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ABSTRACT 

The main source of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-

PUFA) in our diet is supplied by fish, and an ever-increasing proportion of these are being 

produced by aquaculture. The drive for the growing market demand and production from 

sustainable sources has led to the use of high-energy (fat) diets and, recently, to the 

replacement of fishmeal and fish oil with non-marine components, such as plant meals and 

vegetable oils that are devoid of n-3 LC-PUFA. Both changes impact greatly on lipid and 

fatty acid metabolism in fish, with health implications for the fish and the human 

consumer. This impact highlights the need to investigate the basic molecular mechanisms 

underlying the regulation of lipid and fatty acid metabolism in fish, specifically focussing 

on the pathways of lipid homeostasis and LC-PUFA synthesis. The aim of this study was 

to develop and utilise Chinook salmon embryo (CHSE-214) cell line as a model for 

Atlantic salmon, Salmo salar L., to enable an integrated approach to study the biochemical 

and molecular regulation of lipid metabolism in fish. In particular, α-linolenic acid (LNA, 

18:3n-3) and linoleic acid  (LOA, 18:2n-6), which are essential fatty acids abundantly 

found in vegetable oils, and are precursors of LC-PUFA, were supplemented in 

combination with other fatty acids, to explore the effect of these on total lipid content, lipid 

class, FA composition and gene expression of CHSE-214 cell line. Total lipid content was 

extracted, followed by determination of lipid class and fatty acid analyses. Gene expression 

analyses of transcription/nuclear factors and various target genes in Atlantic salmon, 

including those involved in pathways of LC-PUFA synthesis and fatty acid oxidation, were 

carried out. The results demonstrated that CHSE-214 cell line, under experimental 

conditions, is able to convert LNA to eicosapentaenoic acid (EPA, 20:5n-3), and LOA to 

arachidonic acid (ARA, 20:4n-6), but not LNA and/or EPA to docosahexaenoic acid 

(DHA, 22:6n-3), highlighting the activity of elongase and desaturase enzymes during the 

conversion process. Changes occurring on the fatty acid profile and also at molecular level 

were observed. Understanding the role that transcription factors play in the regulation of 

lipid biosynthesis in fish will allow endogenous LC-PUFA synthesis to be optimised. The 

results from this study could be used to improve the efficiency of alternative, sustainable 

diets in aquaculture, while maintaining the nutritional quality of farmed fish for the final 

consumer. CHSE-214 cell line can therefore be used as a model to study the molecular 

mechanisms involved in the LC-PUFA biosynthesis, particularly in the conversion of LNA 

to EPA, which can then be reproduced in vivo, saving time and money.
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Chapter 1 

General introduction 

 

Health benefits of n-3 LC-PUFA [original image] 

 

 

“To eat is a necessity, but to eat intelligently is an art” 

Francois de La Rochefoucauld 
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1.1. Lipids and fatty acids 

Lipids, defined as biological substances that are hydrophobic in nature and in many 

cases soluble in organic solvents, such as chloroform, hydrocarbons or alcohols, represent 

a large group of chemically heterogeneous compounds, which can often contain long-chain 

fatty acids (FA) (Smith, 2000). According to their molecular structure, lipids can be 

subdivided into “simple” (yielding at most two types of products on hydrolysis) and 

“complex” groups (yielding three or more products on hydrolysis) (Fahy et al., 2005). 

Moreover, lipids can be classified by their composition as: glycerolipids (containing 

glycerol), phospholipids (phosphoric acid), glycolipids (carbohydrate), sulpholipids 

(sulfur-containing group), sphingolipids (sphingosine or other long-chain base), and ether 

lipids (long-chain alkyl group combined as an ether). Based on their chemical functional 

backbone they can be categorised as polyketides, acylglycerols, sphingolipids, prenols and 

saccharolipids (Fahy et al., 2005). Lipids that are found in animals, including fish, can also 

be classified in two groups according to their solubility: a) neutral, including 

triacylglycerols (TAG), wax esters, sterols, steryl esters, and free FA; and, b) polar lipids, 

including phosphoglycerides, sphingolipids, sulpholipids, and glycolipids (Sargent et al., 

2002).  

 

1.1.1. Fatty acid nomenclature  

As a result of the digestion and metabolism of lipids, smaller molecules called FA 

are produced. Gustone and Norris (1983) suggested the term “fatty acid” to describe any 

aliphatic acid, with a chain of ten or more carbon atoms, which occurs naturally in fats, oils 

and related compounds (lipids), and also for some other acids of closely related structure. 

In the biota, about 40 FA can be found; structural differences exist depending on their 

origin, with the more complex compositions occurring in animal oils in comparison with 
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vegetable oils (VO). FA present in fish oil (FO) can be saturated (all carbons saturated with 

hydrogen) or unsaturated containing double bonds that are usually in cis configuration, and 

are formed by straight chains with even numbers of carbon atoms in their molecules 

(between 12 and 24), ethylenic bonds, and a terminal carboxyl group (Turchini et al., 

2011). 

 Most of the FA are designated on the basis of their chain length, their degree of 

unsaturation (number of double bonds), and the position of their double bonds (Berg et al., 

2002). There are two accepted nomenclature systems used in lipid chemistry and 

aquaculture: the delta (∆) configuration, and the shorthand systems (the omega (ω) / 

normal (n) -designation system), differing from each other in the way they describe the 

double bond position. The delta configuration uses numerical values to indicate the 

position of each double bond in relation to the carboxyl terminus of the chain. The 

shorthand system designates the location of the first double bond from the methyl end of 

FA, but both systems are similar in that they consist of two numbers separated by a colon. 

The number before the colon gives the number of carbons in the chain and the figure after 

the colon denotes the number of double bonds (Gurr et al., 2002). The majority of FA also 

have a common name depending on their origins, and a few of them are just called by their 

Greek-Latin names, reflecting the number of carbon atoms and double bonds they contain 

(Table 1.1) (Sargent et al., 2002).  

 

1.1.2. Saturated, monounsaturated, polyunsaturated and long-chain polyunsaturated 

fatty acids 

Depending on the saturation of the carbon chains, FA are classified as saturated 

(SFA) and unsaturated (UFA). SFA occur naturally in vertebrate species and are the 

simplest FA. These contain the maximum number of hydrogen atoms and no carbon 

double bonds, whereas UFA have C=C double bonds. The UFA can be further divided into 
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monounsaturated fatty acids (MUFA) with one double bond, where oleic acid (18:1n-9) is 

the most commonly found in the animal kingdom (Turchini et al., 2011); and 

polyunsaturated fatty acids (PUFA) with two or more double bonds, both presenting Z (cis) 

configuration. Long-chain polyunsaturated fatty acids (LC-PUFA) are a group of PUFA 

defined by having chain lengths of ≥ C20 and with ≥ three double bonds (Gustone and 

Norris, 1983). 

 

Table 1.1. The trivial names, n-designation, ∆-designation and systematic names of the fatty acids 

used in the current study 

Trivial name n-designation ∆-designation Systematic name 

Saturated    

    Palmitic 16:0 16:0 Hexadecanoic  

Monounsaturated    

    Oleic 18:1n-9 18:19 9-octadecenoic 

    Gadoleic 20:1n-9 20:19 11-eicosenoic 

n-6 family    

    Linoleic 18:2n-6 18:29,12 9,12-octadecadienoic 

    -Linolenic 18:3n-6 18:36,9,12 6,9,12-octadecatrienoic 

    Dihomo--Linolenic  20:3n-6 20:38,11,14 8,11,14-eicostrienoic 

    Arachidonic 20:4n-6 20:45,8,11,14 5,8,11,14-eicosatetraenoic 

n-3 family    

    -Linolenic 18:3n-3 18:39,12,15 9,12,15-octadecatrienoic 

    Timnodonic 20:5n-3 20:55,8,11,14,17 5,8,11,14,17-eicosapentaenoic 

    Clupanodonic 22:5n-3 22:57,10,13,16,19 7,10,13,16,19-docosapentaenoic 

    Cervonic  22:6n-3 22:54,7,10,13,16,19 4,7,10,13,16,19-docosahexaenoic 
 

 

1.1.3. The n-3 and n-6 series 

The n-3 series include α-linolenic acid (LNA, 18:3n-3) and its metabolic LC-PUFA 

products, i.e. eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 

22:6n-3); while the n-6 series include linoleic acid (LOA, 18:2n-6) and its metabolic 

products, e.g. arachidonic acid (ARA, 20:4n-6). All of them play important roles in life and 

health, and PUFA are classified as essential because cannot be produced de novo by 

vertebrates. This means that they must be included in the diet in a proper balance to satisfy 

physiological requirements. Structurally, n-3 and n-6 series PUFA have generally chain 

lengths of C18–C22 and with two to six double bonds. The main difference between them 
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lies on the position of the first bond in the carbon chain; n-6 FA have their first double 

bond between the 6
th

 and the 7
th

 carbon atoms, counted from the methyl (CH3) terminal 

carbon atom, while the n-3 family between the 3
rd

 and the 4
th

 (Gustone and Norris, 1983). 

As both series have vital roles in metabolism, their inclusion in the diet is essential, but 

special attention must be paid in the ratio between them, as some of them, especially EPA 

and ARA, compete for the same enzyme systems including desaturases, elongases, 

cyclooxygenases and lipoxygenases (Okuyama et al., 1997). 

 

1.2. Roles of fatty acids in fish nutrition 

In general terms, essential and non-essential FA are involved in several metabolic 

and physiological processes, such as source of metabolic energy for growth, reproduction, 

swimming, maintenance of the structure and function of cellular biomembranes, eicosanoid 

production, absorption and delivery of lipid-soluble nutrients (e.g. vitamins and carotenoid 

pigments), and lipid homeostasis (Tocher, 2003). This is the reason why particular 

consideration must be taken in current fish feeds regarding dietary oil inclusion.  

 

1.2.1. Energy source 

In all organisms, FA function as storage and generation of metabolic energy in form 

of ATP (adenosine triphosphate), via mitochondrial and peroxisomal -oxidation, mainly 

used for heat production (heterothermic fish) and swimming (Sargent et al., 1989). During 

reproduction FA support the energy requirements of both the parent and the future 

progeny. Energy requirement varies during embryogenesis and early larval development, 

depending on the species (Fraser et al., 1988; Ostrowski and Divakaran, 1991; Rainuzzo et 

al., 1992; Ronnestad et al., 1994, 1995, 1998; Vazquez et al., 1994; Finn et al., 1995; 

Wiegand, 1996; Mourente and Vazquez, 1996; Mourente et al., 1999). SFA and MUFA are 
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the main substrates for energy (Henderson, 1996), whereas PUFA are structural 

components of the cell membrane, and are precursors of biomolecules involved in 

biological processes such as homeostasis, cell signalling and  immune and inflammatory 

responses (Simopoulos, 2008; Catal, 2009). All the aforementioned FA are introduced in 

fish feeds in the form of FO. Other lipid sources (e.g. VO) are also included providing 

SFA, MUFA and PUFA, but no LC-PUFA (Tacon and Metian, 2008). 

 Carnivorous fish have a very limited ability to digest and utilise carbohydrates, 

probably reflecting their low availability in the natural environment. As a result, dietary 

protein and lipid represent the major source of energy, with FA as the main source 

(Watanabe, 1982; Smith, 1989). When formulating diets in the aquaculture industry, 

protein and lipid are the predominant ingredients, followed by carbohydrates and low 

amounts of micronutrients including vitamins and minerals. For some species 

carbohydrates can also be included in significant amounts if their digestibility is improved 

by processing or cooking, and at level between 10% and 20% of total diet (Tocher, 2003). 

Protein is the most expensive basal component in a fish feed, which is why it is important 

to supply the minimum amount required, along with a balanced inclusion of other nutrients 

as a source of energy to guarantee optimal growth. In this sense, dietary lipids are the 

primary source to provide energy, having the highest protein-sparing effect due to the fact 

that lipids provide twice as much energy per unit mass compared to protein and 

carbohydrate (Sargent et al., 1989; Hemre et al., 1995; Bendiksen et al., 2003). Protein-

sparing effect has been defined as a process by which energy is obtained from non-protein 

sources, i.e. lipids and carbohydrates, allowing the protein to be conserved in muscle tissue 

rather than being used as energy source. With this understanding, high-energy diets, which 

are in fact high-oil fat diets, have become very popular in the aquaculture field. However, 

some studies of fish fed with these diets have reported alterations of lipid metabolism, 
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potentially compromising the health and welfare of the fish and, subsequently, the health 

of the human consumers. It has been reported that the use of high-energy diets can also 

change the taste of the final product (Sargent et al., 2002). With most species, lipids can be 

included in the fish diet in a range of 10–20% of the dry weight of the diet, allowing the 

use of protein mainly for growth, and avoiding problems like body lipid deposition that can 

further be reflected in the oily texture of the fish, and could increase the predisposition to 

rancidity (Cowey and Sargent, 1979; Watanabe, 1982; Bell et al., 1998). However, 

Atlantic salmon can tolerate higher lipid inclusion, Hemre and Sandnes (1999) reported 

greater growth in Atlantic salmon, Salmo salar L., fed diets containing 38–47% of lipids, 

compared with fish fed a diet containing 31%. Commercial diets for salmon are rich in oil 

containing 25–35% (Bell et al., 2002). 

 

1.2.2. Structural function (membranes) 

Phospholipids, cholesterol and glycolipids are the major components of vertebrate 

cell and organelle membranes. These provide a semi-permeable barrier between the intra- 

and extracellular environments, regulating movements of metabolites and some nutrients 

into and out of the cell. If the cell membrane composition is altered, the membrane 

permeability barrier properties change too (Alberts et al., 2002). Phosphoglycerides, a 

group of phospholipids, are the major constituents of cell membranes in fish, containing 

mainly 16:0, 18:1n-9, EPA, and DHA (Salem et al., 2001; Sargent et al., 2002). Their role 

is to maintain the structure and metabolic function of cellular membranes. Although n-3 

PUFA are essential for the membrane function in neural tissue, they are also susceptible to 

the attack of oxygen and other organic radicals. The oxidative damage of n-3 PUFA 

present in the membrane can affect the cell membrane structure and fluidity, causing 

pathological effects on cells and tissues (Tocher, 1995, 2003).  
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1.2.3. Metabolic roles 

Dietary lipids are the source for PUFA required for the synthesis of new cellular 

lipids to support growth and reproduction, and for turnover of existing lipids (Sargent et 

al., 2002). Specific essential FA (EFA) requirements have to be determined for each fish 

species, as these vary specifically and quantitatively depending on the stage of the life 

cycle, the habitat (i.e. marine, freshwater), trophic level (i.e. herbivores, carnivores) and 

genetic back-up. A deficiency of EFA would affect biological processes, such as growth 

and reproduction, and in some cases different pathologies can appear, which may lead to 

death (Tocher, 2010). Another aspect to take into consideration when formulating fish diets 

is the competition in terms of desaturase and elongase enzymes that exists between the n-6 

and n-3 PUFA, which in turns depends on their concentration and availability. The best 

results have been reported when EFA requirements and the optimal balance between n-3 

and n-6 PUFA are determined in fish diets (Izquierdo, 1996). 

 

1.2.3.1. Eicosanoids 

The C20 PUFA (i.e. 20:3n-6, ARA and EPA) are precursors of biologically active 

compounds, collectively termed “eicosanoids”, including prostaglandins, prostacyclins, 

thromboxanes, leukotrienes, and lipoxins (Henderson and Tocher, 1987; Sargent et al., 

1995a; Tocher, 1995). The eicosanoids are autocrines and have short half-lives. They are 

involved in the control and regulation of the immune response, inflammatory response, 

cardiovascular tone, renal function, neural function, blood clotting, timing and regulation 

of reproduction, and gene expression processes (De Pablo and Alvarez de Cienfuegos, 

2000; Calder, 2001; Funk, 2001; Yaqoob, 2004). ARA and EPA are precursors of 

eicosanoids, while EPA and DHA are precursors of resolvins, maresins and protectins, the 

latter playing a role in resolving the inflammatory response and resuming homeostasis 
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(Serhan and Petasis, 2011; Weylandt et al., 2012; Tocher, 2015). Eicosanoids are produced 

by all body tissues, and their synthesis is influenced by the availability of C20 PUFA, and 

most importantly the EPA:ARA ratio in cellular membranes, which in turn is largely 

determined by the dietary intake of n-3 and n-6 PUFA (Bell and Koppe, 2011). In 

mammals as in fish, ARA is the main precursor for the production of 2-series prostanoids, 

and 4-series leukotrienes. These have higher biological efficacy in comparison with 3-

series prostaglandins, and 5-series leukotrienes, which are produced from EPA (Tocher 

and Sargent, 1987; Bell et al., 1994, 1996a). Studies in fish suggested that EPA competes 

with ARA in the eicosanoid production, which in turn suppresses the production of ARA-

derived eicosanoids, and increases the EPA-derived eicosanoids, which are less biological 

active (Bell et al., 1994, 1996a). This knowledge must be taken into account when dietary 

FO is replaced by VO in fish diets, trying to avoid or to minimise the alteration of 

EPA:ARA ratio, especially because high incidences of cancer, cardiovascular diseases and 

inflammatory conditions have been reported in developed human populations. This has 

been associated with an increment of LOA in the diet compared with LNA, favouring the 

increment of ARA and eicosanoids (Okuyama et al., 1997; Ruxton et al., 2005). A normal 

physiological mechanism is that during stressful situations eicosanoid production 

increases, but an excessive production can trigger pathological conditions to the fish in first 

instance, and to the final consumer (Bell and Koppe, 2011). 

 

1.2.3.2. Transcription factors involved in lipid metabolism in fish 

There is a large number of genes involved in lipid homeostasis that are regulated at 

the transcriptional level, in order to maintain the balance between lipid uptake, transport, 

deposition, biosynthesis, and metabolism and catabolism (Jump and Clarke, 1999). Lipid-

controlling transcription factors studied in fish include: sterol regulatory element-binding 
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protein (Srebp) 1 and 2, liver X receptor (Lxr), peroxisome proliferator-activated receptors 

(Ppar) α and β and retinoid X receptor (Rxr) (Cruz-Garcia et al., 2009; Turchini et al., 

2011; Minghetti et al., 2011; Carmona-Antoñanzas et al., 2014).  

 

1.3. Fatty acid metabolism 

 

1.3.1. Digestion 

From the literature it is known that the digestion process in fish is most likely the 

same as in mammals (Sargent et al., 1989). However, it is always possible to find 

differences related to the anatomical body composition between fish species. The digestion 

process occurs in the intestinal lumen, with absorption in the intestinal epithelial of the 

enterocytes and subsequent transport of absorbed lipids through lymph or blood (Tocher, 

2003).  

Digestion of lipids involves some enzymes (lipases) that can be found mainly in the 

proximal part of the intestine and the pyloric caeca, if present, which also prolongs 

exposure time to digestive enzymes and provides a greater surface area for absorption. The 

main source of digestive lipase enzymes in fish is the pancreas or hepatopancreas and, in 

some species, intestinal cells can actively secrete lipolytic enzymes (Fänge and Grove, 

1979). Some extrinsic and intrinsic factors can influence the apparent digestibility of 

dietary lipids, such as the temperature and/or the degree of lipid saturation (Leger, 1985). 

Hydrolytic enzymes include triacylglycerol lipases, phospholipases and bile salt-activated 

lipase, and there are also other less common enzymes, such as cholesteryl ester hydrolase 

(Sargent et al., 2002). 
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1.3.2. Absorption and transportation 

Free FA are the main product of lipid digestion in fish. In addition to these, acyl 

glycerols, 2-monoacylglycerols, diacylglycerols and glycerol are produced from the 

digestion of triacylglycerols; 1-acyl-lysoglycerophospholipid is produced from the 

digestion of phosphoglycerides, and cholesterol and long-chain alcohols from the 

hydrolysis of cholesteryl and wax esters, respectively. These products are solubilised or 

emulsified in bile salt micelles, which can pass through the intestinal mucosa by passive 

diffusion. This event can happen throughout the whole intestine, but in smaller quantities 

in distal portions. Inside the intestinal mucosal cells, free FA are re-esterified with 

glycerol, partial acylglycerols, and lysophospholipids to reform triacylglycerols and 

phosphoglycerides (Tocher, 2003). Lipids are exported from the intestine as chylomicrons 

and very low density lipoprotein, generally called “lipoproteins”, synthesised in the 

intestine and liver, respectively, and in this form, they can be transported via lymph and 

blood to the sites of conversion, storage or energy utilisation (Tocher, 2003).  

 

1.3.3. Biosynthesis (of FA and PUFA) 

All organisms, including fish, are able to synthesise SFA, such as palmitic acid 

(16:0) and stearic acid (18:0), de novo, which are the main products of the fatty acid 

synthase (FAS) enzyme complex. These two FA can be desaturated by the action of 

stearoyl-CoA desaturase, a desaturase that introduces a double bond into 16:0 and 18:0 at 

the ∆9 position producing 16:1n-7 (palmitoleic acid) and 18:1n-9 (oleic acid), respectively. 

However, under normal feeding conditions, most of the SFA and MUFA are suggested to 

be obtained from the diet (Tocher, 2003). C18 PUFA, such as LOA and LNA, cannot be 

synthesised in vertebrates, and therefore, must be included in fish diets. In some species, 

these EFA can be further desaturated and elongated to form the LC-PUFA, such as ARA, 



Olga Liliana Rubio Mejía  CHAPTER 1 
 

 12 

EPA and DHA (Figure 1.1), which appear in high concentrations in fish body tissue. These 

enzymatic reactions occur in the microsomal fraction of cells in various tissues, and 

although there is competition for the enzymes, the affinity of desaturases and elongases is 

generally higher for n-3 rather than for the n-6 series (Stubbs and Smith, 1984; Tocher et 

al., 1989; Gregory et al., 2011). 

 

Figure 1.1. Schematic pathways of biosynthesis of long-chain polyunsaturated fatty acid in fish. 

Modified from Tocher (2015) 

 

1.3.4. Essential fatty acids (EFA) 

FA can be classed as essential if they are not synthesised by the organism, or non-

essentials if they are. No vertebrate can synthesise PUFA from MUFA, and so PUFA in 

general are essential. Thus, EFA must be provided by the diet, whilst non-essential FA can 

be synthesised de novo by pathways from non-lipid sources that are similar in mammals 

(Henderson, 1996). SFA, MUFA and PUFA are found in most living organisms, but n-3 

LC-PUFA are mainly in marine organisms, which is explained by the fact that 16:0 and 

18:0 can be synthesised de novo by all the organisms (Sargent et al., 2002). Fish species 

can desaturase (via the microsomal 9-desaturase) 18:0 to produce 18:1n-9, but the latter 

cannot be further converted to LOA and LNA, because of the lack of both 12 and 15 

desaturases, which makes these last two PUFA essential (Tinoco, 1982; Stubbs and Smith, 

1984; Holman, 1986). Given this, the FA to be considered in fish diets are ARA, and its 
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metabolic precursor LOA, together with  EPA, DHA, and their metabolic precursor LNA 

(Sargent et al., 2002).  

 

1.3.5. Catabolism and other pathways 

Excess dietary lipid is stored mainly in adipose tissue as TAG to cover future 

energy requirements, representing the most important source of FA for catabolism (Nelson 

and Cox, 2008). FA -oxidation is a metabolic process that takes place mainly in the 

mitochondria (in all tissues), but also in the peroxisomes. It comprises four reactions: 

oxidation, hydration, second oxidation and thiolysis to produce acetyl-CoA (Gurr et al., 

2002). The main purpose of this process is to generate energy from FA by oxidising fatty-

acyl-CoA at the -carbon position, and sequentially removing two carbon units 

(Henderson, 1996). Once the acetyl-CoA is produced, it enters the citric acid (Krebs) cycle 

to produce FADH2 and NADH. These last two molecules are further transferred to the 

electron transport chain, providing the energy for ATP production and oxidative 

phosphorylation. If fatty-acyl-CoA have more than 12 carbon atoms in their chain, they 

require to be linked to carnitine via carnitine palmitoyltransferase (CPT-I and CPT-II) and 

a translocase to enter the mitochondrial matrix. In peroxisomal -oxidation two-carbon 

acyl-CoA and hydrogen peroxide are produced instead of FADH2. As this system cannot 

oxidise long-chain fatty-acyl-CoA completely, its function is to shorten long and very-long 

FA chains, which can be later transferred to the mitochondria for oxidation via acyl-

carnitines (Henderson, 1996). SFA and MUFA (16:0; 18:1n-9; 20:1n-9; and 22:1n-11) are 

reported as the preferred FA substrates for mitochondrial -oxidation in fish, while PUFA 

and LC-PUFA (i.e. EPA and DHA) are more retained in tissues to cover other metabolic 

functions (Sargent et al., 2002). 
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1.4. Fatty acids in fish nutrition 

 

1.4.1. Fish and aquaculture 

Over time, different activities have been developed in order to satisfy human food 

requirements. However, many of these activities were primarily focused on the quantity 

rather than the quality of the final food product. This trend has changed recently, with 

more importance being given to the nutritional composition of food and how it affects 

human health, prioritising those dietary components that are beneficial to humans. Highly 

relevant to these activities are fish and seafood represented by wild capture fisheries and 

aquaculture, which are both focused on the production of food with high nutritional 

content. In particular, it is important to highlight that the products derived from these 

activities represent the main source of so-called “omega-3” FA, the n-3 LC-PUFA, EPA 

and DHA, which are involved in mechanisms of prevention and modulation of 

cardiovascular diseases, autoimmune diseases, hypertension and neurodegenerative 

diseases, e.g. “Alzheimer” (Givens and Gibbs, 2006). 

Traditionally fishmeal (FM) and FO were the main ingredients for fish feeds; 

however, the drive for increasing production and sustainable development has led to the 

use of high-energy (fat) diets. The main strategy has been the replacement of FM and FO 

with non-marine components, such as plant meals and VO that are devoid of n-3 LC-

PUFA (Bell et al., 1998). Both of these changes impact greatly on lipid and FA 

metabolism of the fish, and on health, not only of the fish, but also of the human consumer 

(Bell et al., 2001, 2003a; Pratoomyot et al., 2008; Betancor et al., 2015). 

As aquaculture has been growing faster in recent years, researchers from all over 

the world have become interested in this field with an objective in common: the provision 

of farmed fish with a high n-3 LC-PUFA content for human consumption, pushing the 
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progress of the farms, and paying more attention to the quality of the final product. It is 

well known that the most expensive input in farm production is the feed, and within the 

feed, the FM and FO represent the ingredients with the highest cost for fish manufacturers 

(FAO, 2014). 

The growth of aquaculture production estimated for 2012 was higher than expected 

(2.1%), providing about 50% of fish for human consumption (FAO, 2014). Given that fish 

obtained from fisheries is decreasing and fish demand for human consumption is 

increasing, it is estimated that by 2030 aquaculture production will have to satisfy 62% of 

the total human demand for fish. Therefore, there are good opportunities for aquaculture 

activities if these are developed and practiced with responsibility, because these activities 

offer benefit not just for food security but also for economic growth (FAO, 2014). The 

prices for some captured species, such as Atlantic bluefin tuna Thunnus thynnus (L.), 

Atlantic herring Clupea harengus (L.), Atlantic mackerel Scomber scombrus (L.), and 

European squid Loligo vulgaris (Lamarck), have increased recently, while farmed fish 

prices, e.g. Atlantic salmon, have been going down as a result of its increasing global 

aquaculture production, as shown in Figure 1.2. 

 

1.4.2. Atlantic salmon farming  

The worldwide production of farmed Atlantic salmon reported by 2012 exceeded 

two million tonnes (FAO, 2014). Farmed Atlantic salmon constitutes more than the 90% of 

the farmed salmon market, and more than the 50% of the global salmon market, with the 

European Union and North America being the major consumers (FAO, 2014). Farmed 

Atlantic salmon can be sold as a fresh product (e.g. whole, chunked or filleted), processed 

(e.g. frozen, smoked) or non-processed, to supply value-added products into the market. As 

production has increased over the last 10–15 years, the availability of suitable sites for 
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farming has been decreasing, and farm prices have fallen sharply, restricting further growth 

in production in the Northern hemisphere. Chile is the most rapidly growing supplier now, 

which, according to FAO (2014), has low labour and material costs and can therefore 

effectively compete with traditional producing countries in distant markets.  

The environmental effect of Atlantic salmon farming on wild fisheries has been 

controversial and questioned by many individuals and organisations. Since Atlantic salmon 

production has traditionally relied on supplies of FM and FO for feed production, the 

major ecologic areas of concern are represented by local nutrient pollution into water 

systems, waste feed/faeces, local chemical pollution, use of chemical treatments, escapees, 

disease spread, global environmental impact and issues of sustainability (FAO, 2014). 

 

Figure 1.2. Global aquaculture production of Atlantic salmon, Salmo salar L., from 1950 to 2010 

(from FAO Fishery Statistic, www.seafoodsource.com/newsarticledetail.aspx?id=16044). 

 

1.4.3. Fish nutrition 

As a response to the continued growth of the demand for seafood products and a 

decrease in the supply from natural sources, aquaculture production has become one of the 

biggest industries all over the world. In intensive aquaculture, nutrition plays a 

fundamental role, influencing the production cost, fish growth, health and waste production 
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(Gatlin, 2002). Balanced diet formulations and appropriate feeding practices are necessary 

to develop nutritious, cost-effective diets, and this goal can be reached by determining the 

nutritional requirements of fish in their different life stages. 

 

1.4.4. Sustainability (FO substitution) 

The FO composition depends primarily on the diets of the wild fish from which the 

oils are obtained, being predominantly influenced by the FA profiles of marine 

phytoplankton (the primary producers) and zooplankton, which contain high levels of n-3 

LC-PUFA (e.g. EPA and DHA) (Jobling, 1993). 

Peru, Chile, Thailand, China, USA, Japan, Denmark, Norway, Iceland, and South 

Africa, are the main global FO producing countries (FIN, 2008). In general FO can be 

extracted from the body of some so-called “oily” species, such as anchovy, sardine, 

menhaden, capelin, mackerel and herring and, secondly, from the liver of other fish 

species, particularly cod and halibut (FIN, 2008). 

The price of FO is increasing as a consequence of the high demand and its finite 

and limited supply, having a negative impact on the cost of production of aquafeeds (FAO, 

2014). It is therefore necessary to find new alternative dietary oil sources, in order to 

contribute to the expansion, development and sustainability of the world aquaculture 

industry. With the replacement of FO it is a fundamental aim not to compromise the 

growth of the fish, nor the quality of the final product (Hardy, 2010). As fish have 

traditionally been the primary and almost unique source of n-3 LC-PUFA in the human 

diet, strategies to replace dietary FO in aquaculture should be focused on the FA profile of 

the final product, trying to keep it as similar as possible to natural marine sources (Sargent 

et al., 2002). The main barrier for FO replacement in this respect is its FA profile, which 

contains between 15-30% of n-3 LC-PUFA and low levels of n-6 LC-PUFA and LOA, 
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whereas VO contains neither n-3 LC-PUFA, nor ARA, low levels of LNA and a high 

amount of n-6 PUFA, mainly LOA (Hertrampf and Piedad-Pascual, 2000). 

Many studies on salmon have been performed regarding to the substitution of FO 

with alternative oil from non-marine sources, such as fats from terrestrial animals 

(Henderson, 1996), and VO including palm oil (Bell et al., 2002), rapeseed oil, olive oil 

(Torstensen et al., 2004), sunflower oil, corn oil and soybean oil (Bell et al., 1993; Rora et 

al., 2005), all demonstrating that the use of alternative oil sources for salmonid production 

is a feasible solution (Bell et al., 2001). The aim of the aquaculture research community 

working in this field is to find the adequate balance of EFA and FA for energy in 

aquafeeds in the replacement of FO with VO, taking into consideration several factors, 

such as the high growth and survival of the fish, their feed conversion efficiency, immune 

competence, disease resistance, and high-quality standards of fillet production in terms of 

n-3 LC-PUFA content (Peng et al., 2008). 

 

1.5. Cell culture 

 

1.5.1. General 

According to Lee (2010) tissue culture can be defined as the growth of tissue or cells 

separated from the organism. It is also known as a technique of keeping tissues alive and 

growing in an appropriate culture medium. Viable growing tissues, separated from the 

living animal, was possible using an appropriate culture medium, containing a mixture of 

nutrients (Lee, 2010). At the beginning of the 20
th

 century tissue culture was first devised 

with the intention of studying the behaviour of animal cells, free of systemic variations that 

might affect in vivo (Harrison, 1907; Carrel, 1912). The term “cell culture” refers to a 

culture derived from dispersed cells taken from an original tissue, from a primary culture, 
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or from a cell line or cell strain by enzymatic, mechanical or chemical disaggregation. The 

L929 was the first cloned cell strain isolated from mouse L-cells in 1948 using capillary 

cloning (Sanford et al., 1948). These procedures were facilitated when trypsin became 

more used for subcultures in the 1950s. In 1952 tissue culture became more widely used, 

with the introduction of antibiotics, and the development of defined media (Freshney, 

2010). Nowadays, cell culture models represent an important biological tool to carry out 

investigation in research areas, including oncology, virology, physiology, toxicology, and 

genetics (Lakra et al., 2011). 

 

1.5.2. Fish cell culture 

As the aquaculture industry has been growing, many cultures of fish cells of a wide 

variety of fish species, including Atlantic salmon, Arctic charr Salvelinus alpinus (L.), 

European whitefish Coregonus lavaretus (L.), common carp Cyprinus carpio (L.), goldfish 

Carassius auratus (L.), and zebrafish Danio rerio (Hamilton), have been developed, 

contributing to increase and/or improve fish production (Freshney, 2010). However, there 

are still several aquaculture species from which in vitro cell culture models are not yet 

developed. 

 Fish cells can be maintained in vitro as primary cell cultures, which are cells 

directly derived from the animal tissues, or cell lines, which are primary cells successfully 

sub-cultured weekly for few months, showing a stable phenotype (Adams, 1980). Cell 

lines can be derived from a number of fish organs and tissues, such as gonad, liver, 

pancreas, kidney, heart, spleen, skeletal muscle, and nervous tissue (Bols and Lee, 1991). 

Most fish cell lines are anchorage-dependent; they can attach and grow as a monolayer on 

the flask surface at pH 7.4, reaching 100% confluence within 5-7 days (Freshney and 

Freshney, 2002). In research areas, fish cell cultures are advantageous because of their low 
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cost, sensitivity, versatility and reproducibility (Visoottiviseth and Chanwanna, 2001), 

making possible and easier virology, cytogenetic, toxicology, oncology, immunology, 

temperature effects, and cell physiology studies (Tocher et al., 1995). 

 

1.5.3. Advantages and disadvantages of working with cell culture 

The major advantages that cultured cells have over in vivo studies are that the living 

cells can be monitored under the microscope, they offer a homogeneous cell population of 

identical genetic make-up growing in a constant and/or controlled physico-chemical 

environment (e.g. pH, temperature, osmolality, dissolved gases), as well as they avoid 

ethical issues. Moreover, physiological conditions (e.g. control of hormones and nutrients, 

concentrations) can be easier controlled in vitro compared with in vivo experiments, as 

well as the microenvironment regulation of matrix, cell–cell interaction, and gaseous 

diffusion, all of these factors might interfere, or might be difficult to control in in vivo 

trials. In addition, cell cultures enable easier determination of cytology and 

immunostaining, validation and accreditation, origin, history, purity, and can be stored in 

liquid nitrogen. They also allow replication and variability, easier quantitation, reduced 

requirement of reagent, direct access to cells, lower cost, control of time ability to define 

dose, reduction of animal use, cytotoxicity and, moreover, screening of pharmaceutics, 

cosmetics, etc. (Freshney, 2010). However, in vitro experiments cannot fully replace in 

vivo studies, as they have some limitations which include necessary expertise, as well as 

infrastructure. Working with cell line also has a higher risk of microbial and cross-

contaminations, and creates issues with containment and disposal of biohazards, quantity 

and cost capital equipment for scale-up, disposable plastics, genetic instability, markers not 

always expressed, etc. (Freshney, 2010), while in vivo experiments might represent more 

accurately a “snapshot” of the real situation. 
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1.5.4. State of the art of cell culture studies in fish lipid metabolism 

Several successful trials have been carried out investigating lipid and FA 

metabolism using fish cell lines as model systems. These studies often involved 

supplementing fish cell lines with PUFA under controlled conditions. Some studies 

showed it was possible to demonstrate different PUFA requirements between freshwater, 

anadromous and marine fish species, as occurs in fish in their natural environment and that 

have been later proved correct with molecular biology procedures (Tocher and Dick, 1990; 

Tocher et al., 1995; Ghioni et al., 1999). In cell culture, foetal bovine serum (FBS) is 

added to the growth media and is the main PUFA source. According to Tocher and 

collaborators (1989), FBS is the serum of choice for fish cell culture due to the difficulties 

in obtaining fish serum and the risk of contaminating with accidentally introduced viruses. 

When working with cultured fish cell lines for investigating PUFA metabolism, it is 

imperative to consider the altered FA profile of fish cell lines, as they have lower levels of 

n-3 PUFA and LC-PUFA, and higher total n-6 PUFA, compared to the fish tissues they 

were derived from (Tocher et al., 1989; Tocher and Dick, 1991). There are also some fish 

cell lines, e.g. turbot, Scophthalmus maximus (L.), fin cell line (TF) and the gilthead 

seabream, Sparus aurata L., fin cell line (SAF-1), with a limited ability to convert C18 to 

C20, because of their limited C18-20 elongase or ∆5 fatty acyl desaturase (fads2d5) activities, 

respectively (Ghioni et al., 1999). Although investigating LC-PUFA synthesis in cell 

cultures is less expensive and represents a quicker and more convenient alternative than 

fish feeding trials, there is no guarantee that the enzymes involved in the LC-PUFA 

metabolic pathway will be expressed in cultured cells the same way they are expressed in 

living fish (Tocher, 2003). According to Tocher et al. (1989), Tocher and Dick (1991) and 

Ghioni et al. (1999) fish cell lines are useful for investigating the LC-PUFA synthesis 

pathway, but they have to be subsequently compared with in vivo trials. 
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1.5.5. CHSE-214 cell line 

 In the current study, the main target species was Atlantic salmon, but there were no 

appropriate cell lines available. Originally this study was planned in the Atlantic salmon 

cell line, called AS, used in previous studies (Tocher, 1990; Tocher et al., 1995; Ghioni et 

al., 1999). However, this cell line was no longer available, and it was not sourced anymore. 

Other Atlantic salmon cell lines, such as SHK-1, have shown poor growth, and therefore 

are difficult to be used on a large scale (Minghetti et al., 2011; Carmona-Antoñanzas et al., 

2014). As alternative, CHSE-214 cell line, derived from Chinook salmon (Oncorhynchus 

tshawytscha (Walbaum)) embryo, was chosen since it grows fast and it is easy to culture, 

which in turn enable the generation of a large numbers of cells in a short period of time.  

 CHSE-214 is an undifferentiated fibroblast-like cell line, widely used in viral 

diagnoses for fish, including infectious hematopoietic necrosis, viral haemorrhagic 

septicaemia, spring viraemia of carp, and infectious pancreatic necrosis. Morphologically 

the cell line CHSE-214 has a fibroblast-like appearance and is adherent to the plate. The 

method to grow the cell line has been developed and it is nowadays well known (Lannan et 

al., 1984).  

 

1.6. Gene expression studies 

Over the last few years, the basic molecular mechanisms in the control and 

regulation of lipid and FA metabolism in fish have been investigated, focusing on the 

pathways of lipid homeostasis and LC-PUFA synthesis. Genes involved in the regulation 

of FA metabolism can be grouped as follows: 

a) Genes involved in LC-PUFA biosynthesis: fads2d5, fads2d6, elovl2, elovl5 

b) Transcription factors: srebp1, srebp2, lxr, pparα, pparβ, rxr 
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c) Genes involved in FA metabolism: fas, cpt1, aco (acyl-CoA oxidase), fabp 

(fatty acid binding protein)  

 

1.6.1. Genes involved in LC-PUFA biosynthesis 

Long-chain PUFA metabolism in fish has been extensively studied, focusing on the 

molecular components and regulation of the biosynthesis pathways (Zheng et al., 2004; 

Morais et al., 2009; Monroig et al., 2009, 2010; Minghetti et al., 2011; Carmona-

Antoñanzas et al., 2011; Martinez-Rubio et al., 2013; Betancor et al., 2014, 2015). Thus, 

cDNAs for fatty acyl desaturases and PUFA elongases (elovl5-like elongases) have been 

cloned from several freshwater and marine fish species (Monroig et al., 2010). All the 

main components of the pathway, including fads2d5, fads2d6 and fads2d8, elovl2, and 

elovl5 variants a and b, have been cloned from Atlantic salmon (Hastings et al., 2005; 

Zheng et al., 2005, 2009a; Morais et al., 2009; Monroig et al., 2010, 2011a). The 

expression of desaturases, and in some circumstances, the elovl5 is up-regulated in liver 

and intestine of Atlantic salmon fed with VO, correlated with increased LC-PUFA 

synthesis in these tissues (Zheng et al., 2004, 2005). The molecular mechanisms involved 

in regulating desaturase and elongase expression in fish are currently being investigated. 

There are some studies, in which desaturase and elongase genes from Atlantic salmon and 

Atlantic cod have been sequenced including up to 4 Kb 5’ upstream regulatory region 

(Tocher et al., 2006; Zheng et al., 2009b). 

 

1.6.2. Transcription factors 

SREBP 1 and 2, LXR, PPAR α and β, and RXR are well-known to be transcription 

factors. All of them play important roles in the gene regulation of LC-PUFA biosynthesis 

(Duplus et al., 2000; Cruz-Garcia et al., 2009; Turchini et al., 2011; Minghetti et al., 2011; 
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Carmona-Antoñanzas et al., 2014). SREBP belong to the basic helix-loop-helix leucine 

zipper transcription factor family. Given that SREBP are synthesised as inactive precursors 

they need to be maturated to function as transcription factors (Desvergne et al., 2006). In 

mammals, SREBP1 regulates FA/lipid biosynthetic genes, whereas SREBP2 regulates 

cholesterol biosynthetic genes (Horton et al., 2003). There have been identified three LXR: 

LXRs, LXRα and LXRβ, these nuclear receptors are involved in the cholesterol and lipid 

metabolism. The LXR are transcription factors intimately involved with lipid metabolism, 

whose activity is modulated by sterols, inducing cholesterol catabolism and de novo FA 

biosynthesis in liver (Repa et al., 2000; Schultz et al., 2000; Cruz-Garcia et al., 2009). 

Activated LXR also stimulates the expression of SREBP1c (Schultz et al., 2000), which 

activates other genes involved in lipogenesis and triglyceride metabolism (Jung et al., 

2011). The tissue and nutritional expression of lxr of Atlantic salmon and rainbow trout, 

Oncorhynchus mykiss (Walbaum), have been cloned and characterised (Cruz-Garcia et al., 

2009). There have been identified three PPAR in mammals: PPARα, PPARβ, and PPARγ. 

The activation of PPAR occurs when these bind FA or their oxidised derivatives (Duplus et 

al., 2000; Carmona-Antoñanzas et al., 2014). Ppar regulate lipid and FA homeostasis in 

fish, particularly in relation to energy balance, FA oxidation and lipid deposition in tissues 

(Boukouvala et al., 2004; Kennedy et al., 2006; Leaver et al., 2006; Diez et al., 2007). 

Studies in Atlantic salmon failed to establish a clear link between ppar and expression of 

desaturase and elongase genes or regulation of LC-PUFA synthesis (Kennedy et al., 2006; 

Leaver et al., 2006; Villeneuve et al., 2007). RXR play multiple roles in the metabolic 

systems, particularly when they form heterodimers with other nuclear receptors (Pérez et 

al., 2012). They have been related to the regulation of cell growth, development, survival, 

cell differentiation and cell death (Dawson and Xia, 2012). 
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1.6.3. Genes involved in FA metabolism 

Some of the genes involved in FA metabolism that have been studied in fish are: 

fas, cpt1, fabp and aco. Of these, fas is a key enzyme of lipogenesis; cpt1 and aco are 

involved in mitochondrial and peroxisomal β-oxidation, respectively (McGarry and 

Brown, 1997) and fabp function as promoters of cellular uptake and transport of FA, and 

participate in the regulation of cell growth and gene expression (Haunerland and Spener, 

2004). 

 

1.7. Aims of the current study 

The overarching aim of the present study was to develop and utilise an in vitro 

cell culture model to enable an integrated approach to study the biochemical and 

molecular regulation of lipid metabolism in fish. Specifically, the plan was to develop a 

cell culture model for salmon (using the CHSE-214 cell line), and a multi-well plate 

system to study the roles of various transcription factors in the control and regulation of 

lipid and FA metabolism, and in particular their potential role in the control of n-3 LC-

PUFA synthesis. The study was a blend of cell culture assays, FA and lipid analyses, and 

gene expression (qPCR) methodologies, designed to investigate the molecular regulation 

of lipid and FA metabolism. In particular, the initial objective was to determine the 

effects of dietary (supplemental) FA on cellular lipid content, lipid class, and FA 

composition of total lipids. In addition, a further objective was to relate the effects on 

lipid and FA composition on the expression of genes, including the main lipid 

transcription/nuclear factors (srebp1, srebp2, pparα, pparβ, lxr, and rxr), and some of 

their key target genes, including those involved in pathways of LC-PUFA synthesis 

(fads2d5, fads2d6, elovl2, and elovl5), and FA oxidation (fas, cpt1, aco, and fabp), in 

Atlantic salmon. The specific objectives were designed in order to achieve the overall 
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aim by developing the basic science of transcriptional control of lipid metabolism in fish 

to a position where it is possible to understand the roles of the transcription 

factors/nuclear receptor, and some of the mechanisms involved in the regulation of lipid 

and FA metabolism in fish, including how nutritional factors interact and potentially 

modulate this mechanism. 

 

In summary, the aims of the present study were:  

 

a) To develop and characterise a cell culture model utilising the CHSE-214 cell 

line to investigate the genetic regulation and control of lipid and FA 

metabolism in salmonids.  

b) To develop appropriate qPCR gene expression assays (primers design) for a 

wide range of genes related to lipid and FA metabolism. 

c) To use the above developed tools to elucidate the roles of key transcription 

factors/nuclear receptors in the control and regulation of LC-PUFA synthesis. 

d) To use the above tools to elucidate the roles of key transcription factors in the 

control and regulation of FA oxidation, and metabolism. 

e) To use the data obtained to generate a model for the integrated control of 

lipid and FA metabolism in fish. 
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Chapter 2 

Materials and methods 

 

Light micrograph of CHSE-214 cell line [original image] 

 

 

 

 

“Cell culture is a little like gardening. You sit and you look at cells, and then you see something 

and say, 'You know, that doesn't look right'” 

Siddhartha Mukherjee 
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2.1. CHSE-214 cell culture 

 

2.1.1. Brief description of CHSE-214 cell line 

 Chinook salmon embryo 214 (CHSE-214) cells were obtained from the Laboratory 

of Disease and Virology, Institute of Aquaculture, School of Natural Sciences, University 

of Stirling, Stirling (UK). The established cell line was originally derived from Chinook 

salmon, Oncorhynchus tshawytscha (Walbaum) embryo following enzymatic treatment of 

the tissue to release the cells using trypsin (Fryer et al., 1965). This monolayer culture has 

fibroblast-like morphology and has been used in many studies spanning several fields 

including biomedical research (Amaro and Sánchez, 1997), toxicology (Davoren et al., 

2005), virology (Lorenzen et al., 1999; Jensen et al., 2002; McLoughlin and Graham, 

2007; Jørgensen et al., 2007; Herath et al., 2009), and bacteriology (Smith et al., 2010). 

 

2.1.2. Routine culture of CHSE-214 

 Most of the work involving fish cell culture was carried out in the Laboratory of 

Disease and Virology (UoS) under a vertical laminar airflow hoods (Class II Biohazard 

Safety Cabinet). The cabinet surface was cleaned and sterilised using 70% ethanol prior to 

and after the work. 

 

2.1.2.1. Preparation of the media and basic growth conditions 

 For routine culture to maintain stocks and provide experimental material, cells were 

grown in 75 cm
2
 tissue culture flasks (Sarstedt AG & Co. Laboratories, Nümbrecht, 

Germany) in 20 ml of Leibovitz’s L-15 medium with GlutaMAX
TM

-1 (Gibco


, Life 

Technologies Ltd., Paisley, UK) supplemented with 200 µM L-glutamine and 10% foetal 

bovine serum (FBS) at 20ºC. For experiments, cells were also grown in L-15 medium with 
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200 µM L-glutamine and 5% FBS (to retain normal growth rate) at 20ºC. For lipid and 

fatty acid analyses 75 cm
2
 tissue culture flasks were used in 10 ml. All experiments were 

performed on cultures at around 80% confluence to ensure that growth continued. In order 

to provide around 80% cell confluence within 24 h, the seeding density used was 10
4
/cm

2
. 

Subsequently, the experimental settings were applied. All media were prepared under 

sterile conditions and were kept at room temperature (20ºC) and supplemented weekly 

with 200 µM L-glutamine. 

 

2.1.2.2. Cell harvesting  

 CHSE-214 cells were harvested from the 75 cm
2
 tissue culture flasks for 

subsequent procedures, including stock production, preparation of experimental 

flasks/plates and cell counting. The medium was removed from flasks by aspiration or 

decanting and the cell monolayers were washed twice with 10 ml Dulbecco’s phosphate 

buffered saline (DPBS). The excess DPBS was removed by pipetting, and cells were 

harvested by adding 2 ml of 0.05% trypsin/ 0.02% ethylenediaminetetraacetic acid 

(T/EDTA), with incubation for 2–5 min at 20ºC. When the monolayer became opaque, 

excess T/EDTA was removed by pipetting and the cells were dislodged by gently tapping 

the flasks with the hand. Cells were re-suspended in the appropriate volume of the 

particular medium required depending upon use and gently mixed with the aid of a pipette 

in order to produce an homogeneous cell suspension for further procedures (e.g. cell 

passaging, cell counting, cell freezing). 

 

2.1.2.3. Cell passaging  

 Cell passaging (i.e. subculturing or cell splitting) is the method whereby portions of 

cells (aliquots) from a parent culture are transferred into a new flask with fresh medium. 
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Flasks for routine culture and provision of stock cells were harvested when 100% 

confluent approximately every week, as described in section 2.1.2.2. Once the cells were 

detached from the flask they were re-suspended in 3 ml of fresh medium. Three fresh 75 

cm
2
 flasks were prepared by adding 19 ml of fresh medium to each flask and 1 ml of the 

homogeneous cell suspension was added to each flask. The cell suspension was gently 

mixed and the flasks incubated at 20ºC. On the following day, cells were observed under 

the inverted microscope (Olympus IMT-2) to check on growth and to ensure they reached 

around 80% confluence if they were to be used in experiments. 

 

2.1.2.4. Cell counting using a haemocytometer 

 Samples of cell suspension were incubated with trypan blue solution, which is a 

selective or vital stain used to identify living and dead cells. Dead cells take up the dye and 

are coloured blue, while viable cells remain colourless due to their membrane permeability 

and active exclusion of the dye from the cell. This staining method, also known as “dye 

exclusion method”, was used to count the number of viable cells in a suspension using a 

standard Neubauer chamber haemocytometer (Depth 0.1 mm or 1/400 mm
2
). Cells were 

harvested as described in section 2.1.2.2 and, once the cells detached from the flask, 5 ml 

of fresh medium were added to re-suspend the cells followed by gentle pipetting to ensure 

homogeneity. The cell suspension was transferred into a fresh Bijou sample container, 

from which 0.1 ml was aliquoted and mixed with 0.1 ml of 0.5% trypan blue dye. This 

mixture was then allowed to stand for 1 min. The haemocytometer coverslip 20×26×0.4 

mm (Fisher Scientific, Loughborough, UK) was pressed onto the slide, ensuring there was 

a good adherence and both chambers of the haemocytometer filled by capillary action with 

the stained cell suspension using a P100 Gilson pipette. The haemocytometer was placed 

on the microscope stage, the ruled pattern of the counting chamber was located under a low 
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power objective, and cells were counted within 1 mm
2
 of the central portion of the ruled 

pattern. This square is divided into 25 smaller squares, each sub-divided in turn into 16 

further squares marked by a single line. Only the viable cells were counted. 

 

Calculation: 

Depth of fluid in the counting chamber = 0.1 mm 

The volume of the central 1 mm
2 
was 1×1×0.1=0.1 mm

3
 or 0.0001 cm

3 
(or 10

-4 
cm

3
) 

As 1 cm
3
 is equivalent to 1 ml, cell concentration per ml will be: 

Average count per 1 mm
2
 × dilution factor × 10

4
 

 

2.1.2.5. Cell freezing and storage 

 Cells were harvested as described in section 2.1.2.2. Once the cells were detached 

from the flask, 3 ml of growth medium were added and cells re-suspended by gently 

pipetting up and down. The mixed cell suspension was collected in a universal container 

and a viable cell count was performed as described above (section 2.1.2.4). Each cryovial 

was labelled with the following information: cell line, passage number, freezing date and 

number of cells. Volume was calculated and adjusted using freezing medium (growth 

media containg 10% FBS + 10% dimethyl sulphoxide, DMSO) to produce a solution of 

3×10
6 

cells ml
-1

 per cryovial. All cryovials were placed in the -20ºC freezer for 1 h before 

being transferred to the -70ºC freezer for a further 2 h. Finally, the cryovials were removed 

from the polystyrene box, placed in marked cans, and quickly immersed in liquid nitrogen 

(-196ºC) to avoid any cell thawing.  

 

2.2. Incubation of CHSE-214 cells with fatty acids  

  

2.2.1. Preparation of fatty acid-bovine serum albumin complexes 

 Cells were incubated with fatty acids (FA) that were added as bovine serum albumin 

(BSA) complexes (Spector and Hoak, 1969; Tocher et al., 1989). The FA were purchased 
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from a commercial provider (Sigma-Aldrich
®
 Company Ltd., Dorset, UK) at a purity of 

99%. First, 25 mg (25-30 µl) of liquid FA were added to a 10 ml Quickfit tube and 

dissolved in 200 µl of chloroform/methanol (C/M, 2:1, by volume) containing 0.01% of 

butylated hydroxytoluene (BHT) as antioxidant. In the same tube, 7 ml of isohexane were 

added and the FA suspension mixed thoroughly before transferring the solution into a foil-

covered 50 ml conical flask containing 800 mg of diatomaceous earth (Celite
®
, Sigma-

Aldrich
®
 Company Ltd., Dorset, UK). The whole mixture was swirled to mix thoroughly 

and the solvent was then evaporated under a stream of oxygen-free nitrogen (OFN), using 

the N-Evap evaporator (Organomation Associates Inc., Berlin, MA, USA). A solution of 

16.5 mg ml
-1

 of FA-free BSA in sterile DPBS was prepared and 25 ml were added to the 

dry Celite/FA mixture. The mixture was gassed with nitrogen and closed with a glass 

stopper, then incubated for 30 min at 20ºC with moderately vigorous stirring using a 

magnetic flea and a stirring plate. The solution was filtered through filter paper (Whatman 

No.1) into a 30 ml quickfit tube, then sterilised using a Minisart (Sartorius Stedim Biotech, 

Goettingen, Germany) high-flow sterile syringe filter of 0.2 µm pore size and aliquoted 

into sterile, foil-covered Bijous  (5 ml) in the vertical laminar flow hood. FA concentration 

was measured by aliquoting 100 µl of the FA/BSA preparation with 100 µl of the standard 

FA 17:0 at a known concentration of 1 mg ml
-1

, followed by lipid extraction, 

transmethylation, and gas chromatography (GC) analysis according to Christie (2003) (see 

section 2.3.3). 

 

2.2.2. Incubation of CHSE-214 with fatty acids  

 For experiments investigating the effects of supplemental FA on lipid and FA 

compositions of CHSE-214 cells, the cells were routinely subcultured at a split ratio of 1:2 

into 75 cm
2
 tissue culture flasks in a volume of 10 ml of L-15 medium containing 5% FBS 
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and 200 µM of L-glutamine. One day after subculture, when cells in the flasks were 

approximately 80% confluent, FA were added as complexes directly to flasks in triplicate. 

The FA used during this study were: 16:0, 18:1n-9, 20:1n-9, 18:2n-6, 18:3n-6, 20:3n-6, 

20:4n-6, 18:3n-3: 20:5n-3, 22:5n-3 and 22:6n-3. The final concentration of FA was 

dependent upon the particular experiment and will be indicated in each case.  Cells were 

harvested after 5 d incubation with the FA substrates at 20ºC. After the incubation time the 

medium was decanted and the monolayer carefully washed twice with 2 x 5 ml portions of 

DPBS. An amount of 0.5 ml T/EDTA solution was added to each flask to dissociate the 

cells. A Corning
®
 cell scraper (Sigma-Aldrich

®
 Company Ltd., Dorset, UK) was used in 

order to maximise the recovery of cells. A total of 5 ml of DPBS were added to each flask 

to re-suspend the detached cells and the suspensions transferred into labelled 10 ml glass 

conical tubes and then centrifuged at 400 g for 5 min (Jouan C312, France) to pellet the 

cells. The supernatant was removed and the cell pellet washed by adding 5 ml of DPBS, 

the cell pellet was re-suspended and tubes centrifuged at 400 g for 5 min. The supernatant 

was removed and the pellet was allowed to drain (carefully and quickly) on tissue paper 

prior to the lipid extraction.  

 

2.3. Lipid and fatty acid analyses 

 

2.3.1. Lipid extraction 

Total lipids were extracted from cells according to the methods of Folch et al. 

(1957). To prevent lipid oxidation, most of the solvents contained 0.01% BHT as 

antioxidant and all solutions were chilled in an ice box. All procedures involving organic 

solvents were performed in glassware. Once the cell pellets were drained on the tissue 

paper, 5 ml of ice-cold chloroform/methanol (C/M, 2:1, by volume) containing 0.01% 
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BHT were added using a glass pipette and the cell pellet completely disrupted by pipetting 

and mixed on a vortex mixer.  After leaving on ice for 10 min to ensure complete lipid 

extraction, 1 ml of ice-cold 0.88% potassium chloride (KCl) was added and the solution 

mixed thoroughly before the tubes were centrifuged at 400 g for 5 min. After 

centrifugation, samples were separated into three distinct layers: upper aqueous, 

intermediate white protein layer, and lower organic layer. The lower organic layer was 

transferred into a clean 10 ml glass test tube, and the solvent evaporated under a stream of 

OFN. Total lipid extracts were re-suspended in 100 µl of C/M (2:1, by vol.), mixed, and 

transferred into previously weighed and labelled small glass bottles. The solvent was then 

evaporated under a stream of OFN, and the extracts dried in a vacuum desiccator for 4 h. 

To quantify the extracted lipid, the bottles were re-weighed and the final total lipid extracts 

were re-suspended at a concentration of 10 mg ml
-1

 in C/M (2:1, by vol.) containing 0.01% 

BHT. Samples were stored at -20ºC prior to lipid class and FA analyses. 

 

2.3.2. Determination of lipid class composition  

 Lipid class composition analysis was performed by high-performance thin-layer 

chromatography (HPTLC) and quantitative densitometry essentially according to 

Henderson and Tocher (1992). Initial separation of lipid classes was performed using 10 × 

10 cm × 0.25 mm HPTLC plates (Merck, Darmstadt, Germany). Six 3 mm origins were 

marked with pencil at a distance of 1.2 cm between them. Plates were cleaned by fully 

developing in C/M (2:1, by volume), allowing the solvent to evaporate by air drying in the 

fume cupboard, followed by activation at 110ºC for 15 min. Routinely, 3 samples of 20 μg 

total lipid (i.e. 2 μl of 10 mg ml
-1

), two lipid class standards (one neutral and one polar 

classes), and one blank were applied to each 3 mm origin using a Microliter
TM

 glass 

syringe (Hamilton
®
, Bonaduz, Switzerland). Plates were developed to 5.5 cm in the first 
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solvent, using methyl acetate/isopropanol/chloroform/methanol/0.25% aqueous KCl 

(25:25:25:10:9, by volume), to separate polar lipid classes. The plate was removed from 

the tank, excess solvent evaporated by air drying. Once the plates were dried, they were 

fully developed in the same direction in the second solvent containing isohexane/diethyl 

ether/acetic acid (85:15:1, by volume) to separate neutral lipid classes. Plates were air 

dried briefly to evaporate excess solvent, and then sprayed with 3% cupric acetate in 8% 

phosphoric acid staining solution. After excess solution was drained, the plates were 

charred at 160ºC for 15 min in an oven. After cooling, the plates were scanned in a 

densitometer (Camag 3 TLC Scanner, Muttenz, Switzerland) equipped with winCATS 

software to quantify the different lipid classes (Henderson and Tocher, 1992). 

 

2.3.3. Determination of fatty acid composition 

 The FA profile of cellular lipid was determined by analysis of fatty acid methyl 

esters (FAME) by gas chromatography (Christie, 2003). The FAME were prepared by 

transmethylation. To this end, 100 μl (at a concentration of 10 mg l
-1

) of total lipid extract 

were aliquoted into a quick-fit test tube and the solvent evaporated under a stream of OFN. 

One ml of toluene and 2.5 ml of 1% sulphuric acid (H2SO4) in methanol were added to 

each lipid sample. Samples tubes were gassed with OFN, sealed with glass stoppers and a 

small piece of paper tissue and incubated overnight in a hot block at 50ºC. After cooling, 

FAME were extracted by adding 2 ml of 2% potassium bicarbonate (KHCO3), followed by 

5 ml of isohexane/diethyl ether (1:1, by volume) containing 0.01% BHT. Tubes were 

vortexed and centrifuged at 400 g for 5 min to separate the two phases. The upper layer 

was collected and transferred into a clean test tube. Further 5 ml isohexane/diethyl ether 

(1:1, by volume without BHT) were added to the remaining lower layer and the extraction 

procedure repeated to ensure maximum recovery of FAME. After mixing and centrifuging 
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at 400 g for 5 min, the upper layer was collected and combined with the first upper layer. 

The combined upper layers were placed under a stream of OFN to evaporate the solvent 

and the dry FAME extract re-suspended in 100 μl of isohexane containing 0.01% BHT. 

The FAME extracts were purified by thin-layer chromatography (TLC) on 20 × 20 cm × 

0.25 mm plates (Merck, Darmstadt, Germany). The plates were marked by pencil with four 

origins of 2.5 cm length, with 2 cm between them, starting at 2 cm from the side and 1.5 

cm from the bottom of the plates. A neutral lipid class standard mixture containing FAME 

was used at each side of the plate for indicating the position of the FAME in the samples. 

The location of the FAME was revealed by spraying the standard lanes at the sides of 

plates with 1% iodine in chloroform. The position of FAME in the experimental samples 

was marked with pencil, and the silica containing the FAME was scraped off and 

transferred into fresh test tubes. Five ml isohexane/diethyl ether (1:1, by volume), plus 1 

ml isohexane/diethyl ether (1:1, by volume) containing BHT were added to the tubes. 

Tubes were mixed and centrifuged at 400 g for 2 min. The supernatant was carefully 

transferred into a clean test tube by pipetting and the solvent evaporated under a stream of 

OFN. Dry purified FAME samples were re-suspended in isohexane containing 0.01% BHT 

at a concentration of 1 mg FAME μl
-1

. FAME were quantified by gas chromatography 

using a Fisons GC 8160 gas chromatograph (Fisons Ltd, Crawley, UK) equipped with on-

column injector, flame ionisation detector and fitted with a ZB Wax column (30 m × 0.32 

mm), using hydrogen as a carrier gas at a flow rate of 2.0 ml/min. The temperature was 

programmed initially from 50 ºC to 180 ºC and then to 225 ºC, at rates of 40ºC/min and 2 

ºC/min, respectively, and then held at 225ºC for 5 min. Individual FAME were identified 

by comparing the profile of the samples with known standards. FAME were quantified and 

data collected with Chrom-card
TM

 ver. 1.19 (Thermoquest Italia S.p.A, Italy) for 

Microsoft
®
 Windows

®
. 
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2.4. Statistical analysis 

The data are presented as means ± standard deviation (SD) with n = 3. Results of 

fatty acid analysis and lipid class composition were analysed by regression analysis at the 

95% significance level, using the statistics software IBM SPSS Statistics for Microsoft 

Windows
®
, ver. 19.0 (Armonk, NY: IBM Corp.). Arcsine square root transformations were 

applied to the variables expressed in percentage in order to normalise the data according to 

Sokal and Rohlf (1998). The conversion of the precursors and intermediary metabolites in 

LC-PUFA (i.e. LOA  ARA;  LNA  EPA and DHA), was represented graphically using 

Microsoft
®
 Excel

®
, in Chapters 3, 4 and 5. The effect of the FA supplemented (variable 1), 

their concentrations (variable 2), and their interaction was determined by two-way analysis 

of variance (ANOVA) (p < 0.05). 

 

2.5. Materials  

Tissue culture flasks and plastic pipettes were obtained from Sarstedt AG & Co. 

Laboratories, Nümbrecht, Germany. All solvents were HPLC grade and were obtained 

from Fisher Scientific UK, Loughborough. Compressed gases were obtained from British 

Oxygen Company (BOC, Glasgow, UK).  
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Chapter 3 

Effects of fatty acid supplementation on the lipid and fatty acid 

compositions of the CHSE-214 cell line 

 

 

 

Line drawing of Chinook salmon, Oncorhynchus tshawytscha (Walbaum) [original image] 

 

 

 

 

 

 

 

 “If you focus on results, you will never change. If you focus on change, you will get results” 

Jack Dixon 
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3.1. Introduction 

Atlantic salmon (Salmo salar L.), one of the main finfish species cultured 

intensively in the world, has the ability to store large quantities of n-3 long-chain-

polyunsaturated fatty acids (LC-PUFA) in its flesh (Miller et al., 2008). In the natural 

environment salmon are predominantly carnivorous, having access to high levels of n-3 

LC-PUFA, principally eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 

22:6n-3) acids, and n-6 LC-PUFA in lower level, mainly arachidonic acid (ARA, 20:4n-6) 

(Sargent et al., 2002). For this reason Atlantic salmon in intensive culture has been fed 

diets containing fish oil (FO) and fishmeal, which are obtained primarily from marine 

wild-caught sources. However, the over-dependence on FO and fishmeal for the 

formulation and manufacture of salmon aquafeeds, is one of the major challenges that has 

to be addressed for the sustainable development of the aquaculture industry (Naylor et al., 

2000; Tacon and Metian, 2008). As an alternative to overcome this situation, it has been 

proposed that FO could be replaced by vegetable oil (VO), due to its availability, 

sustainability and the lower production costs in comparison with FO (Turchini et al., 

2009). The main difference between FO and VO in terms of  their fatty acid (FA) profile is 

that FO is rich in n-3 LC-PUFA while VO completely lacks LC-PUFA, but can be 

abundant in linoleic (LOA, 18:2n-6) and α-linolenic (LNA, 18:3n-3) acids. The 

replacement of dietary FO by VO is not a major problem for freshwater and herbivorous 

fish, as these have the necessary enzymes to convert LNA into EPA and DHA and, LOA 

into ARA (Tocher, 2003). Marine carnivorous fish, on the other hand, present a low 

conversion of both acids, i.e. LOA into ARA, and LNA into EPA and DHA (Sargent et al., 

1997; Turchini et al., 2009). The inclusion of these FA in fish feeds is important since 

phospholipids in fish tissues are rich in n-3 LC-PUFA (i.e. EPA and DHA) with ARA in 

lower concentration (Sargent et al., 1989, 2002); ARA also represents the main precursor 
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for eicosanoid production (Henderson and Tocher, 1987; Tocher, 1995). The FA profile of 

Atlantic salmon is affected when FO is replaced with VO, resulting in low n-3 LC-PUFA 

levels (Torstensen et al., 2000; Bell et al., 2002; Bransden et al., 2003; Carter et al., 2003; 

Turchini et al., 2009). Therefore, the study of FA metabolism in fish has a vital role, as a 

change in FA composition of the fish diet may affect the health and welfare of the fish, 

which may also lose their beneficial properties for the human consumer.  

Lipids are the main energy source for salmonids, therefore, they must be included 

in the diet at the appropriate inclusion level to cover essential FA requirements, avoiding 

nutritional diseases and/or pathological issues such as: poor feed efficiency, vacuolated 

pyloric caeca tissue and reduced growth (Bell et al., 1991; Tacon, 1996; Seierstad et al., 

2005). Heart lesions, thinning of ventricular walls, and arteriosclerosis changes in Atlantic 

salmon fed diets with 100% of VO have been also reported (Bell et al., 1991; Seierstad et 

al., 2005). It has been shown that dietary FO can be replaced up to 75% without 

compromising the growth, health and/or welfare of Atlantic salmon if n-3 LC-PUFA 

requirements are covered (Polvi and Ackman, 1992; Rosenlund et al., 2001; Torstensen et 

al., 2005).  

Some of the most researched VO used in the aquafeed industry for Atlantic salmon 

are listed in Table 3.1, where their corresponding FA profiles (%) are also presented, with 

particular focus on the FA supplemented during the experiments described in this Chapter. 

Fatty acids such as 16:0 (palmitic acid), 18:1n-9 (oleic acid), LOA, and LNA are present in 

high levels in many of the VO listed. It can be observed that n-3 LC- PUFA such as EPA, 

22:5n-3, and DHA are reported only in FO. The monounsaturated (MUFA) 20:1n-9 

(eicosenoic) is rare in the VO mentioned. Regarding n-6 FA, 18:3n-6 is present only in 

echium oil.  
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Table 3.1. Incidence (%) of FA added to the CHSE-214 in vegetable or plant oils that can be used 

to replace fish oil in aquafeed for Atlantic salmon 

Oil sources 

Fatty acid Palm Rapeseed Linseed Sunflower-seed Olive Soya Echium Fish 

16:0  46.7 4.7 6.3 6.4 10.8 9.7 7.5 16.4 

18:1n-9  33.8 58.3 18.3 25.3 75.4 22.5 17.2 21.1 

20:1n-9  0.0 1.1 0.0 0.0 0.0 0.0 0.8 3.8 

18:2n-6  11.4 21.6 15.7 60.7 6.8 55.2 19.5 3.4 

18:3n-6 0.0 0.0 0.0 0.0 0.0 0.0 9.8 0.0 

20:3n-6  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20:4n-6  0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 

18:3n-3  0.0 7.3 53.3 0.0 0.0 6.4 28.1 0.6 

20:5n-3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.7 

22:5n-3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 

22:6n-3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 

Modified from Miller, M.R; Nichols, P.D; Carter, C.G. (2008) 

 

Cell culture represents a biological tool, which is widely used in the research field 

(Lakra et al., 2011). The RTG-2 cell line was the first permanent fish cell line, and was 

produced from gonad of rainbow trout (Oncorhynchus mykiss Walbaum) reported by Wolf 

and Quimby (1962). Since then, fish cell culture has represented a major biological tool for 

research in fish (Lakra et al., 2011; Lee et al., 2013).  In the past, cell culture was mainly 

used for virology studies (Wolf, 1988), but nowadays they are frequently used in a wider 

range of areas such as immunology (Bols et al., 2001), toxicology (Bahich and 

Borenfreund, 1991), ecotoxicology (Schirmer, 2006), endocrinology (Bols and Lee, 1991), 

temperature effect studies (Tocher and Sargent, 1990), and FA metabolism(Tocher et al., 

1989, 1992, 1995, 1996; Tocher and Sargent, 1990; Tocher and Dick, 1999; Ghioni et al., 

1999; Minghetti et al., 2011; Gregory et al., 2011; Viegas et al., 2012). The use of cell 

culture has become more popular since they are relatively easy to manipulate and maintain, 

and because the results can be more reproducible than those obtained from fish studies 

(Wolf and Quimby, 1976). Lakra et al. (2011) reported that approximately 283 finfish cell 

lines around the world have been established so far. The methodology required for the 

culture of fish and mammalian cell lines are generally similar, but fish cell lines have a 
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wider range of optimal incubation temperatures and, in the case of cell lines derived from 

marine fish, the osmolality of the medium has to be adjusted (Lakra et al., 2011). Cell 

culture has been an important in vitro tool to study fish lipid metabolism (Bailey and 

Dunbar, 1973; Spector et al., 1981). However, there have been some issues regarding the 

FA profile of the cell lines used. Although aquatic organisms and more specifically marine 

organisms are dominated by the n-3 LC-PUFA series (Sargent, 1976), the FA profile of the 

cells in culture  is dependent upon the culture medium and therefore is generally different 

from the tissue that they were originally derived from. This has been associated mainly to 

the culture of the fish cell lines using foetal bovine serum (FBS), as a result,  the FA 

composition of the cell line reflects the FA profile of FBS, which is rich in n-6, and 

deficient in n-3 LC-PUFA (Tocher et al., 1988). Another factor may be the incubation 

temperature, as in the case of the marine fish cell lines, which are routinely cultured at a 

higher temperature (22ºC approximately) compared to the natural environment where the 

fish were obtained from (5–15ºC), having effects on lipid and FA metabolism, and 

therefore, altering the FA composition of the fish cell lines to some extent (Tocher and 

Sargent, 1990).  

The aim of the studies in Chapter 3 is to determine the effects of supplementing 

individual FA, and FA concentration on total lipid content, lipid class composition and FA 

composition of CHSE-214 cell line. The data produced will provide information to enable 

the enzymatic capabilities of the CHSE-214 cell line to be investigated. Particular attention 

was paid to the activity of the LC-PUFA biosynthesis pathway. The supplementation of FA 

in increasing concentrations also provided data to enable the ideal concentration of FA 

supplementation required to alter FA composition, without negatively affecting cell growth 

and/or altering lipid metabolism towards a storage mode. Increased lipid deposition and 

storage would be reflected in the cellular deposition of lipid droplets and in altered lipid 
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class compositions, which would show an increment of triacylglycerol (TAG). The 

information obtained in this Chapter was necessary to determine the concentration of FA 

supplementation required to carry out the FA competition experiments in subsequent 

Chapters. 

 

3.2. Materials and Methods 

 

3.2.1. Cell line and routine culture procedures 

 The specifications of the CHSE-214 cell line, the preparation of the media and the 

routine culture procedures of the cells are provided in Chapter 2, sections 2.1.1 and 2.1.2.  

 

3.2.2. Individual FA supplementation experiments 

FA were supplemented to the cell line as complexes. These were prepared 

following the method described by Spector and Hoak (1969). Full details of the procedure 

are provided in Chapter 2, section 2.2.1. Table 3.2 lists the FA supplemented, their 

concentrations in the BSA complex, and the amount (in l) added to the flasks to obtain 

final planned FA concentrations. Palmitic acid (16:0) and oleic acid (18:1n-9) were 

supplemented because they are the most abundantly found SFA and MUFA, respectively, 

in VO used for the formulation of aquafeeds. The 20:1n-9 was supplemented since it is a 

MUFA mainly found in the FO. LOA was supplemented because it is the precursor of 

ARA, and because was necessary to observe if the cell line could convert it, as well as 

other n-6 intermediaries, i.e. 18:3n-6, 20:3n-6. LNA was supplemented as this is the 

precursor of the n-3 LC-PUFA and therefore it was important to confirm the CHSE-214 

cell line was able to metabolise it. Finally EPA, DPA and DHA were supplemented as 
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these are EFA and are only present in FO. Graded concentrations were supplemented in 

order to analyse the data using regression analysis. 

 

Table 3.2. Initial concentration of FA in the BSA complexes used as substrates for CHSE-214 cell 

line and amount added to the cells to obtain concentrations of 20, 50 and 100 µM 

Fatty acid complex Concentration  

(mM) 

Volume (l) 

for 20 M 

Volume (l) 

for 50 M 

Volume (l) 

for 100 M 

16:0 (Palmitic) 1.56 128 320 640 

18:1n-9 (Oleic) 1.82 110 275 550 

20:1n-9 (Eicosenoic) 1.12 180 450 900 

18:2n-6 (Linoleic) 2.04 98 245 490 

18:3n-6 (-Linolenic) 2.52 80 200 400 

20:3n-6 (Dihomo--linolenic) 1.76 115 285 570 

20:4n-6 (Arachidonic) 2.09 96 240 480 

18:3n-3 (-Linolenic) 2.00 100 250 500 

20:5n-3 (Eicosapentaenoic) 1.83 110 275 550 

22:5n-3 (Docosapentaenoic) 1.46 137 342 685 

22:6n-3 (Docosahexaenoic) 1.49 134 335 670 

 

3.2.3. Supplementation of cultures with FA complexes 

The protocol used for the supplementation of FA to the cell line has been described 

in Chapter 2, section 2.2.2. The concentrations of FA supplemented to the cells were 20, 50 

and 100 M for lipid incorporation assays, and 0, 20, 40, 60, 80 and 100 M for toxicity 

assays. For lipid analyses, experimental control flasks did not receive any treatment 

whereas for toxicity analyses, experimental control wells were incubated with the BSA 

solution without FA. After the incubation period, cells were harvested and washed as 

previously described in Chapter 2, sections 2.1.2.2 and 2.2.2 for further lipid analyses. 

 

3.2.4. Lipid analyses 

Cellular lipids were extracted according to Folch et al. (1957) as described in 

Chapter 2, section 2.3.1. Lipid class analyses were carried out by one-dimensional double 

development high-performance thin-layer chromatography, as described in Chapter 2, 
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section 2.3.2 (Henderson and Tocher, 1992). Fatty acid methyl esters (FAME) were 

prepared by acid-catalysed transmethylation according to Christie (2003). Full details of 

the procedure are provided in Chapter 2, section 2.3.3.  

 

3.2.5. Cell proliferation and toxicity analysis (MTT cell proliferation assay) 

The MTT cell assay was used to determine the effects of fatty acid supplementation 

on cell proliferation and also to determine any toxic effects of different concentrations of 

FA added to the cell cultures. The MTT (thiazolyl blue tetrazolium bromide, Sigma-

Aldrich
®
 Company Ltd., Dorset, UK) is a vital staining dye, which is used to determine 

cell growth and toxic effects by counting viable cells. Cells were harvested from the 75 

cm
2
 tissue culture flasks as described in Chapter 2, section 2.1.2.2, and counted as 

previously detailed in section 2.1.2.4. Homogeneous cell suspensions were distributed in 

six-well plates at a density of 1.6×10
6 

cells per well in 3 ml of L-15 media supplemented 

with 5% FBS. Twenty-four hours after seeding, FA were added in triplicate to the wells at 

concentrations previously specified. The plates were then incubated for 5 d at 20ºC. On the 

fifth day, MTT powder was weighted and dissolved in Milli-Q water at a concentration of 

5 mg ml
-1

 to make the stock solution that was filter-sterilised prior to use by syringe 

filtration (0.2 µm pore size). The sterile MTT solution was added to the growth medium 

that was used for fatty acid supplementation experiments (i.e. 5% FBS and 200 µM L-

glutamine) at a final concentration of 0.5 mg MTT ml
-1

 medium. Cells in the six-well 

plates were washed twice with DPBS (1 ml per well per wash) and 2.5 ml of media 

containing MTT added to each well and the plates incubated for 4 h at 20ºC. The 

MTT/medium was removed from each well by pipetting, and plates with the lid open were 

air dried and kept in darkness for 40 min at 20ºC in the incubator. When the plates were 

completely dry, 1 ml of DMSO solution was added to each well to dissolve the crystals of 
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MTT. Plates were wrapped in aluminium foil and incubated for further 30 min, gently 

shaking every 10 min. Four replicates of 200 µL MTT/DMSO solution per sample were 

transferred from each well in the six-well plates to individual wells in a 96-well plate. The 

absorbance of the MTT blue dye was determined in a spectrophotometer at 570 nm in a 

Multiskan
®
 plate reader (Multiskan

®
 EX, MTX Lab Systems, Inc., U.S.A.) using Genesis 

Lite software (MTX Lab Systems, Inc., U.S.A.). The output obtained was a txt file 

extension and this was converted into a Microsoft
®
 Excel

®
 file in order to organise the data 

and to represent them graphically. 

 

3.2.6. Statistical analysis 

 For all assays, the experimental conditions were applied in triplicate, with each 

flask considered a replicate in the supplementation studies for effects on lipid and FA 

composition, and each well a replicate in the cell proliferation/toxicity analyses. Results 

are presented as means ± 1 standard deviation (SD). Detailed statistical analyses are 

provided in Chapter 2, section 2.4. 

 

3.3. Results 

 

3.3.1. Lipid content, lipid class and FA composition of CHSE-214 cells grown in 10% 

FBS (baseline) 

 As a starting point, the lipid content, lipid class and FA composition of three 75 

cm
2
 flasks of CHSE-214 cells growing under conditions to provide experimental material 

were determined. The lipid content and lipid class composition of the CHSE-214 grown in 

20 ml of L-15 media with 10% of FBS are shown in Table 3.3. In average 444.7 µg of 

lipids were extracted from the CHSE-214 growing in 75 cm
2
 tissue culture flasks. The 
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percentage of total polar lipids was almost the double of the percentage of the total neutral 

lipids. The most abundant polar lipids were: PE > PC > PI, while the major component of 

the total neutral lipids was cholesterol. 

 

Table 3.3. Lipid content and lipid class composition of CHSE-214 cells growing in L-15 media 

with 10% of FBS 

Lipid CHSE-214 in 10% of FBS 

Lipid content (µg)  444.7 ± 15.2
 

Class composition (%)  

PC 16.0 ± 2.1
 

PE 21.7 ± 0.1
 

PS 8.1 ± 0.5
 

PI 11.9 ± 2.3
 

PA/CL 1.8 ± 0.1
 

SM 5.1 ± 0.2
 

Total polar 64.6 ± 1.0
 

Total neutral 35.4 ± 1.0
 

TAG 12.3 ± 0.2 
 

CHOL 16.8 ± 0.9
 

FFA 6.4 ± 0.2
 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Abbreviations: PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = 

phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; 

TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids.  

 

The FA profile of the CHSE-214 cell line grown under routine culture conditions in 

medium containing 10% FBS for provision of experimental material is shown in Table 3.4. 

The major FA groups were present in the rank order MUFA > SFA > PUFA. The most 

abundant SFA in cell total lipid were 16:0 and 18:0, accounting for 15.6% and 10.5% of 

total fatty acids (TFA), respectively. Regarding MUFA, 18:1n-9 was the most abundant at 

39.7% of TFA. Total n-6 PUFA accounted for almost 12% of TFA with individual n-6 

PUFA in the rank order LOA > 20:3n-6 > ARA. The n-3 LC-PUFA were found in lower 

proportions, with 2.8% of DHA, 1% of 22:5n-3, and 0.6% EPA. The PUFA composition 

was characterised by the presence of n-9 PUFA, specifically 18:2n-9 at 2.4%, and 20:2n-9 

at 1.7%.  
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Table 3.4. Fatty acid composition (%) of total lipid of CHSE-214 cells grown in routine culture 

conditions for the provision of stock 

Fatty acid Percentage 

14:0 1.8 ± 0.1 

15:0 0.7 ± 0.1 

16:0 15.6 ± 0.5 

17:0 0.4 ± 0.1 

18:0 10.5 ± 1.6 

22:0 0.7 ± 0.1 

Total saturated 29.8 ± 1.4 

16:1n-9 3.2 ± 0.2 

16:1n-7 2.7 ± 0.3 

18:1n-9 39.7 ± 1.0 

18:1n-7 3.1 ± 0.1 

24:1n-9 1.1 ± 0.1 

Total monounsaturated 49.9 ± 0.8 

18:2n-6 5.5 ± 0.3 

18:3n-6 0.5 ± 0.1 

20:2n-6 (contains 20:3n-9) 0.5 ± 0.1 

20:3n-6 2.8 ± 0.3 

20:4n-6 2.4 ± 0.4 

Total n-6 PUFA 11.8 ± 0.9 

20:5n-3 0.6 ± 0.1 

22:5n-3 1.0 ± 0.1 

22:6n-3 2.8 ± 0.3 

Total n-3 PUFA 4.5 ± 0.3 

18:2n-9 2.4 ± 0.4 

20:2n-9 1.7 ± 0.1 

Total n-9 PUFA 4.1 ± 0.4 

  Total PUFA 20.4 ± 1.4 

Footnotes: Results are expressed as mean ± 1 standard deviation (SD) (n=3) Fatty acid composition is given 

as a percentage of the total fatty acid content. Abbreviations: PUFA = polyunsaturated fatty acid.  

 

3.3.2. Effect of supplemental SFA (16:0) and MUFA (18:1n-9, 20:1n-9) fatty acids on 

lipid content, lipid class and fatty acid compositions of CHSE-214 cells  

 

3.3.2.1. Supplementation with 16:0 

The lipid content and lipid class composition of the CHSE-214 cell line incubated 

with increasing concentrations of 16:0 are presented in Table 3.5. Cell lipid content data 

did not show a clear trend with graded supplementation of 16:0 (R
2
 = 0.000; p = 0.953). 

Furthermore, there were no clear trends in the lipid class composition data with graded 
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supplementation of 16:0, apart from the increasing TAG, which increased with the 

supplementation of 16:0 at 20 µM to 100 µM; however, results were not statistically 

significant (R
2
 = 0.001; p = 0.943).   

 
Table 3.5. Lipid content and lipid class composition of CHSE-214 cell line incubated with 16:0 

Lipid Control 20 µM 50 µM 100 µM R
2
 P-value 

LC (µg)  423.3 ± 81.4
 

506.7 ± 107.9
 

430.0 ± 108.2
 

443.3 ± 140.1 0.000 0.953 

CC (%)       

PC 23.7 ± 1.6
 

23.9 ± 1.1  28.1± 1.7
 

25.4 ± 0.4 0.046 0.504 

PE 14.4 ± 1.8
 

20.1 ± 1.2
 

19.4 ± 0.7
 

15.1 ± 1.7 0.566 0.005 

PS 4.9 ± 0.1
 

6.2 ± 0.8
 

7.6 ± 0.6
 

4.8 ± 0.3 0.005 0.824 

PI 10.3 ± 0.1
 

4.0 ± 1.2
 

4.1 ± 0.9
 

3.6 ± 0.7 0.002 0.878 

PA/CL 1.5 ± 0.2
 

1.5 ± 0.1
 

1.3 ± 0.2
 

2.0 ± 0.2 0.440 0.019 

SM 5.2 ± 0.5
 

4.8 ± 0.2
 

4.3 ± 0.8
 

6.2 ± 0.4  0.094 0.331 

TP 60.0 ± 2.0
 

60.5 ± 1.2
 

64.8 ± 0.4
 

57.1 ± 1.2 0.064 0.426 

TN 40.0 ± 2.0
 

39.5 ± 1.2
 

35.2 ± 0.4
 

42.9 ± 1.2 0.064 0.426 

TAG 4.7 ± 0.8 
 

2.3 ± 1.1
 

3.3 ± 1.6
 

3.8 ± 1.1 0.001 0.943 

CHOL 35.3 ± 1.3
 

37.2 ± 2.3
 

31.9 ± 2.0
 

39.1 ± 0.3 0.071 0.402 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA profile of CHSE-214 cells incubated with increasing concentrations of 16:0 

is shown in Table 3.6. Saturated fatty acids (SFA) accounted for about 20–35% of TFA 

and, as supplemental 16:0 increased graded increase of total SFA (R
2
 = 0.782; p = 0.036) 

and 16:0 (R
2
 = 0.872; p = 0.042) was observed. However, the proportions of MUFA (R

2
 = 

0.323; p = 0.054), n-6 (R
2
 = 0.011; p = 0.749), n-3 (R

2
 = 0.626; p = 0.002), n-9 (R

2
 = 

0.624; p = 0.002) and total PUFA (R
2
 = 0.700; p = 0.001) all decreased. Almost all 

individual FA showed generally graded decreasing trends, apart from 18:0, which showed 

increasing proportions at 20 µM and 50 µM and (R
2
 = 0.230; p = 0.115) and 16:1n-7 which 

increased by almost two-fold at 20 µM, almost three-fold at 50 µM and over six-fold at 

100 µM (R
2
 = 0.851; p = 0.000). A similar trend to a lesser extent was observed in the 
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percentages reported for 16:1n-9 (R
2
 = 0.719; p = 0.000) and 18:1n-7 (R

2
 = 0.912; p = 

0.000).  

 
Table 3.6. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of 16:0 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.8 ± 0.2
 

1.8 ± 0.4
 

1.6 ± 0.4
 

1.4 ± 0.3 0.065 0.424 

15:0 0.3 ± 0.0
 

0.6 ± 0.2
 

0.4 ± 0.1
 

0.9 ± 0.1 0.150 0.213 

16:0 12.6 ± 1.3
 

16.7 ± 2.3
 

18.4 ± 2.1
 

26.6 ± 1.0 0.872 0.042 

17:0 ND
 

1.0 ± 0.2
 

1.1 ± 0.2
 

1.2 ± 0.1 0.194 0.152 

18:0 6.8 ± 0.4
 

8.9 ± 1.3
 

10.2 ± 1.5
 

5.0 ± 0.5 0.230 0.115 

22:0 0.4 ± 0.2
 

0.6 ± 0.1
 

0.3 ± 0.1
 

0.7 0.344 0.045 

Ʃ SFA 21.9 ± 1.4
 

29.5 ± 1.7
 

32.0 ± 1.3
 

35.8 ± 0.8 0.782 0.036 

16:1n-9 4.1 ± 0.1
 

5.0 ± 0.4
 

5.7 ± 0.3
 

5.9 ± 1.0 0.719 0.000 

16:1n-7 3.2 ± 0.6
 

5.5 ± 0.4
 

8.6 ± 1.0
 

21.8 ± 0.6 0.851 0.000 

18:1n-9 44.9 ± 3.1
 

37.3 ± 1.7
 

33.7 ± 0.6
 

20.0 ± 1.5 0.366 0.037 

18:1n-7 2.4 ± 0.9
 

3.8 ± 0.4
 

3.2 ± 0.3
 

1.7 ± 0.2 0.912 0.000 

24:1n-9 1.2 ± 0.2
 

1.0 ± 0.1
 

1.0 ± 0.1
 

1.9 ± 0.3 0.015 0.702 

Ʃ MUFA 55.9 ± 1.2
 

52.5 ± 1.3
 

52.1 ± 1.2
 

51.3 ± 1.0 0.323 0.054 

18:2n-6 2.9 ± 0.1
 

3.1 ± 0.1
 

2.4 ± 0.1
 

2.9 ± 0.3 0.172 0.180 

18:3n-6 0.4 ± 0.1
 

0.4 ± 0.1
 

0.4 ± 0.1
 

0.5 ± 0.1 0.041 0.529 

20:2n-6* 1.2 ± 0.1
 

0.9 ± 0.3
 

0.7 ± 0.1
 

0.6 ± 0.1 0.615 0.003 

20:3n-6 1.2 ± 0.3
 

0.8 ± 0.2
 

1.3 ± 0.2
 

1.3 ± 0.2 0.164 0.191 

20:4n-6 1.6 ± 0.1
 

0.6 ± 0.0
 

0.6 ± 0.0
 

0.9 ± 0.1 0.150 0.213 

Ʃ n-6 PUFA 7.2 ± 0.4
 

5.7 ± 0.5
 

5.3 ± 0.4
 

6.2 ± 0.5 0.011 0.749 

20:5n-3 0.5 ± 0.1
 

0.6 ± 0.1
 

1.0 ± 0.1
 

0.5 ± 0.1 0.196 0.149 

22:5n-3 1.0 ± 0.1
 

0.6 ± 0.1
 

0.4 ± 0.1
 

0.6 ± 0.1 0.260 0.090 

22:6n-3 1.6 ± 0.3
 

1.3 ± 0.2
 

1.2 ± 0.3
 

1.1 ± 0.1 0.666 0.001 

Ʃ n-3 PUFA 3.2 ± 0.1
 

2.5 ± 0.2
 

2.7 ± 0.4
 

2.3 ± 0.2 0.626 0.002 

18:2n-9 6.4 ± 0.5
 

5.0 ± 0.9
 

4.7 ± 0.2
 

3.3 ± 0.2 0.293 0.069 

20:2n-9 5.4 ± 0.6 4.7 ± 0.5
 

3.1 ± 0.1
 

1.2 ± 0.1 0.776 0.000 

Ʃ n-9 PUFA  11.8 ± 0.3
 

9.7 ± 0.2
 

7.8 ± 0.3
 

4.5 ± 0.2 0.624 0.002 

Ʃ PUFA 19.6 ± 3.5
 

18.0 ± 1.9
 

15.9 ± 0.9
 

12.9 ± 0.2 0.700 0.001 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated 

fatty acid; ND = not detected; *contains 20:3n-9. 

 

3.3.2.2. Supplementation with 18:1n-9 

In Table 3.7 the lipid content and the lipid class compositions of CHSE-214 cells 

incubated with 18:1n-9 are presented. No clear trend was observed in the cell total lipid 

with the graded supplementation of 18:1n-9 (R
2
 = 0.265; p = 0.087). The proportions of 

total polar lipids were in the range of 49.9–59.2%. The percentages of PC decreased (R
2
 = 
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0.818; p = 0.000) and PE increased with the graded supplementation of 18:1n-9 (R
2
 = 

0.551; p = 0.006). Total neutral lipids increased with supplementation of 20 µM and 50 

µM 18:1n-9, and TAG showed graded increments, particularly at 50 µM by almost two-

fold, and over three-fold at 100 µM (R
2
 = 0.869; p = 0.000). 

 
Table 3.7. Lipid content and lipid class composition of CHSE-214 incubated with 18:1n-9 

Lipid Control 20 µM 50 µM 100 µM R
2
 P-value 

LC (µg) 426.6 ± 41.6
 

565.4 ± 98.5
 

515.9 ± 51.3
 

590.3 ± 15.3 0.265 0.087 

CC (%)       

PC 22.7 ± 1.6
 

16.4 ± 0.4
 

12.2 ± 1.9
 

11.6 ± 2.2 0.818 0.000 

PE 14.2 ± 1.8
 

16.0 ± 0.9
 

16.2 ± 0.7
 

24.8 ± 1.3 0.551 0.006 

PS 4.6 ± 1.2
 

4.9 ± 0.5
 

3.9 ± 0.7
 

3.6 ± 0.4 0.255 0.094 

PI 10.4 ± 2.0
 

11.3 ± 0.7
 

11.0 ± 0.6
 

8.2 ± 0.3 0.260 0.090 

PA/CL 1.6 ± 0.2
 

1.6 ± 0.3
 

1.5 ± 0.3
 

1.6 ± 0.2 0.003 0.877 

SM 5.7 ± 0.3
 

5.8 ± 0.4
 

5.1 ± 0.6
 

4.6 ± 0.5 0.507 0.009 

TP 59.2 ± 3.0
 

56.0 ± 1.9
 

49.9 ± 1.1
 

54.4 ± 3.6 0.287 0.072 

TN 40.8 ± 3.0
 

44.0 ± 1.9
 

50.1 ± 1.1
 

45.6 ± 3.6 0.287 0.072 

TAG 4.1 ± 0.5
 

3.9 ± 0.5
 

7.5 ± 0.8
 

15.1 ± 1.3 0.869 0.000 

CHOL 36.7 ± 2.6
 

40.1 ± 1.9
 

42.6 ± 1.3
 

30.5 ± 2.3 0.151 0.212 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05).  

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of the CHSE-214 cell line incubated with increasing 

concentrations of 18:1n-9 is presented in Table 3.8. With the exception of the control 

(unsupplemented) cells, the proportions of the major FA groups were in the rank order 

MUFA > PUFA > SFA. Proportions of total SFA and, particularly, 16:0 and 18:0 

decreased with the graded supplementation of 18:1n-9 (R
2
 = 0.675; p = 0.001 and R

2
 = 

0.814; p = 0.000, respectively), while total MUFA proportionally increased (R
2
 = 0.814; p 

= 0.000). The 18:1n-9 was incorporated with the graded supplementation of the FA itself 

(R
2
 = 0.740; p = 0.000). No major metabolites were observed, apart from 16:1n-9 (R

2
 = 

0.960; p = 0.000) and, at levels lower than 0.5%, 20:1n-9, 22:1n-9 and 24:1n-9. 
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Supplementing 18:1n-9 at 100 µM significantly decreased SFA, n-6 PUFA, n-9 PUFA and 

total PUFA. 

 

Table 3.8. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of 18:1n-9 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.5 ± 0.1
 

1.6 ± 0.1
 

1.7 ± 0.2
 

1.3 ± 0.1
 

0.174 0.177 

15:0 0.3 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.1
 

0.107 0.299 

16:0 12.3 ± 0.6
 

12.0 ± 0.1
 

11.3 ± 0.5
 

7.8 ± 0.5
 

0.675 0.001 

18:0 6.9 ± 0.5
 

6.7 ± 0.3
 

6.0 ± 0.1
 

4.3 ± 0.1
 

0.814 0.000 

22:0 0.4 ± 0.2
 

0.6 ± 0.2
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.107 0.245 

Ʃ SFA 21.4± 1.2
 

21.2 ± 0.5
 

19.6 ± 0.5
 

13.9 ± 0.8
 

0.784 0.000 

16:1n-9 4.2 ± 0.2
 

4.8 ± 0.1
 

5.6 ± 0.1
 

6.0 ± 0.1
 

0.960 0.000 

16:1n-7 3.1 ± 0.1
 

2.5 ± 0.1
 

2.2 ± 0.2
 

1.4 ± 0.1
 

0.827 0.000 

18:1n-9 46.0 ± 1.2
 

45.4 ± 0.9
 

47.5 ± 0.7
 

58.1 ± 1.3
 

0.740 0.000 

18:1n-7 1.9 ± 0.2
 

1.9 ± 0.1
 

1.7 ± 0.1
 

0.9 ± 0.7
 

0.393 0.029 

20:1n-9 ND
 

0.3 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.1
 

- - 

20:1n-7 ND
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.1 ± 0.0
 

- - 

22:1n-9 ND
 

0.3 ± 0.0
 

0.4 ± 0.1
 

0.2 ± 0.0
 

- - 

24:1n-9 1.7 ± 0.2
 

2.1 ± 0.4
 

1.9 ± 0.6
 

1.4 ± 0.3
 

0.097 0.324 

Ʃ MUFA 56.9 ± 1.1
 

57.5 ± 0.6
 

59.9 ± 0.1
 

68.5 ± 1.3
 

0.814 0.000 

18:2n-6 2.0 ± 0.1
 

1.8 ±0.1
 

1.9 ± 0.2
 

1.5 ± 0.1
 

0.541 0.006 

18:3n-6 0.4 ± 0.0
 

0.4 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.709 0.001 

20:2n-6*  1.3 ± 0.1
 

1.3 ± 0.1
 

1.2 ± 0.1
 

0.7 ± 0.0
 

0.722 0.000 

20:3n-6 2.4 ± 0.1
 

2.0 ± 0.5
 

1.7 ± 0.6
 

0.9 ± 0.2
 

0.727 0.000 

20:4n-6 0.7 ± 0.1
 

0.9 ± 0.2
 

1.0 ± 0.1
 

0.9 ± 0.1
 

0.407 0.026 

Ʃ PUFA 6.8 ± 0.1
 

6.3 ± 0.7
 

6.1 ± 0.8
 

4.3 ± 0.1
 

0.692 0.001 

20:5n-3 0.2 ± 0.1
 

0.5 ± 0.1
 

0.7 ± 0.2
 

1.0 ± 0.3
 

0.249 0.099 

22:5n-3 0.7 ± 0.0
 

0.7 ± 0.0
 

0.7 ± 0.1
 

0.5 ± 0.1
 

0.499 0.010 

22:6n-3 1.4 ± 0.1
 

1.3 ± 0.1
 

1.3 ± 0.2
 

0.9 ± 0.1
 

0.642 0.002 

Ʃ n-3 PUFA 2.3 ± 0.1
 

3.5 ± 0.3
 

2.6 ± 0.1
 

2.5 ± 0.4
 

0.002 0.896 

18:2n-9 6.2 ± 0.2
 

6.6 ± 0.2
 

6.3 ± 0.2
 

6.4 ± 0.2
 

0.010 0.757 

20:2n-9 6.0 ± 0.1
 

5.6 ± 0.1
 

5.0 ± 0.1
 

3.9 ± 0.1
 

0.968 0.000 

22:2n-9 0.4 ± 0
 

0.5 ± 0.0
 

0.6 ± 0.0
 

0.5 ± 0.0
 

0.248 0.100 

Ʃ n-9 PUFA 12.6 ± 0.3
 

12.6 ± 0.0
 

11.9 ± 0.3
 

10.8 ± 0.2
 

0.933 0.000 

       

Total PUFA 21.7± 0.4
 

22.4 ± 1.0
 

20.6 ± 0.6
 

17.6 ± 0.5
 

0.773 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated 

fatty acid; ND = not detected; *contains 20:3n-9. 

 

3.3.2.3. Supplementation with 20:1n-9 

The lipid content and the lipid class composition of CHSE-214 incubated with 

increasing concentrations of 20:1n-9 are presented in Table 3.9. No clear trend was 

observed in the cellular total lipid content with the graded supplementation of 20:1n-9 (R
2
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= 0.051; p = 0.481). Proportions of total polar lipid (R
2
 = 0.436; p = 0.020), PC (R

2
 = 

0.626; p = 0.002), PE (R
2
 = 0.953; p = 0.000), PS (R

2
 = 0.800; p = 0.000) and PI (R

2
 = 

0.774; p = 0.000) all decreased with the graded supplementation of 20:1n-9, except for 

PA/CL (R
2
 = 0.905; p = 0.000) and SM (R

2
 = 0.061; p = 0.439). The proportions of total 

neutral lipid classes increased (R
2
 = 0.436; p = 0.020), as a result of the increment of TAG 

with the graded supplementation of 20:1n-9 (R
2
 = 0.855; p = 0.000). 

 
Table 3.9. Lipid content and lipid class composition of CHSE-214 incubated with 20:1n-9 

Lipid Control 20 µM 50 µM 100 µM R
2
 P-value 

LC (µg) 470.0 ± 34.6
 

613.3 ± 140.1
 

546.7 ± 98.1
 

560.0 ± 121.7 0.051 0.481 

CC (%)       

PC 23.9 ± 1.1
 

19.0 ± 0.2
 

18.6 ± 1.1
 

18.3 ± 0.9 0.626 0.002 

PE 14.1 ± 0.3
 

11.8 ± 0.5
 

8.9 ± 0.3
 

8.8 ± 0.2 0.953 0.000 

PS 4.6 ± 0.6
 

3.9 ± 0.1
 

3.8 ± 0.2
 

2.8 ± 0.1 0.800 0.000 

PI 10.4 ± 0.7
 

9.1 ± 0.4
 

8.6 ± 0.1
 

6.4 ± 0.1 0.774 0.000 

PA/CL 2.6 ± 0.3
 

3.3 ± 0.6
 

5.6 ± 0.2
 

4.5 ± 0.9 0.905 0.000 

SM 4.3 ± 0.5
 

4.2 ± 0.1
 

4.4 ± 0.2
 

4.1 ± 0.2 0.061 0.439 

TP 59.9 ± 0.9
 

54.0 ± 1.5
 

49.9 ± 1.0
 

44.9 ± 1.2 0.436 0.020 

TN 40.1 ± 0.9
 

46.0 ± 1.5
 

50.1 ± 1.0
 

55.1 ± 1.2 0.436 0.020 

TAG 4.4 ± 0.8
 

4.2 ± 0.9
 

11.0 ± 0.6
 

24.2 ± 1.1 0.855 0.000 

CHOL 35.7 ± 1.7
 

44.5± 2.3
 

39.1 ± 1.2
 

30.9 ± 0.1 0.201 0.144 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

 

The FA composition of CHSE-214 cells incubated with 20:1n-9 is presented in 

Table 3.10. The proportions of the major FA groups were as follows: MUFA > SFA > 

PUFA in all four treatments. Percentages of total SFA (R
2
 = 0.566; p = 0.005), n-9 PUFA 

(R
2
 = 0.875; p = 0.000) and total PUFA (R

2
 = 0.944; p = 0.000) all decreased with the 

graded supplementation of 20:1n-9.  There were observed graded increasing proportions of 

20:1n-9 in the cells as concentration of supplementation increased (R
2
 = 0.991; p = 0.000). 
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In terms of metabolism, some elongation to 22:1n-9 was observed (R
2
 = 0.804; p = 0.000) 

but no further metabolites were detected. No metabolism to n-9 PUFA was observed. 

 
Table 3.10. Fatty acid composition of CHSE-214 incubated with 20, 50 and 100 µM of 20:1n-9 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.6 ± 0.2
 

2.1 ± 0.5
 

2.0 ± 0.1
 

1.1 ± 0.3 0.167 0.187 

15:0 0.2 ± 0.0
 

0.3 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.0 0.304 0.063 

16:0 13.4 ± 0.4
 

16.9 ± 0.7
 

14.7 ± 0.9
 

9.6 ± 0.3 0.527 0.008 

17:0 ND
 

4.1 ± 0.6
 

1.2 ± 0.6
 

3.6 ± 0.2 0.421 0.022 

18:0 6.1 ± 0.4
 

7.0 ± 0.1
 

5.0 ± 0.2
 

3.1 ± 0.4 0.971 0.000 

Ʃ SFA 21.3 ± 0.3
 

30.4 ± 1.4
 

23.2 ± 1.6
 

17.7 ± 0.8 0.566 0.005 

16:1n-9 4.7 ± 0.5
 

4.3 ± 0.3
 

4.6 ± 0.3
 

3.5 ± 0.5 0.008 0.785 

16:1n-7 2.8 ± 0.2
 

3.4 ± 0.8
 

2.6 ± 0.1
 

1.7 ± 0.1 0.469 0.014 

18:1n-9 45.9 ± 1.5
 

39.1 ± 1.4
 

36.7 ± 1.0
 

28.5 ± 1.2 0.956 0.000 

18:1n-7 2.3 ± 0.3
 

1.9 ± 0.1
 

1.5 ± 0.1
 

1.9 ± 0.2 0.224 0.120 

20:1n-9 ND
 

7.6 ± 0.5
 

20.7 ± 0.8
 

38.4 ± 0.6 0.991 0.000 

22:1n-9 ND
 

0.9 ± 0.1
 

0.8 ± 0.2
 

2.8 ± 1.3 0.804 0.000 

24:1n-9 1.1 ± 0.1
 

0.4 ± 0.1
 

0.5 ± 0.0
 

0.5 ± 0.1 0.490 0.011 

Ʃ MUFA 56.8 ± 1.6
 

57.6 ± 1.0
 

67.4 ± 1.4
 

77.2 ± 1.1 0.904 0.000 

18:2n-6 2.4 ± 0.2
 

1.6 ± 0.2
 

1.3 ± 0.1
 

1.1 ± 0.2 0.377 0.034 

18:3n-6 0.2 ± 0.0
 

0.3 ± 0.1
 

0.2 ± 0.1
 

0.3 ± 0.1 0.042 0.522 

20:2n-6*  0.7 ± 0.0
 

0.7 ± 0.
 

0.8 ± 0.2
 

0.2 ± 0.0 0.043 0.517 

20:4n-6 1.5 ± 0.4
 

0.4 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.1 0.651 0.002 

Ʃ n-6 PUFA 6.8 ± 0.8
 

3.1 ± 0.2
 

3.6 ± 0.6
 

2.0 ± 0.3 0.742 0.000 

20:5n-3 0.5 ± 0.0
 

0.5 ± 0.1
 

0.3 ± 0.1
 

0.6 ± 0.2 0.000 0.974 

22:6n-3 1.5 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.7 ± 0.3 0.232 0.113 

Ʃ n-3 PUFA 2.4 ± 0.2
 

0.8 ± 0.1
 

0.4 ± 0.1
 

1.8 ± 0.3 0.237 0.108 

18:2n-9 6.6 ± 0.1
 

4.0 ± 0.3
 

3.1 ± 0.1
 

ND - - 

20:2n-9 6.1 ± 0.6
 

4.1 ± 0.3
 

3.2 ± 0.1
 

1.9 ± 0.2 0.938 0.000 

Ʃ n-9 PUFA 12.7 ± 0.5
 

8.2 ± 0.6
 

6.3 ± 0.2
 

1.9 ± 0.2 0.875 0.000 

       

Ʃ PUFA 21.9 ± 1.4
 

12.0 ± 0.5
 

10.4 ± 0.7
 

5.2 ± 0.4 0.944 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: SFA = saturated fatty acid; MUFA = saturated fatty acid; PUFA = polyunsaturated fatty acid; 

ND = not detected; *contains 20:3n-9. 

 

3.3.3. Effect of supplemental n-6 PUFA (LOA, 18:3n-6, 20:3n-6 and ARA) on lipid 

content, class and fatty acid compositions of CHSE-214 cells 

 

3.3.3.1. Supplementation with LOA 

In Table 3.11 the lipid content and the lipid class composition of CHSE-214 cells 

incubated with increasing concentrations of LOA are presented. No clear trend was 



Olga Liliana Rubio Mejía  CHAPTER 3 

 55 

observed in total lipid content with the graded supplementation of LOA (R
2
 = 0.148; p = 

0.218). Apart from TAG, which increased with the graded supplementation of LOA (R
2
 = 

0.855; p = 0.000), no clear trends were observed in most of the lipid classes.  

 

Table 3.11. Lipid content and lipid class composition of CHSE-214 incubated with 20, 50 and 100 

µM LOA 

Lipid Control 20 µM 50 µM 100 µM R
2
 P-value 

LC (µg) 406.7 ± 5.8
 

373.3 ± 30.6
 

440.0 ± 70.0
 

433.3 ± 30.6 0.148 0.218 

CC (%)       

PC 23.0 ± 0.6
 

22.2± 0.6
 

22.6 ± 0.5
 

25.8 ± 1.1 0.410 0.025 

PE 15.6 ± 0.2
 

17.4 ± 0.4
 

17.2 ± 0.3
 

19.0 ± 0.2 0.832 0.000 

PS 4.2 ± 0.9
 

3.8 ± 0.1
 

3.8 ± 0.1
 

4.1 ± 0.3 0.101 0.755 

PI 10.8 ± 0.7
 

9.8 ± 0.3
 

8.0 ± 0.2
 

8.0 ± 0.1 0.839 0.000 

PA/CL 2.1 ± 0.3
 

1.2 ± 0.3
 

0.7 ± 0.1
 

0.4 ± 0.1 0.764 0.000 

SM 4.2 ± 0.6
 

2.5 ± 0.4
 

2.6 ± 0.2
 

3.8 ± 0.5 0.027 0.613 

TP 59.9 ± 1.5
 

56.9 ± 0.7
 

54.9 ± 0.6
 

61.1± 0.8 0.009 0.764 

TN 40.1 ± 1.5
 

43.1 ± 0.7
 

45.1 ± 0.6
 

40.0 ± 0.8 0.009 0.764 

TAG 4.1 ± 0.2
 

4.6 ± 0.4
 

10.0 ± 0.5
 

10.8 ± 1.4 0.855 0.000 

CHOL 36.0 ± 1.6
 

38.5 ± 1.4
 

35.1 ± 0.8
 

28.1 ± 1.9 0.557 0.005 

FFA ND ND ND ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; LC = lipid content; CC = class composition; PC = phosphatidylcholine; 

PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 cells incubated with increasing concentrations 

of LOA is presented in Table 3.12. Clearly, the relative levels of PUFA increased with 

increasing LOA supplementation (R
2
 = 0.964; p = 0.000). Therefore, the proportions of the 

major FA groups in control (unsupplemented) cells was as follows: MUFA > SFA > 

PUFA; with 20 µM: MUFA > PUFA > SFA; and with 50 µM and 100 µM: PUFA > 

MUFA > SFA. Graded increased cellular LOA with increased supplementation of LOA 

was observed (R
2
 = 0.938; p = 0.000).  
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Table 3.12. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of LOA 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.7 ± 0.3
 

1.1 ± 0.1
 

1.1 ± 0.2
 

1.0 ± 0.1 0.602 0.003 

15:0 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.0 0.152 0.210 

16:0 12.7 ± 0.1
 

12.1 ± 0.3
 

11.8 ± 0.6
 

10.2 ± 0.7 0.708 0.001 

17:0 ND
 

0.3 ± 0.1
 

0.4 ± 0.0
 

0.2 ± 0.0 0.208 0.101 

18:0 7.0 ± 0.2
 

8.7 ± 0.1
 

9.6 ± 0.3
 

8.4 ± 0.5 0.368 0.036 

22:0 ND
 

0.4 ± 0.1
 

0.5 ± 0.0
 

0.1 ± 0.0 0.368 0.067 

24:0 ND
 

ND 0.5 ± 0.0
 

0.5 ± 0.0 - - 

Ʃ SFA 21.6 ± 0.1
 

22.8 ± 0.6
 

24.1 ± 0.5
 

20.7 ± 1.2 0.010 0.761 

16:1n-9 4.3 ± 0.2
 

3.5 ± 0.0
 

2.6 ± 0.1
 

2.3 ± 0.2 0.939 0.000 

16:1n-7 2.6 ± 0.2
 

1.6 ± 0.1
 

1.2 ± 0.1
 

1.0 ± 0.1 0.901 0.000 

18:1n-9 47.5 ± 0.8
 

35.2 ± 0.6
 

24.2 ± 0.3
 

20.2 ± 1.9 0.960 0.000 

18:1n-7 1.7 ± 0.2
 

1.8 ± 0.2
 

1.7 ± 0.4
 

1.7 ± 0.1 0.000 0.991 

22:1n-9 0.2 ± 0.0 ND
 

0.1 ± 0.0
 

0.2 ± 0.0 - - 

24:1n-9 1.2 ± 0.3
 

ND
 

ND
 

ND - - 

Ʃ MUFA 57.5 ± 0.7
 

42.1 ± 0.5
 

29.8 ± 0.3
 

25.5 ± 2.2 0.948 0.000 

16:2n-6 ND
 

0.5 ± 0.0
 

1.0 ± 0.0
 

1.4 ± 0.2 0.884 0.000 

18:2n-6 2.0 ± 0.1
 

11.4 ± 0.4
 

19.6 ± 0.7
 

25.4 ± 3.0 0.938 0.000 

18:3n-6 0.3 ± 0.1
 

2.5 ± 0.1
 

5.3 ± 0.2
 

7.2 ± 1.0 0.953 0.000 

20:2n-6*  1.0 ± 0.1
 

0.8 ± 0.0
 

0.7 ± 0.0
 

0.7 ± 0.0 0.738 0.000 

20:3n-6 1.3 ± 0.1
 

4.5 ± 0.1
 

6.5 ± 0.2
 

6.8 ± 0.2 0.844 0.000 

20:4n-6 1.2 ± 0.1 1.8 ± 0.0 2.6 ± 0.2 2.6 ± 0.1 0.888 0.000 

22:2n-6 ND
 

0.5 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.0 0.328 0.051 

22:3n-6 ND
 

0.3 ± 0.0
 

1.0 ± 0.0
 

1.3 ± 0.1 0.944 0.000 

22:4n-6 ND
 

0.6 ± 0.0
 

0.2 ± 0.0
 

ND - - 

24:2n-6 ND
 

0.4 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0 0.398 0.028 

Ʃ n-6 PUFA 5.8 ± 0.1 23.3 ± 0.6 37.5 ± 1.0 45.8 ± 4.2 0.942 0.000 

20:5n-3 0.5 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.1 0.508 0.009 

22:5n-3 0.7 ± 0.1
 

ND
 

ND
 

0.4 ± 0.0 - - 

22:6n-3 0.9 ± 0.2
 

1.3 ± 0.0
 

1.1 ± 0.0
 

1.1 ± 0.1 0.051 0.084 

Ʃ n-3 PUFA 2.1 ± 0.4 1.7 ± 0.0 1.5 ± 0.0 1.8 ± 0.1 0.320 0.055 

16:2n-9 ND
 

0.5 ± 0.0
 

0.5 ± 0.0
 

0.4 ± 0.0 0.501 0.010 

18:2n-9 6.7 ± 0.2
 

5.1 ± 0.2
 

3.5 ± 0.1
 

3.0 ± 0.3 0.943 0.000 

20:2n-9 5.8 ± 0.2
 

3.3 ± 0.0
 

2.0 ± 0.1
 

1.6 ± 0.2 0.929 0.000 

22:2n-9 0.5 ± 0.1
 

0.5 ± 0.0
 

0.1 ± 0.0
 

0.1 ± 0.0 0.863 0.000 

22:3n-9 ND
 

ND
 

0.6 ± 0.0
 

0.4 ± 0.0 - - 

24:2n-9 ND
 

0.7 ± 0.0
 

0.6 ± 0.0
 

0.5 ± 0.1 0.481 0.012 

Ʃ n-9 PUFA 13.0 ± 0.2
 

10.1 ± 0.3
 

7.3 ± 0.3
 

6.0 ± 0.7 0.952 0.000 

       

Ʃ PUFA 20.9 ± 0.7
 

35.1 ± 0.6
 

46.1 ± 0.7
 

53.8 ± 3.4 0.964 0.000 

Footnotes: Results are expressed as mean ± SD (n=3). Fatty acid composition is given as a percentage of the 

total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA 

= polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 

 

There was some apparent desaturation of LOA as there were also increased 

percentages of 18:3n-6 with LOA supplementation (R
2
 = 0.953; p = 0.000). In addition the 

proportions of other metabolites, such as 20:3n-6 (R
2
 = 0.844; p = 0.000), ARA (R

2
 = 
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0.888; p = 0.000) and, to a lesser extent, C22 n-6 PUFA and 24:2n-6, were also increased, 

suggesting further metabolism of LOA. In consequence, the apparent enzymatic activities 

of the LC-PUFA biosynthesis pathway on LOA, led to increased percentage of all n-6 

PUFA (R
2
 = 0.942; p = 0.000), and decreased the percentages of MUFA (R

2
 = 0.948; p = 

0.000) and n-3 PUFA (R
2
 = 0.320; p = 0.055), but the percentages of total SFA were not 

altered (R
2
 = 0.010; p = 0.761). 

 

3.3.3.2. Supplementation with 18:3n-6 

In Table 3.13 the lipid content and the lipid class composition of CHSE-214 

incubated with increasing concentrations of 18:3n-6 are presented. Total cell lipid content 

showed a trend of increased levels with the graded supplementation of 18:3n-6; however 

results were not statistically significant (R
2
 = 0.245; p = 0.102). No clear trends associated 

with supplementation of 18:3n-6 were observed in the lipid class composition data.   

 

Table 3.13. Lipid content and lipid class composition of CHSE-214 incubated with 18:3n-6 

Lipid Control 20 µM 50 µM 100 µM R
2
 P-value 

LC (µg)  426.7 ± 80.8
 

440.0 ± 87.2
 

456.7 ± 30.6
 

516.7 ± 55.1 0.245 0.102 

CC (%)       

PC 23.6 ± 1.0
 

18.5 ± 2.5
 

18.2 ± 0.9
 

19.7 ± 1.3 0.099 0.318 

PE 14.3 ± 1.4
 

15.5 ± 1.1
 

17.2 ± 0.8
 

15.8 ± 0.7 0.264 0.087 

PS 4.0 ± 2.1
 

5.3 ± 0.6
 

5.1 ± 0.3
 

4.6 ± 0.3 0.256 0.093 

PI 9.2 ± 4.6
 

10.7 ± 0.6
 

10.8 ± 0.4
 

9.7 ± 0.2 0.056 0.458 

PA/CL 2.5 ± 0.7
 

3.0 ± 1.0
 

2.7 ± 0.5
 

2.1 ± 0.2 0.023 0.641 

SM 5.0 ± 0.2
 

3.5 ± 1.3
 

4.2 ± 0.7
 

3.9 ± 0.8 0.126 0.257 

TP 58.6 ± 8.5
 

56.5 ± 3.6
 

58.2 ± 2.4
 

55.8 ± 0.8 0.037 0.549 

TN 41.4 ± 8.5
 

43.5 ± 3.6
 

41.8 ± 2.4
 

44.2 ± 0.8 0.037 0.549 

TAG 4.7 ± 0.5
 

2.8 ± 0.6
 

1.9 ± 0.7
 

2.5 ± 0.4 0.326 0.053 

CHOL 36.7 ± 7.6
 

40.7 ± 2.5
 

39.9 ± 1.8
 

41.1 ± 1.3 0.285 0.074 

FFA ND
 

ND
 

ND
 

0.6 ±0.2 - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 
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The FA compositions of CHSE-214 cells incubated with 18:3n-6 are presented in 

Table 3.14. As with LOA supplementation, increasing levels of supplemented LOA 

resulted in graded increments in cellular PUFA content (R
2
 = 0.970; p = 0.000).  

 
Table 3.14. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100µM of 18:3n-6 

Fatty acid Control  20 µM  50 µM  100 µM R
2
 P-value 

14:0 1.4 ± 0.1
 

1.3 ± 0.1
 

1.2 ± 0.1
 

1.1 ± 0.1 0.633 0.002 

15:0 0.4 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.9 ± 0.1 0.538 0.065 

16:0 13.5 ± 1.8
 

12.8 ± 0.6
 

13.8 ± 1.0
 

9.8 ± 0.8 0.390 0.030 

17:0 ND
 

2.8 ± 0.2
 

1.8 ± 0.2
 

2.5 ± 0.3 - - 

18:0 7.8 ± 0.9
 

9.6 ± 0.6
 

11.2 ± 0.9
 

7.5 ± 0.9 0.001 0.936 

22:0 0.4 ± 0.2
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.1 0.071 0.401 

Ʃ SFA 23.5 ± 2.9
 

27.0 ± 1.4
 

28.6 ± 2.2
 

22.2 ± 1.6 0.006 0.809 

16:1n-9 4.7 ± 0.1
 

3.2 ± 0.0
 

2.5 ± 0.0
 

2.0 ± 0.0 0.955 0.000 

16:1n-7 2.5 ± 0.2
 

1.6 ± 0.1
 

1.2 ± 0.1
 

1.2 ± 0.1 0.832 0.000 

18:1n-9 46.1 ± 2.8
 

35.5 ± 0.3
 

26.5 ± 1.1
 

20.0 ± 0.7 0.980 0.000 

18:1n-7 1.9 ± 0.1
 

1.6 ± 0.3
 

1.8 ± 0.2
 

1.5 ± 0.1 0.302 0.064 

20:1n-11 ND
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.1 ± 0.0 - - 

20:1n-9 ND
 

0.2 ± 0.0
 

0.5 ± 0.0
 

0.2 ± 0.0 - - 

22:1n-11 ND
 

0.7 ± 0.1
 

0.5 ± 0.1
 

0.2 ± 0.0 - - 

22:1n-9 ND
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0 - - 

24:1n-9 0.9 ± 0.1
 

0.7 ± 0.1
 

0.6 ± 0.1
 

0.5 ± 0.0 0.871 0.000 

Ʃ MUFA 56.1 ± 2.6
 

44.0 ± 0.2
 

34.0 ± 1.3
 

25.8 ± 1.0 0.983 0.000 

16:3n-6 ND
 

0.5 ± 0.0
 

1.1 ± 0.1
 

0.4 ± 0.1 - - 

18:2n-6 2.2 ± 0.6
 

1.6 ± 0.1
 

1.4 ± 0.1
 

1.5 ± 0.2 0.492 0.011 

18:3n-6 0.3 ± 0.0
 

6.2 ± 0.4
 

13.0 ± 0.9
 

28.8 ± 2.4 0.986 0.000 

20:2n-6*  1.0 ± 0.1
 

0.6 ± 0.0
 

0.5 ± 0.1
 

0.3 ± 0.0 0.916 0.000 

20:3n-6 0.9 ± 0.1
 

5.8 ± 0.7
 

8.6 ± 0.6
 

10.0 ± 0.4 0.865 0.000 

20:4n-6 1.1 ± 0.1
 

2.0 ± 0.3
 

2.7 ± 0.5
 

1.5 ± 0.2 0.142 0.228 

22:4n-6 ND
 

0.8 ± 0.1
 

1.1 ± 0.1
 

1.5 ± 0.1 0.820 0.000 

22:5n-6 ND
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.0 0.546 0.006 

Ʃ n-6 PUFA 5.6 ± 0.6
 

18.0 ± 1.4
 

28.9 ± 2.2
 

44.4 ± 2.5 0.985 0.000 

20:5n-3 0.6 ± 0.1
 

0.7 ± 0.1
 

0.6 ± 0.1
 

1.1 ± 0.1 0.615 0.003 

22:5n-3 0.7 ± 0.2
 

0.5 ± 0.0
 

0.5 ± 0.1
 

0.5 ± 0.0 0.144 0.223 

22:6n-3 1.7 ± 0.4
 

1.1 ± 0.2
 

1.0 ± 0.1
 

0.9 ± 0.1 0.635 0.002 

Ʃ n-3 PUFA 3.0 ± 0.5
 

2.3 ± 0.3
 

2.2 ± 0.1
 

2.5 ± 0.2 0.164 0.192 

18:2n-9 6.7 ± 0.4
 

5.2 ± 0.1
 

3.8 ± 0.2
 

2.9 ± 0.1 0.979 0.000 

20:2n-9 5.0 ± 0.9
 

3.0 ± 0.1
 

1.8 ± 0.2
 

1.5 ± 0.1 0.903 0.000 

22:2n-9 ND
 

0.3 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.0 - - 

22:3n-9 ND
 

0.3 ± 0.1
 

0.5 ± 0.0
 

0.5 ± 0.0 - - 

Ʃ n-9 PUFA 11.8 ± 1.2
 

8.8 ± 0.2
 

6.3 ± 0.3
 

5.0 ± 0.3 0.955 0.000 

       

Ʃ PUFA 20.4 ± 0.3
 

29.1 ± 1.6
 

37.4 ± 2.6
 

51.9 ± 2.4 0.970 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated 

fatty acid; ND = not detected; *contains 20:3n-9. 
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Therefore, in the control (unsupplemented cells) treatment, the proportions of the 

FA groups were in the following rank order: MUFA > SFA > PUFA; in cells incubated 

with 20 µM 18:3n-6 MUFA > PUFA > SFA; and, in cells incubated with 50 µM and 100 

µM 18:3n-6 the rank order was: PUFA > MUFA > SFA. There was a graded incorporation 

of 18:3n-6 itself (R
2
 = 0.986; p = 0.000), as well as some elongation to 20:3n-6 (R

2
 = 

0.865; p = 0.000), and to a lesser extent some desaturation to ARA observed with 

supplementation at 20 µM and 50 µM, but results were not statistically significant (R
2
 = 

0.142; p = 0.228). Small percentages of C22 n-6 PUFA were also detected.  The graded 

supplementation of 18:3n-6 reduced the percentages of MUFA (R
2
 = 0.983; p = 0.000) and 

n-9 PUFA (R
2
 = 0.955; p = 0.000), while the percentages of total PUFA (R

2
 = 0.970; p = 

0.000) and n-6 PUFA (R
2
 = 0.985; p = 0.000) increased, with no alteration of total SFA (R

2
 

= 0.006; p = 0.809) and n-3 PUFA levels (R
2
 = 0.164; p = 0.192). 

 

3.3.3.3. Supplementation with 20:3n-6 

The total lipid content and the lipid class composition of CHSE-214 cells incubated 

with increasing concentrations of 20:3n-6 are presented in Table 3.15. The cellular lipid 

content did not show a clear trend with the graded supplementation of 20:3n-6 (R
2
 = 0.000; 

p = 0.955). Regarding class composition, TAG increased with the graded supplementation 

of 20:3n-6 (R
2
 = 0.919; p = 0.000), which increased by four-fold at 50 µM and over six-

fold at 100 µM, this increment was balanced by decreased polar class lipids. 
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Table 3.15. Lipid content and lipid class composition of CHSE-214 incubated with 20:3n-6 

Lipid Control 20 µM 50 µM 100 µM R
2
 P-value 

LC (µg) 426.7 ± 90.7
 

369.9 ± 66.6
 

401.6 ± 95.4
 

274.5 ± 83.3 0.000 0.955 

CC (%)       

PC 22.5 ± 0.6
 

21.9 ± 0.5
 

19.8 ± 1.3
 

24.8 ± 0.9 0.728 0.000 

PE 14.6 ± 0.3
 

13.5 ± 0.3
 

12.4 ± 0.3
 

10.3 ± 0.7 0.912 0.000 

PS 5.9 ± 0.5
 

6.0 ± 0.6
 

4.3 ± 0.1
 

3.0 ± 0.4 0.075 0.389 

PI 9.9 ± 0.7
 

8.0 ± 0.6
 

4.5 ± 0.1
 

3.4 ± 0.9 0.813 0.000 

PA/CL 2.8 ± 0.4
 

2.8 ± 0.8
 

1.9 ± 0.1
 

2.2 ± 0.2 0.929 0.000 

SM 4.2 ± 0.1
 

4.6 ± 0.3
 

2.5 ± 0.1
 

2.3 ± 0.5 0.309 0.061 

TP 59.9 ± 1.4
 

56.8 ± 2.0
 

45.4 ± 1.5
 

46.0 ± 2.9 0.803 0.000 

TN 40.1 ± 1.4
 

43.2 ± 2.0
 

54.6± 1.5
 

54.0 ± 2.9 0.803 0.000 

TAG 4.2 ± 0.5
 

5.1 ± 0.5
 

17.0 ± 1.9
 

25.8 ± 2.1 0.919 0.000 

CHOL 35.9 ± 1.0
 

38.1 ± 2.6
 

37.6 ± 1.1
 

28.2 ± 0.9 0.407 0.026 

FFA ND ND ND ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA compositions of CHSE-214 cells incubated with increasing concentrations 

of 20:3n-6 are presented in Table 3.16. Graded increased proportions of 20:3n-6 were 

observed with increased supplementation (R
2
 = 0.961; p = 0.000). In addition, the data 

suggested some metabolism of 20:3n-6, including apparent retro-conversion of 20:3n-6 to 

18:3n-6 (R
2
 = 0.972; p = 0.000) and, to a lesser extent, 16:3n-6, and desaturation of 20:3n-

6 to ARA (R
2
 = 0.870; p = 0.000). Some C22 n-6 PUFA were also detected but only in low 

percentages. Supplementation of 20:3n-6 increased the proportions of total n-6 PUFA (R
2
 

= 0.963; p = 0.000), without affecting the total SFA (R
2
 = 0.035; p = 0.563), but lowered 

the percentages of total MUFA (R
2
 = 0.971; p = 0.000) and n-9 PUFA (R

2
 = 0.940; p = 

0.000). 
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Table 3.16. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100µM of 20:3n-6 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.8 ± 0.3
 

1.1 ± 0.0
 

1.5 ± 0.2
 

0.9 ± 0.1 0.167 0.188 

15:0 0.3 ± 0.0
 

0.3 ± 0.1
 

0.5 ± 0.0
 

0.3 ± 0.1 0.084 0.362 

16:0 13.7± 0.6
 

17.0 ± 2.3
 

19.2 ± 1.2
 

9.5 ± 0.5 0.144 0.224 

17:0 ND
 

0.6 ± 0.1
 

1.2 ± 0.2
 

1.5 ± 0.4 - - 

18:0 6.5 ± 0.2
 

8.5 ± 0.5
 

11.1 ± 0.5
 

5.1 ± 0.0 0.006 0.811 

22:0 0.2 ± 0.1
 

0.6 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.1 0.000 0.987 

Ʃ SFA 22.5 ± 0.8
 

28.0 ± 2.6
 

33.8 ± 1.0
 

17.7 ± 0.8 0.035 0.563 

16:1n-9 5.1 ± 0.4
 

3.4 ± 0.5
 

2.8 ± 0.3
 

2.2 ± 0.3 0.861 0.000 

16:1n-7 3.3 ± 0.2
 

2.5 ± 0.3
 

1.9 ± 0.2
 

1.7 ± 0.1 0.891 0.000 

18:1n-9 45.5 ± 0.6
 

31.1 ± 1.6
 

24.5 ± 1.2
 

16.6 ± 1.2 0.969 0.000 

18:1n-7 2.2 ± 0.3
 

2.2 ± 0.1
 

2.3 ± 0.1
 

1.5 ± 0.1 0.442 0.018 

20:1n-9 ND
 

0.3 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.0 - - 

22:1n-9 ND
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0 - - 

24:1n-9 1.0 ± 0.3
 

0.8 ± 0.3
 

0.8 ± 0.3
 

0.9 ± 0.2 0.046 0.504 

Ʃ MUFA 57.1 ± 0.2
 

40.5 ± 1.5
 

32.8 ± 0.8
 

23.3 ± 1.3 0.971 0.000 

16:3n-6 ND
 

2.6 ± 0.4
 

1.1 ± 0.0
 

2.1 ± 0.1 0.442 0.018 

18:2n-6 1.8 ± 0.1
 

1.6 ± 0.3
 

1.3 ± 0.1
 

1.0 ± 0.0 0.810 0.000 

18:3n-6 0.4 ± 0.1
 

1.2 ± 0.1
 

2.8 ± 0.3
 

5.9 ± 0.5 0.972 0.000 

20:2n-6*  1.2 ± 0.1
 

0.8 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0 0.863 0.000 

20:3n-6 1.0 ± 0.1
 

10.4 ± 0.7
 

14.8 ± 0.9
 

33.7 ± 0.3 0.961 0.000 

20:4n-6 1.0 ± 0.2
 

3.3 ± 0.2
 

3.4 ± 0.6
 

6.2 ± 0.7 0.870 0.000 

22:3n-6 ND
 

0.7 ± 0.1
 

1.9 ± 0.3
 

2.1 ± 0.2 0.889 0.000 

22:4n-6 ND
 

0.4 ± 0.0
 

0.5 ± 0.1
 

0.6 ± 0.1 0.795 0.000 

Ʃ n-6 PUFA 5.4 ± 0.4
 

18.3 ± 1.1
 

25.0 ± 1.0
 

50.0 ± 1.5 0.963 0.000 

20:5n-3 0.4 ± 0.2
 

0.5 ± 0.1
 

0.6 ± 0.0
 

0.4 ± 0.1 0.042 0.525 

22:5n-3 0.8 ± 0.1
 

0.5 ± 0.1
 

0.4 ± 0.0
 

0.7 ± 0.1 0.153 0.209 

22:6n-3 1.0 ± 0.1
 

0.9 ± 0.1
 

1.4 ± 0.2
 

2.1 ± 0.5 0.691 0.001 

Ʃ n-3 PUFA 2.2 ± 0.2
 

1.9 ± 0.1
 

2.4 ± 0.2
 

3.2 ± 0.6 0.464 0.015 

18:2n-9 6.1 ± 0.4
 

4.5 ± 0.5
 

2.6 ± 0.0
 

2.3 ± 0.2 0.918 0.000 

20:2n-9 6.7 ± 0.2
 

3.1 ± 0.9
 

1.7 ± 0.1
 

1.4 ± 0.1 0.858 0.000 

22:2n-9 ND
 

0.4 ± 0.1
 

0.3 ± 0.0
 

ND - - 

22:3n-9 ND
 

0.6 ± 0.1
 

0.3 ± 0.0
 

ND - - 

Ʃ n-9 PUFA 12.8 ± 0.4
 

8.0 ± 0.9
 

4.6 ± 0.2
 

3.7 ± 0.2 0.940 0.000 

       

Ʃ PUFA 20.4 ± 0.7
 

28.2 ± 1.4
 

32.0 ± 1.1
 

56.9 ± 1.6 0.874 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated 

fatty acid; ND = not detected; *contains 20:3n-9. 

 

3.3.3.4. Supplementation with ARA 

The lipid content and the lipid class composition of CHSE-214 cells incubated with 

increasing concentrations of ARA are presented in Table 3.17. The cell total lipid content 

showed a trend to increase with graded supplementation of ARA from 20 µM to 50 µM 

and from 50 µM to 100 µM; however, results were not statistically significant (R
2
 = 0.053; 
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p = 0.471). The lipid class composition showed some clear trends with increasing 

concentration of supplemented ARA, with graded increments of total neutral lipids (R
2
 = 

0.573; p = 0.004) and, particularly, TAG (R
2
 = 0.779; p = 0.000), which was increased 

over two-fold at 20 µM, and by almost three-fold at 50 µM and 100 µM.   

 
Table 3.17. Lipid content and lipid class composition of CHSE-214 incubated with ARA 

Lipid Control 20  µM 50  µM 100  µM R
2
 P-value 

LC (µg) 423.3  ± 46.2
 

296.0 ± 90.0
 

320.0 ± 65.6
 

373.3 ± 49.3 0.053 0.471 

CC (%)       

PC 24.5 ± 1.2
 

21.7 ± 0.7
 

28.7 ± 1.2
 

28.5 ± 0.9 0.748 0.000 

PE 14.8 ± 0.8
 

17.0 ± 1.9
 

11.3 ± 0.5
 

10.4 ± 0.2 0.592 0.003 

PS 4.0 ± 0.4
 

3.8 ± 0.9
 

2.2 ± 0.4
 

2.6 ± 0.3 0.479 0.013 

PI 8.6 ± 0.7
 

7.6 ± 0.7
 

5.3 ± 0.6
 

5.7 ± 0.8 0.554 0.005 

PA/CL 2.8 ± 0.0
 

2.5 ± 0.2
 

2.4 ± 0.6
 

2.3 ± 0.2 0.703 0.001 

SM 5.4 ± 0.3
 

3.9 ± 0.4
 

2.3 ± 0.4
 

2.6 ± 0.1 0.245 0.102 

TP 60.1 ± 2.3
 

56.4 ± 4.6
 

52.1 ± 3.3
 

52.1 ± 0.5 0.573 0.004 

TN 39.9 ± 2.3
 

43.6 ± 4.6
 

47.9 ± 3.3
 

47.9 ± 0.5 0.573 0.004 

TAG 4.2 ± 0.9
 

9.5 ± 0.7
 

12.1 ± 4.1
 

14.2 ± 0.8 0.779 0.000 

CHOL 35.7 ± 1.7
 

34.1 ± 3.9
 

33.7 ± 1.3
 

32.0 ± 1.1 0.201 0.144 

FFA ND
 

ND
 

2.0 ± 0.8
 

1.7 ± 0.1 - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: ARA = arachidonic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 cells incubated with increasing concentrations 

of ARA is presented in Table 3.18. There were graded increased proportions of cellular 

ARA with increased supplementation of this FA (R
2
 = 0.989; p = 0.000). Some apparent 

elongation to 22:4n-6 was observed (R
2
 = 0.818; p = 0.000), but no desaturation to 22:5n-6 

was apparent. In addition, an increment of LOA (R
2
 = 0.827; p = 0.000), particularly at 20 

µM ARA was observed. The deposition of ARA, and the enzymatic activities of the LC-

PUFA biosynthesis pathway on ARA led to increased percentages of total n-6 PUFA (R
2
 = 

0.997; p = 0.000), and decreased the proportions of total MUFA (R
2
 = 0.995; p = 0.000) 



Olga Liliana Rubio Mejía  CHAPTER 3 

 63 

and n-9 PUFA (R
2
 = 0.732; p = 0.000), but the percentages of total SFA (R

2
 = 0.007; p = 

0.800) and n-3 PUFA (R
2
 = 0.086; p = 0.356) were not altered.  

 

Table 3.18. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of ARA 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.4 ± 0.1
 

1.5 ± 0.2
 

1.8 ± 0.0
 

1.1 ± 0.1 0.103 0.310 

15:0 0.3 ± 0.1
 

0.3 ± 0.1
 

0.5 ± 0.1
 

0.7 ± 0.0 0.806 0.000 

16:0 11.7 ± 0.6
 

18.7 ± 0.3
 

14.7 ± 0.2
 

11.9 ± 0.8 0.013 0.720 

17:0 0.6 ± 0.1
 

0.9 ± 0.2
 

0.8 ± 0.2
 

0.8 ± 0.1 0.256 0.093 

18:0 7.0 ± 0.1
 

10.5 ± 0.4
 

9.5 ± 0.3
 

6.2 ± 0.3 0.052 0.476 

20:0 ND
 

0.4 ± 0.1
 

0.6 ± 0.0
 

0.6 ± 0.1 - - 

22:0 0.3 ± 0.0
 

0.4 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.0 0.357 0.040 

Ʃ SFA 21.3 ± 0.7
 

32.7 ± 0.5
 

28.2 ± 0.2
 

21.5 ± 0.9 0.007 0.800 

16:1n-9 4.2 ± 0.1
 

2.9 ± 0.3
 

1.9 ± 0.2
 

1.7 ± 0.1 0.893 0.000 

16:1n-7 4.0 ± 0.4
 

2.9 ± 0.1
 

2.9 ± 0.1
 

1.7 ± 0.0 0.873 0.000 

18:1n-9 45.1 ± 0.6
 

27.9 ± 0.5
 

22.9 ± 0.1
 

14.9 ± 0.3 0.952 0.000 

18:1n-7 1.8 ± 0.2
 

3.2 ± 0.5
 

2.7 ± 0.0
 

2.0 ± 0.3 0.001 0.932 

20:1n-9 0.2 ± 0.1
 

0.6 ± 0.2
 

0.2 ± 0.0
 

0.4 ± 0.0 0.044 0.511 

20:1n-7 0.2 ± 0.1
 

3.0 ± 0.3
 

2.3 ± 0.1
 

1.3 ± 0.0 0.200 0.145 

22:1n-11 ND
 

1.7 ± 0.1
 

1.1 ± 0.0
 

0.9 ± 0.0 - - 

22:1n-9 0.1 0.0 0.4 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.0 0.059 0.448 

24:1n-9 1.6 ± 0.2
 

1.1 ± 0.1
 

0.6 ± 0.0
 

0.5 ± 0.0 0.929 0.000 

Ʃ MUFA 57.2 ± 0.6
 

43.9 ± 0.5
 

34.6 ± 0.3
 

23.8 ± 0.6 0.995 0.000 

18:2n-6 2.0 ± 0.1
 

4.9 ± 0.2
 

3.3 ± 0.3
 

1.5 ± 0.1 0.094 0.332 

18:3n-6 0.4 ± 0.1
 

0.4 ± 0.1
 

0.6 ± 0.0
 

1.2 ± 0.1 0.827 0.000 

20:2n-6* 1.3 ± 0.0
 

0.6 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.0 0.767 0.000 

20:3n-6 1.3 ± 0.1
 

1.9 ± 0.4
 

1.6 ± 0.2
 

2.5 ± 0.2 0.589 0.004 

20:4n-6 0.7 ± 0.1
 

6.3 ± 0.4
 

16.4 ± 0.4
 

37.2 ± 1.9 0.989 0.000 

22:4n-6 ND
 

2.0 ± 0.2
 

8.4 ± 0.2
 

6.6 ± 0.2 0.818 0.000 

Ʃ n-6 PUFA 5.8 ± 0.0
 

16.2 ± 0.9
 

30.7 ± 0.4
 

49.4 ± 1.9 0.997 0.000 

20:5n-3 0.8 ± 0.1 1.2 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.102 0.312 

22:5n-3 0.6 ± 0.1 1.2 ± 0.1 1.2 ± 0.1 1.0 ± 0.2 0.253 0.095 

22:6n-3 1.3 ± 0.1
 

1.6 ± 0.2
 

1.8 ± 0.2
 

1.6 ± 0.2 0.223 0.121 

Ʃ n-3 PUFA 2.8 ± 0.3
 

4.0 ± 0.2
 

4.0 ± 0.1
 

3.3 ± 0.6 0.086 0.356 

18:2n-9 6.6 ± 0.3 3.3 ± 0.2 2.5 ± 0.3 2.1 ± 0.1 0.842 0.000 

20:2n-9 6.4 ± 0.2 ND ND ND - - 

Ʃ n-9 PUFA 13.0 ± 0.5 3.3 ± 0.2 2.5 ± 0.3 2.1 ± 0.1 0.732 0.000 

 
     

 

Ʃ PUFA 21.6 ± 0.1 23.4 ± 1.0 37.1 ± 0.3 54.8 ± 1.4 0.913 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: ARA = arachidonic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; 

PUFA = polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 
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3.3.4. Effect of supplemental n-3 PUFA (LNA, EPA, 22:5n-3 and DHA) on lipid 

content, class and fatty acid compositions of CHSE-214 cells 

 

3.3.4.1. Supplementation with LNA 

The total cell lipid content and lipid class composition of CHSE-214 cells 

incubated with LNA are presented in Table 3.19. The total lipid content of the cells 

showed a graded increase with supplementation of LNA up to 50 µM, but with 

supplementation at 100 µM the apparent lipid content reduced to less than half (R
2
 = 

0.012; p = 0.734). The lipid class data was variable, but there was a clear trend with 

increasing supplementation of LNA, with a graded increment of total neutral lipids (R
2
 = 

0.887; p = 0.000), and particularly TAG (R
2
 = 0.825; p = 0.000), which increased over 

two-fold at 50 µM, and over three-fold at 100 µM.   

 

Table 3.19. Lipid content and lipid class composition of CHSE-214 incubated with LNA 

Lipid Control 20µM 50µM 100µM R
2
 P-value 

LC (µg) 416.7 ± 25.2
 

438.9 ± 5.8
 

680.9 ± 55.1
 

299.4 ± 30.6 0.012 0.734 

CC (%)       

PC 24.6 ± 1.0
 

22.4 ± 1.0
 

26.1 ± 0.9
 

25.1 ± 0.7 0.129 0.252 

PE 14.1 ± 3.3
 

19.3 ± 0.2
 

16.8 ± 3.5
 

17.0 ± 0.3 0.068 0.414 

PS 6.2 ± 0.2
 

4.6 ± 0.6
 

4.5 ± 0.4
 

3.0 ± 0.7 0.781 0.000 

PI 10.4 ± 0.3
 

7.1 ± 0.5
 

6.2 ± 0.5
 

4.8 ± 0.9 0.880 0.000 

PA/CL 2.4 ± 1.0
 

3.3 ± 0.2
 

2.5 ± 0.3
 

5.7 ± 0.2 0.502 0.010 

SM 6.2 ± 0.7
 

5.6 ± 0.9
 

3.6 ± 0.7
 

1.7 ± 0.2 0.873 0.000 

TP 64.0 ± 0.4
 

62.3 ± 1.4
 

59.8 ± 1.1
 

57.3 ± 1.2 0.887 0.000 

TN 36.0 ± 0.4
 

37.7 ± 1.4
 

40.2 ± 1.1
 

42.7 ± 1.2 0.887 0.000 

TAG 4.4 ± 0.4
 

4.3 ± 0.5
 

9.3 ± 0.8
 

15.8 ± 3.6 0.825 0.000 

CHOL 31.6 ± 0.8
 

33.4 ± 1.9
 

30.9 ± 1.3
 

26.9 ± 2.5 0.448 0.017 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 
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The FA composition of CHSE-214 cells incubated with LNA is presented in Table 

3.20. The graded supplementation of this FA increased the proportions of LNA itself in 

cells (R
2
 = 0.972; p = 0.000), along with its elongation product, 18:4n-3 (R

2
 = 0.971; p = 

0.000). Other n-3 PUFA metabolites were also detected such as 20:4n-3 (R
2
 = 0.579; p = 

0.004), which increased at concentration up to 50 µM supplementation, and EPA, whose 

concentration only increased up to 20 µM supplementation (R
2
 = 0.458; p = 0.016).  The 

effects of increased total n-3 PUFA (R
2
 = 0.970; p = 0.000) were balanced by decreased 

total MUFA (R
2
 = 0.952; p = 0.000), n-6 PUFA (R

2
 = 0.420; p = 0.023) and n-9 PUFA (R

2
 

= 0.871; p = 0.000), but did not affect the percentages of total SFA (R
2
 = 0.076; p = 0.385). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Olga Liliana Rubio Mejía  CHAPTER 3 

 66 

Table 3.20. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of LNA 

Fatty acid  Control  20 µM  50 µM  100 µM R
2
 P-value 

14:0 1.8  ± 0.8
 

1.5 ± 0.3
 

1.8 ± 0.3
 

2.0 ± 0.8 0.061 0.438 

15:0 0.3 ± 0.1
 

0.2 ± 0.0
 

0.4 ± 0.1
 

0.4 ± 0.1 0.091 0.340 

16:0 12.8 ± 1.0
 

14.9 ± 1.8
 

15.4 ± 0.6
 

10.6 ± 1.0 0.081 0.370 

18:0 6.9  ± 0.1
 

11.0 ± 2.2
 

13.5 ± 0.6
 

10.0 ± 0.6 0.334 0.049 

22:0 0.4  ± 0.0
 

0.8 ± 0.2
 

1.1 ± 0.3
 

0.7 ± 0.1 0.271 0.083 

Ʃ SFA 22.2  ± 1.8
 

28.4 ± 4.1
 

32.2 ± 0.8
 

23.6 ± 1.6 0.076 0.385 

16:1n-9 4.1  ± 0.2
 

3.2 ± 0.3
 

2.9 ± 0.4
 

2.9 ± 0.6 0.515 0.009 

16:1n-7 3.2 ± 0.5
 

2.2 ± 0.1
 

1.7 ± 0.1
 

1.7 ± 0.3 0.728 0.000 

18:1n-9 45.0  ± 1.1
 

35.4 ± 0.5
 

27.5 ± 4.1
 

22.8 ± 1.0 0.946 0.000 

18:1n-7 2.5 ± 0.1
 

2.6 ± 0.1
 

2.6 ± 0.1
 

2.9 ± 0.2 0.144 0.224 

24:1n-9 1.2 ± 0.1
 

1.0 ± 0.1
 

1.1 ± 0.1
 

1.0 ± 0.1 0.536 0.007 

Ʃ MUFA 56.0  ± 0.7
 

44.4 ± 0.2
 

35.9 ± 3.9
 

31.3 ± 0.9 0.952 0.000 

18:2n-6 2.9  ± 0.2
 

2.1 ± 0.3
 

1.9 ± 0.2
 

2.0 ± 0.2 0.551 0.006 

18:3n-6 0.4  ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.0 0.020 0.659 

20:2n-6* 1.2  ± 0.1
 

0.7± 0.0
 

0.6 ± 0.1
 

0.7 ± 0.4 0.328 0.052 

20:3n-6 1.2  ± 0.1
 

1.1 ± 0.2
 

0.9 ± 0.2
 

1.1 ± 0.0 0.110 0.291 

20:4n-6 1.6  ± 0.1
 

1.3 ± 0.6
 

1.0 ± 0.2
 

1.2 ± 0.2 0.205 0.140 

22:4n-6 ND 0.4  ± 0.0
 

0.2 ± 0.0
 

0.1 ± 0.0 0.001 0.939 

Ʃ n-6 PUFA 7.3 ± 0.5
 

5.8 ± 1.0
 

4.8 ± 0.6
 

5.5 ± 0.8 0.420 0.023 

18:3n-3 ND
 

3.8 ± 0.2
 

8.2 ± 1.2
 

17.9 ± 2.7 0.972 0.000 

18:4n-3 ND
 

2.9 ± 0.1
 

6.0 ± 0.9
 

10.6 ± 0.1 0.971 0.000 

20:3n-3 ND
 

ND
 

0.2 ± 0.0
 

0.5 ± 0.1 - - 

20:4n-3 ND
 

1.9 ± 0.2
 

3.3 ± 0.2
 

2.0 ± 0.7 0.579 0.004 

20:5n-3 0.5 ± 0.0
 

4.0 ± 0.7
 

3.8 ± 0.4
 

3.2 ± 0.2 0.458 0.016 

22:5n-3 0.9 ± 0.1
 

0.9 ± 0.3
 

0.8 ± 0.1
 

0.7 ± 0.1 0.227 0.117 

22:6n-3 1.6 ± 0.1
 

1.3 ± 0.4 0.9 ± 0.1 1.0 ± 0.0 0.502 0.010 

Ʃ n-3 PUFA 3.0 ± 0.4
 

14.8 ± 1.9
 

23.1 ± 2.9
 

36.0 ± 1.8 0.970 0.000 

18:2n-9 6.1 ± 0.1
 

4.1 ± 0.4
 

2.8 ± 0.0
 

2.5 ± 0.1 0.901 0.000 

20:2n-9 5.4 ± 0.3
 

2.5 ± 0.6
 

1.2 ± 0.1
 

1.0 ± 0.9 0.751 0.000 

Ʃ n-9 PUFA 11.5 ± 0.3
 

6.6 ± 1.1
 

4.0 ± 0.1
 

3.5 ± 0.8 0.871 0.000 

       

Ʃ PUFA 21.8 ± 1.2
 

27.2 ± 3.9
 

31.9 ± 3.5
 

45.0 ± 2.4 0.865 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α- linolenic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; 

PUFA = polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 

 

3.3.4.2. Supplementation with EPA 

In Table 3.21 the cell lipid content and lipid class composition of CHSE-214 cells 

incubated with increasing concentrations of EPA are presented. There was no clear trend 

observed in the cell total lipid content with the graded supplementation of EPA (R
2
 = 
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0.075; p = 0.389). It was particularly noteworthy that supplementation with EPA at 20 µM 

decreased the proportion of cell TAG by almost four-fold, as this was the first FA showing 

this TAG-lowering effect. However, TAG increased by almost two-fold at 50 µM and over 

three-fold at 100 µM supplementation of EPA (R
2
 = 0.502; p = 0.010). Except for PC, 

which increased with the graded supplementation of EPA (R
2
 = 0.869; p = 0.000), the 

remaining lipid class composition data showed no clear trends with increasing 

concentration of supplemented EPA. 

 
Table 3.21. Lipid content and lipid class composition of CHSE-214 incubated with EPA 

Lipid Control 20 µM 50  µM 100  µM R
2
 P-value 

LC (µg) 406.7 ± 64.3
 

403.3 ± 63.5
 

323.3 ± 45.1
 

386.7 ± 51.3 0.075 0.389 

CC (%)       

PC 24.3 ± 0.9
 

28.2 ± 1.1
 

30.2 ± 1.2
 

29.2 ± 2.3 0.869 0.000 

PE 16.7 ± 0.7
 

18.6 ± 0.5
 

13.6 ± 0.3
 

11.2 ± 1.0 0.701 0.001 

PS 5.4 ± 0.5
 

6.1 ± 0.4
 

3.9 ± 0.2
 

2.7 ± 0.2 0.551 0.006 

PI 10.2 ± 0.7
 

9.3 ± 0.3
 

7.4 ± 0.4
 

6.4 ± 0.3 0.741 0.000 

PA/CL 2.1 ± 0.4
 

3.6 ± 0.1
 

2.4 ± 0.2
 

1.5 ± 0.4 0.926 0.000 

SM 4.0 ± 0.4
 

4.0 ± 0.2
 

2.6 ± 0.2
 

1.6 ± 0.1 0.151 0.212 

TP 62.7 ± 2.3
 

69.8 ± 0.4
 

60.1 ± 0.7
 

52.6 ± 1.2 0.493 0.011 

TN 37.3 ± 2.3
 

30.2 ± 0.4
 

39.9 ± 0.7
 

47.4 ± 1.2 0.493 0.011 

TAG 4.5 ± 1.2
 

1.2 ± 0.2
 

8.8 ± 1.3
 

14.3 ± 3.6 0.502 0.010 

CHOL 32.8 ± 0.2
 

27.2 ± 0.3
 

28.6 ± 1.6
 

30.5 ± 2.4 0.018 0.674 

FFA ND
 

1.8 ± 0.1
 

2.5 ± 0.2
 

2.6 ± 0.2 - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 cells incubated with EPA is presented in Table 3.22. 

The graded supplementation of EPA increased the proportion of EPA itself in the cells (R
2
 

= 0.928; p = 0.000), along with its direct elongation product, 22:5n-3 up to 50 µM (R
2
 = 

0.504; p = 0.010), and increased LNA was also detected, but no increased proportions of 

DHA were observed (R
2
 = 0.462; p = 0.015). The effects of increased total n-3 PUFA (R

2
 

= 0.874; p = 0.000) were balanced by decreased proportions of total SFA (R
2
 = 0.483; p = 
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0.012), MUFA (R
2
 = 0.867; p = 0.087), and n-9 PUFA (R

2
 = 0.786; p = 0.000), it also 

decreased the percentages of total n-6 PUFA at concentrations up to 50 µM (R
2
 = 0.083; p 

= 0.364). 

 
Table 3.22. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of EPA 

Fatty acid Control 20 µM 50 µM 100 µM R
2
 P-value 

14:0 1.6 ± 0.1
 

0.6 ± 0.1
 

0.6 ± 0.1
 

0.5 ± 0.0 0.159 0.200 

15:0 0.4 ± 0.0
 

0.9 ± 0.1
 

0.4 ± 0.0
 

0.5 ± 0.1 0.009 0.775 

16:0 13.0 ± 0.7
 

15.7 ± 0.2
 

8.4 ± 0.5
 

7.3 ± 1.0 0.556 0.006 

17:0 ND
 

0.7 ± 0.1
 

0.7 ± 0.1
 

0.5 ± 0.0 0.550 0.006 

18:0 7.8 ± 0.2
 

7.0 ± 0.1
 

6.1 ± 0.2
 

5.4 ± 0.1 0.693 0.001 

20:0 ND
 

0.2 ± 0.0
 

0.3 ± 0.1
 

0.6 ± 0.2 0.239 0.107 

22:0 0.3 ± 0.1
 

0.5 ± 0.0
 

0.6 ± 0.1
 

0.9 ± 0.1 0.875 0.000 

Ʃ SFA 23.1 ± 0.4
 

25.6 ± 0.3
 

17.0 ± 0.6
 

15.8 ± 0.9 0.483 0.012 

16:1n-9 3.2 ± 0.1
 

2.2 ± 0.1
 

2.1 ± 0.2
 

1.7 ± 0.4 0.774 0.000 

16:1n-7 3.1 ± 0.4
 

2.1 ± 0.1
 

2.0 ± 0.4
 

2.2 ± 0.3 0.264 0.087 

18:1n-9 46.6 ± 1.3
 

26.7 ± 0.1
 

20.5 ± 0.4
 

18.5 ± 0.9 0.829 0.000 

18:1n-7 2.1 ± 0.1
 

2.6 ± 0.6
 

1.7 ± 0.1
 

1.5 ± 0.1 0.460 0.015 

24:1n-9 1.1 ± 0.2 1.0 ± 0.1
 

1.0 ± 0.1
 

0.9 ± 0.1 0.107 0.299 

Ʃ MUFA 56.2 ± 1.0
 

34.6 ± 0.5
 

27.3 ± 0.3
 

24.7 ± 1.1 0.867 0.000 

18:2n-6 2.3 ± 0.3
 

1.5 ± 0.1
 

1.8 ± 0.2
 

1.9 ± 0.2 0.372 0.035 

18:3n-6 0.5 ± 0.1
 

0.5 ± 0.1
 

0.7 ± 0.1
 

1.2 ± 0.5 0.517 0.008 

20:2n-6*  1.0 ± 0.2 0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.1 0.487 0.012 

20:3n-6 1.3 ± 0.5
 

ND
 

ND
 

ND - - 

20:4n-6 1.1 ± 0.1
 

0.4 ± 0.0
 

0.5 ± 0.1
 

1.1 ± 0.0 0.002 0.901 

22:4n-6 ND
 

0.3 ± 0.1
 

0.2 ± 0.1
 

1.0 ± 0.2 0.840 0.000 

22:5n-6 ND
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.1 0.888 0.000 

Ʃ n-6 PUFA 6.2 ± 0.7
 

3.3 ± 0.2
 

3.8 ± 0.1
 

6.1 ± 0.6 0.083 0.364 

18:3n-3 ND
 

0.3 ± 0.0 0.3 ± 0.0
 

0.3 ± 0.1 0.558 0.005 

20:5n-3 0.5 ± 0.2 20.1 ± 0.5
 

33.8 ± 0.2
 

39.9 ± 1.5 0.928 0.000 

22:5n-3 0.7 ± 0.1
 

9.1 ± 0.1
 

12.0 ± 0.3
 

8.0 ± 0.5 0.504 0.010 

22:6n-3 1.5 ± 0.3
 

1.5 ± 0.2
 

1.3 ± 0.1
 

1.1 ± 0.1 0.462 0.015 

Ʃ n-3 PUFA 2.7 ± 0.7
 

31.0 ± 0.6
 

47.4 ± 0.4
 

49.4 ± 2.0 0.874 0.000 

18:2n-9 6.6 ± 0.6
 

3.6 ± 0.3
 

3.1 ± 0.1
 

2.6 ± 0.1 0.831 0.000 

20:2n-9 5.2 ± 0.7
 

1.9 ± 0.1
 

1.4 ± 0.1
 

1.4 ± 0.1 0.727 0.000 

Ʃ n-9 PUFA 11.8 ± 1.2
 

5.5 ± 0.3
 

4.5 ± 0.1
 

4.0 ± 0.1 0.786 0.000 

       

Ʃ PUFA 20.7 ± 0.4
 

39.8 ± 0.2
 

55.7 ± 0.4
 

59.4 ±2.0 0.941 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty 

acid; PUFA = polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 

 

3.3.4.3. Supplementation with 22:5n-3 

The cell lipid content and lipid class composition of CHSE-214 cells incubated 

with increasing concentrations of 22:5n-3 are presented in Table 3.23. The cell total lipid 
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content did not show a clear trend with graded supplementation of 22:5n-3 (R
2
 = 0.322; p = 

0.055). Increased proportions of total neutral lipids (R
2
 = 0.676; p = 0.001) and, 

particularly, TAG (R
2
 = 0.875; p = 0.000) were observed, increasing over two-fold at 50 

µM and over four-fold at 100 µM.  The remaining of the lipid class composition data was 

rather variable and showed no obvious consistent trends with graded supplementation of 

22:5n-3 other than reciprocal changes driven by TAG levels. 

 

Table 3.23. Lipid content and lipid class composition of CHSE-214 incubated with 22:5n-3 

Lipid Control 20 µM 50 µM  100 µM R
2
 P-value 

LC (µg) 430.1 ± 50.0
 

431.4 ± 30.6
 

431.3 ± 30.6
 

353.1 ± 70.2 0.322 0.055 

CC (%)       

PC 22.5 ± 0.8
 

22.4 ± 0.8
 

25.5 ± 1.0
 

24.6 ± 0.9 0.714 0.001 

PE 15.8 ± 0.6
 

17.4 ± 0.4
 

15.3 ± 0.2
 

12.1 ± 0.5 0.568 0.005 

PS 5.7 ± 0.6
 

6.6 ± 0.4
 

4.8 ± 0.2
 

3.5 ± 0.2 0.483 0.012 

PI 10.3 ± 0.6
 

10.4 ± 0.2
 

7.6 ± 0.3
 

5.7 ± 0.1 0.664 0.001 

PA/CL 2.8 ± 0.4
 

1.9 ± 0.4
 

2.3 ± 0.5
 

1.7 ± 0.3 0.879 0.000 

SM 5.4 ± 0.3
 

4.9 ± 0.1
 

4.9 ± 0.1
 

3.4 ± 0.5 0.373 0.035 

TP 62.5 ± 1.8
 

63.6 ± 1.3
 

60.4 ± 2.1
 

51.0 ± 0.7 0.676 0.001 

TN 37.5 ± 1.8
 

36.4 ± 1.3
 

39.6 ± 2.1
 

49.0 ± 0.7 0.676 0.001 

TAG 4.3 ± 0.3
 

4.5 ± 0.4
 

9.6 ± 1.2
 

20.2 ± 0.9 0.875 0.000 

CHOL 33.2 ± 1.7
 

31.9 ± 1.4
 

30.0 ± 1.3
 

28.8 ± 1.6 0.643 0.002 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA compositions of CHSE-214 cells incubated with increasing concentrations 

of 22:5n-3 are presented in Table 3.24. The graded supplementation of 22:5n-3 led to 

increased deposition of 22:5n-3 itself in the cells (R
2
 = 0.950; p = 0.000). There was 

evidence of some production of DHA at 20 µM and 50 µM supplementation. There was 

apparent retro-conversion of 22:5n-3 to EPA (R
2
 = 0.827; p = 0.000), and some low but 

increased percentages of 20:4n-3 were also detected. The effects of increased total n-3 

PUFA (R
2
 = 0.936; p = 0.000) were balanced by decreased total MUFA (R

2
 = 0.906; p = 
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0.000) and n-9 PUFA (R
2
 = 0.917; p = 0.000), but the percentages of total SFA (R

2
 = 

0.242; p = 0.104) and n-6 PUFA were not affected (R
2
 = 0.542; p = 0.006). 

 

Table 3.24. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100µM of 22:5n-3 

Fatty acid Control 20 µM  50 µM  100 µM R
2
 P-value 

14:0 1.2 ± 0.2
 

0.8 ± 0.2
 

1.3 ± 0.3
 

1.1 ± 0.2 0.031 0.583 

15:0 0.3 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.0
 

0.2 ± 0.0 0.397 0.028 

16:0 12.5 ± 0.9
 

15.3 ± 0.1
 

14.2 ± 0.5
 

10.8 ± 0.7 0.151 0.211 

17:0 ND
 

0.6 ± 0.0
 

0.3 ± 0.0
 

0.6 ± 0.1 0.143 0.312 

18:0 6.9 ± 0.1
 

8.4 ± 0.4
 

6.9 ± 0.2
 

4.9 ± 0.2 0.282 0.075 

22:0 0.4 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.1
 

0.2 ± 0.0 0.793 0.000 

Ʃ SFA 21.3 ± 1.2
 

25.8 ± 0.4
 

23.3 ± 0.6
 

17.9 ± 1.0 0.242 0.104 

16:1n-9 5.0 ± 0.8
 

3.1 ± 0.3
 

2.6 ± 0.1
 

2.3 ± 0.4 0.781 0.000 

16:1n-7 3.3 ± 0.7
 

2.1 ± 0.1
 

1.9 ± 0.5
 

1.4 ± 0.1 0.750 0.000 

18:1n-9 45.4 ± 1.9
 

28.7 ± 0.1
 

20.4 ± 0.3
 

19.1 ± 0.7 0.902 0.000 

18:1n-7 2.5 ± 0.1
 

2.3 ± 0.1
 

2.0 ± 0.1
 

1.7 ± 0.1 0.916 0.000 

20:1n-11 ND
 

0.1 ± 0.0
 

0.1 ± 0.0
 

0.1 ± 0.0 - - 

20:1n-9 ND
 

0.2 ± 0.0
 

0.1 ± 0.0
 

0.3 ± 0.0 - - 

22:1n-11 ND
 

0.9 ± 0.1
 

0.6 ± 0.2
 

0.3 ± 0.2 - - 

22:1n-9 ND
 

0.2 ± 0.0
 

0.1 ± 0.0
 

0.4 ± 0.0 - - 

24:1n-9 1.7 ± 0.4
 

0.8 ± 0.2
 

1.2 ± 0.3
 

0.7 ± 0.0 0.427 0.021 

Ʃ MUFA 57.9 ± 1.3
 

38.4 ± 0.4
 

29.1 ± 0.9
 

26.3 ± 1.4 0.906 0.000 

18:2n-6 2.5 ± 0.2
 

1.7 ± 0.1
 

1.5 ± 0.0
 

2.5 ± 0.1 0.009 0.771 

18:3n-6 0.4 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.0 0.813 0.000 

20:2n-6*  1.3 ± 0.1
 

0.6 ± 0.0
 

0.4 ± 0.0
 

0.2 ± 0.0 0.914 0.000 

20:3n-6 1.2 ± 0.5
 

1.5 ± 0.1
 

1.1 ± 0.1
 

1.1 ± 0.1 0.611 0.003 

20:4n-6 1.1 ± 0.3
 

0.4 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0 0.649 0.002 

22:4n-6 ND
 

0.2 ± 0.0
 

0.1 ± 0.0
 

0.1 ± 0.0 0.233 0.112 

22:5n-6 ND
 

0.3 ± 0.0
 

0.5 ± 0.0
 

0.6 ± 0.0 0.843 0.000 

Ʃ n-6 PUFA 6.5 ± 0.7
 

5.0 ± 0.2
 

4.1 ± 0.1
 

4.9 ± 0.1 0.542 0.006 

20:4n-3 ND
 

0.3 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.0 0.749 0.000 

20:5n-3 0.5± 0.1
 

6.7 ± 0.1
 

11.1 ± 0.4
 

11.3 ± 0.6 0.827 0.000 

22:5n-3 0.7 ± 0.1
 

13.1 ± 0.1
 

24.4 ± 0.5
 

33.2 ± 1.9 0.950 0.000 

22:6n-3 1.5 ± 0.2
 

2.1 ± 0.0
 

2.0 ± 0.1
 

1.7 ± 0.1 0.107 0.300 

Ʃ n-3 PUFA 2.7 ± 0.2
 

22.2 ± 0.1
 

38.1 ± 0.9
 

46.6 ± 2.3 0.936 0.000 

18:2n-9 6.4 ± 0.4
 

4.4 ± 0.2
 

2.8 ± 0.2
 

2.4 ± 0.1 0.916 0.000 

20:2n-9 5.2 ± 0.1
 

3.1 ± 0.1
 

1.8 ± 0.1
 

1.5 ± 0.1 0.903 0.000 

22:2n-9 ND
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0 0.339 0.047 

22:3n-9 ND
 

0.8 ± 0.2
 

0.7 ± 0.1
 

0.2 ± 0.1 - - 

Ʃ n-9 PUFA 11.6 ± 0.5
 

7.8 ± 0.2
 

4.8 ± 0.3
 

4.1 ± 0.2 0.917 0.000 

       

Ʃ PUFA 20.8 ± 0.7
 

35.0 ± 0.4
 

47.0 ± 1.3
 

55.6 ± 2.3 0.987 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated 

fatty acid; ND = not detected; *contains 20:3n-9. 
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3.3.4.4. Supplementation with DHA 

The lipid content and the lipid class composition of CHSE-214 cells incubated with 

increasing concentrations of DHA are presented in Table 3.25. The cellular total lipid 

content graded increased with the supplementation of DHA up to 50 µM, and then 

decreased at 100 µM, albeit results were not statistically significant (R
2
 = 0.322; p = 

0.055). The lipid class composition data was variable, and generally showed no obvious or 

consistent trends with increasing supplementation of DHA. However, as with EPA 

supplementation, there was a significant reduction in cellular TAG when the cells were 

incubated with 20 µM DHA. Furthermore, at 100 µM supplementation, cellular TAG level 

increased by almost four-fold (R
2
 = 0.489; p = 0.011). 

 

Table 3.25. Lipid content and lipid class composition of CHSE-214 incubated with DHA 

Lipid Control 20µM 50µM 100 µM R
2
 P-value 

LC (µg) 423.0 ± 65.6
 

465.0 ± 70.0
 

607.0 ± 91.7
 

517.0 ± 43.6 0.322 0.055 

CC (%)       

PC 20.1 ± 0.5
 

20.0 ± 1.3
 

22.8 ± 0.9
 

18.4 ± 1.8 0.068 0.415 

PE 16.9 ± 0.9
 

19.2 ± 1.3
 

17.0 ± 2.4
 

11.0 ± 1.4 0.420 0.023 

PS 6.8 ± 0.3
 

7.1 ± 0.5
 

6.0 ± 0.3
 

3.6 ± 0.3 0.025 0.627 

PI 11.4 ± 0.7
 

11.4 ± 0.8
 

9.5 ± 0.6
 

6.3 ± 0.4 0.727 0.000 

PA/CL 2.7 ± 0.2
 

1.8 ± 0.2
 

1.7 ± 0.2
 

1.6 ± 0.1 0.782 0.000 

SM 4.4 ± 1.0
 

4.9 ± 0.8
 

6.0 ± 0.6
 

3.1 ± 0.3 0.622 0.002 

TP 62.3 ± 0.5
 

64.4 ± 2.2
 

63.0 ± 1.2
 

44.0 ± 0.3 0.539 0.007 

TN 37.7 ± 0.5
 

35.6 ± 2.2
 

37.0 ± 1.2
 

56.0 ± 0.3 0.539 0.007 

TAG 4.1 ± 0.2
 

1.4 ± 0.2
 

3.2 ± 0.4
 

16.0 ± 0.5 0.489 0.011 

CHOL 33.6 ± 0.3
 

32.2 ± 0.9
 

31.3 ± 1.0
 

36.9 ± 0.5 0.213 0.131 

FFA ND
 

2.0 ± 0.3
 

2.5 ± 0.2
 

3.1 ± 0.4 - - 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: DHA = docosahexaenoic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

  

The FA composition of CHSE-214 cells incubated with DHA is presented in Table 

3.26. The graded supplementation of DHA increased the cellular proportion of DHA itself 
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(R
2
 = 0.977; p = 0.087), along with increased percentages of EPA (R

2
 = 0.992; p = 0.000) 

and, to a lesser extent, 22:5n-3 (R
2
 = 0.951; p = 0.000). The effects of increased total n-3 

PUFA (R
2
 = 0.978; p = 0.000) were balanced by decreased proportions of total MUFA (R

2
 

= 0.948; p = 0.000) and n-9 PUFA (R
2
 = 0.935; p = 0.000), but the percentages of total 

SFA (R
2
 = 0.019; p = 0.666) and n-6 PUFA (R

2
 = 0.061; p = 0.438) were generally not 

affected. 

 
Table 3.26. Fatty acid composition (%) of CHSE-214 incubated with 20, 50 and 100 µM of DHA 

Fatty acid Control 20 µM  50 µM  100 µM R
2
 P-value 

14:0 1.5 ± 0.0
 

1.2 ± 0.1
 

1.2 ± 0.1
 

1.5 ± 0.5 0.128 0.254 

15:0 0.2 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.1
 

0.5 ± 0.0 0.800 0.000 

16:0 12.9 ± 0.6
 

13.1 ± 1.3
 

14.8 ± 1.9
 

12.2 ± 0.9 0.130 0.250 

17:0 ND
 

0.5 ± 0.1
 

0.4 ± 0.0
 

0.3 ± 0.1 - - 

18:0 7.6 ± 0.3
 

9.8 ± 0.4
 

10.6 ± 1.9
 

5.9 ± 0.1 0.031 0.586 

20:0 ND 0.2 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.1 - - 

22:0 0.3 ± 0.0
 

0.6 ± 0.2
 

0.4 ± 0.1
 

0.4 ± 0.1 0.002 0.891 

Ʃ SFA 22.5 ± 0.9
 

25.5 ± 1.9
 

28.0 ± 4.1
 

21.1 ± 1.3 0.019 0.666 

16:1n-9 4.1 ± 0.6
 

3.7 ± 0.3
 

2.8 ± 0.2
 

2.5 ± 0.5 0.750 0.000 

16:1n-7 4.4 ± 1.7
 

2.3 ± 0.8
 

1.8 ± 0.3
 

1.8 ± 0.2 0.546 0.006 

18:1n-9 43.5 ± 0.2
 

32.9 ± 1.8
 

23.1 ± 1.0
 

17.9 ± 1.3 0.970 0.000 

18:1n-7 2.0 ± 0.1
 

1.6 ± 0.1
 

1.7 ± 0.2
 

1.8 ± 0.3 0.355 0.041 

20:1n-9 ND
 

0.3 ± 0.0
 

0.4 ± 0.2
 

0.7 ± 0.2 - - 

20:1n-7 ND 0.1 ± 0.0
 

0.1 ± 0.0
 

0.2 ± 0.1 - - 

22:1n-9 ND
 

0.2 ± 0.1
 

0.1 ± 0.0
 

ND - - 

24:1n-9 1.4 ± 0.1
 

1.3 ± 0.1
 

1.3 ± 0.3
 

1.4 ± 0.3 0.000 0.983 

Ʃ MUFA 55.4 ± 1.3
 

42.4 ± 1.8
 

31.16 ± 1.2
 

26.3 ± 2.0 0.948 0.000 

18:2n-6 2.1 ± 0.2
 

1.9 ± 0.1
 

1.6 ± 0.1
 

2.7 ± 0.2 0.149 0.216 

18:3n-6 0.3 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.0 0.077 0.384 

20:2n-6* 1.3 ± 0.2
 

1.2 ± 0.0
 

0.8 ± 0.0
 

0.8 ± 0.2 0.749 0.000 

20:3n-6 1.2 ± 0.1
 

2.2 ± 1.1
 

2.0 ± 0.5
 

1.2 ± 0.5 0.007 0.792 

20:4n-6 0.8 ± 0.1
 

0.9 ± 0.1
 

0.8 ± 0.1
 

0.5 ± 0.1 0.344 0.045 

Ʃ n-6 PUFA 5.7 ± 0.3
 

6.5 ± 1.3
 

5.5 ± 0.8
 

5.5 ± 0.8 0.061 0.438 

20:5n-3 0.7 ± 0.1
 

1.9 ± 0.1
 

4.0 ± 0.3
 

6.0 ± 0.2 0.992 0.000 

22:5n-3 0.5 ± 0.1
 

0.7 ± 0.0
 

1.2 ± 0.0
 

1.6 ± 0.1 0.951 0.000 

22:6n-3 1.2 ± 0.3
 

11.4 ± 1.2
 

22.5 ± 2.1
 

35.4 ± 2.1 0.977 0.000 

Ʃ n-3 PUFA 2.4 ± 0.4
 

14.0 ± 1.2
 

27.7 ± 2.3
 

43.0 ± 1.8 0.978 0.000 

18:2n-9 6.9 ± 0.8
 

5.5 ± 0.7
 

3.6 ± 0.2
 

2.1 ± 0.3 0.946 0.000 

20:2n-9 6.6 ± 0.8
 

5.6 ± 0.3
 

3.7 ± 0.1
 

1.8 ± 0.5 0.908 0.000 

22:2n-9 0.5 ± 0.0
 

0.5 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0 0.914 0.000 

Ʃ n-9 PUFA 14.0 ± 1.6
 

11.6 ± 1.0
 

7.6 ± 0.3
 

4.2 ± 0.8 0.935 0.000 

       

Ʃ PUFA 22.1 ± 2.0
 

32.1 ± 3.5
 

40.8 ± 2.8
 

52.7 ± 3.4 0.953 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: DHA = docosahexaenoic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty 

acid; PUFA = polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 
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The following figures are presented as a summary to highlight results generated 

from the individual FA supplementation experiments (section 3.2.2) and the effects 

observed in cellular LC-PUFA (i.e. EPA, DHA and ARA). In all the cases, ANOVA 

showed that there was an effect of the FA supplementation (treatment), the concentration 

and the interaction of the last two on the cellular EPA, DHA and ARA levels (p < 0.05). 

Figure 3.1 shows the effects of n-3 PUFA supplementation on EPA production in CHSE-

214 cells. There was apparent retro-conversion of 22:5n-3 to EPA observed, and this was 

higher at 50 µM than at 20 µM, but not really further increased at 100 µM 22:5n-3 

supplementation. It is also clear that there was increased cellular EPA when cells were 

supplemented with LNA, particularly at 20 µM. The proportion of EPA in the cells was 

also clearly increased in a graded manner by the graded supplementation of DHA.  

 

 

 

 

Figure 3.2 shows DHA levels in CHSE-214 cells after supplementation with n-

3PUFA. Most of the FA supplemented did not increase the percentage of DHA in the cells, 

apart from 22:5n-3 which showed and increment of DHA, especially at 20 µM. The 

percentages of DHA were not significantly affected with supplementation by EPA or LNA.  

Figure 3.1. Percentage of eicosapentaenoic acid (EPA) in CHSE-214 cell line after being 

incubated for five days with increasing concentrations of fatty acids, i.e. 0 (control), 20, 50 and 

100 µM. Data were analysed by two-way ANOVA (p < 0.05). The interaction between the two 

factors (fatty acid supplemented and concentration) was also analysed (inlet table). 
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Figure 3.2. Percentage of docosahexaenoic acid (DHA) in CHSE-214 cell line after being 

incubated for five days with increasing concentrations of fatty acids, i.e. 0 (control), 20, 50 and 100 

µM. Data were analysed by two-way ANOVA (p < 0.05). The interaction between the two factors 

(fatty acid supplemented and concentration) was also analysed (inlet table). 

 

Figure 3.3 shows the ARA levels of CHSE-214 cells after being supplemented with 

n-6 PUFA. The percentage of ARA in the cells was clearly increased by graded increased 

20:3n-6, particularly at 100 µM. In addition, supplementing 18:3n-6 and LOA also 

increased the proportions of cellular ARA, with the highest percentages of ARA observed 

at 50 µM supplementation of the C18 n-6 PUFA. 

 

 

 

 

Figure 3.3. Percentage of arachidonic acid (ARA) in CHSE-214 cell line after being incubated 

for five days with increasing concentrations of fatty acids, i.e. 0 (control), 20, 50 and 100 µM. 

Data were analysed by two-way ANOVA (p < 0.05). The interaction between the two factors 

(fatty acid supplemented and concentration) was also analysed (inlet table). 
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Figure 3.4 shows the effects of supplementing n-3 FA at the different 

concentrations on the cellular levels of all the n-3 PUFA, including both LC-PUFA and 

pathway intermediates. The highest percentages of total n-3 PUFA were observed with the 

supplementation of EPA at 100 µM and 50 µM, with most of the EPA supplemented that 

was metabolised being elongated to 22:5n-3. There was apparent retro-conversion of DHA 

to EPA, but very little apparent biosynthesis of DHA from EPA. Similarly, the apparent 

retro-conversion of 22:5n-3 to EPA was higher than elongation of 22:5n-3 to DHA. There 

was some apparent biosynthesis of EPA from LNA. However, traveling down the pathway, 

the production of the metabolites from LNA was lower (18:4n-3 > 20:4n-3 > EPA). In 

addition, as the concentration of LNA supplementation increased, the increased deposition 

of LNA increased greatly. Therefore, supplementing LNA at 50 µM and 100 µM very 

likely masked any potential increments in the proportions of 20:4n-3 and EPA. This 

probably reflected the fact that the deposition of LNA was higher than the production of 

EPA.  

 

 

 

 

Figure 3.4. Total n-3 fatty acid intermediaries levels in CHSE-214 cell line after being incubated 

for 5 days with increasing concentrations of fatty acids, i.e. 0 (control), 20, 50 and 100 µM. 
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Figure 3.5 shows the effect of FA supplementation on cellular TAG levels in 

CHSE-214 cells. For most of the FA there was a trend for TAG to increase with the graded 

supplementation of FA.  Supplementing 18:1n-9, 20:1n-9, LOA, 20:3n-6, LNA and 22:5n-

3 at 20 µM did not affect the percentage of TAG, but at 50 µM and 100 µM there were 

clear trends of increasing TAG.  ARA was the only FA that increased TAG immediately at 

20 µM supplementation, whereas DHA and EPA had the opposite effect, decreasing 

cellular TAG levels when supplemented at 20 µM. However, both EPA and DHA at 50 

µM and 100 µM increased cellular TAG levels. There was no a clear influence of 18:3n-6 

on cell TAG levels, but 16:0 tended to decreased TAG at 20 µM and slightly increased cell 

TAG at 50 µM and 100 µM.  

 

 

 

Specifically focussing on the effects of the major PUFA (LOA and LNA) and LC-

PUFA (ARA, EPA and DHA) on cellular TAG levels showed that supplementing LOA 

and ARA at 20 µM had relatively little effect on the percentage of TAG in CHSE-214 cells 

with LOA increasing it slightly, but ARA increased TAG in the cells by over two-fold 

Figure 3.5. TAG (triacylglycerol) percentages in CHSE-214 supplemented with increasing 

concentrations of fatty acids. 
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(Figure 3.6). In contrast, EPA and DHA supplemented at 20 µM decreased cellular TAG 

around three-fold.   

 

Figure 3.6. TAG (triacylglycerol) percentages in CHSE-214 with graded supplementation of fatty 

acids. 

 

3.3.5. Effect of supplemental FA on growth of CHSE-214 cells: Toxicity of supplemental 

FA 

The effects of supplemental FA on cell growth are presented in Figure 3.7. The 

results represent the absorbance obtained from the MTT assay as a proxy for cell number 

and therefore growth of cells or, alternatively, toxicity of the FA supplementation. The 

growth/toxicity experiments were described earlier in this Chapter. Thus, in this analysis 

the absorbance is positively related with the number of live cells. Data shown in Figure 3.7 

are relative to un-supplemented cells (control), so less absorbance means a lower number 

of cells in comparison with the control (i.e. lower growth). The decreasing values showed a 

clear trend with FA supplementation, resulting in decreased absorbance with graded 

supplementation of FA. The figure shows the absorbance of cells incubated with 20 µM 

FA, which was 90–95% in relation to unsupplemented cells (control). The absorbance 

decreased considerably at 100 µM particularly with the supplementation of 22:5n-3, DHA, 
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20:3n-6, and EPA (70–80%), while supplementing 18:1n-9, LNA, and 16:0 at 100 µM the 

absorbance did not greatly decreased (~95%).  

 

 

 

3.4. Discussion  

The primary aim of the studies described in the present Chapter was to determine 

the effects of supplemental FA on lipid and FA metabolism in the CHSE-214 cell line and 

to assess their toxicity. To achieve this goal CHSE-214 cells were incubated for 5 d with 

increasing concentrations of FA, added as complexes, and the effects on cellular lipid 

content, lipid class and FA compositions,  and survival were determined. The data 

produced confirmed that CHSE-214 cells incorporated supplemented FA in a 

concentration-dependent manner and, furthermore, established that this cell line was 

capable of some, albeit limited LC-PUFA biosynthesis via FA desaturation and/or 

elongation. 

Figure 3.7. Absorbance of the MTT assay in CHSE-214 cell line after being incubated for five 

days with increasing concentrations of fatty acids, i.e. 0 (control), 20, 40, 60, 80 and 100 µM. 
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3.4.1. Lipid content, lipid class and FA composition of CHSE-214 growing under 

routine culture conditions (control) 

Tocher et al. (1988) determined the FA composition of six fish cell lines growing 

in media supplemented with 10% FBS, and reported that the most abundant FA found in 

the cells were not the same as those most commonly found in most fish tissues, i.e. 16:0, 

18:0, 16:1, 18:1n-9, 18:2, and 20:4, with only low levels of n-3 LC-PUFA. In the current 

study, the CHSE-214 cell line growing in the routine conditions for supply of cells (i.e. 20 

ml of L-15 media containing with 10% FBS) or in the control cultures in the FA 

supplementation studies (i.e. 10 ml of L-15 media containing 5% FBS) were rich in 16:0, 

18:0, 18:1n-9, and LOA. The FA profile of the cell line was therefore quite different from 

the fish tissue it was originally derived from. Regarding LC-PUFA, EPA, DHA and 22:5n-

3 were also present in CHSE-214 cells; however, they were found in very low amounts 

compared with fish tissues. This difference is probably due to their culture using 

mammalian serum, which is poor in n-3 LC-PUFA compared to fish tissues (Tocher et al., 

1988). Ackman (1980) and Henderson and Tocher (1987) previously reported that the 

main qualitative difference between the FA profiles of fish cell lines and fish tissues was 

the lack of EPA and DHA, and quantitatively they reported that cell lines contain 

considerably less n-3 LC-PUFA in comparison with fish tissues. In the present study, it 

was observed that the FA composition of CHSE-214 cells growing in FBS presented less 

than 1% of EPA and less than 2% of DHA. Regarding lipid class compositions, total polar 

lipids were found at almost double the proportion of total neutral lipids in CHSE-214 

growing in media containing 5–10% FBS. In the EPC (Epithelioma papulosum cyprini) 

cell line, the proportion of total polar lipids was reported to be about 75% and 25% for 

neutral lipids (Tocher et al., 1995) and in a range of 72–41% in six fish cell lines, including 
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RTG-2, TF, AS, CHSE-214, BF-2 and FHM, growing in media supplemented with 10% 

FBS (Tocher et al., 1988). 

 

3.4.2. Effect of the concentration of FA supplemented on the lipid content of CHSE-214  

An increment in cell total lipid content was expected with the graded 

supplementation of individual FA to the CHSE-214 cells, but this trend was only observed 

when 18:3n-6 was supplemented. In most of the experiments, no clear trends were 

observed amongst the treatments (p > 0.05). In some cases decreased lipid content with the 

graded supplementation of FA was observed, particularly at 100 µM. This effect was very 

clear when supplementing FA with the highest number of double bonds, namely EPA, 

22:5n-3, and DHA. Prior to harvesting, it was observed that cells incubated with 100 µM 

FA were easily detached during the washing phase, which was not observed in cells 

incubated with lower concentrations of FA. Similarly, during harvesting of cells, it was 

observed that cells came off the substrate (flask surface) very readily when they had been 

incubated with 100 µM FA. The data produced from the MTT assay showed lower 

absorbance in wells where cells were incubated with 100 µM FA, indicating fewer cells in 

the wells. This effect of high FA concentration may be due to increased production of lipid 

radicals in cells incubated with 100 µM FA, especially the LC-PUFA, which would likely 

damage the cell membranes inhibiting growth/division and/or causing cell death and, 

therefore, a lower amount of total lipid was obtained from these flasks. In this sense 

Gregory et al. (2011) reported that n-3 LC-PUFA are easily attacked by reactive oxygen 

species (ROS), due to their high number of double bonds, triggering a chain reaction of 

hydrogen abstraction, and the formation of lipid radicals, causing cell  membrane damage, 

and subsequent cell death. From the lipid content and toxicity/growth assay data it was 

concluded that at 20 µM the monolayer of CHSE-214 cell line is not adversely affected by 
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the FA supplementation, and enough lipid can be obtained for further analyse the lipid and 

FA composition.   

 

3.4.3. Effect of supplementation of FA on lipid class composition of CHSE-214  

Apart from proportions of TAG, the lipid class composition of CHSE-214 cells did 

not show clear, consistent and obvious trends with graded supplementation of FA. TAG 

often increased with the graded supplementation of FA, particularly at 50 µM and 100 µM 

concentrations. This increment was likely due to the high uptake and incorporation of the 

FA supplemented to the cells that was greater than the requirement for the FA either for 

membrane biosynthesis or energy (oxidation) resulting in deposition of the excess FA in 

cellular TAG stores. However, TAG level was also increased with the supplementation of 

ARA at only 20 µM, and the opposite effect was observed with the supplementation of 

EPA and DHA at the same concentration. This result is consistent with Sekiya et al. 

(2003), who reported that dietary n-3 LC-PUFA reduced TAG deposition in the liver of 

obese (ob/ob) mice. It is known that one effect of n-3 LC-PUFA (EPA and DHA) 

underpinning their role in cardiovascular disease is to reduce blood TAG, and part of that 

mechanism occurs by decreasing TAG synthesis in hepatocytes, probably mediated 

through the down-regulation of SREBP (sterol regulatory element-binding proteins) 

(Sekiya et al., 2003). It was a noteworthy result from the present study that this differential 

effect of n-6 (ARA) and n-3 (EPA and DHA) LC-PUFA was clearly observed on the 

metabolism of CHSE-214 cells as has been previously observed in whole animal and 

primary cell culture studies (Collier and Collier, 1993; Whelan et al., 1995; Whelan, 1996; 

Manickam et al., 2010; Kaur et al., 2011; Kajikawa et al., 2011). The data on lipid class 

composition of the present study generally showed that supplementing FA at 20 µM 

clearly alters the FA composition of CHSE-214 cell line (see section 3.4.4), but without 
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swamping the cells with excess FA that has additional effects on lipid metabolism 

including the increased deposition of FA in TAG-rich lipid droplets in the cells. Consistent 

with other studies suggesting 20–25 µM as the “adequate” concentration for PUFA 

supplementation to cells in culture (Geyer, 1967; Moskowitz, 1967; Rosenthal, 1981; 

Stubbs and Smith, 1984; Tocher et al., 1989; Tocher and Dick, 1990). In the current study, 

concentrations higher than 20 µM stimulated lipid storage pathways, resulting in the 

supplemented FA being deposited in lipid droplets in the cytoplasm. This situation affected 

the lipid class composition, increasing TAG production and, hence, total neutral lipid 

contents, whereas changes in phospholipid class composition were simply reflecting this 

primary change in relative lipid class composition.  

 

3.4.4. Effect of supplementation of FA on FA composition of CHSE-214  

The present study showed that all supplemented FA changed the FA profile of 

CHSE-214 cells due to the incorporation of the FA itself but also as a result of subsequent 

metabolism of the incorporated FA. For all FA supplemented, other than 18:1n-9 (see 

below), a graded incorporation of the FA into the CHSE-214 cells was observed.  

 

3.4.4.1. Supplementation with SFA and MUFA  

 When 16:0 was supplemented, this FA was incorporated and deposited in greater 

amounts, and a large portion was desaturated to 16:1n-7, and to a lesser extent to 16:1n-9. 

Some of the 16:0 was elongated to 18:0, and there was evidence that 16:1n-7 was further 

elongated to 18:1n-7. These last effects were clear at 20 µM, but they were hidden at 100 

µM because so much 16:0 was being deposited and/or desaturated, decreasing the 

proportions of all other FA. A similar effect was observed when 20:1n-9; however, a 

completely different effect was observed with the supplementation of 18:1n-9, which was 
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only deposited at 100 µM. It is most likely that at 20 µM and 50 µM it was largely 

oxidised to produce energy, and only when it was supplemented at very high 

concentrations was there more 18:1n-9 taken up by the cell than could be oxidised 

effectively, essentially swamping lipid metabolism and, as a result, it was finally deposited 

in TAG lipid stores in cytoplasmic lipid droplets. As a result of the accumulation of 18:1n-

9 at 100 µM, all other FA decreased but, at lower concentrations, supplementation of 

18:1n-9 had relatively little effect on cellular FA composition. No effects on n-9 PUFA 

were detected, therefore Δ6 desaturase was not stimulated, which is different from what 

was reported in turbot fin (TF) cell line (Ghioni et al., 1999). 

 

3.4.4.2. Supplementation with n-6 PUFA 

Graded incorporation was observed when n-6 PUFA were supplemented, i.e. LOA 

18:3n-6, 20:3n-6 and ARA. There was clear evidence of FA metabolism via the LC-PUFA 

biosynthesis pathways with n-6 PUFA. Therefore there was evidence of FA desaturation 

and elongation of the supplemented n-6 PUFA in the biosynthesis pathway, but the 

production of desaturated and/or elongated intermediates decreased down the pathway, and 

were progressively more affected by increased deposition of the n-6 PUFA that was 

supplemented. Therefore, the desaturated and elongated metabolites were easily detected at 

20 µM and 50 µM, but not so at 100 µM, because any potential increase in their production 

would be masked due to the high incorporation and deposition of the n-6 PUFA 

supplemented. The main product of LOA metabolism was 18:3n-6, while supplemented 

18:3n-6 was mainly elongated to 20:3n-6, and supplemented 20:3n-6 was both desaturated 

and retro-converted to ARA and 18:3n-6, respectively, and ARA was elongated into 22:4n-

6 with no further desaturation. The incorporation of the n-6 PUFA and the products of the 

desaturation and/or elongation increased the proportions of total n-6 PUFA. This effect 
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was balanced by decreasing the proportions of total MUFA and n-9 PUFA but not SFA.  

Therefore, supplementing n-6 PUFA affected unsaturated FA, but SFA were unaffected. 

Overall, the data indicated that the CHSE-214 cell line can synthesise ARA from LOA as 

previously reported seen for other fish cell lines such as RTG-2 (Rainbow trout gonad) and 

Turbot fin (Tocher et al., 1989). 

 

3.4.4.3. Supplementation with n-3 PUFA 

There was graded incorporation of the n-3 PUFA (i.e. LNA, EPA, 22:5n-3 and 

DHA) supplemented to CHSE-214 cells. These supplementations increased the percentage 

of total n-3 PUFA in CHSE-214 cells, which was balanced by decreasing total MUFA, n-6 

PUFA and n-9 PUFA, but not SFA. When CHSE-214 cells were supplemented with LNA 

the main metabolite produced was 20:4n-3, while 22:5n-3 was the main metabolite 

produced with the supplementation of EPA, and EPA was the main metabolite when 

22:5n-3 and DHA were supplemented. Therefore, there was clear evidence of desaturation 

and elongation of the n-3 PUFA supplemented by the enzymes of the LC-PUFA 

biosynthesis pathway. However, as described above for n-6 LC-PUFA, travelling down the 

pathway, the production of metabolites was lower and progressively more affected by the 

increased incorporation of the n-3 PUFA supplemented. However, it was clear that CHSE-

214 was able to produce EPA from LNA, with the highest percentage observed at 20 µM 

LNA supplementation. It should be noted that this does not mean that at 50 µM and 100 

µM LNA EPA was not produced, but what could have happened is that the high deposition 

of LNA masked any increased of EPA produced. In contrast the data are quite clear that 

the CHSE-214 cell line showed only very low levels of DHA irrespective of n-3 FA 

supplementation other than DHA itself. Therefore, it seems clear that DHA production 

from LNA is extremely low in CHSE-214 cells and therefore this cell line is not a good 
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model for DHA biosynthesis. Other fish cell lines have also been reported to lack sufficient 

enzymatic activity for the production of any biologically meaningful levels of DHA from 

LNA, at least in the relatively short-term of the assays (up to 7 days usually) in similar FA 

supplementation studies to those reported in the present study. For example, AS (Atlantic 

salmon) and RTG-2 cell lines were reported to have high activity of ∆6 and ∆5 desaturase 

but not ∆4 desaturase, while TF cell line was reported to be active regarding ∆6 desaturase, 

but showing very low activity of ∆5 desaturase and elongase from C18 to C20 (Tocher et al., 

1989; Ghioni et al., 1999). 

The present study revealed that the LC-PUFA biosynthesis pathway is active but 

limited in the CHSE-214 cell line. Thus, the CHSE-214 cell line is active in EPA synthesis 

from LNA, and in ARA synthesis from LOA, but the pathway had only very low or no 

activity for the production of DHA from EPA. Therefore, the CHSE-214 cell line can be 

regarded as a suitable model for further studies of lipid and FA metabolism in salmonids, 

specifically EPA production. 
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Chapter 4 

Effects of interaction and competition between supplemented PUFA on 

lipid and fatty acid compositions of CHSE-214 cells 

 

 

 

LC-PUFA biosynthesis pathways [taken from www.biochemsoctrans.org] 

 

 

“Hunger is not an issue of charity. It is an issue of justice” 

Jacques Diouf 

  



Olga Liliana Rubio Mejía   CHAPTER 4 

 87 

4.1. Introduction 

 

The short-chain PUFA, α-linolenic acid (LNA, 18:3n-3) and linoleic acid (LOA, 

18:2n-6) are essential fatty acids (EFA), meaning that they have to be obtained from the 

diet, as fish are not able to synthesise FA with two or more double bounds (Sargent et al., 

1989, 2002). LNA and LOA are present in high concentrations in most of the vegetable oil 

(VO) used for the production of aquafeeds (Tocher, 2003). Depending upon species, fish 

and vertebrates in general, may have the ability to convert LOA into ARA, and LNA into 

EPA and DHA. The pathway for the synthesis of LC-PUFA is presented in Figure 4.1. It 

involves elongase and desaturase enzymes, with the elongation and desaturation steps 

occurring in endoplasmic reticulum, while the chain shortening required for DHA 

synthesis is carried out in peroxisomes. The conversion of LNA into DHA requires the 

participation of the enzyme Δ6 fatty acyl desaturase (Fads2d6) to first produce stearidonic 

acid (18:4n-3). This has to be elongated to eicosatetraenoic acid (20:4n-3) with the 

participation of an elongase (Elovl5). The enzyme Δ5 fatty acyl desaturase (Fads2d5) is 

responsible for the conversion of 20:4n-3 into EPA, followed by two sequential elongation 

steps to produce docosapentaenoic acid (22:5n-3) and tetracosapentaenoic acid (24:5n-3) 

with the participation of elovl2. The resultant 24:5n-3 is desaturated to tetracosahexaenoic 

acid (24:6n-3) by a Fads2d6 and, finally, the chain is shorted to DHA (Morais et al., 2009; 

Gregory et al., 2010). The conversion of LOA into ARA requires the participation of the 

same enzymes as those required to convert LNA into EPA and DHA. Firstly the Fads2d6 

converts LOA into γ-linolenic acid (18:3n-6), which is then elongated to 20:3n-6, with the 

participation of Elovl5, and finally, the enzyme Fads2d5 converts 20:3n-6 to ARA. Studies 

of FA metabolism in fish cell lines, have reported high enzymatic desaturation and 

elongation activity to convert LNA into EPA in lines derived from freshwater or 
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anadromous fish (e.g. common carp, rainbow trout and Atlantic salmon) (Tocher and Dick, 

1990, 1999). In contrast, enzymatic limitations have been reported in cell lines derived 

from marine fish (e.g. gilthead sea bream and turbot) including limited ability to elongate 

C18 PUFA, and to desaturate 20:4n-3 to EPA (Tocher and Ghioni, 1999; Ghioni et al., 

1999). The synthesis of DHA from EPA seems to be limited in most of the fish cell lines 

(Tocher and Sargent, 1990; Gregory et al., 2011).   

 

Figure 4.1. Diagram of LC-PUFA synthesis in Chinook salmon, Oncorhynchus tshawytscha 

(Walbaum). Essential fatty acids (EFA), such as α-linolenic (LNA, 18:3n-3) and linoleic (LOA, 

18:2n-6) acids, which are the precursors of eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic 

(DHA, 22:6n-3) acids, and arachidonic acid (ARA, 20:4n-6), respectively, must be obtained in the 

diet. The synthesis of these important fatty acids is aimed following the action of fatty acyl 

desaturases (Δ8, Δ6 and Δ5) and elongases (Elovl). The diagram also illustrates the enzyme 

competition between n-3 and n-6 PUFA series. 

 

As PUFA play important roles in metabolism, it is important to investigate the 

possible enzyme competition in the well-established pathways of LC-PUFA biosynthesis, 

LNA to EPA and DHA, and LOA to ARA, given that both pathways require the same 

enzymes (Figure 4.1). Stubbs and Smith (1984) and Tocher et al. (1989) reported that the 

PUFA preferences of fatty acyl desaturases is in the following rank order: n-3 > n-6 > n-9.  
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There are some studies in which fish cell lines were incubated with n-3 and n-6 

PUFA in order to describe PUFA incorporation and metabolism, and LC-PUFA 

biosynthesis, but the competition between n-3 and n-6 PUFA was not investigated in detail 

(Tocher et al., 1989, 1996; Tocher, 1990; Bell et al., 1994; Tocher and Dick, 1999; Ghioni 

et al., 1999). The study of the interaction between PUFA and LC-PUFA is important, 

considering the changes in formulation being made to fish and, especially, salmon feeds 

with fish oil (FO), rich in n-3 LC-PUFA, being increasingly replaced by VO that are rich in 

C18 PUFA. The FA profile of fish flesh largely reflects the FA profile of the diet/feed 

(Tocher, 2003). Therefore, the replacement of FO with VO in aquafeeds decreases the 

levels of n-3 LC-PUFA in fish flesh (Zheng et al., 2005; Torstensen et al., 2005; Leaver et 

al., 2008; Pratoomyot et al., 2008; Trushensk and Boesenberg, 2009). As alluded above, 

salmonids, such as Atlantic salmon and rainbow trout, are able to synthesise LC-PUFA 

from C18 PUFA (Castell et al., 1972; Bell et al., 1993; Tocher et al., 2000). However, this 

ability may not be sufficient to compensate the reduced dietary intake of LC-PUFA in fish 

fed VO compared to fish fed FO (Tocher and Dick, 1990; Tocher and Sargent, 1990; 

Tocher and Ghioni, 1999; Ghioni et al., 1999).  

In the context of the above, the primary aim of the present Chapter was to 

characterise the uptake, incorporation and metabolism of n-3 and n-6 PUFA when added in 

combination to the CHSE-214 (Chinook salmon embryo) cell line. The competition 

between different PUFA substrates and/or pathway intermediates and the influence of 

pathway products (LC-PUFA) was determined by analysing the effects on the lipid 

content, class composition and FA composition of cells incubated with different 

combinations of PUFA and/or LC-PUFA. The maximum concentration of individual 

PUFA supplemented for the experiments in this competition study was 20 µM based on the 

results of Chapter 3. This concentration was determined to be sufficient to change the FA 
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profile of CHSE-214 cells (i.e. membrane FA compositions), but to not affect negatively 

the growth of the monolayer, or to increase deposition of triacylglycerol (TAG), and 

therefore to not favour the formation of lipid droplets in the cytoplasm. 

 

4.2. Materials and Methods 

 

4.2.1. Cell line and routine culture procedures 

 The description of CHSE-214 cell line, the media preparation, the routine culture 

methodology and cell counting have been described in detail in Chapter 2, sections 2.1.1, 

2.1.2 and 2.1.2.4, respectively. 

 

4.2.2. PUFA competition experiments 

FA were supplemented as bovine serum albumin (BSA) complexes (First Link 

Ltd., Wolverhampton, UK) in phosphate buffered saline (PBS) (Spector and Hoak, 1969). 

This procedure has been fully described in Chapter 2, section 2.2.1. The combinations of 

PUFA and LC-PUFA supplemented to the cells that were investigated in the present 

Chapter are listed in Table 4.1. The concentration of FA 1 was fixed at 20 µM while the 

competing FA (FA 2) were added in increasing concentrations of 5, 10, 15 and 20 µM in 

each experiment. Therefore each experiment consisted of five treatment combinations, 

namely 20/0 µM, 20/5 µM, 20/10 µM, 20/15 µM and 20/20 µM. The maximum 

concentration of FA supplemented was 40 µM based on the results obtained in the toxicity 

test described in Chapter 3, section 3.3.5. The experiments outlined below were designed 

to establish the effect of the combinations of PUFA supplemented on the cellular FA 

profile and lipid class composition. Moreover, the potential enzyme competition of C18 

PUFA supplementation (i.e. LNA (as FA 1) / LOA (as FA 2), and LOA (as FA 1) / LNA 

(as FA 2)) was also established, as well as the product inhibition (i.e. LNA (as FA 1) / EPA 
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(as FA 2); LNA (as FA 1) / DHA (as FA 2); LNA (as FA 1) / EPA+DHA (as FA 2); LOA 

(as FA 1) / ARA (as FA 2). Flasks were incubated with the combinations of PUFA for 5 d. 

Further details of the seeding and FA supplementation procedures are provided in Chapter 

2, section 2.2.2. After the incubation time, cells were harvested and washed for further 

lipid analyses. 

 

Table 4.1. Concentration and combinations of FA used as substrates and FA competitors for  

CHSE-214 cell line 

EXPERIMENT FATTY ACID 1 

(substrate) 

FATTY ACID 2 

(competitor) 

1 LNA LOA 

2 LNA ARA 

3 LNA EPA  

4 LNA DHA  

5 LNA EPA+DHA (1:1) 

6 EPA LNA 

7 EPA  DHA 

8 LOA LNA 

9 LOA EPA+DHA (1:1) 

10 LOA ARA  

Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; ARA = arachidonic acid; DHA = 

docosahexaenoic acid; EPA = eicosapentaenoic acid. 

 

4.2.3. Lipid analyses 

Cellular lipids were extracted, following the protocol established by Folch et al. 

(1957). Details of these procedures are given in Chapter 2, sections 2.1.2.2 and 2.3.1. 

High-performance thin-layer chromatography (HPTLC) plates were used to carry out the 

lipid class composition analysis (Henderson and Tocher, 1992). Full details of the 

procedures for determining lipid class composition are given in Chapter 2, section 2.3.2. 

Fatty acid methyl esters (FAME) of cell total lipid were prepared by acid-catalysed 

transmethylation according to Christie (2003). Further details of the procedures for FAME 

preparation and GC analyses are given in Chapter 2, section 2.3.3.  
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4.3. Results 

 

4.3.1. Effect of competing n-6 PUFA (LOA and ARA) and n-3 LC-PUFA (EPA, DHA 

and EPA+DHA) in cells supplemented with LNA  

 

4.3.1.1. Supplementation with LNA in presence of increasing LOA  

Table 4.2 shows the lipid content and the lipid class composition of CHSE-214 

cells incubated with LNA in the presence of increasing concentrations of LOA. No 

consistent trend was observed in the cell lipid content (R
2 

= 0.189; p = 0.158), but the 

highest level was recorded in cells incubated with 40 µM total PUFA, at 20/20 µM. In the 

lipid class data there was a clear trend observed, with increasing TAG (R
2 

= 0.505; p = 

0.010), and total neutral lipids (R
2 

= 0.666; p = 0.001), with the graded supplementation of 

LOA. 

The FA composition of CHSE-214 cells incubated with 20 µM LNA and graded 

supplementation of LOA is presented in Table 4.3. EPA levels decreased with the graded 

supplementation of LOA (R
2 

= 0.366; p = 0.037). LNA was incorporated at the same 

percentage in all the treatments (R
2 

= 0.030; p = 0.589), some of which was desaturated 

and elongated to 18:4n-3 (R
2 

= 0.605; p = 0.003) and 20:4n-3 (R
2 

= 0.320; p = 0.055), 

particularly at 20/20 µM. The percentages of 22:5n-3 (R
2 

= 0.047; p = 0.498) and DHA (R
2 

= 0.003; p = 0.862) were not affected by LOA supplementation, being essentially the same 

at all supplemented concentrations. Increasing levels of LOA were incorporated with 

graded supplementation of the PUFA (R
2 

= 0.963; p = 0.000), and some of which was 

desaturated and elongated to 18:3n-6 (R
2 

= 0.804; p = 0.000) and 20:3n-6 (R
2 

= 0.659; p = 

0.001), respectively, and, to a lesser extent, desaturated to ARA (R
2 

= 0.598; p = 0.003). 

The increment of n-6 PUFA with the supplementation of LOA, was balanced by reduced 
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MUFA (R
2 

= 0.862; p = 0.000) and SFA (R
2 

= 0.767; p = 0.000), particularly decreasing 

the percentages of 18:1n-9 (R
2 

= 0.869; p = 0.000) and 16:0 (R
2 

= 0.678; p = 0.001), but 

there was no significant effect on total n-3 PUFA (R
2 

= 0.110; p = 0.293).  

 

Table 4.2. Lipid content and lipid class composition of CHSE-214 incubated with LNA and LOA 

Lipid 20/5 µM 20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  490.0 ± 62.4
 

383.3 ± 30.1
 

433.3 ± 60.9
 

623.3 ± 38.0 0.189 0.158 

CC (%)       

PC 22.4 ± 1.8
 

24.6 ± 2.4
 

22.6 ± 1.1
 

21.6 ± 1.5 0.075 0.389 

PE 19.5 ± 0.7
 

19.1 ± 0.3
 

21.6 ± 0.6
 

21.4 ± 0.6 0.582 0.004 

PS 5.2 ± 1.3
 

4.0 ± 0.1
 

4.3 ± 0.1
 

3.5 ± 0.6 0.438 0.019 

PI 8.8 ± 0.1
 

8.8 ± 1.2
 

8.5 ± 0.4
 

7.2 ± 0.4 0.450 0.017 

PA/CL 1.8 ± 0.5
 

1.2 ± 0.1
 

1.5 ± 0.1
 

0.9 ± 0.1 0.486 0.012 

SM 6.7 ± 0.4
 

6.2 ± 1.0
 

3.4 ± 0.3
 

4.2 ± 0.8 0.589 0.004 

TP 64.4 ± 2.0
 

63.9 ± 0.9
 

61.9 ± 0.9
 

58.8 ± 2.5 0.666 0.001 

TN 35.6 ± 2.0
 

36.1 ± 0.9
 

38.1 ± 0.9
 

41.2 ± 2.5 0.666 0.001 

TAG 5.2 ± 0.3
 

6.5 ± 0.5
 

6.6 ± 0.2
 

8.8 ± 1.6 0.505 0.010 

CHOL 30.4 ± 1.7
 

29.6 ± 0.6
 

31.5 ± 0.8
 

32.4 ± 1.0 0.409 0.025 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; LC = lipid content; CC = class composition; 

PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected.  

 

 

 

 

  



Olga Liliana Rubio Mejía   CHAPTER 4 

 94 

Table 4.3. Fatty acid composition (%) of CHSE-214 cells incubated with LNA and LOA 

Fatty acid 20/5 µM 20/10 µM  20/15 µM  20/20 µM  R
2
  P-value  

14:0 1.3 ± 0.1
 

1.2 ± 0.1
 

1.2 ± 0.3
 

1.2 ± 0.0
 

0.116 0.280 

15:0 0.6 ± 0.1
 

0.5 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.1
 

0.733 0.000 

16:0 14.2 ± 0.3
 

14.8 ± 0.7
 

12.2 ± 0.4
 

11.9 ± 0.1
 

0.678 0.001 

17:0 0.7 ± 0.1
 

0.7 ± 0.1
 

0.5 ± 0.1
 

0.2 ± 0.1
 

0.696 0.001 

18:0 11.0 ± 0.5
 

10.2 ± 0.4
 

10.5 ± 0.5
 

10.3 ± 0.7
 

0.109 0.294 

22:0 0.5 ± 0.1
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.5 ± 0.0
 

0.004 0.848 

Ʃ SFA 28.3 ± 0.3 28.0 ± 0.7 25.2 ± 1.0 24.3 ± 0.7 0.767 0.000 

16:1n-9 2.9 ± 0.1
 

2.6 ± 0.3
 

2.7 ± 0.1
 

2.2 ± 0.4
 

0.474 0.013 

16:1n-7 1.3 ± 0.2
 

1.3 ± 0.2
 

1.2 ± 0.0
 

1.1 ± 0.1
 

0.383 0.032 

18:1n-9 28.6 ± 0.7
 

25.8 ± 0.6
 

24.4 ± 0.4
 

22.2 ± 1.8
 

0.869 0.000 

18:1n-7 2.1 ± 0.2
 

1.6 ± 0.1
 

1.8 ± 0.4
 

2.6 ± 0.2
 

0.214 0.130 

24:1n-9 0.7 ± 0.1
 

1.1 ± 0.1
 

1.1 ± 0.2
 

0.9 ± 0.1
 

0.109 0.295 

Ʃ MUFA 35.6 ± 0.7 32.4 ± 0.5 31.2 ± 0.5 29.0 ± 1.7 0.862 0.000 

18:2n-6 3.4 ± 0.1
 

5.6 ± 0.9 7.3 ± 0.1
 

11.3 ± 0.6
 

0.963 0.000 

18:3n-6 0.8 ± 0.1
 

1.0 ± 0.0
 

1.5 ± 0.2
 

2.0 ± 0.5
 

0.804 0.000 

20:2n-6*  0.4 ± 0.0
 

0.6 ± 0.0
 

0.6 ± 0.1
 

1.0 ± 0.3
 

0.730 0.000 

20:3n-6 1.6 ± 0.1
 

3.1 ± 0.2
 

3.3 ± 0.1
 

3.6 ± 0.8
 

0.659 0.001 

20:4n-6 0.6 ± 0.0
 

0.7 ± 0.2
 

1.0 ± 0.1
 

1.2 ± 0.2
 

0.598 0.003 

Ʃ n-6 PUFA 6.8 ± 0.2
 

11.0 ± 0.6
 

13.7 ± 0.6
 

19.1 ± 2.0
 

0.961 0.000 

18:3n-3 5.8 ± 0.2
 

5.2 ± 0.2
 

5.8 ± 0.4
 

5.4 ± 0.2
 

0.030 0.589 

18:4n-3 3.8 ± 0.2
 

3.5 ± 0.4
 

4.4 ± 0.3
 

4.7 ± 0.2
 

0.605 0.003 

20:4n-3 4.0 ± 0.1
 

3.7 ± 0.2
 

4.4 ± 0.2
 

4.7 ± 0.2
 

0.320 0.055 

20:5n-3 5.6 ± 0.2
 

5.3 ± 0.2
 

5.3 ± 0.4
 

4.8 ± 0.7
 

0.366 0.037 

22:5n-3 1.3 ± 0.1
 

1.3 ± 0.0
 

1.2 ± 0.1
 

1.3 ± 0.1
 

0.047 0.498 

22:6n-3 1.2 ± 0.1
 

1.2 ± 0.2
 

1.2 ± 0.0
 

1.2 ± 0.1
 

0.003 0.862 

Ʃ n-3 PUFA 21.7 ± 0.7
 

20.2 ± 1.0
 

22.3 ± 1.4
 

22.1 ± 0.7
 

0.110 0.293 

18:2n-9 4.3 ± 0.3
 

4.0 ± 0.1
 

4.1 ± 0.1
 

3.2 ± 0.2
 

0.648 0.002 

20:2n-9 2.8 ± 0.2
 

2.7 ± 0.1
 

2.3 ± 0.2
 

2.0 ± 0.2
 

0.769 0.000 

22:2n-9 0.5 ± 0.0
 

1.7 ± 0.1
 

1.2 ± 0.4
 

0.3 ± 0.1
 

0.069 0.408 

Ʃ n-9 PUFA  7.6 ± 0.6
 

8.4 ± 0.2
 

7.6 ± 0.5
 

5.5 ± 0.1
 

0.557 0.005 

       

Ʃ PUFA 36.1 ± 0.6
 

39.6 ± 0.5
 

43.6 ± 1.5
 

46.7 ± 2.4
 

0.915 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; PUFA = polyunsaturated fatty acid; SFA = 

saturated fatty acid; MUFA = monounsaturated fatty acid; *contains 20:3n-9. 

 

 

 

4.3.1.2. Supplementation with LNA in presence of increasing ARA 

Table 4.4 shows the cell lipid content and lipid class composition of CHSE-214 

cells after being incubated with LNA and increasing concentrations of ARA. There was no 

clear trend observed in cell lipid content data (R
2 

= 0.002; p = 0.878). No clear or 

consistent trends were identified in the lipid class composition data, apart from TAG, 

which tended to increase with the graded supplementation of ARA (R
2 

= 0.520; p = 0.008). 
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Table 4.4. Lipid content and lipid class composition of CHSE-214 cells incubated with LNA and 

ARA 

Lipid 20/5 µM  20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  440.0 ± 75.5
 

393.3 ± 57.2
 

473.3 ± 76.2
 

396.7 ± 36.5
 

0.002 0.878 

CC (%)       

PC 24.3 ± 0.8
 

22.4 ± 1.0
 

23.3 ± 0.7
 

24.8 ± 1.5
 

0.056 0.458 

PE 20.0 ± 0.5
 

20.3 ± 0.4
 

20.8 ± 0.4
 

21.7 ± 0.4
 

0.720 0.000 

PS 5.5 ± 0.3
 

4.6 ± 0.7
 

5.4 ± 0.6
 

5.1 ± 0.5
 

0.005 0.835 

PI 9.0 ± 0.2
 

8.4 ± 0.4
 

8.2 ± 0.6
 

8.0 ± 0.8
 

0.378 0.033 

PA/CL 1.5 ± 0.3
 

1.3 ± 0.2
 

1.5 ± 0.1
 

2.9 ± 0.8
 

0.448 0.017 

SM 4.8 ± 0.7
 

4.1 ± 0.5
 

4.3 ± 0.9
 

4.9 ± 0.4
 

0.019 0.666 

TP 65.1 ± 2.1
 

61.1 ± 1.4
 

63.5 ± 0.3
 

67.4 ± 0.8
 

0.171 0.181 

TN 34.9 ± 2.1
 

38.9 ± 1.4
 

36.5 ± 0.3
 

32.6 ± 0.8
 

0.171 0.181 

TAG 3.2 ± 0.4
 

3.4 ± 0.3
 

4.0 ± 0.2
 

4.1 ± 0.5
 

0.520 0.008 

CHOL 31.7 ± 1.7
 

35.5 ± 1.5
 

32.5 ± 0.5
 

28.5 ± 0.3
 

0.281 0.076 

FFA ND ND ND ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; ARA = arachidonic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 cells incubated with 20 µM LNA and graded 

supplementation of ARA is presented in Table 4.5. There was decrement of LNA (R
2 

= 

0.931; p = 0.000), 18:4n-3 (R
2 

= 0.499; p = 0.010), and EPA (R
2 

= 0.385; p = 0.031) with 

the graded supplementation of ARA, but no overall effects of supplementation with ARA 

were observed on 22:5n-3 (R
2 

= 0.307; p = 0.062) and DHA (R
2 

= 0.091; p = 0.340). 

Increased incorporation of ARA with graded supplementation of the FA was observed (R
2 

= 0.960; p = 0.000). Some of the ARA was elongated to 22:4n-6 (R
2 

= 0.749; p = 0.000), 

particularly at 20/20 µM, but no production of 22:5n-6 was observed. Similarly at 20/20 

µM there was observed some apparent retro-conversion of incorporated ARA to 20:3n-6 

(R
2 

= 0.755; p = 0.000) and 18:3n-6 (R
2 

= 0.642; p = 0.002). The total n-6 PUFA increased 

with the graded supplementation of ARA (R
2 

= 0.969; p = 0.000), which was balanced by 

decreased MUFA (R
2 

= 0.951; p = 0.000), particularly 18:1n-9 (R
2 

= 0.874; p = 0.000), and 

total n-9 PUFA (R
2 

= 0.934; p = 0.000).  
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Table 4.5. Fatty acid composition (%) of CHSE-214 cells incubated with LNA and ARA 

Fatty acid 20/5 µM 20/10 µM  20/15 µM  20/20 µM  R
2
  P-value  

14:0 1.3 ± 0.1
 

1.1 ± 0.1
 

0.9 ± 0.1
 

0.9 ± 0.1
 

0.762 0.000 

15:0 0.5 ± 0.1
 

0.3 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.643 0.002 

16:0 13.5 ± 1.2
 

13.8 ± 1.0
 

13.2 ± 0.1
 

13.3 ± 0.7
 

0.035 0.560 

17:0 0.3 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.672 0.001 

18:0 10.6 ± 0.5
 

11.4 ± 0.9
 

11.3 ± 0.2
 

11.2 ± 0.6
 

0.147 0.218 

22:0 0.4 ± 0.1
 

0.6 ± 0.2
 

0.4 ± 0.1
 

0.5 ± 0.2
 

0.003 0.877 

Ʃ SFA 26.6 ± 1.7
 

27.4 ± 2.1
 

26.3 ± 0.1
 

26.3 ± 1.4
 

0.031 0.582 

16:1n-9 3.1 ± 0.1
 

2.8 ± 0.2
 

2.5 ± 0.1
 

2.4 ± 0.1
 

0.900 0.000 

16:1n-7 1.5 ± 0.2
 

1.5 ± 0.1
 

1.4 ± 0.1
 

1.4 ± 0.1
 

0.572 0.004 

18:1n-9 33.9 ± 1.0
 

31.6 ± 1.0
 

30.3 ± 1.4
 

26.3 ± 0.4
 

0.874 0.000 

18:1n-7 1.9 ± 0.2
 

2.0 ± 0.4
 

1.6 ± 0.1
 

1.7 ± 0.0
 

0.141 0.229 

24:1n-9 0.8 ± 0.1
 

1.1 ± 0.1
 

0.7 ± 0.0
 

1.2 ± 0.4
 

0.227 0.117 

Ʃ MUFA 41.2 ± 0.6
 

39.0 ± 0.6
 

36.5 ± 1.1
 

33.0 ± 0.2
 

0.951 0.000 

18:2n-6 1.9 ± 0.1
 

1.8 ± 0.1
 

1.8 ± 0.0
 

1.7 ± 0.1
 

0.702 0.001 

18:3n-6 0.5 ± 0.1
 

0.6 ± 0.0
 

0.6 ± 0.1
 

0.7 ± 0.0
 

0.642 0.002 

20:2n-6*  0.6 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.1
 

0.4 ± 0.1
 

0.808 0.000 

20:3n-6 1.5 ± 0.1
 

1.9 ± 0.2
 

2.0 ± 0.2
 

2.3 ± 0.3
 

0.755 0.000 

20:4n-6 4.4 ± 0.7
 

6.6 ± 0.6
 

9.6 ± 0.4
 

11.6 ± 0.3
 

0.960 0.000 

22:4n-6 0.4 ± 0.1
 

0.6 ± 0.3
 

0.8 ± 0.1
 

3.3 ± 0.1
 

0.749 0.000 

Ʃ n-6 PUFA 9.3 ±0.8
 

12.0 ± 0.7
 

15.3 ± 0.9
 

20.0 ± 0.7
 

0.969 0.000 

18:3n-3 3.7 ± 0.1
 

3.1± 0.2
 

3.1 ± 0.0
 

 2.7 ± 0.0
 

0.931 0.000 

18:4n-3 2.3 ± 0.1
 

2.1 ± 0.1
 

2.1 ± 0.0
 

1.9 ± 0.0
 

0.499 0.010 

20:4n-3 2.5 ± 0.2
 

2.6 ± 0.2
 

2.8 ± 0.1
 

2.7 ± 0.0
 

0.251 0.097 

20:5n-3 3.9 ± 0.1
 

3.8 ± 0.4
 

3.7± 0.3
 

3.3 ± 0.1
 

0.385 0.031 

22:5n-3 0.9 ± 0.1
 

1.1 ± 0.1
 

1.8 ± 0.6
 

1.6 ±1.0
 

0.307 0.062 

22:6n-3 1.1 ± 0.0
 

1.0 ± 0.1
 

1.1 ± 0.1
 

1.6 ± 1.0
 

0.091 0.340 

Ʃ n-3 PUFA 14.4 ± 0.5
 

13.7 ± 1.0
 

14.6 ± 0.0
 

13.8 ± 2.0
 

0.013 0.726 

18:2n-9 4.6 ± 0.1
 

4.2 ± 0.1
 

4.0 ± 0.2
 

3.7 ± 0.3
 

0.826 0.000 

20:2n-9 3.5 ± 0.1
 

3.4 ± 0.1
 

3.0 ± 0.1
 

2.7 ± 0.1
 

0.894 0.000 

22:2n-9 0.4 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.5 ± 0.1
 

0.028 0.603 

Ʃ n-9 PUFA 8.5 ± 0.1
 

7.9 ± 0.2
 

7.3 ± 0.1
 

6.9 ± 0.2
 

0.934 0.000 

       

Ʃ PUFA 32.2 ± 1.1
 

33.6 ± 1.4
 

37.2 ± 1.0
 

40.7 ± 1.4
 

0.940 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; ARA = arachidonic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

4.3.1.3. Supplementation with LNA in presence of increasing concentrations of EPA 

Table 4.6 shows the cell lipid content and the lipid class composition of CHSE-214 

cells after being incubated with LNA and increasing concentrations of EPA. Total lipid 

content clearly decreased with the graded supplementation of EPA (R
2 

= 0.459; p = 0.016). 

No clear or consistent trends were identified in the lipid class composition data, apart from 
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TAG, which was found in percentages lower than 3% at 20/5 µM and 20/10 µM, and it 

was increased at 20/15 µM and 20/20 µM (R
2 

= 0.723; p = 0.000). 

 
Table 4.6. Lipid content and lipid class composition of CHSE-214 cells incubated with LNA and 

EPA 

Lipid 20/5 µM 20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  556.7 ± 75.1
 

546.7 ± 64.3
 

500.0 ± 81.9
 

403.3 ± 58.6
 

0.459 0.016 

CC (%)       

PC 21.0 ± 0.4
 

21.5 ± 0.7
 

17.8 ± 1.1
 

16.9 ± 3.3
 

0.528 0.007 

PE 14.2 ± 0.9
 

 16.4 ± 0.4
 

14.7 ± 0.4
 

14.6 ± 0.8
 

0.075 0.389 

PS 4.8 ± 0.2
 

5.2 ± 0.3
 

4.1 ± 0.5
 

4.5 ± 0.7
 

0.160 0.198 

PI 10.7 ± 0.5
 

11.0 ± 0.1
 

8.8 ± 0.6
 

8.9 ± 0.9
 

0.565 0.005 

PA/CL 3.3 ± 0.1
 

2.9 ± 0.1
 

2.9 ± 0.1
 

2.7 ± 0.5
 

0.031 0.581 

SM 3.6 ± 0.7
 

4.5 ± 0.9
 

2.1 ± 0.3
 

2.8 ± 0.5
 

0.269 0.084 

TP 57.6 ± 0.5
 

61.5 ± 1.5
 

50.4 ± 1.4
 

50.4 ± 0.9
 

0.564 0.005 

TN 42.4 ± 0.5
 

38.5 ± 1.5
 

49.6 ± 1.4
 

49.6 ± 0.9
 

0.564 0.005 

TAG 2.4 ± 0.5
 

2.6 ± 0.4
 

7.6 ± 1.1
 

7.0 ± 1.1
 

0.723 0.000 

CHOL 40.0 ± 0.7
 

35.9 ± 1.9
 

42.0 ± 0.9
 

42.6 ± 0.6
 

0.315 0.057 

FFA ND ND ND ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total neutral; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected.  

 

Table 4.7 shows the FA composition of CHSE-214 cells after being incubated with 

LNA and increasing concentrations of EPA. The proportion of the major FA groups in 

CHSE-214 cells at 20/5 µM was as follows: MUFA > PUFA >SFA, while at 20/10 µM, 

20/15 µM and 20/20 µM the FA were decreasing in the following order: PUFA > MUFA > 

SFA. EPA in cell total lipid, increased with the graded supplementation of the FA itself (R
2 

= 0.791; p = 0.000). There was a graded increment in the percentage of 22:5n-3 (R
2 

= 

0.969; p = 0.000) with supplementation of EPA. However, 18:4n-3 (R
2 

= 0.726; p = 0.000) 

decreased with the graded supplementation of EPA, whereas DHA (R
2 

= 0.001; p = 0.942) 

and other n-3 FA such as LNA (R
2 

= 0.122; p = 0.267), and 20:4n-3 (R
2 

= 0.239; p = 

0.106) were not greatly affected. The increased proportions of total n-3 PUFA were 
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balanced by decreased MUFA (R
2 

= 0.692; p = 0.001) and n-9 PUFA (R
2 

= 0.807; p = 

0.000).  

 
Table 4.7. Fatty acid composition (%) of CHSE-214 cells incubated with LNA and EPA 

Fatty acid 20/5 µM 20/10 µM 20/15 µM 20/20 µM R
2
  P-value  

14:0 2.0 ± 0.5
 

1.9 ± 0.1
 

2.0 ± 0.1
 

1.4 ± 0.5
 

0.246 0.101 

15:0 0.3 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.1
 

0.282 0.076 

16:0 14.4 ± 2.2
 

14.1 ± 0.3
 

15.2 ± 1.2
 

15.3 ± 1.2
 

0.130 0.249 

17:0 0.4 ± 0.2
 

0.4 ± 0.0
 

0.4 ± 0.1
 

0.3± 0.1
 

0.130 0.249 

18:0 10.0 ± 1.2
 

10.0 ± 0.4
 

10.1 ± 0.4
 

10.0 ± 0.4
 

0.004 0.844 

22:0 0.4 ± 0.1
 

0.3 ± 0.0
 

0.4 ± 0.1
 

0.4 ± 0.1
 

0.000 0.957 

Ʃ SFA 27.5 ± 4.3
 

27.1 ± 0.0
 

28.5 ± 1.7
 

27.8 ± 1.3
 

0.012 0.737 

16:1n-9 4.3 ± 0.2
 

4.3 ± 0.1
 

3.9 ± 0.2
 

3.8 ± 0.3
 

0.526 0.008 

16:1n-7 2.2 ± 0.2
 

1.9 ± 0.2
 

2.0 ± 0.1
 

1.5 ± 0.7
 

0.236 0.109 

18:1n-9 27.8 ± 1.9
 

26.9 ± 0.1
 

25.5 ± 0.9
 

23.8 ± 2.3
 

0.570 0.005 

18:1n-7 2.1 ± 0.2
 

2.0 ± 0.0
 

2.1 ± 0.2
 

2.1 ± 0.0
 

0.002 0.904 

24:1n-9 0.8 ± 0.1
 

0.8 ± 0.0 0.8 ± 0.1 1.3 ± 0.8 0.210 0.134 

Ʃ MUFA 37.2 ± 1.8 35.9 ± 0.3 34.3 ± 0.9 32.5 ± 1.9 0.692 0.001 

18:2n-6 1.0 ± 0.1
 

1.0 ± 0.0
 

1.0 ± 0.2
 

1.0 ± 0.0
 

0.035 0.563 

18:3n-6 0.3 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.1
 

0.205 0.139 

20:2n-6*  1.0 ± 0.1 0.9 ± 0.0 0.7 ± 0.0 0.6 ± 0.0 0.936 0.000 

20:3n-6 1.4 ± 0.1
 

1.4 ± 0.0
 

1.4 ± 0.3
 

1.6 ± 0.1
 

0.186 0.161 

20:4n-6 1.8 ± 0.3
 

1.8 ± 0.0
 

1.7 ± 0.1
 

1.6 ± 0.1
 

0.387 0.031 

22:5n-6 0.4 ± 0.1
 

0.6 ± 0.3
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.133 0.244 

Ʃ n-6 PUFA 5.9 ± 0.4
 

6.0 ± 0.3
 

5.3 ± 0.4
 

5.3 ± 0.2
 

0.368 0.037 

18:3n-3 1.5 ± 0.2
 

1.4 ± 0.0
 

1.5 ± 0.2
 

1.7 ± 0.5
 

0.122 0.267 

18:4n-3 2.0 ± 0.3
 

1.5 ± 0.0
 

1.3 ± 0.1 1.2 ± 0.2
 

0.726 0.000 

20:4n-3 1.3 ± 0.2
 

1.3 ± 0.0
 

1.4 ± 0.1
 

1.6 ± 0.4
 

0.239 0.106 

20:5n-3 9.2 ± 1.2
 

11.1 ± 0.3
 

11.8 ± 0.8
 

13.1 ± 0.3 0.791 0.000 

22:5n-3 2.2 ± 0.4
 

3.4 ± 0.0
 

4.8 ± 0.3
 

6.8 ± 0.6
 

0.969 0.000 

22:6n-3 1.9 ± 0.1
 

2.0 ± 0.0
 

1.9 ± 0.2
 

1.9 ± 0.1
 

0.001 0.942 

Ʃ n-3 PUFA 18.1 ± 2.4 20.7 ± 0.4 22.7 ± 1.2 26.3 ± 1.8 0.823 0.000 

18:2n-9 6.3 ± 0.2
 

5.4 ± 0.3
 

4.9 ± 0.2
 

4.2 ± 0.9
 

0.743 0.000 

20:2n-9 4.3 ± 0.2 4.2 ± 0.0 3.6 ± 0.3 3.2 ± 0.6 0.625 0.002 

22:2n-9 0.7 ± 0.3
 

0.7 ± 0.0
 

0.7 ± 0.3
 

0.7 ± 0.4
 

0.002 0.878 

Ʃ n-9 PUFA 11.3 ± 0.3
 

10.3 ± 0.4
 

9.2 ± 0.3
 

8.1 ± 1.2
 

0.807 0.000 

 
      

Ʃ PUFA 35.3 ± 2.5
 

37.0. ± 0.3
 

37.2 ± 1.2
 

39.7 ± 0.8
 

0.594 0.003 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; * contains 20:3n-9. 

 

4.3.1.4. Supplementation with LNA and increasing percentages of DHA 

Table 4.8 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with LNA and DHA at concentrations of 20/5 µM, 20/10 µM, 
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20/15 µM, and 20/20 µM. Cell lipid content decreased from 20/5 to 20/10 µM and then 

increased from 20/10 to 20/20 µM, however there were no consistent trends observed (R
2 

= 

0.183; p = 0.166). A slight increase of TAG following graded supplementation of DHA up 

to 20/15 µM was observed, but results were not statistically significant (R
2 

= 0.065; p = 

0.424). At all concentrations there were some free fatty acids (FFA) detected. 

 
Table 4.8. Lipid content and lipid class composition of CHSE-214 cells incubated with LNA and 

DHA 

Lipid 20/5 µM  20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  443.3 ± 47.4
 

330.0 ± 50.0
 

476.7 ± 32.1
 

503.3 ± 28.9
 

0.183 0.166 

CC (%)       

PC 14.1 ± 2.5
 

16.1 ± 1.0
 

16.4 ± 0.9
 

16.4 ± 2.8
 

0.180 0.169 

PE 25.4 ± 1.5
 

22.8 ± 0.5
 

22.0 ± 0.9
 

23.0 ± 0.8
 

0.359 0.040 

PS 7.2 ± 0.2
 

7.2 ± 0.6
 

5.7 ± 0.6
 

7.0 ± 0.6
 

0.107 0.300 

PI 10.3 ± 0.7
 

9.0 ± 0.6
 

7.8 ± 0.4
 

7.6 ± 0.6
 

0.775 0.000 

PA/CL 1.5 ± 0.1
 

1.6 ± 0.2
 

1.8 ± 0.4
 

1.9 ± 0.6
 

0.307 0.062 

SM 3.1 ± 0.7
 

4.8 ± 1.0
 

4.6 ± 1.3
 

3.0 ± 0.1
 

0.002 0.892 

TP 61.6 ± 1.6
 

61.5 ± 0.4
 

58.3 ± 1.6
 

58.9 ± 1.3
 

0.471 0.014 

TN 38.4 ± 1.6
 

38.5 ± 0.4
 

41.7 ± 1.6
 

41.1 ± 1.3
 

0.471 0.014 

TAG 5.8 ± 0.8
 

6.2 ± 0.4
 

6.5 ± 0.5
 

6.0 ± 0.1
 

0.065 0.424 

CHOL 30.3 ± 1.9
 

30.4 ± 0.9
 

33.7 ± 1.2
 

33.2 ± 0.8
 

0.505 0.010 

FFA 2.3 ± 0.2
 

1.9 ± 0.1
 

1.5 ± 0.2
 

1.9 ± 0.5
 

0.245 0.102 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 

0.05).Abbreviations: LNA = α-linolenic acid; DHA = docosahexaenoic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids.  

 

The FA composition of CHSE-214 cells incubated with 20 µM LNA and graded 

supplementation of DHA is presented in Table 4.9. The proportion of DHA in the cell total 

lipid was increased with the graded supplementation of the FA itself (R
2 

= 0.969; p = 

0.000). In addition, the highest percentages of 22:5n-3 and EPA were observed at 20/20 

µM, which may reflect some retroconversion of DHA at the highest concentration 

supplemented. The percentage of LNA was similar at all concentrations (R
2 

= 0.032; p = 

0.579), and 18:4n-3 decreased with the graded supplementation of DHA (R
2 

= 0.599; p = 
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0.003).  The increased proportions of total n-3 PUFA were balanced by decreased total 

MUFA (R
2 

= 0.927; p = 0.000), n-9 PUFA (R
2 

= 0.839; p = 0.000) and n-6 PUFA (R
2 

= 

0.477; p = 0.013). 

 
Table 4.9. Fatty acid composition (%) of CHSE-214 cells incubated with LNA and DHA 

Fatty acid   20/5 µM  20/10 µM  20/15 µM  20/20 µM R
2
  P-value  

14:0 1.5 ± 0.2
 

1.4 ± 0.1
 

1.4 ± 0.1
 

1.3  ± 0.1
 0.210 0.134 

15:0 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.1
 

0.3 ± 0.1
 0.262 0.089 

16:0 12.9 ± 0.3
 

13.5 ± 0.9
 

13.8 ± 1.0
 

14.3 ± 0.6
 0.381 0.032 

17:0 0.4 ± 0.1
 

0.7 ± 0.1
 

0.5 ± 0.2
 

0.2 ± 0.0
 0.148 0.217 

18:0 8.8 ± 0.2
 

9.4 ± 0.7
 

9.8 ± 0.7
 

9.7 ± 0.4
 0.351 0.042 

20:0 0.2 ± 0.1
 

0.1 ± 0.0
 

0.4 ± 0.0
 

0.2 ± 0.0
 0.115 0.280 

22:0 0.4 ± 0.1
 

0.2 ± 0.0
 

0.3 ± 0.1
 

0.3 ± 0.0
 0.006 0.818 

Ʃ SFA 24.4 ± 0.9
 

25.5 ± 1.7
 

26.4 ± 1.4
 

26.3 ± 1.1
 0.313 0.059 

16:1n-9 3.7 ± 0.1
 

3.6 ± 0.1
 

3.6 ± 0.0
 

3.2 ± 0.2
 0.688 0.001 

16:1n-7 2.5 ± 0.3
 

2.1 ± 0.1
 

1.9 ± 0.1
 

1.7 ± 0.2
 0.784 0.000 

18:1n-9 34.5 ± 1.2
 

33.5 ± 0.2
 

30.6 ± 0.2
 

27.7 ± 1.1
 0.903 0.000 

18:1n-7 2.1 ± 0.2
 

2.2 ± 0.1
 

2.1 ± 0.2
 

2.1 ± 0.1
 0.025 0.625 

24:1n-9 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.2 0.5 ± 0.0 0.002 0.896 

Ʃ MUFA 43.3 ± 0.7 41.9 ± 0.2 38.8 ± 0.2
 

35.2 ± 1.4
 0.927 0.000 

18:2n-6 1.7 ± 0.2
 

1.6 ± 0.1
 

1.4 ± 0.1
 

1.4 ± 0.1
 0.526 0.008 

18:3n-6 0.3 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0
 0.407 0.026 

20:2n-6*  1.3 ± 0.5
 

0.9 ± 0.1
 

0.8 ± 0.0
 

0.7 ± 0.1
 0.534 0.007 

20:3n-6 1.3 ± 0.2
 

1.0 ± 0.1
 

1.1 ± 0.2
 

1.2 ± 0.0
 0.010 0.759 

20:4n-6 1.4 ± 0.1
 

1.4 ± 0.2
 

1.4 ± 0.2
 

1.3 ± 0.1
 0.065 0.424 

22:5n-6 0.2 ± 0.1
 

0.2 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.1
 0.140 0.231 

Ʃ n-6 PUFA 6.2 ± 0.7
 

5.4 ± 0.4
 

5.3 ± 0.0
 

5.0 ± 0.2
 0.477 0.013 

18:3n-3 1.8 ± 0.1
 

1.6 ± 0.1
 

1.4 ± 0.1
 

2.0 ± 0.4
 0.032 0.579 

18:4n-3 2.0 ± 0.1
 

1.6 ± 0.1
 

1.2 ± 0.1
 

1.4 ± 0.3
 0.599 0.003 

20:4n-3 1.8 ± 0.1
 

1.7 ± 0.1
 

1.5 ± 0.1
 

2.3 ± 0.7
 0.107 0.299 

20:5n-3 4.8 ± 0.2
 

4.5 ± 0.2
 

4.7 ± 0.2
 

5.4 ± 0.6
 0.174 0.177 

22:5n-3 1.4 ± 0.2
 

1.3 ± 0.1
 

1.3 ± 0.1
 

1.5 ± 0.1
 0.095 0.329 

22:6n-3 5.1 ± 0.4
 

7.5 ± 0.6
 

10.6 ± 0.6
 

13.6 ± 1.1
 0.969 0.000 

Ʃ n-3 PUFA 16.9 ± 0.4
 

18.2 ± 1.1
 

20.7 ± 1.0
 

26.2 ± 2.8
 0.820 0.000 

16:2n-9 0.2 ± 0.0
 

0.5 ± 0.0
 

0.4 ± 0.1
 

0.5 ± 0.0
 0.504 0.010 

18:2n-9 4.6 ± 0.4
 

4.1 ± 0.1
 

3.9 ± 0.0
 

3.3 ± 0.1
 0.859 0.000 

20:2n-9 4.2 ± 0.1
 

4.2 ± 0.2
 

4.2 ± 0.2
 

3.2 ± 0.3
 0.680 0.001 

22:2n-9 0.2 ± 0.1
 

0.2 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.1
 0.154 0.207 

Ʃ n-9 PUFA  9.2 ± 0.5
 

9.0 ± 0.3
 

8.8 ± 0.2
 

7.3 ± 0.4
 0.839 0.000 

        

Ʃ PUFA 32.3 ± 0.5
 

32.6 ± 1.7
 

34.8 ± 1.3
 

38.5 ± 2.5
 0.635 0.002 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; DHA = docosahexaenoic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; * contains 20:3n-9. 

 

4.3.1.5. Supplementation with LNA and increasing concentrations of EPA+DHA combined 

Table 4.10 shows the cell lipid content and lipid class composition of CHSE-214 

cells after being incubated with LNA and increasing concentrations of an equimolar (1:1) 
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mix of EPA+DHA. The cell lipid content was highly variable and there were no significant 

differences observed (R
2 

= 0.016; p = 0.693). There was a clear and consistent effect on 

TAG, which decreased significantly with the graded supplementation of EPA+DHA (R
2 

= 

0.714; p = 0.022). There were small percentages of FFA detected at all concentrations. 

 

Table 4.10. Lipid content and lipid class composition of CHSE-214 cells incubated with LNA and 

EPA+DHA (1:1) 

Lipid 20/5µM 20/10µM 20/15µM 20/20µM R
2
 P-value 

LC (µg)  303.3 ± 92.4
 

260.0 ± 87.2
 

223.3 ± 75.7
 

346.7 ± 75.1 0.016 0.693 

CC (%)       

PC 11.4 ± 1.3
 

17.6 ± 3.3
 

16.1 ± 3.1
 

16.8 ± 0.3 0.308 0.061 

PE 19.8 ± 0.9
 

22.3 ± 0.8
 

26.5 ± 2.0
 

26.9 ± 0.9 0.345 0.044 

PS 7.3 ± 1.3
 

6.4 ± 0.9
 

8.2 ± 1.8
 

5.7 ± 0.5 0.067 0.416 

PI 7.2 ± 0.5
 

8.1 ± 1.0
 

7.7 ± 0.2
 

7.9 ± 0.7 0.099 0.319 

PA/CL 1.5 ± 0.6
 

2.4 ± 0.1
 

1.4 ± 0.6
 

1.3 ± 0.5 0.103 0.308 

SM 5.6 ± 0.1
 

4.3 ± 0.3
 

4.4 ± 1.2
 

2.8 ± 0.2 0.694 0.001 

TP 52.8 ± 1.7
 

61.1 ± 2.2
 

64.3 ± 0.2
 

61.4 ± 1.4 0.177 0.174 

TN 47.2 ± 1.7
 

38.9 ± 2.2
 

35.7 ± 0.2
 

38.6  ± 1.4 0.177 0.174 

TAG 10.6 ± 1.2
 

7.1 ± 0.4
 

5.6 ± 0.1
 

4.9 ± 0.6 0.714 0.022 

CHOL 34.2 ± 1.7
 

30.4 ± 1.7
 

27.7 ± 1.5
 

32.1 ± 2.2 0.125 0.260 

FFA 2.4 ± 0.7
 

1.4 ± 0.4
 

2.4 ± 0.7
 

1.6 ± 0.4 0.019 0.670 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; LC = 

lipid content; CC = class composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = 

phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; 

TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND 

= not detected.  

 

Table 4.11 shows the FA composition of CHSE-214 cells after being incubated 

with LNA and increasing concentrations of the EPA+DHA mix (1:1). There was increased 

incorporation of DHA with the graded supplementation of the EPA+DHA mix (R
2 

= 0.855; 

p = 0.000), but the proportion of EPA was not significantly affected by the 

supplementation (R
2 

= 0.001; p = 0.905). LNA and 20:4n-3 were present at less than 2% 

and not greatly affected by supplementation with EPA+DHA (R
2 

= 0.022; p = 0.642 and R
2 

= 0.002; p = 0.896, respectively). SFA, particularly 16:0 (R
2 

= 0.753; p = 0.000), increased 

with the graded supplementation of EPA+DHA. The increment in total n-3 PUFA was 
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balanced by decreased total MUFA (R
2 

= 0.751; p = 0.000), n-6 PUFA (R
2 

= 0.840; p = 

0.000) and n-9 PUFA (R
2 

= 0.532; p = 0.007).  

 
Table 4.11. Fatty acid composition (%) of CHSE-214 cells incubated with LNA and EPA+DHA 

(1:1) 

Fatty acid  20/5 µM 20/10 µM 20/15 µM 20/20 µM R
2
  P-value  

14:0 1.4 ± 0.1
 

1.4 ± 0.2
 

1.5 ± 0.0
 

1.4 ± 0.4
 

0.025 0.626 

15:0 0.2 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.1
 

0.4 ± 0.1
 

0.391 0.030 

16:0 12.7 ± 0.1
 

15.0 ± 1.0
 

15.4 ± 1.3
 

16.8 ± 0.2
 

0.753 0.000 

17:0 0.3 ± 0.0
 

0.5 ± 0.2
 

0.3 ± 0.0
 

0.5 ± 0.1
 

0.111 0.289 

18:0 9.8 ± 0.4
 

11.3 ± 0.7
 

11.0 ± 0.4
 

11.2 ± 0.2
 

0.357 0.040 

20:0 0.2 ± 0.0
 

0.4 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.1
 

0.097 0.324 

22:0 0.3 ± 0.1
 

0.3 ± 0.0
 

0.4 ± 0.1
 

0.3 ± 0.1
 

0.292 0.070 

Ʃ SFA 24.9 ± 0.3
 

29.2 ± 1.7
 

29.2 ± 2.0
 

30.8 ± 0.4
 

0.641 0.002 

16:1n-9 4.1 ± 0.5
 

3.2 ± 0.4
 

3.5 ± 0.1
 

3.0 ± 0.3
 

0.419 0.023 

16:1n-7 1.6 ± 0.2
 

1.7 ± 0.2
 

1.8 ± 0.1
 

1.8 ± 0.2
 

0.274 0.080 

18:1n-9 34.0 ± 0.1
 

32.4 ± 2.2
 

29.0 ± 0.3
 

28.5 ± 0.2
 

0.807 0.000 

18:1n-7 1.7 ± 0.0
 

1.6 ± 0.2
 

2.0 ± 0.1
 

2.1 ± 0.2
 

0.453 0.017 

24:1n-9 0.5 ± 0.0
 

0.8 ± 0.1
 

0.6 ± 0.0
 

0.8 ± 0.1
 

0.358 0.040 

Ʃ MUFA 41.9 ± 0.2
 

39.7 ± 2.9
 

36.9 ± 0.2
 

36.2 ± 0.5
 

0.751 0.000 

18:2n-6 1.7 ± 0.2
 

1.6 ± 0.3
 

1.8 ± 0.0
 

1.6 ± 0.1
 

0.031 0.583 

18:3n-6 0.4 ± 0.0
 

0.5 ± 0.1
 

0.6 ± 0.0
 

0.3 ± 0.0
 

0.136 0.238 

20:2n-6*  1.0 ± 0.0
 

0.7 ± 0.1
 

0.7 ± 0.0
 

0.5 ± 0.0
 

0.750 0.000 

20:3n-6 1.6 ± 0.0
 

1.8 ± 0.4
 

1.6 ± 0.1
 

1.9 ± 0.1
 

0.145 0.221 

20:4n-6 1.1 ± 0.0
 

1.2 ± 0.1
 

0.8 ± 0.2
 

0.8 ± 0.1
 

0.591 0.003 

22:5n-6 0.5 ± 0.1
 

0.4 ± 0.1
 

0.6 ± 0.0
 

0.3 ± 0.0
 

0.221 0.123 

Ʃ n-6 PUFA 6.3 ± 0.0
 

6.2 ± 0.1
 

6.1 ± 0.2 5.4 ± 0.1
 

0.840 0.000 

18:3n-3 1.4 ± 0.1
 

0.9 ± 0.1
 

1.1 ± 0.1
 

1.5 ± 0.1
 

0.022 0.642 

18:4n-3 1.7 ± 0.1
 

1.9 ± 0.5
 

1.0 ± 0.1
 

1.3 ± 0.1 0.388 0.030 

20:4n-3 1.9 ± 0.1
 

1.2 ± 0.1
 

1.5 ± 0.1
 

1.9 ± 0.2
 

0.002 0.896 

20:5n-3 7.1 ± 0.2
 

7.9 ± 0.4
 

7.6 ± 0.6
 

7.2 ± 0.7
 

0.001 0.905 

22:5n-3 1.3 ± 0.3
 

2.1 ± 0.2 2.2 ± 0.2
 

1.7 ± 0.1
 

0.147 0.219 

22:6n-3 2.9 ± 0.2
 

2.9 ± 0.1
 

5.7 ± 0.6
 

6.4 ± 0.1
 

0.855 0.000 

Ʃ n-3 PUFA 16.3 ± 0.2
 

16.9 ± 1.1
 

19.1 ± 1.7
 

20.0 ± 0.8
 

0.707 0.001 

16:2n-9 0.7 ± 0.0
 

0.6 ± 0.0
 

0.8 ± 0.2
 

0.5 ± 0.1
 

0.066 0.419 

18:2n-9 5.0 ± 0.2
 

3.8 ± 0.2
 

4.3 ± 0.1
 

3.7 ± 0.2
 

0.444 0.018 

20:2n-9 4.7 ± 0.1
 

3.5 ± 0.2
 

3.5 ± 0.1
 

3.3 ± 0.0
 

0.645 0.002 

22:2n-9 0.2 ± 0.0
 

0.1 ± 0.0
 

0.1 ± 0.0
 

0.1 ± 0.0
 

0.231 0.114 

Ʃ n-9 PUFA 10.6 ± 0.1
 

8.0 ± 0.4
 

8.7 ± 0.0
 

7.6 ± 0.3
 

0.532 0.007 

       

Ʃ PUFA 33.2 ± 0.1
 

31.1 ± 1.5
 

33.9 ± 1.9
 

33.0 ± 0.7
 

0.033 0.570 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; SFA 

= saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; * contains 

20:3n-9. 
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4.3.2. Supplementation of CHSE-214 cells with EPA in combination with other n-3 

PUFA (LNA and DHA) 

 

4.3.2.1. Supplementation with EPA in presence of increasing concentrations of LNA  

The cell lipid content and lipid class composition of CHSE-214 cells after being 

incubated with EPA and LNA at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, and 

20/20 µM is shown in Table 4.12. The cell lipid content data was highly variable and no 

significant differences were apparent (R
2 

= 0.268; p = 0.085). The proportion of TAG 

increased with increasing supplementation of LNA (R
2 

= 0.797; p = 0.000), apart from that 

no other clear trends were observed in the lipid class composition data. 

 
Table 4.12. Lipid content and lipid class composition of CHSE-214 cells incubated with EPA and 

LNA 

Lipid 20/5 µM 20/10 µM  20/15 µM  20/20 µM  R
2
 P-value  

LC (µg)  493.3 ± 64.5
 

546.7 ± 58.7
 

343.3 ± 58.6
 

403.3 ± 58.6 0.268 0.085 

CC (%)       

PC 21.8 ± 0.1
 

19.6 ± 1.0
 

22.2 ± 2.0
 

16.9 ± 3.3 0.273 0.082 

PE 19.2 ± 0.3
 

18.1 ± 0.8
 

20.6 ± 1.2
 

14.6 ± 0.8 0.300 0.065 

PS 6.5 ± 0.1
 

5.3 ± 0.2
 

6.1 ± 0.7
 

4.5 ± 0.7 0.431 0.020 

PI 11.6 ± 0.2
 

11.4 ± 0.1
 

11.9 ± 1.5
 

8.9 ± 0.9 0.379 0.033 

PA/CL 0.9 ± 0.0
 

0.8 ± 0.1
 

0.9 ± 0.2
 

2.7 ± 0.5 0.549 0.006 

SM 3.2 ± 0.6
 

3.3 ± 0.1
 

2.1 ± 0.3
 

2.8 ± 0.5 0.182 0.167 

TP 63.2 ± 0.7
 

58.5 ± 1.2
 

63.8 ± 1.6
 

50.4 ± 0.9 0.460 0.015 

TN 36.8 ± 0.7
 

41.5 ± 1.2
 

36.2 ± 1.6
 

49.6 ± 0.9 0.460 0.015 

TAG 1.1 ± 0.2
 

1.0 ± 0.4
 

3.3 ± 1.6
 

7.0 ± 1.1 0.797 0.000 

CHOL 35.7 ± 0.6
 

40.5 ± 1.5
 

32.9 ± 0.1
 

42.6 ± 0.6 0.135 0.241 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; LNA = α-linolenic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected.  

 

The FA compositions of CHSE-214 cells after being incubated with EPA and LNA 

at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, and 20/20 µM are shown in Table 

4.13. In all treatments the proportion of the major FA groups was in the rank order PUFA 
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> MUFA > SFA. Similar levels of EPA were detected in cell total lipid in all treatments 

(R
2 

= 0.084; p = 0.362).  

 
Table 4.13. Fatty acid composition (%) of CHSE-214 cells incubated with EPA and LNA 

Fatty acid 20/5 µM 20/10 µM 20/15 µM 20/20 µM R
2
  P-value  

14:0 1.6 ± 0.1
 

1.6 ± 0.3
 

1.4 ± 0.2
 

1.4 ± 0.5
 

0.126 0.257 

15:0 0.3 ± 0.1
 

0.2 ± 0.1
 

0.2 ± 0.0
 

0.4 ± 0.1
 

0.074 0.393 

16:0 14.9 ± 1.5
 

15.1 ± 1.3
 

16.0 ± 1.5
 

15.3 ± 1.2
 

0.044 0.512 

17:0 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.1
 

0.401 0.027 

18:0 10.5 ± 1.0
 

10.8 ± 1.0
 

11.4 ± 1.5
 

10.0 ± 0.4
 

0.016 0.698 

22:0 0.4 ± 0.2
 

0.4 ± 0.1
 

0.3 ± 0.1
 

0.4 ± 0.1
 

0.007 0.790 

Ʃ SFA 27.9 ± 2.8
 

28.3 ± 2.6
 

29.5 ± 3.2
 

27.8 ± 1.3
 

0.002 0.897 

16:1n-9 3.9 ± 0.3
 

3.9 ± 0.1
 

3.4 ± 0.3
 

3.8 ± 0.3
 

0.079 0.377 

16:1n-7 2.1 ± 0.1
 

2.0 ± 0.2
 

1.8 ± 0.1
 

1.5 ± 0.7
 

0.304 0.063 

18:1n-9 26.2 ± 1.4
 

26.5 ± 0.9
 

24.5 ± 0.9
 

23.8 ± 2.3
 

0.381 0.032 

18:1n-7 2.0 ± 0.2
 

2.2 ± 0.1
 

2.2 ± 0.2
 

2.1 ± 0.0
 

0.011 0.749 

24:1n-9 0.8 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.1
 

1.3 ± 0.8
 

0.175 0.176 

Ʃ MUFA 35.0 ± 1.6
 

35.3 ± 1.0
 

32.6 ± 1.5
 

32.5 ± 1.9
 

0.395 0.029 

18:2n-6 0.9 ± 0.2
 

0.9 ± 0.1
 

0.9 ± 0.0
 

1.0 ± 0.0
 

0.249 0.099 

18:3n-6 0.2 ± 0.0
 

0.2 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.1
 

0.051 0.482 

20:2n-6*  0.7 ± 0.1
 

0.8 ± 0.1
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.245 0.102 

20:3n-6 1.5 ± 0.1
 

1.4 ± 0.2
 

1.3 ± 0.2
 

1.6 ± 0.1
 

0.022 0.648 

20:4n-6 1.7 ± 0.2
 

1.6 ± 0.2
 

1.6 ± 0.1
 

1.6 ± 0.1
 

0.125 0.259 

22:5n-6 0.3 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.148 0.217 

Ʃ n-6 PUFA 5.3 ± 0.2
 

5.1 ± 0.4
 

4.9 ± 0.3
 

5.3 ± 0.2
 

0.001 0.911 

18:3n-3 0.5 ± 0.0
 

0.7 ± 0.1
 

1.8 ± 0.7
 

1.7 ± 0.5
 

0.707 0.001 

18:4n-3 0.5 ± 0.0
 

0.6 ± 0.0
 

1.1 ± 0.3
 

1.2 ± 0.2
 

0.839 0.000 

20:4n-3 0.5 ± 0.0
 

0.7 ± 0.0
 

1.3 ± 0.4
 

1.6 ± 0.4
 

0.848 0.000 

20:5n-3 12.2 ± 0.6
 

11.9 ± 0.7
 

12.4 ± 2.3
 

13.1 ± 0.3
 

0.084 0.362 

22:5n-3 7.0 ± 0.2
 

6.2 ± 0.2
 

6.8 ± 1.5
 

6.8 ± 0.6
 

0.000 0.990 

22:6n-3 2.0 ± 0.1
 

1.8 ± 0.1
 

1.7 ± 0.2
 

1.9 ± 0.1
 

0.020 0.664 

Ʃ n-3 PUFA 22.7 ± 0.6
 

21.9 ± 1.1
 

25.1 ± 1.4
 

26.3 ± 1.8
 

0.287 0.073 

18:2n-9 4.7 ± 0.3
 

4.7 ± 0.3
 

4.1 ± 0.2
 

4.2 ± 0.9
 

0.222 0.122 

20:2n-9 4.1 ± 0.3
 

4.1 ± 0.3
 

3.2 ± 0.4
 

3.2 ± 0.6
 

0.490 0.011 

22:2n-9 0.3 ± 0.2
 

0.6 ± 0.3
 

0.6 ± 0.3
 

0.7 ± 0.4
 

0.127 0.256 

Ʃ n-9 PUFA 9.1 ± 0.7
 

9.4 ± 0.2
 

7.9 ± 0.8
 

8.1 ± 1.2
 

0.332 0.050 

       

Ʃ PUFA 37.1 ± 1.4
 

36.4 ± 1.6
 

37.9 ± 4.5
 

39.7 ± 0.8
 

0.189 0.158 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; LNA = α-linolenic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

The percentage of LNA increased with the graded supplementation of the FA itself 

(R
2 

= 0.707; p = 0.001), and in addition, 18:4n-3 and 20:4n-3, increased with graded 

supplementation of LNA (R
2 

= 0.839; p = 0.000 and R
2 

= 0.848; p = 0.000, respectively). 
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The increased percentage of total n-3 PUFA was balanced by decreased proportions of 

total MUFA (R
2 

= 0.395; p = 0.029) and n-9 PUFA (R
2 

= 0.332; p = 0.050), without 

affecting the proportions of total n-6 PUFA or SFA (R
2 

= 0.002; p = 0.897). 

 

4.3.2.2. Supplementation with EPA and increasing concentrations of DHA  

Table 4.14 shows the cell lipid content and lipid class composition of CHSE-214 

cells incubated with EPA and DHA at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, 

and 20/20 µM. There were no significant effects on total cell lipid content (R
2 

= 0.101; p = 

0.314). There was a consistent trend for the percentage of TAG to decrease with increasing 

supplementation of DHA (R
2 

= 0.639; p = 0.039). However, total neutral lipids showed a 

significant increasing trend with DHA supplementation due to a clear, significant and 

graded increase in the proportion of cholesterol (R
2 

= 0.607; p = 0.003).  

 
Table 4.14. Lipid content and lipid class composition of CHSE-214 cells incubated with EPA and 

DHA 

Lipid 20/5 µM  20/10 µM  20/15 µM  20/20 µM  R
2
  P-value  

LC (µg)  343.3 ± 20.8
 

330.0 ± 45.8
 

353.3 ± 61.1
 

286.7 ± 76.4 0.101 0.314 

CC (%)       

PC 22.8  ± 1.0
 

21.2 ± 0.4
 

20.8 ± 2.1
 

19.0 ± 0.7 0.429 0.021 

PE 16.8  ± 0.4
 

19.1 ± 0.7
 

16.8 ± 1.0
 

14.1 ± 1.4 0.430 0.021 

PS 7.6  ± 0.8
 

6.8 ± 0.4
 

6.2 ± 1.2
 

5.5 ± 0.4 0.597 0.003 

PI 5.6  ± 0.4
 

4.9 ± 0.4
 

4.2 ± 0.7
 

7.6 ± 0.4 0.182 0.167 

PA/CL 1.6  ± 0.4
 

1.5 ± 0.2
 

1.1 ± 0.5
 

1.5 ± 0.1 0.066 0.419 

SM 2.9  ± 0.2
 

2.0 ± 0.3
 

1.4 ± 0.3
 

2.2 ± 0.5 0.204 0.141 

TP 57.3  ± 2.3
 

55.5 ± 0.5
 

50.5 ± 1.9
 

49.9 ± 1.1 0.446 0.018 

TN 42.7  ± 2.3
 

44.5 ± 0.5
 

49.5 ± 1.9
 

50.1 ± 1.1 0.446 0.018 

TAG 6.5  ± 2.0
 

6.2 ± 0.1
 

5.5 ± 0.9
 

5.4 ± 0.9 0.639 0.039 

CHOL 33.9 ± 0.4
 

36.6 ± 0.1
 

42.5 ± 2.4
 

43.3 ± 0.2 0.607 0.003 

FFA 2.3  ± 0.8
 

1.7 ± 0.4
 

1.5 ± 0.3
 

1.4 ± 0.1 0.387 0.031 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids.  
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Table 4.15 shows the FA composition of CHSE-214 cells after being incubated 

with EPA and increasing concentrations of DHA. The proportions of the major FA groups 

at 20/5 µM were in the rank order: MUFA > PUFA > SFA, while at 20/10 µM and 20/15 

µM it was: PUFA > MUFA > SFA, and at 20/20 µM it was: PUFA > SFA > MUFA.  

 

Table 4.15. Fatty acid composition (%) of CHSE-214 cells incubated with EPA and DHA 

Fatty acid 20/5 µM 20/10 µM 20/15 µM 20/20 µM R
2
  P-value  

14:0 1.8 ± 0.2
 

1.7 ± 0.5
 

1.6  ± 0.1
 

1.8 ± 0.2
 

0.000 0.992 

15:0 0.3 ± 0.1
 

0.3 ± 0.1
 

0.4  ± 0.1
 

0.4 ± 0.0
 

0.135 0.240 

16:0 16.2 ± 0.3
 

16.4 ± 2.1
 

15.8  ± 0.7
 

17.5 ± 1.5
 

0.086 0.355 

17:0 0.5 ± 0.1
 

0.3 ± 0.2
 

0.5  ± 0.1
 

0.4 ± 0.1
 

0.018 0.674 

18:0 8.9 ± 0.5
 

9.2 ± 0.5
 

9.0  ± 0.2
 

9.6 ± 0.6
 

0.234 0.111 

20:0 0.3 ± 0.1
 

0.3 ± 0.2
 

0.2  ± 0.1
 

0.3 ± 0.0
 

0.157 0.202 

22:0 0.3 ± 0.0
 

0.2 ± 0.0
 

0.4  ± 0.1
 

0.6 ± 0.1
 

0.657 0.001 

Ʃ SFA 28.3 ± 0.6
 

28.4 ± 2.9
 

27.9  ± 0.9
 

30.6 ± 2.2
 

0.132 0.247 

16:1n-9 2.7 ± 0.2
 

2.6 ± 0.1
 

2.5  ± 0.1
 

2.2 ± 0.2
 

0.569 0.005 

16:1n-7 2.6 ± 0.3
 

2.4 ± 0.7
 

2.1  ± 0.1
 

2.0 ± 0.3
 

0.381 0.033 

18:1n-9 27.7 ± 0.3
 

27.4 ± 0.6
 

24.1  ± 0.9
 

20.1 ± 1.2
 

0.887 0.000 

18:1n-7 2.4 ± 0.1
 

2.5 ± 0.5
 

2.1  ± 0.1
 

2.1 ± 0.3
 

0.223 0.121 

24:1n-9 0.6 ± 0.1
 

0.7 ± 0.2
 

0.8  ± 0.3
 

0.8 ± 0.1
 

0.242 0.104 

Ʃ MUFA 36.0 ± 0.3
 

35.6 ± 0.5
 

31.6  ± 1.2
 

27.2 ± 0.8
 

0.909 0.000 

18:2n-6 2.4 ± 0.2
 

2.3 ± 0.1
 

2.7  ± 0.3
 

2.5 ± 0.3
 

0.106 0.301 

18:3n-6 0.5 ± 0.1
 

0.4 ± 0.1
 

0.5  ± 0.1
 

0.5 ± 0.0
 

0.001 0.917 

20:2n-6*  0.5 ± 0.0
 

0.5 ± 0.2
 

0.7  ± 0.2
 

0.5 ± 0.2
 

0.021 0.649 

20:3n-6 1.4 ± 0.0
 

1.1 ± 0.2
 

1.8  ± 0.2
 

2.1 ± 0.2
 

0.515 0.009 

20:4n-6 1.2 ± 0.0
 

1.1 ± 0.2
 

1.5  ± 0.1
 

1.1 ± 0.1
 

0.010 0.754 

Ʃ n-6 PUFA 6.0 ± 0.1
 

5.4 ± 0.5
 

7.2  ± 1.2
 

6.7 ± 0.2
 

0.246 0.101 

18:3n-3 0.3 ± 0.0
 

0.2 ± 0.1
 

0.2  ± 0.1
 

0.2 ± 0.1
 

0.095 0.331 

18:4n-3 0.3 ± 0.1
 

0.3 ± 0.1
 

0.3  ± 0.0
 

0.4 ± 0.1
 

0.003 0.859 

20:4n-3 0.3 ± 0.1
 

0.3 ± 0.0
 

0.4  ± 0.1
 

0.5 ± 0.0
 

0.718 0.001 

20:5n-3 10.0 ± 0.1
 

10.2 ± 1.2
 

11.3  ± 0.9
 

11.0 ± 0.9
 

0.272 0.082 

22:5n-3 5.5 ± 0.1
 

5.0 ± 0.7
 

5.1  ± 0.6
 

4.9 ± 0.5
 

0.164 0.192 

22:6n-3 6.4 ± 0.4
 

8.5 ± 1.1
 

10.0  ± 1.3
 

13.8 ± 0.8
 

0.899 0.000 

Ʃ n-3 PUFA 22.8 ± 0.3
 

24.5 ± 2.1
 

27.3  ± 0.3
 

30.8 ± 2.1
 

0.771 0.000 

16:2n-9 0.4 ± 0.1
 

0.5 ± 0.1
 

0.5  ± 0.0
 

0.4 ± 0.2
 

0.005 0.827 

18:2n-9 3.4 ± 0.3
 

3.3 ± 0.2
 

2.9  ± 0.2
 

2.5 ± 0.1
 

0.756 0.000 

20:2n-9 2.8 ± 0.2
 

2.0 ± 0.7
 

2.3  ± 0.2
 

1.6 ± 0.2
 

0.378 0.033 

22:2n-9 0.3 ± 0.1
 

0.3 ± 0.1
 

0.3  ± 0.1
 

0.2 ± 0.1
 

0.066 0.421 

Ʃ n-9 PUFA  6.9 ± 0.4
 

6.1 ± 0.5
 

6.0  ± 0.3
 

4.7 ± 0.2
 

0.715 0.001 

       

Ʃ PUFA 35.7 ± 0.2
 

36.0 ± 3.4
 

40.5  ± 1.1
 

42.2 ± 2.0
 

0.687 0.001 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; SFA = saturated fatty acid; 

MUFA = monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; * contains 20:3n-9. 

 

The percentage of DHA in cell total lipid increased with graded supplementation of 

the FA itself (R
2 

= 0.899; p = 0.000). Similar percentages of EPA were detected in all 
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treatments (R
2 

= 0.272; p = 0.082), but the percentages of 22:5n-3 decreased with 

increasing supplementation with DHA (R
2 

= 0.164; p = 0.192). LNA (R
2 

= 0.095; p = 

0.331), 18:4n-3 (R
2 

= 0.003; p = 0.859), and 20:4n-3 (R
2 

= 0.718; p = 0.001) were detected 

at percentages lower than 0.5% and were not influenced by supplementation. The increased 

percentages of total n-3 PUFA were compensated by decreased proportions of total MUFA 

(R
2 

= 0.909; p = 0.000) and n-9 PUFA (R
2 

= 0.715; p = 0.001), without affecting the 

percentages of total SFA (R
2 

= 0.132; p = 0.247) and n-6 PUFA (R
2 

= 0.246; p = 0.101). 

 

4.3.3. Effect of competing n-3 PUFA (LNA), LC-PUFA (EPA+DHA) and n-6 LC-PUFA 

(ARA) in cells supplemented with LOA  

 

4.3.3.1. Supplementation with LOA in combination with increasing concentrations of LNA 

Table 4.16 shows the cell lipid content and lipid class composition of CHSE-214 

cells incubated with LOA and LNA at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, 

and 20/20 µM. The lipid content initially decreased from 20/5 to 20/10 then progressively 

increased with the highest lipid content recorded at 20/20 µM, although there was no 

obvious explanation for this pattern (R
2 

= 0.303; p = 0.064). The only clear trend in the 

lipid class data was the proportion of TAG increased with the graded supplementation of 

LNA (R
2 

= 0.655; p = 0.026).  

Table 4.17 shows the FA composition of CHSE-214 cells incubated with LOA and 

increasing concentrations of LNA. The proportions of the major FA groups at 20/5 µM, 

20/10 µM, and 20/15 µM were in the rank order: MUFA > PUFA > SFA, while at 20/20 

µM it changed to: PUFA > MUFA > SFA. The levels of EPA were increased in treatments 

20/10 µM to 20/20 µM in comparison to treatment 20/5 µM (R
2 

= 0.643; p = 0.002). There 

were increased percentages of LNA in cell total lipid with the graded supplementation of 

LNA (R
2 

= 0.792; p = 0.000), some of which was desaturated to 18:4n-3 (R
2 

= 0.888; p = 
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0.000) and elongated into 20:4n-3 (R
2 

= 0.877; p = 0.000). The proportions of total n-3 

PUFA increased with the graded supplementation of LNA (R
2 

= 0.930; p = 0.000). The 

percentage of LOA was the similar at 20/5 µM, 20/10 µM and 20/15 µM, but its level 

abruptly increased at 20/20 (R
2 

= 0.545; p = 0.006) and there was some evidence of 

desaturation to 18:3n-6 in that treatment, however the proportions of 20:3n-6 (R
2 

= 0.192; 

p = 0.155) and ARA (R
2 

= 0.598; p = 0.003) decreased with increasing supplementation of 

LNA.  The proportion of n-3 PUFA increased with LNA supplementation (R
2 

= 0.930; p = 

0.000) with the percentages of MUFA (R
2 

= 0.781; p = 0.000) and n-9 PUFA (R
2 

= 0.749; 

p = 0.000) correspondingly decreased. 

 

Table 4.16. Lipid content and lipid class composition of CHSE-214 cells incubated with LOA and 

LNA 

Lipid 20/5 µM  20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  530.0 ± 26.5
 

450.0 ± 50.0
 

530.0 ± 79.4
 

623.3 ± 38.0 0.303 0.064 

CC (%)       

PC 21.1 ± 0.6
 

20.1 ± 0.2
 

17.5 ± 1.0
 

21.6 ± 1.5 0.008 0.787 

PE 19.5 ± 0.3
 

19.0 ± 1.9
 

20.2 ± 3.2
 

21.4 ± 0.6 0.192 0.154 

PS 4.9 ± 0.7
 

3.6 ± 0.5
 

3.8 ± 0.5
 

3.5 ± 0.6 0.402 0.027 

PI 10.9 ± 0.6
 

9.1 ± 0.2
 

9.2 ± 0.9
 

7.2 ± 0.4 0.783 0.000 

PA/CL 0.6 ± 0.2
 

0.8 ± 0.2
 

0.9 ± 0.1
 

0.9 ± 0.1 0.024 0.627 

SM 4.0 ± 0.8
 

3.4 ± 0.1
 

3.0 ± 0.2
 

4.2 ± 0.8 0.003 0.856 

TP 61.0 ± 0.7
 

56.0 ± 2.1
 

54.6 ± 3.5
 

58.8 ± 2.5 0.026 0.618 

TN 39.0 ± 0.7
 

44.0 ± 2.1
 

45.4 ± 3.5
 

41.2 ± 2.5 0.026 0.618 

TAG 6.3 ± 0.7
 

7.4 ± 0.8
 

8.5 ± 1.9
 

8.8 ± 1.6 0.655 0.026 

CHOL 32.7 ± 0.7
 

36.6 ± 2.6
 

36.9 ± 1.9
 

32.4 ± 1.0 0.001 0.918 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; LNA = α-linolenic acid; LC = lipid content; CC = class composition; 

PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected.  
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Table 4.17. Fatty acid composition (%) of CHSE-214 cells incubated with LOA and LNA 

Fatty acid 20/5 µM 20/10 µM 20/15 µM 20/20 µM R
2
  P-value  

14:0 1.9 ± 0.1
 

1.5 ± 0.3
 

1.3 ± 0.2
 

1.2 ± 0.0
 

0.702 0.001 

15:0 0.2 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.1
 

0.2 ± 0.1
 

0.061 0.438 

16:0 12.6 ± 0.5
 

12.5 ± 0.9
 

13.2 ± 1.0
 

11.9 ± 0.1
 

0.059 0.446 

17:0 0.4 ± 0.2
 

0.3 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.1
 

0.268 0.085 

18:0 10.1 ± 0.3
 

10.5 ± 0.5
 

11.6 ± 0.7
 

10.3 ± 0.7
 

0.067 0.417 

22:0 0.4 ± 0.1
 

0.4 ± 0.1
 

0.5 ± 0.2
 

0.5 ± 0.0
 

0.230 0.115 

Ʃ SFA 25.6 ± 1.0
 

25.4 ± 1.9
 

27.1 ± 2.0
 

24.3 ± 0.7
 

0.022 0.643 

16:1n-9 5.2 ± 0.0
 

4.7 ± 0.0
 

4.6 ± 0.3
 

2.2 ± 0.4
 

0.726 0.000 

16:1n-7 2.3 ± 0.2
 

2.1 ± 0.1
 

1.6 ± 0.4
 

1.1 ± 0.1
 

0.797 0.000 

18:1n-9 29.7 ± 0.7
 

29.0 ± 0.9
 

28.0 ± 0.6
 

22.2 ± 1.8
 

0.707 0.001 

18:1n-7 2.1 ± 0.2
 

1.9 ± 0.3
 

2.1 ± 0.2
 

2.6 ± 0.2
 

0.396 0.028 

24:1n-9 0.6 ± 0.1
 

0.6 ± 0.1
 

0.7 ± 0.1
 

0.9 ± 0.1
 

0.400 0.027 

Ʃ MUFA 39.9 ± 0.7
 

38.3 ± 0.6
 

37.0 ± 0.8
 

29.0 ± 1.7
 

0.781 0.000 

18:2n-6 4.6 ± 0.1
 

4.2 ± 0.1
 

4.2 ± 0.2
 

11.3 ± 0.6
 

0.545 0.006 

18:3n-6 1.6 ± 0.1
 

1.4 ± 0.1
 

1.4 ± 0.1
 

2.0 ± 0.5
 

0.195 0.151 

20:2n-6*  2.1 ± 0.1
 

1.8 ± 0.0
 

1.6 ± 0.1
 

1.0 ± 0.3
 

0.837 0.000 

20:3n-6 4.1 ± 0.0
 

3.8 ± 0.2
 

3.8 ± 0.3
 

3.6 ± 0.8
 

0.192 0.155 

20:4n-6 2.9 ± 0.1
 

2.7 ± 0.2
 

1.1 ± 0.1
 

1.0 ± 0.2
 

0.598 0.003 

22:4n-6 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.1
 

0.169 0.184 

Ʃ n-6 PUFA 15.5 ± 0.2
 

14.1 ± 0.6
 

12.3 ± 1.4
 

19.1 ± 2.0
 

0.121 0.268 

18:3n-3 0.3 ± 0.0
 

0.7 ± 0.0
 

1.0 ± 0.1
 

5.4 ± 0.2
 

0.792 0.000 

18:4n-3 0.8 ± 0.0
 

1.4 ± 0.1
 

1.8 ± 0.1
 

4.7 ± 0.2
 

0.888 0.000 

20:4n-3 0.4 ± 0.0
 

0.8 ± 0.0
 

1.5 ±0.8
 

4.7 ± 0.2
 

0.877 0.000 

20:5n-3 2.3± 0.1
 

4.1 ± 0.4
 

5.3 ±0.6
 

4.8 ± 0.7
 

0.643 0.002 

22:5n-3 1.2 ± 0.1
 

1.4 ± 0.0
 

1.5 ±0.2
 

1.3 ± 0.1
 

0.191 0.156 

22:6n-3 1.7 ± 0.1
 

1.8 ± 0.1
 

1.7 ±0.2
 

1.2 ± 0.1
 

0.529 0.007 

Ʃ n-3 PUFA 6.7 ± 0.3
 

10.2 ± 0.7
 

12.8 ±1.3
 

22.1 ± 0.7
 

0.930 0.000 

18:2n-9 6.5 ± 0.1
 

6.8 ± 0.5
 

5.9 ±0.1
 

3.2 ± 0.2
 

0.701 0.001 

20:2n-9 5.5 ± 0.1
 

5.1 ± 0.1
 

4.6 ±0.2
 

2.0 ± 0.2
 

0.761 0.000 

22:2n-9 0.3 ± 0.1
 

0.1 ± 0.0
 

0.3 ±0.1
 

0.3 ± 0.1
 

0.045 0.508 

Ʃ n-9 PUFA 12.3 ± 0.1
 

12.0 ± 0.5
 

10.8 ±0.4
 

5.5 ± 0.1
 

0.749 0.000 

       

Ʃ PUFA 34.5 ± 0.3
 

36.3 ± 1.4
 

35.9 ±2.5
 

46.7± 2.4
 

0.627 0.002 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; LNA = α-linolenic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

4.3.3.2. Supplementation with LOA and increasing concentrations of EPA+DHA 

The cell lipid content and lipid class composition of CHSE-214 cells incubated 

with LOA and EPA+DHA (1:1) at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, and 

20/20 µM are shown in Table 4.18. The FA supplementations had no significant effect on 

cell total lipid content (R
2 

= 0.004; p = 0.843). There was a clear effect of EPA+DHA 

supplementation on the level of cellular TAG, which decreased with the graded 

supplementation of the n-3 LC-PUFA mix (R
2 

= 0.818; p = 0.000).  
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Table 4.18. Lipid content and lipid class composition of CHSE-214 cells incubated with LOA and 

EPA+DHA (1:1) 

Lipid 20/5 µM  20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  293.3 ± 66.6
 

296.7  ± 49.3
 

290.0  ± 20.0
 

303.3  ± 50.3 0.004 0.843 

CC (%)       

PC 10.1  ± 1.0
 

10.5  ± 1.1
 

13.5  ± 1.4
 

11.3  ± 1.5 0.197 0.148 

PE 18.6  ± 1.6
 

19.6  ± 0.7
 

20.3  ± 0.5
 

22.5  ± 1.1 0.684 0.001 

PS 5.4  ± 0.6
 

7.1  ± 0.5
 

6.7  ± 0.2
 

9.0  ± 1.9
 
 0.608 0.033 

PI 11.3  ± 1.2
 

12.0  ± 0.7
 

11.0  ± 0.0
 

12.0  ± 1.5 0.017 0.683 

PA/CL 1.3  ± 0.0
 

1.5  ± 0.1
 

1.3  ± 0.0
 

1.1  ± 0.3 0.186 0.162 

SM 6.3  ± 0.8
 

8.3  ± 0.6
 

7.5  ± 0.6
 

6.6  ± 0.8 0.000 0.973 

TP 53.0  ± 2.1
 

59.0  ± 1.2
 

60.3  ± 1.1
 

62.5  ± 0.8 0.817 0.000 

TN 47.0  ± 2.1
 

41.0  ± 1.2
 

39.7  ± 1.1
 

37.5  ± 0.8 0.817 0.000 

TAG 11.1  ± 1.4
 

5.6  ± 0.5
 

4.5  ± 0.4
 

3.7  ± 0.5 0.818 0.000 

CHOL 32.7  ± 0.6
 

32.9  ± 1.2
 

31.8  ± 0.6
 

31.3  ± 1.2 0.351 0.042 

FFA 3.2  ± 0.9
 

2.5  ± 0.4
 

3.4  ± 0.3
 

2.5  ± 0.1 0.047 0.499 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; LC = lipid 

content; CC = class composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = 

phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; 

TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids.  

 

Table 4.19 shows the FA composition of CHSE-214 cells incubated with LOA and 

increasing concentrations of the EPA+DHA mix. In all treatments the proportions of the 

major FA groups were in the rank order: MUFA > PUFA > SFA. The percentages of both 

EPA and DHA in the cell total lipid increased with the graded supplementation of the n-3 

LC-PUFA mixture (R
2 

= 0.877; p = 0.000 and R
2 

= 0.897; p = 0.000, respectively). In 

addition the percentage of 22:5n-3 also increased with the graded supplementation of 

EPA+DHA (R
2 

= 0.901; p = 0.000), whilst the proportions of LOA (R
2 

= 0.582; p = 0.004) 

and the other n-6 FA decreased. The increased proportions of total n-3 PUFA (R
2 

= 0.927; 

p = 0.000) was balanced by decreased proportions of total MUFA (R
2 

= 0.178; p = 0.172), 

n-6 PUFA (R
2 

= 0.843; p = 0.000), and n-9 PUFA (R
2 

= 0.630; p = 0.002), with minimal 

effects on total SFA (R
2 

= 0.044; p = 0.513). 
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Table 4.19. Fatty acid composition (%) of CHSE-214 cells incubated with LOA and EPA+DHA 

Fatty acid  20/5 µM 20/10 µM 20/15 µM 20/20 µM R
2
  P-value  

14:0 1.5 ± 0.3
 

1.3 ± 0.2
 

1.6 ± 0.3
 

1.3 ± 0.2
 

0.016 0.699 

15:0 0.3 ± 0.1
 

0.2 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.1
 

0.159 0.198 

16:0 13.6 ± 0.6
 

14.2 ± 1.0
 

12.0 ± 1.2
 

14.6 ± 0.5
 

0.000 0.996 

17:0 0.6 ± 0.1
 

0.5 ± 0.1
 

0.6 ± 0.1
 

0.5 ± 0.0
 

0.079 0.377 

18:0 8.9 ± 0.2
 

10.1 ± 0.5
 

12.0 ± 1.7
 

10.0 ± 0.5
 

0.196 0.149 

20:0 0.2 ± 0.0
 

0.3 ± 0.1
 

0.2 ± 0.1
 

0.2 ± 0.0
 

0.173 0.179 

22:0 0.3 ± 0.0
 

0.3 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.1
 

0.009 0.771 

Ʃ SFA 25.4 ± 0.8
 

26.9 ± 1.7
 

27.0 ± 1.6
 

27.2 ± 1.0
 

0.044 0.513 

16:1n-9 3.3 ± 0.1
 

3.8 ± 0.4
 

3.8 ± 0.5
 

3.5 ± 0.2
 

0.031 0.586 

16:1n-7 2.3 ± 0.3
 

2.5 ± 0.2
 

2.8 ± 0.2
 

2.4 ± 0.2
 

0.086 0.355 

18:1n-9 33.7 ± 0.2
 

30.8 ± 1.9
 

28.3 ± 6.6
 

30.2 ± 2.4
 

0.159 0.199 

18:1n-7 2.0 ± 0.0
 

2.1 ± 0.2
 

2.0 ± 0.3
 

1.6 ± 0.2
 

0.327 0.052 

24:1n-9 0.7 ± 0.1
 

0.9 ± 0.1
 

0.6 ± 0.0
 

0.7 ± 0.0
 

0.176 0.175 

Ʃ MUFA 42.0 ± 0.1
 

40.1 ± 1.7
 

37.5 ± 6.8
 

38.4 ± 2.7
 

0.178 0.172 

18:2n-6 7.0 ± 0.8
 

5.4 ± 0.3
 

5.7 ± 0.1
 

4.9 ± 0.2
 

0.582 0.004 

18:3n-6 1.7 ± 0.2
 

1.6 ± 0.3
 

1.4 ± 0.1
 

1.1 ± 0.1
 

0.626 0.002 

20:2n-6*  0.9 ± 0.1
 

0.9 ± 0.3
 

0.7 ± 0.0
 

0.6 ± 0.0
 

0.464 0.015 

20:3n-6 3.9 ± 0.4
 

3.3 ± 0.2
 

3.2 ± 0.1
 

2.7 ± 0.2
 

0.776 0.000 

20:4n-6 2.2 ± 0.3
 

1.6 ± 0.2
 

1.7 ± 0.0
 

1.5 ± 0.1
 

0.561 0.005 

22:4n-6 0.2 ± 0.0
 

0.3 ± 0.1
 

0.4 ± 0.1
 

0.3 ± 0.0
 

0.113 0.284 

22:5n-6 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.125 0.259 

Ʃ n-6 PUFA 16.1 ± 0.4
 

13.3 ± 1.0
 

13.3 ± 0.3
 

11.3 ± 0.4
 

0.843 0.000 

18:3n-3 0.2 ± 0.0
 

0.2 ± 0.1
 

0.1 ± 0.0
 

0.1 ± 0.0
 

0.786 0.000 

18:4n-3 0.3 ± 0.0
 

0.2 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.169 0.185 

20:5n-3 2.7 ± 0.6
 

4.0 ± 0.3
 

5.4 ± 0.3
 

6.0 ± 0.6
 

0.877 0.000 

22:5n-3 1.1 ± 0.1
 

1.3 ± 0.1
 

1.9 ± 0.1
 

2.2 ± 0.3
 

0.901 0.000 

22:6n-3 3.0 ± 0.2
 

5.2 ± 0.4
 

6.3 ± 0.3
 

7.2 ± 0.5
 

0.897 0.000 

Ʃ n-3 PUFA 7.3 ± 0.5
 

10.9 ± 0.7
 

13.9 ± 0.6
 

15.7 ± 1.4
 

0.927 0.000 

16:2n-9 0.6 ± 0.1
 

0.5 ± 0.1
 

0.5  ± 0.1
 

0.5 ± 0.0
 

0.344 0.045 

18:2n-9 4.9 ± 0.5
 

4.7 ± 0.2
 

4.5  ± 0.2
 

3.8 ± 0.2
 

0.630 0.002 

20:2n-9 3.4 ± 0.5
 

3.3 ± 0.2
 

3.1  ± 0.2
 

2.7 ± 0.1
 

0.538 0.007 

22:2n-9 0.3 ± 0.0
 

0.3 ± 0.0
 

0.3  ± 0.1
 

0.4 ± 0.0
 

0.209 0.135 

Ʃ n-9 PUFA 9.2 ± 0.9
 

8.8 ± 0.4
 

8.4  ± 0.5
 

7.4 ± 0.3
 

0.630 0.002 

       

Ʃ PUFA 32.6 ± 0.9
 

33.0 ± 1.5
 

35.5  ± 0.3
 

34.4 ± 2.2
 

0.282 0.076 

Footnotes: Results are expressed as means ± SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; SFA = 

saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 

20:3n-9. 

 

4.3.3.3. Supplementation with LOA in the presence of increasing concentrations of ARA 

Table 4.20 shows the cell lipid content and lipid class composition of CHSE-214 

cells incubated with LOA and ARA at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, 

and 20/20 µM. Cell total lipid content increased from 20/5 µM to 20/15 µM  and there was 

observed a decrement from 20/15 µM to 20/20 µM, however results were not significant 
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(R
2 

= 0.016; p = 0.694). In the lipid class data, there was a slight but consistent increase in 

the proportion of TAG with the graded supplementation of ARA (R
2 

= 0.682; p = 0.036). 

  
Table 4.20. Lipid content and lipid class composition of CHSE-214 cells incubated with LOA and 

ARA 

Lipid 20/5 µM 20/10 µM  20/15 µM  20/20 µM  R
2
 P-value 

LC (µg)  493.3 ± 40.4
 

523.3 ± 59.7
 

543.3 ± 76.4
 

510.0 ± 36.1 0.016 0.694 

CC (%)       

PC 22.5 ± 0.4
 

22.6 ± 0.2
 

22.0 ± 0.4
 

16.8 ± 0.7 0.014 0.717 

PE 21.4 ± 0.4
 

22.3 ± 0.2
 

22.9 ± 1.0
 

24.5 ± 1.3 0.603 0.003 

PS 3.9 ± 0.2
 

5.7 ± 0.3
 

4.1 ± 0.4
 

4.1 ± 0.2 0.023 0.641 

PI 8.2 ± 0.1
 

8.0 ± 0.4
 

8.1 ± 0.4
 

8.1 ± 0.1 0.041 0.530 

PA/CL 0.4 ± 0.2
 

0.6 ± 0.1
 

0.4 ± 0.2
 

0.6 ± 0.1 0.065 0.422 

SM 3.3 ± 0.3
 

5.5 ± 0.2
 

5.4 ± 0.3
 

3.5 ± 0.4 0.005 0.822 

TP 59.7 ± 0.6
 

64.7 ± 0.5
 

62.9 ± 1.5
 

57.6 ± 2.4 0.033 0.571 

TN 40.3 ± 0.6
 

35.3 ± 0.5
 

37.1 ± 1.5
 

42.4 ± 2.4
 
 0.033 0.571 

TAG 8.8 ± 1.3
 

9.3± 0.2
 

9.8 ± 0.2
 

11.3 ± 1.2 0.682 0.036 

CHOL 31.5 ± 0.9
 

26.0 ± 0.6
 

27.3± 1.4
 

31.1 ± 1.2 0.020 0.661 

FFA ND
 

ND
 

ND
 

ND - - 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; ARA = arachidonic acid; LC = lipid content; CC = class composition; 

PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected.  

 

Table 4.21 shows the FA composition of CHSE-214 cells incubated with LOA and 

ARA at concentrations of 20/5 µM, 20/10 µM, 20/15 µM, and 20/20 µM. In all treatments 

the proportions of the major FA groups were in the rank order: PUFA > MUFA > SFA. 

The proportion of ARA increased with the graded supplementation of the FA itself (R
2 

= 

0.881; p = 0.000). There was some apparent elongation as the percentage of 22:4n-6 also 

increased with the graded supplementation of ARA (R
2 

= 0.776; p = 0.000). The 

percentages of the other n-6 PUFA, LOA (R
2 

= 0.762; p = 0.000), 18:3n-6 (R
2 

= 0.685; p = 

0.001) and 20:3n-6 (R
2 

= 0.640; p = 0.002) decreased with the graded supplementation of 

ARA. In consequence, total n-6 PUFA did not show a clear trend with the graded 

supplementation of ARA (R
2 

= 0.231; p = 0.114), and similarly there were clear trends 
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observed in the proportions of total SFA (R
2 

= 0.004; p = 0.849), MUFA (R
2 

= 0.194; p = 

0.151), n-3 PUFA (R
2 

= 0.146; p = 0.221) or n-9 PUFA (R
2 

= 0.065; p = 0.425). 

 

Table 4.21. Fatty acid composition (%) of CHSE-214 cells incubated with LOA and ARA 

Fatty acid  20/5 µM  20/10 µM  20/15 µM  20/20 µM R
2
  P-value  

14:0 1.8 ± 0.3
 

1.6 ± 0.0
 

1.8 ± 0.4
 

1.7 ± 0.1
 

0.001 0.913 

15:0 0.2 ± 0.0
 

0.2 ± 0.1
 

0.3 ± 0.1
 

0.2 ± 0.0
 

0.002 0.902 

16:0 14.0 ± 1.3
 

13.7 ± 0.7
 

14.5 ± 0.9
 

13.9 ± 1.0
 

0.006 0.811 

17:0 0.3 ± 0.1
 

0.3 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.215 0.129 

18:0 11.4 ± 0.8
 

11.1 ± 0.7
 

11.0 ± 0.6
 

11.1 ± 0.8
 

0.022 0.643 

22:0 0.6 ± 0.3
 

0.6 ± 0.3
 

0.6 ± 0.3
 

0.4 ± 0.1
 

0.048 0.494 

Ʃ SFA 28.3 ± 2.3
 

27.5 ± 1.8
 

28.4 ± 2.2
 

27.5 ± 1.9
 

0.004 0.849 

16:1n-9 3.8 ± 0.3
 

4.3 ± 0.6
 

4.4 ± 0.6
 

5.0 ± 0.9
 

0.397 0.028 

16:1n-7 1.7 ± 0.2
 

2.0 ± 0.2
 

2.1 ± 0.6
 

1.8 ± 0.8
 

0.002 0.895 

18:1n-9 21.2 ± 1.2
 

23.9 ± 2.5
 

23.3 ± 3.4
 

23.9 ± 1.4
 

0.138 0.234 

18:1n-7 2.2 ± 0.2
 

2.2 ± 0.2
 

2.1 ± 0.2
 

2.0 ± 0.1
 

0.079 0.376 

20:1n-9 0.2 ± 0.1
 

0.2 ± 0.1
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.087 0.353 

24:1n-9 0.5 ± 0.1
 

0.6 ± 0.1
 

0.5 ± 0.1
 

0.6 ± 0.1
 

0.036 0.557 

Ʃ MUFA 29.6 ± 1.5
 

33.2 ± 3.0
 

32.6 ± 4.3
 

33.5 ± 1.3
 

0.194 0.151 

18:2n-6 7.1 ± 0.2
 

4.6 ± 1.3
 

3.7 ± 1.6
 

2.5 ± 0.3
 

0.762 0.000 

18:3n-6 4.2 ± 0.2
 

2.5 ± 0.9
 

2.1 ± 0.3
 

1.3 ± 0.2
 

0.685 0.001 

20:2n-6*  1.2 ± 0.0
 

1.5 ± 0.3
 

1.4 ± 0.3
 

1.2 ± 0.1
 

0.022 0.644 

20:3n-6 7.0 ± 0.1
 

5.3 ± 1.2
 

4.7 ± 1.5
 

3.8 ± 0.3
 

0.640 0.002 

20:4n-6 9.5 ± 0.4
 

10.5 ± 0.7
 

11.7 ± 0.8
 

13.5 ± 0.6
 

0.881 0.000 

22:4n-6 1.4 ± 0.1
 

1.8 ± 0.1
 

2.3 ± 0.8
 

4.0 ± 0.1
 

0.776 0.000 

Ʃ n-6 PUFA 30.4 ± 0.8
 

26.2 ± 2.6
 

25.9 ± 4.7
 

26.3 ± 0.2
 

0.231 0.114 

20:5n-3 0.6 ± 0.2
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.7 ± 0.1
 

0.153 0.208 

22:5n-3 0.9 ± 0.1
 

0.9 ± 0.1
 

1.0 ± 0.1
 

1.0 ± 0.1
 

0.210 0.134 

22:6n-3 1.5 ± 0.1
 

1.6 ± 0.1
 

1.5 ± 0.1
 

1.6 ± 0.1
 

0.012 0.730 

Ʃ n-3 PUFA 3.0 ± 0.3
 

3.1 ± 0.1
 

3.1 ± 0.1
 

3.3 ± 0.2
 

0.146 0.221 

18:2n-9 4.7 ± 0.1
 

5.0 ± 0.4
 

4.7 ± 0.6
 

4.6 ± 0.3 0.023 0.637 

20:2n-9 3.8 ± 0.1
 

4.7 ± 0.5
 

4.5 ± 0.9
 

4.6 ± 0.3
 

0.182 0.167 

22:2n-9 0.2 ± 0.0
 

0.3 ± 0.1
 

0.8 ± 0.2
 

0.2 ± 0.1
 

0.037 0.551 

Ʃ n-9 PUFA 8.7 ± 0.2
 

10.0 ± 0.9
 

10.0 ± 1.5
 

9.4 ± 0.7
 

0.065 0.425 

       

Ʃ PUFA 42.1 ± 1.0
 

39.3 ± 1.7
 

39.0 ± 3.5
 

39.0 ± 0.7
 

0.266 0.086 

Footnotes: Results are expressed as means ± SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; ARA = arachidonic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

The following figures represent a summary of the results generated from the PUFA 

competition experiments (section 4.2.2), and the effects observed in cellular LC-PUFA 

levels. Figure 4.2 shows the EPA levels of CHSE-214 incubated with 20 µM LNA in 
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presence of graded concentration of LOA, ARA and DHA. EPA levels decreased with the 

graded supplementation of LOA and ARA. In the combination LNA/DHA, there was 

observed an increment of EPA with graded supplementation of DHA, particularly from 

20/10 to 20/20 µM. The ANOVA shows that cellular EPA levels were affected by the FA 

combination supplemented (treatment) and the interaction of this with the concentration of 

FA (p < 0.05) but not the concentration itself (p = 0.293).  

 

Figure 4.2. Percentages of EPA in CHSE-214 incubated for five days with different combinations 

of PUFA. Abbreviations: EPA = eicosapentaenoic acid; LNA = α-linolenic acid; LOA = linoleic 

acid; ARA = arachidonic acid; DHA = docosahexaenoic acid; PUFA = polyunsaturated fatty acid. 

Data were analysed by two-way ANOVA (p < 0.05). The interaction between the two factors (fatty 

acid supplemented and concentration) was also analysed (inlet table). 

 

Figure 4.3 shows the DHA levels of CHSE-214 incubated with 20 µM EPA in 

presence of graded concentration of LNA. DHA levels were lower than 2% in the four 

concentrations supplemented, and the data did not show a clear trend.  
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Figure 4.3. Percentages of DHA in CHSE-214 incubated for five days with increasing 

concentrations of EPA/LNA. Abbreviations: DHA = docosahexaenoic acid; EPA = 

eicosapentaenoic acid; LNA = α-linolenic acid.  

 

Figure 4.4 shows the ARA levels of CHSE-214 incubated with 20 µM LOA in 

presence of graded concentration of LNA and EPA+DHA. ARA levels decreased with the 

graded supplementation of LNA or EPA+DHA. However, cells supplemented with 

LOA/LNA at 20/5 and 20/10 µM, and LOA/EPA+DHA at 20/5 µM exhibited higher ARA 

levels than the supplementation of 20 µM LOA alone (1.8%). The highest ARA level was 

recorded in cells incubated with LOA/LNA at 20/5 µM. There was not significant evidence 

to confirm that ARA cellular levels were affected by the FA supplemented (p = 0.918), but 

the concentration supplemented and the interaction between the two variables had an effect 

on the ARA levels (p < 0.05).  
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Figure 4.4. Percentages of ARA in CHSE-214 incubated for five days with different combinations 

of PUFA. Abbreviations: LOA = linoleic acid; LNA = α-linolenic acid; EPA = eicosapentaenoic 

acid; DHA = docosahexaenoic acid; PUFA = polyunsaturated fatty acid. Data analysed by two-way 

ANOVA (p < 0.05). The interaction between the two factors (fatty acid supplemented and 

concentration) was also analysed (inlet table). 

 

 

Figure 4.5 shows the 19 PUFA combinations and their concentrations 

supplemented that resulted in the highest total n-3 PUFA intermediaries. The maximum 

level of n-3 intermediaries was reported with the supplementation of EPA/DHA at 20/20 

µM. The treatment with highest EPA level was EPA/LNA at 20/20 µM, while the 

treatment with highest DHA level was EPA/DHA at 20/20 µM. The total n-3 

intermediaries were higher when supplementing the PUFA combinations compared with 

the supplementation of just LNA at 20 µM (14.7%). 
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Figure 4.5. PUFA combinations that showed the highest total n-3 PUFA percentages in CHSE-

214. Abbreviations: EPA = eicosapentaenoic acid; DHA = docosahexaenoic acid; LNA = α-

linolenic acid; LOA = linoleic acid; PUFA = polyunsaturated fatty acid. 

 

From the lipid class data, TAG was the only lipid class that showed clear trends, as 

it increased with the graded supplementation of the FA, meaning that any excess of FA 

was stored as TAG. Other changes in lipid classes occurred mainly to balance the 

increment of TAG. Figure 4.6 and 4.7 show that cellular TAG was affected by the 

combination of FA supplemented (treatment), the concentration and the interaction of these 

two variables (p < 0.05). Figure 4.6 shows the highest increment of TAG, reported when 

CHSE-214 were incubated with LOA/ARA at 20/20 µM. Apart from LNA/DHA, the 

PUFA combinations LNA/LOA, LNA/ARA, LOA/LNA, and LOA/ARA increased the 

TAG with the graded supplementation of the PUFA.    
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Figure 4.7 shows the reduction of TAG with the graded supplementation of 

EPA+DHA, and fixed supplementation of LNA and LOA. A similar situation was 

observed when supplementing EPA/DHA. However, supplementing EPA/LNA and 

LNA/EPA at 20/5 µM and 20/10 µM resulted in lower TAG levels compared with 20/15 

µM and 20/20 µM.  

 

Figure 4.7. TAG (%) reported in CHSE-214 cells incubated with different combinations of n-3 and 

n-6 PUFA. Abbreviations: TAG = triacylglycerol; EPA = eicosapentaenoic acid; DHA = 

docosahexaenoic acid; LNA = α-linolenic acid; LOA = linoleic acid; PUFA = polyunsaturated fatty 

acid. Data were analysed by two-way ANOVA (p < 0.05). The interaction between the two factors 

(fatty acid supplemented and concentration) was also analysed (inlet table). 

 

Figure 4.6. TAG (%) reported in CHSE-214 incubated with different combinations of n-3 and n-

6 PUFA. Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; ARA = arachidonic acid; 

DHA = docosahexaenoic acid; PUFA = polyunsaturated fatty acid. Data were analysed by two-

way ANOVA (p < 0.05). The interaction between the two factors (fatty acid supplemented and 

concentration) was also analysed (inlet table). 
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4.4 Discussion  

The present study attempted to establish the effect of the supplementation of 

combinations of PUFA on the FA profile and lipid class composition of CHSE-214 cells, 

and the potential competition between PUFA of the series n-3 and n-6 for enzyme 

pathways. Experiments were specifically designed in order to determine how competing 

PUFA, i.e. LOA, or the pathway end products, i.e. EPA, DHA and ARA, affected the 

production of EPA from LNA. To achieve this goal, CHSE-214 cells were incubated with 

different PUFA combinations at various concentrations for 5 d, followed by lipid and FA 

analyses. This study is the first to deal with the simultaneous supplementation of PUFA 

using a fish cell line. 

 

4.4.1 Effect the supplementation of PUFA on lipid content of CHSE-214 cells 

 It was perhaps expected that there would be an increase in cell lipid content with 

the graded supplementation of PUFA; however, this trend was only observed when LOA 

was supplemented at 20 µM in presence of graded concentrations of ARA. The lipid 

content was lower when n-3 PUFA combinations were supplemented, i.e. LNA/EPA, 

LNA/EPA+DHA, EPA/DHA and LOA/EPA+DHA. However, lipid content was based on 

a per flask basis and so cell number was a confounding factor. Therefore, differential 

effects of different PUFA on growth performance as discussed in Chapter 3 would affect 

absolute levels of lipid recovered. EPA and DHA are highly unsaturated FA, which means 

that they have several double bonds, making them more susceptible to the attack of 

reactive oxygen species, triggering a chain reaction of hydrogen abstraction, and the 

formation of lipid radicals (Mourente et al., 2007; Siddiqui et al., 2008; Di Nunzio et al., 

2011). These processes damage and can cause death of the cells, which will consequently 

result in lower lipid recovered, as shown in the current study. Gregory et al. (2011) 
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observed more peroxidation when the FHM (fathead minnow, Pimephales promelas 

Rafinesque) cell line was supplemented with EPA and DHA in comparison with the 

supplementation of LNA or SFA. Several studies have reported a detrimental effect on the 

viability of human cell lines due to the supplementation of LC-PUFA (Colquhoun and 

Schumacher, 2001; Bianchi et al., 2004; Shirota et al., 2005; Li et al., 2006; Toit-Kohn et 

al., 2009; Di Nunzio et al., 2011). 

 

4.4.2 Effect of supplementation of FA on lipid class composition of CHSE-214  

Studies using cell culture systems reported that supplementing PUFA at 25 µM  

was sufficient to significantly change the PUFA composition of the cells without adversely 

altering the lipid class composition or inducing the formation of lipid droplets in the 

cytoplasm (Geyer, 1967; Moskowitz, 1967; Rosenthal, 1981; Stubbs and Smith, 1984; 

Tocher and Dick, 1990). Tocher and Dick (1990) reported cytoplasmic lipid droplets when 

the AS cell line was supplemented with PUFA concentrations of 50 µM or higher. For all 

the aforementioned and based on the results in Chapter 3 of the present study, the mixtures 

of PUFA and LC-PUFA supplemented to the CHSE-214 cell line were 20/5 µM, 20/10 

µM, 20/15 µM and 20/20 µM. Regarding lipid class composition, TAG was the lipid class 

that was likely directly affected by FA supplementation, and other changes in lipid class 

composition were consequent to that. In the experiments supplementing graded 

concentrations of n-6 PUFA, i.e. LNA/LOA, LNA/ARA, LOA/LNA and LOA/ARA TAG 

increased with the graded supplementation of the competing PUFA, which was likely due 

to the incorporation and acylation of the PUFA into TAG leading to increased lipid 

deposition. Previous studies have reported that supplementation of ARA increased cellular 

TAG levels (Collier and Collier, 1993; Whelan et al., 1995; Whelan, 1996). In vivo 

(Kajikawa et al., 2011) and in vitro (Manickam et al., 2010) studies reported that n-3 LC-
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PUFA have the effect of lowering tissue/cellular TAG levels, probably through a 

mechanism whereby EPA down-regulates sterol regulating element binding protein 

(SREBP-1c) thereby reducing the expression of genes involved with lipid 

biosynthesis/lipogenesis (Kaur et al., 2011). In the current study, there was a clear trend of 

decreasing cellular TAG levels with the graded supplementation of the mixture of 

EPA+DHA (1:1). Furthermore, in the treatment EPA/DHA (constant EPA + increasing 

DHA), TAG decreased with the graded supplementation of DHA. In the treatments 

LNA/EPA and EPA/LNA at 20/5 µM and 20/10 µM levels of TAG were lower, in 

comparison with the levels recorded at 20/15 µM and 20/20 µM. These combinations 

suggest that n-3 LC-PUFA reduce cellular TAG, particularly at lower levels of 

supplementation. At higher concentrations of PUFA supplementation, the rate of normal 

lipid metabolism becomes overwhelmed with FA such that they cannot be metabolised fast 

enough and the FA have to be stored, increasing the percentages of TAG in the cells. 

 

4.4.3 Effect of supplementation of FA on FA composition of CHSE-214 cell line  

All the combinations of PUFA supplemented changed the FA profile of the CHSE-

214 cells. In some cases this change reflected the incorporation of the PUFA 

supplemented, while in other occasions n-3 and n-6 PUFA metabolites (pathway 

intermediates) were synthesised from the precursors LNA and LOA. In all treatments the 

increment of PUFA in the cells was balanced by reduced proportions of MUFA; 

particularly, the percentage of 18:1n-9 decreased with the graded supplementation of 

PUFA, in agreement with results previously reported by  Tocher et al. (1996) in studies 

using the EPC-EFAD (Epithelioma papulosum cyprini-essential fatty acid-deficient) cell 

line derived from common carp (Cyprinus carpio L.).  
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4.4.3.1 EPA production from LNA mixed with n-6 PUFA (LOA and ARA) and n-3 LC-

PUFA (DHA)  

The EPA levels of CHSE-214 cells incubated with the combinations LNA/LOA 

and LNA/ARA, showed a clear decreasing trend with the graded supplementation of the n-

6 PUFA. The supplementation of LNA/LOA at 20/5 μM showed a higher EPA level 

(5.6%), in comparison with cells incubated with only LNA at 20 μM (4%) (see Chapter 3), 

whereas the treatment LNA/ARA showed lower EPA levels at all supplemented 

concentrations ARA (3.3–3.9%). The EPA levels of CHSE-214 cells incubated with the 

combination LNA/DHA showed a trend to increase with the graded supplementation of 

DHA, perhaps suggesting some retroconversion of DHA to EPA (4.5-5.4%) (Grønn et al., 

1991). It is noteworthy that the effect of the LNA:LOA ratio observed in the experiments 

using the combination LNA/LOA,  where supplementation of LOA at 5 μM enhanced the 

conversion of  20 μM LNA to EPA, whereas when the concentration of LOA was 

increased to 20 μM supplementation, EPA levels were considerably decreased. In addition, 

LNA/LOA supplemented at equal concentrations (20/20 μM) gave lower total n-6 PUFA 

(19.1%) than total n-3 PUFA (22.1%). This may be explained because at concentrations of 

20/20 μM, the supplemented LOA was only metabolised to a small amount, being mainly 

incorporated and stored (11.3%) without any further conversion. The data from the current 

study were consistent with the enzymes (elongases and desaturases) involved in the 

conversion of PUFA to LC-PUFA having a preference for the n-3 series rather than the n-6 

series, as reported in previous studies (Stubbs and Smith, 1984; Tocher et al., 1989; 

Gregory et al., 2011). In CHSE-214 cells incubated with LNA/ARA, total cellular n-6 

PUFA levels at the 20/15 μM and 20/20 μM combinations were 15.3% and 20.0%, 

respectively, which were higher than total n-3 PUFA at 14.6% and 13.8%, respectively. In 

contrast, at lower ARA supplements (LNA/ARA combinations of 20/5 μM and 20/10 μM) 
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total n-6 PUFA were 9.3% and 12%, respectively, which were lower than the total n-3 

PUFA (14.4% and 13.7%, respectively). Therefore, the pathway of n-3 LC-PUFA 

synthesis from LNA was observed when LNA was supplemented in combination with 

ARA; however, the percentages of n-3 PUFA intermediaries decreased with the increment 

of ARA. 

 

4.4.3.2 DHA production from EPA mixed with n-3 PUFA (LNA) 

In the experiment supplementing combinations of EPA/LNA, CHSE-214 cells 

showed elongation of EPA to 22:5n-3; however, the cells did not show conversion of the 

latter to DHA at high levels. The maximum percentage of cellular DHA observed was 

2.0%, recorded at the EPA/LNA combination of 20/5 μM. This was perhaps not surprising 

as it had been reported that fish cell lines have a limited ability to synthesise DHA from 

precursors (i.e. LNA and EPA) (Tocher and Sargent, 1990; Gregory et al., 2011). 

 

4.4.3.3 ARA production from LOA mixed with n-3 PUFA and LC-PUFA (LNA and 

EPA+DHA) 

The ARA levels of CHSE-214 cells supplemented with combinations of LOA/LNA 

and LOA/EPA+DHA (1:1 ratio) decreased with the graded supplementation of the 

competing FA, LNA and EPA+DHA, respectively. When LOA was supplemented at 20 

μM along with a low concentration of LNA (5 μM) it was possible to observe the pathway 

of synthesis of LOA to ARA with 2.9% production. However, when LOA and LNA were 

supplemented at equal concentrations (20/20), LOA was incorporated but not greatly 

converted to other n-6 PUFA metabolites (total n-6 PUFA = 19.1%), while the n-3 

pathway (i.e. the conversion of LNA to EPA) was still clear and consistent (total n-3 

PUFA = 22.1%), which is possibly simply reflecting the fact that n-3 PUFA series are the 
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preferred substrates of the enzymes involved in LC-PUFA synthesis (Stubbs and Smith, 

1984; Tocher et al., 1989).  

The current study confirmed that LNA and LOA compete for the same enzymes in 

the LC-PUFA biosynthesis pathway, having antagonistic effects when they are added 

together; therefore, the ratio of LNA:LOA is an important factor to consider when fish 

diets are being formulated, in order to enhance and optimise the production of EPA from 

LNA. 



Olga Liliana Rubio Mejía   CHAPTER 5 

 125 

 

Chapter 5 

Effects of interaction between C18 PUFA and saturated/monounsaturated 

fatty acids on lipid and fatty acid compositions of CHSE-214 cells 

 

Molecular structures of palmitic and oleic acids [modified from Wikimedia] 

 

 

 

 

“The doctor of the future will give no medicine, but will interest his patient in the care of the 

human frame, in diet and in the cause and prevention of disease” 

Thomas Alva Edison 
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5.1. Introduction 

Atlantic salmon (Salmo salar L.), herring (Clupea harengus L.) and mackerel 

(Scomber scombrus L.) are “oily” fish species rich in n-3 long-chain polyunsaturated fatty 

acids (LC-PUFA), used for human consumption (Bell et al., 2001; Tocher, 2009). As the 

human population is constantly increasing, and wild capture fisheries are static or 

decreasing, it has been estimated that by 2030 about 2/3 of the global demand for fish will 

be supplied by the aquaculture sector (FAO, 2014). However, one of the main challenges 

for aquaculture is the generation of new sustainable ingredients to replace fishmeal and 

fish oil (FO) included in aquafeeds, while still covering the n-3 LC-PUFA requirements 

(Bendiksen et al., 2011). Currently, the main sustainable alternatives to FO are vegetable 

oils (VO), and their use can consequently reduce feed production costs due to their ready 

availability in large volumes (Naylor et al., 2009). Studies have reported that growth, feed 

conversion and survival are not affected with partial replacement of FO in aquafeeds 

(Torstensen et al., 2000; Bell et al., 2001; Rosenlund et al., 2001; Bransden et al., 2003; 

Liland et al., 2013). The main limiting factor in the use of VO is their fatty acid (FA) 

profile, since they can be rich in saturated fatty acids (SFA), monounsaturated fatty acids 

(MUFA), and short chain (C18) PUFA, while they completely lack LC-PUFA, such as 

eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and 

arachidonic acid (ARA, 20:4n-6) (Jobling, 2004). Fish fed diets formulated with 100% VO 

presented lower n-3 LC-PUFA levels in their flesh, reducing the nutritional quality of the 

final product to the human consumer (Bell et al., 2003b; Menoyo et al., 2005; Tocher, 

2010; Alves Martins et al., 2011).  

According to Bell et al. (2002), an ideal FO substitute should maintain as high 

levels of EPA and DHA as possible, not promote linoleic acid (LOA, 18:2n-6) deposition, 

while it should supply the necessary SFA and MUFA in order to provide the energy 
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required for optimal growth. The main VO that are currently being used in aquafeeds 

around the world include palm oil (Bell et al., 2002), soybean oil (Peng et al., 2008) and 

rapeseed oil (Bell et al., 2001, 2003a; b), all of which cover the energy requirements due to 

their richness in SFA and MUFA including palmitic acid (16:0) and oleic acid (18:1n-9) 

(Miller et al., 2008). However, the main VO being used in salmon feeds in Scotland (and 

Norway) is rapeseed oil which has a high 18:1n-9 content and a good n-6/n-3 PUFA ratio 

of around two with relatively moderate level of LOA (20%) and reasonable α-linolenic 

acid (LNA, 18:3n-3) (10%) (Tocher et al., 2000; Bell et al., 2001, 2003b; Ng et al., 2004; 

Torstensen et al., 2004). In Atlantic salmon diets, up to 50% of dietary FO can be replaced 

by VO without a major detrimental effect on the levels of n-3 LC-PUFA and/or the 

organoleptic characteristics of the flesh (Bell et al., 2002). Some studies have reported 

some health and welfare issues when replacing FO with a single VO (Montero et al., 

2003), and better results have been achieved using a blend of VO, rather than with just one 

VO source, covering the energy and n-3 LC-PUFA requirements (Torstensen et al., 2005). 

One option to ensure high levels of n-3 LC-PUFA in the final product in fish fed high 

levels of dietary VO during the large part of the production cycle is to feed a FO-rich 

“finishing” diet to supply n-3 LC-PUFA at the end of the production phase prior to 

harvesting the fish (Bell et al., 2003b; Benedito-Palos et al., 2009).  

The study of lipid requirements in fish is important as they provide the FA required 

for the development of cells, tissues, and normal growth (Sargent et al., 1995b). Lipids 

represent the principal source of energy for fish (Sargent et al., 1989; Frøyland et al., 

1998), particularly SFA and MUFA (Henderson, 1996), but the digestion and absorption of 

PUFA is generally higher compared with SFA and MUFA (Lie et al., 1987; Olsen et al., 

1998). When formulating fish diets, therefore, particular attention should be paid to the 

energy availability including SFA and MUFA and the ratio of these non-essential energy-
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providing FA with the essential PUFA and LC-PUFA (EPA, DHA and ARA) (Bell et al., 

2002). The optimal balance of the energy-providing FA and essential FA will be positively 

reflected in the productive parameters, such as growth, survival, feed conversion 

efficiency, quality of fillet, and also in fish health, i.e. immune competence and disease 

resistance (Peng et al., 2008). 

The two sources of FA for fish, as all vertebrates are: 1) dietary lipid intake, and 2) 

synthesis de novo, using carbon from non-lipid sources, particularly amino acids, as there 

is a limited availability of carbohydrates in aquatic environments. Fish can synthesise SFA 

through the action of the enzymes including acetyl-CoA carboxylase and fatty acid 

synthase, using acetyl-CoA derived from the protein and amino acid catabolism. In 

salmonids, de novo FA synthesis take place mainly in the liver, while adipose tissue is the 

main tissue for the deposition and storage of excess lipid (FA), either obtained from the 

diet or endogenously synthesised (Henderson, 1996). Fish can further convert SFA into 

MUFA via ∆9 or stearoyl-CoA desaturase. However, they cannot synthesise PUFA, which 

must be obtained from the diet (Henderson, 1996). Some fish species, including salmonids, 

can endogenously produce LC-PUFA from dietary C18 PUFA precursors depending upon 

their complement of fatty acyl desaturase and elongase enzymes (Tocher, 2003).  

Tocher et al. (1989) suggested that fish cell culture can show some aspects of lipid 

metabolism, which also occur in the whole fish, making fish cell lines a potential tool for 

the study of lipid and FA metabolism. Castell et al. (1972) reported that EFA requirements 

of rainbow trout (Oncorhynchus mykiss Walbaum) were satisfied with the supplementation 

of LNA, whereas marine species, such as turbot (Scophthalmus maximus L.), have specific 

LC-PUFA requirements to satisfy EFA requirements (Owen et al., 1975). These results 

were later confirmed by Tocher et al. (1989) in a study using fish cell lines, showing that 

the rainbow trout cell line, RTG-2, exhibited desaturation and elongation activities and, 
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therefore, could convert LOA and LNA into ARA and EPA, respectively. However, these 

enzymatic activities were not observed in the TF (turbot fin) cell line. In this sense would 

be ideal to obtain a salmon cell line, which would allow the study of the molecular 

regulation of lipid and FA metabolism in Atlantic salmon, saving time and money.  

A recent study in Atlantic salmon suggested that LC-PUFA synthesis is negatively 

affected by increased dietary lipid content (Martinez-Rubio et al., 2013). Therefore, the 

aim of the present Chapter was to investigate how SFA (16:0) and MUFA (18:1n-9) 

affected the conversion of C18 PUFA to LC-PUFA (with particular emphasis on the 

conversion of LNA to EPA) in vitro, using the CHSE-214 cell line. 

 

5.2. Materials and Methods 

 

5.2.1. Cell line and routine culture procedures 

 The general description of CHSE-214 cell line, the media and the routine culture 

methodologies are provided in Chapter 2, sections 2.1.1 and 2.1.2. 

 

5.2.2. C18 PUFA interaction with SFA and MUFA experiments 

 FA were supplemented to the CHSE-214 cell line as complexes, bound to bovine 

serum albumin (BSA) (First Link (UK) Ltd., Wolverhampton, UK) and suspended in 

phosphate buffered saline (PBS), according to Spector and Hoak (1969). For further details 

refer to Chapter 2, section 2.2.1. Table 5.1 shows the combinations and concentrations of 

FA supplemented in the current study. The combinations of PUFA and “competing” SFA 

and MUFA (mimicking dietary lipid content in in vivo trials) are listed in Table 5.1, these 

were added directly into each flask 24 h after splitting; cells were incubated for further 5 d, 

and then harvested for lipid and FA analyses, further details are provided in Chapter 2, 
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section 2.2.2). After the incubation period cells were harvested as described in Chapter 2, 

section 2.1.2.2 for further lipid analyses. 

 

Table 5.1. Combinations and concentrations of PUFA supplemented to CHSE-214 cells 

PUFA 

(substrate, FA1) 

LIPID 

(competitor, FA2) 

COMBINATIONS 

(FA1/FA2, M/M) 

LNA 16:0 20/20 20/40 20/60 20/80 

LNA 18:1n-9 20/20 20/40 20/60 20/80 

LNA 16:0+18:1n-9 (1:1)  20/20 20/40 20/60 20/80 

LOA 16:0 20/20 20/40 20/60 20/80 

LOA 18:1n-9 20/20 20/40 20/60 20/80 

LOA 16:0+18:1n-9 (1:1)  20/20 20/40 20/60 20/80 

EPA 16:0 20/20 20/40 20/60 20/80 

EPA 18:1n-9 20/20 20/40 20/60 20/80 

EPA 16:0+18:1n-9 (1:1)  20/20 20/40 20/60 20/80 

LNA/EPA (1:1) 16:0 40/20 40/40 40/60  

LNA/EPA (1:1) 18:1n-9 40/20 40/40 40/60  

LNA/EPA (1:1) 16:0+18:1n-9 (1:1) 40/20 40/40 40/60  

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; LOA = linoleic acid; PUFA = 

polyunsaturated fatty acid; FA = fatty acid.   

 

5.2.3. Lipid analyses 

Cellular lipids were extracted according to Folch et al. (1957) as described in detail 

in Chapter 2, section 2.3.1. Lipid class analyses were carried out using high-performance 

thin-layer chromatography (HPTLC) plates. All details of this procedure are provided in 

Chapter 2, section 2.3.2. Fatty acid methyl esters (FAME) were prepared by acid-catalysed 

transmethylation essentially according to Christie (2003). Full details of the FAME 

preparation, extraction, purification and GC analysis are provided in Chapter 2, section 

2.3.3. 
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5.3. Results 

 

5.3.1. Effects of SFA and MUFA (lipid content) on the metabolism of LNA  

 

5.3.1.1. Supplementation with LNA in presence of increasing levels of 16:0  

Table 5.2 shows the lipid content and lipid class composition of CHSE-214 cells 

after incubation with 20 µM LNA in the presence of increasing concentrations of 

supplemental 16:0. Supplementation with increasing levels of 16:0 increased lipid content 

of the cells at concentrations from 20/20 µM to 20/60 µM and then lipid content slightly 

decreased with the concentrations 20/60 µM to 20/80 µM, although results were not 

statistically significant (R
2
 = 0.197; p = 0.149). Lipid class data showed a clear increase in 

the proportion of triacylglycerol (TAG) with the graded supplementation of 16:0 (R
2
 = 

0.968; p = 0.000). The increased TAG was most obviously reflected in concomitant 

decreased proportions of the main phospholipid classes, PC (R
2
 = 0.564; p = 0.005) and 

particularly PE (R
2
 = 0.974; p = 0.000), but the driver to changes in lipid class composition 

was the increased proportion of TAG.  

The FA compositions of CHSE-214 cells incubated with 20 µM LNA in the 

presence of increasing concentrations of supplemental 16:0 is presented in Table 5.3. EPA 

levels decreased with the graded supplementation of 16:0 (R
2
 = 0.683; p = 0.001). The 

levels of LNA were relatively unaffected by supplementation with increasing 

concentrations of 16:0 (R
2
 = 0.296; p = 0.068). Interestingly, the proportions of 18:4n-3 

increased with the graded supplementation of 16:0 (R
2
 = 0.630; p = 0.002), whereas the 

proportions of 20:4n-3 were negatively affected (R
2
 = 0.746; p = 0.000), with the latter 

possibly simply reflecting the increasing proportions of 16:0 and its metabolites. The 

CHSE-214 cells incorporated the supplemented 16:0 to some extent although its level was 
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only slightly increased in the cells (R
2
 = 0.557; p = 0.005). However, it was clear that the 

main fate of incorporated 16:0, other than probable oxidation, was that a substantial 

amount of the incorporated 16:0 was desaturated to 16:1n-7 (R
2
 = 0.987; p = 0.000), which 

was then elongated to 18:1n-7 as this also increased (R
2
 = 0.723; p = 0.000). The levels of 

16:1n-9 were also increased with increasing supplementation with 16:0 (R
2
 = 0.725; p = 

0.000) although the precise metabolic pathway was less obvious. The increments of 16:1n-

7, 18:1n-7 and 16:1n-9 were balanced primarily by decreased proportions of 18:1n-9 (R
2
 = 

0.757; p = 0.000).  

 

Table 5.2. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM LNA 

and increasing concentrations of 16:0 

Lipid  20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
  P-value  

LC (µg)  256.7 ± 51.3
 

296.7 ± 64.3
 

316.7 ± 15.3
 

310.0 ± 45.8 0.197 0.149 

 (%)       

PC 24.0 ± 1.4
 

22.6 ± 0.2
 

20.9 ± 0.8
 

21.4 ± 0.8 0.564 0.005 

PE 21.3 ± 0.1
 

19.6 ± 0.3
 

18.5 ± 0.2
 

16.6 ± 0.3 0.974 0.000 

PS 6.9 ± 0.3
 

5.5 ± 0.3
 

5.1 ± 0.6
 

5.5 ± 0.2 0.441 0.018 

PI 10.6 ± 0.8
 

10.4 ± 0.4
 

9.8 ± 0.6
 

8.5 ± 0.6 0.645 0.002 

PA/CL 0.9 ± 0.1
 

1.6 ± 0.4
 

0.9 ± 0.1
 

0.9 ± 0.1 0.051 0.482 

SM 7.6 ± 0.9
 

6.5 ± 0.1
 

6.1 ± 0.3
 

3.3 ± 0.4 0.790 0.000 

TP 71.3 ± 0.4
 

66.2 ± 0.7
 

61.3 ± 0.8
 

56.2 ± 0.7 0.991 0.000 

TN 28.7 ± 0.4
 

33.8 ± 0.7
 

38.7 ± 0.8
 

43.8 ± 0.7 0.991 0.000 

TAG 3.5 ± 0.4
 

7.3 ± 0.4
 

11.7 ± 0.8
 

16.4 ± 1.6 0.968 0.000 

CHOL 22.5 ± 0.8
 

25.0 ± 0.4
 

25.5 ± 0.6
 

26.5 ± 0.9 0.770 0.000 

FFA 2.7 ± 0.6
 

1.5 ± 0.1
 

1.5 ± 0.2
 

0.9 ± 0.1 0.760 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 
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Table 5.3. Fatty acid composition (%) of CHSE-214 cells incubated with 20 µM LNA and 

increasing concentrations of 16:0 

Fatty acid  20/20 µM  20/40 µM 20/60 µM  20/80 µM R
2
 P-value 

14:0 0.9 ± 0.2
 

1.6 ± 0.1
 

0.9 ± 0.1
 

0.9 ± 0.1 0.086 0.355 

15:0 0.2 ± 0.1
 

0.3 ± 0.1
 

0.2 ± 0.0
 

0.3 ± 0.0 0.190 0.156 

16:0 12.4 ± 1.5
 

14.7 ± 0.5
 

14.4 ± 0.8
 

15.6 ± 0.2 0.557 0.005 

17:0 0.6 ± 0.0
 

0.3 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0 0.661 0.001 

18:0 7.6 ± 0.5
 

8.0 ± 1.1
 

6.8 ± 0.5
 

6.0 ± 0.4 0.503 0.010 

22:0 0.3 ± 0.0
 

0.4 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0 0.181 0.168 

Ʃ SFA 22.0 ± 2.2
 

25.3 ± 1.5
 

22.9 ± 1.2
 

23.4 ± 0.7 0.013 0.722 

16:1n-9 2.7 ± 0.1
 

2.7 ± 0.2
 

3.1 ± 0.1
 

4.0 ± 0.4 0.725 0.000 

16:1n-7 2.5 ± 0.1
 

4.3 ± 0.3
 

6.5 ± 0.6
 

9.2 ± 0.1 0.987 0.000 

18:1n-9 34.4 ± 2.1
 

34.2 ± 0.5
 

30.7 ± 1.6
 

28.6 ± 0.5 0.757 0.000 

18:1n-7 2.3 ± 0.2
 

2.6 ± 0.1
 

3.0 ± 0.3
 

3.0 ± 0.1 0.723 0.000 

24:1n-9 0.9 ± 0.0
 

0.7 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.1 0.299 0.066 

Ʃ MUFA 42.8 ± 2.0
 

44.5 ± 0.3
 

44.0 ± 1.1
 

45.5 ± 0.3 0.411 0.025 

18:2n-6 3.5 ± 0.1
 

3.4 ± 0.0
 

3.4 ± 0.0
 

3.2 ± 0.1 0.721 0.000 

18:3n-6 0.5 ± 0.1
 

0.4 ± 0.1
 

0.5 ± 0.0
 

0.5 ± 0.1 0.019 0.666 

20:2n-6*  0.5 ± 0.0
 

0.4 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0 0.273 0.082 

20:3n-6 1.7 ± 0.0
 

1.4 ± 0.2
 

1.5 ± 0.1
 

1.4 ± 0.1 0.348 0.043 

20:4n-6 1.8 ± 0.2
 

1.5 ± 0.3
 

1.6 ± 0.2
 

1.6 ± 0.1 0.041 0.529 

Ʃ n-6 PUFA 8.2 ± 0.2
 

7.2 ± 0.5
 

7.5 ± 0.1
 

7.3 ± 0.3 0.349 0.043 

18:3n-3 7.5 ± 0.7
 

6.6 ± 0.1
 

8.4 ± 1.1
 

8.4 ± 0.1 0.296 0.068 

18:4n-3 4.1 ± 0.3
 

3.7 ± 0.1
 

5.5 ± 0.9
 

5.8 ± 0.1 0.630 0.002 

20:4n-3 3.2 ± 0.8
 

1.9 ± 0.2
 

1.9 ± 0.2
 

1.2 ± 0.1 0.746 0.000 

20:5n-3 3.7 ± 0.2
 

2.5 ± 0.3
 

2.7 ± 0.2
 

2.0 ± 0.2 0.683 0.001 

22:5n-3 1.0 ± 0.0
 

0.7 ± 0.1
 

0.8 ± 0.1
 

0.7 ± 0.1 0.532 0.007 

22:6n-3 1.3 ± 0.1
 

1.1 ± 0.1
 

1.2 ± 0.1
 

1.1 ± 0.1 0.277 0.079 

Ʃ n-3 PUFA 20.8 ± 1.2
 

16.5 ± 0.9
 

20.5 ± 2.0
 

19.2 ± 0.7 0.001 0.924 

18:2n-9 3.5 ± 0.3
 

3.8 ± 0.2
 

3.1 ± 0.2
 

2.9 ± 0.0 0.574 0.004 

20:2n-9 2.7 ± 0.3
 

2.7 ± 0.1
 

2.0 ± 0.4
 

1.7 ± 0.1 0.693 0.001 

Ʃ n-9 PUFA 6.2 ± 0.6
 

6.5 ± 0.3
 

5.1 ± 0.6
 

4.6 ± 0.1 0.654 0.001 

       

Ʃ PUFA 35.2 ± 1.0
 

30.2 ± 1.2
 

33.1 ± 1.6
 

31.1 ± 0.8 0.237 0.109 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; 

PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

5.3.1.2. Supplementation with LNA in presence of increasing levels of 18:1n-9  

Table 5.4 shows the lipid contents and lipid class compositions of CHSE-214 cells 

incubated with 20 µM LNA and increasing levels of 18:1n-9. Cell total lipid content did 

not show a clear trend with increasing concentrations of supplemented 18:1n-9 (R
2
 = 

0.091; p = 0.341). The lipid class data showed an increased proportion of TAG with the 

graded supplementation of 18:1n-9 (R
2
 = 0.713; p = 0.001). This increment was balanced 

by decreasing proportions of most polar lipid classes but especially the main phospholipid 

class, PC (R
2
 = 0.671; p = 0.001). 
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Table 5.4. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM LNA 

and increasing concentrations of 18:1n-9 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
  P-value  

LC (µg)  470.0 ± 70.0
 

436.7 ± 65.1
 

506.7 ± 83.3
 

376.7 ± 81.4 0.091 0.341 

CC (%)       

PC 22.6 ± 0.0
 

20.0 ± 1.4
 

18.2 ± 0.9
 

18.6 ± 0.7 0.671 0.001 

PE 21.2 ± 0.3
 

19.0 ± 0.5
 

19.8 ± 0.3
 

19.5 ± 0.5 0.294 0.068 

PS 6.2 ± 0.2
 

5.1 ± 0.2
 

4.9 ± 0.3
 

5.0 ± 0.1 0.544 0.006 

PI 10.3 ± 0.2
 

9.0 ± 0.2
 

8.9 ± 0.5
 

8.8 ± 0.1 0.611 0.003 

PA/CL 0.9 ± 0.0
 

1.0 ± 0.3
 

1.1 ± 0.1
 

1.1 ± 0.0 0.306 0.062 

SM 4.1 ± 1.2
 

4.1 ± 0.4
 

2.4 ± 0.2
 

2.6 ± 0.4 0.500 0.010 

TP 65.3 ± 0.5
 

58.2 ± 1.8
 

55.3 ± 1.8
 

55.6 ± 1.2 0.722 0.000 

TN 34.7 ± 0.5
 

41.8 ± 1.8
 

44.7 ± 1.8
 

44.4 ± 1.2 0.722 0.000 

TAG 8.7 ± 0.1
 

14.3 ± 2.1
 

15.2 ± 1.3
 

16.2 ± 1.1 0.713 0.001 

CHOL 23.9 ± 0.2
 

24.9 ± 0.5
 

27.3 ± 0.9
 

25.7 ± 0.4 0.455 0.016 

FFA 2.1 ± 0.3
 

2.6 ± 0.3
 

2.2 ± 0.5
 

2.5 ± 0.3 0.031 0.585 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 incubated with 20 µM of LNA and graded 

concentrations of 18:1n-9 is presented in Table 5.5. The rank order was MUFA > PUFA > 

SFA in all treatments. EPA levels were unaffected by the graded supplementation of 

18:1n-9 (R
2
 = 0.052; p = 0.476), and at all concentrations of 18:1n-9 the levels of EPA 

recorded were lower than 2% of total FA. The incorporation of LNA was similar at all 

concentrations supplemented (R
2
 = 0.240; p = 0.106) and no effects were observed in the 

n-3 PUFA intermediates, being essentially the same at all concentrations. However, total n-

3 PUFA was slightly higher in cells given the 20/20 µM combination. The 18:1n-9 was 

incorporated with the graded supplementation of the FA (R
2
 = 0.539; p = 0.040) and a 

small amount was further desaturated to 18:2n-9 (R
2
 = 0.382; p = 0.032). The increment of 

18:1n-9 was primarily balanced by decreased proportions of total SFA.  
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Table 5.5. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM LNA and 

increasing concentrations of 18:1n-9 

Fatty acid  20/20 µM  20/40 µM 20/60 µM  20/80 µM R
2
 P-value 

14:0 1.1 ± 0.2
 

1.1 ± 0.2
 

1.0 ± 0.1
 

1.1 ± 0.1 0.002 0.903 

15:0 0.3 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.0
 

0.3 ± 0.1 0.011 0.745 

16:0 10.9 ± 0.7
 

10.4 ± 1.0
 

10.5 ± 0.3
 

9.9 ± 0.2 0.263 0.088 

17:0 0.6 ± 0.0
 

0.6 ± 0.1
 

0.6 ± 0.1
 

0.5 ± 0.3 0.075 0.388 

18:0 7.8 ± 0.5
 

7.0 ± 0.8
 

7.4 ± 0.3
 

6.5 ± 0.2 0.396 0.028 

20:0 0.2 ± 0.1
 

0.2 ± 0.1
 

0.2 ± 0.1
 

0.3 ± 0.0 0.370 0.036 

22:0 0.2 ± 0.1
 

0.2 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0 0.253 0.095 

Ʃ SFA 21.1 ± 1.5
 

19.8 ± 1.7
 

20.4 ± 0.9
 

18.8 ± 0.7 0.259 0.091 

16:1n-9 2.2 ± 0.9
 

3.1 ± 0.1
 

3.1 ± 0.1
 

3.2 ± 0.2 0.271 0.083 

16:1n-7 1.3 ± 0.2
 

1.2 ± 0.1
 

1.2 ± 0.1
 

1.2 ± 0.2 0.072 0.400 

18:1n-9 44.0 ± 0.9
 

47.6 ± 0.3
 

46.7 ± 2.1
 

47.5 ± 1.2 0.359 0.040 

18:1n-7 1.6 ± 0.1
 

1.6 ± 0.2
 

1.6 ± 0.4
 

1.2 ± 0.0 0.240 0.106 

24:1n-9 0.9 ± 0.1
 

0.8 ± 0.1
 

0.7 ± 0.0
 

0.9 ± 0.0 0.050 0.483 

Ʃ MUFA 50.0 ± 0.2
 

54.2 ± 0.3
 

53.4 ± 2.4
 

54.0 ± 1.3 0.373 0.035 

18:2n-6 3.3 ± 0.2
 

3.0 ± 0.1
 

3.0 ± 0.2
 

2.9 ± 0.2 0.421 0.022 

18:3n-6 0.4 ± 0.1
 

0.4 ± 0.1
 

0.3 ± 0.2
 

0.4 ± 0.0 0.001 0.916 

20:2n-6*  0.5 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.0 0.064 0.428 

20:3n-6 1.4 ± 0.1
 

1.2 ± 0.1
 

1.3 ± 0.1
 

1.3 ± 0.0 0.118 0.273 

20:4n-6 1.3 ± 0.1
 

1.1 ± 0.1
 

1.2 ± 0.2
 

1.3 ± 0.1 0.006 0.811 

22:5n-6 0.6 ± 0.1
 

0.8 ±0.1
 

0.6 ± 0.2
 

0.6 ± 0.1 0.093 0.335 

Ʃ n-6 PUFA 7.5 ± 0.4
 

7.0 ± 0.5
 

6.8 ± 0.2
 

6.9 ± 0.1 0.318 0.056 

18:3n-3 6.8 ± 0.6
 

6.3 ± 0.4
 

6.0 ± 0.7
 

6.1 ± 0.3 0.240 0.106 

18:4n-3 1.9 ± 0.3
 

2.0 ± 0.2
 

1.8 ± 0.3
 

2.0 ± 0.1 0.002 0.879 

20:3n-3 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0 0.187 0.160 

20:4n-3 3.0 ± 0.2
 

2.3 ± 0.2
 

2.5 ± 0.4
 

2.4 ± 0.2 0.190 0.157 

20:5n-3 1.9 ± 0.2
 

1.6 ± 0.2
 

1.7 ± 0.2
 

1.7 ± 0.1 0.052 0.476 

22:5n-3 0.8 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.1 0.067 0.417 

22:6n-3 1.0 ± 0.1
 

0.9 ± 0.1
 

0.9 ± 0.1
 

1.0 ± 0.1 0.067 0.418 

Ʃ n-3 PUFA 15.6 ± 1.4
 

13.8 ± 1.2
 

13.7 ± 1.9
 

14.2 ± 0.7 0.142 0.227 

18:2n-9 2.8 ± 0.0
 

2.8 ± 0.1
 

2.8 ± 0.0
 

3.1 ± 0.3 0.382 0.032 

20:2n-9 3.0 ± 0.2
 

2.5 ± 0.1
 

2.9 ± 0.2
 

3.0 ± 0.2 0.068 0.413 

Ʃ n-9 PUFA 5.8 ± 0.2
 

5.3 ± 0.2
 

5.7 ± 0.2
 

6.1 ± 0.4 0.218 0.126 

       

Ʃ PUFA 28.9 ± 1.7
 

26.0 ± 1.9
 

26.2 ± 2.1
 

27.2 ± 0.6 0.095 0.328 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; 

PUFA = polyunsaturated fatty acid; *contains 20:3n-9.  

 

5.3.1.3. Supplementation with LNA in presence of increasing levels of a 1:1 mix of 16:0 

and 18:1n-9 combined  

Table 5.6 shows the lipid content and lipid class composition of CHSE-214 cells 

incubated with 20 µM LNA and graded increased concentrations of a 1:1 mix of 16:0 + 

18:1n-9 combined. The cell total lipid content decreased at concentrations 20/20 µM to 

20/40 µM, but then at concentrations 20/40–20/80 µM showed a trend to increase with 
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graded supplementation of 16:0+18:1n-9, but data were not statistically significant (R
2
 = 

0.144; p = 0.225). There were no clear trends observed in the lipid class composition data. 

TAG levels were higher than 15% in all treatments, and no increasing trend with the 

graded supplementation of the FA was observed (R
2
 = 0.042; p = 0.525). 

 

Table 5.6. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM LNA 

and increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  330.0 ± 25.7
 

226.7 ± 5.8
 

263.3 ± 20.8
 

266.7 ± 20.8
 

0.144 0.225 

CC (%)       

PC 15.2 ± 1.7
 

15.9 ± 2.3
 

15.7 ± 3.3
 

21.9 ± 0.9
 

0.440 0.019 

PE 21.5 ± 1.3
 

22.1 ± 2.6
 

19.0 ± 1.8
 

17.1 ± 0.6
 

0.567 0.005 

PS 4.5 ± 0.5
 

4.3 ± 0.9
 

5.8 ± 0.4
 

5.3 ± 0.1
 

0.336 0.048 

PI 7.7 ± 1.0
 

8.7 ± 0.2
 

10.7 ± 0.9
 

9.3 ± 0.2
 

0.377 0.034 

PA/CL 3.1 ± 0.4
 

3.1 ± 0.8
 

1.3 ± 0.3
 

1.0 ± 0.0
 

0.765 0.000 

SM 3.5 ± 0.2
 

3.8 ± 0.3
 

4.5 ± 0.4
 

3.3 ± 0.3
 

0.003 0.874 

TP 55.5 ± 1.6
 

57.9 ± 3.1
 

57.1 ± 1.2
 

57.9 ± 1.7
 

0.135 0.240 

TN 44.5 ± 1.6
 

42.1 ± 3.1
 

42.9 ± 1.2
 

42.1 ± 1.7
 

0.135 0.240 

TAG 16.4 ± 2.2
 

16.6 ± 2.1
 

15.6 ± 0.8
 

15.8 ± 1.4
 

0.042 0.525 

CHOL 26.4 ± 0.5
 

23.9 ± 1.4
 

25.7 ± 0.5
 

25.2 ± 0.4
 

0.032 0.581 

FFA 1.7 ± 0.2
 

1.6 ± 0.2
 

1.6 ± 0.2
 

1.1 ± 0.1
 

0.524 0.008 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid content is given in µg. Lipid class 

composition is given as a percentage of the total lipid content. Statistical differences were determined by 

regression analysis (p < 0.05). LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected.  

 

The FA composition of CHSE-214 cells incubated with 20 µM of LNA and graded 

concentrations of 16:0+18:1n-9 is presented in Table 5.7. The proportions of EPA 

decreased with the graded supplementation of 16:0+18:1n-9 (R
2
 = 0.870; p = 0.000). The 

percentage of LNA did not show a clear trend (R
2
 = 0.379; p = 0.033) whereas 18:4n-3 

increased (R
2
 = 0.819; p = 0.000), and 20:4n-3 (R

2
 = 0.873; p = 0.000) decreased with the 

graded supplementation of the mix 16:0+18:1n-9.  
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Table 5.7. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM LNA and 

increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Fatty acid  20/20 µM  20/40 µM 20/60 µM  20/80 µM R
2
 P-value 

14:0 1.1 ± 0.2
 

1.4 ± 0.2
 

1.1 ± 0.1
 

1.0 ± 0.1
 

0.134 0.243 

15:0 0.4 ± 0.0
 

0.4 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.412 0.024 

16:0 11.6 ± 0.4
 

12.7 ± 1.2
 

12.3 ± 0.1
 

12.4 ± 0.3
 

0.110 0.292 

17:0 0.8 ± 0.0
 

0.3 ± 0.0
 

0.7 ± 0.1
 

0.4 ± 0.0
 

0.101 0.314 

18:0 7.3 ± 0.2
 

6.8 ± 0.1
 

5.8 ± 0.3
 

5.4 ± 0.1
 

0.923 0.000 

20:0 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.344 0.045 

22:0 0.4 ± 0.0
 

0.4 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.654 0.001 

Ʃ SFA 21.8 ± 0.5
 

22.2 ± 1.3
 

20.6 ± 0.5
 

19.9 ± 0.5
 

0.546 0.006 

16:1n-9 3.2 ±0.2
 

3.7 ± 0.1
 

4.1 ± 0.2
 

4.0 ± 0.1
 

0.654 0.001 

16:1n-7 1.9 ± 0.2
 

2.5 ± 0.4
 

2.7 ± 0.2
 

3.0 ± 0.1
 

0.740 0.000 

18:1n-9 38.8 ± 1.0
 

40.2 ± 0.5
 

41.4 ± 0.7
 

42.1 ± 0.4
 

0.811 0.000 

18:1n-7 2.0 ± 0.1
 

2.2 ± 0.2
 

1.7 ± 0.3
 

1.8 ± 0.1
 

0.235 0.110 

24:1n-9 0.8 ± 0.1
 

0.8 ± 0.0
 

0.7 ± 0.1
 

0.6 ± 0.0
 

0.685 0.001 

Ʃ MUFA 46.7 ± 1.2
 

49.4 ± 0.2
 

50.6 ± 0.5
 

51.5 ± 0.3
 

0.856 0.000 

18:2n-6 3.5 ± 0.1
 

3.0 ± 0.2
 

3.1 ± 0.1
 

3.1 ± 0.1
 

0.174 0.177 

18:3n-6 0.5 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.561 0.005 

20:2n-6* 0.6 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.0
 

0.644 0.002 

20:3n-6 1.5 ± 0.1
 

1.3 ± 0.1
 

1.2 ± 0.0
 

1.1 ± 0.0
 

0.821 0.000 

20:4n-6 1.3 ± 0.2
 

1.4 ± 0.2
 

1.2 ± 0.1
 

1.2 ± 0.0
 

0.114 0.284 

22:5n-6 0.7 ± 0.1
 

0.5 ± 0.1
 

0.2 ± 0.0
 

0.6 ± 0.1
 

0.107 0.299 

Ʃ n-6 PUFA 8.1 ± 0.2
 

7.1 ± 0.5
 

6.6 ± 0.1
 

6.9 ± 0.1
 

0.555 0.005 

18:3n-3 5.4 ± 0.4
 

4.9 ± 0.3
 

6.5 ± 0.3
 

6.1 ± 0.3
 

0.379 0.033 

18:4n-3 3.3 ± 0.2
 

3.4 ± 0.1
 

4.1 ± 0.4
 

4.6 ± 0.2
 

0.819 0.000 

20:4n-3 2.5 ± 0.2
 

1.8 ± 0.2
 

1.5 ± 0.1
 

1.4 ± 0.1
 

0.873 0.000 

20:5n-3 3.6 ± 0.3
 

3.0 ± 0.2
 

2.3 ± 0.1
 

2.2 ± 0.2
 

0.870 0.000 

22:5n-3 0.9 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.1
 

0.556 0.005 

22:6n-3 1.1 ± 0.0
 

1.0 ± 0.1
 

1.0 ± 0.1
 

1.0 ± 0.1
 

0.386 0.031 

Ʃ n-3 PUFA 16.8 ± 1.0
 

14.8 ± 1.0
 

16.1 ± 0.2
 

16.0 ± 0.7
 

0.027 0.612 

18:2n-9 3.6 ± 0.1
 

3.7 ± 0.1
 

3.8 ± 0.2
 

3.6 ± 0.1
 

0.078 0.380 

20:2n-9 3.0 ± 0.1
 

2.8 ± 0.2
 

2.3 ± 0.2
 

2.1 ± 0.1
 

0.880 0.000 

Ʃ n-9 PUFA 6.6 ± 0.1
 

6.5 ± 0.3
 

6.1 ± 0.2
 

5.7 ± 0.2
 

0.766 0.000 

       

Ʃ PUFA 31.5 ± 1.3
 

28.4 ± 1.5
 

28.8 ± 0.3
 

28.6 ± 0.7
 

0.375 0.034 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; 

PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

The proportions of 22:5n-3 and DHA were detected in levels lower than 1.2%, 

being similar at all concentrations of supplemented 16:0+18:1n-9. Cellular percentages of 

18:1n-9 increased with the graded supplementation of the FA (R
2
 = 0.811; p = 0.000) and 

similar levels of 16:0 were observed at all concentrations (R
2
 = 0.110; p = 0.292). The 

main product of desaturation of 16:0, i.e.16:1n-7, increased with the graded 

supplementation of the mix 16:0+18:1n-9 (R
2
 = 0.740; p = 0.000). 
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5.3.2. Effects of SFA and MUFA (lipid content) on the metabolism of LOA 

 

5.3.2.1. Supplementation with LOA in presence of increasing 16:0 

Table 5.8 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with 20 μM of LOA and graded increased concentrations of 

16:0. The cell lipid content decreased with the graded supplementation of 16:0 (R
2
 = 0.429; 

p = 0.021). In the lipid class data, TAG increased with the graded supplementation of the 

FA (R
2
 = 0.685; p = 0.001), the increment in TAG was mainly balanced by decreased 

cholesterol.  

 

Table 5.8. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM LOA 

and increasing concentrations of 16:0 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  306.7 ± 35.1
 

250.0 ± 45.8
 

243.3 ± 37.9
 

230.0 ± 17.3
 

0.429 0.021 

CC (%)       

PC 13.1 ± 0.4
 

18.0 ± 1.2
 

13.3 ± 0.3
 

13.2 ± 1.0
 

0.050 0.485 

PE 23.7 ± 1.2
 

19.3 ± 1.7
 

28.3 ± 0.6
 

28.4 ± 0.5
 

0.426 0.021 

PS 5.1 ± 0.1
 

4.1 ± 0.7
 

4.2 ± 0.6
 

5.2 ± 0.8
 

0.001 0.909 

PI 4.8 ± 0.6
 

6.9 ± 0.2
 

5.9 ± 0.3
 

5.7 ± 0.0
 

0.086 0.355 

PA/CL 2.3 ± 0.2
 

2.0 ± 0.2
 

1.9 ± 0.4
 

1.9 ± 0.7
 

0.182 0.167 

SM 1.9 ± 0.3
 

1.6 ± 0.1
 

2.5 ± 0.2
 

3.8 ± 0.3
 

0.705 0.001 

TP 50.9 ± 2.1
 

51.9 ± 1.8
 

56.1 ± 1.0
 

58.2 ± 0.6
 

0.807 0.000 

TN 49.1± 2.1
 

48.1 ± 1.8
 

43.9 ± 1.0
 

41.8 ± 0.6
 

0.807 0.000 

TAG 6.6 ± 1.5
 

6.8 ± 0.3
 

11.4 ± 1.4
 

12.5 ± 0.2
 

0.685 0.001 

CHOL 41.3 ± 1.9
 

39.9 ± 1.8
 

31.5 ± 0.6
 

28.3 ± 0.6
 

0.846 0.000 

FFA 1.2 ± 0.2
 

1.4 ± 0.5
 

1.0 ± 0.1
 

1.0 ± 0.2
 

0.082 0.367 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LC = lipid content; CC = class composition; PC = phosphatidylcholine; PE = 

phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

Table 5.9 shows the FA profile of CHSE-214 cells after being incubated with 20 

μM of LOA and graded increased concentrations of 16:0. The proportions of ARA slightly 

decreased with the graded supplementation of 16:0, but data were not statistically 
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significant (R
2
 = 0.270; p = 0.083). The proportions of LOA, 18:3n-6 and 20:3n-6 

decreased with the graded supplementation of 16:0 (R
2
 = 0.819; p = 0.000, R

2
 = 0.924; p = 

0.000 and R
2
 = 0.793; p = 0.000, respectively). Cellular percentages of 16:0 increased with 

the graded supplementation of the FA itself, some of which was further desaturated to 

16:1n-9 (R
2
 = 0.876; p = 0.000) and 16:1n-7 (R

2
 = 0.972; p = 0.000); both FA increased 

with the graded supplementation of 16:0. The increment in total SFA was mainly balanced 

by decreased percentages of n-6 PUFA (R
2
 = 0.876; p = 0.000). 

 

Table 5.9. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM LOA and 

increasing concentrations of 16:0 

Fatty acid 20/20 µM 20/40 µM 20/60 µM 20/80 µM R
2
 P-value 

14:0 0.6 ± 0.1
 

0.7 ± 0.1
 

0.9 ± 0.0
 

0.8 ± 0.1
 

0.404 0.026 

15:0 0.3 ± 0.0
 

0.3 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.000 0.951 

16:0 13.1 ± 0.8
 

15.3 ± 0.4
 

22.1 ± 0.3
 

22.3 ± 0.8
 

0.883 0.000 

17:0 0.8 ± 0.0
 

0.9 ± 0.0
 

1.2 ± 0.1
 

1.1 ± 0.0
 

0.767 0.000 

18:0 7.9 ± 0.2
 

8.0 ± 0.6
 

6.6 ± 0.6
 

6.0 ± 0.3
 

0.723 0.000 

22:0 0.4 ± 0.1
 

0.5 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.286 0.073 

Ʃ SFA 23.1 ± 1.1
 

25.7 ± 0.7
 

31.4 ± 0.4
 

30.8 ± 1.1
 

0.824 0.000 

16:1n-9 2.7 ± 0.2
 

3.2 ± 0.2
 

4.0 ± 0.3
 

4.1 ± 0.0
 

0.876 0.000 

16:1n-7 2.4 ± 0.2
 

4.5 ± 0.6
 

7.7 ± 0.1
 

10.0 ± 0.7
 

0.972 0.000 

18:1n-9 32.5 ± 0.5
 

30.0 ± 0.8
 

26.9 ± 0.5
 

25.9 ± 0.7
 

0.930 0.000 

18:1n-7 2.6 ± 0.2
 

2.6 ± 0.1
 

3.1 ± 0.1
 

2.6 ± 0.0
 

0.081 0.368 

24:1n-9 0.6 ± 0.1
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.5 ± 0.1
 

0.115 0.281 

Ʃ MUFA 40.8 ± 1.1
 

40.9 ± 0.6
 

42.3 ± 0.6
 

43.1 ± 0.3
 

0.657 0.001 

18:2n-6 16.6 ± 0.7
 

15.9 ± 0.7
 

13.8 ± 0.6
 

12.9 ± 0.9
 

0.819 0.000 

18:3n-6 3.9 ± 0.3
 

3.3 ± 0.3
 

2.3 ± 0.1
 

1.8 ± 0.3
 

0.924 0.000 

20:2n-6*  0.5 ± 0.0
 

0.5 ± 0.0
 

0.5 ± 0.1
 

0.5 ± 0.0
 

0.397 0.028 

20:3n-6 4.4 ± 0.4
 

3.5 ± 0.2
 

2.0 ± 0.2
 

2.2 ± 0.4
 

0.793 0.000 

20:4n-6 2.0 ± 0.2
 

1.9 ± 0.2
 

1.5 ± 0.3
 

1.6 ± 0.2
 

0.270 0.083 

Ʃ n-6 PUFA 27.4 ± 1.9
 

25.1 ± 0.7
 

20.1 ± 0.8
 

19.0 ± 1.1
 

0.876 0.000 

20:5n-3 0.7 ± 0.1
 

0.7 ± 0.0
 

0.6 ± 0.1
 

0.6 ± 0.1
 

0.417 0.023 

22:5n-3 0.7 ± 0.1
 

0.7 ± 0.0
 

0.5 ± 0.1
 

0.7 ± 0.1
 

0.168 0.186 

22:6n-3 1.3 ± 0.2
 

1.2 ± 0.1
 

0.9 ± 0.1
 

1.1 ± 0.1
 

0.255 0.094 

Ʃ n-3 PUFA 2.7 ± 0.4
 

2.6 ± 0.1
 

2.0 ± 0.1
 

2.4 ± 0.1
 

0.327 0.052 

18:2n-9 3.5 ± 0.3
 

3.5 ± 0.3
 

2.8 ± 0.1
 

3.0 ± 0.3
 

0.396 0.028 

20:2n-9 2.5 ± 0.2
 

2.2 ± 0.3
 

1.4 ± 0.2
 

1.7 ± 0.3
 

0.554 0.005 

Ʃ n-9 PUFA 6.0 ± 0.5
 

5.7 ± 0.6
 

4.2 ± 0.3
 

4.7 ± 0.5
 

0.531 0.007 

       

Ʃ PUFA 36.1 ± 2.2
 

33.4 ± 0.4
 

26.3 ± 1.0
 

26.1 ± 1.0
 

0.849 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA 

= polyunsaturated fatty acid; *contains 20:3n-9. 
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5.3.2.2. Supplementation with LOA in presence of increasing 18:1n-9 

Table 5.10 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with 20 μM of LOA in presence of graded increased 

concentrations of 18:1n-9. No clear trend was observed in cell lipid content (R
2
 = 0.040; p 

= 0.533). Apart from increased proportions of TAG with the graded supplementation of the 

18:1n-9 (R
2
 = 0.934; p = 0.000), no other clear trends were observed in the lipid class data. 

The increment in TAG was balanced by decreasing proportions of cholesterol (R
2
 = 0.828; 

p = 0.000). 

 

Table 5.10. Lipid content and lipid class composition of CHSE-214 cells incubated with 20 µM 

LOA and increasing concentrations of 18:1n-9 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  300.0 ± 26.5
 

280.0 ± 60.8
 

286.7 ± 49.3
 

320.0 ± 10.0
 

0.040 0.533 

CC (%)        

PC 19.1 ± 1.2
 

19.8 ± 1.4
 

19.2 ± 1.7
 

18.2 ± 1.0
 

0.078 0.379 

PE 22.1 ± 0.0
 

20.2 ± 1.2
 

20.2 ± 0.4
 

20.1 ± 0.7
 

0.406 0.026 

PS 7.0 ± 0.7
 

7.0 ± 0.4
 

7.1 ± 0.2
 

6.9 ± 0.6
 

0.007 0.792 

PI 8.6 ± 1.1
 

9.2 ± 0.8
 

8.5 ± 0.2
 

8.4 ± 0.7
 

0.045 0.507 

PA/CL 2.4 ± 0.2
 

1.8 ± 0.1
 

2.6 ± 0.1
 

2.8 ± 0.1
 

0.333 0.050 

SM 2.7 ± 0.5
 

4.6 ± 0.2
 

4.0 ± 0.1
 

3.1 ± 0.2
 

0.008 0.776 

TP 61.9 ± 0.4
 

62.6 ± 1.1
 

61.6 ± 1.5 59.5 ± 0.8
 

0.419 0.023 

TN 38.1 ± 0.4
 

37.4 ± 1.1
 

38.4 ± 1.5
 

40.5 ± 0.8
 

0.419 0.023 

TAG 4.7 ± 0.5
 

7.4 ± 0.4
 

11.6 ± 1.0
 

13.4 ± 1.4
 

0.934 0.000 

CHOL 32.4 ± 0.9
 

28.8 ± 1.0
 

26.1 ± 0.5
 

26.0 ± 0.7
 

0.828 0.000 

FFA 1.0 ± 0.1
 

1.2 ± 0.1
 

0.7 ± 0.0
 

1.1 ± 0.3
 

0.016 0.694 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; LC = lipid content; CC = class composition; PC = phosphatidylcholine; 

PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 
 

Table 5.11 shows the FA composition of CHSE-214 cells after being incubated 

with 20 μM of LOA and graded increased concentrations of 18:1n-9. The percentage of 

ARA was unaffected with the graded supplementation of 18:1n-9 (R
2
 = 0.005; p = 0.829). 

Similar levels of LOA and 18:3n-6 were recorded in all treatments, without showing any 
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clear trends (R
2
 = 0.130; p = 0.250 and R

2
 = 0.201; p = 0.144, respectively), whereas the 

percentage of 20:3n-6 decreased with graded supplementation of 18:1n-9 (R
2
 = 0.782; p = 

0.000). The 18:1n-9 itself was incorporated with the graded supplementation of the FA (R
2
 

= 0.900; p = 0.000), and some was desaturated to 18:2n-9 (R
2
 = 0.857; p = 0.001). The 

increment of total MUFA was primarily balanced by decreased proportions SFA (R
2
 = 

0.873; p = 0.000). 

 

Table 5.11. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM LOA and 

increasing concentrations of 18:1n-9 

Fatty acid  20/20 µM  20/40 µM 20/60 µM  20/80 µM R
2
 P-value 

14:0 0.9 ± 0.0
 

0.9 ± 0.1
 

0.8 ± 0.0
 

0.8 ± 0.0
 

0.577 0.004 

15:0 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.158 0.200 

16:0 13.2 ± 0.7
 

11.2 ± 0.5
 

8.7 ± 0.5
 

7.7 ± 0.5
 

0.934 0.000 

17:0 0.7 ± 0.1 0.7 ± 0.1
 

0.5 ± 0.0
 

0.6 ± 0.0
 

0.400 0.027 

18:0 7.8 ± 0.6
 

6.3 ± 0.6
 

5.1 ± 0.5
 

4.7 ± 0.5
 

0.846 0.000 

22:0 0.3 ± 0.0
 

0.8 ± 0.1
 

0.9 ± 0.1
 

1.4 ± 0.0
 

0.884 0.000 

Ʃ SFA 23.1 ± 1.3
 

20.1 ± 1.2
 

16.2 ± 1.0
 

15.4 ± 0.7
 

0.873 0.000 

16:1n-9 3.5 ± 0.1
 

4.2 ± 0.1
 

4.4 ± 0.1
 

4.3 ± 0.4
 

0.505 0.010 

16:1n-7 1.9 ± 0.2
 

1.6 ± 0.0
 

1.2 ± 0.1
 

1.2 ± 0.2
 

0.828 0.000 

18:1n-9 36.2 ± 0.8
 

41.6 ± 0.4
 

46.1 ± 0.2
 

46.7 ± 0.1
 

0.900 0.000 

18:1n-7 2.2 ± 0.2
 

2.4 ± 0.2
 

1.9 ± 0.0
 

1.9 ± 0.2
 

0.366 0.037 

24:1n-9 0.6 ± 0.0
 

0.7 ± 0.1
 

0.5 ± 0.0
 

0.7 ± 0.1
 

0.114 0.282 

Ʃ MUFA 44.4 ± 0.8
 

50.5 ± 0.6
 

54.1 ± 0.2
 

54.8 ± 0.3
 

0.873 0.000 

18:2n-6 10.4 ± 0.5
 

9.1 ± 0.3
 

9.0 ± 0.4
 

9.6 ± 1.2
 

0.130 0.250 

18:3n-6 3.2 ± 0.2
 

2.8 ± 0.1
 

3.1 ± 0.3
 

2.7 ± 0.5
 

0.201 0.144 

20:2n-6*  0.6 ± 0.0
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.5 ± 0.1
 

0.451 0.017 

20:3n-6 4.1 ± 0.2
 

3.0 ± 0.0
 

2.6 ± 0.0
 

2.6 ± 0.2
 

0.782 0.000 

20:4n-6 2.9 ± 0.4
 

2.4 ± 0.2
 

2.6 ± 0.1
 

2.8 ± 0.2
 

0.005 0.829 

22:5n-6 0.2 ± 0.0
 

0.2 ± 0.0
 

0.1 ± 0.0
 

0.2 ± 0.0
 

0.440 0.019 

Ʃ n-6 PUFA 21.4 ± 1.1
 

18.1 ± 0.4
 

18.0 ± 0.8
 

18.4 ± 1.2
 

0.415 0.024 

20:5n-3 1.0 ± 0.1
 

0.7 ± 0.1
 

0.8 ± 0.1
 

0.7 ± 0.1
 

0.298 0.066 

22:5n-3 0.9 ± 0.0
 

0.8 ± 0.1
 

0.8 ± 0.1
 

0.8 ± 0.0
 

0.555 0.005 

22:6n-3 1.4 ± 0.1
 

1.3 ± 0.1
 

1.3 ± 0.1
 

1.2 ± 0.1
 

0.445 0.018 

Ʃ n-3 PUFA 3.3 ± 0.1
 

2.8 ± 0.3
 

2.9 ± 0.2
 

2.7 ± 0.1
 

0.542 0.006 

18:2n-9 4.6 ± 0.1
 

5.5 ± 0.2
 

6.0 ± 0.2
 

6.1 ± 0.2
 

0.857 0.000 

20:2n-9 2.7 ± 0.1
 

2.6 ± 0.0
 

2.2 ± 0.1
 

2.1 ± 0.3
 

0.719 0.000 

22:2n-9 0.5 ± 0.0
 

0.4 ± 0.0
 

0.6 ± 0.1
 

0.5 ± 0.0
 

0.069 0.410 

Ʃ n-9 PUFA  7.8 ± 0.2
 

8.5 ± 0.2
 

8.8 ± 0.1
 

8.7 ± 0.5
 

0.546 0.006 

       

Ʃ PUFA 32.5 ± 0.8
 

29.4 ± 0.7
 

29.7 ± 1.1
 

29.8 ± 0.7
 

0.391 0.030 

Footnotes: Results are expressed as means ± SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA 

= polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 

 

 



Olga Liliana Rubio Mejía   CHAPTER 5 

 142 

5.3.2.3. Supplementation with LOA in presence of increasing 16:0 and 18:1n-9 

Table 5.12 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with 20 μM of LOA and increasing concentrations of 

16:0+18:1n-9 mix (1:1). The cell lipid content did not show a clear trend and the results 

were not statistically significant (R
2
 = 0.010; p = 0.754). Lipid class data showed clear 

trends in the proportions of TAG (R
2
 = 0.541; p = 0.006) and PE (R

2
 = 0.687; p = 0.001), 

which both increased with the graded supplementation of 16:0+18:1n-9 mix. These 

increments were balanced by decreased cholesterol (R
2
 = 0.555; p = 0.005) and polar 

lipids, such as PI (R
2
 = 0.688; p = 0.001), and sphingomyelin (R

2
 = 0.650; p = 0.002).  

 

Table 5.12. Lipid content and lipid class composition of CHSE-214 cells incubated with 20 µM 

LOA and increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  316.7 ± 15.3
 

320.0 ± 17.3
 

410.0 ± 80.0
 

303.3 ± 25.2
 

0.010 0.754 

CC (%)       

PC 18.4 ± 0.3
 

19.7 ± 1.0
 

16.6 ± 1.1
 

17.6 ± 0.8
 

0.206 0.138 

PE 20.9 ± 0.6
 

21.3 ± 0.8
 

27.3 ± 0.4
 

25.9 ± 0.1
 

0.687 0.001 

PS 7.5 ± 0.4
 

7.1 ± 0.3
 

6.3 ± 0.3
 

7.0 ± 0.6
 

0.159 0.199 

PI 8.4 ± 0.4
 

9.3 ± 0.2
 

7.5 ± 0.2
 

4.3 ± 0.2
 

0.688 0.001 

PA/CL 2.5 ± 0.1
 

1.7 ± 0.1
 

1.5 ± 0.2
 

1.3 ± 0.1
 

0.378 0.033 

SM 2.6 ± 0.5
 

2.2 ± 0.2
 

2.8 ± 0.1
 

1.5 ± 0.0
 

0.650 0.002 

TP 60.3 ± 0.9
 

61.3 ± 1.2
 

62.0 ± 1.2
 

57.6 ± 0.7
 

0.205 0.139 

TN 39.7 ± 0.9
 

38.7 ± 1.2
 

38.0 ± 1.2
 

42.4 ± 0.7
 

0.205 0.139 

TAG 10.3 ± 0.5
 

10.3 ± 0.3
 

11.3 ± 1.1
 

16.6 ± 0.6
 

0.541 0.006 

CHOL 28.0 ± 0.5
 

27.2 ± 0.8
 

25.3 ± 0.5
 

24.4 ± 1.0
 

0.557 0.005 

FFA 1.4 ± 0.1
 

1.2 ± 0.1
 

1.4 ± 0.1
 

1.4 ± 0.0
 

0.079 0.377 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA = linoleic acid; LC = lipid content; CC = class composition; PC = phosphatidylcholine; 

PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; PA/CL = phosphatidic 

acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = triacylglycerol; CHOL = 

cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 cells after being incubated with 20 μM of LOA 

and graded concentrations of 16:0+18:1n-9 is shown in Table 5.13. Proportions of LOA 

(R
2
 = 0.672; p = 0.001), 18:3n-6 (R

2
 = 0.605; p = 0.003), 20:3n-6 (R

2
 = 0.967; p = 0.000) 
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and ARA (R
2
 = 0.883; p = 0.000) all decreased with the graded supplementation of the mix 

16:0+18:1n-9. There was graded incorporation of 16:0 and 18:1n-9 with the 

supplementation of the 16:0+18:1n-9 mix (R
2
 = 0.420; p = 0.023 and R

2
 = 0.796; p = 

0.000, respectively). The desaturation products of 16:0, i.e. 16:1n-9 and 16:1n-7 (R
2
 = 

0.899; p = 0.000 and R
2
 = 0.912; p = 0.000, respectively) and 18:1n-9, i.e. 18:2n-9 (R

2
 = 

0.714; p = 0.001) increased with the graded supplementation of 16:0+18:1n-9.    

 

Table 5.13. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM LOA and 

increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Fatty acid  20/20 µM 20/40 µM 20/60 µM 20/80 µM R
2
 P-value 

14:0 1.2 ± 0.1
 

1.1 ± 0.1
 

0.9 ± 0.1
 

0.7 ± 0.0
 

0.859 0.000 

15:0 0.3 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.145 0.222 

16:0 13.6 ± 0.6
 

14.5 ± 0.8
 

14.0 ± 0.5
 

15.6 ± 1.0
 

0.420 0.023 

17:0 0.6 ± 0.1
 

0.7 ± 0.1
 

0.8 ± 0.1
 

0.8 ± 0.0
 

0.607 0.003 

18:0 9.0 ± 0.3
 

8.5 ± 0.5
 

7.2 ± 0.2
 

5.6 ± 0.3
 

0.906 0.000 

22:0 0.8 ± 0.2
 

1.4 ± 0.1
 

1.8 ± 0.2
 

1.7 ± 0.1
 

0.645 0.002 

Ʃ SFA 25.5 ± 1.2
 

26.5 ± 1.3
 

25.0 ± 0.4
 

24.7 ± 1.4
 

0.148 0.217 

16:1n-9 2.8 ± 0.1
 

3.5 ± 0.0
 

3.9 ± 0.1
 

4.1  ± 0.3
 

0.899 0.000 

16:1n-7 1.5 ± 0.1
 

1.9 ± 0.0
 

2.4 ± 0.2
 

4.1 ± 0.1
 

0.912 0.000 

18:1n-9 24.0 ± 0.3
 

31.1 ± 0.5
 

32.9 ± 0.6
 

33.7 ± 1.1
 

0.796 0.000 

18:1n-7 2.2 ± 0.2
 

2.1 ± 0.1
 

2.0 ± 0.1
 

2.1 ± 0.0
 

0.293 0.069 

24:1n-9 0.6 ± 0.1
 

0.8 ± 0.1
 

0.8 ± 0.1
 

0.6 ± 0.1
 

0.000 0.973 

Ʃ MUFA 31.1 ± 0.6
 

39.4 ± 0.5
 

42.0 ± 0.3
 

44.6 ± 1.1
 

0.892 0.000 

18:2n-6 18.6 ± 1.0
 

13.9± 1.2
 

13.5 ± 0.3
 

13.4 ± 0.1
 

0.672 0.001 

18:3n-6 6.8 ± 0.5
 

4.1 ± 0.1
 

4.0 ± 0.1
 

3.6 ± 0.1
 

0.605 0.003 

20:2n-6*  0.6 ± 0.0
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.6 ± 0.0
 

0.019 0.668 

20:3n-6 5.9 ± 0.2
 

4.1 ± 0.0
 

3.2 ± 0.1
 

2.5 ± 0.1
 

0.967 0.000 

20:4n-6 3.3 ± 0.2
 

2.4 ± 0.3
 

2.0 ± 0.2
 

1.8 ± 0.1
 

0.883 0.000 

22:5n-6 0.4 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.637 0.002 

Ʃ n-6 PUFA 35.6 ± 1.8
 

25.3 ± 1.5
 

23.5 ± 0.4
 

22.1 ± 0.2
 

0.791 0.000 

20:5n-3 0.6 ± 0.0
 

0.7 ± 0.1
 

0.6 ± 0.1
 

0.6 ± 0.1
 

0.029 0.595 

22:5n-3 0.7 ± 0.0
 

0.7 ± 0.1
 

0.6 ± 0.1
 

0.5 ± 0.0
 

0.116 0.278 

22:6n-3 1.2 ± 0.0
 

1.2 ± 0.1
 

1.1 ± 0.1
 

1.1 ± 0.1
 

0.448 0.017 

Ʃ n-3 PUFA 2.5 ± 0.1
 

2.6 ± 0.3
 

2.3 ± 0.3
 

2.2 ± 0.0
 

0.224 0.120 

18:2n-9 3.3 ± 0.1
 

4.0 ± 0.2
 

4.7 ± 0.2
 

4.4 ± 0.2
 

0.714 0.001 

20:2n-9 1.8 ± 0.1
 

2.1 ± 0.2
 

2.2 ± 0.1
 

1.8 ± 0.2
 

0.000 0.984 

22:2n-9 0.2 ± 0.0
 

0.1 ± 0.0 0.3 ± 0.0
 

0.2 ± 0.0
 

0.157 0.203 

Ʃ n-9 PUFA 5.3 ± 0.1
 

6.2 ± 0.1
 

7.2 ± 0.2
 

6.4 ± 0.3
 

0.494 0.011 

       

Ʃ PUFA 43.4 ± 1.7
 

34.1 ± 1.8
 

33.0 ± 0.5
 

30.7 ± 0.3
 

0.796 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LOA =linoleic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA 

= polyunsaturated fatty acid; *contains 20:3n-9. 
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5.3.3. Effects of SFA and MUFA (lipid content) on the metabolism of EPA  

 

5.3.3.1. Supplementation with EPA in presence of increasing levels of 16:0  

Table 5.14 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with 20 µM of EPA and graded increased concentrations of 

16:0. The cell lipid content did not show a clear trend (R
2
 = 0.101; p = 0.314). In the lipid 

class data, there was a clear trend of increasing TAG with the supplementation of EPA at 

20 µM and graded concentrations of 16:0 (R
2
 = 0.670; p = 0.001).  

 

Table 5.14. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM EPA 

and increasing concentrations of 16:0 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  430.0 ± 17.3
 

330.0 ± 50.0
 

370.0 ± 50.0
 

370.0 ± 40.0
 

0.101 0.314 

CC (%)       

PC 25.3 ± 0.9
 

14.3 ± 0.9
 

13.0 ± 1.9
 

20.5 ± 1.5
 

0.108 0.297 

PE 26.9 ± 1.7
 

32.8 ± 1.0
 

37.0 ± 3.4
 

23.6 ± 1.5
 

0.017 0.684 

PS 5.5 ± 0.6
 

3.5 ± 0.3
 

3.5 ± 0.3
 

4.3 ± 0.5
 

0.189 0.158 

PI 8.9 ± 0.6
 

9.4 ± 1.0
 

10.7 ± 1.2
 

6.3 ± 1.2
 

0.181 0.169 

PA/CL 1.5 ± 0.2
 

2.0 ± 0.4
 

1.5 ± 0.7
 

1.2 ± 0.1
 

0.140 0.231 

SM 4.2 ± 1.1
 

2.9 ± 0.2
 

2.7 ± 0.5
 

1.8 ± 0.6
 

0.658 0.001 

TP 72.3 ± 3.2
 

64.9 ± 1.7
 

68.4 ± 4.0
 

57.7 ± 0.1
 

0.597 0.003 

TN 27.7 ± 3.2
 

35.1 ± 1.7
 

31.6 ± 4.0
 

42.3 ± 0.1
 

0.597 0.003 

TAG 3.1 ± 0.2
 

6.0 ± 0.9
 

6.7 ± 1.0
 

8.3 ± 0.4
 

0.670 0.001 

CHOL 23.5 ± 1.6
 

26.0 ± 0.2
 

23.2 ± 3.2
 

33.1 ± 0.5
 

0.453 0.016 

FFA 1.1 ± 0.3
 

3.1 ± 0.6
 

1.7 ± 0.2
 

0.9 ± 0.0
 

0.076 0.387 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids. 

 

The FA composition of CHSE-214 cells incubated with 20 µM of EPA and graded 

increased concentrations of 16:0 is presented in Table 5.15. FA were in the following rank 

order: MUFA > PUFA > SFA. The EPA itself was greatly incorporated (R
2
 = 0.593; p = 

0.003), increasing from concentration 20/20 µM to 20/60 µM, and then decreased with 
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concentration 20/60 µM to 20/80 µM, whereas percentages of DHA and 22:5n-3 decreased 

with the graded supplementation of 16:0 (R
2
 = 0.620; p = 0.002 and R

2
 = 0.849; p = 0.000, 

respectively). The 16:0 was incorporated with the graded supplementation of the FA itself 

(R
2
 = 0.739; p = 0.000) and some of the 16:0 was desaturated to 16:1n-7 (R

2
 = 0.967; p = 

0.000). 

 
Table 5.15. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM EPA and 

increasing concentrations of 16:0 

Fatty acid 20/20 µM 20/40 µM 20/60 µM 20/80 µM R
2
 P-value 

14:0 1.0  ± 0.1
 

1.0  ± 0.0
 

1.1  ± 0.0
 

1.0  ± 0.1
 

0.005 0.832 

15:0 0.2 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.1
 

0.3 ± 0.1
 

0.248 0.099 

16:0 13.9 ± 0.4
 

14.3 ± 0.4
 

15.9 ± 0.5
 

15.7 ± 0.1
 

0.739 0.000 

17:0 0.7 ±0.1
 

0.3 ± 0.0
 

0.5 ± 0.1
 

0.3 ± 0.0
 

0.343 0.046 

18:0 8.8 ± 0.3
 

8.3 ± 0.4
 

8.5 ± 0.7
 

7.3 ± 0.3
 

0.533 0.007 

20:0 ND ND ND ND - - 

22:0 0.3 ± 0.0
 

0.2 ± 0.0
 

0.3 ± 0.1
 

0.3 ± 0.0
 

0.097 0.325 

Ʃ SFA 24.9 ± 0.7
 

24.4 ± 0.8
 

26.7 ± 1.3
 

24.9 ± 0.3
 

0.054 0.468 

16:1n-9 2.5 ± 0.1
 

2.7 ± 0.0
 

2.4 ± 0.2
 

2.8 ± 0.3
 

0.040 0.531 

16:1n-7 2.4 ± 0.1
 

3.5 ± 0.1
 

4.8 ± 0.6
 

6.8 ± 0.3
 

0.967 0.000 

18:1n-9 32.1 ± 0.6
 
 31.2 ± 0.7 29.7 ± 1.2 29.4 ± 0.4

 
 0.715 0.001 

18:1n-7 2.1 ± 0.0
 

2.7 ± 0.1
 

2.6 ± 0.4
 

2.7 ± 0.1
 

0.396 0.028 

24:1n-9 0.8 ± 0.2
 

0.8 ± 0.2
 

0.8 ± 0.2
 

0.8 ± 0.0
 

0.017 0.685 

Ʃ MUFA 39.9 ± 0.5
 

40.9 ± 0.6
 

40.3 ± 0.8
 

42.5 ± 0.1
 

0.544 0.006 

18:2n-6 2.7 ± 0.1
 

2.6 ± 0.1
 

2.4 ± 0.1
 

2.4 ± 0.0
 

0.628 0.002 

18:3n-6 0.4 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.124 0.262 

20:2n-6*  0.5 ± 0.1
 

0.6 ± 0.1
 

0.4 ± 0.0
 

0.5 ± 0.0
 

0.256 0.093 

20:3n-6 1.5 ± 0.0
 

1.4 ± 0.1
 

1.3 ± 0.1
 

1.4 ± 0.1
 

0.339 0.047 

20:4n-6 1.6 ± 0.2
 

1.4 ± 0.1
 

1.2 ± 0.2
 

1.5 ± 0.1
 

0.079 0.375 

22:5n-6 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.1 ± 0.0
 

0.327 0.052 

Ʃ n-6 PUFA 6.9 ± 0.1
 

6.6 ±0.2
 

5.9 ± 0.3
 

6.3 ± 0.1
 

0.486 0.012 

18:3n-3 0.1 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.089 0.346 

18:4n-3 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.1
 

0.1 ± 0.0
 

0.069 0.409 

20:4n-3 0.3 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.1 ± 0.0
 

0.884 0.000 

20:5n-3 16.0 ± 0.4
 

17.4 ± 0.7
 

18.1 ± 0.1
 

17.9 ± 0.4
 

0.593 0.003 

22:5n-3 4.4 ± 0.5
 

2.8 ± 0.2
 

1.9 ± 0.3
 

1.8 ± 0.0
 

0.849 0.000 

22:6n-3 1.2 ± 0.0
 

1.1 ± 0.0
 

1.0 ± 0.1
 

1.0 ± 0.0
 

0.620 0.002 

Ʃ n-3 PUFA 22.2 ± 0.5
 

22.0 ± 0.9
 

21.6 ± 0.3
 

21.1 ± 0.3
 

0.430 0.021 

18:2n-9 2.9 ± 0.0
 

2.9 ± 0.0
 

2.6 ± 0.4
 

2.7 ± 0.0
 

0.217 0.127 

20:2n-9 3.2 ± 0.2
 

3.2 ± 0.2
 

2.9 ± 0.2
 

2.5 ± 0.1
 

0.715 0.001 

Ʃ n-9 PUFA 6.1 ± 0.2
 

6.1 ± 0.1
 

5.5 ± 0.2
 

5.2 ± 0.0
 

0.834 0.000 

       

Ʃ PUFA 35.2 ± 0.5
 

34.7 ± 1.0
 

33.2 ± 0.8
 

32.6 ± 0.3
 

0.742 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty 

acid; PUFA = polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 
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5.3.3.2. Supplementation with EPA in presence of increasing levels of 18:1n-9  

 The lipid content and the lipid class composition of CHSE-214 cells after being 

incubated with 20 µM of EPA and graded increased concentrations of 18:1n-9 are shown 

in Table 5.16. Cell lipid content was similar at all concentrations of FA supplemented, 

without showing any clear trend (R
2
 = 0.081; p = 0.370). In the lipid class data, there was 

increased cellular TAG with the graded supplementation of 18:1n-9 (R
2
 = 0.794; p = 

0.000). The increment in TAG was balanced by decreasing proportions of some polar 

lipids, i.e. PC (R
2
 = 0.469; p = 0.014) and PA/CL (R

2
 = 0.634; p = 0.002).   

 

Table 5.16. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM EPA 

and increasing concentrations of 18:1n-9 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  256.7 ± 25.2
 

270.0 ± 26.5
 

250.0 ± 50.0
 

290.0 ± 26.5
 

0.081 0.370 

CC (%)       

PC 23.6 ± 0.5
 

21.9 ± 1.8
 

22.3 ± 0.5
 

21.0 ± 0.2
 

0.469 0.014 

PE 18.5 ± 0.6
 

15.7 ± 0.2
 

17.6 ± 0.9
 

17.0 ± 0.8
 

0.065 0.422 

PS 4.6 ± 0.2
 

3.9 ± 0.0
 

4.9 ± 0.2
 

3.2 ± 0.4
 

0.291 0.070 

PI 8.8 ± 0.6
 

7.6 ± 0.2
 

8.6 ± 0.1
 

7.0 ± 0.1
 

0.381 0.033 

PA/CL 2.2 ± 0.4
 

1.6 ± 0.1
 

1.4 ± 0.2
 

1.4 ± 0.1
 

0.634 0.002 

SM 2.6 ± 0.2
 

4.3 ± 0.4
 

5.9 ± 0.6
 

4.6 ± 0.1
 

0.533 0.007 

TP 60.3 ± 1.5
 

55.0 ± 2.3
 

60.7 ± 1.8
 

54.2 ± 0.8
 

0.185 0.163 

TN 39.7 ± 1.5
 

45.0 ± 2.3
 

39.3 ± 1.8
 

45.8 ± 0.8
 

0.185 0.163 

TAG 9.8 ± 1.0
 

17.0 ± 1.6
 

17.2 ± 1.0
 

20.6 ± 0.2
 

0.794 0.000 

CHOL 27.9 ± 0.9
 

25.4 ± 0.6
 

19.6 ± 0.6
 

22.2 ± 0.4
 

0.628 0.002 

FFA 2.0 ± 0.3
 

2.6 ± 0.5
 

2.5 ± 0.7
 

3.0 ± 0.4
 

0.409 0.025 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids. 

 

 

Table 5.17 shows the FA composition of CHSE-214 cells after being incubated 

with 20 µM of EPA and graded increased concentrations of 18:1n-9. The levels of DHA 

and, to a greater extent 22:5n-3, decreased with the graded supplementation of 18:1n-9 (R
2
 

= 0.438; p = 0.019 and R
2
 = 0.913; p = 0.000, respectively). The supplementation of 18:1n-
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9 did not affect the cellular proportions of EPA, that were essentially the same at all 

concentrations (R
2
 = 0.147; p = 0.219). The 18:1n-9 was incorporated with the graded 

supplementation of the FA itself (R
2
 = 0.948; p = 0.000) and the increment in total MUFA 

was balanced by reduced proportions of total SFA (R
2
 = 0.841; p = 0.000) and n-3 PUFA 

(R
2
 = 0.975; p = 0.000).  

 

Table 5.17. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM EPA and 

increasing concentrations of 18:1n-9 

Fatty acid  20/20 µM  20/40 µM 20/60 µM  20/80 µM R
2
 P-value 

14:0 1.3 ± 0.1
 

0.9 ± 0.0
 

0.8 ± 0.0
 

0.6 ± 0.1 0.897 0.000 

15:0 0.4 ± 0.1
 

0.4 ± 0.1
 

0.4 ± 0.1
 

0.3 ± 0.0 0.382 0.032 

16:0 10.1 ± 0.1
 

6.8 ± 0.3
 

6.8 ± 0.5
 

5.8 ± 0.5 0.775 0.000 

17:0 0.6 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.1
 

0.2 ± 0.0 0.680 0.001 

18:0 7.3 ± 0.2
 

5.8 ± 0.3
 

5.5 ± 0.2
 

4.9 ± 0.3 0.861 0.000 

20:0 0.4 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0 0.742 0.000 

22:0 0.6 ± 0.1
 

0.8 ± 0.2
 

1.0 ± 0.1
 

0.7 ± 0.0 0.100 0.316 

Ʃ SFA 20.7 ± 0.3
 

15.4 ± 0.8
 

15.2 ± 0.6
 

12.8 ± 0.6 0.841 0.000 

16:1n-9 3.3 ± 0.1
 

3.5 ± 0.0 3.9 ± 0.3
 

4.3 ± 0.3 0.805 0.000 

16:1n-7 1.4 ± 0.2
 

0.9 ± 0.0
 

0.9 ± 0.0
 

0.9 ± 0.0 0.534 0.007 

18:1n-9 33.8 ± 0.6
 

41.2 ± 1.1
 

43.7 ± 0.1
 

48.4 ± 1.0 0.948 0.000 

18:1n-7 1.6 ± 0.2
 

1.3 ± 0.0
 

1.4 ± 0.2
 

1.2 ± 0.1 0.537 0.007 

24:1n-9 0.7 ± 0.0
 

0.6 ± 0.0
 

0.7 ± 0.0
 

0.6 ± 0.0 0.107 0.299 

Ʃ MUFA 40.8 ± 0.6
 

47.5 ± 1.1
 

50.6 ± 0.2
 

55.4 ± 0.7 0.968 0.000 

18:2n-6 2.5 ± 0.1
 

3.0 ± 0.1 2.3 ± 0.2
 

2.4 ± 0.2 0.191 0.155 

18:3n-6 0.3 ± 0.0
 

0.3 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0 0.447 0.017 

20:2n-6*  1.8 ± 0.1
 

1.8 ± 0.2
 

1.8 ± 0.2
 

1.4 ± 0.2 0.134 0.242 

20:3n-6 1.3 ± 0.2
 

1.9 ± 0.2
 

1.7 ± 0.0
 

1.2 ± 0.2 0.001 0.914 

20:4n-6 1.3 ± 0.1
 

1.2 ± 0.0
 

1.1 ± 0.1
 

1.2 ± 0.1 0.466 0.014 

Ʃ n-6 PUFA 7.2 ± 0.1
 

8.2 ± 0.4
 

7.3 ± 0.5
 

6.6 ± 0.3 0.242 0.104 

18:3n-3 0.2 ± 0.0
 

ND
 

ND
 

ND - - 

18:4n-3 0.3 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0 0.256 0.093 

20:4n-3 0.5 ± 0.0
 

0.3 ± 0.0
 

ND
 

ND - - 

20:5n-3 19.5 ± 0.3
 

20.8 ± 0.2
 

19.8 ± 0.2
 

19.1 ± 0.2 0.147 0.219 

22:5n-3 6.5 ± 0.9
 

3.8 ± 0.3
 

3.1 ± 0.2
 

2.1 ± 0.2 0.913 0.000 

22:6n-3 1.2 ± 0.0
 

1.0 ± 0.0
 

1.1 ± 0.1
 

1.0 ± 0.1 0.438 0.019 

Ʃ n-3 PUFA 28.2 ± 0.7
 

26.2 ± 0.4
 

24.3 ± 0.3
 

22.5 ± 0.2 0.975 0.000 

18:2n-9 2.2 ± 0.1
 

2.2 ± 0.0
 

2.2 ± 0.0
 

2.3 ± 0.1 0.210 0.135 

20:2n-9 0.9 ± 0.2
 

0.5 ± 0.1
 

0.4 ± 0.0
 

0.4 ± 0.0 0.618 0.002 

Ʃ n-9 PUFA 3.1 ± 0.1
 

2.7 ± 0.1
 

2.6 ± 0.1
 

2.7 ± 0.1 0.475 0.013 

       

Ʃ PUFA 38.5± 0.5 37.1 ± 0.3 34.2 ± 0.5
 

31.8 ± 0.3 0.964 0.000 

Footnotes: Results are expressed as mean ± 1SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty 

acid; PUFA = polyunsaturated fatty acid; ND = not detected; *contains 20:3n-9. 
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5.3.3.3. Supplementation with EPA in presence of increasing levels of a 1:1 mix of 16:0 

and 18:1n-9 combined  

Table 5.18 shows the cell lipid content and the lipid class composition of CHSE-

214 cells after being incubated with 20 µM of EPA and graded increased concentrations of 

16:0+18:1n-9 mix. The cell lipid content did not show a clear trend (R
2
 = 0.005; p = 

0.831). In the lipid class data, TAG increased with the graded supplementation of 

16:0+18:1n-9, but the results were not statistically significant (R
2
 = 0.220; p = 0.124); this 

increment in TAG was balanced by decreasing percentages of PC (R
2
 = 0.821; p = 0.000).  

  

Table 5.18. Lipid contents and class compositions of CHSE-214 cells incubated with 20 µM EPA 

and increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Lipid 20/20 µM   20/40 µM  20/60 µM  20/80 µM  R
2
 P-value 

LC (µg)  293.3 ± 5.8
 

290.0 ± 10.0
 

323.3 ± 20.8
 

286.7 ± 30.6
 

0.005 0.831 

CC (%)       

PC 27.1 ± 2.3
 

25.2 ± 1.2
 

19.4 ± 0.9
 

18.5 ± 1.6
 

0.821 0.000 

PE 22.1 ± 1.4
 

22.0 ± 0.6
 

23.2 ± 1.1
 

18.7 ± 0.1
 

0.289 0.072 

PS 5.9 ± 0.2
 

6.2 ± 0.4
 

6.8 ± 0.6
 

5.8 ± 0.3
 

0.007 0.803 

PI 7.2 ± 0.6
 

6.1 ± 0.4
 

8.5 ± 0.6
 

6.2 ± 1.1
 

0.008 0.776 

PA/CL 1.0 ± 0.1 3.0 ± 0.2
 

2.9 ± 0.1
 

2.2 ± 0.2
 

0.245 0.102 

SM 4.2 ± 0.1
 

5.3 ± 0.5
 

4.1 ± 0.2
 

4.8 ± 0.6
 

0.108 0.296 

TP 67.5 ± 1.7
 

67.8 ± 2.6
 

64.9 ± 1.3
 

56.2 ± 1.6
 

0.663 0.001 

TN 32.5 ± 1.7
 

32.2 ± 2.6
 

35.1 ± 1.3
 

43.8 ± 1.6
 

0.663 0.001 

TAG 6.3 ± 0.8
 

6.5 ± 0.2
 

9.4 ± 0.6
 

17.3 ± 0.7
 

0.220 0.124 

CHOL 24.7 ± 1.1
 

24.2 ± 2.4
 

24.2 ± 0.5
 

24.8 ± 1.0
 

0.532 0.007 

FFA 1.5 ± 0.2
 

1.5 ± 0.3
 

1.5 ± 0.1
 

1.7 ± 0.4
 

0.519 0.008 

Footnotes: Results are expressed as mean ± 1 SD (n=3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic; LC = lipid content; CC = class composition; PC = 

phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = phosphatidylinositol; 

PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = total neutral; TAG = 

triacylglycerol; CHOL = cholesterol; FFA = free fatty acids. 

 

The FA profile of CHSE-214 cells incubated with 20 μM EPA and graded 

increased concentrations of the 16:0+18:1n-9 mix is presented in Table 5.19. In all 

treatments the proportions of the main FA groups were in the following order: MUFA > 

PUFA > SFA. The levels of DHA and 22:5n-3 decreased (R
2
 = 0.426; p = 0.021 and R

2
 = 
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0.934; p = 0.000) and EPA increased (R
2
 = 0.658; p = 0.001) with the graded 

supplementation of 16:0+18:1n-9. The proportions of 16:0 were the same in all treatments 

(R
2
 = 0.006; p = 0.808), whereas 18:1n-9 slightly increased with the graded 

supplementation of 16:0+18:1n-9 (R
2
 = 0.758; p = 0.000). Some of 16:0 was further 

desaturated to 16:1n-9 (R
2
 = 0.333; p = 0.049) and to a lesser extent to 16:1n-7 (R

2
 = 

0.867; p = 0.000).  

 

Table 5.19. Fatty acid compositions (%) of CHSE-214 cells incubated with 20 µM EPA and 

increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Fatty acid  20/20 µM  20/40 µM 20/60 µM  20/80 µM R
2
 P-value 

14:0 0.9 ± 0.0
 

0.9 ± 0.1
 

0.9 ± 0.1
 

0.8 ± 0.0
 

0.315 0.058 

15:0 0.4 ± 0.0
 

0.5 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.1
 

0.276 0.079 

16:0 14.2 ± 0.3
 

13.9 ± 0.6
 

14.3 ± 0.3
 

14.2 ± 0.9
 

0.006 0.808 

17:0 0.8 ± 0.1
 

0.8 ± 0.0
 

0.7 ± 0.1
 

0.8 ± 0.0
 

0.141 0.230 

18:0 8.5 ± 0.5
 

8.3 ± 0.2
 

7.7 ± 0.2
 

6.2 ± 0.2
 

0.796 0.000 

22:0 0.6 ± 0.1
 

0.6 ± 0.1
 

0.8 ± 0.0
 

0.3 ± 0.0
 

0.159 0.199 

Ʃ SFA 25.4 ± 0.4
 

25.0 ± 0.7
 

24.7 ± 0.4
 

22.6 ± 1.0
 

0.630 0.002 

16:1n-9 2.9 ± 0.0
 

3.1 ± 0.1
 

3.4 ± 0.2
 

3.1 ± 0.2
 

0.333 0.049 

16:1n-7 1.8 ± 0.0
 

2.3 ± 0.1
 

2.7 ± 0.1
 

2.8 ± 0.2
 

0.867 0.000 

18:1n-9 33.3 ± 0.3
 

32.8 ± 0.1
 

34.9 ± 0.7
 

36.2 ± 0.6
 

0.758 0.000 

18:1n-7 2.5 ± 0.1
 

2.2 ± 0.3
 

2.3 ± 0.1
 

2.0 ± 0.3
 

0.479 0.013 

24:1n-9 0.8 ± 0.2
 

0.8 ± 0.1
 

0.9 ± 0.1
 

0.8 ± 0.1
 

0.002 0.902 

Ʃ MUFA 41.3 ± 0.3
 

41.2 ± 0.5
 

44.2 ± 0.5
 

44.9 ± 1.0
 

0.774 0.000 

18:2n-6 3.1 ± 0.1
 

3.4 ± 0.1
 

2.9 ± 0.3
 

2.9 ± 0.3
 

0.230 0.114 

18:3n-6 0.2 ± 0.0
 

0.3 ± 0.0
 

0.5 ± 0.0
 

0.4 ± 0.1
 

0.525 0.008 

20:2n-6* 0.4 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.1
 

0.4 ± 0.0
 

0.171 0.182 

20:3n-6 1.4 ± 0.1
 

1.3 ± 0.1
 

1.3 ± 0.0
 

1.3 ± 0.1
 

0.247 0.100 

20:4n-6 1.6 ± 0.1
 

1.5 ± 0.2
 

1.4 ± 0.0
 

1.3 ± 0.0
 

0.184 0.164 

22:5n-6 0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.472 0.014 

Ʃ n-6 PUFA 6.9 ± 0.2
 

7.1 ± 0.5
 

6.7 ± 0.4
 

6.5 ± 0.2
 

0.246 0.101 

18:4n-3 0.2 ± 0.0
 

0.1 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.107 0.300 

20:4n-3 0.4 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.2 ± 0.0
 

0.786 0.000 

20:5n-3 13.9 ± 0.2
 

16.8 ± 0.4
 

15.6 ± 0.3
 

18.1 ± 0.2
 

0.658 0.001 

22:5n-3 5.8 ± 0.2
 

3.9 ± 0.3
 

2.8 ± 0.1
 

2.4 ± 0.0
 

0.934 0.000 

22:6n-3 1.3 ± 0.1
 

1.2 ± 0.2
 

1.0 ± 0.0
 

1.0 ± 0.0
 

0.426 0.021 

Ʃ n-3 PUFA 21.6 ± 0.2
 

22.2 ± 0.3
 

19.8 ± 0.4
 

21.9 ± 0.1
 

0.027 0.608 

18:2n-9 2.4 ± 0.2
 

2.4 ± 0.2
 

2.3 ± 0.0
 

2.3 ± 0.0
 

0.115 0.281 

20:2n-9 2.2 ± 0.1
 

1.8 ± 0.1
 

2.0 ± 0.2
 

1.6 ± 0.2
 

0.395 0.029 

22:2n-9 0.2 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.202 0.143 

Ʃ n-9 PUFA 4.8 ± 0.2
 

4.5 ± 0.2
 

4.6 ± 0.2
 

4.1 ± 0.3
 

0.456 0.016 

        

Ʃ PUFA 33.3 ± 0.3
 

33.8 ± 0.7
 

31.1 ± 0.6
 

32.5 ± 0.4
 

0.240 0.106 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = monounsaturated fatty 

acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 
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5.3.4. Effects of SFA and MUFA (lipid) on the metabolism of supplemented LNA and 

EPA combined 

 

5.3.4.1. Supplementation with LNA and EPA in presence of increasing levels of 16:0  

Table 5.20 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with LNA+EPA (20/20 μM) and graded concentrations of 16:0. 

Cell lipid content decreased with the graded supplementation of 16:0, but results were not 

statistically significant (R
2
 = 0.413; p = 0.062). The lipid class data showed increased TAG 

(R
2
 = 0.078; p = 0.468), PE (R

2
 = 0.763; p = 0.002), and SM (R

2
 = 0.802; p = 0.001) with 

the graded supplementation of 16:0, although the data for TAG were not statistically 

significant.  

 
Table 5.20. Lipid contents and class compositions of CHSE-214 cells incubated with 40 µM of 

LNA and EPA (1:1) and increasing concentrations of 16:0 

Lipid 40/20 µM   40/40 µM  40/60 µM  R
2
 P-value 

LC (µg)  336.7 ± 20.8
 

330.0 ± 10.0 256.7 ± 37.9
 

0.413 0.062 

CC (%)      

PC 21.4 ± 0.5
 

21.0 ± 0.6 21.1 ± 0.1
 

0.056 0.538 

PE 20.2 ± 0.4
 

21.8 ± 0.9 22.5 ± 0.1 
 

0.763 0.002 

PS 10.5 ± 0.5
 

7.1 ± 0.3
 

6.9 ± 0.3
 

0.202 0.225 

PI 8.6 ± 0.6
 

8.6 ± 0.1 8.5 ± 0.0
 

0.418 0.060 

PA/CL 1.3 ± 0.2
 

1.7 ± 0.1 1.1 ± 0.3 
 

0.069 0.496 

SM 6.3 ± 0.3
 

6.9 ± 0.4 7.7 ± 1.3
 

0.802 0.001 

TP 68.3 ± 0.8
 

67.1 ± 1.5 67.8 ± 1.3
 

0.685 0.006 

TN 31.7 ± 0.8
 

32.9 ± 1.5 32.2 ± 0.8
 

0.685 0.006 

TAG 8.1 ± 1.9
 

9.1 ± 1.3 11.7 ± 0.5
 

0.078 0.468 

CHOL 21.3 ± 1.5
 

21.7 ± 0.3 18.6 ± 0.6 
 

0.492 0.035 

FFA 2.3 ± 0.3
 

2.1 ± 0.2 1.9 ± 0.5
 

0.174 0.264 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

 

Table 5.21 shows the FA profile of CHSE-214 cells after being incubated with 

LNA+EPA (20/20 μM) and graded concentrations of 16:0. The level of DHA was 
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unaffected with the supplementation of 16:0, being similar in all treatments (R
2
 = 0.384; p 

= 0.075), whereas the percentage of 22:5n-3 decreased with the graded supplementation of 

16:0 (R
2
 = 0.745; p = 0.003).  

 

Table 5.21. Fatty acid compositions (%) of CHSE-214 cells incubated with 40 µM of LNA and 

EPA (1:1) and increasing concentrations of 16:0 

Fatty acid  40/20 µM  40/40 µM 40/60 µM R
2
 P-value 

14:0 1.2 ± 0.1
 

1.1 ± 0.2
 

1.2 ± 0.1
 

0.014 0.758 

15:0 0.3 ± 0.0
 

0.4 ± 0.0
 

0.4 ± 0.0
 

0.143 0.316 

16:0 14.3 ± 0.7
 

14.3 ± 0.5
 

14.9 ± 0.3
 

0.226 0.196 

17:0 0.9 ± 0.1
 

1.1 ± 0.1
 

1.0 ± 0.0
 

0.272 0.150 

18:0 9.8 ± 0.3
 

9.7 ± 0.3
 

9.4 ± 0.8
 

0.159 0.288 

22:0 0.5 ± 0.1
 

0.4 ± 0.1
 

0.8 ± 0.1
 

0.332 0.104 

ƩSFA 27.0 ± 1.2
 

27.0 ± 1.0
 

27.7 ± 0.7
 

0.103 0.400 

16:1n-9 2.3 ± 0.2
 

2.1 ± 0.1
 

1.7 ± 0.1
 

0.776 0.002 

16:1n-7 2.3 ± 0.3
 

2.4 ± 0.2
 

2.8 ± 0.4
 

0.384 0.075 

18:1n-9 25.6 ± 0.8
 

23.6 ± 0.6
 

27.9 ± 0.5
 

0.272 0.150 

18:1n-7 2.8 ± 0.2
 

2.9 ± 0.1
 

3.1 ± 0.1
 

0.544 0.023 

24:1n-9 0.7 ± 0.1
 

0.7 ± 0.1
 

0.7 ± 0.0
 

0.001 0.927 

ƩMUFA 33.7 ± 1.0
 

31.7 ± 0.5
 

36.2 ± 0.1
 

0.298 0.129 

18:2n-6 3.6 ± 0.1
 

4.2 ± 0.3
 

3.5 ± 0.5
 

0.039 0.611 

18:3n-6 0.2 ± 0.0
 

0.3 ± 0.0
 

0.4 ± 0.0
 

0.933 0.000 

20:2n-6*  0.4 ± 0.0
 

0.4 ± 0.1
 

0.4 ± 0.0
 

0.078 0.467 

20:3n-6 1.5 ± 0.2
 

1.2 ± 0.1
 

1.1 ± 0.3
 

0.476 0.040 

20:4n-6 1.6 ± 0.2
 

1.3 ± 0.2
 

1.3 ± 0.0
 

0.419 0.060 

Ʃ n-6 PUFA 7.3 ± 0.5
 

7.4 ± 0.4
 

6.7 ± 0.4
 

0.276 0.276 

18:3n-3 2.9 ± 0.3
 

3.1 ± 0.3
 

3.5 ± 0.3
 

0.255 0.166 

18:4n-3 2.0 ± 0.1
 

1.6 ± 0.1
 

2.0 ± 0.1
 

0.000 0.981 

20:4n-3 1.5 ± 0.2
 

1.1 ± 0.1
 

1.1 ± 0.1
 

0.473 0.041 

20:5n-3 14.7 ± 0.4
 

17.7 ± 0.1
 

14.3 ± 0.5
 

0.012 0.780 

22:5n-3 5.4 ± 0.1
 

5.3 ± 0.4
 

3.6 ± 0.2
 

0.745 0.003 

22:6n-3 2.1 ± 0.4
 

1.8 ± 0.3
 

2.0 ± 0.0
 

0.384 0.075 

Ʃ n-3 PUFA 28.6 ± 1.3
 

30.6 ± 0.7
 

26.5 ± 0.5
 

0.217 0.207 

18:2n-9 2.2 ± 0.1
 

2.1 ± 0.2
 

1.7 ± 0.2
 

0.628 0.011 

20:2n-9 1.2 ± 0.1
 

1.2 ± 0.1
 

1.2 ± 0.1
 

0.010 0.799 

Ʃ n-9 PUFA 3.4 ± 0.2
 

3.3 ± 0.3
 

2.9 ± 0.2
 

0.529 0.026 

      

Ʃ PUFA 39.3 ± 1.7
 

41.3 ± 1.5
 

36.1 ± 0.6
 

0.304 0.124 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 

 

 

The incorporation of EPA did not show a clear trend (R
2
 = 0.012; p = 0.780) and 

the incorporation of LNA increased with the graded supplementation of 16:0, but results 

were not statistically significant (R
2
 = 0.255; p = 0.166). There was no effect on 
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proportions of cellular 16:0 as results were not statistically significant (R
2
 = 0.226; p = 

0.196). Some of the supplemented 16:0 was desaturated to 16:1n-7 (R
2
 = 0.384; p = 0.075). 

 

5.3.4.2. Supplementation with LNA and EPA in presence of increasing levels of 18:1n-9 

Table 5.22 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with LNA+EPA (20/20 μM) and graded increased 

concentrations of 18:1n-9. The cell lipid content increased with the graded 

supplementation of 18:1n-9, although results were not statistically significant (R
2
 = 0.072; 

p = 0.486). In the lipid class data, percentages of TAG (R
2
 = 0.936; p = 0.000), PE (R

2
 = 

0.896; p = 0.000) and PS (R
2
 = 0.878; p = 0.000) increased with the graded 

supplementation of 18:1n-9. The increments in TAG and PE were balanced by decreased 

proportions of cholesterol (R
2
 = 0.991; p = 0.000). 

 
Table 5.22. Lipid contents and class compositions of CHSE-214 cells incubated with 40 µM of 

LNA and EPA (1:1) and increasing concentrations of 18:1n-9 

Lipid 40/20 µM   40/40 µM  40/60 µM  R
2
 P-value 

LC (µg)  236.7 ± 37.9
 

243.3 ± 32.1
 

253.3 ± 15.3
 

0.072 0.486 

CC (%)      

PC 21.6 ± 0.8
 

21.3 ± 1.1
 

21.7 ± 0.7
 

0.000 0.960 

PE 23.1 ± 0.5
 

26.1 ± 0.5
 

27.7 ± 0.9
 

0.896 0.000 

PS 5.5 ± 0.1
 

7.5 ± 0.2
 

8.0 ± 0.2
  

0.878 0.000 

PI 3.8 ± 0.1
 

4.3 ± 0.2
 

4.8 ± 0.5
 

0.729 0.003 

PA/CL 2.2 ± 0.1
 

1.5 ± 0.1
 

2.0 ± 0.3
 

0.032 0.644 

SM 1.2 ± 0.2
 

0.9 ± 0.1
 

1.7 ± 0.2
 

0.285 0.139 

TP 57.4 ± 0.9
 

61.6 ± 0.5
 

65.9 ± 0.5
 

0.977 0.000 

TN 42.6 ± 0.9
 

38.4 ± 0.5
 

34.1 ± 0.5
 

0.977 0.000 

TAG 3.7 ± 0.4
 

6.1 ± 0.2
 

7.5 ± 0.2
 

0.936 0.000 

CHOL 37.2 ± 0.6
 

30.1 ± 0.8
 

24.0 ± 0.3
 

0.991 0.000 

FFA 1.7 ± 0.2
 

2.2 ± 0.2
 

2.6 ± 0.2
 

0.800 0.001 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 
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The FA profile of CHSE-214 cells after being incubated with LNA+EPA (20/20 

μM) and graded increased concentrations of 18:1n-9 is shown in Table 5.23. Proportions of 

DHA (R
2
 = 0.823; p = 0.001), 22:5n-3 (R

2
 = 0.823; p = 0.001), EPA (R

2
 = 0.823; p = 

0.001) and LNA (R
2
 = 0.823; p = 0.001) all decreased with the graded supplementation of 

18:1n-9, as well as 18:4n-3 (R
2
 = 0.123; p = 0.356) and 20:4n-3 (R

2
 = 0.344; p = 0.097), 

although the latter two were not statistically significant. The 18:1n-9 was incorporated with 

the graded supplementation of the FA (R
2
 = 0.932; p = 0.000). 

 

Table 5.23. Fatty acid compositions (%) of CHSE-214 cells incubated with 40 µM of LNA and 

EPA (1:1) and increasing concentrations of 18:1n-9 

Fatty acid 40/20 µM 40/40 µM 40/60 µM R
2
 P-value 

14:0 0.8 ± 0.1
 

0.9 ± 0.0
 

0.8 ± 0.1
 

0.013 0.772 

15:0 0.3 ± 0.1
 

0.3 ± 0.1
 

0.4 ± 0.1
 

0.037 0.619 

16:0 10.3 ± 0.7
 

10.7 ± 0.5
 

9.6 ± 0.7
 

0.152 0.300 

17:0 0.6 ± 0.1
 

0.6 ± 0.1
 

0.6 ± 0.0
 

0.227 0.195 

18:0 6.3 ± 0.4
 

6.5 ± 0.2
 

5.1 ± 0.1
 

0.552 0.022 

22:0 0.4 ± 0.0
 

0.8 ± 0.0
 

1.0 ± 0.1
 

0.895 0.000 

Ʃ SFA 18.7 ± 1.0
 

19.8 ± 0.4
 

17.5 ± 0.8
 

0.186 0.246 

16:1n-9 3.0 ± 0.2
 

3.8 ± 0.1
 

4.0 ± 0.3
 

0.786 0.001 

16:1n-7 1.4 ± 0.0
 

1.3 ± 0.1
 

1.4 ± 0.1
 

0.000 0.999 

18:1n-9 29.5 ± 0.8
 

36.3 ± 0.7
 

39.3 ± 0.3
 

0.932 0.000 

18:1n-7 2.1 ± 0.1
 

1.7 ± 0.3
 

2.0 ± 0.1
 

0.024 0.692 

24:1n-9 0.6 ± 0.1
 

0.7 ± 0.1
 

1.2 ± 0.1
 

0.844 0.000 

Ʃ MUFA 36.6 ± 0.9
 

43.8 ± 0.9
 

47.9 ± 0.5
 

0.952 0.000 

18:2n-6 2.9 ± 0.0
 

2.2 ± 0.2
 

2.2 ± 0.3
 

0.558 0.021 

18:3n-6 0.5 ± 0.1
 

0.3 ± 0.1
 

0.3 ± 0.0
 

0.101 0.404 

20:2n-6* 0.6 ± 0.1
 

0.5 ± 0.0
 

0.5 ± 0.1
 

0.198 0.230 

20:3n-6 1.6 ± 0.1
 

1.3 ± 0.1
 

1.3 ± 0.2
 

0.419 0.059 

20:4n-6 1.3 ± 0.0
 

1.2 ± 0.1
 

1.1 ± 0.2
 

0.452 0.047 

22:5n-6 0.3 ± 0.1
 

0.3 ± 0.0
 

0.2 ± 0.0
 

0.699 0.005 

Ʃ n-6 PUFA 7.2 ± 0.1
 

5.8 ± 0.4
 

5.6 ± 0.6
 

0.626 0.011 

18:3n-3 4.4 ± 0.1
 

3.2 ± 0.3
 

2.7 ± 0.3
 

0.871 0.000 

18:4n-3 1.9 ± 0.4
 

1.8 ± 0.2
 

1.6 ± 0.3
 

0.123 0.356 

20:4n-3 2.7 ± 0.5
 

2.3 ± 0.3
 

2.1 ± 0.2
 

0.344 0.097 

20:5n-3 15.8 ± 0.5
 

13.2 ± 0.3
 

13.6 ± 0.8
 

0.510 0.031 

22:5n-3 6.1 ± 0.5
 

3.9 ± 0.3
 

2.7 ± 0.4
 

0.925 0.000 

22:6n-3 1.1 ± 0.0
 

1.0 ± 0.0
 

0.8 ± 0.1
 

0.789 0.001 

Ʃ n-3 PUFA 32.0 ± 1.5
 

25.4 ± 0.2
 

23.5 ± 0.9
 

0.865 0.000 

18:2n-9 2.8 ± 0.2
 

2.7 ± 0.1
 

3.0 ± 0.1
 

0.128 0.345 

20:2n-9 2.5 ± 0.4
 

2.2 ± 0.2
 

2.2 ± 0.1
 

0.238 0.183 

22:2n-9 0.2 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.001 0.939 

Ʃ n-9 PUFA 5.5 ± 0.6
 

5.2 ± 0.3
 

5.5 ± 0.2
 

0.033 0.640 

      

Ʃ PUFA 44.7 ± 0.8
 

36.4 ± 0.6
 

34.6 ± 1.2
 

0.849 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 
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5.3.4.3. Supplementation with LNA and EPA in presence of increasing levels of a 1:1 mix 

of 16:0+18:1n-9 combined 

Table 5.24 shows the lipid content and the lipid class composition of CHSE-214 

cells after being incubated with LNA+EPA (20/20 µM) and graded increased 

concentrations of a 1:1 mix of 16:0+18:1n-9. There was no clear trend in the cell lipid 

content, being essentially the same in all treatments (R
2
 = 0.011; p = 0.785). In the lipid 

class data, TAG showed a clear trend to increase with the graded supplementation of 

16:0+18:1n-9 (R
2
 = 0.692; p = 0.005). 

 
 

Table 5.24. Lipid contents and class compositions of CHSE-214 cells incubated with 40 µM of 

LNA and EPA (1:1) and increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Lipid 40/20 µM   40/40 µM  40/60 µM  R
2
 P-value 

LC (µg)  236.7 ± 41.6
 

243.3 ± 23.1
 

243.3 ± 25.2
 

0.011 0.785 

CC (%)      

PC 17.2 ± 0.4
 

14.1 ± 0.8
 

15.5 ± 0.7
 

0.290 0.134 

PE 29.5 ± 0.5
 

27.6 ± 0.5
 

25.9 ± 1.0
 

0.867 0.000 

PS 6.9 ± 0.5
 

6.8 ± 0.7
 

4.7 ± 0.2
 

0.669 0.007 

PI 6.6 ± 0.4
 

4.8 ± 0.2
 

4.7 ± 0.1
 

0.672 0.007 

PA/CL 3.5 ± 0.2
 

2.5 ± 0.3
 

2.5 ± 0.3
 

0.650 0.009 

SM 6.2 ± 0.2
 

2.4 ± 0.1
 

2.0 ± 0.0
 

0.832 0.001 

TP 69.9 ± 0.6
 

58.2 ± 0.2
 

55.3 ± 0.4
 

0.886 0.000 

TN 30.1 ± 0.6
 

41.8 ± 0.2
 

44.7 ± 0.4
 

0.886 0.000 

TAG 4.7 ± 0.3
 

5.2 ± 0.4
 

7.9 ± 1.5
 

0.692 0.005 

CHOL 23.7 ± 0.8
 

35.0 ± 0.4
 

34.6 ± 1.1
 

0.716 0.004 

FFA 1.7 ± 0.3
 

1.6 ± 0.1
 

2.2 ± 0.3
 

0.381 0.076 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA profile of CHSE-214 cells after being incubated with LNA+EPA (20/20 

µM) and graded increased concentrations of 16:0+18:1n-9 is shown in Table 5.25. The 

level of DHA was not affected with the graded supplementation of 16:0+18:1n-9, being 

essentially the same at all concentrations (R
2
 = 0.004; p = 0.872). EPA levels increased 
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with the graded supplementation of 16:0+18:1n-9 (R
2
 = 0.775; p = 0.002). The proportion 

of cellular LNA was similar in all treatments (R
2
 = 0.001; p = 0.940) and there was 

evidence of some desaturation to 18:4n-3, which increased with the graded 

supplementation of 16:0+18:1n-9 (R
2
 = 0.749; p = 0.003). The percentage of 16:0 

decreased (R
2
 = 0.858; p = 0.000) and 18:1n-9 increased (R

2
 = 0.695; p = 0.005) with the 

graded supplementation of 16:0+18:1n-9.  

 
Table 5.25. Fatty acid compositions (%) of CHSE-214 cells incubated with 40 µM of LNA and 

EPA (1:1) and increasing concentrations of a 1:1 mix of 16:0 and 18:1n-9 combined 

Fatty acid  40/20 µM  40/40 µM 40/60 µM R
2
 P-value 

14:0 1.0 ± 0.0
 

1.0 ± 0.0
 

1.0 ± 0.1
 

0.017 0.741 

15:0 0.3 ± 0.0
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.001 0.954 

16:0 17.3 ± 0.5
 

15.5 ± 0.7
 

13.9 ± 0.7
 

0.858 0.000 

17:0 0.6 ± 0.0
 

0.7 ± 0.1
 

0.7 ± 0.0
 

0.005 0.852 

18:0 9.9 ± 0.0
 

8.6 ± 0.3
 

8.5 ± 0.6
 

0.643 0.009 

20:0 0.2 ± 0.0
 

0.1 ± 0.0
 

0.1 ± 0.0
 

0.865 0.000 

22:0 2.0 ± 0.2
 

0.7 ± 0.1
 

0.3 ± 0.0
 

0.949 0.000 

Ʃ SFA 31.3 ± 0.4
 

26.9 ± 1.0
 

24.8 ± 1.4
 

0.876 0.000 

16:1n-9 3.0 ± 0.1
 

3.1 ± 0.3
 

3.4 ± 0.1
 

0.493 0.035 

16:1n-7 1.9 ± 0.1
 

2.1 ± 0.1
 

2.2 ± 0.1
 

0.674 0.007 

18:1n-9 29.6 ± 0.2
 

30.0 ± 1.0
 

32.1 ± 0.5
 

0.695 0.005 

18:1n-7 2.2 ± 0.1
 

2.4 ± 0.1
 

2.2 ± 0.3
 

0.001 0.944 

24:1n-9 0.8 ± 0.1
 

0.6 ± 0.1
 

0.7 ± 0.0
 

0.369 0.083 

Ʃ MUFA 37.5 ± 0.5
 

38.2 ± 1.4
 

40.6 ± 0.6
 

0.689 0.006 

18:2n-6 2.2 ± 0.3
 

2.6 ± 0.4
 

2.0 ± 0.1
 

0.063 0.514 

18:3n-6 0.4 ± 0.1
 

0.5 ± 0.0
 

0.3 ± 0.0
 

0.255 0.166 

20:2n-6*  0.5 ± 0.0
 

0.6 ± 0.0
 

0.6 ± 0.0
 

0.199 0.229 

20:3n-6 1.3 ± 0.2
 

1.2 ± 0.0
 

1.1 ± 0.1
 

0.396 0.069 

20:4n-6 1.1 ± 0.1
 

1.2 ± 0.1
 

1.2 ± 0.2
 

0.208 0.217 

Ʃ n-6 PUFA 5.5 ± 0.4
 

6.1 ± 0.5
 

5.2 ± 0.4
 

0.060 0.526 

18:3n-3 2.4 ± 0.2
 

2.4 ± 0.1
 

2.4 ± 0.3
 

0.001 0.940 

18:4n-3 1.2 ± 0.1
 

1.5 ± 0.1
 

1.7 ± 0.2
 

0.749 0.003 

20:4n-3 2.0 ± 0.3
 

1.9 ± 0.1
 

1.7 ± 0.3
 

0.344 0.097 

20:5n-3 10.2 ± 0.4
 

13.2 ± 0.5
 

13.7 ± 0.9
 

0.775 0.002 

22:5n-3 2.9 ± 0.2
 

3.0 ± 0.2
 

2.6 ± 0.2
 

0.304 0.124 

22:6n-3 0.9 ± 0.1
 

0.9 ± 0.0
 

0.9 ± 0.1
 

0.004 0.872 

Ʃ n-3 PUFA 19.6 ± 0.5
 

22.9 ± 1.0
 

23.0 ± 1.6
 

0.574 0.018 

18:2n-9 2.9 ± 0.1
 

3.0 ± 0.1
 

3.3 ± 0.2
 

0.635 0.010 

20:2n-9 2.8 ± 0.1
 

2.6 ± 0.0
 

2.8 ± 0.0
 

0.015 0.752 

22:2n-9 0.4 ± 0.1
 

0.3 ± 0.0
 

0.3 ± 0.0
 

0.102 0.402 

Ʃ n-9 PUFA 6.1 ± 0.1
 

5.9 ± 0.1
 

6.4 ± 0.2
 

0.324 0.110 

      

Ʃ PUFA 31.2 ± 0.9
 

34.9 ± 0.9
 

34.6 ± 1.7
 

0.504 0.032 

Footnotes: Results are present as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of the 

total fatty acid content. Statistical differences were determined by regression analysis (p < 0.05). 

Abbreviations: LNA = α-linolenic acid; EPA = eicosapentaenoic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9. 
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The desaturation products of 16:0, i.e. 16:1n-9 and 16:1n-7, increased with the 

graded supplementation of 16:0+18:1n-9 (R
2
 = 0.493; p = 0.035 and R

2
 = 0.674; p = 0.007, 

respectively), as well as the desaturation product of 18:1n-9, i.e. 18:2n-9 (R
2
 = 0.635; p = 

0.010).  

The following figures summarise the results obtained in the current Chapter 

focusing on LC-PUFA cellular levels following the supplementation of FA combinations. 

Figure 5.1 shows the EPA levels in CHSE-214 cells incubated with 20 µM of LNA and 

graded concentrations of 16:0, 18:1n-9, and 16:0+18:1n-9. The highest EPA level was 

achieved with the supplementation of LNA only, at 20 µM, and the lowest with LNA and 

18:1n-9 at 20/40 µM. EPA levels were higher with the supplementation of LNA with 16:0, 

and 16:0+18:1n-9, compared with the combination of LNA and 18:1n-9. The ANOVA 

indicates that cellular EPA were affected by the treatment (FA mix supplemented), the 

concentration and the interaction between them (p < 0.05). 

 

 

 

 

 

 

Figure 5.1. EPA levels of CHSE-214 cells after being incubated for five days with different 

combinations and concentrations of fatty acids. Abbreviations: LNA = α-linolenic acid; EPA = 

eicosapentaenoic acid. Data were analysed by two-way ANOVA (p < 0.05). The interaction 

between the two factors (fatty acid supplemented and concentration) was also analysed (inlet 

table). 
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Figure 5.2 shows the levels of DHA of CHSE-214 cells incubated with 20 µM of 

EPA and graded concentrations of 16:0, 18:1n-9, and 16:0+18:1n-9 mix. In all treatments 

the DHA levels were lower than ~1.3%. The highest level of DHA was recorded with the 

combination EPA/16:0+18:1n-9 at 20/20 µM, and the lowest with EPA/16:0 at 20/60 µM. 

Figure 5.3 shows that the highest level of DHA occurred with the combination 

LNA+EPA/16:0 at 40/20 µM. In the combination LNA+EPA/18:1n-9, levels of DHA 

decreased with the graded supplementation of 18:1n-9. The supplementation of 

LNA+EPA/16:0+18:1n-9 at all concentration resulted in levels of DHA lower than 1%. In 

both figures, the ANOVA indicates that cellular DHA levels were affected by the treatment 

and the concentration of the FA supplemented (p < 0.05) but the effect of treatment-

concentration interaction was only observed in Figure 5.3 (p < 0.05).    

 

 

 

 

Figure 5.4 shows the ARA levels in CHSE-214 cells incubated with 20 μM of LOA 

and graded concentrations of 16:0, 18:1n-9, and 16:0+18:1n-9 mix. The highest ARA level 

was achieved by supplementing LOA/16:0+18:1n-9 at 20/20 µM, whereas the lowest was 

recorded with LOA/16:0 at 20/60 µM. ARA levels decreased with the graded 

Figure 5.2. DHA levels of CHSE-214 cells after being incubated for five days with different 

combinations and concentrations of fatty acids. Abbreviations: EPA = eicosapentaenoic acid; DHA = 

docosahexaenoic acid. Data were analysed by two-way ANOVA (p < 0.05). The interaction between 

the two factors (fatty acid supplemented and concentration) was also analysed (inlet table). 
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supplementation of 16:0+18:1n-9 in presence of 20 µM of LOA. The FA combination 

supplemented, the concentration and the interaction of these two had an effect on cellular 

ARA levels (p < 0.05) 

 

 

 

 

 

 

 

  

 

 

Figure 5.3. DHA levels of CHSE-214 cells after being incubated for five days with different 

combinations and concentrations of fatty acids. Abbreviations: LNA = α-linolenic acid; EPA = 

eicosapentaenoic acid; DHA = docosahexaenoic acid. Data were analysed by two-way ANOVA (p 

< 0.05). The interaction between the two factors (fatty acid supplemented and concentration) was 

also analysed (inlet table). 

 

Figure 5.4. ARA levels of CHSE-214 cells after being incubated for five days with different 

combinations and concentrations of fatty acids. Abbreviations: LOA = linoleic acid; ARA = 

arachidonic acid. Data were analysed by two-way ANOVA (p < 0.05). The interaction between the 

two factors (fatty acid supplemented and concentration) was also analysed (inlet table). 
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Figure 5.5A shows the increment of TAG with the graded supplementation of the 

FA, except for the combination LNA/16:0+18:1n-9, where TAG levels were about 16% 

from 20/20 µM to 20/80 µM. The lowest levels of TAG were recorded with the 

supplementation of EPA/16:0 at 20/20 µM, whereas the highest were recorded with 

EPA/18:1n-9 at 20/80 µM (Figure 5.5B).  

 

Figure 5.5 A-D. TAG levels of CHSE-214 cells after being incubated for five days with different 

combinations and concentrations of fatty acids. Abbreviations: TAG = triacylglycerol; LNA = α-

linolenic acid; EPA = eicosapentaenoic acid; LOA = linoleic acid. Data analysed by two-way 

ANOVA (p < 0.05). The interaction between the two factors (fatty acid supplemented and 

concentration) was also analysed (inlet table). 

 

The increment of TAG with the supplementation of 20 µM of LOA and graded 

concentrations of SFA, MUFA and SFA+MUFA is shown in Figure 5.5C. The 

supplementation of LNA+EPA combined with 16:0 resulted in higher TAG levels, in 
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comparison with the combinations LNA+EPA/18:1n-9 and LNA+EPA/18:1n-9+16:0 

(Figure 5.5D). The highest level of TAG was observed with LNA+EPA/16:0 at 40/60 µM, 

while the lowest with LNA+EPA/18:1n-9 at 40/20 µM. The ANOVA suggests that cellular 

TAG levels were affected by the treatment (FA combination supplemented), the 

concentration of the FA supplemented and the interaction between these two (p = 0.05). 

 

5.4. Discussion  

The primary objective of the present study was to investigate the effect of lipid 

level on the LC-PUFA biosynthetic pathway, using SFA (16:0) and MUFA (18:1n-9) 

(which do not compete with C18 PUFA for the pathway) to represent “dietary” lipid in 

CHSE-214 cell line. Cells were incubated for 5 d with either LNA or LOA, in presence of 

graded concentrations of 16:0, 18:1n-9, and the combination of the last two as a mix (1:1 

ratio). The effects of the FA supplementation on the FA profile and lipid class composition 

of CHSE-214 cells were determined by standard techniques. 

 

5.4.1. Effect of the supplementation with SFA and MUFA in combination with PUFA 

on lipid content of CHSE-214 

Since in vivo trials in Atlantic salmon have often shown increased tissue lipid 

contents with increased levels of dietary lipids (Bell et al., 1998; Hemre and Sandnes, 

1999; Martinez-Rubio et al., 2013), an increment in cell lipid content with the graded 

supplementation of SFA, MUFA and SFA+MUFA was expected in the current study. 

However, this trend was only observed with the supplementation of LNA+EPA/18:1n-9, 

but results were not statistically significant (R
2
 = 0.072; p = 0.486), whereas in other 

treatments, such as LOA/16:0 and LNA+EPA/16:0, lipid content decreased with the 

graded supplementation of 16:0. This may be related to the high levels of supplementation 
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(100 µM) being toxic, which causes cell death and, therefore, a lower lipid content 

recovered from the flask harvested.  

 

5.4.2. Effect of supplementation of FA on lipid class composition of CHSE-214  

In the lipid class data, the only clear trends were observed in cell TAG content, 

whilst changes in other lipid classes were probably just the consequences of the changes in 

TAG. In CHSE-214 cells incubated with C18 PUFA and EPA in presence of 16:0, 18:1n-9 

and the mix 16:0+18:1n-9, increased TAG with the graded supplementation of SFA, 

MUFA and SFA+MUFA was observed, except for treatment LNA/16:0+18:1n-9, where 

TAG was about 15% in all supplemented concentrations. This is in agreement with 

Martinez-Rubio et al. (2013), who reported that TAG levels in liver of Atlantic salmon 

increased with the graded increased dietary lipid content. 

 

5.4.3. Effect of supplementation of combinations of FA on FA composition of CHSE-

214 cell line  

Tocher et al. (1988) observed that the FA profile of six cell lines, including RTG-2 

(rainbow trout gonad), BF-2 (bluegill fry), FHM (fathead minnow), AS (Atlantic salmon), 

CHSE-214 (Chinook salmon embryo) and TF (turbot fin) reflected the FA composition of 

the media. In the current study, the FA profile of the CHSE-214 cell line largely reflected 

the combination of FA supplemented to the cultures. All combinations of FA changed the 

FA compositions of the cells due partly to the incorporation of the FA supplemented 

themselves and partly due to endogenous metabolism of the cells, through conversion and 

the production of intermediate metabolites including desaturated and/or elongated 

products. Consistent with this, in vivo trials have reported that the FA profile of the diet is 

reflected in the FA profile of fish flesh and tissues (Bell et al., 2003b; Tocher et al., 2003a; 
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b; Menoyo et al., 2005; Tocher, 2010; Alves Martins et al., 2011; Xu et al., 2014; Betancor 

et al., 2015).       

 

5.4.3.1. EPA production from LNA mixed with SFA (16:0), MUFA (18:1n-9) and 

SFA+MUFA (16:0+18:1n-9)  

 The EPA levels of CHSE-214 cells incubated with LNA in presence of SFA, 

MUFA and SFA+MUFA mix (1:1) showed a clear trend to decrease with the graded 

supplementation of the SFA and SFA+MUFA, whereas similar levels of EPA were 

recorded in cells incubated with LNA/16:0+18:1n-9 at all concentrations, ranging from 

1.5–1.8% without a clear trend. The highest EPA level was recorded with the 

supplementation of LNA/16:0 at 20/20 µM, while the lowest was observed with the 

supplementation of LNA/18:1n-9 at 20/40 µM. The data obtained in the present study were 

in agreement with previous in vivo trials, where Atlantic salmon fed low lipid diets had 

higher levels of n-3 LC-PUFA (EPA and DHA) in comparison with fish fed high lipid 

diets (Martinez-Rubio et al., 2013) and with other studies reporting higher synthesis of LC-

PUFA in liver of Atlantic salmon fed low lipid diet, in comparison with salmon fed high 

lipid diets (Tocher et al., 2003a; b).  

 

5.4.3.2. DHA production from EPA and EPA+LNA mixed with SFA (16:0), MUFA (18:1n-

9) and SFA+MUFA (16:0+18:1n-9)  

The adverse effect of lipid content (SFA and MUFA) described on the conversion 

of LNA to EPA was not clearly observed on the conversion of EPA to DHA, which may be 

due to the low ability of the CHSE-214 cell line to convert EPA to DHA, as has been 

previously reported in other fish cell lines (Tocher and Sargent, 1990; Gregory et al., 

2011).  
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5.4.3.3. ARA production from LOA mixed with SFA (16:0), MUFA (18:1n-9) and 

SFA+MUFA (16:0+18:1n-9)  

There is insufficient evidence supporting the fact that lipid content has a 

detrimental effect on the conversion of LOA to ARA. The main detrimental effect has been 

associated with the enzyme competition between C18 PUFA i.e. LOA and LNA, as it has 

been reported that the enzymes involved in the pathway of LC-PUFA synthesis prefer the 

n-3 series over the n-6 series (Bell et al., 2001, 2002; Bell and Sargent, 2003). In the 

current study, the ARA levels steadily decreased with increasing concentrations of 

16:0+18:1n-9 (i.e. 3.3% (20/20 μM) 2.4% (20/40 μM) 2.0% (20/60 μM) 1.8% 

(20/80 μM)), while in the other two treatments, LOA/18:1n-9 and LOA/16:0, the ARA 

levels remained relatively constant, although a slight fall was observed, without showing 

any detrimental effect of the supplementation SFA, MUFA and the combination of the last 

two, on the conversion of LOA to ARA. The highest ARA level was achieved in cells 

incubated with LOA/16:0+18:1n-9 at 20/20 μM (3.3%), while the lowest with LOA/16:0 at 

20/60 μM (1.5%).  

To the best of our knowledge, the current in vitro study is the first to highlight that 

lipid content (represented by increased supply of SFA and MUFA) negatively affected the 

conversion of LNA to EPA in cell culture system. However, there is insufficient evidence 

to support the hypothesis that the conversion of LOA to ARA was affected by lipid 

content. The data produced in the present study highlight the importance of lipid content in 

fish feeds in determining the final LC-PUFA profile in salmonids and that dietary lipid 

content is a factor for consideration when formulating diets to optimise endogenous 

production of EPA and DHA in low marine feeds. 
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Chapter 6 

Molecular mechanisms involved in the conversion of α-linolenic acid to 

eicosapentaenoic acid in CHSE-214 cells 

 

 

 

An example of the fluorescence profile of cDNA of CHSE-214 cell line incubated with different 

fatty acids [original image] 

 

  

 

“Learn from yesterday, live for today, hope for tomorrow. The important thing is to not stop 

questioning.”  

Albert Einstein 

  

  

http://www.goodreads.com/author/show/9810.Albert_Einstein
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6.1. Introduction 

One approach to study the pathways of long-chain polyunsaturated fatty acid (LC-

PUFA) biosynthesis, i.e. eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid 

(DHA, 22:6n-3), was through the formulation of experimental diets deficient in LC-PUFA 

metabolic precursors, and later refined with the use of radiolabeled fatty acids (FA) 

substrates in in vitro cell studies using established cell lines and isolated (including 

primary) cell cultures (Tocher, 2003). However, the advent of molecular biology 

techniques and their availability has made it possible to significantly further progress the 

study of LC-PUFA biosynthesis in fish (Monroig et al., 2011b). Nowadays, it is recognised 

that essential fatty acid (EFA) requirements of a particular fish species depend on the 

ability of the fish to synthesise LC-PUFA, supported by the presence of the required genes 

and consequent enzymatic processes, and regulated by other key genes (Tocher, 2010). 

The aquaculture industry and, more specifically, the diet composition of farmed 

Atlantic salmon (Salmo salar L.) has been changing rapidly because of the need to find 

sustainable alternatives to marine raw materials, particularly fish oil (FO), which is an 

excellent and virtually unique source of n-3 LC-PUFA. The replacement of marine 

ingredients, such as FO, by terrestrial ingredients such as vegetable oil (VO), is one of the 

most prominent changes. Although total replacement of FO by VO barely affects the 

growth of Atlantic salmon (Torstensen et al., 2005), major effects have been reported on 

the expression and regulation of genes involved with fatty acid and cholesterol metabolism 

(Leaver et al., 2008; Morais et al., 2009). These effects were mainly related to the low 

dietary levels of n-3 LC-PUFA, which are completely absent in VO (Leaver et al., 2008). 

Salmonids have the capacity to synthesise LC-PUFA from the C18 EFA, α-linolenic acid 

(LNA; 18:3n−3) and linoleic acid (LOA; 18:2n−6) and, therefore, salmonids can always 

have an indirect ”dietary” supply of LC-PUFA provided at least the C18 EFA present in the 
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diet (Castell et al., 1972; Bell et al., 1993; Tocher et al., 2000). The enzymatic conversion 

of polyunsaturated fatty acids (PUFA), LNA and LOA, to n-3 and n-6 LC-PUFA, 

respectively, is carried out by fatty acyl desaturases, specifically the Δ6 and Δ5 fatty acyl 

desaturases (Fads2d6 and Fads2d5, respectively), catalysing the introduction of a double 

bond into the acyl chain at the Δ6 and Δ5 positions, and elongases of very long-chain fatty 

acids, elovl5 and elovl2, that add two carbon atoms to a pre-existing fatty acyl chain 

(Monroig et al., 2011b). It has been suggested that elovl2 is primarily involved in the 

elongation of C20 to C22, while elovl5 participates in the elongation of C18 to C20 PUFA 

and, to a lesser extent, in the elongation of C20 to C22 PUFA (Morais et al., 2009). 

Transcription factors, such as sterol regulatory element binding protein (Srebp) 1 

and 2, liver X receptor (Lxr), peroxisome proliferator activated receptors (Ppar) α and β, 

and retinoid X receptors (Rxr) are involved in the regulation of genes of LC-PUFA 

biosynthesis (Minghetti et al., 2011; Carmona-Antoñanzas et al., 2014). In mammals, three 

LXR have been identified LXRs, LXRα and LXRβ, these nuclear receptors regulate 

cholesterol and lipid metabolism. The activation of LXR decreases the synthesis and 

absorption of cholesterol (Repa et al., 2000; Schultz et al., 2000), increases the expression 

of genes involved in reverse cholesterol transport and mobilisation of cholesterol (Repa et 

al., 2002), and stimulates the expression of SREBP1c (Schultz et al., 2000), which in turn 

activates genes involved in lipogenesis and triglyceride metabolism (Jung et al., 2011). In 

mammals, three PPAR have been identified: PPARα, PPARβ and PPARγ. The activation 

of PPAR occurs when these bind FA or their oxidised derivatives, and then regulate the 

expression of genes involved in lipid degradation and biosynthesis (Carmona-Antoñanzas 

et al., 2014). RXR are involved in the regulation of cell growth, development, survival, cell 

differentiation and cell death (Dawson and Xia, 2012). When they form heterodimers with 

other nuclear receptors, they play roles in multiple metabolic systems (Pérez et al., 2012). 
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In recent years some of these genes have also been successfully cloned and studied in fish, 

including salmonids and particularly Atlantic salmon (Leaver et al., 2008; Cruz-Garcia et 

al., 2009; Minghetti et al., 2011; Carmona-Antoñanzas et al., 2014).  

Other genes involved with FA metabolism are: fatty acid synthase (FAS), carnitine 

palmitoyl transferase 1 (CPT1), acyl coenzyme A oxidase (ACO), and fatty acid-binding 

protein (FABP) (Haunerland and Spener, 2004; Tang et al., 2013). FAS is a key enzyme in 

lipogenesis, using malonyl-CoA to produce palmitate, whereas CPT1 transport FA into the 

mitochondria and is reported to be a rate-limiting-step in mitochondrial fatty acid β-

oxidation (McGarry and Brown, 1997). ACO oxidases acyl chains, which is the first step in 

peroxisomal fatty acid β-oxidation (Lazarow and de Duve, 1976). FABP have different 

functions such as cellular uptake and transport of FA, regulation of growth and gene 

expression, and targeting of FA to metabolic pathways (Haunerland and Spener, 2004). 

The LC-PUFA play several roles in different fish tissues (Betancor et al., 2014). In 

Atlantic salmon, the liver is the main organ where LC-PUFA biosynthesis and lipid 

metabolism take place (Monroig et al., 2010), but the function of other tissues such as 

brain, retina, head kidney and gills, are influenced by the dietary intake of LC-PUFA (Bell 

et al., 1992, 1995, 1996b; Waagbø, 1994; Lall, 2000). Moreover, LC-PUFA are precursors 

of bioactive molecules involved in homeostasis, immune and inflammatory responses, and 

cell signaling. The adverse effects of long-term deficiency in dietary LC-PUFA have being 

studied in Atlantic salmon (Martinez-Rubio et al., 2012; Carmona-Antoñanzas et al., 

2014), but the information available are still limited compared to mammals. Nutritional 

studies in C57BL/6 mice reported that diets rich in n-3 LC-PUFA, formulated with FO, 

decreased serum triglycerides, inhibited hepatic lipogenesis, and stimulated FA oxidation 

in liver (Rustan et al., 1988; McKenney and Sica, 2007), whereas diets rich in saturated FA 
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induced hepatic steatosis, non-alcoholic fatty liver disease and non-alcoholic fatty 

pancreatic disease (Lin et al., 2005; Oosterveer et al., 2009; Fraulob et al., 2010).  

The present study aims to develop and utilise a multi-well plate system suitable for 

investigating the expression and regulation of genes involved in lipid and FA metabolism, 

with particular focus on LC-PUFA biosynthesis, specifically the conversion of LNA to 

EPA (20:5n-3), in the cell culture model system, CHSE-214 cell line. The results obtained 

previously in Chapters 3-5 from the investigation of how fatty acid supplementation 

affected cellular lipids and fatty acid composition highlighted that the CHSE-214 cell line 

was able to produce EPA from LNA and also how competing PUFA and SFA/MUFA (as a 

proxy for dietary lipid content) affected this conversion. Among the many combinations 

investigated previously a carefully chosen selection of FA treatments (combinations of 

LNA and other competing FA), including those which showed the highest EPA levels were 

chosen for the current Chapter. In the present chapter the effects of these combinations of 

supplemented FA on the expression of a selected range of key genes involved in the 

regulation of lipid and FA metabolism including, in particular, LC-PUFA biosynthesis 

were determined. The present study represents the first to specifically explore the 

molecular mechanisms involved in the conversion of LNA to EPA, and the effects of SFA, 

MUFA and PUFA supplementation on EPA production in an in vitro cell culture model 

system. 

 

6.2. Materials and Methods 

The present study consisted of three experimental phases: 1) a time-course 

experiment designed to determine the effect of incubation time on gene expression. This 

was carried out in order to determine the optimal time for supplementation of the CHSE-

214 with FA before analysis of gene expression so that changes in the expression of genes 
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involved in lipid and LC-PUFA metabolism could be detected; 2) an analysis of the effects 

of the selected FA supplementations and their combinations on expression of genes of lipid 

and FA metabolism and their regulation. The ultimate aim and predicted output was to use 

these data to develop a molecular framework or model for the control and regulatory 

mechanisms of LC-PUFA biosynthesis; and, 3) a series of experiments designed to test the 

regulatory framework.  In order to test the model created in Phase 2, a new, previously 

untested, set of experiments (particular combinations of FA) were designed in Phase 3 and 

the results of the analysis in terms of both final outcomes (cellular lipid and FA 

compositions) and gene expression predicted before testing. Both lipid and FA 

compositions of the cells and the expression of genes were determined in order to test if the 

predictions based on the model were accurate and, based on the results, the model revised 

accordingly if necessary.  

 

6.2.1. Cells and routine culture procedures 

 Details of the CHSE-214 cell line, the media and the routine culture procedures have 

been previously described in Chapter 2, sections 2.1.1 and 2.1.2. To provide experimental 

conditions for gene expression analyses, CHSE-214 were seeded into six-well tissue 

culture plates (Sarstedt Ltd., Leicester, UK). Cells in each well were maintained in 3 ml of 

L-15 medium containing 5% FBS and 200 µM L-glutamine. For lipid analyses the 

experimental conditions were the same as described in Chapter 2, section 2.1.2. In all cases 

CHSE-214 were incubated at 20ºC. 

 

6.2.2. FA supplementation for gene expression analyses 

LNA and LOA (99% purity) were supplemented as complexes bound to BSA (First 

Link Ltd., Wolverhampton, UK) and suspended in PBS (Spector and Hoak, 1969). Full 
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details of the procedure are provided in Chapter 2, section 2.2.1. FA concentration was 

determined as previously described in Chapter 2, section 2.3.3.  

 

6.2.3. Experimental design: Phase 1, Phase 2 and Phase 3 

Cells were harvested from the 75 cm
2
 tissue culture flasks (see section 2.1.2.2), 

counted (see section 2.1.2.4) and then seeded into six-well plates at a density of 1.6×10
6 

cells per well. FA were supplemented 24 h later, once the cells were attached and at about 

80% confluent and cells were incubated at 20ºC. The plates were incubated with the FA for 

the various times: 24 h, 48 h and 5 d for Phase 1 and 48 h for Phases 2 and 3. Two plates 

per treatment were required to produce six replicate samples of two pooled wells, as 

previously suggested by other authors (Minghetti et al., 2011). Each well contained 3 ml of 

L-15 media. After the incubation time, cells were washed twice with 1 ml DPBS per well, 

and then harvested by trypsinisation. Cell detachment was stimulated by a hand tap and the 

detached cells centrifuged and the pellet re-suspended in 0.7 ml of DPBS. Combined cell 

suspensions from two wells were further washed by collecting in a 1.5 ml micro-centrifuge 

tube on ice and the tubes centrifuged to form cell pellets. The supernatant DPBS solution 

was decanted and 1 ml of TRI Reagent
®
 RNA extraction buffer (Sigma-Aldrich

®
 Ltd., 

Dorset, UK) was added to each sample. Samples were stored at -70ºC for further RNA 

extraction. 

 

For the experiments in Phase 1 CHSE-214 cell line was seeded into six-well plates 

and individual wells were supplemented with either LNA or LOA at a final concentration 

of 20 µM, whilst for the control-wells fatty acid-free bovine serum albumin in phosphate 

buffer solution (FAF-BSA-PBS) was used. Tables 6.1 and 6.2 list the experiments carried 

out during Phases 2 and 3, respectively. In both Phases, 20 µM of LNA were used as 
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control. The set of experiments in Phase 3 was designed to predict the results in terms of 

cellular lipid and FA compositions, and the expression of genes involved in lipid and FA 

metabolism, based on the data produced and the model developed in the second phase of 

this study. The lipids of CHSE-214 were analysed after the supplementation of different 

concentrations and combinations of FA for 5 d. 

 

Table 6.1. Fatty acid combinations and concentration supplemented to CHSE-214 cell line for gene 

analysis during the Phase 2 experiments 

Fatty acids Low concentration 

(µM) 

High concentration 

(µM) 

LNA/16:0 A) 20/20 B) 20/80 

LNA/18:1n-9 C) 20/20 D) 20/80 

LNA/16:0+18:1n-9 (1:1) E) 20/20 F) 20/80 

LNA/LOA G) 20/5 H) 20/20 

LOA/LNA I) 20/5 H) 20/20 

LNA/EPA  J) 20/20 

LNA/DHA  K) 20/20 

Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; EPA = eicosapentaenoic acid; DHA = 

docosahexaenoic acid.   

 

Table 6.2. Fatty acid combinations and concentration supplemented to CHSE-214 cell line for gene 

analysis during the experimental Phase 3 

Fatty acids Concentration (µM) 

LNA+LOA/16:0 L) 20+15/20 M) 20+15/40 N) 20+15/60  

LNA+LOA/18:1n-9 O) 20+15/20 P) 20+15/40 Q) 20+15/60  

LNA/LOA+16:0 R) 20/5+5 S) 20/10+10 T) 20/15+15 U) 20/20+20 

Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid. 

 

6.2.4. Gene expression analyses 

For Phase 1 the expression of five genes was analysed (fads2d5, cpt1, elovl2, 

pparα, srebp), whereas for Phase 2 and 3 the expression of 16 genes including those 

involved in LC-PUFA biosynthesis (fads2d5, fads2d6, elovl2 and elovl5), transcription 

factors (srebp1, srebp2, lxr, pparα, pparβ and rxr), those involved in FA metabolism (fas, 

cpt1, fabp and aco) and two reference genes (β-act and ef1α) was determined by qPCR 

analyses. Details of the primers are provided in Table 6.3. Primers designed in the very 
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close species Atlantic salmon were used for fads2d5, elovl2, srebp1, srebp2, lxr, pparα, 

pparβ, rxr, fas, cpt1, fabp, aco, β-act and ef1α.  

 
Table 6.3. Forward (F) and reverse (R) primers used for qPCR analysis of CHSE-214 cell line 

Gene Primer sequence (5’-3’) Fragment (bp) T Source 

LC-PUFA BIOSYNTHESIS 

fads2d5  F: GTGAATGGGGATCCATAGCA 

R: AAACGAACGGACAACCAGA   

192 56ºC Hastings et al. (2005) 

fads2d6 F: CCATCGCAGATTAACGACCT 

R: AACACTTTCAGACAATGCGATTA 

171 59ºC current study 

elovl2 F: CGGGTACAAAATGTGCTGGT 

R: TCTGTTTGCCGATAGCCATT 

145 60ºC Morais et al. (2009) 

elovl5 R: TCAGCTGGCCTTGTGTGA 

F: ACTCCTACTTTGGTGCCTCC 

135 59ºC current study 

TRANSCRIPTION FACTORS 

srebp1 F: GCCATGCGCAGGTTGTTTCTTCA 

R: TCTGGCCAGGACGCATCTCACACT 

151 63ºC Minghetti et al. (2011) 

srebp2 F: GACAGGCACAACACAAGGTG 

R: CAGCAGGGGTAAGGGTAGGT 

215 60ºC Leaver et al. (2008) 

lxr F: AGGACCATGAACTGGTGGAG 

R: CGAAGACCTGCTCAGAGTGG 

210 58ºC current study 

pparα F: TCCTGGTGGCCTACGGATC 

R: CGTTGAATTTCATGGCGAACT 

111 60ºC Kleveland et al. (2006) 

pparβ F: GAGACGGTCAGGGAGCTCAC 

R: CCAGCAACCCGTCCTTGTT 

151 60ºC Kleveland et al. (2006) 

rxr F: CACCAAACTGCAAACAGGAA 

R: CGGACAAGTTGACAAGCAGA 

113 52ºC current study 

FA METABOLISM 

fas F: CTCTCTCATGCCCAGTCACA 

R: TTTCCGCCATCTCCAGATAC 

189 60ºC current study 

cpt1 F: CCTGTACCGTGGAGACCTGT 

R: CAGCACCTCTTTGAGGAAGG 

212 60ºC Leaver et al. (2008) 

aco F: AAAGCCTTCACCACATGGAC 

R: TAGGACACGATGCCACTCAG 

230 60ºC Leaver et al. (2008) 

fabp F: ACCACCATCATCGAGGTAGC 

R: CACTTTTGCACGTGAACCAT 

176 59ºC current study 

REFERENCE 

β-act F:TATCCACGAGACCACCTACA 

R:ATCCAGACGGAGTATTTACG 

204 56ºC Peña et al. (2010)  

ef1α F: GTCTACAAAATCGGCGGTAT 

R: CTTGACGGACACGTTCTTGA 

198 56ºC Peña et al. (2010) 

Abbreviations: fads2d5 = ∆5 fatty acyl desaturase; fads2d6 = ∆6 fatty acyl desaturase; elovl2 = fatty acyl elongase 2; 

elovl5 = fatty acyl elongase 5; srebp1 = sterol regulatory element binding protein 1; srebp2 = sterol regulatory element 

binding protein 2; lxr = liver X receptor; pparα = peroxisome proliferator activated receptor α; pparβ = peroxisome 

proliferator activated receptor β; rxr = retinoid X receptor; fas = fatty acid synthase; cpt1 = carnitine palmitoyl transferase 

1; aco = acyl Co-A oxidase; fabp = fatty acid binding protein; β-act = β-actin; ef1α = elongation factor 1α. 
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The PCR products obtained were purified (QIAquick, Quiagen, Manchester, U.K.) 

and consequently sequenced (Sanger ABI3730xl, GATC Biotech, Konstanz, Germany) to 

check the correspondence with the gene of interest. Sequences corresponding to the open 

reading frame of fads2d6 and elovl5 from several fish species were aligned and primers 

designed on common conserved regions. After sequencing (Sanger ABI3730xl, GATC 

Biotech, Konstanz, Germany) the open reading frame, primers for qPCR were designed 

using Primer3 software (Rozen and Skaletsky, 2000). 

 

6.2.5. RNA extraction   

 Samples were defrosted and incubated at room temperature for 15 min prior to 

extraction. The cell pellets were re-suspended in TRI Reagent
®

 and homogenised with a 

mini beadbeater (Biospec Inc.-Thistle Scientific, Uddingstone, Glasgow,U.K.) for 30 s. 

Once the pellet was completely disrupted, 100 µl of 1-bromo-3 chloropropan (BCP) were 

added and samples shaken vigorously by hand for 15 s, and incubated for further 15 min at 

room temperature. Samples were centrifuged at 14000 g for 15 min at 4ºC and after 

centrifugation, three layers were visible in the microcentrifuge tubes.  Only 450 µl of the 

upper layer was carefully collected to avoid disturbing the interface, and transferred into a 

fresh 1.5 ml microcentrifuge tube. A total of 250 µl of cold RNA precipitation solution 

(1.2 M NaCl and 0.8 M sodium citrate sesquihydrate dissolved in 50 ml of distilled water), 

followed by 250 µl of cold isopropanol, were added to the samples to aid the precipitation 

of the RNA. The samples were mixed thoroughly by gently invertion (six times) and then 

incubated for 10 min at room temperature. The RNA pellet formed on the side/bottom of 

the tube following centrifugation at 14000 g for 15 min at 4ºC. The supernatant was 

discarded and RNA pellets washed twice with 1 ml portions of ice-cold 75% ethanol (v/v). 

Samples were briefly vortexed and centrifuged at 7500 g for 5 min at 4ºC. The 75% 
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ethanol was carefully removed by pipetting and the samples air dried for 5 min, until all 

ethanol traces were gone or the pellets became transparent. The RNA pellets were re-

suspended in 30 µl of RNAse free water, samples incubated at room temperature for 30 

min with a gentle flick every 10 min to aid the re-suspension of the RNA. The quantity of 

the RNA was measured by determination of the ratio of absorbances at 260/280 and 

260/230 nm using a ND-1000 NanoDrop spectrophotometer (Labtech Int., East Sussex, 

UK), and the RNA quality was then assessed by gel electrophoresis using a 1% agarose gel 

with 0.5× tris base, acetic acid and EDTA (TAE) buffer and 0.8 µl of ethidium bromide at 

a concentration of 5 mg ml
-1

. Gel images were produced using the Ingenius syngene bio 

imaging system (Cambridge, UK). The RNA samples were stored at -70ºC prior to further 

analyses. 

 

6.2.6. Reverse transcription 

 Prior to reverse transcription being carried out, all RNA sample concentrations were 

re-measured in the NanoDrop. In sterile RNase-free 0.2 ml tubes, 2000 ng of each RNA 

sample were aliquoted, and RNase free water added in order to make the volume up to a 

total of 10 µl. Samples were heated at 75ºC for 5 min, and then cooled down on ice for 5 

min for preventing secondary structures in RNA molecules. Once the samples were cold, 

the RT master mix was added, which included the following recipe: 2 µl of 10× RT buffer, 

0.8 µl of 25× dNTP mix (100 mM), 1.5 µl of 10× RT random primers, 0.5 µl of Oligo DT 

primers, 1 µl of reverse transcriptase, and 4.2 µl of RNAse free water. The final solution 

contained, therefore, 10 µl of RNA and 10 µl of the RT master mix. Samples were 

vortexed and centrifuged at 460 g for 1 min. For every six experimental samples, two RT- 

(reverse transcription negative) tubes were prepared, as above, but without the enzyme 

multitranscribe reverse transcriptase, and adding 5.2 µl of RNAse free water instead of 4.2 
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µl. All tubes were transferred to the thermocycler (Biometra
®
 Tgradient, Goettingen, 

Germany) and incubated at 40ºC for 10 min, followed by 50 min at 48ºC. The final step 

was inactivation of the RT enzyme by heating the samples at 70ºC for 15 min. The cDNA 

produced was diluted in 1:20 with RNase free water, and stored at - 20ºC prior to qPCR 

analysis. 

   

6.2.7. Quantitative PCR (qPCR) 

Initially the amplification efficiency of each primer pair was assessed by serial 

dilutions of the pooled cDNA (Morais et al., 2011a). The PCR technique was used to 

determine the relative expression of genes involved in fatty acid metabolism and its 

regulation, using a Mastercycler
®

 ep gradient S (Eppendorf AG, Hamburg, Germany). 

Samples in duplicates were loaded in 96-well plates in 20 µL reaction volumes, including 5 

µL of cDNA (from the dilution 1:20), 1 µL of each primer (reverse and forward), 3 µL of 

milliQ water and 10 µL of SYBR Green RT-PCR Master Mix (Applied Biosystems, 

Paisley, UK). For the analysis of β-act and ef1α, 2 µL of cDNA were used and 6 µL of 

milliQ water, SYBR Green and primers were added in the same amount as previously 

mentioned. All amplifications were carried out with a negative control, which did not 

contain cDNA and the plates for reference genes also included 2 RT- samples.  Plates were 

sealed using a Techne
TM

 heat sealer (Bibby Scientific
®
 Ltd, Stone, UK), mixed and 

centrifuged for 1 min at 460 g. Plates were placed into the qPCR machine Mastercycler
®
 

ep gradient S (Eppendorf AG) with the following program: 15 min at 95ºC, 40 cycles of 15 

s at 95ºC, 30 s at the annealing temperature of the primers being used (see Table 2.2), and 

30 s at 72ºC. Finally, a single cycle of 15 s at 95ºC, 15 s at 60ºC, 20 min for the melting 

curve, and 15 s at 95ºC, were performed. Data were registered and analysed using 

Eppendorf Mastercycler
®

 ep Realplex software ver. 2.2. 
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6.2.8. Lipid class and FA composition  

For lipid class and FA composition analyses of Phase 3, a parallel set of 

incubations to those described above in Table 6.2 were set up in 75 cm
2
 tissue culture 

flasks as more experimental material was required for these analyses than easily provided 

by six-well plates. The specifications of cells and media, and preparation of the FA 

complexes were essentially as described in Chapter 2 section 2.1.2 and 2.2.1, respectively. 

The time-course was longer than for the gene expression studies as the predicted lipid and 

FA compositions were based on the experiments in Chapters 3-5 that were over time scale.  

Cells were harvested followed by total lipid extraction according to Folch et al. 

(1957), using chloroform/methanol (C/M, 2:1, by volume) containing 0.05% of BHT. Full 

details of all these procedures are provided in Chapter 2, 2.1.2.2 and 2.3.1, respectively. 

Lipid class analyses were carried out as described in Chapter 2, section 2.3.2 according to 

Henderson and Tocher (1992). Fatty acid methyl esters (FAME) were prepared by acid-

catalysed transmethylation (Christie, 2003), FAME purified by thin-layer chromatography 

(TLC), and quantified using a Fisons GC 8160 gas chromatograph (Fisons Ltd., Crawley, 

UK). Further details are provided in Chapter 2, section 2.3.3.  

 

6.2.9. Statistical analysis 

Results from gene expression analysis are presented as means ± SEM (standard 

error of the mean) with n = 6. The data were normalised expression ratios of the expression 

of the genes in CHSE-214 cell line incubated with the different FA, in relation to the 

CHSE-214 incubated with FAF-BSA-PBS (control) in Phase 1 and 20 µM of LNA in 

Phases 2 and 3. Graphics were created with Microsoft
®
 Excel

®
 and, statistical differences 

were determined by one-way analysis of variance (ANOVA), with post hoc multiple 

comparisons applied using Tukey’s test, performed with IBM SPSS Statistics for 
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Windows
®
 software, ver. 19.0 (Armonk, NY: IBM Corp.). In addition to the statistical 

analyses described above, for Phases 2 and 3 Cluster 3.0 was used to apply a supervised 

hierarchical clustering of the relative gene expression ratio for each gene, taking into 

consideration the PCR efficiency reaction and the Ct value of every sample compared to 

the control (Pfaffl, 2001). A heat map with the treatments and the gene expression was 

generated using TreeView software ver. 3.0 (Page, 1996).  

  

6.3. Results 

 

6.3.1. Phase 1: Time course experiment 

 Figure 6.1 shows the expression of genes for fads2d5, elovl2, cpt1, pparα, and 

srebp1 in CHSE-214 cells individually incubated with LOA and LNA at 20 µM, and the 

control (FAF-BSA-PBS alone), over 24 h, 48 h, and 5 d. No significant differences were 

observed in the expression of the aforementioned genes between control and FA 

supplemented cultures after 24 h and 5 d of incubation (p > 0.05). However, significant 

differences were observed between the expression of the five genes determined in cells 

incubated with LNA and LOA in comparison with the control at 48 h (p < 0.05). 

Therefore, based on these data, all the gene expression studies in the following 

experiments in Phases two and three were carried after 48 h incubation with FA. 
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Figure 6.1. Expression of ∆5 fatty acyl desaturase (fads2d5), fatty acyl elongase 2 (elovl2), 

carnitine palmitoyl transferase 1 (cpt1), peroxisome proliferator activated receptor α (pparα) and, 

sterol regulatory element binding protein 1 (srebp1) in CHSE-214 cells incubated with 20 µM of α-

linolenic acid (LNA), 20 µM of linoleic acid (LOA) and control (CTRL), for 24 h, 48 h and 5 days. 

Gene expression was measured by qPCR and results are presented normalised expression ratios 

(mean ± SEM, n = 6) of the expression of these genes in CHSE-214 incubated with LNA and LOA 

in relation to CHSE-214 incubated with FAF-BSA-PBS (CTRL). Superscript letters indicate 

significant differences (p < 0.05; one-way ANOVA, Tukey’s test). 

 

6.3.2. Phase 2: Gene expression analysis 

 Heat maps were chosen as a graphical approach to present and easily compare 

expression data for a reasonably large number of genes and treatments. Thus, the heat map 

in Figure 6.2 shows how the expression of genes involved in lipid and FA metabolism was 

affected by the supplementation of different combinations and concentrations of FA to 

CHSE-214 cells. The expression of all genes was up-regulated in CHSE-214 cells 

incubated with treatments D (18:3n-3/18:1n-9 at 20/80 µM) and E (18:3n-3/16:0+18:1n-9, 
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20/20 µM). Treatments B (18:3n-3/16:0, 20/80 µM) and F (18:3n-3/16:0+18:1n-9, 20/80 

µM) led to up-regulation of all genes, except for pparα, which did not show any change.  

 

Figure 6.2. Heat map of the fourteen target genes analysed based on qPCR gene expression data. 

Columns represent mean relative expression data for each gene in CHSE-214 cells incubated with 

the different combinations and concentrations of fatty acid. Each row represents the effects of the 

different treatments on the expression of each individual gene. The expression level of each gene 

was squared-root normalised in relation to a control sample (20 µM of α-linolenic acid). Means are 

depicted by a colour scale, indicating low (green), neutral (black) or high (red) relative expression 

levels, as indicated by the colour bar on the left. Treatments: A = 18:3n-3/16:0 20/20 µM; B = 

18:3n-3/16:0 20/80 µM; C = 18:3n-3/18:1n-9 20/20 µM; D = 18:3n-3/18:1n-9 20/80 µM; E = 

18:3n-3/16:0+18:1n-9 20/20 µM; F = 18:3n-3/16:0+18:1n-9 20/80 µM; G = 18:3n-3/18:2n-6 20/5 

µM; H = 18:3n-3/18:2n-6 20/20 µM;  I = 18:2n-6/18:3n-3 20/5 µM; J = 18:3n-3/20:5n-3 20/20 µM; 

K = 18:3n-3/22:6n-3 20/20 µM. Abbreviations: elovl2 = fatty acyl elongase 2; fads2d6 = ∆6 fatty 

acyl desaturase; fads2d5 = ∆5 fatty acyl desaturase; srebp1 = sterol regulatory element binding 

protein 1; srebp2 = sterol regulatory element binding protein 2; elovl5 = fatty acyl elongase 5; 

pparβ = peroxisome proliferator activated receptor β; lxr = liver X receptor; cpt1 = carnitine 

palmitoyl transferase 1; rxr = retinoid X receptor; aco = acyl Co-A oxidase; fas = fatty acid 

synthase; fabp = fatty acid binding protein and; pparα = peroxisome proliferator activated receptor 

α.  

 

The most stable expression was observed in cells incubated with treatment J 

(18:3n-3/20:5n-3 20/20 µM), showing no change in eight out of 14 genes. Down-
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regulation of the expression of fads2d6, srebp1, srebp2, pparβ, lxr, and pparα was 

observed in treatments G (18:3n-3/18:2n-6, 20/5 µM), I (18:2n-6/18:3n-3, 20/5 µM), J 

(18:3n-3/20:5n-3, 20/20 µM) and K (18:3n-3/22:6n-3, 20/20 µM). The detailed effects of 

the 11 different treatment conditions on the expression of each individual gene are shown 

in Figures 6.3 (genes of LC-PUFA biosynthesis), 6.4 (transcription factors) and 6.5 (other 

FA metabolism). 

 

Figure 6.3. Expression of ∆5 fatty acyl desaturase (fads2d5), ∆6 fatty acyl desaturase (fads2d6), 

fatty acyl elongase 2 (elovl2) and fatty acyl elongase 5 (elovl5) in CHSE-214 cells incubated for 48 

h with the following treatments: A = 18:3n-3/16:0 20/20 µM; B = 18:3n-3/16:0 20/80 µM; C = 

18:3n-3/18:1n-9 20/20 µM; D = 18:3n-3/18:1n-9 20/80 µM; E = 18:3n-3/16:0+18:1n-9 20/20 µM; 

F = 18:3n-3/16:0+18:1n-9 20/80 µM; G = 18:3n-3/18:2n-6 20/5 µM; H = 18:3n-3/18:2n-6 20/20 

µM;  I = 18:2n-6/18:3n-3 20/5 µM; J = 18:3n-3/20:5n-3 20/20 µM; K = 18:3n-3/22:6n-3 20/20 µM, 

measured by qPCR. Results are normalised expression ratios (mean ± SEM, n = 6) of the 

expression of these genes in CHSE-214 cells incubated with different treatments in relation to cells 

incubated with 20 µM α-linolenic acid (Ctrl = control). Superscript letters indicate significant 

differences (p < 0.05; one-way ANOVA, Tukey’s test). 
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Figure 6.4. Expression of sterol regulatory element binding protein 1 (srebp1), sterol regulatory 

element binding protein 2 (srebp2), peroxisome proliferator activated receptor α (pparα), 

peroxisome proliferator activated receptor β (pparβ), liver X receptor (lxr) and retinoid X receptor 

(rxr) in CHSE-214 cells incubated for 48 h with the following treatments: A = 18:3n-3/16:0 20/20 

µM; B = 18:3n-3/16:0 20/80 µM; C = 18:3n-3/18:1n-9 20/20 µM; D = 18:3n-3/18:1n-9 20/80 µM; 

E = 18:3n-3/16:0+18:1n-9 20/20 µM; F = 18:3n-3/16:0+18:1n-9 20/80 µM; G = 18:3n-3/18:2n-6 

20/5 µM; H = 18:3n-3/18:2n-6 20/20 µM;  I = 18:2n-6/18:3n-3 20/5 µM; J = 18:3n-3/20:5n-3 

20/20 µM; K = 18:3n-3/22:6n-3 20/20 µM, measured by qPCR. Results are normalised expression 

ratios (mean ± SEM, n = 6) of the expression of these genes in CHSE-214 cells incubated with 

different treatments in relation to cells incubated with 20 µM α-linolenic acid (Ctrl = control). 

Superscript letters indicate significant differences (p < 0.05; one-way ANOVA, Tukey’s test). 
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Figure 6.5. Expression of fatty acid synthase (fas), carnitine palmitoyl transferase 1 (cpt1) acyl Co-

A oxidase (aco) and fatty acid binding protein (fabp) in CHSE-214 cells incubated for 48 h with 

the following treatments: A = 18:3n-3/16:0 20/20 µM; B = 18:3n-3/16:0 20/80 µM; C = 18:3n-

3/18:1n-9 20/20 µM; D = 18:3n-3/18:1n-9 20/80 µM; E = 18:3n-3/16:0+18:1n-9 20/20 µM; F = 

18:3n-3/16:0+18:1n-9 20/80 µM; G = 18:3n-3/18:2n-6 20/5 µM; H = 18:3n-3/18:2n-6 20/20 µM;  I 

= 18:2n-6/18:3n-3 20/5 µM; J = 18:3n-3/20:5n-3 20/20 µM; K = 18:3n-3/22:6n-3 20/20 µM, 

measured by qPCR. Results are normalised expression ratios (mean ± SEM, n = 6) of the 

expression of these genes in CHSE-214 cells incubated with different combinations and 

concentrations of fatty acids in relation to cells incubated with 20 µM α-linolenic acid (Ctrl = 

control). Superscript letters indicate significant differences (p < 0.05; one-way ANOVA, Tukey’s 

test). 

 

6.3.3. Phase 3: Prediction experiments 

6.3.3.1. Gene expression analysis 

 The data obtained in Phase 2 was used to develop a model framework (Figure 6.6) 

to describe the effects of different supplementations on gene expression and LC-PUFA 

biosynthesis. Based on this model framework, the effects of untested FA combinations on 

LC-PUFA biosynthesis were tested and the actual results compared with predicted from 

the model  
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Figure 6.6. Model framework integrating the effects of different FA supplementations and gene 

expression and LC-PUFA biosynthesis in CHSE-214 cell line. The expression levels are indicated 

by colours as follows: low (green), slightly low (light green), neutral (black), high (red), slightly 

high (light red). 
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. Figure 6.7 shows the predicted patterns of expression of the 14 genes studied after 

incubation of CHSE-214 cells with the selected untested combinations of FA.  

 

Figure 6.7. A heat map representation of the predicted expression patterns of the fourteen target 

genes, based on the results of Phase 2 and the model framework. As in Figure 6.2, columns 

represent the different combinations and concentrations of fatty acid supplemented to CHSE-214 

cells, and rows represent expression of the individual genes. The predicted expression levels are 

indicated by the colour bar on the left, low (green), slightly low (light green), neutral (black), high 

(red), slightly high (light red). Treatments: L = 18:3n-3+18:2n-6/16:0 20+15/20 µM; M = 18:3n-

3+18:2n-6/16:0 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0 20+15/60 µM; O = 18:3n-3+18:2n-

6/18:1n-9 20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9 20+15/40 µM; Q = 18:3n-3+18:2n-6/18:1n-

9 20+15/60 µM; R = 18:3n-3/18:2n-6+16:0 20/5+5 µM; S = 18:3n-3/18:2n-6+16:0 20/10+10 µM; 

T = 18:3n-3/18:2n-6+16:0 20/15+15 µM; U = 18:3n-3/18:2n-6+16:0 20/20+20 µM. Abbreviations: 

elovl2 = fatty acyl elongase 2; fads2d5 = ∆5 fatty acyl desaturase; elovl5 = fatty acyl elongase 5; 

srebp1 = sterol regulatory element binding protein 1; aco = acyl Co-A oxidase; fads2d6 = ∆6 fatty 

acyl desaturase; srebp2 = sterol regulatory element binding protein 2; ; lxr = liver X receptor; fas = 

fatty acid synthase; pparα = peroxisome proliferator activated receptor α; fabp = fatty acid binding 

protein; pparβ = peroxisome proliferator activated receptor β; rxr = retinoid X receptor; and cpt1 = 

carnitine palmitoyl transferase 1.  
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Up-regulation of essentially all genes was predicted if CHSE-214 were incubated 

with high concentrations (approaching 100 µM) of total FA, such as treatments N (18:3n-

3+18:2n-6/16:0, 20+15/60 µM) and Q (18:3n-3+18:2n-6/18:1n-9, 20+15/60 µM).The most 

stable (unaffected) expression pattern was predicted to be observed in cells incubated with 

treatment R (18:3n-3/18:2n-6+16:0, 20/5+5 µM), with likely no changes in expression of 

fads2d5, aco, and srebp1. As LC-PUFA (i.e. EPA) were not supplemented, it was 

predicted that most of the transcription factors i.e. srbp1, srbp2, pparα, pparβ, and lxr, and 

genes involved with the LC-PUFA biosynthesis were going to be up-regulated in relation 

to the control (20 µM LNA) in treatments L-U. 

The heat map in Figure 6.8 shows the actual experimentally-derived gene 

expression data based on qPCR analysis.  The heat map therefore shows how the actual 

expression patterns of the genes were affected by the supplementation with different 

combinations and concentrations of FA to the CHSE-214 cells. The expression of all genes 

analysed was changed in CHSE-214 cells incubated with treatment N (18:3n-3+18:2n-

6/16:0, 20+15/60 µM). In treatment M (18:3n-3+18:2n-6/16:0, 20+15/40 µM), the 

expression of 13 out of the 14 genes changed, and 12 out of 14 in treatments L (18:3n-

3+18:2n-6/16:0, 20+15/20 µM) and Q (18:3n-3+18:2n-6/18:1n-9, 20+15/60 µM). The 

most stable gene expression was observed in CHSE-214 incubated with treatments S 

(18:3n-3/18:2n-6+16:0 20/10+10 µM) and T (18:3n-3/18:2n-6+16:0 20/15+15 µM), where 

expression of 8 out of the 14 genes did not show any change. The detailed effects of the 10 

new treatment conditions on the expression of each individual gene are shown in Figures 

6.10 (genes of LC-PUFA biosynthesis), 6.11 (transcription factors) and 6.12 (other FA 

metabolism). 
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Figure 6.8. Heat map showing the actual experimentally-derived expression patterns of the 

fourteen target genes based on qPCR data. Columns represent mean relative expression data for 

each gene in CHSE-214 cells incubated with the different combinations and concentrations of fatty 

acid. Each row represents the effects of the different treatments on the expression of each 

individual gene. Expression level of each gene was squared-root normalised in relation to the 

control sample (20 µM α-linolenic acid). Means are depicted by a colour scale, indicating low 

(green), neutral (black) or high (red) relative expression levels, as indicated by the colour bar on the 

left. Treatments: L = 18:3n-3+18:2n-6/16:0 20+15/20 µM; M = 18:3n-3+18:2n-6/16:0 20+15/40 

µM; N = 18:3n-3+18:2n-6/16:0 20+15/60 µM; O = 18:3n-3+18:2n-6/18:1n-9 20+15/20 µM; P = 

18:3n-3+18:2n-6/18:1n-9 20+15/40 µM; Q = 18:3n-3+18:2n-6/18:1n-9 20+15/60 µM; R = 18:3n-

3/18:2n-6+16:0 20/5+5 µM; S = 18:3n-3/18:2n-6+16:0 20/10+10 µM; T = 18:3n-3/18:2n-6+16:0 

20/15+15 µM; U = 18:3n-3/18:2n-6+16:0 20/20+20 µM. Abbreviations: elovl2 = fatty acyl 

elongase 2; fads2d5 = ∆5 fatty acyl desaturase; elovl5 = fatty acyl elongase 5; srebp1 = sterol 

regulatory element binding protein 1; aco = acyl Co-A oxidase; fads2d6 = ∆6 fatty acyl desaturase; 

srebp2 = sterol regulatory element binding protein 2; lxr = liver X receptor; fas = fatty acid 

synthase; pparα = peroxisome proliferator activated receptor α; fabp = fatty acid binding protein; 

pparβ = peroxisome proliferator activated receptor β; rxr = retinoid X receptor and; cpt1 = 

carnitine palmitoyl transferase 1. 

 

The heat map in Figure 6.9 shows the accuracy of the predictions made for 

experiments L-U, in comparison with the actual results. The predictions were scored with 

the following criteria: red = same colour in predicted and actual result (accurate), green = 
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different colour in predicted and actual result (inaccurate) and pink = the colours of the 

predicted and the actual result were not the opposite (i.e. when prediction was green or red 

and the actual result was black, meaning that results were not identical but were not 

completely opposite either). The majority of the predicted results were slightly accurate, 57 

pink squares out of 140, 49 predictions were accurate and 34 predictions were inaccurate.     

 

 

Figure 6.9. Heat map showing the accuracy of the expression patterns predicted of the fourteen 

target genes based on qPCR data. The accuracy is depicted by a colour scale, indicating accurate 

(red),slightly accurate (pink) or innacurate (green). Treatments: L = 18:3n-3+18:2n-6/16:0 

20+15/20 µM; M = 18:3n-3+18:2n-6/16:0 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0 20+15/60 µM; 

O = 18:3n-3+18:2n-6/18:1n-9 20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9 20+15/40 µM; Q = 

18:3n-3+18:2n-6/18:1n-9 20+15/60 µM; R = 18:3n-3/18:2n-6+16:0 20/5+5 µM; S = 18:3n-

3/18:2n-6+16:0 20/10+10 µM; T = 18:3n-3/18:2n-6+16:0 20/15+15 µM; U = 18:3n-3/18:2n-

6+16:0 20/20+20 µM. Abbreviations: elovl2 = fatty acyl elongase 2; fads2d5 = ∆5 fatty acyl 

desaturase; elovl5 = fatty acyl elongase 5; srebp1 = sterol regulatory element binding protein 1; aco 

= acyl Co-A oxidase; fads2d6 = ∆6 fatty acyl desaturase; srebp2 = sterol regulatory element 

binding protein 2; lxr = liver X receptor; fas = fatty acid synthase; pparα = peroxisome proliferator 

activated receptor α; fabp = fatty acid binding protein; pparβ = peroxisome proliferator activated 

receptor β; rxr = retinoid X receptor and; cpt1 = carnitine palmitoyl transferase 1. 
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Figure 6.10. Expression of ∆5 fatty acyl desaturase (fads2d5), ∆6 fatty acyl desaturase (fads2d6), 

fatty acyl elongase 2 (elovl2) and fatty acyl elongase 5 (elovl5) in CHSE-214 cells incubated for 48 

h with the following treatments: L = 18:3n-3+18:2n-6/16:0, 20+15/20 µM; M = 18:3n-3+18:2n-

6/16:0, 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0, 20+15/60 µM; O = 18:3n-3+18:2n-6/18:1n-9, 

20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9, 20+15/40 µM; Q = 18:3n-3+18:2n-6/18:1n-9, 

20+15/60 µM; R = 18:3n-3/18:2n-6+16:0, 20/5+5 µM; S = 18:3n-3/18:2n-6+16:0, 20/10+10 µM; T 

= 18:3n-3/18:2n-6+16:0, 20/15+15 µM; U = 18:3n-3/18:2n-6+16:0, 20/20+20 µM, measured by 

qPCR. Results are normalised expression ratios (mean ± SEM, n = 6) of the expression of these 

genes in CHSE-214 cells incubated with different combinations and concentrations of fatty acids in 

relation to cells incubated with 20 µM α-linolenic acid (Ctrl = control). Superscript letters indicate 

significant differences (p < 0.05; one-way ANOVA, Tukey’s test). 
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Figure 6.11. Expression of sterol regulatory element binding protein 1 (srebp1), sterol regulatory 

element binding protein 2 (srebp2), peroxisome proliferator activated receptor α (pparα), 

peroxisome proliferator activated receptor β (pparβ), liver X receptor (lxr) and retinoid X receptor 

(rxr) in CHSE-214 cells incubated for 48 h with the following treatments: L = 18:3n-3+18:2n-

6/16:0 20+15/20 µM; M = 18:3n-3+18:2n-6/16:0 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0 

20+15/60 µM; O = 18:3n-3+18:2n-6/18:1n-9 20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9 

20+15/40 µM; Q = 18:3n-3+18:2n-6/18:1n-9 20+15/60 µM; R = 18:3n-3/18:2n-6+16:0 20/5+5 

µM; S = 18:3n-3/18:2n-6+16:0 20/10+10 µM; T = 18:3n-3/18:2n-6+16:0 20/15+15 µM; U = 

18:3n-3/18:2n-6+16:0 20/20+20 µM, measured by qPCR. Results are normalised expression ratios 

(mean ± SEM, n = 6) of the expression of these genes in CHSE-214 cells incubated with different 

combinations and concentrations of fatty acids in relation to cells incubated with 20 µM α-linolenic 

acid (Ctrl = control). Superscript letters indicate significant differences (p < 0.05; one-way 

ANOVA, Tukey’s test). 
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Figure 6.12. Expression of fatty acid synthase (fas), carnitine palmitoyl transferase 1 (cpt1), acyl 

Co-A oxidase (aco) and fatty acid binding protein (fabp) in CHSE-214 cells incubated for 48 h 

with the following treatments: L = 18:3n-3+18:2n-6/16:0 20+15/20 µM; M = 18:3n-3+18:2n-

6/16:0 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0 20+15/60 µM; O = 18:3n-3+18:2n-6/18:1n-9 

20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9 20+15/40 µM; Q = 18:3n-3+18:2n-6/18:1n-9 

20+15/60 µM; R = 18:3n-3/18:2n-6+16:0 20/5+5 µM; S = 18:3n-3/18:2n-6+16:0 20/10+10 µM; T 

= 18:3n-3/18:2n-6+16:0 20/15+15 µM; U = 18:3n-3/18:2n-6+16:0 20/20+20 µM, measured by 

qPCR. Results are normalised expression ratios (mean ± SEM, n = 6) of the expression of these 

genes in CHSE-214 cells incubated with different combinations and concentrations of fatty acids in 

relation to cells incubated with 20 µM α-linolenic acid (Ctrl = control). Superscript letters indicate 

significant differences (p < 0.05; one-way ANOVA, Tukey’s test). 

 

6.3.3.2 Lipid class and fatty acid composition 

Figure 6.13 shows the prediction made for EPA levels in the cells incubated with 

different combinations and concentrations of FA (treatments L-U). The highest EPA level 

was expected with the supplementation of 18:3n-3/18:2n-6+16:0 at 20/5+5 µM (treatment 

R), as previous analyses showed that LNA supplemented with low concentrations of LOA 

(Chapter 4) and SFA (Chapter 5) possibly enhanced the conversion of LNA to EPA. 

Negative effects on the EPA levels were expected supplementing higher concentration of 
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MUFA (P = 18:3n-3+18:2n-6/18:1n-9 at 20+15/40 µM; and Q = 18:3n-3+18:2n-6/18:1n-9 

at 20+15/60 µM). However, the EPA levels obtained in cells incubated with the treatments 

L-U (Figure 6.14) were abundantly lower compared with the values predicted. The order of 

the treatments from high to low showed a moderate accuracy. 

 

Figure 6.13. Prediction of EPA (eicosapentaenoic acid) levels of treatments: R = 18:3n-3/18:2n-

6+16:0 20/5+5 µM; S = 18:3n-3/18:2n-6+16:0 20/10+10 µM; T = 18:3n-3/18:2n-6+16:0 20/15+15 

µM; L = 18:3n-3+18:2n-6/16:0 20+15/20 µM; U = 18:3n-3/18:2n-6+16:0 20/20+20 µM; M = 

18:3n-3+18:2n-6/16:0 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0 20+15/60 µM; O = 18:3n-

3+18:2n-6/18:1n-9 20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9 20+15/40 µM; Q = 18:3n-

3+18:2n-6/18:1n-9 20+15/60 µM. 

 

Figure 6.14. EPA (eicosapentaenoic acid) levels of treatments: R = 18:3n-3/18:2n-6+16:0 20/5+5 

µM; S = 18:3n-3/18:2n-6+16:0 20/10+10 µM; T = 18:3n-3/18:2n-6+16:0 20/15+15 µM; L = 18:3n-

3+18:2n-6/16:0 20+15/20 µM; U = 18:3n-3/18:2n-6+16:0 20/20+20 µM; M = 18:3n-3+18:2n-

6/16:0 20+15/40 µM; N = 18:3n-3+18:2n-6/16:0 20+15/60 µM; O = 18:3n-3+18:2n-6/18:1n-9 

20+15/20 µM; P = 18:3n-3+18:2n-6/18:1n-9 20+15/40 µM; Q = 18:3n-3+18:2n-6/18:1n-9 

20+15/60 µM.  
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Table 6.4 shows the lipid content and class composition of CHSE-214 cells 

incubated with 20 µM LNA and 15 µM LOA in the presence of increasing concentrations 

of 16:0. No consistent trend was observed in the cell lipid content, and no significant 

differences were found amongst treatments (R
2 

= 0.028; p = 0.665). In the lipid class data 

no clear trends were observed, apart from the increasing total neutral lipids, and 

consequently decreasing total polar lipids, with the graded supplementation of 16:0. 

However, no significant differences were found amongst treatments (R
2
 = 0.285; p = 

0.139).  

 

Table 6.4. Lipid content and lipid class composition of CHSE-214 cells incubated with 20 µM 

LNA, 15 µM LOA and increasing concentrations of 16:0 (Treatments L, M and N) 

Lipid 20+15/20 µM 20+15/40 µM 20+15/60 µM R
2
 P-value 

LC (µg)  280.0 ± 17.3 320.0 ± 20.0
 
 296.7 ± 73.7

 
 0.028 0.665 

CC (%)      

PC 24.7 ± 1.0 23.5 ± 0.5 25.2 ± 1.0 0.051 0.557 

PE 18.9 ± 0.3 19.5 ± 1.0 16.9 ± 0.4 0.447 0.049 

PS 7.3 ± 0.6 7.3 ± 0.1 6.3 ± 0.7 0.430 0.055 

PI 8.6 ± 0.5 8.4 ± 0.9 8.6 ± 0.4 0.001 0.947 

PA/CL ND ND ND - - 

SM 5.5 ± 0.7 5.1 ± 0.2 5.3 ± 0.6 0.037 0.620 

TP 65.0 ± 2.5 63.8 ± 0.5 62.3 ± 2.5 0.285 0.139 

TN 35.0 ± 2.5 36.2 ± 0.5 37.7 ± 2.5 0.285 0.139 

TAG 11.3 ± 1.3 12.1 ± 1.1 11.8 ± 1.7 0.026 0.678 

CHOL 20.2 ± 1.1 20.0 ± 0.5 21.9 ± 0.6 0.416 0.061 

FFA 3.5 ± 0.2 4.1 ± 0.5 4.0 ± 0.9 0.125 0.350 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical significance of differences was determined by regression analysis (p < 

0.05). Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 

 

The FA composition of CHSE-214 cells incubated with 20 µM LNA and 15 µM 

LOA, in the presence of increasing concentrations of 16:0 is shown in Table 6.5. EPA 

levels decreased with the graded supplementation of 16:0 (R
2
 = 0.823; p = 0.001), but the 

percentages of 22:5n-3 and DHA were not affected by 16:0 supplementation, being 
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essentially the same at all concentrations (R
2
 = 0.459; p = 0.045 and R

2
 = 0.079; p = 0.464, 

respectively). 

 
Table 6.5. Fatty acid composition (%) of CHSE-214 cells incubated with 20 µM LNA, 15 µM 

LOA and increasing concentrations of 16:0 (Treatments L, M and N) 

Fatty acid 20+15/20 µM   20+15/40 µM 20+15/60 µM R
2
 P-value 

14:0 1.1 ± 0.1 1.0 ± 0.2 1.1 ± 0.0 0.010 0.794 

15:0 0.4 ± 0.0  0.2 ± 0.0 0.3 ± 0.0 0.275 0.147 

16:0 13.3 ± 0.6 14.8 ± 0.5 16.9 ± 0.9  0.872 0.000 

17:0 0.6 ± 0.1 0.7 ± 0.1 0.5 ± 0.1 0.161 0.285 

18:0 8.6 ± 0.5 8.4 ± 0.4 8.0 ± 0.6 0.295 0.131 

Ʃ SFA  24.0 ± 0.9 25.1 ± 0.9 26.7 ± 1.4 0.623 0.011 

16:1n-9 2.0 ± 0.0 2.1 ± 0.0 2.3 ± 0.2 0.525 0.027 

16:1n-7 2.9 ± 0.1 4.0 ± 0.2 6.0 ± 0.2 0.966 0.000 

18:1n-9 29.5 ± 0.3 29.0 ± 0.7 29.7 ± 1.0 0.018 0.730 

18:1n-7 2.5 ± 0.0 2.6 ± 0.1 2.9 ± 0.3 0.504 0.032 

24:1n-9 0.5 ± 0.1 0.5 ± 0.0 0.4 ± 0.0 0.258 0.163 

Ʃ MUFA 37.4 ± 0.2 38.2 ± 0.6 41.3 ± 0.9 0.818 0.001 

18:2n-6 11.0 ± 0.4 10.6 ± 0.2 9.0 ± 1.1 0.627 0.011 

18:3n-6 0.7 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.764 0.002 

20:2n-6* 1.3 ± 0.0 1.4 ± 0.2 1.1 ± 0.1 0.288 0.136 

20:3n-6 1.4 ± 0.1 1.6 ± 0.2 1.3 ± 0.1 0.089 0.436 

20:4n-6 1.7 ± 0.1 1.6 ± 0.1 1.5 ± 0.1 0.532 0.026 

Ʃ n-6 PUFA 16.2 ± 0.3 15.8 ± 0.3 13.5 ± 1.3 0.670 0.007 

18:3n-3 10.4 ± 0.3 9.7 ± 0.3 7.9 ± 0.3 0.892 0.000 

18:4n-3 2.0 ± 0.1 2.1 ± 0.2 1.9 ± 0.2 0.080 0.460 

20:4n-3 1.5 ± 0.0 1.2 ± 0.1 0.8 ± 0.1 0.921 0.000 

20:5n-3 1.7 ± 0.1 1.3 ± 0.1 1.1 ± 0.1 0.823 0.001 

22:5n-3 1.1 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.459 0.045 

22:6n-3 1.7 ± 0.1 1.7 ± 0.2 1.6 ± 0.1 0.079 0.464 

Ʃ n-3 PUFA 18.4 ± 0.3 17.1 ± 1.0 14.3 ± 0.4 0.879 0.000 

18:2n-9 2.5 ± 0.2 2.5 ± 0.1 2.9 ± 0.2 0.436 0.053 

20:2n-9 1.1 ± 0.0 1.0 ± 0.0 1.0 ± 0.1 0.514 0.030 

22:2n-9 0.3 ± 0.0 0.4 ± 0.1 0.3 ± 0.1 0.086 0.444 

Ʃ n-9 PUFA 4.0 ± 0.2 3.9 ± 0.2 4.2 ± 0.3 0.159 0.288 

      

Ʃ PUFA 39.6 ± 0.7  36.7 ± 1.4
 

32.0 ± 1.9
 0.798 0.001 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical significance of differences was determined by regression analysis (p < 

0.05). Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9.  

 

The levels of LNA and LOA decreased with the graded supplementation of 16:0 

(R
2
 = 0.892; p = 0.000 and R

2
 = 0.627; p = 0.011, respectively). Small amounts of the C18 

PUFA were converted into the intermediate metabolites. There was graded accumulation 
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of 16:0 with the supplementation of the FA itself (R
2
 = 0.872; p = 0.000), leading to an 

increment of the total SFA (R
2
 = 0.623; p = 0.011), and total MUFA (R

2
 = 0.818; p = 

0.001) for the increment of desaturation product 16:1n-7 (R
2
 = 0.966; p = 0.000), whereas 

total PUFA decreased (R
2
 = 0.798; p = 0.001). 

Table 6.6. shows the lipid content and class composition of CHSE-214 cells 

incubated with 20 µM LNA and 15 µM LOA in the presence of increasing concentrations 

of 18:1n-9. Cell lipid content increased with the graded supplementation of 18:1n-9 but, no 

significant differences were found amongst treatments (R
2 

= 0.170; p = 0.270). In the lipid 

class data TAG, and total neutral lipids increased with the graded supplementation of 

18:1n-9 although the differences were not significant (R
2
 = 0.411; p = 0.063 and R

2
 = 

0.244; p = 0.177).  

 
Table 6.6. Lipid content and lipid class composition of CHSE-214 cells incubated with 20 µM 

LNA, 15 µM LOA and increasing concentrations of 18:1n-9 (Treatments O, P and Q) 

Lipid 20+15/20 µM 20+15/40 µM 20+15/60 µM R
2
 P-value 

LC (µg) 193.3  58.6
 

226.7  49.3
 

243.3  56.9
 0.170 0.270 

CC (%)      

PC 25.0  1.2
 

24.9  1.1
 

24.2  0.8
 0.116 0.370 

PE 14.3  0.3
 

14.4  0.5
 

13.3  1.2
 0.257 0.164 

PS 5.1  1.1
 

4.7  0.1
 

4.1  0.7
 0.341 0.099 

PI 6.5  1.1
 

6.8  0.3
 

5.9  1.0
 0.103 0.400 

PA/CL ND ND ND - - 

SM 5.2  0.4
 

5.1  0.5
 

5.2  0.1
 0.001 0.937 

TP 56.1  2.9
 

55.9  2.0
 

52.6  3.8
 0.244 0.177 

TN 43.9  2.9
 

44.1  2.0
 

47.4  3.8
 0.244 0.177 

TAG 17.3  2.0
 

18.6  2.6
 

21.9  3.4
 0.411 0.063 

CHOL 22.4  1.2
 

21.5  0.9
 

22.4  0.2
 0.000 0.982 

FFA 4.3  0.3
 

4.0  0.7
 

3.2  0.3
 0.566 0.019 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical significance of differences was determined by regression analysis (p < 

0.05). Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids; ND = not detected. 
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Table 6.7 shows the FA composition of CHSE-214 cells incubated with 20 µM of 

LNA and 15 µM of LOA, in the presence of increasing concentrations of 18:1n-9. The 

proportions of EPA (R
2
 = 0.861; p = 0.000), 22:5n-3 (R

2
 = 0.775; p = 0.002), and DHA (R

2
 

= 0.743; p = 0.003) all decreased with the graded supplementation of 18:1n-9, but 18:4n-3 

levels were unaffected (R
2
 = 0.002; p = 0.917).  

 

Table 6.7. Fatty acid composition (%) of CHSE-214 cells incubated with 20 µM LNA, 15 µM 

LOA and increasing concentrations of 18:1n-9 (Treatments O, P and Q) 

Fatty acid 20+15/20 µM 20+15/40 µM 20+15/60 µM R
2
 P-value 

14:0 0.7  0.0
 

0.7  0.1 0.5  0.0
 0.472 0.041 

15:0 0.2  0.0
 

0.4  0.1
 

0.4  0.1
 0.663 0.008 

16:0 6.0  0.2
 

5.8  0.3
 

5.3  0.4
 0.512 0.030 

17:0 0.4  0.0
 

0.2  0.0
 

0.2  0.0
 0.574 0.018 

18:0 5.5  0.2
 

5.2  0.4
 

4.3  0.1
 0.765 0.002 

Ʃ SFA 12.7  0.4
 

12.4 0.8 10.8  0.4
 0.667 0.007 

16:1n-9 2.2  0.1
 

2.6  0.2
 

2.8  0.3
 0.610 0.013 

16:1n-7 1.3  0.2
 

1.3  0.1
 

1.2  0.2
 0.106 0.392 

18:1n-9 31.2  0.1
 

39.5  0.3
 

50.3  0.2
 0.995 0.000 

18:1n-7 1.9  0.1
 

1.6  0.0
 

1.6  0.2
 0.534 0.025 

24:1n-9 0.3  0.0
 

0.3  0.0
 

0.3  0.0
 0.595 0.015 

Ʃ MUFA 36.9  0.3
 

45.3  0.4
 

56.0  0.5
 0.994 0.000 

18:2n-6 24.7  0.2
 

17.9  0.9
 

11.0  0.4
 0.991 0.000 

18:3n-6 2.0  0.2
 

1.5  0.1
 

1.0  0.1
 0.938 0.000 

20:2n-6* 1.1  0.0
 

1.0  0.1
 

0.9  0.0
 0.689 0.006 

20:3n-6 1.6  0.1
 

1.6  0.2
 

1.6  0.2
 0.008 0.816 

20:4n-6 2.1  0.0
 

1.9  0.1
 

1.6  0.1
 0.890 0.000 

Ʃ n-6 PUFA 31.5  0.5
 

23.9  0.8
 

16.2  0.2
 0.994 0.000 

18:3n-3 6.8  0.2
 

6.7  0.7
 

6.4  0.3
 0.123 0.355 

18:4n-3 2.5  0.3
 

2.4  0.3
 

2.4  0.1
 0.002 0.917 

20:4n-3 0.8  0.1
 

0.7  0.1
 

0.3  0.0
 0.830 0.001 

20:5n-3 1.4  0.0
 

1.1  0.2
 

0.7  0.0
 0.861 0.000 

22:5n-3 1.1  0.0
 

1.0  0.1
 

0.8  0.0
 0.775 0.002 

22:6n-3 1.8  0.1
 

1.6  0.1
 

1.4  0.1
 0.743 0.003 

Ʃ n-3 PUFA 14.3  0.6
 

13.6  0.8
 

12.1  0.1
 0.758 0.002 

18:2n-9 2.9  0.1
 

3.1  0.2
 

3.3  0.0
 0.775 0.002 

20:2n-9 1.7  0.1
 

1.7  0.2
 

1.6  0.0
 0.200 0.228 

Ʃ n-9 PUFA 4.6  0.1
 

4.8  0.4
 

4.9  0.0
 0.309 0.120 

 
     

Ʃ PUFA 50.3  0.8 42.2  0.9 33.2  0.2 0.992 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical significance of differences was determined by regression analysis (p < 

0.05). Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9.  

 

The cellular percentage of LNA was not affected by 18:1n-9 supplementation (R
2
 = 

0.123; p = 0.355). Levels of LOA (R
2
 = 0.991; p = 0.000), and the metabolites i.e.18:3n-6 
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(R
2
 = 0.938; p = 0.000) and ARA (R

2
 = 0.890; p = 0.000) all decreased with graded 

supplementation of 18:1n-9, with no changes observed in 20:3n-6 levels (R
2
 = 0.008; p = 

0.816). There was graded incorporation of 18:1n-9 with the supplementation of the FA 

itself (R
2
 = 0.995; p = 0.000), leading to an increment of total MUFA (R

2
 = 0.994; p = 

0.000), which was balanced by reducing total n-3 PUFA (R
2
 = 0.994; p = 0.000), n-6 

PUFA (R
2
 = 0.758; p = 0.002), and therefore total PUFA (R

2
 = 0.992; p = 0.000). 

Table 6.8 shows the lipid content and class composition of CHSE-214 cells 

incubated with 20 µM LNA in the presence of increasing concentrations of LOA+16:0 

(1:1). Cell lipid content decreased with the graded supplementation of LOA+16:0 from 

20/5+5 to 20/15+15 (R
2
 = 0.351; p = 0.042).  

 

Table 6.8. Lipid content and lipid class composition of CHSE-214 cells incubated with 20 µM 

LNA and increasing concentrations of LOA+16:0 (1:1) (Treatments R, S, T and U) 

Lipid 20 + 5/5 µM 20 + 10/10 µM 20 + 15/15 µM 20 + 20/20 µM R
2
 P-value 

LC (µg) 340.0  52.0 286.7  80.8 233.3  41.6 253.3  15.3 0.351 0.042 

CC (%)       

PC 24.6  0.7 24.3  0.3 24.8  0.5 24.7  1.0 0.031 0.587 

PE 20.0  0.2 18.3  0.3 16.9  0.6 17.7  0.7 0.581 0.004 

PS 6.8  0.3 6.3  0.2 5.0  0.3 4.8  0.6 0.816 0.000 

PI 10.9  0.6 9.4  0.4 8.7  0.1 9.6  0.5 0.330 0.051 

SM 4.8  0.5 3.9  0.2 3.1  0.4 5.3  0.6 0.004 0.841 

TP 67.2  1.2 62.2  0.4 58.6  0.7 62.1  1.4 0.438 0.019 

TN 32.8  1.2 37.8  0.4 41.4  0.7 37.9  1.4 0.438 0.019 

TAG 4.9  0.2 4.4  0.6 11.2  0.9 6.9  0.3 0.308 0.061 

CHOL 26.5  1.4 31.7  0.4 28.8  0.3 28.9  1.5 0.052 0.477 

FFA 1.4  0.3 1.7  0.2 1.5  0.1 2.1  0.3 0.378 0.033 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Lipid class composition is given as a percentage of 

the total lipid content. Statistical significance of differences was determined by regression analysis (p < 

0.05). Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; LC = lipid content; CC = class 

composition; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PS = phosphatidylserine; PI = 

phosphatidylinositol; PA/CL = phosphatidic acid/cardiolipin; SM = sphingomyelin; TP = total polar; TN = 

total neutral; TAG = triacylglycerol; CHOL = cholesterol; FFA = free fatty acids. 

 

There were no clear trends observed in cellular lipid class compositions, apart from 

total neutral lipids, which increased with the graded supplementation of LOA+16:0 from 

20/5+5 to 20/15+15 (R
2
 = 0.438; p = 0.019), this increase balanced mainly by decreased 
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PE (R
2
 = 0.581; p = 0.004), PS (R

2
 = 0.816; p = 0.000), and therefore total polar lipids (R

2
 

= 0.438; p = 0.019).  

The FA composition of CHSE-214 cells incubated with 20 µM of LNA in the 

presence of increasing concentrations of LOA+16:0 is shown in Table 6.9.  

 

Table 6.9. Fatty acid composition (%) of CHSE-214 cells incubated with 20 µM LNA and 

increasing concentrations of LOA+16:0 (Treatments R, S, T and U) 

Fatty acid 20/5+5 µM 20/10+10 µM 20/15+15 µM 20/20+20 µM R
2
 P-value 

14:0 1.4  0.2
 

1.2  0.1 1.1  0.1 1.3  0.1 0.143 0.226 

15:0 0.2  0.0 0.2  0.0 0.2  0.0 0.2  0.0 0.379 0.033 

16:0 12.1  0.2 12.4  0.4 12.1  0.4 11.5  0.2 0.257 0.093 

17:0 0.3  0.0 0.2  0.0 0.3  0.0 0.2  0.0 0.572 0.004 

18:0 9.9  0.2 9.6  0.1 9.0  0.4 9.4  0.5 0.271 0.083 

Ʃ SFA 23.9  0.5 23.6  0.3 22.6  0.8 22.6  0.7 0.578 0.004 

16:1n-9 2.3  0.20 2.1  0.1 2.0  0.1 2.4  0.1 0.015 0.706 

16:1n-7 1.8  0.0 1.8  0.1 2.0  0.1 2.3  0.3 0.550 0.006 

18:1n-9 41.1  0.4 39.1  0.2 30.2  0.8
 

31.8  0.7
 0.772 0.000 

18:1n-7 1.5  0.3
 

1.8  0.4
 

2.1  0.1
 

2.2  0.2
 0.588 0.004 

24:1n-9 0.7  0.1
 

0.5  0.0
 

0.4  0.0
 

0.6  0.0
 0.343 0.045 

Ʃ MUFA 47.6  0.3
 

45.4  0.2
 

36.8  0.7
 

39.3  1.1
 0.704 0.001 

18:2n-6 4.5  0.4
 

7.5  0.3
 

12.0  0.4
 

11.0  0.5
 0.820 0.000 

18:3n-6 0.4  0.1
 

0.3  0.0
 

0.9  0.1
 

0.7  0.1
 0.539 0.007 

20:2n-6* 1.6  0.2 1.6  0.1 0.9  0.0 1.1  0.2 0.520 0.008 

20:3n-6 1.1  0.1
 

1.0  0.0
 

2.5  0.1
 

2.6  0.2
 0.768 0.000 

20:4n-6 1.3  0.3
 

1.4  0.1
 

1.6  0.1
 

1.4  0.1
 0.134 0.242 

Ʃ n-6 PUFA 8.9  0.4
 

11.8  0.1
 

17.8  0.7
 

16.9  0.5
 0.843 0.000 

18:3n-3 5.9  0.3
 

6.7  0.3
 

8.6  0.1
 

6.0  0.1
 0.056 0.458 

18:4n-3 1.3  0.0
 

1.7  0.1
 

2.5  0.2
 

1.7  0.1
 0.295 0.068 

20:4n-3 2.1  0.0
 

1.7  0.3
 

1.7  0.2
 

1.8  0.2
 0.233 0.112 

20:5n-3 2.7  0.1
 

2.5  0.3
 

2.1  0.2
 

2.7  0.4
 0.028 0.604 

22:5n-3 1.0  0.1
 

1.0  0.0
 

1.1  0.1
 

1.0  0.0
 0.000 0.989 

22:6n-3 1.5  0.1
 

1.4  0.2
 

1.5  0.1
 

1.3  0.2
 0.223 0.121 

Ʃ n-3 PUFA 14.6  0.2
 

15.0  0.4
 

17.4  0.8
 

14.5  0.2
 0.039 0.538 

18:2n-9 3.1  0.2
 

2.8  0.1
 

2.8  0.2
 

3.1  0.1
 0.000 0.962 

20:2n-9 1.5  0.1
 

1.1  0.0
 

2.3  0.0
 

3.2  0.0
 0.722 0.000 

22:2n-9 0.4  0.1
 

0.3  0.1
 

0.4  0.0
 

0.3  0.0
 0.022 0.648 

Ʃ n-9 PUFA 5.0  0.3
 

4.1  0.1
 

5.4  0.2
 

6.6  0.2
 0.579 0.004 

 
      

Ʃ PUFA 28.5  0.5 31.0  0.5 40.6  1.5 38.1  0.4 0.741 0.000 

Footnotes: Results are expressed as mean ± 1 SD (n = 3). Fatty acid composition is given as a percentage of 

the total fatty acid content. Statistical significance of differences was determined by regression analysis (p < 

0.05). Abbreviations: LNA = α-linolenic acid; LOA = linoleic acid; SFA = saturated fatty acid; MUFA = 

monounsaturated fatty acid; PUFA = polyunsaturated fatty acid; *contains 20:3n-9.  
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The graded supplementation of LOA+16:0 did not significantly affect the levels of 

EPA (R
2
 = 0.028; p = 0.604), 22:5n-3 (R

2
 = 0.000; p = 0.989), and DHA (R

2
 = 0.223; p = 

0.121). Levels of LNA increased from 20/5+5 µM to 20/15+15 µM, and some was 

converted to 18:4n-3, but these differences were not statistically significant (R
2
 = 0.056; p 

= 0.458, R
2
 = 0.295; p = 0.068). There was incorporation of LOA with the graded 

supplementation of the FA itself (R
2
 = 0.820; p = 0.000), except from 20/20+20 µM. Some 

of the supplemented LOA was converted to 18:3n-6 (R
2
 = 0.539; p = 0.007), elongated to 

20:3n-6 (R
2
 = 0.768; p = 0.000) and desaturated to ARA (R

2
 = 0.134; p = 0.242). Similar 

levels of 16:0 were detected at all concentrations (R
2
 = 0.257; p = 0.093); a small amount 

was further converted to 16:1n-7 (R
2
 = 0.550; p = 0.006). 

 

6.4. Discussion 

The present study describes the use of the CHSE-214 cell line as a model to study 

the molecular regulation of the synthesis of EPA from LNA in salmon. The study consisted 

of three experimental phases. In Phase 1, a multi-well plate system was developed, 

determining seeding density and incubation time with the FA treatments, in order to 

effectively analyse the effects of FA treatments on the expression of 14 target genes. In 

Phase 2, changes in gene expression were evaluated in CHSE-214 cells supplemented with 

20 µM of LNA in the presence of competing PUFA (LOA) or MUFA and SFA as 

surrogate or proxy for dietary lipid content. Based on these data a model framework was 

developed to describe the effects of different supplementations on gene expression and, 

ultimately, LC-PUFA biosynthesis. In Phase 3 the effects of untested FA combinations on 

LC-PUFA biosynthesis were predicted based on the model created in Phase 2. These 

predictions were then tested by actual experiments measuring the effects of the FA 

supplementation on gene expression and lipid and fatty acid compositions. Most of the 
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available information regarding molecular mechanisms underpinning the control and 

regulation lipid and FA metabolism has been carried out in mammals (Sekiya et al., 2003; 

Fraulob et al., 2010; Jung et al., 2011; Weiss et al., 2011). In contrast, the information 

available in fish is generally relatively limited although there is increasing data becoming 

available in a few species including Atlantic salmon. In particular, molecular studies in this 

field are required particularly in order to optimise diets for farmed fish species to preserve 

farmed fish as the prime sources of n-3 LC-PUFA for humans despite reduced levels of 

these FA being included in fish feeds (Betancor et al., 2015). In this context, special 

attention should be paid to alterations in the molecular control mechanisms that may result 

from the replacement of dietary FO with VO in feeds for farmed fish. Previous studies 

have shown that this change in dietary composition does not affect the growth, survival, 

health and welfare of Atlantic salmon (Bell et al., 2001, 2002; Torstensen et al., 2005; 

Betancor et al., 2015). However, this dietary change can drastically and significantly affect 

FA metabolism by altering the expression of genes involved with FA and lipid metabolism, 

including the genes directly involved in LC-PUFA biosynthesis, elongases and desaturases, 

and associated transcription factors (Zheng et al., 2005; Leaver et al., 2008; Taggart et al., 

2008). This effect has been associated with the increased proportions of dietary C18 PUFA 

(LNA and LOA), and with the much reduced levels of LC-PUFA (EPA and DHA) (Tocher 

et al., 1997, 2002, 2003b). Therefore, there is a pressing need to understand the molecular 

control mechanisms that determine endogenous LC-PUFA biosynthesis that could 

contribute to maintain levels of EPA and DHA in salmon when fed diets with low levels of 

these FA in the diet. 
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6.4.1. Phase 1 

Significant differences in gene expression were observed after 48 h of incubation, 

rather than 24 h and 5 days. This incubation time was therefore chosen for the following 

two phases. Related studies using the Atlantic salmon SHK-1 cell line, and carried out in 

six-well plates, reported incubation of cells with supplements for 24 h (Carmona-

Antoñanzas et al., 2014), and 24 h and 72 h (Minghetti et al., 2011), which may be related 

to the growth rate of the SHK-1 cell line and the tissue they were originated from. 

 

6.4.2. Phase 2 

6.4.2.1. Expression of genes involved in LC-PUFA biosynthesis  

In vivo trials have reported reduced expression of fads2d6 in Atlantic salmon fed 

diets rich in EPA and DHA, in comparison to Atlantic salmon fed diets lacking these LC-

PUFA (Zheng et al., 2005; Leaver et al., 2008; Taggart et al., 2008; Morais et al., 2009). 

Morais et al. (2011b) reported up-regulation of both fads2d5 and fads2d6, and increased 

expression of elovl2 was also observed, as a result of the replacement of FO with VO, 

which was associated to the low levels of dietary n-3 LC-PUFA. In the current study, 

fads2d6 was up-regulated in treatments involving supplementation of LNA in presence of 

16:0, 18:1n-9 or both 16:0+18:1n-9 (treatments A, B, D, E, F and I), also in treatment 

LOA/LNA at 20/5 µM and in those supplementing 20 µM LNA in presence of EPA 

(treatment J), and DHA (treatment K). These latter results are in agreement with those 

reported by Zheng et al. (2009b), who used AS cell line, and observed inhibition of 

desaturation and elongation of LNA when EPA and DHA were also added in the media, by 

reducing fads2d6. In the current study, fads2d5 was up-regulated when cells were 

incubated with LNA in presence of SFA, MUFA or both (treatments B, C, D, E, F and H), 

and down-regulated when cells were incubated with LNA in presence of EPA, and DHA 
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(treatments J and K, respectively). Elovl2 and elovl5 were up-regulated in all treatments of 

Phase 2, except for those supplementing LNA in presence of LC-PUFA (treatments J and 

K), where no statistically significant changes were observed.  

 

6.4.2.2. Expression of transcription factors  

Some of the beneficial effects of LC-PUFA stem from their ability to lower 

elevated serum triglycerides by down-regulating SREBP1, which in turn inhibits 

lipogenesis and stimulates FA oxidation in the liver in mammals (Davidson, 2006; 

McKenney and Sica, 2007; Kaur et al., 2011; Jung et al., 2011). In Atlantic salmon, similar 

responses in srebp1 have been described in vivo dietary trials (Morais et al., 2011b; 

Betancor et al., 2014) and in vitro cell culture studies (Minghetti et al., 2011). In 

agreement with Minghetti et al. (2011), who observed up-regulation of srebp1 when the 

SHK-1 cell line was supplemented with cholesterol, and down-regulation when 

supplementing EPA and DHA, in the current study srebp1 was down-regulated when cells 

were supplemented with LNA in presence of EPA and DHA (treatments J and K), and up-

regulated when EPA and DHA were not present. Minghetti et al. (2011) reported increased 

expression of lxr and srebp2 when the SHK-1 cell line was supplemented with cholesterol, 

and decreased expression of  srebp2 when cells were supplemented with EPA and DHA. In 

the current study both transcription factors, lxr and srebp2, were down-regulated in CHSE-

214 supplemented with LNA in presence of EPA and DHA, and up-regulated in CHSE-

214 supplemented with LNA in presence of SFA, MUFA or both, particularly in 

treatments B, C, D, E, and F. The expression of pparα did not change in CHSE-214 

incubated with LNA in presence of SFA and MUFA (particularly in treatments A, B, D, 

and F) but, in pparβ increased expression was observed in treatments B, C, D, E, and F. 

pparα and pparβ were down-regulated in CHSE-214 incubated with LNA in presence of 

LC-PUFA (treatments J and K, respectively).   
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6.4.2.3. Expression of genes involved in FA metabolism  

 In mammals, it has been reported that LC-PUFA have a hypotriglyceridemic effect,  

increasing the expression of CPT1 and ACO, both genes involved in fatty acid β-oxidation, 

and decreasing the expression of SREBP1c which would result in decreased lipogenesis 

(Jump and Clarke, 1999; Clarke, 2001). Effects on these pathways were not clear in the 

present study, but most of the genes involved in FA metabolism, i.e.cpt1, aco, and fabp 

were down-regulated when CHSE-214 cells were incubated with LNA in presence of n-3 

LC-PUFA, and up-regulated when CHSE-214 were incubated with LNA in presence of 

SFA and MUFA, whereas fas was up-regulated in all treatments, including those with 

supplementation of LC-PUFA. In in vivo trials up-regulation of fas has been reported in 

Atlantic salmon fed diets formulated with high levels of VO (Morais et al., 2011b) and 

high-fat diets (Martinez-Rubio et al., 2013) 

 

6.4.3. Phase 3 

 The prediction of the results showed moderate accuracy when compared with the 

actual results of the new set of experiments. To obtain a more accurate prediction it is 

therefore necessary to “instruct” the model, as every common neural network, through the 

performance of several new combination experiments. Having a model that accurately 

estimates the level of gene expression, without performing the actual analysis, may allow 

further applications at a lower cost. In conclusion, the expression of genes involved in LC-

PUFA and lipid biosynthesis, as well as transcription factors, was affected by the 

supplementation of FA to the CHSE-214 cell line. CHSE-214 cell line is suitable for the 

study of molecular mechanisms involved in the conversion of LNA to EPA, however, 

further studies are required in other salmon cell lines, in order to find a cell line able to 

synthesise both LC-PUFA, EPA and DHA, from their metabolic precursor LNA. The 

generation of knowledge in this field, will allow the optimisation of endogenous LC-PUFA 
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synthesis, and will enable the efficient and effective use of alternative sustainable diets, 

while maintaining the nutritional quality of farmed fish for consumer. 
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Chapter 7 

Discussion, conclusions and future perspectives 

 

 

Levels of n-3 LC-PUFA and mercury in different aquatic species [taken from 

slowplates.blogspot.com] 

 

 

“It always seems impossible until it's done.” 

Nelson Mandela 
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The overall objective of the current research study was to develop and utilise an in 

vitro cell culture model to enable an integrated approach to study the biochemical and 

molecular regulation of lipid metabolism in Atlantic salmon (Salmo salar L.). Since 

Atlantic salmon is one of the most intensively cultured finfish species worldwide and 

represents an excellent source of n-3 LC-PUFA in the human diet, the current study 

focused on this species. The original plan was to develop a cell culture model for Atlantic 

salmon, using cells derived from the same species. However, Atlantic salmon (AS) cell 

line previously used in other studies (Tocher and Dick, 1990; Tocher and Sargent, 1990; 

Ghioni et al., 1999; Zheng et al., 2009b) was not available and  SHK-1 demonstrated low 

growth rates, and difficulties to culture (Minghetti et al., 2011; Carmona-Antoñanzas et al., 

2014). For these reasons and for the limited availability of alternative salmon cell lines the 

present study used the Chinook salmon embryo 214 (CHSE-214) cell line, as it grows fast, 

and is easy to subculture, therefore has been widely used in other studies (Jensen et al., 

2002; McLoughlin and Graham, 2007; Jørgensen et al., 2007; Herath et al., 2009).  

The first experimental chapter (Chapter 3) consisted of 11 experiments, aiming to 

explore the effect of FA supplemented individually at different concentrations (i.e. 0, 20, 

50, and 100 µM) on total lipid content, lipid class, and FA composition of CHSE-214 cell 

line. Cells were supplemented with the FA and incubated for 5 d, then lipids were 

extracted and lipid class and FA analyses were carried out. In vivo studies reported higher 

lipid levels in the tissues of fish fed high lipid diets (Tocher et al., 2003a; b; Martinez-

Rubio et al., 2013), therefore, an increment in lipid content with the graded 

supplementation of FA was expected in the current study; however, the data obtained did 

not show a clear trend in most of the experiments. During the experiments, many cells died 

with the highest supplementation of FA, and less lipid content was obtained when cells 

were harvested. These results were later confirmed with the methyl thiazolyl tetrazolium 
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(MTT) assay, showing that supplementing FA at 100 µM had a toxic effect that varied 

with FA, and that the most toxic FA were the ones with a higher number of double bonds, 

i.e. 22:5n-3 and DHA. Low toxic effects were observed at 20 and 40 µM in the current 

study. Previous studies using human cell lines (Colquhoun and Schumacher, 2001; Bianchi 

et al., 2004; Shirota et al., 2005; Li et al., 2006; Toit-Kohn et al., 2009; Di Nunzio et al., 

2011) and fish cell lines (Tocher et al., 1989; Tocher, 1990; Tocher and Dick, 1990), 

reported that supplementation of LC-PUFA had a detrimental effect on the survival of the 

cells. The reason may be that FA with a higher number of double bonds are more 

susceptible to the attack of reaction oxygen species (ROS), causing cellular damage in the 

first instance and cellular death thereafter (Mourente et al., 2007; Siddiqui et al., 2008; Di 

Nunzio et al., 2011). In the cell lipid class compositions, the only clear trend was observed 

on the levels of TAG, which increased with the graded supplementation of FA. Interesting 

results were observed at 20 μM supplementation of eicosapentaenoic acid (EPA, 20:5n-3) 

and docosahexaenoic acid (DHA, 22:6n-3), both showing a TAG lowering effect, 

consistent with previous studies (Manickam et al., 2010; Kaur et al., 2011; Kajikawa et al., 

2011). Supplementation of 20 µM arachidonic acid (ARA, 20:4n-6), on the other hand, 

increased TAG by more than two-fold in comparison with the control (unsupplemented 

cells). The cellular fatty acid composition data confirmed the ability of CHSE-214 cell line 

to synthesise EPA from its precursor α-linolenic acid (LNA, 18:3n-3), with the highest 

EPA level recorded at 20 µM LNA and, therefore, this concentration was used in the 

subsequent Chapters 4–6. Consistent with EPA-synthesising activity, when the CHSE-214 

cell line was supplemented with linoleic acid (LOA, 18:2n-6), synthesis of ARA was also 

observed. However, the CHSE-214 cell line was not able to synthesise significant levels of 

DHA from either LNA or EPA. The supplementation of graded concentrations of 

individual FA showed that 20–40 µM were enough to alter the FA composition of the 
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cells, without producing a toxic effect, or affecting the cell growth, and without increasing 

TAG levels. Moreover, at these concentrations no lipid droplets deposited in the cytoplasm 

were observed. For all the aforementioned, 20 µM was chosen as the concentration of 

polyunsaturated fatty acids (PUFA) and LC-PUFA supplementation for the experiments 

carried out in Chapters 4–6. The ideal concentration of FA supplementation determined in 

this study is in agreement with Tocher et al. (1989), and other studies that have suggested 

20–25 µM as the optimal concentration for PUFA supplementation to cells in culture to 

affect membrane FA compositions without affecting lipid deposition (Geyer, 1967; 

Moskowitz, 1967; Rosenthal, 1981; Stubbs and Smith, 1984; Tocher and Dick, 1990).  

No vertebrate, including Atlantic salmon, can synthesise C18 PUFA de novo, i.e. 

LNA and LOA, therefore they must be provided in the diet, and further converted into n-3 

LC-PUFA (EPA and DHA), and n-6 LC-PUFA (ARA), respectively, by enzymatic 

processes (Tocher, 2003). The pathways involved in the n-3 and n-6 LC-PUFA synthesis 

in salmonids are well known, and it has been suggested that there is competition between 

FA substrates by the same enzymes (e.g. desaturases and elongases) along the biosynthetic 

pathway. For the aforementioned, the primary aim of Chapter 4 was to characterise the 

uptake, incorporation, and metabolism of combinations of n-3 and n-6 PUFA 

supplemented to the CHSE-214 cell line. Moreover, experiments were designed in order to 

investigate how competing PUFA (i.e. 18:2n-6), via substrate competition, or the pathway 

end products (i.e. EPA, DHA and ARA), via feedback inhibition, affected the production 

of EPA from LNA. Cells were incubated for 5 d after supplementation with combinations 

of PUFA and LC-PUFA, and then lipids were extracted, followed by lipid class and FA 

analyses. Increased cellular lipid content with the graded supplementation of the PUFA 

combinations was expected; however, this trend was only observed with treatment LOA 

plus graded ARA. Lower lipid content was recorded in cells supplemented with FA 
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combinations of the n-3 series, such as LNA/EPA, EPA/DHA and LNA/EPA+DHA in 

comparison with supplementation of FA of the n-6 series. Data may suggest that higher 

concentrations of supplemented  n-3 PUFA caused increased oxidative stress, resulting in 

cellular damage and ultimately cell death due to increased lipid radicals (Mourente et al., 

2007; Siddiqui et al., 2008; Di Nunzio et al., 2011). As cells were dying less cellular lipid 

was recovered from the flasks. Consistent with this, Gregory et al. (2011) reported more 

peroxidation in the FHM (fathead minnow, Pimephales promelas Rafinesque) cell line 

supplemented with n-3 LC-PUFA in comparison with cells  supplemented with LNA or 

SFA, and in studies with human cell lines, cell viability was affected by supplementation 

with LC-PUFA (Colquhoun and Schumacher, 2001; Bianchi et al., 2004; Shirota et al., 

2005; Li et al., 2006; Toit-Kohn et al., 2009; Di Nunzio et al., 2011). Supplementation 

with FA showed no clear effects on cellular lipid content because this was measured in 

absolute terms on a per flask basis and this was severely affected by cell numbers and cell 

death. Lipid class composition was reported as relative percentages and this was not 

affected by the cell number, therefore the data obtained were more consistent, showing the 

effects of increasing lipid (FA) supplementation to cells giving increased cellular lipid in 

form of increased deposition of TAG. The increment in cellular TAG was generally 

balanced by decreasing proportions of polar lipids and/or cholesterol. The graded 

supplementation of EPA, DHA and the mix EPA+DHA (1:1) lowered TAG levels possibly 

by down-regulating the transcription factors, which in turn inhibited the lipogenesis, 

whereas the graded supplementation of the n-6 PUFA (i.e. LOA and ARA) increased TAG 

levels. The increment in TAG with the supplementation of n-6 FA may be due to 

incorporation and/or deposition of the FA. Previous studies associated the increase in 

cellular TAG levels with supplementation of ARA (Collier and Collier, 1993; Whelan et 

al., 1995; Whelan, 1996) and the lowering TAG effect of n-3 LC-PUFA have been 
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reported in vivo (Kajikawa et al., 2011) and in vitro (Manickam et al., 2010), suggesting 

that EPA down-regulates the sterol regulating element binding protein (SREBP), which in 

turn reduces the expression of genes involved in lipogenesis and, likely, TAG synthesis 

(Kaur et al., 2011). Regarding FA analysis, all PUFA combinations changed the FA 

composition of CHSE-214 cells, due to both incorporation and, in some cases, conversion 

of the FA supplemented by elongation and/or desaturation. The conversion of LNA to EPA 

was negatively affected with the graded supplementation of LOA and ARA and, in 

addition, the conversion of LOA to ARA was detrimentally affected with the graded 

supplementation of n-3 PUFA. The EPA levels of cells incubated with LNA in 

combination with low levels of LOA were higher (5.6–4.8%) in comparison to cells 

incubated with LNA alone at 20 µM (4%), and were lower when the cells were 

supplemented with LNA in combination with all concentrations of ARA (3.9–3.3%). 

Enzyme competition between C18 PUFA was confirmed when LNA and LOA were 

supplemented at equal concentrations (20/20 µM), when LOA was mainly incorporated 

without showing further conversion, whereas the conversion of LNA to EPA was still 

clear, suggesting that enzymes involved in LC-PUFA synthesis have a preference for the n-

3 series, as previous studies suggested (Stubbs and Smith, 1984; Tocher et al., 1989; 

Gregory et al., 2011). The increasing EPA levels in cells incubated with LNA/DHA, may 

suggest retro-conversion of DHA to EPA (Grønn et al., 1991). When CHSE-214 cells were 

incubated with EPA in the presence of increasing concentrations of LNA, 22:5n-3 

increased with the graded supplementation of LNA; however, no further conversion to 

DHA was observed.  

 The LC-PUFA biosynthesis pathways (i.e. the elongation and desaturation of C18 

PUFA) are negatively affected by dietary lipid content (Martinez-Rubio et al., 2013). 

Therefore, the primary objective of Chapter 5 was to investigate the effect of lipid level on 
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the LC-PUFA biosynthetic pathway, using SFA (16:0) and MUFA (18:1n-9) (which do not 

compete with LNA or LOA in the LC-PUFA biosynthesis pathway) to represent “dietary” 

lipid. Cells were incubated for 5 d with LNA and LOA in presence of graded 

concentrations of 16:0, 18:1n-9, and the combination of 16:0 and 18:1n-9 as a mix (1:1 

ratio), followed by lipid and FA analyses. Increased cell lipid content was expected with 

the supplementation of C18 PUFA (20 µM) and the graded increased concentrations of SFA 

and MUFA, since in vivo trials in Atlantic salmon reported higher lipid contents in tissues 

in fish fed higher dietary lipid levels (Bell et al., 1998; Hemre and Sandnes, 1999; 

Martinez-Rubio et al., 2013). However, this trend was only observed in cells supplemented 

with LNA+EPA plus increasing concentrations of 18:1n-9. The other experiments in this 

study showed no clear trends in cell lipid content, which may be explained by the fact that 

higher concentrations of FA supplemented had toxic effects, as mentioned above. Similar 

to the results obtained in Chapters 3 and 4, the main clear trend observed in the lipid class 

composition data was increased cellular TAG associated with the graded supplementation 

of SFA, MUFA and the combination of the two. Other changes in lipid class composition 

were mainly a consequence on the increased TAG generally reduced proportions of the 

other lipid classes. In agreement with this, Martinez-Rubio et al. (2013) reported increased 

TAG in the liver of Atlantic salmon, with graded increments of dietary lipid content.  

Tocher et al. (1988) observed that the FA profile of six fish cell lines reflected the 

FA profile of the media and in vivo trials showed that the FA profile of the diet is reflected 

in fish flesh (Bell et al., 2003b; Tocher et al., 2003a; c; Menoyo et al., 2005; Tocher, 2010; 

Alves Martins et al., 2011; Xu et al., 2014; Betancor et al., 2015). According to this, all the 

combinations of FA supplemented in Chapter 5 changed the FA composition of the cell 

line, due to incorporation of the FA and, to some extent, conversion to other intermediate 

metabolites. The EPA levels of CHSE-214 cells incubated with LNA plus graded 
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increasing concentrations of 16:0, 18:1n-9 or 16:0+18:1n-9 were negatively affected with 

the graded supplementation of SFA and MUFA. Only low levels of EPA were recorded in 

all these experiments (1.5–1.8%). Martinez-Rubio et al. (2013) reported that liver of 

Atlantic salmon fed high dietary lipid contained lower n-3 LC-PUFA in comparison with 

fish fed low dietary lipid. Tocher et al. (2003a; b) observed higher synthesis of LC-PUFA 

in the liver of fish fed low dietary lipid, in comparison with fish fed high lipid diet. In red 

seabream and yellowtail, the dietary requirements for LC-PUFA increased with the 

increment of dietary lipid, suggesting that dietary lipid negatively affect the expression of 

genes involved with LC-PUFA biosynthesis (Takeuchi et al., 1992). The levels of DHA 

were not clearly affected by the two combinations LNA+EPA plus increasing 

concentrations of 18:1n-9 and LNA+EPA plus increasing 16:0+18:1n-9, being similar at 

all concentrations. However, the levels of DHA in cells incubated with LNA+EPA plus 

16:0 were two-fold higher in comparison with cells incubated with LNA+EPA plus 18:1n-

9 and LNA+EPA plus 16:0+18:1n-9. In cells incubated with LOA plus 16:0+18:1n-9, 

ARA levels steadily decreased with increasing concentrations of 16:0+18:1n-9 (3.3–1.8%), 

while cells supplemented with LOA and increasing concentrations of 18:1n-9 or 16:0, 

similar ARA levels were recorded, without showing any clear detrimental effect of the 

supplementation of SFA, MUFA and the combination of the last two, on the conversion of 

LOA to ARA.  

Chapter 6 consisted of three phases. In Phase 1 the “ideal” incubation time of 

CHSE-214 cells with the supplemented FA in order to observe changes in expression of 

lipid and FA genes was determined. CHSE-214 cells were seeded in six-well plates and 

then supplemented with 20 µM LNA, LOA and the control (cells incubated with no FA). 

Cells were incubated for 24 h, 48 h, and 5 d and the expression of five genes (elovl2, 

fads2d5, srebp, ppar, and lxr) was analysed. Significant differences were observed at 48 h 
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for all genes, therefore this incubation time was used for experiments in phases two and 

three. For Phase 2, key experiments from Chapters 4 and 5 were repeated in order to 

analyse the expression of a suite of 14 genes involved in lipid and FA metabolism. 

Chapters 4 and 5 described how the supplementation of PUFA, SFA and MUFA affected 

the conversion of LNA to EPA and the gene expression analyses allowed the association of 

the changes in lipid and FA composition with the changes occurring at the gene expression 

level. From the genes involved with LC-PUFA biosynthesis, the expression of elovl2 and 

elovl5 did not change with the supplementation of LNA in presence of n-3 LC-PUFA, 

whereas the expression of both genes increased with the supplementation of LNA in 

presence of 16:0, 18:1n-9 and the mix 16:0+18:1n-9. In the treatments LNA/EPA and 

LNA/DHA, fads2d5 was down-regulated, while fads2d6 was slightly up-regulated in cells 

supplemented with LNA/EPA, and no changes were observed in cells supplemented with 

LNA/DHA. However, when LNA was supplemented in presence of 16:0, 18:1n-9 and the 

mix 16:0+18:1n-9, both fads2d5 and fads2d6 were up-regulated. The results from the 

current study are in agreement with an in vitro study using AS cell line (Zheng et al., 

2009b), showing inhibition of desaturation of LNA when n-3 LC-PUFA were 

supplemented in the media, by reducing fads2d6, and also with in vivo studies in Atlantic 

salmon, where increased expression of fads2d6 was observed in fish fed diets lacking of n-

3 LC-PUFA, in comparison with fish fed diets rich in EPA and DHA (Zheng et al., 2005; 

Leaver et al., 2008; Taggart et al., 2008; Morais et al., 2009). Moreover, up-regulation of 

fads2d5, fads2d6 and elovl2 was observed in fish fed vegetable oil (VO) based diets, 

lacking LC-PUFA, in comparison with fish fed fish oil (FO) based diets containing LC-

PUFA (Morais et al., 2011b). All transcription factors analysed in the present study were 

down-regulated when cells were supplemented with LNA in presence of EPA and DHA, 

and up-regulated when cells were incubated with LNA in presence of SFA, MUFA and the 
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mix SFA+MUFA, except for treatment LNA plus 16:0 (20/20 µM). In previous Chapters 

of the current thesis a TAG lowering effect was observed with the supplementation of n-3 

LC-PUFA. The analyses of the gene expression suggested that EPA and DHA down-

regulated the expression of transcription factors, which in turn inhibited lipogenesis and 

stimulated FA oxidation, therefore, reducing TAG levels. Similar responses have been 

described in mammals (Davidson, 2006; McKenney and Sica, 2007; Kaur et al., 2011; 

Jung et al., 2011), in fish in vivo (Morais et al., 2011b; Betancor et al., 2014), and in vitro 

fish cell culture studies (Minghetti et al., 2011). Another way in which n-3 LC-PUFA 

lower TAG levels in mammals has been through increasing the expression of genes 

involved in FA β-oxidation, such as carnitine palmitoyl transferase 1 (CPT1) and acyl-CoA 

oxidase (ACO), and decreasing the expression of SREBP1c which in turn decreases 

lipogenesis (Jump and Clarke, 1999; Clarke, 2001). However, this pattern was not very 

clear in the current study, only fas and cpt1 were slightly up-regulated, while no changes 

were observed in the expression of aco and fatty acid binding protein (fabp) when cells 

were incubated with LNA in the presence of EPA and DHA; however, these four genes 

were up-regulated when cells were supplemented with LNA in presence of SFA, MUFA 

and the mix SFA+MUFA. In vivo trials reported up-regulation of fatty acid synthase (fas) 

in Atlantic salmon fed diets formulated with high levels of VO (Morais et al., 2011b) and 

high-fat diets (Martinez-Rubio et al., 2013). Based on the data produced in Phase 2, a 

model framework was created to describe the effects of different FA combinations on gene 

expression and, ultimately, LC-PUFA biosynthesis. These predictions were then tested by 

actual experiments, measuring the effects of the FA supplementation on gene expression 

and lipid and fatty acid compositions. The predicted results showed reasonable accuracy 

when compared with the actual results of the new set of experiments. However, the model 

created could be improved with the performance of new FA combinations, where also the 
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concentration supplemented would be taken into consideration. The creation of a reliable 

model would allow the estimation of gene expression, without performing the actual 

analysis, saving time and money. The results produced in the present study indicated that 

the CHSE-214 cell line could represent a useful system for the study of lipid and FA 

metabolism in salmon species. Particularly, this cell line can be used for future studies 

related with the conversion of LNA to EPA and LOA to ARA, but unfortunately it is not 

suitable for studies focusing on the conversion of either LNA or EPA to DHA in salmon.     

The original aim of the current study was that research into lipid and FA 

metabolism in Atlantic salmon would be facilitated enormously by the availability of a cell 

model system, as in vivo trials are expensive and it takes a long time to obtain the results. 

The aim was partly achieved, as the CHSE-214 cell line facilitated the study of the 

pathways of LC-PUFA biosynthesis in a deeper, faster and cheaper way. The information 

generated from this study might contribute to the optimisation of diets for Atlantic salmon, 

by taking into consideration the lipid content and the FA profile of the alternative oils used 

for the formulation of aquafeeds, in order to enhance the endogenous biosynthesis of n-3 

LC-PUFA, assuring culture of Atlantic salmon in a sustainable way, while maintaining the 

nutritional quality of the product for human consumption. 

 

7.1. Summary of results and conclusions 

The use of cell lines has greatly facilitated the elucidation of the LC-PUFA 

biosynthesis pathways in several fish species (Tocher et al., 1988, 1989, 1998; Tocher, 

1990; Tocher and Dick, 1990; Tocher and Sargent, 1990; Furth et al., 1992; Ghioni et al., 

1999; Minghetti et al., 2011; Carmona-Antoñanzas et al., 2014). It is vital that a 

specifically developed model cell line derived from salmon is available for undertaking 

similar research and expanding the lipid and FA biochemical analyses to molecular studies. 
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In the current study, the CHSE-214 cell line showed a fast growth rate and was relatively 

easy to maintain under laboratory conditions, as demonstrated by the large number of 

experiments that were able to be carried out in the present thesis (see Chapters 3–6). In 

summary, the results of the present study indicated that:  

a) The CHSE-214 cell line represents an important tool for the research of LC-PUFA 

biosynthesis, particularly EPA and ARA from the C18 PUFA, LNA and LOA. 

b) There was competition between C18 PUFA (i.e. LNA and LOA) for the enzymes of 

the LC-PUFA pathway, and the enzymes showed a preference for the n-3 series 

FA. 

c) A combination of LNA in the presence of low concentrations of LOA (5 µM) 

enhanced EPA production but higher concentrations (20 µM) of LOA showed 

enzyme competition, negatively affecting the production of EPA.     

d) Dietary lipid represented by the supplementation of SFA and MUFA, had a 

detrimental effect on LC-PUFA biosynthesis, particularly in the conversion of LNA 

to EPA. 

e) Supplemenation of the n-3 LC-PUFA (i.e. EPA and DHA) to the CHSE-214 cell 

line showed a TAG lowering effect, probably by down-regulating the 

transcriptional expression of lipogenic genes and therefore inhibiting lipogenesis. 

f)  Supplementation of SFA and MUFA to CHSE-214 cells up-regulated most of the 

genes analysed in this study and also increased cellular TAG levels. 

g) The patterns observed in the expression of transcription factors involved in the 

control and regulation of FA metabolism were used to create an integrated model 

for LC-PUFA biosynthesis, which allowed the prediction of untested experiments 

with moderate accuracy. However, further studies are required in order to improve 

the model. 
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7.2. Future perspectives 

 In order to improve the integrated model created in this study, more experiments in 

this field are required. Moreover, it would be very interesting to carry out more untested 

experiments using the final products, such as EPA, DHA and ARA, to elucidate the gene 

response as a result of product (feedback) inhibition. The next step after this would be to 

set up in vivo feeding trials, using diets formulated with combinations of dietary oils, 

including various VO, with a specific FA profile or with different levels of lipid content 

and compare the results with the data produced with the in vitro cell culture model utilised 

in the present study. 
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