mean
hypervolume and spread for the Pareto fronts found. To avoid issues

with multiple t-tests, a Dunnett test for significance using plain
NSGA-II as the base-case was performed: the resulting p-values
are also given. Analysis of variance also found that P < 0.05 for the
null hypothesis that the results from all runs were drawn from the
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Table  2
Parameter setting experiments. The range of parameters, and the value producing
the best hypervolume for all algorithms.

Parameter Values tried Best value

Population size 15, 20, 30, 60 20
Mutation ratea 0.5/n, 1.0/n, 2.0/n, 4.0/n 4.0/n (NSGA-II,

NSGA-IIc), 1.0/n
(NSGA-II-S variants)

˛ for constraint method at
elitist step

0.1, 0.2, 0.3, 0.4, 0.5 0.2

 ̨ for constraint method at
surrogate filtering

0.1, 0.2, 0.3, 0.4, 0.5 0.3

Number of offspring for
filtering by surrogate
(multiple of pop size)

3, 5, 10, 20, 100 3

a Mutation rates are 1/n, n being the number of bits in the Gray encoding.

Table 3
Optimisation results for the Birmingham problem. The mean hypervolume and
spread (over 30 runs) of the Pareto front found by the NSGA-II variants. Standard
deviations are in subscript. Also given are the p-values from a Dunnett test com-
paring the results of the variants with plain NSGA-II. Bold figures indicate statistical
significance (p < 0.05).

Algorithm variant Hypervolume p Spread p

NSGA-II 0 . 8490.028 n/a 0 . 7960.088 n/a
NSGA-IIc 0 . 8450.022 0.969 0 . 7920.070 1.000
NSGA-II-S 0 . 8560.028 0.783 0 . 8020.092 0.998
NSGA-II-Sc 0 . 8600.024 0.338 0 . 7890.076 0.996
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Table 4
Optimisation results for the Birmingham problem. SR is the percentage of runs
for  each algorithm variant that were successful (reaching the target hypervolume
within the 5000 evaluation budget), and Evals is the mean number of evaluations
taken by successful runs to reach a front with the target hypervolume.

Algorithm variant SR (%) Evals

NSGA-II 50 4017
NSGA-IIc 40 4026
NSGA-II-S 83 3817
NSGA-II-Sc 63 4002
NSGA-II-Sd 0 . 8810.031 <0.001 0 . 8270.052 0.342
NSGA-II-Scd 0 . 8670.027 0.034 0 . 7790.059 0.841

ame distribution. Fig. 4 gives the corresponding median summary
ttainment curves [55]: the curve of points in the objective space
eached by at least half of the repeat runs. A comparison was  also
ade with random search, seeking the set of non-dominated feasi-

le solutions from 5000 randomly generated solutions. None of 30
uns of random search found a feasible solution, whereas all runs of
he NSGA-II variants found solutions meeting all constraints within
984 evaluations.

Although an improvement in final solution quality is useful, at
east as important is reduced overall run-time while achieving the
ame quality of solutions. This is particularly true for the building
ndustry, where timely production of plans for tendering is critical,
nd a speedup of 10–20% could allow an optimisation run to com-
lete overnight rather than postponing a morning’s work. For this

eason, the original results were reprocessed, taking the median
ypervolume reached by NSGA-II (0.8486) as a target, and measur-

ng the number of evaluations taken by each algorithm to find a
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Fig. 4. Summary attainment curve for the Birmingham problem.
NSGA-II-Sd 83 3184
NSGA-II-Scd 73 3340

Pareto set with that hypervolume. The results are given in Table 4;
where a run did not reach the target hypervolume within 5000
evaluations, it was classed as failed.

There are several key points to note. None of the methods
improve or worsen spread significantly. This is important because it
would be less useful to have a set of solutions with improved hyper-
volume if they were unevenly distributed, reducing the choices
available to the decision maker.

DIS (in NSGA-IIc) reduces the performance of NSGA-II, with
lower mean hypervolume and higher mean spread, although nei-
ther difference is statistically significant. This is reflected in a lower
success rate (fewer runs reached the target hypervolume within
5000 evaluations). Further, the median attainment curve for NSGA-
IIc, while dominating part of that for NSGA-II, is dominated at the
high capital cost end by the latter. This point of the front is where
the comfort constraints are more likely to be broken, further ana-
lysed in Section 7. This indicates that DIS improves search efficiency
in parts of the search space with a balanced mixture of feasible and
infeasible solutions, but DIS decreases efficiency where the local
search space is mostly infeasible. Given that all algorithm variants
found feasible solutions within a few hundred evaluations, it would
appear that the feasible region of the search space is large and con-
tiguous enough (further observed in Section 7) to avoid needing to
retain infeasible solutions to help jump gaps in the feasible region.
Instead, DIS adds drag to the search: removing feasible solutions
from the population effectively reduces its size with no countering
benefit, lowering the search speed.

The mean hypervolume of the sets found by NSGA-II-S is higher
than for NSGA-II, though not significantly. This is reflected by an
increased success rate, and the median attainment curve of NSGA-
II-S dominating that of NSGA-II.

More importantly, NSGA-II-S was  further improved by adding
DIS – particularly at the filtering stage (NSGA-II-Sd), where the dif-
ference over NSGA-II is significant. This would appear to be because
DIS compensates for constraint approximation errors made by the
surrogate: further explored in Section 6. Adding DIS at the eli-
tist step (NSGA-II-Sc) also improves final hypervolume, but not
significantly. Adding DIS at both the filtering and elitist steps
(NSGA-II-Scd) is sub-optimal, except at the low-cost end where
the curve for NSGA-II-Scd dominates that for NSGA-II-Sd (similar to
the slight benefit shown for NSGA-IIc vs NSGA-II). A similar effect
occurs when DIS is applied at the elitist step, but when it is already
applied at the filtering stage this benefit is lost due to the drag effect
described earlier. The median attainment curves show no simi-
lar benefit for NSGA-II-Sc. It would appear that the issues related
to constraint approximation have more impact on efficiency than
retaining infeasible solutions in the population.

In practical terms, the real-world benefit of the improved fronts
found by NSGA-II-Sd is substantial. Taking the median summary

attainment curves for NSGA-II and NSGA-II-Sd, and choosing a cap-
ital cost about half way along the curve (£380,000), NSGA-II found
a solution with an annual energy use of 487,65 kWh, and NSGA-II-
Sd found a solution with an annual energy use of 422,34 kWh. This
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Table 5
Optimisation results for Chicago, formatting matches Fig. 3.

Algorithm variant Hypervolume p Spread p

NSGA-II 0 . 6250.107 n/a 0 . 7790.099 n/a
NSGA-II-S 0 . 7160.090 0.001 0 . 8050.057 0.345
NSGA-II-Sd 0 . 7840.095 <0.001 0 . 7030.055 <0.001
NSGA-II-Scd 0 . 6950.093 0.016 0 . 7790.060 0.999

Table 6
Optimisation results for San Francisco, formatting matches Fig. 3.

Algorithm variant Hypervolume p Spread p

NSGA-II 0 . 7270.067 n/a 0 . 7590.070 n/a
NSGA-II-S 0 . 7300.063 0.992 0 . 8100.100 0.069
NSGA-II-S 0 . 7330.064 0.869 0 . 7550.069 0.999
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NSGA-II-Scd 0 . 7270.041 0.990 0 . 7950.075 0.422

aving of 6531 kWh  (13%) per annum will reduce carbon emissions
nd running costs over the lifetime of the building.

.3. Comparisons for Chicago and San Francisco

Further experiments applied NSGA-II, NSGA-II-S, NSGA-II-Sd
nd NSGA-II-Scd to the same building, using the Chicago and San
rancisco weather, for 30 independent runs. As noted in Section 3,
hile the basic problem is similar, the search space and optima

or these problems are expected to be quite different to those
or Birmingham. Compared to the Birmingham climate, Chicago is

ore demanding, requiring high levels of heating in winter and
ctive/mechanical cooling in summer (the building has to work
cross the range). San Francisco has a local micro-climate resulting
n almost no need for heating and mechanical cooling, the build-
ng remaining comfortable with passive operation. Tables 5 and 6
ive the mean hypervolume and spread of the Pareto sets found by
ach algorithm within the 5000 evaluation budget for the two prob-
ems. Table 7 give the success rate for each algorithm (proportion
f runs achieving the median hypervolume reached by NSGA-II:
.6095 for Chicago and 0.7334 for San Francisco). Summary attain-
ent curves for Chicago are given in Fig. 5; those for San Francisco

re excluded as they were all overlaid over each other and add little
o the discussion.

For Chicago, all NSGA-II-S variants found fronts with statisti-
ally significantly higher mean hypervolumes than NSGA-II, and
SGA-II-Sd found fronts with significantly lower (better) spread
alues. This is particularly clear in the median attainment curves;
he curves for all variants dominate that for NSGA-II. As with the
irmingham problem, NSGA-II-Sd performs best, with NSGA-II-S
nd NSGA-II-S performing similarly, both better than NSGA-II.
cd
he issue seen with Birmingham where the attainment curves
oincided for low cost solutions does not appear for Chicago. This
s because the more extreme weather conditions require all the

able 7
ptimisation results for Chicago and San Francisco. SR is the percentage of runs for
ach algorithm variant that were successful (i.e., reaching the target hypervolume
ithin the 5000 evaluation budget), and Evals is the mean number of evaluations

aken by successful runs to reach a front with the target hypervolume.

Algorithm variant Chicago San Francisco

SR (%) Evals SR (%) Evals

NSGA-II 50 3892 50 3620
NSGA-II-S 83 3557 50 3684
NSGA-II-Sd 97 3085 57 3747
NSGA-II-Scd 80 3603 47 3898
Fig. 5. Summary attainment curve for the Chicago problem.

buildings to have heavier construction types (e.g. all solutions have
heavy weight external walls, rather than a variety) in order to meet
the comfort constraints. This moves the buildings from running
close to constraint violation with the lighter construction types to
running safely within the constrained region with heavier types,
making the impact of DIS less than for Birmingham. This also comes
with a higher capital cost for all solutions in the trade-off than for
Birmingham.

For San Francisco, all algorithm variants performed similarly.
There is no statistically significant difference in the hypervolumes
of the fronts found, and success rates are also similar (although
NSGA-II-Sd found the target hypervolume within the 5000 evalua-
tion budget slightly more often than the other variants). Indeed, all
the algorithms converge at approximately the same rate, demon-
strated for NSGA-II and NSGA-IId in Fig. 6.

In part, the difference in algorithm behaviour for the three prob-
lems is due to the constraints. Table 8 shows the mean number of
evaluations taken by runs of NSGA-II to find solutions meeting the
individual constraints (this is not the time taken to find feasible
solutions, which is much longer as all constraints must be simulta-
neously met). Most constraints for Chicago are harder to solve than
for Birmingham, and in turn are harder than those for San Francisco.
This implies that where the constraints are easiest, there is least to
 0
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Fig. 6. Hypervolume reached over function evaluations for the San Francisco prob-
lem.
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Table  8
The number of function evaluations taken by NSGA-II to find solutions meeting the
individual constraints for the three problems (B)irmingham, (C)hicago and (S)an
Francisco. (constraints, left to right, are in the order given in Table 1).

Constraints 1–9
B 14 25 23 37 24 89 142 129 82
C  31 38 33 44 27 382 475 528 350
S  11 11 9 18 8 23 39 28 9

Constraints 10–18
B 13 8 15 16 8 112 38 28 43
C  43 8 8 10 8 120 82 64 58
S  9 8 13 16 8 61 62 142 61

Table 9
The mean hypervolume and spread (over 30 runs) of the Pareto front found by
plain NSGA-II, and NSGA-II-S having Hamming weightings of 2/3 and 1. Standard
deviations are in subscript. The first two  rows duplicate part of Table 3, repeated
here for convenience.

Algorithm variant Hypervolume Spread

NSGA-II 0 . 8490.028 0 . 7960.088

NSGA-II-S with ω = 2/3 0 . 8560.028 0 . 8020.092

NSGA-II-S with ω = 1 0 . 8510.024 0 . 8210.078

NSGA-II-Sd with ω = 2/3 0 . 8810.031 0 . 8270.052

NSGA-II-Sd with ω = 1 0 . 8760.037 0 . 8100.075

Table 10
p-values for unpaired t-tests between hypervolumes for NSGA-II and NSGA-II-S with
the  two Hamming weightings. Different p-value (to Table 3) for NSGA-II vs NSGA-II-S
arises from use of unpaired t-test rather than Dunnett test.

Algorithm variants p

NSGA-II vs NSGA-II-S (ω = 2/3) 0.347
NSGA-II vs NSGA-II-S (ω = 1) 0.710
NSGA-II-S (ω = 2/3) vs NSGA-II-S (ω = 1) 0.524
NSGA-II vs NSGA-II-S (ω = 2/3) <0.001
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• For SOH and CO2, pass precision is high, and fail precision is low.
NSGA-II vs NSGA-II-Sd (ω = 1) 0.003
NSGA-II-Sd (ω = 2/3) vs NSGA-II-Sd (ω = 1) 0.545

.4. Hamming weighting

The weighting for all NSGA-II-S variants was 2/3, justified in
ection 4.1. The optimisation experiment for Birmingham was
epeated with NSGA-II-S and NSGA-II-Sd, using a surrogate with

 Hamming weighting of 1 (the same as [12]). The mean hypervol-
me  and spread of the Pareto fronts found in 30 independent runs
re given in Table 9, alongside results for NSGA-II and NSGA-II-S
ith the Hamming weighting of 2/3, repeated for convenience. t-

ests between the hypervolumes are given in Table 10 (none of the
ifferences for spread were significant).

While hypervolume is higher for the approaches with ω = 2/3
ompared to those with ω = 1, the difference is not significant; the
hange also does not affect whether the hypervolume reached by
SGA-II-S or NSGA-II-Sd is significantly higher than for NSGA-II.
here is no significant difference in the spread for the fronts found
y any of the algorithms; for NSGA-II-S, setting ω = 2/3 improves
pread, but for NSGA-II-Sd setting ω = 2/3 results in poorer spread.

The algorithms with ω = 2/3 did converge more reliably to a front
ith the target hypervolume of 0.8486 within the 5000 evaluations

udget. NSGA-II-S and NSGA-II-Sd reached the target in 83% of the
0 runs. With ω = 1, this dropped to 57% and 67% respectively. This
rovides some justification beyond the theory in Section 4.1 for
sing the Hamming weighting of 2/3.

. Analysis of the constraint handling
This section explores in more detail the success of the surro-
ate in handling constraints. Section 4.1.2 described how, within
t Computing 33 (2015) 114–126 121

NSGA-II-S, the surrogate assigns values to each objective and
constraint for each solution in the surrogate population. A fast-non-
dominated-sort is conducted, and the top ranking N solutions are
evaluated using the full simulation, then combined with the parent
population by the elitist step of NSGA-II. To explore this further,
for one run of NSGA-II-S on the Birmingham problem, the full sim-
ulation was  run for all solutions evaluated by the surrogate. This
amounted to an assessment of the surrogate’s performance over
14,940 solutions. These solutions were divided into four categories
for each constraint:

• Correct fail – predicted to have violated the constraint, which the
simulation confirmed;

• Incorrect fail – predicted to have violated the constraint, but had
not;

• Correct pass – predicted to have met  the constraint, which the
simulation confirmed;

• Incorrect pass – predicted to have met  the constraint, but had not.

These can be compared with:

• True fail – violates constraint, according to the simulation;
• True pass – meets constraint, according to the simulation;
• Predicted fail – violates constraint, according to the surrogate;
• Predicted pass – violates constraint, according to the surrogate.

The counts of solutions in each category were used to calculate,
for each constraint, two  measures borrowed from the information
retrieval community, precision P and recall R [56]:

Precision = Correct passes or fails
Total predicted passes or fails

(3)

Recall = Correct passes or fails
Total true passes or fails

(4)

Precision is the proportion of surrogate predictions which were
correct, and recall is the proportion of true passes or fails that were
predicted as such. Ideally, both measures should be 1 meaning that
all true passes and fails were correctly predicted as such. Pp and Rp

refer to precision and recall for passes, and Pf and Rf for fails. The
results are given in Table 11, together with the FPC and number of
times the surrogate for each constraint was rebuilt over the run.
The abbreviated constraint names are given in Section 3.

Pp exceeds 0.85 for all constraints, except the PMV  constraints,
which have a low mean FPC (<0.3) and a high number of rebuilds
(>95: around one rebuild every third generation). In contrast, Pf is
low for most constraints; exceeding 0.5 for only three of the ACH
constraints (note that for these, FPC is high and rebuilds are low).
This is in part because there are far more true passes than fails, so
with a similar error rate, more passes will be incorrectly classed as
fails than the other way round. The converse of this is shown for
the WPMV  and EPMV constraints, where the number of true passes
is much closer to the number of true fails, and Pp drops (with an
increase in Pf).

The surrogate clearly performs better with some categories of
constraint than others:

• For PMVs, pass precision is worse than for the other constraints
but not low, and fail precision is not high but better than for SOH
and CO2.
• For ACH, pass precision is high, and fail precision is not high but
better than for SOH and CO2.

• Where mean FPC is low, as expected, rebuild count is high.
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Table 11
Summary of the surrogate predictions of the constraints over one run of NSGA-II-S. Tf and Tp are the number of true fails and passes for the constraint. Tp/T is the fraction of
all  solutions evaluated that passed the constraint (intended to give an impression of the constraint’s difficulty). Pf,p and Rf,p are the precision and recall for solutions passing
and  failing to meet the constraint respectively. FPC is the mean fitness prediction correlation for the raw constraint value, and C is the model rebuild count for the surrogate
on  that constraint.

Con Tf Tp Tp/T Pf Rf Pp Rp FPC C

NSOH 892 14,048 0.94 0.07 0.239 0.943 0.798 0.534 59
WSOH 1381 13,559 0.91 0.107 0.482 0.918 0.591 0.518 61
ESOH 1340 13,600 0.91 0.104 0.293 0.915 0.752 0.723 22
SSOH 2680 12,260 0.82 0.18 0.671 0.822 0.332 0.24 97
ISOH  1029 13,911 0.93 0.122 0.277 0.941 0.852 0.92 1
NPMV 3179 11,761 0.79 0.252 0.608 0.828 0.511 0.165 104
WPMV 6475 8465 0.57 0.447 0.78 0.609 0.262 0.149 99
EPMV 6235 8705 0.58 0.46 0.788 0.689 0.336 0.179 106
SPMV 2335 12,605 0.84 0.183 0.561 0.868 0.536 0.287 97
IPMV 542 14,398 0.96 0.097 0.314 0.972 0.89 0.545 53
NCO2 800 14,140 0.95 0.06 0.216 0.948 0.809 0.071 104
WCO2 134 14,806 0.99 0.018 0.06 0.991 0.97 0.045 109
ECO2  275 14,665 0.98 0.039 0.076 0.982 0.964 0.135 107
SCO2  409 14,531 0.97 0.03 0.11 0.973 0.9 0.139 108
NACH 1066 13,874 0.93 0.44 0.093 0.934 0.991 0.889 5
WACH 1308 13,632 0.91 0.825 0.255 0.933 0.995 0.841 9
EACH  1087 13,853 0.93 0.389 0.064 0.931 0.992 0.867 6
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SACH  1121 13,819 0.92 0.213 

For the ACH constraints, which have higher Pf and around the
ame Pp compared with the other constraints, the mean FPC is high-
st and the number of model rebuilds is low. The other constraints,
hich either have very low Pf (SOH and CO2) or lower Pp (PMV),
ave lower mean FPC values, and correspondingly higher rebuild
ounts. This means that where the model is accurately predicting
onstraint passes and fails for solutions it is being kept, and where
t is less successful it is being rebuilt in an attempt to improve
ccuracy. These results provide further evidence that the FPC is

 reasonable measure of the surrogate’s prediction capability, and
uitable for choosing when to rebuild it.

.1. Impact of DIS

As noted above, precision and recall are much higher for passes
han fails. In simple terms, for this problem the surrogate is conser-

ative in its prediction of constraint values, tending to falsely fail
easible solutions rather than allowing infeasible solutions into the
opulation. While this may  be preferable, it means a large number
f solutions with useful genetic material are incorrectly labelled as

able 12
ummary of the surrogate predictions of the constraints for solutions that were lost becau
nd  recall related for solutions passing and failing to meet the constraint respectively. Va

Constraint Pf Rf Pp Rp

NSOH 0.143 0.125 0.978 0.9
WSOH 0.096 0.302 0.941 0.7
ESOH  0.047 0.150 0.971 0.9
SSOH  0.091 0.329 0.952 0.8
ISOH  0.000 0.000 0.974 0.9
NPMV 0.226 0.686 0.818 0.3
WPMV 0.429 0.732 0.516 0.2
EPMV  0.423 0.725 0.552 0.2
SPMV  0.267 0.695 0.811 0.4
IPMV  0.124 0.416 0.956 0.8
NCO2  0.048 0.122 0.963 0.9
WCO2 0.000 0.000 0.991 0.9
ECO2  0.042 0.077 0.991 0.9
SCO2  0.000 0.000 0.991 0.9
NACH 0.143 0.077 0.932 0.9
WACH 0.500 0.317 0.921 0.9
EACH  0.143 0.090 0.934 0.9
SACH  0.029 0.012 0.934 0.9
0.06 0.928 0.982 0.856 8

infeasible and discarded. This motivated the introduction of DIS,
which allows some of the solutions predicted infeasible, but also
predicted high in the objective values, through the filtering on the
good chance that they are (in reality) feasible.

The two DIS variants were: allowing some infeasible solutions
to pass from one generation to the next at the elitist step (NSGA-
IIc); and allowing some solutions predicted infeasible through the
surrogate filtering step (NSGA-II-Sd). To explore the impact of the
latter, the experiment described at the beginning of this section
was repeated, but limited to solutions only included in the pop-
ulation because of DIS (“filtered-in” solutions), and the solutions
which they replaced (“filtered-out” solutions). As there were far
fewer solutions affected by DIS than were presented to the sur-
rogate overall, these results were aggregated from all 30 runs of
NSGA-II-Sd. Table 12 shows the success of the model in approxi-
mating constraints for these two groups of solutions as precision

and recall figures. Figures in bold show where the value is lower
than that for the whole run in Table 11.

Among filtered-out solutions, relative to the overall figures
for precision and recall: 14/18 constraints had lower Pf; 12/18

se they were replaced with infeasible solutions by DIS. Pf,p and Rf,p are the precision
lues in bold are lower than the corresponding values in Table 11.

Pf Rf Pp Rp

81 0.143 0.125 0.978 0.981
96 0.095 0.295 0.939 0.793
02 0.047 0.150 0.971 0.902
02 0.091 0.329 0.952 0.802
84 0.000 0.000 0.974 0.984
75 0.226 0.671 0.805 0.371
27 0.429 0.732 0.516 0.227
54 0.424 0.738 0.565 0.253
07 0.267 0.686 0.803 0.404
13 0.126 0.413 0.954 0.810
05 0.048 0.122 0.963 0.905
75 0.000 0.000 0.990 0.975
82 0.042 0.071 0.990 0.982
54 0.000 0.000 0.991 0.954
65 0.143 0.076 0.931 0.965
62 0.500 0.319 0.922 0.962
60 0.143 0.091 0.935 0.960
73 0.029 0.012 0.935 0.973
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Table  13
Mean true (rather than surrogate predicted) values for overall constraint violation
and  the objectives, for filtered-in and filtered-out solutions. Standard deviations are
omitted because they mean little – the solutions are from various parts of the Pareto
front and have a wide range of objective values.

Filtered-in solutions Filtered-out solutions

True energy 97,378 98,468
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True cost 399,910 40,224
True overall constraint violation 631,602 135,273

ad lower Rf; 8/18 had lower Pp and 9/18 had lower Rp. Among
ltered-in solutions, relative to the overall figures for precision and
ecall: 14/18 constraints had lower Pf; 13/18 had lower Rf; 8/18 had
ower Pp and 9/18 had lower Rp. This means that for the solutions
earest to the feasible/infeasible boundary, most constraints were

ess accurately predicted by the surrogate than was the case for all
olutions. This is hardly a surprise: boundary solutions were likely
o be the point at which any error in approximation would manifest
tself. It does, however, provide some justification for using DIS
o swap some solutions at the feasible/infeasible boundary: if the

odel is less likely to accurately classify these solutions then they
ay  as well be randomly labelled feasible or infeasible, avoiding

ny unhelpful bias introduced by modelling error.
As noted above, the most common error is predicting feasible

olutions as infeasible. An effect of this is that not enough solu-
ions are predicted feasible for DIS to filter them out (enough of the
ltered population is already infeasible). Where DIS does filter solu-
ions in and out, comparing true values for filtered-in solutions with
hose filtered-out showed that the former were higher in overall
onstraint violation (as intended), higher in the cost objective and
ower in the energy objective. 71% of the DIS filtering operations
ed to an increase in the mean true overall constraint violation for
he population; 52% led to a decrease in the mean true energy use
f buildings in the population; 53% led to an increase in the mean
rue capital cost. Mean figures for all filtered-in and filtered-out
olutions are given in Table 13. The lower energy objective values
mong filtered-in solutions appears to contribute to improved per-

ormance when using DIS (NSGA-II-Sd), compared with using the
urrogate alone (NSGA-II-S). The summary attainment curve for the
irmingham problem (Fig. 4) showed that NSGA-II-Sc was able to
nd fronts with lower energy values but not as low capital costs as
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NSGA-II-S. While the difference is slight, the impact of slightly bet-
ter solutions would be amplified as the algorithm runs over many
generations.

7. Analysis of the fitness landscape

It is helpful to understand the fitness landscape for the problem
to determine how difficult it is to model accurately. For single-
objective problems, common approaches include fitness distance
plots [57] and autocorrelation [57]. Both use a single solution, typ-
ically the global optimum, as a starting point. For multi-objective
problems, there are multiple solutions in the Pareto front rather
than one single global optimum, so the picture is more complex.
In the present study, a modified fitness distance plot is used to
illustrate the area immediately around the Pareto front.

As the true Pareto front is unknown, a global Pareto front for
the problem was constructed by taking the set of non-dominated
solutions from the union of all Pareto fronts generated during the
original experimental runs. These experiments covered approxi-
mately two million function evaluations (480 experimental runs of
5000 solutions, with some duplicate solutions). The resulting front
consisted of 120 solutions. For each member of the front, all possible
values were tried for each of its variables (given the discretisation
caused by Gray encoding), one variable at a time. This amounts to
an exhaustive walk around the locality of the Pareto front, cover-
ing 55,101 solutions. The results are given in Fig. 7. The points are
separated using shape and colour into feasible, infeasible and the
original front.

A deeper analysis of the constraints was  performed by sorting
the solutions generated by the stepwise traversal by ascending cap-
ital cost. This set was divided into 10 bands representing increasing
cost. The fraction of solutions in each band that were feasible are
plotted in Fig. 8.

A number of observations about the landscape can be made.

1. No large improvements in either objective can be found near the
global Pareto front without breaking a constraint. This means

that the “global” Pareto front is at least near to locally optimal
and is useful for comparisons. However, without an (impractical)
exhaustive search it is impossible to say that the front is truly,
globally, optimal.

 100000  120000  140000  160000

y (kWh)

ible GlobalPF

eto front for the Birmingham problem.
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. 27,896 (50.6%) of the 55,101 solutions in the immediate neigh-
bourhood of the Pareto front are infeasible. This means that
while considerable effort could be wasted exploring infeasible
solutions, a large proportion of solutions are feasible. The prob-
lem would be much harder were the proportion of infeasible
solutions higher.

. The feasible region around the Pareto front is mostly contigu-
ous. This provides some evidence for the conclusion (Section 5)
that NSGA-IIc did not offer improved performance because there
were not enough gaps in the feasible part of the search space
for including infeasible solutions in the population to give much
benefit.

. One variable (ceiling/floor construction type) has a large impact
on cost, resulting in two duplicates of the Pareto front which are
much higher in cost than most of the other solutions in the plot.

. There are large changes in the objective values (particularly
energy) by simply changing one variable. This means it is harder
to model than a “flatter” landscape would be; so more difficult
for a surrogate to reproduce.

. Within the vicinity of the Pareto front, as capital cost increases,
solutions are more likely to be infeasible. This is of relevance to
the discussion of DIS in Section 5.2.

This experiment was repeated for the San Francisco problem, to
ttempt to further explain the different optimisation results. The
lot is not shown for space reasons, but revealed two points. Firstly,
he range in the energy objective across the solutions is much lower
or the San Francisco problem meaning that once close to the Pareto
ront, crossover and mutation are less likely to generate solutions

ar from it (which would be wasted effort). Secondly, a slightly
igher proportion (51.7%) of the solutions around the Pareto front
re feasible. If these factors simplify the problem, there may  be little
oom for improvement in efficiency over plain NSGA-II.
ft Computing 33 (2015) 114–126

8. Conclusions

This paper has described a constrained, multi-objective prob-
lem, with mixed variable types, from the building design domain.
This application area forms a crucial part of the global response
to climate change, and given the time-constrained nature of the
industry it is important that optimisation approaches are able to
find a high-quality solution or set of solutions as quickly as possible.
To meet this demand, the paper has proposed several variants of
NSGA-II, incorporating RBFN surrogates and an approach to allow-
ing infeasible solutions to remain in the population. These variants
were applied to three instances of the building problem (using dif-
ferent locations for the building weather data). Optimisation runs
were limited to a budget of 5000 function evaluations, and com-
pared both on the quality of solutions found (how close the set was
to the Pareto-optimal set) and on the rate of convergence relative
to plain NSGA-II.

The paper has made a number of contributions. It has proposed
using a separate RBFN surrogate for each constraint and objective
to allow for retraining. To control the retraining the Fitness Predic-
tion Correlation (FPC) is used. An existing approach to using RBFNs
as surrogates has been modified using the Hamming weighting and
k-medoid clustering, to better accommodate categorical variables.
Deterministic Infeasibility Sorting (DIS), a method for including
infeasible solutions in the population, has been proposed, and also
used to mitigate surrogate approximation errors. It was  found that
the optimal configuration for this problem was  NSGA-II-Sd: NSGA-
II, with the surrogate, and DIS applied at the filtering step. This
reliably found better sets of solutions than NSGA-II, more quickly,
for two of the building problem instances. None of the algorithms
showed much difference in performance for the third (easier) prob-
lem instance. The paper has also explored in more detail the effect
on optimisation of the constraint handling approach and the Ham-
ming weighting, and explored the landscape of the fitness functions
to add context to the optimisation results.

There remain some open areas for future work to expand on
that described here. Aside from the obvious routes of exploring
more applications or alternative algorithms to NSGA-II, one area
which will be more difficult to consider is adapting the surrogate
based algorithm to cope with equality constraints. There are very
few examples of this in the literature, one exception being [58]. It
would be interesting to explore further the frequency with which
model building for each of the objectives and constraints recurs
and either use this to switch to different surrogate model types or
to weight the constraints at the surrogate filtering stage to help
mitigate for approximation error.
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Table  14
Summary of variables; ID numbers are used in subsequent references to individual variables in the paper.

ID Name Notes Range &step size

Continuous variables
1 HVAC heating set-point Applies to all zones 18–21, step 0.5
2  HVAC cooling set-point 22–29, step 0.5

3  MechVentMinSPFrac Controls the band of temperatures where mechanical rather than natural ventilation is used;
applies to all zones

0–1.0, step 0.1
4  MechVentMaxSPFrac 0–1.0, step 0.1

5  NatVent Delta Minimum difference between indoor and outdoor temperature for ventilation to be switched on 0–10, step 0.5

6  Orientation Building is symmetrical, so rotation of 90 degrees covers all orientations 0–90, step 5

7  North upper height ratio Each perimeter zone has two horizontal windows, to simulate a single window which can
open at top and bottom to produce a “stack effect” to drive natural ventilation. These control
the height proportional to the floor-to-ceiling height, and the glazed area as a proportion of
the  wall, for each window.

0.4–0.7, step 0.05
8  North lower height ratio 0.5–1.0, step 0.05
9  North upper area ratio 0.1–0.9, step 0.05
10  North lower area ratio 0.1–0.9, step 0.05
11  South upper height ratio 0.4–0.7, step 0.05
12  South lower height ratio 0.5–1.0, step 0.05
13  South upper area ratio 0.1–0.9, step 0.05
14  South lower area ratio 0.1–0.9, step 0.05
15  East upper height ratio 0.4–0.7, step 0.05
16  East lower height ratio 0.5–1.0, step 0.05
17  East upper area ratio 0.1–0.9, step 0.05
18  East lower area ratio 0.1–0.9, step 0.05
19  West upper height ratio 0.4–0.7, step 0.05
20  West lower height ratio 0.5–1.0, step 0.05
21  West upper area ratio 0.1–0.9, step 0.05
22  West lower area ratio 0.1–0.9, step 0.05

23  North open area The proportion of each window which can open for ventilation 0.1–2.3, step 0.05
24  South open area 0.1–2.3, step 0.05
25  East open area 0.1–2.3, step 0.05
26  West open area 0.1–2.3, step 0.05

27  North mech vent rate Mechanical ventilation rate in l/s/person 0.06-0.24, step 0.02
28  South mech vent rate 0.06–0.24, step 0.02
29  East mech vent rate 0.06–0.2, step 0.02
30  West mech vent rate 0.06–0.2, step 0.02

Integer variables
31 Winter morning start Operation times for HVAC systems in perimeter zones (24 h clock) 1–8, step 1
32  Winter evening stop 17–23, step 1
33  Summer morning start 1–8, step 1
34  Summer evening stop 17–23, step 1

35  Winter morning start Operation times for HVAC systems in internal zone (24 h clock) 1–8, step 1
36  Winter evening stop 17–23, step 1
37  Summer morning start 1–8, step 1
38  Summer evening stop 17–23, step 1

Categorical and binary variables
39 External wall type From [59] Heavy, medium, light weighta

40 Internal wall type From [59] Heavy, light weight

41  Floor and ceiling type From [59] Heavy, medium, light weight

42  North upper overhang Presence or omission of shading overhangs above the two rows of glazing in each zone Present, not present
43  North lower overhang Present, not present
44  South upper overhang Present, not present
45  South lower overhang Present, not present
46  East upper overhang Present, not present
47  East lower overhang Present, not present
48  West upper overhang Present, not present
49  West lower overhang Present, not present

50  Glazing type Types from [59]; applies to all zones Standard, low-emissivity

a The weight refers to the effect that the materials have on the thermal response of the building, heavy being slow and light being fast.
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