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ABSTRACT 
 

Globally fish production has continued to increase during recent years at a rate exceeding that of 

human population growth. However the contribution from capture fisheries has remained largely 

static since the late 1980s with the increase in production being accounted for by dramatic growth in 

the aquaculture sector. As of 2012 aquaculture accounted for approximately 42% of total fisheries 

production and 78% of inland fish production. In view of these figures it is unsurprising that for a 

number of regions aquaculture represents an important source of both food security and income.  

The use of Geographical Information Systems (GIS) and spatial data have seen substantial 

developments in recent years with the help of increasingly affordable computing capacity. From an 

aquaculture perspective the use of GIS has shown significant potential as a means of combining 

varied data sources, including those acquired via remote sensing, into models to provide decision 

support in relation to site selection. A common theme amongst site suitability assessments is the 

incorporation of climate variables relating to temperature and water availability. These factors in turn 

can have a significant influence on aquaculture in terms of water availability and quality, and 

temperature modulated growth performance.  

There is now a strong consensus that during the 20th century, and especially during recent decades, 

the earth has experienced a significant warming trend. There is also strong agreement that this 

warming trend is at least partially a consequence of anthropogenic greenhouse gas emissions and 

that some degree of further warming is inevitable. While global warming is typically discussed in 

terms of degrees centigrade of average global temperature increase the full effects in terms of 

climate changes will be varied both in terms of location and season.  

The current project focuses on site suitability for aquaculture in relation to changing climate 

conditions. Significant use is made of GIS and a range of spatial data including remotely sensed data 

and output from a series of climate models. The project consists of a number of key components: 

1. Vulnerability of aquaculture related livelihoods to climate change was assessed at the global 

scale based on the concept of vulnerability to climate related impacts as a function of 

sensitivity to climate change, exposure to climate change, and adaptive capacity. Use was 
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made of national level statistics along with gridded climate and population data. Climate 

change scenarios were supplied using the MAGICC/SCENGEN climate modelling tools. 

Analysis was conducted for aquaculture in freshwater, brackish, and marine environments 

with outputs represented as a series of raster images. A number of Asian countries (Vietnam, 

Bangladesh, Laos, and China) were indicated as most vulnerable to impacts on freshwater 

production. Vietnam, Thailand, Egypt and Ecuador stood out in terms of brackish water 

production. Norway and Chile were considered most vulnerable to impacts on Marine 

production while a number of Asian countries (China, Vietnam, and the Philippines) also 

ranked highly. 

2. Site suitability for pond-based aquaculture was modelled at the global scale using a 10 

arcsecond grid. Data from an ensemble of 13 climate models was used to model pond 

temperature and water availability for rain fed ponds under late 20th century conditions and 

for a 2°C global warming scenario. Two methods are demonstrated for combining data with a 

focus on the culture of warm water species. Results suggest both positive and negative 

impacts in relation to the 2°C warming scenario depending on location and season. Some 

areas are projected to see negative effects from maximum temperatures during the warmest 

parts of the year while for many regions there are likely to be potential increases in growth 

performance during colder months with possible expansion into previously unsuitable areas. 

3. Methods for detecting surface water using remotely sensed data were investigated for 

Bangladesh. Use was made of data from the Moderate-resolution Imaging Spectroradiometer 

(MODIS) and Landsat ETM+ instruments with accuracy assessed against ground truth data 

collected in the field. A time series was constructed using all available MODIS data 

(approximately 13 years with an 8 day temporal resolution) to show areas of: surface water, 

land, and mixed land and water. The time series was then analysed to produce a layer 

showing the percentage of the total time series where surface water is indicated thus 

providing a spatial representation of flood prevalence. 

4. A land cover data set was produced using 9 Landsat ETM+ scenes to cover the majority of 

Bangladesh. 10 different classification routines were evaluated including a decision tree 

approach unique to the current study. Classification results were assessed against two sets of 

ground control points produced: one based on field collected ground truth data and the other 

using a stratified random sampling procedure in association with visual analysis of high 
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resolution true colour satellite images and ETM+ composites. The most accurate 

classifications were provided by the decision tree method developed for the current study 

and a Multi-Layer Perceptron (MLP) neural network based classifier. 

5. Site suitability for pond-based aquaculture within Bangladesh was assessed using a GIS in 

combination with the ETM+ based land cover data, the MODIS based surface water time 

series, and components of the global site suitability assessment including modelled pond 

temperature data. Assessments were made based on late 20th century conditions and a 2°C 

global warming scenario. The MODIS surface water time series was also used to show the 

effects of storm surge flooding in relation to cyclone Aila that struck Bangladesh on 25th May 

2009. The south and east of the country were considered most suitable for aquaculture due 

to more favourable cold season temperatures and higher water balance values. The north 

west of the country was considered least favourable due to higher maximum modelled pond 

temperatures and lower water balance values. The effect of the 2°C warming scenario was to 

enhance these trends. 

 

To date the potential spatial implications of changing climate for aquaculture has been significantly 

under researched. In this respect the current study provides a highly useful indication of where 

aquaculture related livelihoods may be vulnerable. In addition valuable and unique insights are 

provided into the distribution of areas of both potential increased, as well as decreased, suitability for 

existing aquaculture and further aquaculture development. 
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1 INTRODUCTION  
 

Globally, fish production has increased steadily over the last five decades at a rate exceeding that of 

human population growth so that as of 2012 mean world per capita fish consumption is estimated at 

19.2kg compared with 9.9kg in the 1960s (FAO, 2014). This increase is generally seen as beneficial 

from a health perspective with fish consumption providing an important source of quality protein, 

fatty acids and micronutrients (Kawarazuka, 2010). In many poorer regions where fish represents a 

significant portion of consumed animal protein, and where diet in general may lack diversity, then 

fishes contribution to overall nutrition may be especially significant (Belton et al., 2014, Thilsted, 

2013). While total global fish production has continued to increase, the proportion supplied by 

capture fisheries has remained largely static since the late 80s onwards with increased production 

accounted for by the dramatic growth in the aquaculture sector (FAO, 2014). Table 1-1 outlines global 

capture fisheries and aquaculture production from 2007 - 2012 and highlights the points made above. 

It is also important to note the significance of inland aquaculture both in terms of greater overall 

production than the marine sector, and also in terms of more rapid growth meaning that as of 2012 

inland aquaculture production accounts for approximately 62.9% of total aquaculture production and 

26.5% of total global fish production.  
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Table 1-1: Global capture fisheries and aquaculture production (FAO, 2014).  

 
2007 2008 2009 2010 2011 2012 

 
Million tonnes 

Capture fisheries production 
      Inland 10.1 10.3 10.5 11.3 11.1 11.6 

Marine 80.7 79.9 79.6 77.8 82.6 79.7 

Total capture 90.8 90.1 90.1 89.1 93.7 91.3 

       Aquaculture production 
      Inland 29.9 32.4 34.3 36.8 38.7 41.9 

Marine 20 20.5 21.4 22.3 23.3 24.7 

Total aquaculture 49.9 52.9 55.7 59 62 66.6 

       Total fish production 140.7 143.1 145.8 148.1 155.7 158 

       Utilisation 
      Human consumption 117.3 120.9 123.7 128.2 131.2 136.2 

Non-food uses 23.4 22.2 22.1 19.9 24.5 21.7 

Population (billions) 6.7 6.8 6.8 6.9 7 7.1 

Per capita food fish supply (kg) 17.6 17.9 18.1 18.5 18.7 19.2 

 

Figure 1-1 shows aquaculture production quantities from fresh and brackish water aquaculture for 

the year 2012 while Figure 1-2 shows average annual growth rate of fresh and brackish water 

aquaculture for the years 2007-2012. Viewed together Figures 1-1 and 1-2 show that China followed 

by a number of other Asian countries currently dominate production but that inland aquaculture 

production is seeing significant growth in a number of African countries and throughout much of Latin 

America.  

As well as being an important source of food, aquaculture makes significant economic contributions 

in many regions (see Figure 3-2 for an indication of aquaculture’s contribution to national GDP) and 

represents a significant source of income and employment either directly or through the supply of 

associated goods and services (FAO, 2012). 
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Figure 1-1: Aquaculture production (tonnes) from fresh and brackish water environments for the year 2012 (FishStatJ, 
2014).  

 

 

Figure 1-2: Average annual growth rate of aquaculture production quantities from fresh and brackish water environments 
for the years 2007 - 2012 (FishStatJ, 2014). 

 

Inland aquaculture methods are diverse and include: ponds, tanks and raceways, sophisticated 

recalculating systems, and cages. Globally, pond culture represents the most significant source of 

production (Dugan et al., 2007) and can vary considerably in intensity from extensive systems with 

little in the way of additional inputs and low levels of stock, to highly stocked monocultures that make 

use of commercial formulated feeds and other management strategies such as mechanical aeration. 

While aquaculture systems and species are extremely varied, the location of successful aquaculture 

will depend of a broad range of geographic, environmental, socio-economic, demographic and 

climatic variables (Ross et al., 2009). For those concerned with aquaculture promotion and 

development this essentially represent a series of site selection questions with the aim of matching 
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appropriate methods and species to locations where they can achieve greatest success, often in areas 

where natural resources are facing increasing pressure in line with a growing human population (Ross 

et al., 2013). 

The use of Geographical Information Systems (GIS) has seen rapid development in recent years, 

paralleled by increasingly affordable hardware, as a means to approach spatial management 

questions (Ross et al., 2009). At a very basic level representing individual variables spatially in the 

form of maps can be extremely useful in terms of visualisation of data. GIS is also commonly used to 

answer spatial question relating to individual variables with operations involving distance, area, and 

proximity being especially common. However the real power of GIS is in its ability to combine 

multiple and varied data sources into models with the aim of addressing complex spatial questions 

and thus providing a highly useful means of decision support (Nath et al., 2000, Ross et al., 2009).  

GIS is dependent on input data represented spatially as a series of raster grids or vector files with 

associated databases. While the collection of data using traditional survey methods as well as the 

digitisation of existing paper maps provide potential inputs, recent decades have also seen significant 

increases in the quantity, quality, and availability of remotely sensed (RS) data (Campbell and Wynne, 

2011). RS data have the potential to be processed and classified to represent ground cover which in 

turn can be especially useful in areas where traditional mapping may be limited. Another substantial 

benefit of remotely sensed data is that it can be obtained from multiple time points and is therefore 

very useful in examining environmental change (e.g. Dewan and Yamaguchi, 2009a, Rahman et al., 

2013).  

While the uptake of GIS, and especially remote sensing, to address spatial questions for aquaculture 

has to date been moderate, its use has been actively promoted and investigated over the last 15 to 

20 years (Ross et al., 2009). Studies focussing on optimal site selection have ranged in scale from 

localised assessments (e.g. Giap et al., 2005, Ross et al., 2011, Salam et al., 2005), to those operating 

at the continental level (e.g. Aguilar-Manjarrez and Nath, 1998, Kapetsky, 1994, Kapetsky and Nath, 

1997). 

While the variables used in GIS-based site suitability work for aquaculture have been varied 

depending on requirements and data availability, the incorporation of climate-related variables is 

common. Although aquaculture systems are to varied extents managed and controlled, with the 
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possible exception of indoor recirculating systems they are dependent on local environmental and 

climate conditions to dictate temperature regimes and water availability, which in turn exert an 

extremely strong influence on productivity (Kapetsky, 2000). 

There is now a very strong consensus that the earth has experienced a significant warming trend 

during the 20th century, especially the second half, continuing to the present time, with an average 

global temperature increase in the region of 0.72°C for the period 1951-2012 (IPCC, 2013). There is 

also strong agreement that this trend is at least partly a result of human driven increases in 

greenhouse gas concentrations (Cook et al., 2013, IPCC, 2013). It is likely that we are committed to at 

least some further warming as a function of the thermal inertia of the oceans and ice sheets (IPCC, 

2013), and as the green house gas concentrations continue to increase steadily (Figure 1-3), some 

degree of additional warming seems inevitable. It is important to note that while warming is often 

discussed as a global average, change is not evenly distributed spatially. In general there is a tendency 

for greater than average warming over land areas (Figure 2-3) with considerable variability both 

regionally and seasonally (IPCC, 2013). While there is less agreement among the current generation of 

climate models over precipitation regimes compared with those for temperature, patterns of 

precipitation are also projected to change with some areas becoming dryer while others become 

wetter (IPCC, 2013).  

Potential relationships between climate and aquaculture are summarised in Table 1-2 (and discussed 

in more detail in later sections). To date there has been a relatively small amount of work 

investigating climate interactions with aquaculture. Most work has taken the form of general 

overviews of potential issues (De Silva and Soto, 2009, Handisyde et al., 2006), or has focussed on 

specific areas, species and culture scenarios (e.g. Nguyen et al., 2014, Hanson and Peterson, 2014). 

When assessing potential effects of climate change on a given area there is often a tendency to focus 

on adverse impacts, and while such work is valuable it is important to remember that not all climate 

related impacts on aquaculture will be negative, and that while some areas may become less 

favourable for a given species and culture system other areas may stand to benefit through changes 

in temperature regimes and/or water availability. Rather than selecting specific systems and locations 

and then asking the question of how will these be affected, a GIS and spatial modelling approach 

essentially turns the question around and asks which areas are most and least suitable, and in a 

climate change context how this distribution will change.  
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   60s   0.81ppm per year 

   70s   1.23ppm per year 

   80s   1.58ppm per year 

   90s   1.56ppm per year 

   00s   2.04ppm per year 

Figure 1-3: Annual mean atmospheric CO2 concentrations (Tans and Keeling, 2014).  
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Table 1-2: Potential Impacts of climate change on aquaculture systems and production. (Source: Handisyde et al., 2006). 

Drivers of change Impacts on culture systems Operational impacts 

Sea surface 

temperature changes 

 

 

 

 

 

 Increase in harmful algal blooms 
that release toxins in the water 
and produce fish kills 

 Decreased dissolved oxygen 

 Increased incidents of disease and 
parasites 

 Enhanced growing seasons 

 Change in the location and/or size 
of the suitable range for a given 
species 

 Lower natural winter mortality 

 Enhanced growth rates and feed 
conversions (metabolic rate) 

 Enhanced primary productivity 
(photosynthetic activity) to 
benefit production of filter-
feeders 

 Altered local ecosystems - 
competitors and predators 

 Competition, parasitism and 
predation from exotic and 
invasive species 

 Changes in infrastructure and 
operation costs 

 Increased infestation of fouling 
organisms, pests, nuisance 
species and/or predators 

 Expanded geographic 
distribution and range of aquatic 
species for culture 

 Changes in production levels 
 

 

 Damage to coral reefs that may 
have helped protect shore from 
wave action – may combine with 
sea level rise to further increase 
exposure 

 Increased chance of damage to 
infrastructure from waves or 
flooding of inland coastal areas 
due to storm surges 

Change in other 

oceanographic 

variables (variations 

in wind velocity, 

currents and wave 

action) 

 Decreased flushing rate that can 
affect food availability to shellfish  

 Alterations in water exchanges 
and waste dispersal 

 Change in abundance and/or 
range of capture fishery species 
used in the production of 
fishmeal and fish oil 

 Accumulation of waste under 
pens  

 Increased operational costs 

Seal level rise  Loss of areas available for 
aquaculture 

 Loss of areas such as mangroves 
that may provide protection from 
waves/surges and act as nursery 
areas that supply aquaculture 
seed 

 Sea level rise combined with 
storm surges may create more 
severe flooding. 

 Salt intrusion into ground water 

 Damage to infrastructure 

 Changes in aquaculture zoning 

 Competition for space with 
ecosystems providing costal 
defence services (i.e. mangroves) 

 Increased insurance costs 

 Reduced freshwater availability 
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Increase in frequency 

and/or intensity of 

storms 

 Large waves 

 Storm surges 

 Flooding from intense 
precipitation 

 Structural damage 

 Salinity changes 

 Introduction of disease or 
predators during flood episodes  

 Loss of stock 

 Damage to facilities  

 Higher capital costs, need to 
design cages moorings, jetties 
etc. that can withstand events 

 Negative effect on pond walls 
and defences  

 Increased insurance costs 

Higher inland water 

temperatures 

(Possible causes: 

changes in air 

temperature, 

intensity of solar 

radiation and wind 

speed 

 Reduced water quality especially 
in terms of dissolved oxygen 

 Increased incidents of disease and 
parasites 

 Enhanced primary productivity 
may benefit production 

 Change in the location and/or size 
of the suitable range for a given 
species 

 Increased metabolic rate leading 
to increased feeding rate, 
improved food conversion ratio 
and growth provided water 
quality and dissolved oxygen 
levels are adequate otherwise 
feeding and growth performance 
may be reduced 

 Changes in level of production 

 Changes in operating costs 

 Increase in capital costs e.g. 
aeration, deeper ponds 

 Change of culture species 

Floods due to 

changes in 

precipitation 

(intensity, frequency, 

seasonality, 

variability) 

 Salinity changes 

 Introduction of disease or 
predators 

 Structural damage 

 Escape of stock 

 Loss of stock 

 Damage to facilities 

 Higher capital costs involved in 
engineering flood resistance 

 Higher insurance costs  

Drought (as an 

extreme event 

(shock), as opposed 

to a gradual 

reduction in water 

availability)  

 Salinity changes 

 Reduced water quality 

 Limited water volume 

 Loss of stock 

 Loss of opportunity – limited 
production (probably hard to 
insure against) 

Water stress (as a 

gradual reduction in 

water availability 

(trend) due to 

increasing 

evaporation rates 

and decreasing 

rainfall) 

 Decrease water quality leading to 
increased diseases 

 Reduce pond levels 

 Altered and reduced freshwater 
supplies – greater risk of impact 
by drought if operating close to 
the limit in terms of water supply 

 Costs of maintaining pond levels 
artificially 

 Conflict with other water user 

 Loss of stock 

 Reduced production capacity 

 Increased per unit production 
costs 

 Change of culture species 



 

9 

 

 

The current work focuses on site suitability modelling determined using GIS models while making 

significant use of remotely sensed data. Data from historic climate data sets are incorporated along 

with projections from a series of climate models to allow for the investigation of the potential 

impacts of climate change on spatial suitability factors for aquaculture. Specific research objectives 

are as follows: 

1. To develop a global scale model of vulnerability to address the question; assuming that 

climate related change results in negative impacts for aquaculture then where would the 

greatest impacts on aquaculture related livelihoods occur? Use is made of national level 

statistics in combination with data representing current climate and projections from an 

ensemble of climate models via the MAGICC/SCENGEN application to assess vulnerability of 

aquaculture to changes in climate at the national scale. 

2. To Develop a model of site suitability for pond-based aquaculture of warm water species at 

the global scale using high resolution gridded data, and investigate how patterns of suitability 

may change under future climate conditions? A GIS is used in association with a series of 

gridded data sets with a maximum resolution of 10 arcseconds (approximately 300m at the 

equator). Data representing current climate as well as that from a series of climate models is 

used to model pond temperature and water availability for rain fed ponds under late 20th 

century conditions and for a 2°C average global warming scenario. 

3. To investigate the use of remotely sensed Moderate Resolution Imaging Spectroradiometer 

(MODIS) data as a means of observing surface water distribution in Bangladesh and select a 

method to be used to construct a time series to explore seasonal flood patterns and 

durations. Use was made of data from both the Moderate-resolution Imaging 

Spectroradiometer (MODIS) and Landsat ETM+ instruments to access classification routines 

with accuracy assessed against ground truth data collected in the field. A time series was then 

constructed using the MODIS data with land cover classified as either: water, mixed or land. 

The time series was analysed to show proportion or total time series where surface water 

was present thus giving an indication of flood patterns and duration throughout Bangladesh.  

4. To develop a land cover data set for Bangladesh based on Landsat ETM+ data. Nine ETM+ plus 

scenes were used to cover the majority of the country. Acquisition dates for the data 

corresponded closely to that of field visits and ground truth data collection. Ten classification 
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methods were evaluated including one developed for the current study. Accuracy was 

assessed against two sets of ground control points: one based on ground truth data collected 

in the field while the other made use of a stratified random sampling procedure in association 

with visual analysis of high resolution true colour satellite images and ETM+ composites. 

5. To use Bangladesh as a case study that incorporates the MODIS surface water time series 

along with the ETM+ based land cover data (see 3 and 4 above) and other data sources 

including modelled pond temperature, to develop a model of site suitability for pond-based 

aquaculture in under current and future climate conditions to gain an understanding of how 

patterns of suitability in the country may change.  

6. To use the data from the MODIS based surface water time series to illustrate the effects of 

storm surge flooding on coastal Bangladesh with specific attention paid to the impact of 

cyclone Aila. 
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2 VULNERABILITY OF AQUACULTURE TO CHANGING CLIMATE AT 

THE GLOBAL SCALE 

 

2.1 Introduction 

Globally the aquaculture sector has shown significant growth over recent decades and continues to 

expand. This contrasts with capture fishery production that when viewed as a global average has 

remained fairly static during recent years (Bostock et al., 2010, FAO, 2012). In 2011 global 

aquaculture production was approximately 63.6 million tonnes while total fisheries production from 

both aquaculture and capture sources equalled approximately 154 million tonnes of which 130.8 

million tonnes was used for human consumption. This compares to a figure of 137.3 million tonnes 

for the year 2006. It is worth noting that virtually all the increase seen during the 2006 to 2011 time 

period came as a result of increased aquaculture production (FAO, 2012). 

Aquaculture provides a source of income and employment for an increasingly large number of people 

with estimates of around 16.5 million people involved in aquaculture worldwide, with approximately 

16 million of these in Asia (FAO, 2012). As well as those directly involved in aquaculture production 

there will be many more individuals whose livelihoods are at least partially connected to the 

aquaculture sector via the supply of goods and services such as: transportation, ice making, feed 

production and marketing. It is estimated that more than 100 million people depend on aquaculture 

for a living, either as employees in the production and support sectors or as their dependants (FAO, 

2012).  

Fish products represent a high quality source of protein and in some areas make important 

contributions in terms of food security. In countries such as China, Vietnam, India, Indonesia and 

Bangladesh aquaculture of low trophic level species are significant in that they reduce dependence on 

high protein feeds (FAO, 2012). In many areas fish represent a “cash crop” that is sold as a means to 

afford cheaper food items (Sugiyama et al., 2004). 

Since 1850 when accurate record keeping began there has been a notable increase in average global 

temperature of 0.76oC ± 0.19 °C (Houghton, 2009). Use of proxy temperature records suggests that 

the spatial extent and duration of warming during the middle to end of the twentieth century in the 

northern hemisphere makes it the most significant climate anomaly of the last 1200 years (Osborn 
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and Briffa, 2006). There is now a general consensus that this warming trend is at least partially a 

result of human activity in the form of increased green house gas emissions and thus atmospheric 

concentrations (Cook et al., 2013, IPCC, 2007b) and at the current time green house gas levels are 

continuing to rise with an average annual increase in atmospheric carbon dioxide of 2.03ppm over 

the last 10 years (Thoning et al., 2013). While international debate about how to tackle this trend 

continues, at the current time considerable uncertainty remains about future greenhouse gas 

concentrations and ultimately their effect on global warming (IPCC, 2007b). It is also worth noting 

that even if greenhouse gas levels stopped increasing now it is likely that global temperature will 

continue to rise for some time as a result of the high heat capacity and thus thermal inertia of the 

oceans (Wigley et al., 2009). 

Associated with increasing average global temperatures are changes in climate. There is considerable 

spatial variability associated with climate change meaning that average temperatures will increase 

more in some areas than others and some areas will become wetter while others will become 

increasingly dry (IPCC, 2007b). Changes in climate will effect short-term weather patterns and while 

there are uncertainties about the relationship between changing climate and extreme events such as 

droughts, floods and cyclones, it is probable that they will become increasingly significant in some 

areas due to increases in intensity and /or frequency (IPCC, 2007b). 

Changes in climate can affect aquaculture directly though impacts on the production process or 

indirectly via impacts on price and availability of aquaculture inputs and / or products being 

produced. For example, impacts on capture fisheries could affect the availability of feed ingredients 

such as fishmeal and fish oil or the availability of wild-caught fish that compete directly with 

aquaculture products in the marketplace.  

Climate related drivers of change for aquaculture systems can largely be considered as: changes in 

temperature of inland water or sea surface waters, changes in oceanographic variables such as 

currents and waves, changing sea levels, changes in solar radiation, changes in the availability of fresh 

water, and changes in the frequency and / or intensity of extreme events (Handisyde et al., 2006). 

Another potentially significant driver that is related directly to increasing atmospheric carbon dioxide 

levels rather than changing climate is ocean acidification (Doney et al., 2009). These changes can have 

physiological impacts via changes in growth, development, reproduction and disease, ecological 

impacts through changes to organic and inorganic cycles, predation, ecosystem services, and 
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operation impacts such as species selection, site selection, sea cage technology etc. (Handisyde et al., 

2006). 

The ability to predict future changes in climate is improving in association with a better 

understanding of the climate system along with increases in computing power, and an increasing 

number of more sophisticated climate models, resulting in a larger number of simulations and 

experiments being conducted. This said, considerable uncertainty remains in relation to the modelling 

process itself, the climate system and potential feedback mechanisms, and future human 

development and associated greenhouse gas emissions and concentrations (IPCC, 2007b). 

In an effort to address this uncertainty a number of potential scenarios are frequently considered. In 

recent years this has often meant the range of scenarios developed for the Intergovernmental Panel 

on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) which form the basis of much 

climate modelling work and consider a range of differing assumptions relating to human activity such 

as economic and population growth, energy production and technological change (Nakicenovic and 

Swart, 2000). Best estimates of average global temperature increase between the periods 1980-1999 

and 2090-2099 range from 1.8°C under the conservative B1 scenario to 4°C under the A1F1 scenario. 

There has been some criticism of SRES scenarios. For example Schiermeier (2006) suggests that many 

economists view the scenarios as flawed and based on outdated economic theory with doubts about 

assumptions regarding the speed at which the economies of developing countries will develop and 

converge with nations that are currently more developed. There was also concern over how 

projected economic development is linked with technological development and energy use.  

Climate models vary considerably in terms of sensitivity, and hence degree of warming, to increasing 

greenhouse gas concentrations. The 23 Atmosphere-Ocean General Circulation Models AOGCMs used 

in the 3rd phase of the Coupled Model Intercomparison Project (CMIP3) (Meehl et al., 2007) that 

formed the basis of projections for the 4th IPCC assessment report (IPCC, 2007b) had a range of 

equilibrium climate sensitivities where a doubling of atmospheric CO2 resulted in projected average 

global temperature increases ranging from 2.1°C to 4.4°C with a mean value of 3.2°C (IPCC, 2007b). It 

has been suggested that a large part of this variation can be attributed to uncertainties about 

feedbacks within the climate system such as cloud density (Dufresne and Bony, 2008, Webb et al., 

2006, Williams and Webb, 2009). 
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Given the range of potential emission scenarios and the variability in response between climate 

models to any given scenario the message for those concerned with impact assessment and / or 

adaptation strategy development would seem to be that considerable uncertainty remains and at 

very least a wide range of future scenarios would need to be considered if the aim is to try and 

quantify impacts.  

Assessments of vulnerability range in scale from single points or small areas, typically at a high spatial 

resolution, to global assessments where resolution may be at the scale of countries or features such 

as drainage basins. Vulnerability analyses also range in scope and specificity both in terms of drivers 

of vulnerability and what is potentially being impacted. Given the uncertainties about future 

development and data limitations, broad-scale more generalised assessments of vulnerability often 

aim to rank areas (show relative differences between them in terms of vulnerability) rather than 

trying to quantify results. As well as providing useful tools for decision makers in their own right, 

broad assessments of vulnerability may also provide useful starting points for guiding further and 

more detailed research in specific areas. 

The Human Development Index (HDI) (Malik, 2013) provides an example of a simple composite of 

indicators used to rank countries in terms of general human wellbeing. The Predictive Indicator of 

Vulnerability (PIV) (Adger et al., 2004) can be viewed as more focused and provides another example 

of a global indicator that operates at the resolution of whole countries with the aim of addressing 

social vulnerability to climate change. The PIV uses a larger number of variables than the HDI (46 

compared with 4) and thus is conceptually more complex. Adger et al. (2004) suggest that 

aggregating large numbers of variables into a single index should be done with caution and that 

disaggregated indicators can give more information on the structure of vulnerability. Doubleday et al. 

(2013) provides an example of a regional vulnerability assessment that is focused specifically on the 

aquaculture industry and used a two stage assessment process to rank 7 aquaculture species in terms 

of climate change related risk for south-eastern Australia. The process involved the use of experts to 

first compile species profiles and then assign scores to 9 different attributes of vulnerability whilst 

following a specified framework. More complex ecosystem and / or production models are often 

highly specific in focus and aim to quantify change and thus potential impacts and vulnerability. 

Ferreira et al. (2008) made use of ShellSim (Hawkins et al., 2002) to model blue mussel (Mytilus 

edulis) and Pacific oyster (Crassostrea gigas) production in Strangford Lough, Northern Ireland. 
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Results suggested a significant decrease in mussel production of 50% in response to a1°C temperature 

increase and a 70% decrease for a 4°C increase. Oysters were predicted to be less severely affected 

with modelled decreases of less than 8% under both temperature scenarios.  

To date there have been few attempts to compare vulnerability among regions at the global scale in 

relation to the fisheries sector. Handisyde et al. (2006) used a GIS to conduct an assessment for 

aquaculture dependant livelihoods whilst also incorporating climate data at the sub-national level. 

Allison et al. (2005) and Allison et al. (2009) used a range of indicators to rank nations in terms of 

vulnerability of capture fisheries dependant livelihoods to climate change. The current study aims to 

produce a more focused evaluation of relative vulnerability of aquaculture-related livelihoods 

between regions at the global scale by incorporating data at varying resolutions within a GIS. 

 

2.1.1 Materials and methods 

Vulnerability (V) of aquaculture and associated livelihoods in relation to climate change are 

considered in the current study as a function of exposure to climate change (E), sensitivity to climate 

change (S) and adaptive capacity (AC), based on the following equation: 

V = f (E, S, AC)        [equation1] 

This working method of assessing vulnerability in relation to climate change was implemented in the 

Intergovernmental Panel on Climate Change third assessment report (McCarty et al., 2001) with 

similar approaches being applied in a range of vulnerability studies (e.g. Allison et al., 2005, Metzger 

et al., 2005, o’Brien et al., 2004, Schröter et al., 2005).  

Rather than representing data using only a simple numerical index the current study makes use of a 

geographic information system (GIS) to represent and combine data spatially using a series of raster 

grids. Along with easily allowing for visual interpretation of results and intermediate stages of the 

modelling process, the use of gridded data within a GIS also allows for the combination of data that is 

available at varied resolutions while maintaining as much detail as possible.  

 

http://www.ipcc.ch/
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2.1.2 Study extent and data selection 

The study area was global in extent with spatial data represented on a latitude-longitude grid at 10 

arcminute resolution (one arcminute equals approximately 1.86km at the equator). A priority when 

selecting data were that it is available and consistent across as many countries as possible. In practical 

terms this limited selection to those data sets that are already available with global coverage. Such 

data is often available at limited spatial resolution which in many cases means at the national level. A 

second priority for data selection and the modelling process was that it should be as focused as 

possible with a moderate number of relevant indicators. Global indexes of vulnerability have received 

criticism for lacking such focus (Füssel, 2010, Gall, 2007) and while use of a very large number of 

broad ranging indicators may seem attractive in terms of inclusivity and give the impression of a more 

‘sophisticated’ modelling process, it is worth considering that as the number and scope of indicators 

is increased their individual power and focus is typically reduced. 

While the data used to indicate sensitivity and adaptive capacity were available at the national level 

the data used to represent climate variables (exposure) were available in grid format at a range of 

resolutions between 2.5 degrees and 10 arcminutes. This raises the issue of how to combine data at 

differing resolutions. One approach is to work at the lowest resolution where higher resolution data is 

averaged over the lower resolution spatial units before combination within a model. This approach 

doesn’t rely on assumptions of even distribution within spatial units and is easily defensible in terms 

of methodology. The main drawback of working at the lowest resolution is that valuable information 

contained within the higher resolution data may be lost. A hypothetical example of this would be a 

large country where a decrease in precipitation is predicted over half the country while an increase is 

predicted over the other half. While these changes may be significant in terms of factors such as 

water availability, floods and droughts, if they are considered as an average over the entire country 

they may largely cancel each other out resulting in very little or no change being indicated. The 

process of averaging climate variables within a country could be refined by using gridded moderately 

high resolution data for topographic variables such as land cover, elevation and slope to indicate 

regions within a county where aquaculture has the potential to take place and then average climate 

changes over only these areas. While this may make the analysis more appropriate for aquaculture 

the problems of averaging over potentially climatically diverse areas within larger countries remain. 

Another option would be to assign a climate exposure risk score to the country as a whole based on a 

consensus of expert opinion and what is known about likely climate issues and aquaculture within the 
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region. Notable problems with this approach include differences in the amount of information and 

knowledge available between countries, which is likely to be particularly low in some cases, along 

with a general high level of subjectivity.  The approach taken in the current study is to represent all 

data, including that only available at the national level, on raster grids at a common resolution of 10 

arcminutes which can then be combined within the model using a series of weighted combinations. 

The practice of converting low resolution polygon data to a higher resolution grid for modelling 

purposes is in agreement with other global modelling work (e.g. Handisyde et al., 2006, Vörösmarty 

et al., 2010) and the view is taken here that for the reasons outlined above the benefits of this 

approach outweigh those of working at the lowest resolution or with more complex combined 

systems.  

Apart from projected changes for temperature, data representing current conditions was used 

meaning that current aquaculture-related vulnerabilities were assessed in relation to potential future 

climate changes. For more specific and localised assessments of vulnerability with access to a greater 

range of high quality data it may be possible to produce future projections for a wider range of 

indicators. In the case of the current study, and notably in relation to aquaculture trends and to a 

large extent adaptive capacity, the view was taken that attempting to extrapolate future scenarios 

over a time period relevant to climate change is likely to introduce considerable inaccuracies into the 

modelling process and that the use of current indicators in association with future climate scenarios 

provides the best proxy when comparing vulnerability at a broad scale (Adger and Kelly, 1999, 

Vincent, 2004). 
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2.1.3 Details of data used 

Details of all data sets used in the current study are provided in Table 2-1. 

Table 2-1: Data used in the current study. 

Variable (units) Data format (original 
resolution) 

Source (reference) 

Aquaculture production 
quantities (tonnes) 

 National level 
production statistics 

FAO FishstatJ  

(FishStatJ, 2013) 

Aquaculture production value 
(USD) 

National level 
production statistics 

FAO FishstatJ  

(FishStatJ, 2013) 

Population density (persons per 
km

2
) 

Grid (30 arcseconds) LandScan 2008 data 

(Landscan, 2008) 

Actual evapotranspiration (mm 
per year) 

Grid (30 arcminutes) (Fisher et al., 2008) 

Precipitation (mm per year) Grid (10 arcminutes) CRU CL2  

(New et al., 2002) 

Projected change in local 
temperatures under global 
warming(

o
C) 

Grid (2.5 degrees) MAGICC/SCENGEN version 5.3 

(Wigley, 2008) 

Projected change in local 
precipitation under global 
warming (percent) 

Grid (2.5 degrees) MAGICC/SCENGEN version 5.3 

(Wigley, 2008) 

Flood frequency based on historic 
data 

Vector Polygon Aqueduct Global Maps 2.0  

(Gassert et al., 2013) 

Drought frequency based on 
historic data 

Vector Polygon Aqueduct Global Maps 2.0  

(Gassert et al., 2013) 

Cyclone frequency based on 
historic data 

Vector line International Best Track Archive for Climate 
Stewardship (IBTrACS) 

(Knapp et al., 2010) 

Human development index (HDI) Online database 
(national) 

HDI 2012 

(Malik, 2013) 

Country borders polygons Vector Polygon TM_WORLD_BORDERS-0.3 

(thematicmapping.org, 2013) 

Marine Exclusive Economic Zones 
(EEZ) polygons  

Vector Polygon World EEZ v7  

(Marine_Regions, 2013) 
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National population estimates 
(total population) 

Data table 

 

United Nations Population Division  

(UN_Population, 2013) 

National GDP estimates (USD) Data table 

 

World Bank GDP data 

(World_Bank, 2013) 

 

2.1.4 Overview of model structure  

The model followed a hierarchical structure where a range of indicators were combined to represent 

the sensitivity, exposure and adaptive capacity components (described elsewhere in this document as 

sub-models) which were then combined to indicate vulnerability. A schematic overview of the model 

structure and potential inputs is provided in Figure 2-1. It should be noted that not all inputs are 

necessarily used at any one time with the choice of inputs and weightings (level of influence within 

the model) varying depending on what is being evaluated e.g. fresh, brackish or marine aquaculture 

environments. Full details of layer combinations and weightings are provided in Tables 2-3 

(freshwater aquaculture), 2-4 (brackish water aquaculture), 2-5 (fresh and brackish water aquaculture 

combined), and 2-6 (marine aquaculture). 

Aquaculture production (kg per 

capita)

Aquaculture production (percentage 

of GDP)

Weighted 

Arithmetic mean

Reclassification

Reclassification

Surface temperature change

Precipitation change

Current water balance (precipitation 

minus actual evapotranspiration)

Human population density

Drought risk based on historic data

Flood risk based on historic data

Cyclone risk based on historic data

Human development index

Reclassification

Reclassification

Reclassification

Reclassification

Reclassification

Reclassification

Reclassification

Reclassification

Weighted 

Arithmetic mean
Exposure sub-model

Sensitivity sub-model

Adaptive capacity  

sub-model

Weighted 

Arithmetic mean

Exposure and 

adaptive capacity 

sub-model

Geometric mean Vulnerability

 

Figure 2-1: Schematic representation of model used in current study. 
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2.1.5 Data standardisation 

In order for different indicators to be combined they need to be transformed to a common scoring 

system. For the current study the majority of the input data sets were in the form of a continuous 

numeric series, for example increase in temperature in degrees centigrade. All data were 

standardised on a continuous scale from 0-1 with higher numbers representing greater vulnerability, 

lower adaptive capacity, greater exposure, or greater sensitivity. In terms of the modelling process 

and interpretation of results this effectively represents a continuous series as opposed to a number of 

distinct classes. Details of how data were standardised for all variables used are given in Table 2-2.  

Table 2-2: Details of data standardisation to a common 0 – 1 scoring system. 

Variable Standardisation details 

Aquaculture production 
quantity (kg per capita) 

Aquaculture production data were standardised to values ranging from 0 to 1 
using a linear relationship where 0 represents areas with no aquaculture 
production and 1 equates to the area with highest production. The one 
exception was for mariculture where the Faroe islands which are the largest 
per capita producers of mariculture products were excluded as complete data 
needed for other areas of the model were not available. 

Aquaculture production 
value (percentage of GDP) 

As above 

Human Development Index 
(HDI) 

All values were standardised over the range 0 to 1 using an inverse 
relationship so that the country with the lowest HDI value receives a new 
value of 1 and the one with the highest HDI value receives a new value of 0. 

 

Population density 

Population density data were standardised using a linear relationship so that 
areas averaging more than 1000 people per square km were given a value of 1 
and areas indicated as have no population were given a value of 0. 

Projected temperature 
change 

Temperature change data were standardised to values ranging from 0 to 1 
based on a linear relationship between 3 standard deviations below and above 
the mean increase. For the fresh and brackish water models the mean value 
was derived from all land areas between 60

o
S and 60

o
N. For the marine model 

the average increase was obtained using a 20km buffer around all land areas 
between 60

o
S and 60

o
N. The 60

o
 north and south

 
cut off was applied to 

exclude high latitude areas that are projected to warm significantly more than 
other areas but are generally insignificant in aquaculture terms. 

Projected precipitation 
change 

Projected precipitation change data were standardised to values ranging from 
0 to 1 based on a linear relationship between 3 standard deviations above and 
below the mean value that was calculated over all land areas used in the 
study. This results in areas with the greatest projected decrease in 
precipitation being given the highest score and thus making the greatest 
contribution to vulnerability. 

Cyclone risk International Best Track Archive for Climate Stewardship (IBTrACS) data 
describing the number of cyclones that have occurred in a given area over the 
last 40 years were standardised to values ranging from 0 to 1 using a linear 
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relationship with a value of 0 being assigned to areas with no recorded 
cyclones and 1 being assigned to the area with the highest number of recorded 
cyclones. 

Flood risk The Aqueduct Global Maps 2.0 flood occurrence data were already scaled 
from 0 to 5 with 5 representing areas with highest occurrence of flood events. 
The data were rescaled using a linear relationship over the range 0 to 1. 

Drought risk As above. 

Water balance Water balance was calculated as precipitation minus actual evaporation. 
Water balance values were standardised using a linear relationship so that 
areas with a water balance of 0mm per year receive a score of 1 while areas 
with 1000mm or more per year received a value of 0. 

 

 

2.1.6 Sub-model construction 

2.1.6.1 Sensitivity 

Sensitivity in the current model is represented at the country scale. The aim is to indicate the 

significance of aquaculture to people within a country and thus how sensitive their livelihoods may be 

to impacts on the aquaculture sector. Aquaculture production is considered on a per capita basis and 

thus total population size of countries does not influence the analysis.  

Two metrics are included in the sensitivity sub-model: aquaculture production quantity (kilograms per 

capita excluding aquatic plants) and aquaculture production as a percentage of GDP (again excluding 

aquatic plants). Quantity of aquaculture products per capita aims to represent the physical size of the 

aquaculture sector within a country. While the type, scale, and intensity of aquaculture operations 

will be significant it is assumed that, in general, nations with a high per capita production of 

aquaculture products are likely to have a greater percentage of their population whose livelihoods’ 

are either directly linked to aquaculture production, or indirectly linked through the supply of goods 

and services to the aquaculture industry. Viewing aquaculture production as a percentage of GDP 

gives an indication of aquaculture’s importance to the economy. Aquaculture’s contribution to the 

economy will not only be dependent on the scale of aquaculture production within a country in terms 

of physical quantity but also on the relative value of aquaculture products being produced and the 

overall size of the country’s economy. In richer countries it seems likely that not only will aquaculture 

make a smaller contribution to wealth, but people are more likely to have economic alternatives and 
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thus be more able to adapt to potential impacts and change. This issue is addressed within the 

adaptive capacity sub-model in the current study in terms of per capita GDP. 

National level statistics for aquaculture production quantities (weight) and values (US dollars) were 

obtained from the United Nations Fisheries and Agriculture Organisation (FAO) via its FishStat 

database (FishStatJ, 2013). Data for all aquatic animals were combined while aquatic plants where 

excluded. Data were also sorted by culture environment which are defined by the FAO as: freshwater, 

brackish or marine. For both quantity and value statistics data for the three most recent years 

available (2008 to 2010) were averaged with the aim of reducing the effect of the inter-annual 

fluctuation that is seen in the statistics, especially in countries with lower levels of production. Figures 

for GDP for the same 2008 to 2010 period were obtained from the World Bank (World_Bank, 2013) 

while population data for the same period were obtained via the United Nations population division 

(UN_Population, 2013). Figure 2-2 shows the global distribution of production quantity and value 

statistics for freshwater, brackish water and marine culture environments.  
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Aquaculture production quantity (kg per capita) from freshwater, brackish 
water, and marine systems. 

Aquaculture production value (percentage of GDP) from freshwater, 
brackish water, and marine systems. 

Freshwater 

 

Freshwater 

 
Brackish 

 

Brackish 

 
Marine 

 

Marine 

 

  

Figure 2-2: Aquaculture production statistics (average of years 2008 to 2010). 
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2.1.6.2 Exposure  

Exposure to climate change in the context of the current study can be viewed as the relative extent of 

change between locations rather than an attempt to quantify actual changes. Future changes in 

annual mean temperature and precipitation are considered in relation to current water availability. 

Water balance (precipitation minus actual evaporation) is used as a proxy for current water 

availability. Population density is also included in the exposure sub-model based on the assumption 

that in areas with higher population densities the potential impacts of climate change may be 

increased through mechanisms such as increased requirements for resources such as water, and 

greater environmental pressure e.g. through increased pollution. 

The frequency of past climate extremes in the form of cyclones, drought and flood events is used in 

the exposure sub-model as a proxy for future risk from such events based on the assumption that any 

increases in the intensity or frequency of these extremes is likely to be significant in areas where they 

are already common (Handisyde et al., 2006, Islam and Sado, 2000b).  

Significant improvements in climate modelling are being made (IPCC, 2007b) with coupled 

Atmosphere and Ocean General Circulation Models representing the most sophisticated attempts to 

project future patterns of climate change. However significant variability remains between the 

outputs from different models and to a lesser extent different implementations of the same model. 

Climate models are often evaluated based on their skill at reproducing a historic climate scenario (e.g. 

that of the 20th century). In this respect the combined results from an ensemble of climate models 

normally show greater skill in reproducing the spatial details of climate when compared to a single 

model (IPCC, 2007b, Pierce et al., 2009). With this in mind it is common for impact assessments to 

make use of results from multiple climate models where possible. 

For the current assessment gridded global data for projected changes in annual mean temperature 

and precipitation levels were obtained at 2.5 degree resolution using MAGICC/SCENGEN (version 

5.3.v2) (Wigley, 2008). MAGICC is a software package that integrates a number of coupled gas-cycle, 

climate and ice-melt models. It allows for the exploration of projections for: average global surface air 

temperature, greenhouse gas concentrations and average global sea level change under a wide range 

of green house gas emission scenarios. The global average warming scenarios generated by MAGICC 
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are fed into SCENGEN where libraries of observed climate data are used along with the CMIP3 (Meehl 

et al., 2007) data base of climate model outputs generated for the IPCCs forth assessment report 

(IPCC, 2007b) to generate spatially explicit change scenarios. The advantage of using the 

MAGICC/SCENGEN package to generate gridded temperature and precipitation projections is that as 

well as allowing for quick and easy adjustment of emission scenarios and choice of Atmosphere and 

Ocean General Circulation Models (AOGCMs), it removes the influence that differences in sensitivity 

between AOGCMs would have when constructing patterns of change. This is achieved by averaging 

results from multiple models based on a fixed degree of warming for each model, an approach that 

contrasts with the approach of averaging results from multiple AOGCMs based on a future time point. 

This benefit can be illustrated using a simple theoretical ensemble of two climate models. If one of 

the models responds to a green house gas scenario for a future time period with a mean global 

warming of 1oC and the other with a mean global warming of 2°C then one model can effectively be 

viewed as being twice as sensitive as the other. If it is assumed that the extent of spatial changes in 

climate simulated in models is at least partly related to overall global warming then an equally 

weighted averaging of the results of the two models in question would mean that the more sensitive 

model would have a greater influence on the spatial variability of climate in the result.  

While the CMIP3 ensemble of AOGCM results contain outputs from 24 models only 20 of these are 

available for selection in SCENGEN due to the availability of necessary variables. For the current study 

all 20 AOGCMS were selected in SCENGEN for the pattern scaling process. The global mean warming 

used to drive SCENGEN was 2oC based on a year 1990 base point. Multiple warming scenarios were 

not considered in the current study as the aim is to show relative differences between global areas 

and results from SCENGEN change in a largely linear way in relation to overall mean temperature 

change. The MAGICC/SCENGEN derived projected changes in surface air temperature and 

precipitation used in the current study are shown in Figures 2-3 and 2-4. 
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Figure 2-3: Change in average annual surface air temperature under 2°C global warming. 

 

Figure 2-4: Percentage change in average annual precipitation under 2°C global warming. 

 

Current water balance was calculated by subtracting annual average actual evapotranspiration from 

precipitation. Precipitation data were obtained from the Climate Data Research unit (CRU) as part of 

the CL2.0 data set (New et al., 2002). This data set represents a number of climate variables as 

monthly climatologies on a 10 arcminute global grid based on the period 1961-1990 and were 

constructed via the careful interpolation of data from 27075 meteorological stations in the case of 

precipitation. CRU CL2.0 is widely used in the literature either directly as a source of average climate 

or as base period with which future climate projections can be compared (Ramirez-Villegas et al., 

2013, van Wart et al., 2013). 

Data for modelled actual evapotranspiration data were obtained as a set of 0.5 degree resolution 

global grids representing actual evapotranspiration on a monthly basis over a 10 year period. The 



 

27 

 

data for each year were combined to produce a set of annual totals which were then averaged to 

produce a single layer. The modelled actual evapotranspiration data were produced by Fisher et al. 

(2008) by adapting the Priestly-Taylor method (Priestley and Taylor, 1972) and using a range of 

remotely sensed data to supply the required inputs (net radiation, normalized difference vegetation 

index, soil adjusted vegetation index, maximum air temperature, and water vapour pressure) 

While it would be feasible to construct future precipitation scenarios using projected changes from 

SCENGEN to adjust values from the CRU CL2.0 data set, attempting to model future actual 

evapotranspiration would be far more problematic due to availability and quality or future 

projections for the necessary inputs for such an exercise. The view is taken here that any benefits that 

the current model could gain from the inclusion of future water balance scenarios would likely be 

overshadowed due to the potential introduction of largely unquantifiable inaccuracies. 

Cyclone risk was estimated using the International Best Track Archive for Climate Stewardship 

(IBTrACS) database (Knapp et al., 2010). IBTrACS contains an archive of data relating to recorded 

cyclone tracks and aims to synthesis data from multiple agencies into a single product that is then 

freely disseminated. For the current project all cyclone tracks for a 40 year period ranging from 1973 

to 2012 were included giving a total of 4549 storms in total. Storm track data were downloaded in 

vector line file format. A 200km buffer was applied based on average cyclone size 

(Australian_Bureau_of_Meteorology, 2013) giving each storm track total width of 400km. Polygons 

were merged to give a single polygon for each storm and then the resulting vector file was spatially 

joined to a 0.5 degree grid with a count being made for the number of storms at each grid cell. The 

resulting storm frequency grid is shown in Figure 2-5. 

Figure 2-5: Cyclone frequency based on all storms recorded in the IBTrACS database for a 40 year period (1973-2012). 
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Data used to represent risk of flood and drought were obtained from the Aqueduct Global Maps 2.0 

database (Gassert et al., 2013). Data were downloaded as polygon files showing: flood occurrence 

(number of floods recorded from 1985 to 2011), and drought severity (the average length of drought 

times and the dryness of the droughts from 1901 to 2008. Drought is defined as a contiguous period 

when soil moisture remains below the 20th percentile). 

Gridded population density data (number of individuals per square kilometre) were obtained at 30 

arcsecond resolution for the year 2008 from the LandScan data set (Landscan, 2008). Before it could 

be used in the current model the data were aggregated to 10 arcminute resolution to show average 

population density for each cell on the lower resolution grid. LandScan is a modelled dataset that 

makes use of multiple data inputs including: census information, administrative boundaries, land 

cover, elevation and slope. Landscan also represents the highest resolution global population data set 

currently available and although direct comparisons between global population data sets are limited 

it has been shown to outperform other global data sets when evaluated over an area of Sweden (Hall 

et al., 2012). 

 

2.1.6.3 Adaptive capacity  

Adaptive capacity in the current model was based on the United Nation Human Development Index 

(HDI) (Malik, 2013). The HDI represents a globally complete and consistent data set that is based on 

the combination of: health (life expectancy at birth), education (combination of mean years of 

schooling and expected years of schooling) and living standards (gross national income per capita). All 

components within the HDI are transformed to a 0-1 scale before being combined by calculating the 

geometric mean of the three components. Füssel (2010) cites (Gall, 2007) who undertook an 

evaluation of global indices in relation to social vulnerability. While generally critical of many of the 

indices, Gall (2007) concludes that the HDI outperforms the others examined. It is worth noting that 

this is despite containing a smaller number of variables than the other indices in question. HDI scores 

for the year 2012 are shown in Figure 2-6. 
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Figure 2-6: HDI values for the year 2012. 

 

2.1.7 Layer combinations and weightings 

All weightings were assigned by the author after consultation with a range of aquaculture experts. 

Details of weightings used for the freshwater, brackish water, combined fresh and brackish water, 

and marine assessment are given in Tables 2-3, 2-4, 2-5, and 2-6. The use of a geometric mean for the 

final combination means that very low values exert a greater influence on the final result. In practice 

this means that countries where aquaculture production is very low are indicated as being 

significantly less vulnerable. This approach is considered appropriate here based on the assumption 

that higher levels of aquaculture production within a region are likely to be at least partially 

associated with a greater number of livelihoods being either directly or indirectly linked to the sector 

and/or greater levels of dependence for both food and income.  

Table 2-3: Weightings used for combining indicators in the vulnerability assessment for freshwater aquaculture systems. 

Inputs Weight 
(arithmetic 
mean) 

Sub-model Weight 
(arithmetic 
mean) 

Sub-model Weight 
(geometric 
mean) 

Output 

Temperature change 0.175 Exposure 
sub-model 

0.333 Exposure 
and adaptive 
capacity sub-
model 

0.5 Vulnerability 

Water balance 0.175 

Population density 0.175 

Precipitation change 0.175 

Flood risk 0.125 

Drought risk 0.125 

Cyclone risk 0.05 

Human development 
index → 

Adaptive 
capacity sub-
model 

0.666 

Aquaculture 
production (kg per 
capita) 

0.666 

→ → 

Sensitivity 
sub-model 

0.5 

Aquaculture value 
(percent GDP) 

0.333 
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Table 2-4: Weightings used for combining indicators in the vulnerability assessment for brackish water aquaculture 
systems. 

Inputs Weight 
(arithmetic 
mean) 

Sub-model Weight 
(arithmetic 
mean) 

Sub-model Weight 
(geometric 
mean) 

Output 

Temperature change 0.175 Exposure 
sub-model 

0.333 Exposure 
and adaptive 
capacity sub-
model 

0.5 Vulnerability 

Water balance 0.175 

Population density 0.175 

Precipitation change 0.175 

Flood risk 0.05 

Drought risk 0.05 

Cyclone risk 0.2 

Human development 
index → 

Adaptive 
capacity sub-
model 

0.666 

Aquaculture 
production (kg per 
capita) 

0.666 

→ → 

Sensitivity 
sub-model 

0.5 

Aquaculture value 
(percent GDP) 

0.333 

 

 

Table 2-5: Weightings used for combining indicators in the vulnerability assessment for combined fresh and brackish 
water aquaculture systems. 

Inputs Weight 
(arithmetic 
mean) 

Sub-model Weight 
(arithmetic 
mean) 

Sub-model Weight 
(geometric 
mean) 

Output 

Temperature change 0.175 Exposure 
sub-model 

0.333 Exposure 
and adaptive 
capacity sub-
model 

0.5 Vulnerability 

Water balance 0.175 

Population density 0.175 

Precipitation change 0.175 

Flood risk 0.1 

Drought risk 0.1 

Cyclone risk 0.1 

Human development 
index → 

Adaptive 
capacity sub-
model 

0.666 

Aquaculture 
production (kg per 
capita) 

0.666 

→ → 

Sensitivity 
sub-model 

0.5 

Aquaculture value 
(percent GDP) 

0.333 
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Table 2-6: Weightings used for combining indicators in the vulnerability assessment for marine aquaculture systems. 

Inputs Weight 
(arithmetic 
mean) 

Sub-model Weight 
(arithmetic 
mean) 

Sub-model Weight 
(geometric 
mean) 

Output 

Temperature change 0.6 Exposure 
sub-model 

0.333 Exposure 
and adaptive 
capacity sub-
model 

0.5 Vulnerability 

Cyclone risk 0.4 

Human development 
index → 

Adaptive 
capacity sub-
model 

0.666 

Aquaculture 
production (kg per 
capita) 

0.666 

→ → 

Sensitivity 
sub-model 

0.5 

Aquaculture value 
(percent GDP) 

0.333 

 

 

2.2 Results 

Vulnerability model outputs are shown here as a set of raster images with vulnerability indicated 

using a continuous colour range. As is the case with other modelling exercises where a composite of 

multiple indicators are used, the results should be interpreted with care. The aim is not to provide an 

exact quantification of vulnerability and relative positions over the vulnerability range should not be 

interpreted in such a way. With this in mind no attempt is made to display numeric values derived 

from the modelling process for countries or regions, or to place results into classes with definitive 

labels suggesting a level of vulnerability. The best way to view the results, and the modelling process 

behind them, is as a means of comparing regions as being more or less vulnerable than each other.  

The level of vulnerability indicated in the model outputs is strongly dependent on the per capita 

aquaculture production within a country based on the assumption that higher production will be 

related to a greater overall importance of the sector to livelihoods within a region. Images 

representing the combined indicators for exposure and adaptive capacity are also provided with the 

aim of giving an indication of vulnerability that is independent of the scale of a regions aquaculture 

production. Such information is useful when considering nations where aquaculture production is 

currently low as a national average but where an indication of vulnerability is wanted for those who 

are involved in the sector. It may also be possible that countries where aquaculture is less significant 

will be less able, or prepared, to invest in adapting to impacts on production.  
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Figures 2-7, 2-9, 2-11, and 2-13 show modelled vulnerability for aquaculture in freshwater, brackish 

water, combined fresh and brackish water, and marine systems respectively while Figures 2-8, 2-10, 

2-12, and 2-14 show the results for the combined exposure and adaptive capacity sub-models 

excluding the effects of aquaculture industry size (sensitivity). 

 

2.2.1 Freshwater 

In terms of vulnerability related to freshwater aquaculture, Asia with its large aquaculture sector 

features strongly with Vietnam indicated as the most vulnerable country followed by Bangladesh, 

Laos, and China. Uganda is indicated as the most vulnerable country in Africa followed by Nigeria and 

Egypt. It is worth noting that while African countries are ranked quite low in the overall vulnerability 

assessment due to relatively low levels of aquaculture production, many score highly when just 

exposure and adaptive capacity are considered. Within the Americas Belize, Honduras, Costa Rica and 

Ecuador appear most vulnerable. 

Figure 2-7: Vulnerability based on aquaculture production in freshwater systems. 
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Figure 2-8: Results of the combined exposure and adaptive capacity sub-models used when assessing vulnerability for 
aquaculture in freshwater systems. 

 

 

2.2.2 Brackish water 

For brackish water production Vietnam again scores highly as does Ecuador. Egypt with its 

aquaculture production within the Nile delta and Thailand with its significant brackish water 

production of crustaceans also feature strongly. 

Figure 2-9: Vulnerability based on aquaculture production in brackish water systems. 



 

34 

 

Figure 2-10: Results of the combined exposure and adaptive capacity sub-models used when assessing vulnerability for 
aquaculture in brackish water systems. 

 

Vulnerability based on aquaculture production in brackish water systems. 

Figure 2-11: Vulnerability based on aquaculture production in both fresh and brackish water systems. 
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Figure 2-12: Results of the combined exposure and adaptive capacity sub-models used when assessing vulnerability for 
aquaculture in both fresh and brackish water systems. 

 

2.2.3 Marine 

Norway and Chile are indicated most strongly in terms of vulnerability in relation to marine 

aquaculture. It is worth noting that in terms of per capita aquaculture production and contribution to 

GDP the Faroe Islands are significantly above Norway and Chile and must be considered strongly 

dependent on the aquaculture sector. The Faroe Islands were not included in the current study as not 

all of the required data were available. Within Asia China is indicated as most vulnerable in terms of 

mariculture production followed by Vietnam and the Philippines. Madagascar is the African country 

indicated as most vulnerable while in the Americas Peru is emerges most strongly after Chile.
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Figure 2-13: Vulnerability based on aquaculture production in marine systems. 
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Figure 2-14: Results of the combined exposure and adaptive capacity sub-models used when assessing vulnerability for aquaculture in marine systems.
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2.3 Discussion and summary 

There is often a desire amongst policy makers and other users of modelling tools to have outputs that 

give definitive, even binary, answers that can be more or less followed without question when it 

comes to decision making. In reality this approach is hardly ever realistic and is often not how 

modelled data is intended to be used, or how it can provide most benefit. Modelling with spatial data 

within a GIS environment is often best considered as a means of providing decision support as part of 

an expert system where it is used in association with other information by individuals who have an 

understanding of the issues in question (Nath et al., 2000). When viewed in this context the approach 

demonstrated in the current study along with associated outputs can be seen as a valuable tool for 

informing decision makers and guiding future research.  

Another way in which modelling within a GIS environment can be beneficial is that once a database 

and modelling approach is established and verified it is generally a fairly quick and easy task to add 

new data sources that may become available as well as manipulate the way in which data is classified 

and/or weightings (levels of significance) applied to data within the model. This process can allow 

different questions to be asked of the data and different scenarios to be considered. The graphical 

output typically associated with the use of spatial data within a GIS allows for high quality visual 

interpretation of results which in itself can be useful when multiple scenarios are being considered.  

(Handisyde et al. (2006)) conducted an evaluation of global aquaculture vulnerability to climate 

change that incorporated spatial data and was also based on the concept that vulnerability is a 

function of sensitivity, exposure, and adaptive capacity. The authors used weighted arithmetic means 

to combine data and the resulting sensitivity, exposure, and adaptive capacity sub-models. A similar 

approach was taken by Allison et al. (2009) for capture fisheries although in this case all variables had 

even weightings. One potential drawback of averaging a large number of variables is that the power 

of each individual variable is reduced. In terms of assessing aquaculture vulnerability using mostly 

national level statistics a key issue is a lack of distinction between areas producing very little and large 

amounts of aquaculture products. In the case of Handisyde et al. (2006) this resulted in some areas 

with small amounts of aquaculture production being indicated as vulnerable. If the aim is to evaluate 

where any aquaculture-related livelihoods may be at risk then this is not an issue but if the aim is to 

highlight areas where greatest overall impact on livelihoods is likely when they are viewed as a whole 
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then there are limitations. Ultimately these issues can largely be viewed as a consequence of reducing 

multiple variables to a single output.  

 

The current assessment aimed to address the issues highlighted above. Considerable emphasis was 

placed on the sensitivity component based on kg per capita production of aquatic species and 

contribution to GDP. The adaptive capacity and exposure sub-models were combined and this result 

was further combined with the output of the sensitivity sub-model using a geometric mean to allow 

areas with low values in either input to exert a greater influence on the final output. In practice this 

means that countries where aquaculture production is very low are indicated as being significantly 

less vulnerable. This approach is considered appropriate here based on the assumption that higher 

levels of aquaculture production within a region are likely to be at least partially associated with a 

greater number of livelihoods being either directly or indirectly linked to the sector and/or greater 

levels of dependence for both food and income.  When considering aquaculture-related livelihoods 

that may be vulnerable in nations where overall production is low the sensitivity component of the 

model becomes much less relevant, if at all. The results of the combination of the exposure and 

adaptive capacity sub-models are provided in the current study and help shed light on this question 

and in doing so provide a good example of how viewing the outputs from sub-sections of the model 

can provide useful insights in their own right. Another area of potential improvement in the current 

assessment when compared with Handisyde et al. (2006) is the use of a continuous scale (0 to 1), 

rather than 5 discreet classes, that allows for greater differentiation between areas in terms of 

vulnerability and its contributing components. 

 

Allison et al. (2005) and Allison et al. (2009) conducted a global assessment of livelihood vulnerability 

to climate change impacts on capture fisheries using a range of indicators available at the national 

scale. As in the present study vulnerability was assumed to be a function of sensitivity, exposure and 

adaptive capacity. The sensitivity component included: fisheries export value as a percentage of total 

export value, proportion of economically active population involved in the fisheries sector, total 

fisheries landings (tonnes), and fish protein as a percentage of total animal protein consumed. The 

authors point out that these data sets relate to total fisheries production from all environments i.e. 

inland and marine and acknowledge that these different environments are likely to be affected in 

different ways by changing climate. For example changes in precipitation are likely to be relevant for 
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inland situations while sea surface temperature may be more significant for the marine environment. 

Allison et al. (2009) go on to suggest that future studies should consider separating inland and marine 

fisheries.  

Taking the above into consideration the environment field in the FAO FishStat (FishStatJ, 2014) 

database that allows aquaculture production data to be sorted into freshwater, brackish and marine 

categories was used and each of these environments was addressed in the current model separately. 

However distinctions between these categories are not always clear and decisions taken by those 

reporting on production will have an influence, especially in the case of fresh and brackish water 

where there is a continuum between the two environments. With this in mind a combined fresh and 

brackish water assessment was included in the current study along with distinct fresh and brackish 

scenarios. It is worth noting however that the bulk of production listed as taking place in brackish 

water is of crustaceans while for fresh water it is of cyprinids suggesting that the environmental 

distinctions are likely giving a reasonable indication of the type of aquaculture taking place in many 

cases. While there are likely to be situations where both inland and coastal ponds could be affected 

by changes in temperature and precipitation leading to water quality and availability issues, the 

effects of cyclones and associated storm surges are most likely to affect coastal regions and as such 

are most likely to pose a threat to brackish and marine aquaculture. 

It is also worth noting that the accuracy of reporting of aquaculture production is likely to vary 

between countries with both over and under reporting being a potential issue. For potential future 

vulnerability assessment being conducted at the national, or particularly sub-national level, it may be 

practical to pursue other data sources although errors in reporting at the farm level would be difficult 

to address in anything other than extremely detailed and localised investigations. For a global 

assessment such as the current one the view is taken here that aquaculture production data available 

via FAO FishStat (FishStatJ, 2013) provides the most complete and consistent source, and as such can 

still be viewed as a useful indicator. 

Allison et al. (2009) used a single metric to assess exposure to climate change, when ranking 

vulnerability of capture fisheries based livelihoods, in the form of mean surface air temperature 

change projected by the UK Hadley Centre climate model (HadCM3). The authors accepted the 

limitations of this approach stating “Choosing an indicator of exposure to climate change for a global 

analysis is fraught with constraints and assumptions” but suggest that temperature change is also the 
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most readily available and best understood indicator. Handisyde et al. (2006) used a greater number 

of metrics to represent exposure to climate change by including projected precipitation change as 

well as historic data for extreme events in the form of floods, drought and cyclones. By representing 

data for climate variables as a global grid rather than national averages the authors also reduced the 

potential loss of information that is likely to occur, especially in the case of large countries. The 

current study also uses multiple indicators for exposure but includes the use of gridded actual 

evapotranspiration data as well as a larger database of recorded storms in order to represent cyclone 

risk. Another significant improvement in the current assessment compared to Handisyde et al. (2006) 

is the use of an ensemble of AOGCMs via the MAGICC/SCENGEN application rather than from a single 

climate model which should result in a better representation of future change. This said, there is still 

much room for improvement in terms of climate modelling especially in relation to patterns of 

precipitation change where agreement between models tends to be less strong than seen for 

temperature. With this in mind updating of the database and model as new and improved climate 

projections become available should be considered. 

Output from MAGICC/SCENGEN suggests that there will be greater warming over large land areas 

compared with oceans and there is also a notable trend for increased warming at high latitudes. For 

tropical areas of central and south-east Asia where much aquaculture takes place projected warming 

over land is in line with or only slightly above the global average with greater increases projected as 

one extends further north into China.  

Higher average temperatures will result in an increasing number of very hot days or heat waves when 

compared to current conditions. This in turn may result in direct thermal stress of cultured animals 

especially where they are near the limits of their range. While average higher temperatures may not 

be fatal for species nearing the upper limits of their ideal temperature range they may reduce profits 

via changes in bioenergetics performance and feed conversion ratios (Handisyde et al., 2006). 

Increased risk of disease for aquaculture species may also be an issues associated with increasing 

temperatures in some areas (e.g. Callaway et al., 2012, De Silva and Soto, 2009, Handisyde et al., 

2006) along with potential unknown ecological effects that may have an influence on aquaculture. 

While the current model associates vulnerability with increasing temperatures, an approach that has 

been adopted by previous studies (Allison et al., 2009, Handisyde et al., 2006), there will also be 

situations where increasing temperatures enhance production of certain species through mechanisms 
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such as: improved growth rates, longer growing seasons, and increased primary productivity. In the 

case of the current model where the aim is to investigate non-specific climate-related vulnerability of 

all aquaculture, it is suggested here that relating temperature increase to vulnerability is still the best 

use of the data. However for future studies with a narrower focus in terms of geographic range and 

culture species, there may be opportunity to consider both positive and negative impacts on 

aquaculture performance. 

The AOGCM ensemble suggests a general trend for increased precipitation over central Asia and 

China while very little change or slight increases are projected for south East Asia. East Africa is 

expected to see increased precipitation while a decrease is projected for the Mediterranean, North 

Africa and Southern Europe. Decreases in precipitation are also projected for Central America and 

Eastern Brazil. Decreasing water availability has the potential to negatively affect aquaculture through 

mechanisms such as: reduced water quality leading to increased levels of stress in culture organisms 

and potentially disease, greater competition for water use from other sectors, changes in salinity, and 

reduced water levels in ponds potentially resulting in increased sensitivity to short-term drought and 

/ or temperature fluctuations (Handisyde et al., 2006, Ross et al., 2009). It was noticeable that during 

a series of informal interviews conducted by the author with fish and shrimp pond farmers in 

Bangladesh that high temperature and drought where viewed as a single problem with the reasoning 

that when water is scarce temperatures tend to be high and that it is reduced water levels in ponds 

that allow temperature to have an impact on cultured organisms as there is little chance for them to 

move to cooler deeper water. 

The current study associates reduced water availability, in terms of precipitation change and current 

water balance, with vulnerability for inland aquaculture. An accepted limitation of the model is that 

these variables are considered on a per grid square basis with no mechanism for lateral flow between 

cells and thus flow accumulation within water courses. Parish et al. (2012) has argued that the use of 

a simple per grid cell approach to water availability as opposed to more complex routed runoff 

models can be a valid method as it allows for the use of easily available data sources such as runoff 

values taken directly from AOGCMs. A similar point of view is adopted here in terms of the use of 

MAGICC/SCENGEN where only precipitation, temperature, and air pressure data are available. It is 

suggested here that the use of a multi model ensemble may provide benefits in terms of projection 

accuracy that may not be possible with the limited range of data that would be available for more 



 

43 

 

complex runoff modelling. It is also worth considering that while a significant amount of aquaculture 

will rely on ground and surface water that will be involved in inter cell drainage there is also much, 

quite possibly belonging to poorer smaller scale aquaculture producers, that is at least partially 

dependant on localised runoff and rainfall.  

The range of indicators of exposure to climate change for marine aquaculture were more limited with 

only temperature change and cyclone data being used. There has been suggestion of a number of 

potential negative impacts on aquaculture in association with increasing sea temperatures such as 

harmful algae blooms, increased incidence of disease and parasites, changing feed conversion ratios, 

and changes in the size or location of suitable ranges of culture species (Callaway et al., 2012, De Silva 

and Soto, 2009, Handisyde et al., 2006, Ross et al., 2009).  

While in the current model increasing temperature is associated with greater vulnerability in marine 

systems there will be situations where increasing temperatures result in positive changes for 

production, for example by improved growth performance (Lorentzen, 2008). Changes in primary 

productivity may also become significant with positive as well as negative consequences depending 

on area, current patterns, and local ecosystems (e.g. Blanchard et al., 2012, Brown et al., 2010, 

Chassot et al., 2010). With this in mind areas indicated as being most vulnerable should be viewed as 

high priorities for more detailed investigation where it is possible that both positive and negative 

implications for aquaculture may be found depending on the species and culture system being 

considered. Accurate modelling of potential impacts on marine systems may need to take place at a 

more localised scale using high resolution data to try to account for variables such as local variation in 

current, temperature, and primary productivity. In some areas there are significant inter-annual 

variations associated with processes such as El Niño/La Niña–Southern Oscillation which will also 

need to be considered by extending investigations over longer time periods and / or for a range of 

scenarios.  

A further significant potential impact for marine aquaculture related directly to increasing 

atmospheric carbon dioxide levels as opposed to associated warming is ocean acidification where 

from an aquaculture perspective the most obvious threat is to growth and survival rates for species 

forming calcareous structures such as the shells of bivalve molluscs (Gazeau et al., 2007, Narita et al., 

2012). Cooley et al. (2012) assessed vulnerability of nations to ocean acidification impacts on mollusc 

production, both wild and aquacultured, based on: contributions to the economy and dietary protein 
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(sensitivity), time till a modelled transient decade where water conditions are significantly altered so 

that currently levels of mollusc harvest cannot be guaranteed (exposure), and adaptive capacity. 

While not addressed specifically in the current model ocean acidification is a global issue where the 

extent of impacts for aquaculture will be strongly related to culture species as well as localised 

ecosystems and water conditions. Future research could potentially apply the approach used in the 

current study but with the sensitivity component adjusted to focus on species most likely to be 

affected by lowered pH and the exposure component adjusted to indicate areas where pH is already 

lower. 

In summary the current assessment provides a valuable indicator of areas where livelihoods may be 

vulnerable to climate change related impacts on aquaculture. As previously mentioned it is best to 

view the information as a useful starting point for decision makers where it should be used in 

conjunction with expert opinion as a decision support tool. The use of spatial data in conjunction with 

a GIS in the current study provides an efficient way of handing and analysing varied data sources at a 

range of resolutions. There are numerous examples of GIS being used to model site suitability for 

aquaculture. These incorporate a broad range of topographical, demographic, socio-economic, and 

environmental variables including those relating to present climate such as water availability (e.g. 

Giap et al., 2005, Hossain et al., 2007, Hossain et al., 2009, Longdill et al., 2008, Ross et al., 2011, 

Salam et al., 2005, Salam et al., 2003).  

The current work also provides a strong starting point for future research with the focus on specific 

species and culture practices in at-risk areas. As well as highlighting areas of risk an important goal for 

future detailed assessments will be to highlight areas where the potential for a given type of 

aquaculture may improve. With possible work such as this in mind it can be assumed that the use of 

GIS and modelling with spatial data have significant possibilities in terms of helping aquaculture adapt 

to climate change by assisting in decision making that allows appropriate species and culture 

practices to be matched to locations in relation to changing climatic and environmental conditions. 
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3 GLOBAL HIGH RESOLUTION MODELLING OF POND AQUACULTURE 

SITE SUITABILITY WITH REFERENCE TO FUTURE CLIMATE 

SCENARIOS 

 

3.1 Introduction 

Fish remains a popular food item and its consumption is being promoted in many areas as part of a 

healthy lifestyle. In some developing regions where overall food availability may be limited by supply 

and/or cost the production of cheap freshwater fish species represents an important source of quality 

protein, essential fatty acids, and micronutrients and thus represents an important commodity in 

terms of food security (Beveridge et al., 2013). With this in mind and in line with a growing human 

population and increasing levels of development in many areas the demand for aquaculture products 

is growing. To meet this demand globally aquaculture continues to expand while capture fisheries 

remain fairly static. In 2011 total aquaculture production, excluding aquatic plants, was 

approximately 63.6 million tonnes. Of this 63.6 million tonnes 44.3 was produced by inland 

aquaculture. Figure 3-1 shows total inland fisheries production for the years 2006 to 2011 along with 

the contributions made by both capture fisheries and aquaculture. In terms of inland fisheries 

production the graph clearly emphasises that: a) aquaculture accounts for the majority of total 

production, and b) aquaculture production has increased rapidly with an average annual rate of 7.2% 

for the 2006 - 2011 period compared with 3.27 percent for inland capture fisheries (FAO, 2012). 

 

Figure 3-1: Global inland fish production. 
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FAO (2012) noted that freshwater fish farming provides a relatively easy entry point for small scale 

producers wanting to practice aquaculture in developing countries and with this and recent 

production increases in mind it is expected that the freshwater aquaculture sector will continue to 

grow during the 2010s. Brackish water aquaculture, that typically takes place in ponds, also continues 

to grow with an estimated average annual increase in production quantity for 7.23 % for the 2005 – 

2010 period (FishStatJ, 2013). While total brackish water aquaculture production quantities are low 

when compared to freshwater systems they are significant in many areas and often involve high 

values species such as marine shrimp.  

Pond-based aquaculture systems are diverse in terms of culture organisms and methods. Systems 

vary significantly in terms of both size and intensity ranging from small ponds that have little in the 

way of additional inputs and produce a relatively small number of fish that provide an additional 

source of food and perhaps a small amount of income for the pond owners, to large commercial 

operations employing densely stocked monocultures that rely heavily on commercial feeds and the 

use of technologies such as aeration devices. 

The contribution of inland aquaculture to economies is significant, especially in a number of Asian 

countries. This point is illustrated in Figure 3-2 that shows aquaculture contribution to GDP from 

aquaculture production in fresh and brackish water environments (excluding aquatic plants) using an 

average of the years 2008 to 2010. Given the value of the sector it is unsurprising that aquaculture 

provides an important income source for an increasing number of people either directly through the 

production of aquatic organisms or though supporting industries such as: production of feeds, 

processing, and marketing. Globally it is estimated that over 100 million people are dependent on 

aquaculture as an income source, either directly as employees in the production or support sectors or 

as a dependant of such a person (FAO, 2012). While detailed estimates of the number of livelihoods 

related to inland pond culture are lacking, the number of individuals involved is likely to be high due 

to the overall extent of pond production. It is worth noting that aquaculture promotion has been 

shown to increase both income and food security among the extreme poor where even landless 

members of society were shown to benefit from aquaculture promotion through associated activities 

such as pond netting and fish trading (Pant et al., 2014). 

 



 

47 

 

 

Figure 3-2: Aquaculture contribution to GDP based on average figures for the period 2008-2010. 

 

During the 20th century, especially the latter half, and continuing to the present day the earth has 

experienced a significant warming trend with more pronounced warming over land areas compared 

to oceans (Hansen et al., 2012, Houghton, 2009, IPCC, 2007b, Jones et al., 2012, Kennedy et al., 

2011a, Kennedy et al., 2011b, Morice et al., 2012, Rohde et al., 2013). This warming trend is 

illustrated in Figure 3-3 for land areas, oceans and combined land and ocean with a significant 

increase in temperatures seen from the 1970s onwards. There is now a strong consensus that this 

warming trend is at least partly a result of increases in atmospheric greenhouse gas levels as a result 

of anthropogenic emissions and that this warming trend is set to continue as greenhouse gas levels 

continue to increase (Cook et al., 2013, IPCC, 2007b). The ability to model future climate is continually 

improving in association with increased understanding of climate processes and computing power. 

Another key component in the ability to model climate change is the increasingly large number of 

climate experiments that are being conducted and combined to produce ensembles of data such as 

the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 

(CMIP3) multi-model dataset used for the IPCC fourth assessment report (IPCC, 2007b). Current 

estimates suggest that that in association with this overall trend for global warming there will be 

changes in climate patterns with different areas seeing varied amounts of warming along with trends 

for increased wet or dryness in association with precipitation, humidity and cloud cover changes 

(Houghton, 2009, IPCC, 2007b).  
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Figure 3-3: Five-year running mean of global observed temperature change over land areas (CRUTEM4) (Jones et al., 
2012), Sea surface temperature (HadSST3) (Kennedy et al., 2011a; Kennedy et al., 2011b), and combined land and ocean 
(HadCRUT4) (Morice et al., 2012). 

 

Pond-based aquaculture represents semi controlled systems where aquaculturists exert influence to a 

greater or lesser extent on factors such as species composition, feeding, and water quality. This said, 

pond systems are still strongly linked to the environment around them. In this respect changes in air 

temperature, cloud cover, wind speed, humidity, and precipitation have the potential to directly 

influence aquaculture through changes in water temperature, water availability, and the impacts of 

extreme weather events (Kapetsky, 2000). 

Increased water temperature has the potential for both positive and negative impacts on aquaculture 

systems. For example; provided sufficient nutrients are available primary productivity may increase in 

relation to temperature providing an overall increase in production in systems that are less 

dependent on supplementary foods (Handisyde et al., 2006). Warmer conditions will result in an 

increase in the metabolic rate of the culture organisms. For species that were originally at the lower 

end of their temperature range there may be potential benefits in terms of food conversion and 
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growth performance provided adequate water conditions and feeding can be maintained (De Silva 

and Soto, 2009, Handisyde et al., 2006). However in extreme cases increased temperatures may 

result in direct loss of stock as temperatures move outside of their tolerated range and / or water 

quality and dissolved oxygen levels are reduced (De Silva and Soto, 2009, Ficke et al., 2007, Handisyde 

et al., 2006). For species cultured in areas where they are nearer the upper end of their temperature 

range there may be reductions in performance related to reduced feed intake and conversion. 

Ultimately such changes may result in a shift in the suitable range of a given species. For example the 

optimum range for culture of channel catfish (Ictalurus punctatus) is expected to shift north within 

the United States in relation to increasing temperatures with a suggested figure of 240km for every 

1°C increase in average temperature (Ficke et al., 2007, McCauley and Beitinger, 1992). McCauley and 

Beitinger (1992) point out that growth rates and thus unit area production will increase with 

increasing temperature but once a level of about 30°C is reached feeding rate and therefore growth 

rate is reduced.  

Changes in precipitation along with evaporation rates may impact on water availability for 

aquaculture systems. Reduced water availability may result in water quality issues, salinity changes, 

and reduced water volume (De Silva and Soto, 2009, Handisyde et al., 2006, Kapetsky, 2000). In the 

case of pond aquaculture reduced water levels combined with high temperatures may be especially 

problematic as the shallow water will warm up more quickly and there will be a reduced capacity for 

stratification and cooler conditions lower in the water column. Alternatively, areas of increasing 

water availability may become more suitable for aquaculture practices that would previously have 

been impractical or too expensive to implement.  

Climate related variables are obviously not the only consideration in relation to successful 

aquaculture operations and ultimately there is a need to match aquaculture species and culture 

methods with a wide variety of climatic, environmental, topographic, socio-economic, and 

demographic variables. This process can essentially be viewed as a spatial problem where appropriate 

site selection becomes important if aquaculture is to succeed. The use of Geographic information 

systems (GIS) has shown great potential for use in site suitability modelling for Aquaculture in a range 

of marine and inland environments by allowing multiple, and varied, data types to be represented 

within a spatial database that can then be queried to answer specific question in relation to site 

suitability. Beyond this the use of GIS allows for the construction of more complex site suitability 
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models for aquaculture that allow for the inclusion of multiple variables through the use of 

approaches such as decision trees and multi criteria evaluation (Giap et al., 2005, Hossain et al., 2007, 

Hossain et al., 2009, Longdill et al., 2008, Nath et al., 2000, Ross et al., 2011, Salam et al., 2005, Salam 

et al., 2003).  

Previous GIS-based aquaculture site selection work has been conducted at a range of scales and 

resolutions and has typically been based on the use of raster grids to represent data. For example 

Hossain et al. (2007) and Hossain and Das (2010) used a multi criteria evaluation approach to evaluate 

site suitability for tilapia and prawn (Macrobrachium rosenbergii) production within specific regions 

of Bangladesh. The authors made use of ASTER satellite imagery to evaluate land cover and 

consequently used a resolution of 15m. In contrast Aguilar-Manjarrez and Nath (1998) assessed site 

suitability for the African continent but using a lower resolution of 3 arcminutes (approximately 

5.5km at the equator). Kapetsky and Nath (1997) conducted a similar exercise for Latin America at a 

resolution of 5 arcminutes (approximately 9km at the equator).  

The current study aims to model site suitability for pond aquaculture at the global scale, using a 

resolution of 10 arcseconds, based on a range of gridded topographic and population data. The 

outputs from this site suitability assessment are then combined with estimates for water availability 

in rain fed ponds and daily pond temperatures modelled using climate data representing late 20th 

century conditions and those found in a 2°C warmer world as projected by 13 Atmosphere and Ocean 

General Circulation Models (AOGCMs).  

 

3.2 Methods and data 

The modelling approach adopted in the current study consists of three key components or sub-

models: 1) land suitability, 2) pond temperature, and 3) water availability for rain fed ponds. Both the 

pond temperature and water availability sub-models make use of observed climate data and are used 

in association with climate model projections to compare scenarios for a late 20th century base 

period with that for a world with a mean temperature increase of 2°C. Each of these sub-models are 

described individually along with examples of their combined use.  
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3.2.1 Land suitability  

3.2.1.1 Overview of data and model structure 

Variables such as land cover, topography, soil properties, and population density have a significant 

effect on an areas suitability for pond aquaculture. There are a number of examples in the literature 

of variables such as these being included in assessments of aquaculture site suitability through 

incorporation into spatial models within a GIS (e.g. Aguilar-Manjarrez and Nath, 1998, Giap et al., 

2005, Hossain et al., 2007, Hossain et al., 2009, Hossain and Das, 2010, Kapetsky and Nath, 1997, 

Salam et al., 2005, Salam and Ross, 2000).  

For the current study data describing soil properties (clay content, organic carbon content, and pH), 

slope, land cover, and population density are represented as a series of raster grids and combined 

within a GIS using weighted linear combination to indicate relative land suitability. Figure 3-4 provides 

a schematic overview of the land suitability sub-model structure. 
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Figure 3-4: Land suitability sub-model structure. 

 

3.2.1.2 Data standardisation 

To allow differing data sets to be combined within the land suitability sub-model there is a need to 

reclassify or standardise the data to a common scoring system. This can be done either by 

reclassifying data to a number of discrete classes or by transforming data to a continuous series (e.g. 

between 0 and 1) (Eastman, 2012). A potential disadvantage of working with a small number of 

classes with inputs and outputs in integer format is that once data are combined less information is 

retained in the final output due to rounding. The current study makes use of a continuous range of 

integer values between 0 – 255 which in practical terms for site selection modelling purposes 
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achieves a similar result to a continuous series of floating point numbers (0 – 1) but has the 

advantage of allowing data to be stored in 8-bit format thus reducing storage and processing 

requirements for the large raster data layers involved (Drobne and Lisec, 2009). 

In cases where data is represented over a continuous range (e.g. temperature) then points within the 

range are chosen that represent highest and lowest suitability. A continuous range of intermediate 

scores were then assigned using a fuzzy classification procedure. In cases where data is already in 

discrete classes such as in the case of land cover then classes were designated as ether: highly 

suitable, moderately suitable, or unsuitable and given scores of 255, 128, or 0 respectively to allow 

compatibility with the rest of the data and the modelling process.  

A constraint class was applied in the case of variables where it was considered that certain conditions 

would make pond aquaculture practically impossible (e.g. pixels designated as urban areas in the case 

of land cover data). Constraint layers are applied throughout the model meaning that when all data 

layers are combined a single constraint class in one data layer will exclude that area regardless of 

suitability values in all other data layers. 

 

3.2.1.3 Overview of soil properties for aquaculture ponds 

The structure and composition of soil can influence it’s suitability for forming aquaculture ponds. The 

main areas of interest in relation to pond construction are: the physical properties of the soil in 

relation to ease of working and ability to form structurally sound and watertight ponds, and the 

composition of the soil in relation to how it will influence water quality (Boyd et al., 2002, Boyd, 1990, 

New, 2002). 

Boyd (1990) reviews soil suitability in relation to aquaculture ponds and defines a set of soil 

characteristic thresholds that can be used to place soils into one of three classes that are defined as 

having: slight, moderate or severe limitations for aquaculture. This set of basic classifications is 

further repeated in Hajek and Boyd (1994), Yoo and Boyd (1994), and Boyd (1995). The classification 

scheme originally provided by Boyd (1990) has been used as the basis for soil suitability classification 

in a number of GIS based studies of site suitability for pond aquaculture. These, along with other 

studies that have made use of reclassification of soil properties as part of GIS based models of 

aquaculture site suitability are detailed in Table 3-1. 
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Table 3-1: Overview of soil and slope suitability classification in a number of GIS based assessments of site suitability for 
pond aquaculture. Relevant parameters from Boyd (1990) are also included. 

Study where soil 
and/or slope 
data have been 
used in relation 
to site selection 
for aquaculture 

Parameters  Soil suitability classes used with values given 
in brackets 

References cited in 
relation to 
classification of soil 
parameters in 
listed studies 

Boyd (1990). 
Water Quality in 
Ponds for 
Aquaculture. 
Alabama 
Agricultural 
Experiment 
Station, Auburn 
University, AL, 
USA. 

Clay content % 
 
 
pH of bottom 
layer 
 
 
Decomposed 
organic matter 
(soils <60% clay 
content) 
 
Decomposed 
organic matter 
(soils >60% clay 
content) 
 
Slope % 

Slight limitation (>35), Moderate limitation 
(18-35), severe limitation (<18) 
 
Slight limitation (>5.5), Moderate limitation 
(4.5-5.5), severe limitation (<4.5) 
 
 
 
Slight limitation (<4), Moderate limitation (4-
12), severe limitation (>12) 
 
 
 
Slight limitation (<8), Moderate limitation (8-
18), severe limitation (>18) 
 
Slight limitation (<2), Moderate limitation (2-
5), severe limitation (>5) 

 

Kapetsky (1994). 
A strategic 
assessment of 
warm water fish 
farming potential 
in Africa.  

Soil texture 
 
 
 
 
 
 
Slope % 

Seven soil classes defined by ESRI (1984) have 
been reduced to four suitability classes: Very 
suitable (>75% fine, 50-75% fine), moderately 
suitable (>75% medium, 50-75% medium), 
Marginally suitable (50-75% coarse, <50% all), 
Unsuitable (>75% coarse) 
 
Slope was taken from the FAO Soil Map of 
Africa where there are only three slope 
classes (0-8, 8-30, and >30 %). These classes 
reflect averages and are not the same as 
slope values calculated from a good quality 
DEM or contour map. The 0-8% slope areas 
were considered suitable for larger (1–5 ha) 
ponds, if slope is 1–2% and for 0.01–0.05 ha 
ponds, if slope is up to 5%. 8-30% areas 
where considered “mainly too steep for 
ponds, except in valley bottoms”. >30% areas 
were considered unsuitable. 

(ESRI, 1984)  
 
(ICLARM_and_GTZ, 
1991)  
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Aguilar-Manjarrez 
& Nath (1998). A 
strategic 
reassessment of 
fish farming 
potential in 
Africa.  

Slope % 
 
 
 
Presence of a 
sulfidic layer, 
thickness of 
organic soil 
material, soil 
acidity, soil 
texture, depth 
and risk of 
flooding and soil 
depth 

< 2% Most suitable, 2-5% Suitable, minor 
limitations can be overcome, 5-8% Moderate 
limitations that may be overcome via special 
design, construction, management or 
maintenance, >8% Unfit for use. 
 
These factors were considered based on 
guidance from Hajek and Boyd (1990). The 
exact methodology used to classify them in 
terms of soil suitability is unclear. 

(Hajek and Boyd, 
1994) 

Kapetsky & Nath 
(1997). A 
strategic 
assessment of the 
potential for 
freshwater fish 
farming in Latin 
America. 

Slope 
 
 
Effective soil 
depth (cm) 
 
Gravel and 
stones % 
 
Soil texture 
 
 
 
 
Salinity (dS/m) 
 
 
pH (H2O) 
 
 
Catclays 
(sulphate toxic, 
very acid) 
 
Gypsum 

Very suitable (0-2), Suitable to moderately 
suitable (2-8), Unsuitable (>8) 
 
Very suitable (>150), Suitable to moderately 
suitable (75-150), Unsuitable (<75) 
 
Very suitable (<40), Suitable to moderately 
suitable (40-80), Unsuitable (>80) 
 
Very suitable and suitable to moderately 
suitable (Loamy or clayey without swell-
shrink, and not organic), Unsuitable (Sandy, 
or clayey with swell-shrink, or organic) 
 
Very suitable (<4), Suitable to moderately 
suitable (4-8), Unsuitable (>8) 
 
Very suitable (7.2-8.5), Suitable to moderately 
suitable (5.5-7.2), Unsuitable (<5.5, >8.5) 
 
Very suitable (Not present), Suitable to 
moderately suitable (Not present), Unsuitable 
(Present) 
 
Very suitable (Not present), Suitable to 
moderately suitable (Not present), Unsuitable 
(Present) 

(Yoo and Boyd, 
1994) 
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Hossain et al 
(2007). Multi-
criteria evaluation 
approach to GIS-
based land 
suitability 
classification for 
tilapia farming in 
Bangladesh 

pH 
 
 
Salinity ppt 
 
 
Organic matter 
% C 
 
Soil Texture 
 
 
 
Slope % 

Most suitable (6-8), Moderately suitable (4-6, 
8-9), Not suitable (<4, >9) 
 
Most suitable (<2), Moderately suitable (2-4), 
Not suitable (>4) 
 
Most suitable (<1), Moderately suitable (1-2), 
Not suitable (>2) 
 
Most suitable (clay loam), Moderately 
suitable (sandy clay), Not suitable (loam, 
sand) 
 
Most suitable (<5), Moderately suitable (5-
15), Not suitable (>15) 

(FAO, 1976) 
 
(Hossain et al., 
2003a) 
 
(Hossain et al., 
2003b) 

Hossain et al 
(2009). 
Integration of GIS 
and multicriteria 
decision analysis 
for urban 
aquaculture 
development in 
Bangladesh. 

Slope % 
 
 
Soil Texture 
 
 
 
Soil pH 
 
 
Organic matter 

Most suitable (<2), Moderately suitable (2-5), 
Not suitable (>5) 
 
Most suitable (clay loam), Moderately 
suitable (sandy clay), Not suitable (loam, 
sand) 
 
Most suitable (6-8), Moderately suitable (4-6, 
8-9), Not suitable (<4, >9) 
 
Most suitable (<1), Moderately suitable (1-2), 
Not suitable (>2) 

(FAO, 1976) 
 
(Hossain et al., 
2003a) 
 
(Hossain et al., 
2003b) 

Salam & Ross 
(2000) Optimizing 
sites selection for 
development of 
shrimp (Penaeus 
monodon) and 
mud crab (Scylla 
serrata) culture in 
South western 
Bangladesh. 

pH 
 
 
 
Salinity ppt 
 
 
 
Soil texture 

Very suitable (6.5-9), moderately suitable 
(5.5-6.6), Marginally suitable (4.5-5.5), 
Unsuitable (<4.5, >9) 
 
Very suitable (8-26), moderately suitable (5-8, 
26-32), Marginally suitable (4-5, 32-37), 
Unsuitable (<4.5, >9) 
 
Based on Kapetsky (1994). Seven soil classes 
defined by ESRI (1984) have been reduced to 
four suitability classes: Very suitable (>75% 
fine, 50-75% fine), moderately suitable (>75% 
medium, 50-75% medium), Marginally 
suitable (50-75% coarse, <50% all), Unsuitable 
(>75% coarse) 

(Coche, 1985) 
 
(Kapetsky, 1994) 
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Hossain & Das 
(2010). GIS-based 
multi-criteria 
evaluation to land 
suitability 
modelling for 
giant prawn 
(Macrobrachium 
rosenbergii) 
farming in 
Companigonj 
Upazila of 
Noakhali, 
Bangladesh. 

Slope % 
 
 
pH 
 
 
Organic matter 
% 
 
Organic carbon 
% 
 
Nitirte-N mg/l 
 
 
Phosphate-P 
mg/l 
 
Soil texture 

Most suitable (<5), Moderately suitable (5-
15), Not suitable (15) 
 
Most suitable (6-8), Moderately suitable (4-6, 
8-9), Not suitable (<4, >9) 
 
Most suitable (<2), Moderately suitable (2-4), 
Not suitable (>4) 
 
Most suitable (<1), Moderately suitable (1-2), 
Not suitable (>2) 
 
Most suitable (<0.1), Moderately suitable 
(0.1-0.2), Not suitable (>0.2) 
 
Most suitable (<0.1), Moderately suitable 
(0.1-0.2), Not suitable (>0.2) 
 
Most suitable (clay loam), Moderately 
suitable (sandy clay), Not suitable (loam, 
sand) 

(Hossain and Lin, 
2001) 
 
(Hossain et al., 
2003b) 
 
(New, 2002) 

Giap, Yi & 
Yakupitiyage 
(2005). GIS for 
land evaluation 
for shrimp 
farming in 
Haiphong of 
Vietnam. 

Slope 
 
 
Soil thickness 
(m) 
 
 
Soil type 
 
 
 
 
Soil pH 
 
 
Soil texture (% 
clay) 

Highly suitable (<2), Suitable (2-5), Marginally 
suitable (5-10), Not suitable (>10) 
 
Highly suitable (>1), Suitable (0.5-1), 
Marginally suitable (<0.5), Not suitable (-) 
 
Highly suitable (Gley fluvisols), Suitable (Eutric 
fluvisols), Marginally suitable (Gleyic 
solonchaks, gleyic arenosols), Not suitable 
(Haplic calcisols) 
 
Highly suitable (6-7), Suitable (5-6), 
Marginally suitable (4-5,7-8), Not suitable (<4, 
>8) 
 
Highly suitable (>1), Suitable (0.5-1), 
Marginally suitable (<0.5), Not suitable (-) 
 

(Hajek and Boyd, 
1994) 

Ragbirsingh & de 
Souza (2005). Site 
suitability for 
aquaculture 
development on 
the Caroni River 
Basin, Trinidad 
West Indies, using 
GIS. 

Slope (deg) 
 
 
Clay % 

Optimal (0-3), suitable (3-6), marginal (6-9), 
unsuitable (>9) 
 
Optimal (>30), suitable (20-30), marginal (20), 
unsuitable (<20) 

(Aguilar-Manjarrez 
and Nath, 1998) 
 
(Kapetsky, 1994) 
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The soil classification guidelines originally provided by Boyd (1990) suggest a relatively high clay 

content is desirable in order for ponds to have good water retention properties. This view has been 

supported by a number of subsequent authors who have applied it in a range of site selection studies 

(see Table 3-1 for references). It is worth noting however that in Boyd et al. (2002) the authors 

suggests that previous recommendations (e.g. Boyd and J.R., 1997, Hajek and Boyd, 1994) for the use 

of soils with a high clay content should be reconsidered and potentially disregarded. It is suggested 

that heavy clay soils can be difficult to work with from an engineering point of view, proving difficult 

to spread in layers and compact, and may result in erodible and potentially unstable embankments 

with poor load bearing capacity. Boyd et al. (2002) cites McCarty (1998) who suggests that provided a 

good mixture of particle sizes are present then soils with a clay content of 5 to 10% may be preferable 

to high clay content soils when constructing embankments. Tucker and Hargreaves (2008) suggest 

that high clay content soils may be difficult to work and that a clay content of 15% is preferable with a 

content as low as 5-10% being suitable for embankments if soil is well graded. New (2002) suggests 

that soils that consist of silt or clay have good water retention properties although soil with clay 

content higher than 60% is prone to cracking when dried. It is also possible that priorities will vary 

between aquaculture systems in relation to size, construction methods and water supply. For 

example it seems likely that a large scale aquaculture development with access to a permanent water 

supply may have different priorities to smaller scale ponds that are dependent on more intermittent 

water supplies or rainfall. The current study aims to be relevant to as broad a range of pond culture 

scenarios as possible. That said, the requirements of smaller scale producers with limited capital 

investment and perhaps greater dependence on rainfall and / or intermittent water sources are 

considered here as especially relevant in terms of potential susceptibility to climate related changes. 

With all of the above in mind it was decided to assign highest suitability to soils with moderate clay 

content while those very high or low values were considered less suitable. 

Water in ponds with acidic soils tends to have low total alkalinity as a result of low levels of 

bicarbonates and carbonates. The result is a reduced ability to buffer falling pH values associated with 

the breakdown of organic matter in aquaculture ponds. The addition of limestone to aquaculture 

pond soils has the effect of increasing soil ph and raising alkalinity levels in pond water thus buffering 

pH against potential decreases and large diurnal fluctuations in association with photosynthetic 

activity and dissolved carbon dioxide concentrations. The addition of lime also has the potentially 

beneficial effects of increasing total hardness in association with an increased concentration of 
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calcium ions, and providing a source of inorganic carbon that can help support photosynthesis. 

Selecting areas for pond development where soils naturally have a higher pH will reduce the need for 

additional liming and are thus considered more suitable (Boyd et al., 2002). 

Soils with a high organic matter content are generally considered of low suitability for aquaculture 

pond construction. Egna and Boyd (1997) suggest that while a small amount of organic matter may be 

beneficial in increasing the cation exchange capacity of the soil, the decomposition of excess organic 

matter can result in anaerobic conditions at the soil-water interface with the potential for the release 

of reduced substances such as (NO2, NH3 and H2S). The authors also suggest that soils with a high 

organic matter content are prone to excessive settling and thus have poor physical properties for 

pond construction.  

 

3.2.1.4 Soil data choice and classification 

The current study makes use of the Harmonized World Soil Database (HWSD) version 1.2 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012) which represents a combination of a number of regional and 

national soil databases with the FAO-UNESCO Digital Soil Map of the World and as such provides the 

most complete source of soil data at the global scale. There were a few areas within the HWSD where 

no data values are given. Where possible these gaps were filled using a data from the World Soil 

Information(ISRIC) World Inventory of Soil Emission Potentials (WISE) data set (Batjes, 2009). There 

were a few remaining areas where data were not available from either data set. These areas were 

typically in desert regions and it is possible that they contain little in the way of useable soil and are 

generally in areas that are unlikely to be suitable for aquaculture. However, because no absolute 

constraints against aquaculture development were derived from soil data in the current study, the 

decision was taken to fill any gaps using mean values derived from the surrounding area.  

Not all soil variables described by Boyd (1990) are found within the HWSD and thus available at the 

global scale. The current study makes use of data for soil clay content, pH, and organic carbon 

content. Suitability scores were assigned to these variables based on the points discussed in the soil 

properties section along with review of the classification system suggested by Boyd (1990) and a 

number of previous GIS based assessments of aquaculture site suitability that are summarised in 

Table 3-1 while details of suitability scores used for soil properties in the current assessment are given 
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in Table 3-2. In the case of soil no areas were considered as constraints based on the rationale that: a) 

the spatial representation of the soil database in many areas takes the form of large polygons with 

often distinct changes between neighbouring polygons. In reality there will be a more or less gradual 

shift between soil types when moving from one area to the next while at the same time there may 

well be local variations within polygons with regards to suitability. b) Many issues with soil can be 

overcome via engineering solutions meaning while making soil suitable for aquaculture in some areas 

may be more difficult and expensive it does not represent a constraint in the same way that large 

water bodies or heavily urbanised areas might.  

 

Table 3-2: Values used for fuzzy classification of soil data .  

Soil or terrain 
variable 

High 
suitability  

Medium 
suitability 

Low 
suitability 

Graphical representation 

Ph 6  5  <4.5 

 

Clay content % 20 to 40 15 and 50 10 and 60 

 

Organic Carbon 
% 

< 2.3 4.65 7 
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3.2.1.5 Slope - data choice and classification 

Sloped terrain will generally increase the costs of aquaculture pond construction meaning that 

relatively flat areas are seen as preferable (Aguilar-Manjarrez and Nath, 1998). Slope values can be 

computed from elevation data (digital elevation model or DEM) within a GIS and have been used in 

previous aquaculture site suitability exercises (See Table 3-1). Currently the highest resolution 

globally available and consistent source of elevation data that is useable comes from the Shuttle 

Radar Topography Mission (SRTM) (Jarvis et al., 2008). SRTM data is available globally at 3 arc-second 

resolution (approximately 90m at the equator) with global coverage between 60 degrees latitude 

north and south. ASTER GDEM is a global DEM with a 1 arcsecond resolution which initially looks 

extremely promising. However inspection of the data finds it to be heavily contaminated with noise 

and artefacts making it a poor choice in relation to SRTM, a view that has been supported by other 

reviewers (e.g. Guth, 2010). 

It is worth noting that the resulting slope, when calculated from a DEM, can be significantly affected 

by the resolution of the elevation data with lower resolutions resulting in reduced slope values. This 

effect is demonstrated in Figure 3-5 where 3 arcsecond SRTM data is used to compute slope values 

using the IDRISI GIS package. Images are also provided that show slope values for the same area but 

at the lower resolutions of 10 and 30 arcseconds. For each of the lower resolutions two images are 

given. One is produced by resampling the 3 arcsecond slope values to 10 and 30 arcseconds, while the 

other is produced by resampling the 3 arcsecond DEM to 10 and 30 arcseconds and then using these 

lower resolution DEMs to compute slope values. Through visual inspection of the images it can be 

seen that by reducing the resolution of the DEM there is an overall tendency for lower slope values to 

be produced. Along with this there is a notable loss of detail, especially in the case of the 30 

arcsecond resolution examples . With the above in mind slope values for the current study were 

calculated at 3 arcsecond resolution and the results were then aggregated to a 10 arcsecond grid in 

common with other model components.  

Reclassification of slope data into a common scoring system was guided by a number of previous 

studies (see Table 3-1 for details) while details of values used to guide fuzzy assignment of suitability 

scores are provided in Table 3-3.  
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Table 3-3: Slope values used to guide suitability classification in the current study. 

Soil or terrain variable High suitability Medium 
suitability 

Low suitability Constraint 

Slope % <2 5 8 >15 

 

 

   

3 arcsecond resolution slope 10 arcsecond resolution slope. 
Produced by computing slope 
from a DEM at 3 arcsecond 
resolution and then resampling 
the results to 10 arcsecond 
resolution 

10 arcsecond resolution slope. 
Produced by resampling a 3 
arcsecond resolution DEM to 10 
arcseconds and then using this to 
compute slope. Note the overall 
reduction in slope areas. 

  

 

30 arcsecond slope. Produced by 
computing slope from a DEM at 3 
arcsecond resolution and then 
resampling the results to 30 
arcsecond resolution 

30 arcsecond resolution slope. 
Produced by resampling a 3 
arcsecond resolution DEM to 30 
arcseconds and then using this to 
compute slope. Note the overall 
reduction in slope areas. 

 

 

Figure 3-5: Illustration of the effect of differing resolution DEM resolution and resampling sequence on resulting slope 
values. 

Slope %

0 - 2

2 - 4

4 - 6

6 - 8

>8
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3.2.1.6 Land cover 

Land cover plays a significant role in determining site suitability for aquaculture. For example areas 

that are currently used for crop production can often be converted relatively easily while forested 

areas will require more effort and in some areas are perhaps likely to raise more concern in terms of 

environmental impacts. Dense urban areas are likely to be completely unsuitable and can be 

considered as constraints to aquaculture pond development.  

Detailed mapping produced through traditional survey methods is available for some regions of the 

world although in many cases such data would need significant processing before it could be used 

within a GIS. Along with processing constraints another major limitation when considering using maps 

based on traditional survey methods is that such data will be incomplete, inconsistent, and/or 

inaccessible when viewed at the global scale. An alternative, and increasingly acceptable, option is 

the use of remotely sensed data. 

Over recent decades the use of remotely sensed data derived from satellite observations has played 

an increasingly significant role with regard to estimating land cover at a range of scales and 

resolutions. The use of remotely sensed imagery and it’s classification into useful land cover maps is 

well established with most classification based around the use of multispectral images where surface 

reflectance values at multiple points within the electromagnetic spectrum are related to known 

values for land cover types based on ground observation of random sample points (Jensen, 2006). 

Classification can be based on a sample from a single time period or from a time series of images 

where the extra dimension of time may help in image classification such as in the case of seasonal 

vegetation types (Brown et al., 2013, Mingwei et al., 2008, Van Niel and McVicar, 2004, Wardlow and 

Egbert, 2008, Wardlow et al., 2007, Zhang et al., 2008) as well as allowing for the study of seasonal 

events such as flooding (e.g. Handisyde et al., 2014, Islam et al., 2010, Sakamoto et al., 2007).  

The quantity and quality of remotely sensed data have increased considerably during recent years 

with sensors such as GoeEye-1, Pléiades, and WorldView-1 offering sub metre resolution imagery in 

the panchromatic band, with multispectral images at two metres or less. While high resolution 

imagery offers many advantages for land cover classification, such as reduced likelihood of individual 

pixels containing more than one land cover type, it is impractical when working with large areas, i.e. 
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globally due to potential processing and storage requirements as well as cost of obtaining the data 

itself. 

A number of freely available global land cover products exist based on a range of remotely sensed 

data with moderate resolutions between approximately 1km and 300m at the equator. As well as 

differing resolutions there are considerable differences between currently available global land cover 

datasets in terms data acquisition dates, sensors, classification schemes and methods, and methods 

of verification and accuracy assessment. The key attributes of currently available data sets are 

detailed in Table 3-4 along with references to key documents that detail the development and 

verification of the datasets. Along with these developer produced descriptions there have been a 

number of independent efforts to compare global land cover products (Fritz et al., 2011, Hansen and 

Reed, 2000, Herold et al., 2008, Kaptué Tchuenté et al., 2011, Nakaegawa, 2011), and assess their 

quality in relation to control points (Fritz et al., 2011). For a comparison between datasets to be made 

there is generally a need to translate land cover classes to a single legend (Fritz et al., 2011, Herold et 

al., 2008, Kaptué Tchuenté et al., 2011, Nakaegawa, 2011). The fact that data is represented on grids 

of differing resolutions and projections represents an additional challenge when comparing land 

cover datasets and an approach of reconciling data to a common grid is often taken. For example Fritz 

et al. (2011) used an aggregation approach that considered the minimum and maximum of the class 

percentage as well as spatial coverage within new grid cells to reconcile GLC-2000, GlobCover, and 

MODIS v5 to a common geographic (latitude longitude) grid with a 0.125o resolution in order to 

examine agreement and accuracy of cropland and forest representation between the three datasets. 

For accuracy assessment Fritz et al. (2011) used validation data published in Mayaux et al. (2006), 

Friedl et al. (2010) and Bicheron et al. (2008). Fritz et al (2011) conclude that considerable differences 

exist between land cover datasets, especially in relation to cropland representation with a total area 

of 360Mha considered as cropland in GlobCover that is designated as non cropland in MODIS v.5, an 

area that represents around 20% of total global cropland. (Fritz et al., 2011) also suggest that 

thematic accuracy of the newer higher resolution data sets (MODIS v.5 and GlobCover) is no better 

than CLC-2000 and in the case of GlobCover is actually worse when considering the classification of 

cropland and forests (see Table 3-5).  
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Table 3-4: Details of freely available global land cover products derived from satellite data. 

Land cover 
product 

Sensor - spatial 
resolution  

Year of data 
collection 

Number of 
classes and 
nomenclature 

Classification 
method 

Reference 

UMD AVHRR - 1/100° 1992-1993 14 simplified 
IGBP 

Global - Supervised 
classification 

decision tree 

Hansen et al., 
(2000) 

IGBP-
DISCover 

AVHRR - 1/100° 1992-1993 17 IGBP Continent-by-
continent - 
unsupervised 
clustering with post 
classification 
refinement 

Loveland et al. 
2000 

GLC2000 VGT-1 - 1/112° 2000 22 LCCS Regional - Flexible 
based on local 
expertise 

Mayaux et al. 

(2004) 

MODIS v5 MODIS - 1/240° 2005 17 IGBP Global - Supervised 
classification using 
decision tree 

Friedl et al. 

(2010) 

GLOBCOVER MERIS - 1/360° 2004-2006 22 LCCS Regional - Flexible 
based on local 
expertise 

Arino et al. 

(2008) 

 

Table 3-5: Results of accuracy assessment of MODIS, GlobCover, and CLC2000 in predicting forest and cropland cover. 
Adapted from Fritz et al (2011). 

Dataset 
Overall accuracy assessment % 

Forest Cropland 

CLC2000 81 76 

MODIS v.5 80 77 

GlobCover 60 57.6 

 

Herold et al. (2008) compared four 1km resolution global land cover data sets (GLCC, GLCF, MODIS 1k, 

and GLC2000). The authors standardised the different data sets to 13 common classes based on LCCS 

definitions. The paper reviews previous attempts to assess the accuracy of the data sets and proposes 

average global accuracy figures of: 66.9% (GLCC), 68.6% (GLC2000), and 78.3% (MODIS). However the 

authors go on to caution against assuming that MODIS is necessarily superior to the other data sets as 
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the validation methods used vary as does the number of classes and thus detail of the legends. Herold 

et al. (2008) go on to evaluate class specific accuracy by aggregating error matrix data for GLC2000 

(Mayaux et al., 2006), MODIS 1k (MODIS_land_cover_team, 2003), and GLCC (Scepan, 1999) to 13 

common classes. The results suggest that different data sets perform better for certain classes and 

that in many cases spatial agreement between the three data sets examined is low with values 

ranging from 23.4 to 83.1 percent dependant on class. Herold et al. (2008) also suggest that all 

datasets have low accuracy when attempting to represent areas of mixed trees, shrublands, and 

herbaceous vegetation as there is often a mixture of life forms within each pixel. This contrasts to 

more “pure” categories such as snow, bare ground and evergreen broadleaf forests. The authors 

suggest that there is potential for improvement through better definition of mixed classes and the 

use of higher resolution remotely sensed data.  

Kaptué Tchuenté et al. (2011) compared landcover data for Africa from four data sets: ECOCLIMAP-II, 

GLC2000, MODIS LC-I, and GLOBCOVER. All the data sets were aggregated to 7 common classes 

representing: Forest/mixed forest, Woodland/shrubland, Cropland, Grassland, Bare land, Inland 

water, and Urban and built-up areas. Figure 3-6 (from: Kaptué Tchuenté et al., 2011) shows the areas 

represented by each aggregated class for the four data sets. While the urban, bare land, and inland 

water classes are fairly consistent in the extent of their coverage there are large discrepancies in the 

other classes, especially in the case of woodland/shrubland. The Authors also examined agreement 

between the four products by using each map as a reference and seeing how well the others 

represent it. While there is considerable variability between classes overall accuracies ranged from 

56.25 to 68.76 percent. Kaptué Tchuenté et al. (2011) conclude that even though there may have 

been some change in land cover between the acquisition dates of the remotely sensed data used by 

the four products it cannot account for the considerable variation seen. The authors also highlight the 

difficulties of accurately representing land cover using moderate resolution imagery when several 

land cover types are present and suggest that higher resolution imagery could be of benefit.  
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Figure 3-6: Differences between land cover products in representing land cover over the African continent (from: Kaptué 
Tchuenté et al., 2011). 

 

In cases of mixed cover within a pixel the sensor receives an average surface reflectance value for the 

different land cover types for each spectral band being recorded. The studies outlined above suggest 

that while attempts are often made to classify ‘mixed’ pixels, doing so with a high degree of accuracy 

can prove very difficult with potential for mixed pixel inaccuracies increasing in relation to pixel size. 

As a result existing global land cover data sets derived from moderate resolution remotely sensed 

data tend to be better at representing larger homogenous areas rather than areas where land cover is 

mixed over relatively small spatial scales. Friedl et al. (2010) describe version 5 of the MODIS land 

cover product which is available at an equatorial resolution of approximately 500m compared with 

1km for the previous version. The authors suggest that for fragmented land cover types such as urban 

areas the higher resolution found in the MODIS version 5 products provides a significantly better 

representation of land cover. In many developing regions, where pond-based aquaculture is 

significant, land use patterns are often intricate with stakeholders being concerned with relatively 

small parcels of land. It seems likely that higher resolution land cover data sets will provide 
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advantages in such areas despite not necessarily showing improved performance globally compared 

to lower resolution data sets when aggregated to a common lower resolution grid.  

Given the potential benefits of higher resolution data along with the more recent acquisition of 

surface reflectance data used in the MODIS version 5 and GlobCover products the decision was taken 

to use these to describe land cover within the current model. Due to the differences between the two 

data sets and the categorical nature of the data they contain it was decided that the best approach 

was to run the model twice, once for each data set. This generates two separate outcomes where the 

only difference in inputs is the land cover data used. Land cover data makes a considerable difference 

to the final model output in some areas both in terms of suitability values and through the use of 

constraint classes. This combined with a lack of evidence suggesting superiority of one data set over 

supports the use of this two outcome approach. MODIS data were resampled from 15 arcsecond to 

10 arcsecond resolution based on nearest neighbour values to match the resolution of GlobCover and 

the SRTM derived slope data within the model.  

 

3.2.1.6.1 Reclassification of land cover data sets 

A number of previous studies have used land cover data within a GIS to help guide site selection for 

aquaculture. For example Hossain et al. (2007) used land cover as part of a multicriteria evaluation 

approach to model site suitability for tilapia farming in Bangladesh while Hossain and Das (2010) 

conducted a similar study with the aim of modelling site suitability for Macrobrachium rosenbergii 

production. In both studies land was classified as: existing aquaculture and grasslands are considered 

‘most suitable’, Paddy cultivation areas are considered ‘moderately suitable and mixed orchard and 

seasonal vegetable cultivation areas are considered ‘not suitable’. Giap et al. (2005) used land cover 

within a GIS based model of site suitability for shrimp farming in Haiphong, Vietnam. Areas of current 

aquaculture pond were classified as ‘highly suitable’, rangeland and salt farm were classified as 

‘suitable’, agricultural land as ‘marginally suitable’, and mangroves, villages and mixed orchards and 

‘not suitable’. In an evaluation of site suitability for small semi-intensive pond culture of Tilapia sp., 

Hoplosternum littorale and Macrobrachium rosenbergii, Ragbirsingh and De Souza (2005) list Forest 

reserve, Industry, Institution, Quarry, Recreation, Residential, and Swamp as unsuitable land use 

criteria while Agriculture and Mixed Forest are considered suitable with no distinction made between 

the two despite the modelling process allowing for three different levels of suitability.  
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As land cover data is categorical rather than continuous it is not possible to standardise the data over 

a continuous range of numbers in the same ways as were done for soil properties and slope values. 

Instead all land cover classes were reclassified as having high, medium, or low suitability, or as a 

constraint class. The high, medium and low suitability classes were assigned values of 0, 128, and 255-

255 and as such fit with the continuous values used for other data within the modelling process.  

One approach to using both GlobCover and MODIS data would be to first standardise the data set to a 

common set of classes as done by authors wishing to compare land cover data sets (e.g. Bai, 2010, 

Herold et al., 2008, Kaptué Tchuenté et al., 2011), and then assign suitability classes to these. As has 

already been discussed the current study aims to generate two separate outcomes, one for MODIS 

and the other for GlobCover data. With this in mind, and as the aim is to evaluate suitability for 

aquaculture rather than assess differences between land use data sets per se, the view was taken that 

rather than using the middle step of transforming both data sets to a common set of classes before 

assigning suitability the best approach was to assign suitability ratings to the data set as they stand. 

This also reduces the chance of aquaculture relevant details getting lost in the translation process. 

Details of the classes found in the GlobCover and MODIS data sets and their reclassification can be 

found in Table 3-6 while an example of the two resulting classification outcomes is shown for the 

Ghana area in Figure 3-7. 
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Table 3-6: Details of MODIS and GlobCover classes and their reclassification for use in the current study. 

MODIS IGBP MODIS details GlobCover LCCS classes 

0 Water bodies  
 

Oceans, seas, lakes, reservoirs, and rivers. Can 
be either fresh or salt– water bodies. 

210 Water bodies 

1 evergreen needleleaf forest Lands dominated by needleleaf woody 
vegetation with a percent cover >60% and 
height exceeding 2 m. Almost all trees remain 
green all year. Canopy is never without green 
foliage. 

70 Closed (>40%) needleleaved 
evergreen forest (>5m) 

2 Evergreen broadleaf forest Lands dominated by broadleaf woody 
vegetation with a percent cover >60% and 
height exceeding 2 m. Almost all trees and 
shrubs remain green year round. Canopy is 
never without green foliage. 

40 Closed to open (>15%) 
broadleaved evergreen and/or 
semi-deciduous forest (>5m) 
 
160 Closed (>40%) broadleaved 
forest regularly flooded - Fresh 
water 
 
170 Closed (>40%) broadleaved 
semi-deciduous and/or evergreen 
forest regularly flooded – Saline 
water 

3 Deciduous needleleaf forest Lands dominated by woody vegetation with a 
percent cover >60% and height exceeding 2 
m. Consists of seasonal needleleaf tree 
communities with an annual cycle of leaf-on 
and leaf-off periods. 

90 Open (15-40%) needleleaved 
deciduous or evergreen forest (>5m) 

4 Deciduous broadleaf forest Lands dominated by woody vegetation with a 
percent cover >60% and height exceeding 2 
m. Consists of broadleaf tree communities 
with an annual cycle of leaf-on and leaf-off 
periods. 

50 Closed (>40%) broadleaved 
deciduous forest (>5m) 

5 Mixed forests Lands dominated by trees with a percent 
cover >60% and height exceeding 2 m. 
Consists of tree communities with 
interspersed mixtures or mosaics of the other 
four forest types. None of the forest types 
exceeds 60% of landscape. 

100 Closed to open (>15%) mixed 
broadleaved and needleleaved 
forest (>5m) 

6 Closed shrublands Lands with woody vegetation less than 2 m 
tall and with shrub canopy cover >60%. The 
shrub foliage can be either evergreen or 
deciduous. 

110 Mosaic Forest/Shrubland (50-
70%) / Grassland (20-50%) 

7 Open shrublands Lands with woody vegetation less than 2 m 
tall and with shrub canopy cover between 
10% and 60%. The shrub foliage can be either 
evergreen or deciduous. 

150 Sparse (>15%) vegetation 
(woody vegetation, shrubs, 
grassland) 
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8 Woody savannas Lands with herbaceous and other understory 
systems, and with forest canopy cover 
between 30% and 60%. The forest cover 
height exceeds 2 m. 

60 Open (15-40%) broadleaved 
deciduous forest (>5m) 

9 Savannas Lands with herbaceous and other understory 
systems, and with forest canopy cover 
between 10% and 30%. The forest cover 
height exceeds 2 m. 

120 Mosaic Grassland (50-70%) / 
Forest/Shrubland (20-50%) 
 
130 Closed to open (>15%) 
shrubland (<5m) 

10 Grasslands Lands with herbaceous types of cover. Tree 
and shrub cover is less than 10%. 

140 Closed to open (>15%) 
grassland 

11 Permanent wetlands Lands with a permanent mixture of water and 
herbaceous or woody vegetation. The 
vegetation can be present either in salt, 
brackish, or fresh water. 

180 Closed to open (>15%) 
vegetation (grassland, shrubland, 
woody vegetation) on regularly 
flooded or waterlogged soil - Fresh, 
brackish or saline water 

12 Croplands Lands covered with temporary crops followed 
by harvest and a bare soil period (e.g., single 
and multiple cropping systems). Note that 
perennial woody crops will be classified as the 
appropriate forest or shrub land cover type. 

11 Post-flooding or irrigated 
croplands 
 
14 Rain-fed croplands 

13 Urban and built up Land covered by buildings and other man-
made structures. 

190 Artificial surfaces and 
associated areas (urban areas >50%) 

14 Croplands/natural vegetation Lands with a mosaic of croplands, forests, 
shrubland, and grasslands in which no one 
component comprises more than 60% of the 
landscape. 

20 Mosaic Cropland (50-70%) / 
Vegetation (grassland, shrubland, 
forest) (20-50%) 
 
 

30 Mosaic Vegetation (grassland, 
shrubland, forest) (50-70%) / 
Cropland (20-50%) 

15 Snow and ice Lands under snow/ice cover throughout the 
year. 

220 Permanent snow and ice 

16 Barren or sparsely vegetated  Lands with exposed soil, sand, rocks, or snow 
and never have more than 10% vegetated 
cover during any time of the year. 

200 Bare areas 

High suitability: green 
shading  

Medium suitability: 
yellow shading   

Low suitability: Pink 
shading  

Constraint areas: grey 
shading 
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Reclassification of MODIS land cover data 

 

Reclassification of GlobCover data 

Figure 3-7: Reclassification to MODIS and GLobCover global land cover data sets based on the classification scheme 
outlined in Table 3-6. 

 

3.2.1.7 Population density 

The use of population density data within site selection models for aquaculture production is 

common and acts as indicators of labour availability (Hossain et al., 2009, Hossain and Das, 2010), 

potential pollution and/or other negative impacts associated with high population densities and (Giap 

et al., 2005), competing uses for land, and market potential (Aguilar-Manjarrez and Nath, 1998, Salam 

et al., 2003).  

3.2.1.7.1 Data choice 

A number of global gridded population density data sets are available and these are summarised in 

Table 3-7 while sample regions are displayed in Figure 3-8. The Gridded population of the World 

(GPW) data uses the original census units meaning that while data is represented on a 2.5 arcminute 

grid in practical terms the data is represented by polygons of varying size which for many areas 
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means that the effective resolution is low. The Global Rural-Urban Mapping Project (GRUMP) data set 

is represented on a 30 arcsecond grid and is essentially the same as the GPW data set in its use of 

census units. The differences are: the increased resolution, that it is only available up until the year 

2000, and it includes a minimal modelling component that considers urban areas based on night time 

light data. The LandScan data set also uses a 30 arcsecond resolution but differs from GRUMP in that 

it is a highly modelled data set using a greater number of input data sources. It is also more up to date 

compared to GRUMP providing estimates for the year 2008 as opposed to 2000 for GRUMP. There 

have been very few attempts to evaluate and compare gridded global population density data sets. 

Tatem et al. (2011) investigated the effect of spatial population data set choice when estimating 

disease risk and noted that the choice of data set makes a considerable difference to the outcome. 

Hall et al. (2012) compare population grids from Landscan, GPW, GRUMP, and the population density 

grid of the EU-27+ data set (Gallego, 2010) for an area of Sweden. The authors conclude that, while 

considerable differences occur between the data sets, statistically LandScan performs best. They also 

note that, surprisingly, the EU-27+ and GRUMP data sets showed significant inaccuracies in their 

estimates of total population for the study region.  

LandScan 2008 data is chosen over the other gridded global population data sets as it appears to 

provide advantages in terms of resolution (both actual grid and ability to disaggregate census 

polygons), up to date representation, and potentially accuracy. 

Table 3-7: comparison of gridded global population density data products. 

Dataset Time periods 
represented 

Spatial resolution  Input data used Reference 

LandScan 2008 30 arcseconds Census (CIA), land 
cover, elevation, 
slope, roads, 
populated 
areas/points 

(Landscan, 2008) 

Gridded 
Population of the 
World (GPW) 

1990, 1995, 2000, 
2005, 2010, 2015 

2.5 arcminutes Census (UNPD), 
water bodies. 

(SEDAC/CIESIN, 
n.d.) 

Global Rural Urban 
Mapping Project 
(GRUMP) 

1990, 1995, 2000 30 arcseconds Census (UNPD), 
populated areas, 
water bodies. 

(CIESIN, n.d.) 
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GPW GRUMP LandScan 

Figure 3-8: Examples of outputs from currently available gridded global population density datasets. 

 

3.2.1.7.2 Population density data - processing and classification 

A review of existing literature shows considerable diversity in terms of reclassifying population 

density data in relation to site suitability for aquaculture (Table 3-8). It seems likely that the average 

population density over the study areas within the reviewed literature has played a role in influencing 

views of what constitutes high and low population densities and thus thresholds of high and low 

suitability for aquaculture. What can be concluded when the literature is viewed as a whole is that 

areas of very high or very low population densities are less favourable and in extreme cases may be 

considered as constraints.  
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Table 3-8: Use of population density data in relation to aquaculture site suitability.  

Reference Use of population density data Notes 

(Hossain et al., 2009) 3 classes under the heading of ‘labour 
availability’ (individuals per km2): 
Most suitable >100, moderately 
suitable (50-100), not suitable (<50). 

Investigates site suitability for 
carp farming in urban water 
bodies in Chittagong, Bangladesh. 
Uses an MCE approach. 

(van Brakel and Ross, 2011) Classes based on people per km2: <1 = 
remote, 1-10 = sparsely populated, 10-
100 = rural low density, 100-500 = 
rural high density, 500-5000 = peri-
urban, >5000 = urban. 

Investigates potential market 
access for poor people involved 
with aquaculture. Uses Bayesian 
model. 

(Hossain and Das, 2010) 3 classes under the heading of ‘labour 
availability’ (individuals per km2): 
Most suitable >100, moderately 
suitable (50-100), not suitable (<50). 

Models prawn farming potential. 
Gives New (2002) and Hossain et 
al. (2007,2009) as sources for this 
classification.  

(Hossain et al., 2007) 3 classes for population density: <1000 
= suitable, 1000-1500 = moderately 
suitable, >1500 = not suitable. N.B. 
there is a constraint layer for areas 
where aquaculture would not be 
allowed.  

There isn’t any obvious 
information about why or how the 
population density was classified. 
Giap et al (2005) is given as a 
reference. 

(Giap et al., 2005) 4 classes for population density: <500 
= highly suitable, 500-1000 = suitable, 
1000-2000 = marginally suitable, 
>2000 = unsuitable.  

Some reference in the results 
section to how high population 
areas can impact on shrimp 
farming via domestic wastes. 

 

For the current study a single data layer was created with the aim of expressing site suitability in 

relation to population density using a continuous scale of 0 to 255 with 255 being most suitable by 

using the following methodology. 

Landscan 2008 population density data were reclassified on a linear scale of suitability (255 – 0) with 

a population density (people per km2) of 100 equalling 255 and 2000 or greater equalling 0. Higher 

suitability is attributed to lower population density areas as here competition for land and potential 

pollution impacts are likely to be less. Areas with population densities of less than 100 people per km2 

are considered to be sparsely populated with a potential lack of human resources required for 

aquaculture production. As the LandScan population density data is represented on a grid with 

individual cells representing an area of less than one square kilometre it is necessary to consider the 

population density of nearby cells from which potential labour sources may be available. With this in 

mind for areas with a population density of less than 100 people per km2 for each cell an average 
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value was calculated for all cells within a 5 cell radius. The result was reclassified on a linear scale 

ranging from a maximum (most suitable) value of 255 for values of 100 or greater down to 0 for 

values of 10 or less.  

A constraint class was applied very sparingly for areas with extremely low and high population 

densities using focal statistics and a series of Boolean intersections, and based on the assumption that 

availability of potential fish farm workers along with other goods and services is likely to be limited in 

unpopulated areas while extremely dense populations will typically represent urban areas where 

competition for space is likely to be high along with potential pollution risks. Details of how the 

population density constraint layer was constructed are given in Figure 3-9. The mean value from the 

25 pixel radius filter is aimed at identifying extremely sparsely populated regions while the mean 

value from the 5 pixel radius filter is aimed at identifying small population centres that may be 

present as single pixels whose surrounding area may be suitable for aquaculture production. 

 

 

Figure 3-9: Designation of constraint pixels when classifying LandScan population density data. All values represent 
people per km

2
. 

 

3.2.1.8 Layer combination 

In order to combine data within the land suitability sub-model all layers were resampled to a common 

10 arcsecond resolution grid based on nearest neighbour values. Combination of data layers followed 

a hierarchical structure and made use of weighted linear combinations (Drobne and Lisec, 2009, 

Eastman, 2012), essentially as series of weighted averages, to allow for varying levels of significance 

to be assigned to specific variables, an approach that has been used at the global scale (Vörösmarty 

et al., 2010) as well as for a number of regional aquaculture assessments (Giap et al., 2005, Hossain 

and Das, 2010). Weightings were assigned by the author after consultation with a range of experts 

within the Institute of Aquaculture, Stirling. An overview of the concepts behind GIS based multi-
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criteria decision analysis can be found in Drobne and Lisec (2009) and Eastman (1999), and specifically 

in relation to aquaculture in Nath et al. (2000). A schematic overview of how data layers were 

combined in the current study is shown in Figure 3-10 while details of weightings used are provided in 

Table 3-9.  
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Reclass
Weighted linear 

combination

Slope
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Reclass
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Weighted linear 

combination

 

Figure 3-10: Land suitability sub-model structure. 

 

Table 3-9: Weighting used when combining criteria in the land suitability sub-model. 

Inputs weight Inputs weight Output 

Soil clay content 0.55    → 

Soil suitability 0.15   → 

Land suitability 
MODIS 

 

OR 

 

Land suitability 
GlobCover 

Soil pH 0.3      → 

Soil organic matter 
content 

0.15    → 

 Slope 0.35   → 

Land cover 
(MODIS) OR Land 
cover (GlobCover) 

 

0.2     → 

Population density 0.3     → 

Constraint (MODIS 
land cover) 

          → 

Constraint slope           → 

Constraint 
population density 

          → 
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3.2.2 Pond temperature sub-model 

 

3.2.2.1 Introduction  

Temperature ranges in aquaculture ponds are of key importance, affecting choice of species and 

strongly influencing growth performance. As such being able to estimate pond temperatures under a 

given set of climate variables is crucial if the potential for aquaculture under future climate is to be 

modelled. 

Direct field measurements of temperature have been used by some authors to inform GIS based site 

selection for aquaculture. For example Hossain and Das (2010), when assessing site suitability for 

freshwater prawn farming in Bangladesh, used temperature measurements taken at 14 sample sites 

within the sample area although the methods used, actual number of samples taken, and over what 

time period is not stated. In a similar study Hossain et al. (2007) uses water temperature when 

assessing site suitability for tilapia production although in this instance no details are given with 

regards to data acquisition or structure.  

An alternative approach to relying on measured temperatures, and one that allows for much greater 

spatial and temporal scope, including future projections, is the use of modelled pond temperatures 

derived from climate and weather data. Attempts at estimating temperatures based on climatic and 

environmental factors have been undertaken for a wide variety of waterbodies including lakes 

(Livingstone and Lotter, 1998, Sharma et al., 2008), streams (Flint and Flint, 2008, Koch and 

Grünewald, 2010, Mohseni and Stefan, 1999, Morrill et al., 2005, Neumann et al., 2003), cooling 

ponds (Ryan et al., 1974), and algae ponds Béchet et al. (2011). The rapid global growth of pond-

based aquaculture has encouraged attempts to model the temperatures of aquaculture ponds either 

as a subject in its own right (Cathcart and Wheaton, 1987, Culberson and Piedrahita, 1996, Klemetson 

and Rogers, 1985, Losordo and Piedrahita, 1991) or as part of broader studies often concerned with 

site suitability for culture of specific species (Aguilar-Manjarrez and Nath, 1998, Kapetsky and Nath, 

1997). At their simplest, estimates have been based on linear regression between air temperature 

and water temperature. For example Kapetsky (1994) used a linear relationship between mean 

monthly daytime air temperature and water temperature as part of a GIS based assessment of pond-

based aquaculture potential in Africa. Data used for the regression came from three ponds at a 

research station near Harare, Zimbabwe. The Author notes that one of the limitations of this 
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approach is the potential for considerable variability between mean monthly and mean daily water 

temperatures with a variability of -6.8 and +6.6C seen in one of the sample ponds. It is also worth 

considering that in this case data for the regression came from a single area with the results being 

applied at the continental scale where varying ranges of solar radiation, humidity and wind speed will 

also be relevant. 

Cathcart and Wheaton (1987) described a model designed to predict the vertical temperature profile 

in a turbid aquaculture pond. The model consisted of three parts that aimed to account for the 

absorption of solar radiation, thermal convection, and mixing of heat down through the water column 

as a result of wind action. The model assumes pond surface temperatures are known and a method of 

estimating hourly surface temperatures from daily maximum and minimums is also given. Another 

model designed to simulate thermal stratification in shallow aquaculture ponds has been described 

by Losordo and Piedrahita (1991). The model simulates discrete fully horizontally mixed layers with a 

depth of 10cm for the surface element and 20cm for those below. A key feature of the two models 

mentioned above is the need for a wide range of data inputs at relatively small time steps in order to 

simulate a diurnal temperature cycle and associated stratification processes. In the case of Losordo 

and Piedrahita (1991): Solar irradiance, wind speed, wind vector magnitude, air temperature, and 

relative humidity were used at 0.33 hourly intervals while the model also required photosynthetically 

active solar radiation (PAR) at 5 and 20cm depths, initial pond temperature, and Julian day to be 

provided at daily intervals while site latitude, pond length and width, and anemometer height are 

considered as constants. While such models have the potential for simulating pond temperatures 

with a good degree of accuracy the significant data requirements limit their potential use over large 

areas where a more limited range of inputs are available.  

Aguilar-Manjarrez and Nath (1998) used a pond temperature model originally developed by Nath 

(1996) to estimate pond temperatures for Africa. The model makes the assumption of a fully mixed 

water column and is based on modelling heat exchange at the water surface while potential heat 

transfer to and from the pond sediment are not included. Assuming there is no regular flow of water 

in and out of the pond then required variables for the model are: air temperature, relative humidity, 

wind speed, solar radiation, cloud cover and elevation. Nath (1996) undertook verification for the 

model at two sites in Thailand that represent a warm humid low elevation tropical environment, one 

site in Honduras representing a dryer tropical environment, and a site in Rwanda representing a high 
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elevation area with lower air temperatures. Daily pond temperatures were recorded as an average of 

twice daily measurements at multiple depths throughout the water column. Nath (1996) states that 

for all four sites predicted temperatures based on daily means and recorded water temperatures 

were not significantly different (p > 0.05). Nath (1996) also points out that water and air temperature 

profiles tend to have similar profiles at all of the four sites.  

While the model described by Nath (1996) lacks some of the sensitivity of small time step stratified 

pond models (Losordo and Piedrahita, 1991) it has the advantage of being verified across a range of 

sites and importantly is based on the use of daily mean climate variables and as such is more 

appropriate for use at the global scale with currently available global climate data sets. 

 

3.2.2.2 Pond temperature model 

The model described by Nath (1996) (equation 1) was applied within the current study to model 

water temperature in a hypothetical two metre deep pond at daily interval for two 10 year time 

series, one representing late 20th century conditions and the other a 2°C average global temperature 

increase.  

ɸnet  = ɸsn + ɸan - ɸws - ɸe ± ɸc     [Equation 1] 

where: 

ɸsn  = Short-wave solar radiation  

ɸan  = Net long-wave atmospheric radiation 

ɸws  =  Water surface radiation 

ɸe = Evaporative heat loss 

ɸc = Conductive heat exchange 

 

and ɸsn = ɸs(1 – As)   [Equation 2] (Henderson-Sellers, 1984 cited in Nath, 1996) 
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Where ɸs = short wave radiation and As = short wave reflectivity. For the current study it was 

assumed that As = 0.06 based on recommendation by Henderson-Sellers (1984) cited in Nath (1996). 

 

ɸan = (1-r)Ɛa ƠTak
4   [Equation 3]  (Henderson-Sellers, 1984 cited in Nath, 1996) 

Where r = water surface reflectance to long wave-wave radiation which is assumed to be 0.03 

(Henderson-Sellers, 1984; Losordo and Piedrahita, 1991 cited in Nath 1996), Ơ = Stefan-Boltzmann 

constant (4.896 x 10-6kJ m-2 d-1 K-4), and Tak = absolute air temperature (oK). Ɛa was calculated using the 

Ɛa = 0.937 x 10-5 x Tak
2(1 + 0.17Cc

2) where Cc represents cloud cover as a decimal fraction (Swinbank, 

1963, modified by Wunderlich, 1972, and cited in Nath, 1996). 

 

ɸws = Ɛw ƠTwk
4  [Equation 4]   (Henderson-Sellers, 1984 cited in Nath, 1996) 

Where Ɛw = emissivity of water (estimated as 0.97), and Twk = absolute water temperature (oK). 

 

ɸe = (es - ea)[λ(Twv – Tav)1/3 + b0u2]  [Equation 5] (Ryan et al., 1974 cited in Nath, 1996) 

Where es = saturated vapour pressure (mm Hg) at the current water temperature and ea = water 

vapour pressure immediately above the ponds surface (mm Hg). Twv is the virtual water temperature 

(oK) and Tav is the virtual air temperature (oK). λ and b0 are constants: λ = 311.02 KJ m-2 d-1 mmHG-1 K-

1/3,  and bo = 368.61 KJ m-2 d-1 mmHG-1 (m s-1)-1.  u2 represents wind velocity (m s-1) at 2 metres above 

the water surface. 

Saturated vapour pressure and water vapour pressure can be estimated based on equations by 

Troxler and Thackston (1977) cited in Nath (1996): 

es =25.37exp[17.62-(5271/Twk)]   [Equation 5] 

ea = Rh x 25.37exp[17.62-(5271/Tak)]   [Equation 6] 

Where Rh is relative humidity as a decimal fraction. 



 

81 

 

Virtual water temperature is defined as:  

Twv = Twk/[1 –(0.378x (es/P))]   [Equation 7] 

Virtual air temperature is defined as:  

Tav = Tak/[1 –(0.378x (ea/P))]  [Equation 8] 

Where P = barometric pressure (mm Hg) which can be estimated from altitude using the following 

formula (Colt, 1984 cited in Nath, 1996): 

P = 760/10z\19748.2   [Equation 9] 

Where z = altitude (m). 

 

ɸc = ɸe x 0.61 x 10-3P x ((Twk – Tak)/(es – ea))  [Equation 10] 

 

3.2.2.3 Data choice and use 

The current study made use of four main data sources. The CRU CL2 (New et al., 2002) climatology 

data set, and the NASA solar radiation (NASA_SSE_6.0, n.d.) data set were used to represent average 

monthly climate conditions for the late 20th century at a reasonably high resolution of 10 arcminutes. 

Data from 13 Atmosphere Ocean General Circulation Models (AOGCMs) that were used to inform the 

IPCC 4th assessment report were obtained from the Coupled Model Intercomparison Project (CMIP3) 

archive and used to adjust the CRU CL2 base data to create a second set of climatology data that 

represents conditions in a 2°C warmer world. Finally, data from the Japanese 25-year Reanalysis 

Project (JRA-25) (Onogi et al., 2007) were used to create a set of daily climate anomalies that where 

applied to the higher resolution base climatology data sets to produce two 10 year series of daily 

climate conditions that represents late 20th century conditions as well as those for a 2°C warmer 

world. The daily time series data were then used to model pond temperature.  
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3.2.2.3.1 Base climatology data 

Global data sets representing historic climate values are typically produced through the interpolation 

of data from meteorological stations (Hijmans et al., 2005, New et al., 2002, UDel_AirT_Precip, n.d.), 

or through reanalysis where past weather is modelled with models being informed by recorded 

meteorological data (e.g. JRA25, ERA40, NCEP/NCAR). There are also a number of projects aiming to 

provide climate related data such as temperature and rainfall through the use of remotely sensed 

data. Examples include the Tropical Rainfall Measuring Mission (TRMM) for precipitation and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and emissivity 

product (MOD11A1) for temperature. The use of remotely sensed data is attractive in that it is 

effectively sampling all areas of the earth’s surface and thus not relying on interpolation or weather 

modelling to fill in gaps between meteorological stations which can be large in some areas of the 

world. This said, remote sensing projects typically focus on single variables (e.g. temperature) and 

there may also be potential concerns over accuracy of estimates with factors such as cloud cover 

potentially impacting results (Wan, 2008). There are also the issues of return period, or sampling 

frequency, and the length of time for which the data set is available which in many cases may not be 

long enough to allow for the extraction of reliable climate averages. 

The CRU CL2.0 data set (New et al., 2002) provides data for a range of climate variables as global 

gridded data with a 10 arcminute resolution. The data represent monthly climatological means 

calculated over a 30 year period (1961-1990) based on the interpolation of data from a large number 

of meteorological stations (e.g. 27075 for precipitation and 12783 for mean temperature). The CRU 

CL2.0 data is widely used in the literature as a source of average climate conditions for representing 

current or recent conditions, or acting as a base period for comparing future scenarios with (e.g. 

Blanchet et al., 2014, Buisson et al., 2013). 

The CRU CL2.0 data set (New et al., 2002) was selected for use in the current project as it was viewed 

as offering high quality data at a reasonable resolution. Another key factor is that with the exception 

of solar radiation and cloud cover the CRU CL2.0 data set supplied all of the variables needed for the 

pond temperature modelling process (air temperature, wind speed, relative humidity, and elevation). 

Mean monthly data for solar radiation were obtained via the NASA Surface meteorology and Solar 

Energy (NASA_SSE_6.0, n.d.) database at one degree resolution and regridded using bilinear 
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interpolation to a 10 arcminute resolution consistent with the CRU CL 2.0 data. Cloud cover data were 

taken directly from the JRA25 reanalysis data set. 

 

3.2.2.3.2 AOGCM data 

The ability to model future climate change scenarios is improving (IPCC, 2007b) with coupled 

Atmosphere and Ocean General Circulation Models (AOGCMs) representing the most sophisticated 

efforts to project future climate patterns. Historically, results from GCM experiments have been 

limited in number and climate change impact studies have made do with outputs from a single model 

(e.g. Jones and Thornton, 2003). Others (e.g. Berry et al., 2006, Tuck et al., 2006) have used outputs 

from a number of GCMs but applied them individually within in an impact modelling process resulting 

in an overall output for each climate model and thus a range of change scenarios to consider. In 

recent years coordinated efforts have been made between climate modelling centres to run a set of 

standardised experiments, such as those designed to contribute to the Intergovernmental Panel on 

Climate Change (IPCC) fourth assessment report (AR4) thus allowing for averages from multiple 

models to be used in impact assessments (IPCC, 2007b, IPCC, 2007a). 

There is still significant variation between outputs from different models and to some extent different 

runs of the same model. The ability of AOGCMs to reproduce details of past climate is often used as a 

means to evaluate models performance in relation to each other. While some models appear to show 

greater skill than others in this respect it has been noted that when viewed globally a combined 

ensemble of multiple climate models will generally outperform individual models in terms of skill at 

reproducing the spatial details of past climate variability (Fordham et al., 2011, IPCC, 2007b, Pierce et 

al., 2009, Reichler and Kim, 2008).  

When using output from climate models it is common to use monthly or yearly climatologies over a 

future 20 or 30 year time period and compare these to recent conditions, again using average values 

over a similar 20 or 30 year period. There is often considerable variation between the outputs of 

different climate models as a result of differing algorithms as well as assumptions about processes 

that drive weather and climate. For those concerned with impact studies and the effects of climate 

change the variability between climate models can be viewed as consisting of: a) spatial variability of 

patterns of change e.g. location of areas predicted to see increases or decreases in precipitation, and 
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b) overall model sensitivity i.e. the predicted average global temperature increase in relation to a set 

increase in green house gas concentrations.  

An issue that is often overlooked when combining data from an ensemble of climate models is the 

varying sensitivities of the models used. The 23 GCMs that contribute to the 4th IPCC assessment 

report have a range of equilibrium climate sensitivities where a doubling of atmospheric CO2 results 

in average global temperature increases ranging from 2.1°C to 4.4°C with a mean value of 3.2°C (IPCC, 

2007b). This means that if an average value is derived from the ensemble of models for a given point 

in the future or green house gas increase then those models with higher sensitivities will exert a 

greater influence on the spatial distribution of climate variables (Fordham et al., 2011). An alternative 

strategy, and the approach adopted in the current study, is to use degrees of average global warming 

rather than fixed levels of CO2 increase relating to future time periods under emissions scenarios.  

Data necessary for pond temperature and evaporation modelling were available from 13 general 

circulation models (GCMs) forced using the AIB emission scenario. For each model a monthly 

climatology was established based on a 31 year mean where the centre point (i.e. 15 years each side ) 

corresponded to a 2°C temperature increase compared to the 1961-1990 base period when 

comparing global annual average temperatures. The base period data (1961-1990) were taken from 

control runs for each climate model that aim to replicate 20th century conditions. Details of GCM data 

used time periods representing a 2°C temperature increase over base conditions for each model are 

given in Table 3-10. The data from the 13 GCMs were combined using an equally weighted average to 

give two ensembles: one representing late 20th century conditions and the other a 2°C warmer world. 

The relative difference (i.e. percentage change) between these data sets for: relative humidity, wind 

speed, and solar radiation, as well as the actual difference (°C) were applied to the CRU-CL2 data to 

produce a new data based on CRU-CL2 that represents a 2°C global warming scenario.  
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Table 3-10: Climate models used to supply data. 

Originating Group(s) Country CMIP3 I.D. Date where global mean 
temperature reaches 2°C 
more than 1961-1990 base 
period under SRES scenario 
A1B 

Bjerknes Centre for Climate Research Norway BCCR-BCM2.0 2064 

Canadian Centre for Climate Modelling 
& Analysis 

Canada CGCM3.1(T47) 2056 

Canadian Centre for Climate Modelling 
& Analysis 

Canada CGCM3.1(T63) 2044 

Météo-France / Centre National de 
Recherches Météorologiques 

France CNRM-CM3 2056 

LASG / Institute of Atmospheric Physics China FGOALS-g1.0 2063 

NASA / Goddard Institute for Space 
Studies 

USA GISS-AOM 2085 

NASA / Goddard Institute for Space 
Studies 

USA GISS-EH 2078 

NASA / Goddard Institute for Space 
Studies 

USA GISS-ER 2077 

Institute for Numerical Mathematics Russia INM-CM3.0 2052 

Institut Pierre Simon Laplace France IPSL-CM4 2050 

Center for Climate System Research 
(The University of Tokyo), National 
Institute for Environmental Studies, and 
Frontier Research Center for Global 
Change (JAMSTEC) 

Japan MIROC3.2(hires) 2035 

Center for Climate System Research 
(The University of Tokyo), National 
Institute for Environmental Studies, and 
Frontier Research Center for Global 
Change (JAMSTEC) 

Japan MIROC3.2(medres) 2053 

Meteorological Research Institute Japan MRI-CGCM2.3.2 2069 

 

 

3.2.2.3.3 Construction of daily climate time series for pond temperature modelling 

Daily values for: air temperature, wind speed, relative humidity, solar radiation, and cloud cover were 

obtained via the Japanese 25-year Reanalysis Project (JRA-25) data set at a grid resolution of 1.125 

degrees for a 10 year period (1991-2000). The JRA-25 data set was chosen over the other weather 
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reanalysis data sets that are freely available (NCEP/NCAR Reanalysis 1, NCEP-DOE Reanalysis 2, and 

ERA40) as it was freely available at a higher resolution. 

Monthly climatological means for the same variables were also obtained from the JRA-25 database 

and relative differences between JRA-25 climatological monthly means and daily values were 

calculated for wind speed, solar radiation, relative humidity to produce a set of daily anomalies. A set 

of daily anomalies were also produced for the air temperature data but as actual differences in 

degrees centigrade. This daily anomaly data were regridded using bilinear interpolation to a 10 

arcminute resolution consistent with the CRU CL 2.0 data set. The daily anomalies were then applied 

to the CRU CL 2.0 and NASA SSE 6.0 monthly climatologies to produce a time series of plausible daily 

values for air temperature, wind speed, relative humidity, and solar radiation at 10 arcminute 

resolution over a 10 year period that was then be fed into the pond temperature model. A second 10 

year time series of daily values were created that represented a 2°C warmer world. This was achieved 

by applying the daily anomalies to CRU CL 2.0 and NASA SSE 6.0 data that had previously been 

adjusted using monthly anomalies obtained from the ensemble of GCM data.  

The benefits of using daily anomaly data is that it allows for the investigation of potential extremes 

that will not be present in the monthly climatologically averages. The decision to apply anomalies 

from the JRA-25 data set to the CRU CL 2.0 data set rather than using them directly is based on two 

main factors. Firstly the CRU CL 2.0 data is at a considerably higher resolution that allows for much 

better representation of local variation, especially in relation to elevation. Secondly the CRU CL2 data 

set is derived from a large number of observations, as opposed to being derived from reanalysis 

modelling of past climate and as such can be assumed to provide a reasonably accurate 

representation of recent global climate variables. 

 

3.2.3 Water availability for rain fed ponds 

 

3.2.3.1 Introduction 

Inland aquaculture has an obvious dependence on fresh water resources. The source of water and the 

way in which it is supplied to an aquaculture operation will be dependent on the type of system and 

its location. That said, water sources can generally be considered as: existing surface water bodies 
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(e.g. lakes, rivers, canals etc.), ground water, and direct rainfall and runoff from the area immediately 

surrounding the ponds.  

Water is lost from aquaculture systems via: deliberate water exchange, evaporation, and 

leaks/seepage. For rain fed pond systems the concept of water balance (rainfall minus evaporation 

minus seepage) dictates the availability of water within the system. The rate of evaporation from a 

pond surface is influenced by a number of climatic variables, notably: temperature, humidity, 

intensity of solar radiation, and wind speed. These variables along with the extent and timing of 

precipitation can all be considered as aspects of climate that are potentially subject to change in 

relation to global warming meaning that with the exception of seepage from the pond base, water 

availability within a rain fed pond is entirely dependent on climate. 

The current study aims to investigate water balance and the likelihood that rain fed ponds will 

contain water on a monthly basis throughout the year. Modelling was conducted for late 20th century 

conditions (1961-1990) as well as a similar 30 year time series representing a 2°C warmer world. 

 

3.2.3.2 Methods and data 

3.2.3.2.1 Potential evaporation calculation 

There has been a considerable amount of work aimed at estimating potential evaporation based on 

climate and weather data. Much of this work has been concerned with evapotranspiration from crops 

where there are significant issues for agriculture in relation to water availability. The FAO has 

suggested the Penman-Monteith equation as a standard for establishing reference 

evapotranspiration values (Allen et al., 1998). Aguilar-Manjarrez and Nath (1998) used the Penman-

Monteith equation to establish potential evapotranspiration values as part of a GIS based assessment 

of fish farming potential in Africa. The authors then used an adjustment factor based on the 

difference between pan evaporation and reference evapotranspiration to establish estimates of 

evaporation from an open water surface. Winter et al. (1995) found that the Penman equation fared 

well in an evaluation of 11 equations used for calculating evaporation from a small lake in the United 

States by comparing results to those obtained using an energy budget method (Sturrock et al., 1992). 

Mosner and Aulenbach (2003) suggest that the Penman equation fared poorly as part of an 

assessment of four methods of calculating evaporation from a lake in the south eastern United States 
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when compared to energy budget estimates of evaporation. However the results of the Penman 

equation seem much better when compared to those published by the Georgia Automated 

Environmental Monitoring Network that are also given in the same study. 

Linacre (1993) described a simplified version of the Penman equation for estimating lake evaporation 

where the required inputs are: mean daytime temperature, dewpoint temperature, solar irradiance, 

wind speed, and altitude. Linacre (1993) goes on to describe two methods for estimating values for 

solar radiation in areas where such data are unavailable.  

The current study makes use of the equation described by Linacre (1993) which can be expressed as: 

Eo (mm day -1) = (0.015 + 0.00042T + 10-6z)[0.8Rs – 40 + 2.5Fu(T - Td)  [Equation 11] 

where: 

Eo  = evaporation rate (mm per day) 

T = mean daily temperature (°C) 

Td = dew point temperature (°C) 

z = elevation (m) 

u = wind speed at 2m (metres per second) 

Rs = solar irradiance (watts per square metre) 

F = (1 – 8.7 x 10-5 z) 

3.2.3.2.2 Data used for calculating potential evaporation and water balance 

For many parts of the world rainfall is seasonal with distinct wet and dry seasons. There is also a 

tendency in many regions for evaporation rates, and in particular precipitation quantities, to vary on a 

year to year basis. For rain fed aquaculture this can be significant in terms of growing season length 

and potential risk of water shortage. In order to take account of inter-annual variation it is necessary 

to use a time series of data that accounts for variability. The 10 year daily series of climate data 

constructed for modelling pond temperatures within the current study would provide one potential 

solution, however water availability issues tend to operate over longer time scales than fluctuations 
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in temperature and are likely to be best served by a longer time series without the need for such 

frequent data points.  

The CRU TS3.10 (Harris et al., 2014) data set represents a gridded time series, with half degree 

resolution, of monthly means for a range of climate variables running from 1901-2009 that is based 

on interpolation of observed weather data. This data set was used to supply temperature, dew point 

temperature as well as elevation data used to calculate potential evaporation rates, with the same 

data set also used to provide precipitation data for determining water balance. Wind speed and solar 

radiation data were not available as part of CRU TS3.10. Instead, average values for each month were 

obtained from the CRU CL2.0 data set for wind speed, and from NASA (SSE 6.0) for solar radiation. 

Figure 3-11 shows average daily water balance (precipitation minus potential evaporation from a 

water surface) for late 20th century conditions (1961-1990) while Figure 3-12 shows relative change 

to these values under 2°C global warming. 

Figure 3-11: Average daily water balance (precipitation minus potential evaporation from a water surface) for late 20th 
century conditions (1961-1990). 

Figure 3-12: Change in average daily water balance in relation to 2°C average global temperature increase.  

 



 

90 

 

3.2.3.2.3 Seepage rates 

The rate of seepage through pond sediments plays a role in the water balance of aquaculture ponds 

and for areas where the water table is below the level of the pond bottom may be the largest cause 

of water loss exceeding evaporation rates in many cases (Boyd, 1987). The rate of seepage will 

depend on water depth and temperature but is largely dictated by the physical properties of the pond 

base where soils with a high clay content are generally less permeable. As well as permeable soils Yoo 

and Boyd (1994) suggest that other causes of increased seepage include: shallow soils over fractured 

bedrock, soils with a high gypsum content which leaves spaces as the gypsum dissolves, and poor 

construction methods such as insufficient compaction of soils or inadequate spread of soil over 

exposed rock areas. 

Seepage is often calculated by recording reduction in water depth and subtracting that lost through 

evaporation which may be estimated using methods such as recorded pan evaporation, seepage 

meters, and capped pipes driven into the pond substrate (Stone and Boyd, 1989). The amount of 

water lost to seepage varies considerably. Examples of recorded seepage rates in a number of ponds 

settings are given by Boyd and Tucker (1998) and are summarised here in Table 3-11. Boyd and 

Tucker (1998) also note that seepage rates vary seasonally with warmer temperatures resulting in 

faster seepage, and that seepage can vary considerably between ponds found in the same area. This 

point can be illustrated using the example of Boyd (1982) who noted that the seepage rates among 

51 small ponds at the Auburn University Fisheries Research Unit varied from 1.2 to 20.5 mm per day. 

Table 3-11: Summary of recorded pond seepage rates given by Boyd and Tucker (1998). 

Pond details  Seepage (mm per day) Original source 

Coastal Plain soils, Alabama 3.81 (Parsons, 1949).  

Piedmont Plateau, Alabama 10.9 (Parsons, 1949).  

Blackbelt Prairie, Alabama (heavy 
clay soil)  

1.5 (Parsons, 1949).  

Small natural ponds in Minnesota 1 (Allred et al., 1971, Manson et al., 1968) 

Piedmont Plateau, Alabama 8.9 (Boyd and Shelton, 1984) 

12 ponds at Gualaca Panama  19 - 58 (Teichert-Coddington et al., 1988) 

Comayagua, Honduras  7.75 (Green and Boyd, 1995) 
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Attempts to incorporate values for seepage and thus water availability for rain fed ponds as part of 

broader site suitability assessment for aquaculture have been limited. Kapetsky and Nath (1997) and 

Aguilar-Manjarrez and Nath (1998) both cited seepage rate definitions provided by Yoo and Boyd 

(1994) (low = <4.83 mm/day, moderate 4.83 – 9.91 mm/day, high = 9.91 – 14.99 mm/day, extreme = 

>14.99mm/day). Ultimately both sets of authors settled for a single low seepage rate of 2.77 mm/day 

(100cm/year).  

 

3.2.3.2.4 Calculating water balance 

As well as rainfall landing directly on the pond water surface there will be a certain amount of runoff 

from the sides of the pond meaning that the ponds actual capture area is somewhat larger than the 

water surface its self. Kapetsky and Nath (1997) and Aguilar-Manjarrez and Nath (1998) addressed 

this issue by multiplying precipitation values by the constant 1.1 suggesting a total capture area of 

110% of the actual water surface. In reality the capture area will depend on the size of the pond and 

its surroundings with smaller ponds likely to have a greater total drainage area relative to their actual 

surface area meaning that when total drainage area is considered water balance can be described as: 

Water balance = (precipication x (total drainage area/water surface area)) – seepage  

Another way in which the pond water availability question could be viewed would be to ask what size 

of drainage area is needed for a given precipitation and seepage rate in order for a pond to contain 

water at a certain time of year. Given that variable time series data is being used and values from one 

month feed into the next, the calculation of exact drainage areas for a given depth isn’t feasible. In 

order to try and address some of this uncertainty and gain a better understanding of what different 

seepage rates and relative drainage areas would mean for ponds globally a range of possible 

scenarios are considered in the current study with drainage areas representing 1.1, 1.5 and 2 times 

pond surface area, and seepage rates of 2.41, 7.37, and 12.45 mm per day. These seepage rates 

represent the mid points of the low, medium, and high seepage ranges given by Yoo and Boyd (1994).  
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3.2.3.2.5 Likelihood of ponds containing water 

Water depth was modelled for a theoretical 2 metre deep pond on a monthly basis using water 

balance values derived from CRU TS3.00, CRU CL2, and NASA solar radiation data. Details of how 

pond water depth was calculated are given in Text box 3-1. An initial starting depth of 1000mm (half 

full) was specified for all areas and the model was run from the beginning of the time series (January 

1901) allowing pond depths to stabilise before reaching the main analysis period (1961-1990). This 

process was repeated for the different seepage and runoff scenarios, and for a second time series of 

data where all variables had been adjusted to represent a 2°C global warming scenario. This was done 

using anomalies from the combined output from the 13 GCMs that were described in the pond 

temperature modelling section. Figure 3-13 gives an example of modelled water depths showing the 

average depth for the month of June for 1961-1990 time period and for a 30 year time period 

adjusted to represent a 2°C warmer world. 

Once monthly pond water depths were established the following processes were applied to all 

months representing the same 30 year period (1961-1990) used when modelling pond temperatures. 

1. Boolean classification was applied to all data within the 1961-1990 period so that all areas 

where ponds are at least half full (>1000mm) are identified. 

2. For each month the probability that ponds would be at least half full during the 30 year 

period (1961-1990) was established.  

3. The number of consecutive months where there is at least a 90 percent (27 out of 30 years) 

probability of ponds being half full was established. This is significant for aquaculture in that it 

essentially controls growing season length for rain fed ponds.  

 

 

Text box 3-1: Method used to calculate monthly pond water depth from time series data. 

 

Water depth from previous month + (precipitation - evaporation - seepage) = result 

If result > than 2000mm then water depth = 2000mm 

If result < than 0mm then water depth = 0mm 

If result >0 and <2000 then water depth = result 
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Figure 3-13: Average modelled June water depth for the period 1961-1990 (top) and projected change in water depth 
under the 2°C average global warming (bottom). 

 

3.2.4 Combination of sub-model outputs 

Viewing the individual outputs generated by the land suitability, water temperature, and rain fed 

pond water availability sub-models provides a range of useful information in relation to site 

suitability. However a key strength of representing spatial data within a GIS is the ability to combine 

multiple data sources in a variety of structured ways to help guide decision making. The 

reclassification of varied data sources to a common scale and their combination using a series of 

linear weighted averages (Eastman, 2012) has already been discussed in relation to the land 

suitability sub-model. Such an approach can be extremely useful as it effectively allows a large 

number of factors to be considered simultaneously while at the same time allowing different levels of 
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significance to be assigned to factors in the form of weightings. The weighted linear combination 

(WLC) process is relatively easy to conceptualise which is potentially beneficial when eliciting expert 

opinion with regards to weightings, a process that can often be helped by first ranking factors in order 

of significance.  

A potential limitation of WLC is that the number of factors increases there is an increasing chance of 

them cancelling each other out (Drobne and Lisec, 2009). As a simplified example if it is assumed 

there are three factors and for a given pixel two have a suitability score of 100 (maximum suitability) 

and the third has a score of zero (minimum suitability) then an equally weighted WLC would result in 

a score of 66.6 which is likely to represent a moderately good level of suitability despite one factor 

being classified as highly unsuitable. Whether this situation is reasonable will depend on the nature of 

the data and the reasons for combining it. One possible solution is the use of constraints in the form 

of Boolean intersections that represent a logical AND operation. In GIS terms this often means 

multiplying the results of a process such as WLC with a raster grid containing pixels classed as zero or 

one (Drobne and Lisec, 2009, Eastman, 2012, Nath et al., 2000). This was done in the current study for 

the land suitability sub-model where areas with extreme values for slope and/or population density 

were excluded from the final output regardless of overall suitability score. This Boolean approach can 

be extended and combined with other operations to form complex decision trees where a series of 

questions are asked of the spatial database (Nath et al., 2000). This approach contrasts to that of 

using simple weighted averages and can be useful, especially in relation to quantitative data sources, 

where more definitive rather than indicative results are required. 

Another way to address the problem of trade off between factors is the use of ordered weighted 

averaging (OWA) instead of WLC. Like WLC, OWA also uses factor weights that influence the trade off 

between factors. The key difference is that OWA also uses a second set of weightings (order weights) 

that are applied at each location (raster pixel) in relation to the rank order of factors at the location. 

The order weights effectively provide a means of influencing the amount of trade off between criteria 

as well as offering a way of controlling the risk of low scoring criteria being "lost" in the averaging 

process (Drobne and Lisec, 2009, Eastman, 1999, Eastman, 2012). For example using the same three 

equally weighted factors described previously, if order weights of 1, 0, 0 were specified then full 

weighting would be given the lowest scoring factor meaning its value would be represented to the 

exclusion of the others, a zero trade off scenario with zero risk of low scores being under 
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represented. More moderate use e.g. 0.6, 0.25, 0.15 would allow factor weights to come into play 

with moderate amounts of trade off and moderately strong influence given to the lower scoring 

factors at each location. Specifying equal order weights results in full trade off of factor weights 

resulting in the same output as a WLC. Reversing the example above (i.e. 0.15, 0.25, 0.6) results in 

greater influence being given to the highest scoring factor at each location in what can essentially be 

viewed as an optimistic versus pessimistic modelling approach (Drobne and Lisec, 2009).  

The way in which data is classified and combined for aquaculture site selection will vary depending 

upon species, culture systems, and priorities of the decision makers. It is worth noting that once a 

spatial database is established within a GIS along with a modelling approach it is normally relatively 

quick and easy to adapt it in relation to different questions and scenarios.  

Two examples are given in the current study based on tilapia (Oreochromis niloticus) a warm water 

species commonly cultured in ponds with a global distribution. The first example uses a OWA 

approach to combine outputs from the land suitability sub-model in association with Fuzzy classified 

results from the pond temperature model. In this instance water availability for rain fed ponds is not 

included in the OWA as the intention was to assess suitability for all areas and assume that water may 

be available from other surface or ground sources. It would be relatively easy to compare results with 

the Boolean outputs from the water availability sub-model to indicate which areas considered 

suitable in terms of land suitability and temperature would also potentially be able to function with 

rain fed ponds under the different scenarios. The second example queries the pond temperature and 

water availability sub-models and uses these to specify useable areas. Output from the land suitability 

sub-model can then be used within these areas to further assess site suitability in relation to what is 

on the ground.  

 

3.2.4.1 Combination of land suitability and temperature using an OWA 

For each month modelled mean pond temperature was reclassified using fuzzy points for maximum 

suitability between 27°C and 32°C and for minimum suitability below 18°C and above 36°C (see Figure 

3-14). Nile tilapia can survive temperatures considerably outside of this range (Philippart and Ruwet, 

1982, Sifa et al., 2002), however they show a temperature preferendum of around 30°C, depending 

on acclimation temperature (Chervinski, 1982), with maximum swimming performance obtained 
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between 28 and 32°C. There is also a suggestion from experimental studies that as temperatures 

reach the mid thirties (°C) then growth performance is negatively affected. Xie et al. (2011) examined 

the growth performance of Nile tilapia at 25, 28, 31, 34, and 37°C and found that overall growth 

performance were best in the 28, 31, and 34°C groups while optimum growth temperature was 

estimated at 30.1°C with maximum protein retention at 28°C. At 37°C growth performance and 

protein retention were worse than all other treatments. Workagegn (2012) conducted similar 

research with temperatures of 24, 26, 28, 30, 32, and 34°C. The best temperatures in terms of specific 

growth rate and feed conversion ratio were 32 followed by 30°C, with lower performance seen in the 

34°C treatment. When reclassifying the temperature it was also considered that temperatures would 

likely vary around the mean modelled value and some degree of safety margin was considered 

appropriate (see model outputs section for modelled pond temperatures for further discussion). 

 

Figure 3-14: Fuzzy reclassification of modelled pond temperature values for combination with land. 

 

For the land suitability layer an average value of the layers generated using MODIS and GlobCover 

land cover data were used. 

Equal factor weights were applied to both land suitability and reclassified pond temperature layers as 

they were both considered highly important in determining site suitability. Order weights of 0.66 and 

0.33 were assigned meaning that for each pixel the lowest ranking factor would be represented twice 

as strongly. This allowed for greater distinction of areas where either of the input factors were low 

and placed increased emphasis on areas where both factors ranked strongly. 
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3.2.4.2 Selection of areas with specific temperature and water availability values 

For this example the following criteria were specified for each month: 

1. Modelled mean average daily pond temperature between 27 and 32°C 

2. Modelled maximum average daily pond temperature less than 36°C 

3. Modelled minimum average daily pond temperature more than 14°C 

4. Rain fed pond predicted to be containing water based on low seepage rates and precipitation 

over an area representing 150% of the pond surface. 

5. The number of consecutive months meeting these conditions was calculated and a set of 

Boolean layers representing 6, 9, and 12 consecutive months per year were created. 

6.  The Boolean masks were applied to outputs from the land suitability sub-model where 

suitability scores had been reduced from a scale of 0-255 to 5 equal interval classes plus one 

showing constraint areas. These masks were then used to extract area statistics as well as 

allow for visual inspection of results. 

7. Steps 1-6 above were repeated for both late 20th century conditions and the 2°C average 

global warming scenario and applied to land suitability based on both MODIS and GlobCover 

land cover data.  

 

3.3 Model outputs and related discussion 

Outputs from each of the sub-models are presented here separately along with those obtained from 

the combined sub-models. In each case findings and the modelling process are discussed and, where 

appropriate, suggestions of potential further research are considered. 

3.3.1 Land suitability sub-model - outputs and discussion 

Example output from the land suitability sub-model using MODIS land cover data is provided in Figure 

3-15 while the difference between the results when using MODIS and GlobCover as inputs are shown 

in Figure 3-16. An indication of the differences between constraint areas of the classified MODIS and 

GlobCover data is given in Figure 3-17 using southern Vietnam as an example. It is worth noting that 

when viewing the images at full resolution within a GIS environment it is possible to see small areas 
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of suitability in many parts of the world that are not obvious when viewing a global image. The 

magnified areas in Figures 3-15 and 3-16 showing parts of Ghana and Vietnam help give an indication 

of the level of spatial detail provided by the model as well as helping to highlight differences between 

the MODIS and GlobCover based outputs.  

 

Figure 3-15: Output from land suitability sub-model using the MODIS land cover dataset. Constraint areas shown as grey. 
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Figure 3-16: Difference between the land suitability sub-model outputs depending on whether MODIS or GlobCover were 
used to represent land cover. Positive numbers represent a higher score for MODIS, negative numbers for GlobCover. 

 

Figure 3-17: Constraint areas after classifying the MODIS and GlobCover land cover products. 
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When considered at the continental scale Asia stands out as having large areas of land with high 

suitability scores. India and Bangladesh are especially notable while China, Thailand and Vietnam also 

have large areas indicated as highly suitable. Much of the suitability in these areas is a result of 

cropland being indicated by the land cover data which under the current classification scheme is 

considered potentially available for conversion to aquaculture ponds. The fact that such areas are 

often flat and in the case of many Asian countries moderately populated also contribute to their 

suitability. Rice in particular has been combined with aquaculture in many areas either in the form of 

deep water areas around paddy fields or as part of a seasonal pattern where fields effectively become 

fish ponds for part of the year (Ahmed and Garnett, 2011).  

While remotely sensed land cover data is invaluable for assessments such as the current one, the 

considerable differences seen between MODIS and GlobCover along with broadness of classes (e.g. 

different types of cropland are not specified) highlights the limitations of currently available products. 

As previously discussed part of the problem lies in the relatively low resolution of the sensors used 

and resulting mixture of land cover types that may be present in a single pixel. With this and 

continued improvements in computing capacity in mind the development of higher resolution global 

land cover products would seem to be potentially beneficial.  

The next big step in terms of a global land cover product would seem to be a move to using data of 

around 30m resolution derived from sensors such as Landsat ETM+. Sexton et al. (2013) 

demonstrated the rescaling of MODIS data to 30m resolution using Landsat images while Gong et al. 

(2013) published preliminary results for a Landsat based global land cover product. Figure 3-18 shows 

an example of the 30m land cover product described by Gong et al. (2013) covering Bangladesh. The 

edges of the individual Landsat scenes within the area displayed are fairly obvious with sudden shifts 

from one land cover type to another. It is also notable that much of Bangladesh is classified as 

bareland or forest in what is an extremely densely populated and cultivated country. Despite these 

limitations the desire to develop such a product should be encouraged as if it can be improved it 

could become highly useful under a wide range of applications.   

The slope values used in the current assessment were calculated from SRTM data at 3 arcsecond 

resolution and then aggregated to a 10 arcsecond grid to match the resolution of the GlobCover land 

cover data. It is possible that maintaining the entire database at 3 arcsecond resolution may have 

yielded slight improvements in terms of terrain slope information although given the lower resolution 
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of the other data sets any overall benefits would likely be minimal. It is also worth noting that the 

storage and processing requirements for data sets of such a high resolution would be beyond the 

capabilities of the current project.  

Being a modelled data set the LandScan population density data is also a potential source of 

inaccuracy. Careful visual inspection in relation to high resolution imagery such as that seen in Google 

earth suggests that it seems to do a good job of linking higher population densities to areas with 

obvious urbanisation on the ground. There did appear to be some false positives especially in areas 

with an overall low population density where the LandScan data would suggest a single more densely 

populated pixel that did not correspond to any obvious human development. A newer version of 

LandScan is currently available but at a cost that was prohibitive for the current project. It maybe that 

an improved algorithm in association with more detailed input data would yield a slightly better, 

though largely unverifiable, result. This said, the LandScan product used in the current study would 

seem to offer a significant advantage over the other globally available gridded data sets which are 

largely derived from a set of variably sized polygons.  
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Figure 3-18: A section of the 30m land cover data set for Bangladesh ( Gong et al., 2014). 

 

3.3.2 Pond temperature sub-model - outputs and discussion 

Examples of pond temperature modelling results (Figure 3-19), show the modelled mean pond 

temperature for the month of June under late 20th century conditions and for a 2°C global warming 

scenario along with the difference between the two scenarios. Figure 3-20 shows minimum and 

maximum modelled temperatures for the same month. Images representing results for all other 

months can be found in Appendix 1.  
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Temperature extremes experienced during periods of especially hot or cold weather can be of 

concern to aquaculturists. The effects of climate change on these extremes has been suggested as a 

mechanism for direct impacts on aquaculture production through loss of stock due to either directly 

exceeding the thermal limits of the species, or in relation to stress related disease events (De Silva 

and Soto, 2009, Ficke et al., 2007). Figure 3-21 gives a more detailed view of modelled maximum 

temperatures for the months of June and July over much of Asia where a significant amount of the 

worlds inland aquaculture takes place. Under the 2°C warming scenario there are quite a few areas 

where temperatures are in the mid thirties or even slightly above. While such temperatures may not 

exceed the lab based critical thermal maxima of the majority of warm water culture species, under 

typical culture conditions they may represent a significant source of stress with potential impacts on 

growth and survival (De Silva and Soto, 2009). It is also worth considering that the climate data used 

to predict pond temperature represents daily mean values and therefore modelled pond temperature 

are also in the form of daily means and thus do not account for diurnal temperature fluctuations 

which could potentially result in higher day time temperatures.  

Along with long term modelling using daily means Nath (1996) modelled the diurnal temperature 

cycle for ponds in Thailand, Honduras, and Rwanda. Nath (1996) provides graphs for each site 

indicating that modelled water temperatures during the course of a day are consistent with 

observations at all four locations. Actual daily water temperature fluctuations shown in the graphs 

are in the region of 2 to 4°C depending on location. Losordo and Piedrahita (1991) modelled 

temperature variation and thermal stratification in shallow aquaculture ponds. The authors simulated 

fully wind mixed water column diurnal temperature ranges as well as thermal stratification for 

Californian catfish ponds and provided a number of graphs suggesting diurnal temperature ranges of 

up to 6°C for the mixed ponds. Losordo and Piedrahita (1991) also show results for two simulations of 

temperatures in stratified ponds where surface temperatures range from approximately 27 - 36°C 

over a 24 hour period while at depths of 60 and 80cm modelled temperatures ranged between 

approximately 27 and 30°C, and 27 and 32°C. Culberson and Piedrahita (1996) modelled temperature 

at a range of depths for ponds in Thailand, Rwanda, and Honduras with depths ranging from 80 to 

116cm. Measured temperatures for surface layers varied by approximately 4 or 5°C during a 24 hour 

period while temperatures for the bottom layer only fluctuated by a around 1°C for two of the sites 

and approximately 2°C for the other. 



 

104 

 

 

 

Figure 3-19: Examples of modelled June pond temperatures. Top image show late 20th century conditions, middle image 
shows 2°C average global warming conditions and the bottom image show the difference between the late 20th century 
and 2°C warming scenarios. 
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Figure 3-20: Modelled daily average minimum temperature (top), and maximum temperature (bottom) for the month of 
June under late 20th century conditions. 
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Figure 3-21: Modelled maximum pond temperature for south Asia during June and July under late 20th century conditions 
and 2°C global warming. 

 

Weekly temperature records with readings taken at 6am and 6pm where obtained from Bangladesh 

Agricultural University (BAU) for two experimental aquaculture ponds for a four month period (April 

to July, 2006). The highest recorded temperature from the data set was 36.47°C while the lowest 

recorded temperature was 22.73°C. The maximum variation between AM and PM temperatures 

recorded during a single day was 7.67°C and the lowest was 0.3°C. The differences in daily 

temperature variation recorded during the observation period illustrate again that pond 

temperatures can vary considerably during the course of a day. The average daily temperature for 

both ponds over the four month period was 29.4°C, while the minimum and maximum daily average 

temperatures were 24.64°C and 33.11°C. While a four month time series from a single year is 
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insufficient to draw any significant conclusions and precise details of how temperatures were taken 

and at what depth were not available, it is still encouraging to note the recorded average 

temperature and minimum and maximum average daily temperatures fit well with modelled 

temperatures from the current study for the same location and time period of: 29.68°C (mean), 

25.56°C (minimum), and 33.26°C (maximum). 

In terms of the current study it seems likely that diurnal fluctuations in pond temperatures may result 

in temperatures beyond the maximum and minimum daily mean values obtained. Another factor to 

consider is that the temperature modelling was conducted for relatively deep ponds (2 metres) 

meaning day to day variability may be less, potentially resulting in less extreme minima and maxima 

than may be seen in a significantly shallower pond. That said, the model used in the current study 

assumes a fully mixed water column but as discussed in the previous paragraph significant 

stratification tends to take place in aquaculture ponds, especially during warmer daytime hours. The 

degree of stratification can be significant, for example Losordo and Piedrahita (1991) cite Losordo 

(1998) and state that vertical temperature gradients of up to 12°C have been recorded from catfish 

ponds in southern California. With the above in mind it seems probable that in areas where high 

modelled pond temperatures are predicted, and where there is a notable diurnal fluctuation in air 

temperature, then water temperatures may exceed the modelled values. Unless the pond is very 

shallow or artificially mixed then stratification is likely to result in the surface layers of the pond 

becoming considerably warmer while the lower layers remain more stable. This may be significant for 

aquaculture as culture organisms will be able to avoid potential extremes of temperature.  

It was noted that modelled pond temperatures would show significant variability from one day to the 

next. This was especially true in the case of temperature reduction where there was a substantial 

reduction in surface air temperature from one day to the next, particularly when higher wind speeds 

and lower humidity levels were involved. Under these conditions the large reductions in water 

temperature within the model are largely the result of heat lost to evaporative cooling where water 

temperatures are significantly higher than surface air temperatures. These results would seem to be 

influenced to some degree by the model being run with 24 hour time steps and the use of daily mean 

weather values. For example, on a day where the average surface air temperature is substantially 

lower than the previous day the water temperature derived from the previous days calculation is 

going to be considerably higher than the air temperature. As the model calculates an energy budget 
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for each time step it is essentially assuming these temperature differences apply over the whole 24h 

period giving rise to an exaggerated temperature change when the next time step results are 

calculated. This effect was mitigated in the current study to some extent by specifying relatively deep, 

and thus more stable, model ponds. It is also worth noting that when evaluating the model using daily 

average values for climate Nath (1996) found the model to be reliable. That said this aspect of the 

model and its potential to accurately predict extreme minimum and maximum temperatures could be 

worthy of future investigation if validation pond temperature data of sufficient quantity, quality and 

temporal resolution could be obtained for a variety of climate areas. In reality, air temperatures and 

other climate variables along with pond temperatures will change gradually and continuously. In 

modelling terms this would be the equivalent of an infinite number of time steps. Reducing the length 

of the time steps within the model may be one way in which issues of excessive temperature swings 

as well as diurnal temperature variations could be addressed although in practice the level of 

temporal detail possible will currently be limited when working at a global scale by the temporal 

resolution of climate data sets as well as computing capacity. 

In association with an increase in time step frequency the implementation of stratified pond models 

such as those described by Culberson and Piedrahita (1996) and Losordo and Piedrahita (1991) may 

be worthy of further investigation. To date such models have focused on individual locations and data 

requirements tend to be extensive. Research that focuses on simplifying and validating such models 

in order to make use of available spatial data at a broader scale could be potentially valuable. 

The reasons for using GCM data to adjust 20th century climate data sets in the current study rather 

than using GCM output directly have been covered in the methodology section dealing with pond 

temperature modelling. This methodology makes the assumption that climate variability under future 

warming conditions will be the same as those under late 20th century conditions and that there will 

just be a shift in the mean. In impact terms increasing variability around the mean would result in 

higher and lower extremes in temperature than would be expected using the current method. While 

it is often assumed that temperature variability will increase in association with global warming 

recent evidence suggests that this may not be the case. Huntingford et al. (2013) suggest that while 

there have been increases in variability recorded in some areas evidence suggests this is now 

decreasing and that the standard deviation of globally averaged temperature anomalies has remained 

stable over time. The authors also examine outputs from an ensemble of recent climate models 
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(CMIP5) that predict a decrease in global average temperature standard deviation during the 21st 

century in association with increasing greenhouse gas concentrations.  

Local factors that cannot realistically be incorporated into large scale models may also influence pond 

temperature to some extent and may need consideration at the individual farm or pond level. Wind 

speed at the ponds surface may vary from average wind speed in relation to surrounding vegetation 

and other structures, this in turn may increase or decrease evaporative heat loss and conductive heat 

exchange between the pond surface and air. Turbidity of ponds will affect the absorption of solar 

radiation (Kutty, 1987) although in aquaculture scenarios turbidity is likely to be fairly high in most 

ponds. There is also potential for reduction in solar radiation reaching ponds through shading 

provided either deliberately or as a result of pond surroundings.  

Nath (1996) conducted a sensitivity analysis when developing the model applied in the current study 

and found that for simulations of daily average water temperature mean air temperature had the 

greatest effect on outcome followed by relative humidity, short-wave solar radiation, cloud cover, 

and wind speed. Nath (1996) suggests that the sensitivity analysis results point to daily mean water 

temperatures being closely linked to evaporative heat flux which is in turn a function of ambient air 

temperature, relative humidity and wind speed. Nath (1996) also notes that the fairly low significance 

of solar radiation in the model outcome is surprising and notes that other pond water temperature 

models such as those developed by: Fritz et al. (1980), Krant et al. (1982), and Losordo (1998) are 

more sensitive to solar radiation.  

Results of linear regression of annual mean 20th century air temperature data used in the current 

study (independent variable) with annual mean modelled 20th century pond temperatures 

(dependant variable) are shown in Figure 3-22. Regressions were conducted over areas with land 

suitability scores of at least 128 out of 255 and where average annual temperatures are over 5, 10, 

15, and 20°C. While the fit of the regression becomes less good as minimum air temperature used 

increases it is noticeable that that the slope of the regression line becomes less steep and the 

intercept increases. This trend would fit with the observations of Nath (1996) in that evaporative heat 

flux plays a significant role in the model results at higher temperatures. Ultimately this means that 

the current model suggests that on average pond temperatures will decrease somewhat less than air 

temperatures. Taking an average over areas where annual average air temperatures are over 10°C 

and where land suitability scores are in the upper half of the range gives an increase in air 
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temperature of 2.4°C and in increase in modelled pond temperature of 1.8°C under 2°C of average 

global warming. This trend is further highlighted in Figures 3-23 and 3-24. 

Temperature data is more easily measured and tends to be more readily available than data for other 

climate variables. Also, air temperature is typically simulated with a good degree of accuracy by 

climate models. Given this and the above discussion, the further investigation of the relationship 

between air temperatures and pond temperature would seem a good area for potential further 

investigation. While a straight forward linear relationship between air and water temperature that 

can be applied over wide ranging areas and climate conditions for aquaculture is unrealistic, more 

regional relationships such as those developed by Wax and Pote (1990) may be useful in providing 

'quick and easy' means of assessing site suitability and potential impacts of temperature change. 

 

 
Regression area = land suitability score ≥ 128 and 
mean air temperature ≥ 5C 

 
Regression area = land suitability score ≥ 128 and 
mean air temperature ≥ 10C 

 
Regression area = land suitability score ≥ 128 and 
mean air temperature ≥ 15C 

 
Regression area = land suitability score ≥ 128 and 
mean air temperature ≥ 20C 

Figure 3-22: Regression of annual mean 20th century air temperature (x axis) with modelled annual mean 20th century 
pond temperature (y axis). Regressions were conducted over areas with land suitability scores of at least 128 out of 255 
and where average annual temperatures where over 5, 10, 15, and 20°C. 
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Figure 3-23: Estimated mean annual surface air temperature change under a 2°C warming scenario. 

 

 

Figure 3-24: Estimated mean annual pond temperature change under a 2°C warming scenario. 
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3.3.3 Water availability for rain fed ponds - outputs and discussion 

Figure 3-25 shows an overview of results from modelling water availability in rain fed ponds for a 

number of seepage and runoff scenarios under late 20th century conditions and for a 2°C mean global 

warming scenario. Highlighted areas show where water is predicted for more than 6, 9, and for 12 

consecutive months per year based on at least a 90 percent probability of a 2 metre deep pond being 

at least half full. In the case of the high seepage rate results are only shown for the maximum 

precipitation runoff scenario (200% of pond area) as there were very few areas indicated when small 

runoff quantities were used.  

Table 3-12 shows the areas (km2) for the results shown in Figure 3-25. The relative change between 

the late 20th century and 2°C global warming scenarios are also given. In general, a warmer world will 

mean increased evaporation rates although this may be offset in some areas by increasing 

precipitation (IPCC, 2007b). Overall, the figures displayed in Table 3-12 suggest an overall increase in 

area where rain fed ponds maybe expected to contain water. The large increases in area seen under 

the medium and high seepage scenarios can at least partially be accounted for by the small overall 

areas predicted to have water in association with the relatively low resolution (0.5 degree) of the CRU 

TS3.0 time series data used, meaning that a change in a small number of pixels accounts for a 

relatively large increase in percentage terms.  

Figure 3-26 shows the relative change in precipitation under 2°C average global warming as predicted 

by the 13 GCMs used in the current study. A notable drying trend is projected over the 

Mediterranean area with decreases also projected over southern Africa and Mexico. An increase is 

predicted over Eastern Africa while the picture over much of Asia is rather mixed. It is important to 

note that unlike temperature where agreement between climate models on patterns of change is 

generally strong, considerable uncertainty remains in relation to precipitation with different climate 

models predicting both increases and decreases for precipitation over the same areas. This point is 

further illustrated here in Figure 3-27 which shows out of 21 climate that contributed to the IPCCs 4th 

assessment report, the number that project an increase in precipitation over Asia. Given these 

considerations it is difficult to draw any firm conclusions from the data presented in terms of climate 

change effects on rain fed aquaculture. The results presented are probably best viewed in relation to 

current conditions with cautious indications where rain fed water availability patterns may be subject 

to change. It is also worth noting that the amount of seepage specified made a considerable 
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difference to model outcomes suggesting that appropriate pond construction may play an important 

role in feasibility of rain fed aquaculture in marginal water availability areas.  

For many areas water supply for aquaculture ponds extends beyond direct rainfall. In some very low 

lying swampy areas a high water table may maintain water in ponds (Sharma et al., 2013) while other 

ponds may depend on surface water from lakes, rivers, streams, springs and canals, or groundwater 

from wells (Kelly and Kohler, 1997). Various studies have attempted to model global changes in water 

supply under climate change scenarios (e.g. Islam et al., 2007, Murray et al., 2012). While potentially 

useful in highlighting future water resource issues, such studies are concerned with regional changes 

and operate at low resolutions (e.g. 0.5 degrees). In reality water resources that dictate site selection 

for aquaculture will typically be highly localised and complex with a very limited ability to be 

incorporated into broad-scale site selection models such as the current one.  

One interesting area where there may be scope for further development in locating surface water 

sources over large areas is the use of remotely sensed data. For example, MODIS data have been used 

to indicate the presence of surface water in relation to flood events (Handisyde et al., 2014, Islam et 

al., 2010, Sakamoto et al., 2007) and while MODIS operates at a relatively low resolution (250-500m), 

similar approaches could potentially be taken with high resolution sensors. While cloud cover is a 

problem for many regions in theory if multiple images can be obtained representing different times of 

year then it may also be possible to gain some insight into the seasonal nature of surface water 

supplies. 
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Figure 3-25: Number of consecutive months per year where a model rain fed pond has at least a 90% probability of being 
half full under a range of runoff and seepage scenarios. 

 

 

 

Consectutive months per year where a 2m deep pond has at least a 90% probability of being at least half full

< 6 ≥ 6 ≥ 9 12



 

115 

 

Table 3-12: Areas (km2) of model outputs shown in Figure 25. 

Seepage 
scenario 

Runoff scenario 
(percentage of 
pond area) 

Consecutive 
months per year 
pond is at least 
half full 

Area (km
2
) 

under late 20
th

 
century 
conditions 

Area (km
2
) 2°C 

mean global 
warming 

2°C warming 
area as a 
percentage of 
20

th
 century 

Low 

110% 

6 12,985,222 12,471,338 96.04 

9 12,286,294 11,767,006 95.77 

12 11,288,853 10,985,716 97.31 

150% 

6 25,519,070 25,474,825 99.83 

9 24,485,203 24,490,161 100.02 

12 22,572,093 22,679,503 100.48 

200% 

6 39,782,011 40,899,093 102.81 

9 38,167,792 39,132,288 102.53 

12 35,105,297 36,019,513 102.60 

Medium 

110% 

6 441,536 670,769 151.92 

9 367,823 579,666 157.59 

12 289,807 466,639 161.02 

150% 

6 3,209,949 3,752,914 116.92 

9 2,470,716 3,109,322 125.85 

12 1,951,437 2,565,078 131.45 

200% 

6 10,198,978 10,066,509 98.70 

9 7,495,995 7,639,839 101.92 

12 5,484,890 5,583,307 101.79 

High 

110% 

6 41,951 63,468 151.29 

9 32,980 51,424 155.93 

12 29,907 45,277 151.39 

150% 

6 191,133 270,256 141.40 

9 161,166 204,250 126.73 

12 118,378 170,552 144.07 

200% 

6 1,469,138 1,859,296 126.56 

9 1,065,717 1,511,807 141.86 

12 828,391 1,164,318 140.55 
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Figure 3-26: Projected change by the 13GCMs used in the current study for annual average precipitation amounts under 
2°C average global warming compared with late 20th century conditions.  

 

 

Figure 3-27: Number out of 21 climate models projecting an increase in precipitation under SRES scenario A1B (from: 
IPCC, 2007a).  

 

3.3.4 Combined sub-models - outputs and discussion 

As already outlined, two approaches to combining sub-model outputs are demonstrated here: an 

ordered weighted average of temperature and land suitability results, and use of specified limits for 

temperature and water availability to define an area within which land suitability can be considered. 
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In each case Nile tilapia (Oreochromis niloticus) were considered as a model species with a wide 

distribution in aquaculture terms. 

Figure 3-28 shows outputs from the Combination of land suitability and temperature using an OWA 

under late 20th century conditions and under an average 2°C global temperature increase . For display 

purposes every second month is shown. Figure 3-29 highlights the difference between the images 

shown in Figure 3-28 under the two climate scenarios. In this example there are regions that stand to 

both gain and lose in terms of suitability depending on the time of year. The Bangladesh area 

provides a good example of this with improved suitability score being seen for the colder months 

(December and February) while looking at the outputs for August there is a slight decrease in 

suitability in association with temperature above those specified as optimum. A similar situation is 

seen in Thailand and some other areas of south East Asia. Southern China is also notable as 

somewhere where there could be potentially positive impact in terms of an improved growing 

season.  

The results provided in the current example are obviously highly dependent on the reclassification of 

the temperature data. In the case of Nile tilapia it would potentially have been reasonable to extend 

the temperature ranges used to represent conditions that would more represent possible rather than 

optimal ranges while at the same time excepting a greater degree or risk in relation to unusually hot 

or cold periods. Such an approach, especially in the case of colder temperatures, could be used to 

indicate areas that would currently be considered marginal in terms of fish survival during colder 

months that may become more usable under warming conditions.  

Figures 3-30 and 3-31 show examples of outputs obtained by using specified limits for mean, 

minimum, and maximum temperature along with water availability to specify areas which can then 

be considered in relation to land suitability. Table 3-13 shows areas (km2) for Figures 3-30 and 3-31 as 

well as for where ponds are expected to contain water for 9 and 12 consecutive months per year. 

Results are shown based on both the GlobCover based land suitability sub-model output and that 

produced using MODIS land cover data. The areas defined by temperature and water availability are 

notably larger under the warming scenario which can be accounted for by the increased 

temperatures moving new areas into the defined acceptable range and again highlights the potential 

for increased production in many areas in relation to warmer conditions.  
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This method contrasts to the previous one in that there is no 'fuzziness' in relation to temperature 

suitability; areas are either considered useable or excluded. The advantage of such an approach is 

that by asking a number of specific questions of the database a potentially more focused answer is 

provided. In this case it allows for the land suitability sub model results to be considered without 

being 'diluted' through combination with other data. In theory this exercise could be repeated using a 

number of different temperature specifications to allow for a more detailed picture of suitability to 

be built up over different regions. Another potential advantage to using a decision tree approach to 

ask questions of the data is that it can avoid the need to standardise data to a common scoring 

system (Drobne and Lisec, 2009) which if not done with care may lead to potentially questionable 

results when factors are then traded against each other using weighted averaging methods. Finally, 

there is the potential to eliminate the risk of an area being indicated as suitable after combination of 

a range factors using a weighted average when according to one of the factors it is not.  

A key disadvantage of a decision tree approach is that it forces those developing it to make choices 

that can have a very definitive effect on the final outcome in a way that can be conceptually much 

more complex. It also potentially forces strict decision-making in situations where that may be very 

difficult due to levels of uncertainties about how a given variable relates to suitability, especially in 

the case of variables that may influence suitability but which are not considered critical. Another 

consideration is that the reality of working with spatial data sets often involves some degree of 

uncertainty about data quality and again in situations where such data relates to non-critical 

attributes the ability to allow the data to have some degree of influence on the final outcome without 

it having to result in a definitive answer can be potentially very useful.  

In summary, spatial data can be combined in a range of diverse ways to assist decision-making. A 

substantial advantage of a GIS approach is that once a spatial database is established changes can be 

made to decision support models relatively easily in relation to varying requirements and decision 

questions. It is suggested here that the use of multi-criteria evaluation approaches such as WLC and 

OWA would seem especially useful for the broad-scale assessment of aquaculture site suitability by 

allowing for the incorporation of variables with different levels of significance and degrees of 

uncertainty. The use of Boolean intersection, or constraints, is also valuable in allowing the exclusion 

of highly unsuitable areas as well as providing a means of investigating changes in potentially suitable 

area under changing conditions in relation to a specific set of requirements. 
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Figure 3-28: Suitability for warm water fish culture (tilapia as model species) based on a combination of land suitability and temperature using an OWA. 
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 century conditions) 

 

December (2°C average global warming) 

Figure 3-28 continued. Suitability for warm water fish culture (tilapia as model species) based on a combination of land suitability and temperature using an OWA. 
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Figure 3-29: Change in suitability (increase or decrease) between the two climate scenarios presented in Figure 3-28. 



 

122 

 

 

 

 

Figure 3-30: Areas meeting specified temperature requirements and with water predicted in rain fed ponds for at least 6 
consecutive months based on the low seepage rates and precipitation over an area representing 150% pond surface area. 
All climate data based on late 20

th
 century conditions. Defined areas are overlayed with outputs from the land suitability 

sub-model based on MODIS land cover data (See: Combination of sub-model outputs section for full details). 

 

 

Figure 3-31: Shows the same output as Figure 3-30 but based on the 2°C average global warming scenario rather than late 
20th century conditions. 
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3-13: Areas (km2) obtained by using specified limits for mean, minimum, and maximum temperature along with water 
availability using MODIS or GlobCover (see Figures 3-30 and 3-31). 

Suitability 

 

Percentage change between late 20th 

century and 2°C average global 
warming scenarios Late 20th century conditions  2°C average global warming 

Number of consecutive months where 
model ponds have at least a 90 
percent change of being over half full.  

Number of consecutive months where 
model ponds have at least a 90 
percent change of being over half full. 

Number of consecutive months where 
model ponds have at least a 90 
percent change of being over half full. 

6 months 9 months 12 months 6 months 9 months 
12 
months 6 months 9 months 

12 
months 

 

MODIS 

Constraint 5,152,099 4,599,448 3,396,707 5,846,756 5,331,893 4,698,242 113.48 115.92 138.32 

1 363,725 254,716 156,999 521,385 395,587 296,310 143.35 155.30 188.73 

2 1,559,071 1,185,971 823,249 2,094,198 1,730,445 1,372,258 134.32 145.91 166.69 

3 3,066,259 2,411,789 1,733,814 3,498,741 3,013,081 2,344,133 114.10 124.93 135.20 

4 752,919 497,152 319,684 823,134 629,220 404,900 109.33 126.56 126.66 

5 493,003 229,670 121,356 380,156 274,944 127,201 77.11 119.71 104.82 

 

GlobCover 

Constraint 5,176,209 4,621,917 3,416,816 5,872,550 5,354,701 4,717,648 113.45 115.85 138.07 

1 271,755 200,509 126,666 391,728 308,048 232,841 144.15 153.63 183.82 

2 1,472,278 1,125,999 781,113 1,970,943 1,617,660 1,287,193 133.87 143.66 164.79 

3 2,821,406 2,201,061 1,576,090 3,299,626 2,834,253 2,222,976 116.95 128.77 141.04 

4 966,827 684,602 450,558 1,064,434 843,396 576,812 110.10 123.20 128.02 

5 667,674 336,144 195,071 553,725 407,489 200,580 82.93 121.22 102.82 
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3.4 Concluding remarks 

The current study represents a unique assessment of site suitability for aquaculture at the global 

scale with data represented at a high resolution of 10 arcseconds. To date the largest scale GIS based 

site suitability assessments for aquaculture have operated at the continental level focusing on Latin 

America (Kapetsky and Nath, 1997) and Africa (Aguilar-Manjarrez and Nath, 1998, Kapetsky, 1994) 

and have operated at resolutions ranging from 3 to 10 arcminutes. Another significant and valuable 

feature of the current study that differs from other GIS models of site suitability for aquaculture, is 

the use of projections from a group of climate models to allow for modelling of pond temperature 

under global warming conditions as well as those representing the recent past.  

Two methods of combining data are demonstrated using Nile tilapia (Oreochromis niloticus) as a 

model warm water species that has temperature requirements that are broadly applicable to a range 

of commonly cultured tropical species. While outputs from the modelling process are best expressed 

as a series of images a number of general conclusions can be drawn: 

 Pond temperatures are projected to increase less than air temperatures in most areas 

although for many regions a 2°C average global warming scenario results in a greater than 2°C 

projected increase in air temperatures over land.  

 Depending on location and season both positive and negative impacts on suitability are 

projected in relation to the 2°C warming scenario. Some parts of Asia such as Bangladesh 

where aquaculture is highly significant show reduced suitability during the warmest part of 

the year. Overall viewed globally there would appear to be a positive trend for suitability in 

relation to increasing temperatures as a result of potential increases in growth performance 

in areas where colder temperatures are currently limiting. Such a trend may potentially allow 

for longer growing seasons or expansion into currently marginal areas. 

 In terms of water availability for rain fed ponds there are areas of both projected increase 

and decrease. Globally there is a projected increase in potential area under most seepage and 

runoff scenarios examined. It is worth noting that while the projected increases appear large 

in percentage terms in some cases the overall area in relation to grid resolution is low 

meaning that change in a small number of cells has a significant impact. This is an area that 

could be considered for potential refinement if suitable data become available.  
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To date research relating to direct climate change effects on inland aquaculture has been extremely 

limited. In terms of the spatial implications of potential change the current assessment provides 

valuable insights into potential effects of changing climate on suitability for the growing pond-based 

aquaculture sector. While negative impacts are projected for a number of locations, it is suggested 

here that the indication of positive effects in many areas is extremely important in terms of the future 

development of the sector and further research is almost certainly warranted.  
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4 USE OF MODIS MULTISPECTRAL IMAGERY FOR IDENTIFICATION OF 

SURFACE WATERS AND FLOODING IN BANGLADESH 
 

4.1 Introduction 

Inland aquaculture, especially that based in ponds, typically has site selection requirements that 

favour certain soil types and relatively flat areas with access to surface water sources (e.g. Nath et al., 

2000, Ross et al., 2009). Flood plain areas of river systems often meet these requirements and are 

thus popular locations for both aquaculture and terrestrial agriculture development. Regular seasonal 

flood patterns in many areas are anticipated and incorporated into production strategies of both 

aquatic and terrestrial farmers. However inter-annual variability in flooding is common in many areas 

resulting in potentially adverse consequences for areas generally assumed to be flood free (Mirza, 

2002).  

Bangladesh is a mostly low lying deltaic country with much of its area comprised of the floodplain for 

three large and converging rivers (the Ganges, Brahmaputra, and Meghna). 92.5% of the combined 

catchment area for these river systems lies outside the country over an area that includes the 

Himalayan region along with a significant area of India. The result of these extensive and diverse 

catchments is a large and varied volume of water draining through Bangladesh annually. (Mirza, 

2002) suggests that Bangladesh experiences an annual average flood coverage of 20.5% of the 

country area and that peoples livelihoods are well adapted to these average patterns. However more 

severe flooding is relatively frequent with 70% of the country inundated in the case of the 1998 flood 

that resulted when peak discharges of the Brahmaputra and Ganges that normally take place at 

different times occurred within two days of each other (Mirza, 2002). Along with this significant river 

based flooding Bangladesh also experiences flash flooding as a result of direct rainfall over low lying 

inland areas, and storm surge based flooding in coastal regions in association with tropical storms 

(Handisyde et al., 2006). 

While considerable uncertainty remains in relation to changing climate, and especially with regards to 

the water cycle and changing patterns of precipitation (IPCC, 2013), there are indications that 

monsoon and snow melt related runoff for the major drainage basins influencing Bangladesh is set to 

increase (Hasson et al., 2013, Lutz et al., 2014). Mirza et al. (2003) and Mirza (2011) found varied 

results when modelling flooding in Bangladesh under scenarios provided by 4 climate models. The 
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author also notes that in the case of models predicting increases in river discharge the greatest 

impact on flooding in terms of areas per °C increase in average global temperature occurred within 

the first 2°C of global warming. Mirza (2011) goes on to suggest that this result can be explained as a 

result of land elevation and that most potentially floodable areas would be inundated under modest 

increases in river discharge. Climate related changes may also influence flash flooding as a result of 

heavy rainfall directly over areas of Bangladesh with potential change in both spatial and temporal 

distribution as well as intensity (Nowreen et al., 2014). 

Islam et al. (2010) suggests that compared to many regions of the world ground based mapping of 

flood inundation within Bangladesh is fairly limited, and that an understanding of spatial and 

temporal patterns of flooding play an important role in relation agriculture.  While it may be 

theoretically possible to model flood risk through the use of hydrodynamic modelling (e.g. Masood 

and Takeuchi, 2012), such approaches are dependent on high quality data inputs, such as for 

elevation, which are often lacking.  

Compared with traditional survey methods the use of remotely sensed data obtained from a range of 

instruments aboard earth observation satellites has opened up possibilities for relatively quick and 

cheap mapping of land cover types over large areas with the ability to incorporate a time dimension 

though the use of multiple images.  

Synthetic aperture radar (SAR) data such as that provided by RADARSAT-1 and RADARSAT-2 is 

available at a range of resolutions and scene sizes and can provide extremely good land/water 

delineation. Another advantage of SAR based imagery is that it's performance is not impacted by 

atmospheric effects including cloud. This ability to record effective data in the presence of cloud 

cover makes it extremely useful for surface water detection during wet seasons when cloud cover is 

common. Hoque et al. (2011) used a series of RADARSAT images to monitor flood extent in 

Bangladesh during the period 2000 to 2004 with a considerably larger area than usual flooded in 

2004. Dewan et al. (2006) and Dewan et al. (2007) used a series of six RADARSAT images spanning the 

time period of an extreme flood event ( July to September 1998) in association with a GIS to assess 

flood risk for the greater Dhaka area. While SAR data is highly effective for detecting surface water it 

is generally not freely available thus its typical use, such as in the studies outlined above, involves a 

limited number of scenes with the aim of investigating specific events. 
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Data from a range of passive sensors has also been used to address the issue of surface water 

distribution and flooding. Islam and Sado (2000b) used three Advanced Very High Resolution 

Radiometer (AVHRR) images spanning a 21 day period to analyse the 1988 flood event that 

represented a 100 year record for Bangladesh. The authors went on to attempt to link dry season 

land cover type and elevation to the flooding described by the AVHRR images.  

The AVHRR data used by Islam and Sado (2000b) has a spatial resolution of approximately 1.1km. The 

use of higher resolution data would seem to have significant advantages for regions such as 

Bangladesh where parcels of land are often small and therefore the likelihood that different surfaces 

will be contained within the area represented by a single pixel is high. The Thematic Mapper (TM) and 

subsequent Enhanced Thematic Mapper plus (ETM+) aboard Landsat satellites provide a number of 

bands in the visible and infrared spectrum at a ground resolution of 30m. With a scene size of 

approximately 170 by 183km Landsat data strikes a good compromise between resolution, coverage 

and usability for investigating land cover and associated change over large areas and as such has 

formed the basis of a large number of studies where land cover data is required (e.g. Kirui et al., 2013, 

Zeledon and Kelly, 2009) as well as more specific focus on surface water delineation (e.g. Ouma and 

Tateishi, 2006, Wang et al., 2002). While the data processing requirements for an extensive time 

series of Landsat images would be large, perhaps its key limitation in terms of time series work is the 

long return period meaning that at best images are only available for the same area every 16 days. 

Factoring in issues of cloud cover which can be significant for many areas during wet seasons then the 

number of useable images is often small with a tendency to focus on dryer times of year. 

The Moderate-resolution Imaging Spectroradiometer (MODIS) is an instrument installed on the NASA 

Terra and Aqua satellites. MODIS collects data over 36 spectral bands, 7 of which are of interest in 

terms of land surface classification. Of these 7 bands 2 (red and near infrared) are available at 

approximately 250m resolution while the remaining bands (visible light and shortwave infrared) are 

provided at approximately 500m resolution. Due to the relatively quick return period of 1 or 2 days 

and large scene size MODIS provides a valuable tool where remotely sensed data is needed with a 

high temporal resolution. Another significant advantage of MODIS data is that it is made freely 

available as a set of pre-processed and highly useable products. Along with a large body of work 

relating to changes in land and vegetation cover, MODIS data have been used to investigate change in 

surface water coverage. For example Chipman and Lillesand (2007) used a MODIS-derived normalised 
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difference vegetation index (NDVI) to monitor change in lake area in southern Egypt. Murray-Hudson 

et al. (2014) used thresholds from a single MODIS band (band 1) to investigate flood distribution in an 

area of Botswana. The authors suggest that MODIS images showed a bimodal frequency distribution 

over the study areas with peaks representing wet and dry areas and that a threshold can be assigned 

in relation to the trough between the two peaks. It is worth noting that in the case of Bangladesh 

such a bimodal frequency distribution is not seen. This is likely a result of a much more complex land 

cover situation with a large number of pixels containing varied amounts of both vegetation and 

water. Huang et al. (2012) used thresholds from the Normalized Difference Vegetation Index (NDVI) 

and band 2 (near infrared) to analyse flood hazard in the Dongting lake area, China. Westra and De 

Wulf (2006) used Fourier analysis in association with short-wave infrared (band 7) data and the NDVI, 

the Normalized Difference Water Index (NDWI), and the Enhanced Vegetation Index (EVI) to monitor 

floodplain dynamics in northern Cameroon.  Sakamoto et al. (2007) built on the work of Xiao et al. 

(2006) to develop an algorithm that used EVI, Land Surface Water Index (LSWI) and the difference 

value between EVI and LSWI to investigate annual flooding within the Mekong delta by classifying 

pixels as land, mixed, or water related.  

The method developed by Sakamoto et al. (2007) has been applied with minor modification by 

Handisyde et al. (2014) to investigate flood risk for the Paraná river floodplain, Argentina in the 

context of aquaculture development. The same methodology has also been applied by Islam et al. 

(2010) to produce a flood inundation map of Bangladesh. The authors use the result to examine flood 

coverage during 2004 and 2007, both years with above average flood events. Islam et al. (2010) made 

use of a single RADARSAT image classified to show land and water to verify the MODIS result although 

the differentiation of mixed and water pixels does not seem to be included. The exact methodology 

used by Islam et al. (2010) for accuracy assessment, as well as the level of certainty over the 

RADARSAT image classification its self, are somewhat unclear.  

The current study aims to investigate the validity of the method adapted from Sakamoto et al. (2007) 

and applied by Islam et al. (2010) in relation to flooding in Bangladesh through the introduction of 

surveyed ground truth data and higher resolution Landsat ETM+ data. Alternative methods for 

classifying pixels into the land, mixed and water classes are also investigated. The results are used to 

construct an up to date time series which is examined in relation to inundation frequency as a 
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proportion of the total time series and can contribute to broader site suitability modelling within the 

region. 

 

4.2 Methods and data 

The methodology and workflow for the current study can be briefly summarised as follows: 

1. Collection of ground truth data. 
2. Use of ground truth data to produce a set of ground control points (GCPs) half of which are used to 

classify data and the other half for verification. 
3. Conversion of Landsat image digital numbers to surface reflectance values via comparison with 

corresponding MODIS images. 
4. Removal of cloud and cloud shadows from Landsat images. 
5. Production of normalised difference ratios along with EVI using Landsat data. 
6. Use of training points to produce histograms from normalised difference ratios, EVI and DVEL for land, 

mixed, and water pixels. 
7. Selection of best options from above and investigate thresholds for classification. Also consider multi 

stage classifications and multiband classification methods. 
8. Conduct accuracy assessments for above Landsat based classifications using GCPs. 
9. Production of normalised difference ratios along with EVI using MODIS data. 
10. Classification of above MODIS-based combinations guided by results obtained from Landsat data 
11. Accuracy assessment of MODIS combinations against best result from the Landsat data as well as GCPs. 

12. Production of time series of flood, mixed and land pixels using MODIS data. 
13. Analysis of time series to proportion of cloud free time series where water related pixels are present . 

 

4.2.1 Collection of ground truth data 

Ground truth data were collected for a range of locations within Bangladesh over a 4 day period 

(02/11/2008 to 05/11/2008) and consisted of a series of photographs with corresponding GPS 

information. Efforts were made to select areas from a diverse range of land cover types including 

areas of mixed land and water such as wetlands and flooded cropland. 

4.2.2 Creation of ground control points 

Ground control points (GCPs) were created based on recorded GPS points and corresponding 

photographs. Careful use was also made of high resolution satellite imagery, such as that provided by 

ESRI Basemaps, along with visual inspection of Landsat composites in order to produce GCPs for 

urban areas where field based records were limited. This method was considered appropriate in the 

case of well established urban areas where it is likely that temporal variation in land cover would be 

limited. While visual inspection of high resolution imagery may seem to provide a quick and easy 
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method for creating GCPs for other land cover classes such as those associated with crops and 

seasonal water coverage, it is suggested here that this would be inappropriate for a region such as 

Bangladesh where changes in land cover between the acquisition times of the high resolution 

imagery and the images to be classified could be significant.  

GCPs were initially created for 9 land cover classes which were then further reduced down to three 

classes representing land, water, and mixed pixels. The 9 initial classes allowed the further division of 

the main land, mixed and water classes during the investigatory stage when attempting to develop 

and refine classification methods. Table 4-1 gives details of the classes used in the current study and 

the number of GCPs created. In each class GCPs were randomly split into two equally sized groups, 

one of which was used as training data for developing classification procedures and the other for 

verification of classified images. 

Table 4-1: Land cover data used to create GCPs. Number of GCPs created shown in brackets (n = number of points). 

Initial land cover classes before being assigned 
as either: land, mixed or water. 

Land-mix-water classes Land-mix-water classes 
excluding class 9 

1. Water (n=431) Water (n=698) Water (n=698) 

2. Mixed water and vegetation (land) (n=155) Mixed (n=528) Mixed (n=275) 

3. Crops (n=253) Land (n=1505) Land (n=1505) 

4. Crops with water (rice) (n=120) Mixed (n=528) Mixed (n=275) 

5. Trees and shrubs (n=336) Land (n=1505) Land (n=1505) 

6. Bare ground (n=297) Land (n=1505) Land (n=1505) 

7. Urban (n=619) Land (n=1505) Land (n=1505) 

8. Clear deep water (n=267) Water (n=698) Water (n=698) 

9. Floating vegetation / dense vegetation in 
wetlands (n=253) 

Mixed (n=528)  

 

One area of slight uncertainty and potential classification difficulty was class 9 which appeared to be 

areas of very dense vegetation based on having very high vegetation index values e.g. Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). These areas were 

inaccessible when collecting ground truth data but consultation with local experts suggested that 

these were areas of floating vegetation associated with wetlands. In the current study wetlands were 

considered as mixed areas within the three class land, mixed, water scheme and it was decided to 
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include class 9 within the mixed pixel class. Due to its densely vegetated nature class 9 is potentially 

difficult to separate from land in terms of its spectral response. For example the classification scheme 

proposed by Sakamoto et al. (2007) that aims to classify areas as land, water or mixed uses an EVI 

value of greater than 0.3 to classify areas as land. Under this scheme the class 9 areas in the current 

study would be firmly classified as land. Due to these potential classification difficulties and given the 

relatively small overall area represented by this class it was decided to create two groups of GCPs 

representing mixed areas, one of which excluded class 9. This gave the option of assessing 

classification methods that may be accurate apart from these areas of dense wetland vegetation. 

 

4.2.3 Selection of Landsat data and conversion of Landsat digital numbers to 

MODIS surface reflectance equivalent  

Nine Landsat ETM+ scenes were used to form an area that, with the exception of the extreme north 

of the country, covers most of Bangladesh. Images were selected so that acquisition times 

corresponded as closely as possible to the dates on which ground truth data were collected. Details of 

the ETM+ images used are given in Table 4-2. Six of the Landsat scenes were supplied using the UTM-

46n projection system while the remaining three used UTM-45n. Those using UTM-45n were re-

projected to UTM-46n using nearest neighbour resampling to allow combination with the other 

images to form a single larger scene. 

Table 4-2: Landsat ETM+ scenes used. 

Path number Row number Acquisition date Projection of data as 
supplied 

136 43 09/11/2008 UTM-46n 

136 44 09/11/2008 UTM-46n 

136 45 09/11/2008 UTM-46n 

137 43 31/10/2008 UTM-46n 

137 44 31/10/2008 UTM-46n 

137 45 31/10/2008 UTM-46n 

138 43 07/11/2008 UTM-45n 

138 44 07/11/2008 UTM-45n 

138 45 07/11/2008 UTM-45n 
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Landsat ETM+ images are supplied with reflectance values for each band represented using an 

arbitrary 8-bit system of digital numbers ranging from 0 to 255. For the current study these digital 

numbers were converted to surface reflectance values (0-1) via comparison with equivalent MODIS 

images. This was achieved using MODIS product MOD09GA that supplies daily atmospherically 

corrected and standardised surface reflectance values. MOD09GA images were obtained for dates 

corresponding to the acquisition dates of the Landsat images being used. The images were then 

visually inspected to find areas of uniform reflectance that were large enough for Landsat and MODIS 

images to be compared without problems of varied Landsat values being represented in a single 

MODIS pixel. Efforts were made to find areas representing the lowest and highest reflectance values 

(excluding cloud) as well as those in-between. A linear relationship (see Figure 4-1) was then 

established between MODIS surface reflectance values and Landsat digital numbers for 

corresponding bands (Table 4-3). The advantages of this approach were that: a) it allowed for Landsat 

scenes collected on different days and under different atmospheric conditions to be standardised in 

terms of reflectance and thus combined into a single image that could then be classified, b) it would 

allow classification routines based on thresholds established using one set of data to be translated to 

the other. 

 

Table 4-3: Comparison of Landsat ETM+ and equivalent MODIS bands. 

Landsat MODIS 

Band Number Wavelength Interval Band Number Wavelength Interval 

1 0.45-0.52 µm 3 0.459 - 0.479 µm 

2 0.52-0.60 µm 4 0.545 - 0.565 µm 

3 0.63-0.69 µm 1 0.620 - 0.670 µm 

4 0.76-0.90 µm 2 0.841 - 0.876 µm 

5 1.55-1.75 µm 6 1.628 - 1.652 µm 

7 2.08-2.35 µm 7 2.105 - 2.155 µm 
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Figure 4-1: Relationship between MODIS surface reflectance values and Landsat digital numbers for images from Landsat 
paths 136, 137, and 138. 

 

4.2.4 Removal of cloud and cloud shadow from Landsat ETM+ data 

Cloud contamination of satellite images that use passive sensors such as Landsat ETM+ and MODIS is 

a major problem, especially during wet seasons. In the case of Landsat where the revisit time to a 

given area is relatively long (16 days) obtaining any number of wet season images can be extremely 

difficult. In the case of the current study the period for which ground truth data were collected and 

Landsat images obtained represented the end of the wet season and, fortunately, relatively little 

cloud contamination was present. The clouds that remained were mostly small in size and had the 

potential to impact on image analysis in two ways. The clouds themselves result in areas of high 

reflectance that could be potentially misinterpreted as areas of bare ground or manmade structures, 

this is especially true of less dense areas of cloud where reflectance values are not obviously higher 

than ground based objects. The other problem is with cloud shadows where areas of low reflectance, 

especially in the infrared bands, can be mistaken for water bodies.  

A considerable amount of work has focussed on removing clouds and shadows from satellite images 

and then using a variety of methods to fill the gaps based around either using other images (e.g. Jin et 

al., 2013, Martinuzzi et al., 2007, Roy et al., 2008) or the original image (e.g. Zhang et al., 2007). In the 

case of the current study filling of gaps left by removal of cloud and shadow, as well as those resulting 

from the Landsat SLC-off issue, was considered unnecessary as the total cloud area was quite low and 

the overall aim was to use Landsat images to assess the performance of classification methods rather 

than produce uninterrupted Landsat images per se.  

The areas of interest in terms of surface water and flooding in Bangladesh have the advantage of 

being extremely flat with the result that the distance between clouds and their shadows tended to be 

similar for a given scene. With this in mind an approach similar to that described by Martinuzzi et al. 
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(2007) was adopted where cloud is identified using a combination of Landsat ETM+ bands 2 and 6 

(blue and thermal infrared). The detected cloud areas were enlarged using a buffer and then moved 

to cover shadow areas which were further defined using band 4 (near infrared). Full details of the 

cloud and cloud shadow removal procedure are given in box 4-1. 

Text box 4-1: Details of cloud and cloud shadow removal procedure used for Landsat data.  

 

 

4.2.5 Classification of Landsat ETM+ images to show land, water and mixed pixels 

Due to being densely populated and highly cultivated, land cover in Bangladesh is often highly 

intricate with different cover types present within a small areas. With this in mind it was decided that 

initial development of classification methods using higher resolution Landsat ETM+ images would 

potentially be more informative when assessing accuracy against GCPs as there would be less chance 

of multiple land cover types being present in a single pixel. The most promising classification 

procedures could then be investigated using MODIS data. It was also significant that practical 

limitations when collecting ground-truth data meant that some data points were fairly close together 

potentially limiting their use for verifying lower resolution MODIS based images. In view of this 

another goal when classifying ETM+ imagery was the development of an accurate map showing land, 

mixed, and water areas that could be used along with GCPs when accessing the accuracy of MODIS 

based classifications.  

Four different classification methods were developed and investigated: A) a method adapted from 

Sakamoto et al. (2007) and common to Islam et al. (2010) and Handisyde et al. (2014), B) an 

unsupervised algorithm (ISOCLUST) used to assign pixels to a large number of classes that were then 

reclassified based on the use of GCPs, C) use of thresholds from a single Normalised Difference 

1. Areas with band 1 (blue) surface reflectance values above 0.09 and band 6-2 (thermal infrared 

high gain) values below the mean for the scene are identified. 

2. A 60 metre buffer was added to the areas identified in step 1 and the result was designated as 

cloud areas and removed from the image. 

3. A 150m buffer was applied to the areas identified in step 1 and the resulting image was shifted 

so that the buffered cloud areas now covered the cloud shadows that could be seen in band 4 

(near infrared). 

4. Shadow areas were defined as those that were covered by the shifted buffered cloud mask 

described in step 3, and where band 4 surface reflectance was less than 0.15. 
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Spectral Index (NDSI) (Landsat ETM+ bands 2 and 7), D) a two step process using thresholds from two 

NDSIs (Landsat ETM+ bands 2 and 7, and 3 and 4). 

4.2.5.1 A. Use of EVI and Land Surface Water Index (LSWI) (Sakamoto method) 

Sakamoto et al. (2007) demonstrated a method of classifying MODIS data to show land, water and 

mixed areas by using thresholds for EVI, LSWI and DVEL (EVI - LSWI). The method has been applied by 

Islam et al. (2010) to show flooding within Bangladesh and while RADARSAT images were used to 

verify results actual ground-truth data were not included. A key aim of the current study was to 

assess this methodology in the context of Bangladesh in relation to ground truth data both directly 

and via the use of higher resolution Landsat ETM+ images based on equivalent bands. The 

methodology applied in the current study differs from that described by Sakamoto et al. (2007) in 

that the wavelet transformation to smooth the data is omitted as it was considered important to 

highlight areas that are only flooded for short periods and that may be missed in an excessively 

smoothed data series. The method applied here is also consistent with that used by Islam et al. 

(2010). Details of the classification procedure and the indexes on which it is based are provided Figure 

4-2.  
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Figure 4-2: Classification method adapted from Sakamoto et al. (2007) used in the current study. 

 

4.2.5.2 B. Unsupervised classification using ETM+ bands 1,2,3,4,5, and 7 

Unsupervised classification methods typically share a common aim of identifying the major classes 

that exist in an image without the need for previous understanding of what these might be (Eastman, 

2012). A technique often employed with such approaches is to generate a relatively large number of 

classes which are then re-categorised, and often grouped, into meaningful classes of land cover type 

via the use of ground truth data. In the context of the current study it was assumed that the broad 

water, land and mixed classes would each contain a number of sub-classes and it was considered 

valuable to test whether the identification, and subsequent reclassification, of these classes using all 

available spectral bands may offer superior performance when compared to simpler reclassification 

of NDSIs and vegetation indexes based on fixed thresholds.  



 

139 

 

The ISOCLUST model that forms part of the IDRISI package is a self-organizing unsupervised classifier 

that Eastman (2012) notes is similar in concept to the ISODATA routine described by Ball and Hall 

(1965). ISOCLUST was used with bands 1,2,3,4,5, and 7 to generate an image with 22 classes with the 

number of classes being chosen based on an obvious break in the frequency distribution (Eastman, 

2012). The resulting 22 classes were then reclassified as either land, water or mixed based on highest 

frequency in a cross-tabulation with the set of training GCPs. This was done twice, once using training 

data including floating vegetation and once excluding it (Tables 4-4 and 4-5). Class one was not 

included in the cross tabulation as it effectively represented background data. It is worth noting that 

for some of the 22 classes the number of training points was very low and for two classes (15 and 20) 

there were no training points. Visual inspection of these classes suggested that they represented 

areas of sea surface and were therefore not relevant in terms of the current assessment.  

Table 4-4: Cross tabulation of ISOCLUSTER results with training points (excluding floating vegetation areas). 

 

Table 4-5: Cross tabulation of ISOCLUSTER results with training points (including floating vegetation areas). 

 



 

140 

 

4.2.5.3 C. Use of a single NDSI constructed from Landsat ETM+ bands 

When addressing the specific problem of separating water and land a range of simpler band 

combinations have been suggested often based on the combination of two bands in the form of a 

NDSI that combines either two infra red bands, or one infrared band with one band from the visible 

spectrum, based on the assumption that water surfaces tend to reflect less infrared radiation than 

other surfaces (Ji et al., 2009).  

For the current assessment the full range of potential combinations of visual with infrared, and 

infrared with infrared band combinations using ETM+ data were investigated along with the EVI and 

DVEL that were used by Sakamoto et al. (2007). For each index the set of GCPs designated as training 

data were used to generate frequency distributions of index values for land, mixed, mixed without 

floating vegetation, and water pixels using equal interval classes with a width of 0.05. The results are 

represented here in Fig 4-3 as a series of line graphs to allow for easy visual inspection of overlap 

between the different land cover types. 

Inspection of the frequency distributions in Figure 4-3 suggests that for Bangladesh a combination of 

one of the visual bands (1 - 3) with one of the shortwave infrared bands (5 or 7) was more likely to 

allow for separation of land, water, and in some cases mixed pixels, than a combination of near 

infrared (band 4) with shortwave infrared (band 5) as in the case of the land surface water index 

(LSWI). In the case of the EVI there was considerable overlap between the land and mixed classes 

while for DVEL (LSWI minus EVI) there was substantial overlap between the water and mixed classes. 

Band combinations 2 and 5, and 3 and 7 showed a good degree of separation between land, water, 

and mixed areas (excluding floating vegetation) but appeared to be slightly surpassed by a 

combination of bands 2 and 7 which surprisingly seem to be able to separate the mixed class from 

water and land even when the floating vegetation was included. Using the second set of GCPs to 

verify the results of classifications using a range of thresholds for NDSIs using bands 2-5, 3-7, and 2-7 

confirmed that in the case of Bangladesh the combination of bands 2 and 7 offered the best 

performance when attempting to classify ETM+ images using a single index. The most effective 

classification thresholds for the 2,7 band combination was: <0.1 = land, 0.1 to 0.6 = mixed, and >0.6 = 

water.  
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Figure 4-3: Frequency distribution of NDSIs as well as EVI and DVEL in relation to GCPs representing land, mixed, mixed 
including floating vegetation (FV), and water areas. 
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Figure 4-3 continued. 
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Figure 4-3 continued. 
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Figure 4-3 continued. 
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Figure 4-3 continued. 

 

4.2.5.4 D. Two stage classification using NDSIs from bands 2 and 7, and 3 and 4. 

The frequency distributions shown in Figure 4-3 suggest that while a combination of Landsat bands 3 

and 4 (red and near infrared) are unable to effectively separate land and mixed pixels they appear to 

perform very well at separating mixed pixels from water. With this in mind, a two stage classification 

process was developed that uses the NDSI of Landsat bands 2 and 7 to define land areas and then 

bands 3 and 4 to classify the remaining pixels as either water or mixed. Details of the classification 

procedure are given in Figure 4-4. The use of bands 3 and 4 was also motivated by the fact that in the 

case of the equivalent MODIS data (bands 1 and 2) these are the two bands that are available at the 

higher resolution of approximately 250m in the form of the MODIS MOD09Q1 product. It was hoped 

that incorporating this higher resolution data would offer more detail and improved performance 

when attempting to separate mixed and water areas.  
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Landsat bands 2,3,4,7

NDSI (bands 2 and 7) less 

than 0.1

NDSI (bands 3 and 4) more 

than -0.2

Land pixels

No

Yes YesNo

Mixed pixels Water pixels

 

Figure 4-4: Two step process for defining land water and mixed pixels using Landsat bands 2,3,4,and 7. 

 

4.3 Landsat ETM+ based classifications - outputs 

Figure 4-5 shows land, water and mixed pixel layers derived from Landsat ETM+ scenes using the four 

previously described Methods. Total area (km2) covered by each class within the borders of 

Bangladesh and excluding areas of cloud and missing data is given in Table 4-6. When viewed at the 

country scale all images show a superficially similar distribution of water and mixed areas with the 

possible exception of the image generated via the ISOCLUST routine which has areas indicated as 

mixed whereas in the other images they are displayed as water that forms part the annually flooded 

Haor basin in the north east of the country. Although no ground truth data were collected for that 

region, in view of what is known about that area it is likely that this constitutes an error on the part of 

the ISOCLUST output. 

When compared to images C and D generated using the Landsat NDSIs, the image derived from the 

adapted Sakamoto method (A) has considerably less pixels classified as mixed while a greater 

proportion are classified as water and land. Images C and D appear to be quite similar. Image D which 

is derived from the two step classification process using Landsat bands 2, 3, 4, and 7 has a slightly 

larger area defined as water and a smaller area defined as mixed when compared to image C 

obtained using only Landsat bands 2 and 7.  
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(A) Sakamoto method (B) ISOCLUST 

  

(C) Landsat bands 2 and 7 (D) Landsat bands 2, 3, 4, and 7 

Figure 4-5: Results of Landsat ETM+ based image classifications. 
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Table 4-6: Total area (km
2
) covered by each class within the borders of Bangladesh and excluding areas of cloud and 

missing data. 

 Sakamoto (A) Isoclust (B) Landsat bands 2 
and 7 (C) 

Landsat bands 2, 3, 
4, and 7 (D) 

Land 78789.01 79896.89 75930.44 75930.43 

Mixed 8458.64 9442.76 14397.28 13417.82 

Water 14321.09 12226.05 11241.04 12220.49 

 

4.3.1 Accuracy assessment of Landsat ETM+ based classifications 

Accuracy assessment of classified satellite imagery typically compares the classified image to a source 

of reference data. The reference data can take a range of forms such as other maps obtained via 

traditional survey techniques, other classified satellite imagery, or a series of GCPs where land cover 

type has been recorded. An obvious but significant assumption is that the reference data itself is 

highly accurate (Campbell and Wynne, 2011). Where GCPs are being used then the number of 

samples becomes significant with smaller samples sizes increasing the degree of uncertainty in the 

accuracy assessment. Campbell and Wynne (2011) cite Congalton and Green (2009) and suggest a 

sample size of 50 samples per land cover class as a general guideline with the suggestion to increase 

this to 75-100 when more than 12 classes are present or the total area of the image exceeds a million 

acres (approximately 4047 km2).  

The current study makes use of GCPs that were not used when classifying images to produce error 

matrices for each of the classified images shown in Figure 4-5. For each classification method two 

accuracy assessments were conducted, one using ground truth data that excludes areas of floating 

vegetation and the other that includes it. Accuracy statistics are summarised in tables: 4-7 

(classification scheme A), 4-8 (classification scheme B), and 4-9 (classification schemes C and D). Full 

error matrices are provided in Appendix 2 (Tables 9-1 to 9-9) where in each case ground truth data 

(columns) is compared against the classified image (rows). Errors of commission (ErrorC), and 

omission (ErrorO) are provided in each case. Errors of commission, sometimes referred to as user 

accuracy (where 1 - error of commission = user accuracy), represent reliability in terms of the 

likelihood that a pixel on the classified map represents that pixel on the ground. Errors of omission 

may be referred to as producer accuracy (where 1 - error of omission = producer accuracy) and 

represent how well a certain area can be classified i.e. what proportion of the ground truth data were 
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correctly classified. For each error matrix a total error (number of correctly classified control points / 

total number of control points) is also provided. Figures representing the kappa coefficient, or kappa 

index of agreement (KIA), are also provided for each row and column as well as an overall kappa 

figure for the accuracy assessment. The kappa coefficient is widely used for accuracy assessment of 

classified imagery and is a measure of proportional improvement by the classification method over 

completely random assignment to classes (Campbell and Wynne, 2011).  

When collecting ground truth data for the purpose of accuracy assessment an ideal sampling scheme 

would be one that uses completely random locations in sufficient quantity that all potential classes 

have a sufficient number of samples. (Campbell and Wynne, 2011, Stehman and Czaplewski, 1998). 

The reality of the current project was that field access was only possible for a relatively short period 

while in Bangladesh. As a result sampling could only be conducted from roads and was significantly 

constrained by time, access, finances, and other logistical issues. The result for the current project 

was that within reason ground truth data were taken where ever possible, but cannot be considered 

to have the statistical power of a properly designed and implemented random sampling scheme. That 

said, as much effort as possible was made to record field data accurately from a wide range of land 

cover types. With this in mind and considering that the classification is concerned with only three 

broad classes it is considered that the data collected represents a significant improvement over 

scenarios where no ground truth data is present and where accuracy assessment may involve 

significant reliance on alternative data sources such as: other classified satellite imagery, paper maps, 

and the interpretation of high resolution true colour images such as those provided by Google earth. 

Such data sources may be subject to their own inaccuracies as well as those of interpretation. There 

may also be issues with data representing different points in time for a region with very dynamic land 

cover.  

4.3.2 Accuracy assessment of Landsat ETM+ based classifications - results 

Classification schemes C and D based on using thresholds for Landsat-derived NDSIs both appear to 

offer a high degree of accuracy even when areas of dense floating vegetation are included in the 

assessment. It is also interesting that they appear to outperform the ISOCLUST based classification 

(B). The classification (A) based on the method adapted from Sakamoto et al. (2007) appears to 

perform least well in terms of overall error and kappa scores. However bearing in mind the previous 

discussion regarding the collection of ground truth data, it should be considered that while separate 
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data points were used for guiding classification and for accuracy assessment, all the data were 

collected at the same time from a limited number of areas. This in theory has the potential to give 

classification methods B, C and D that were constructed as part of the current study an advantage. 

Another related consideration is that the three classes of land, mixed, and water represent a 

continuum. In the case of Bangladesh there will be a large number of mixed pixels that contain both 

land and water either in the case of a transition between large water areas being covered by a single 

pixel, or in cases such as wetlands and flooded crops where there is a more even coverage of water 

and vegetation. The consequence of this is that the definitions of where the land and water classes 

transition to the mixed class are somewhat open to interpretation. Again, the classification schemes 

constructed as part of the current study, and guided by the collected ground truth data, would 

perhaps be expected to show an advantage over the independently established method of Sakamoto 

et al. (2007). That said while it seems likely that the method adapted from Sakamoto et al. (2007) 

would show errors between the land and mixed, or water and mixed classes due to differences in 

interpretation, it's most significant error was in misinterpreting land areas as water. Comparison with 

the original ground truth data showed that this error was mostly accounted for by urban areas being 

mistaken for water as they tend to have low EVI and LSWI scores. If urban areas are excluded from 

the ground truth data then the method adapted from Sakamoto et al. (2007) becomes notably more 

effective with most of the remaining error being accounted for by confusion between land and mixed, 

or water and mixed areas while errors between land and water are very low (see Table 4-7).  

Table 4-7: Summary statistics for classifications of Landsat ETM+ data using the method adapted from Sakamoto et al. 
(2007). 

 

Sakamoto method. Accuracy 
assessed against GCPs 
including areas of floating 
vegetation. 

Sakamoto method. Accuracy 
assessed against GCPs 
excluding areas of floating 
vegetation. 

Sakamoto method. Accuracy 
assessed against GCPs 
excluding areas of floating 
vegetation and urban areas. 

producer 
accuracy % 

user accuracy 
% 

producer 
accuracy % 

user accuracy 
% 

producer 
accuracy % 

user accuracy 
% 

Land 89.22 84.50 89.22 97.90 99.34 96.98 

Mixed 46.03 98.21 82.71 98.21 82.71 98.21 

Water 100 79.08 100 79.08 100 97.01 

Overall 
accuracy % 

83.96 91.44 97.15 

Overall 
kappa 

0.717 0.844 0.952 
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Table 4-8: Summary statistics for classifications of Landsat ETM+ data using the ISOCLUST routine. 

 

ISOCLUST routine. Accuracy assessed against 
GCPs including areas of floating vegetation. 

ISOCLUST routine. Accuracy assessed against 
GCPs excluding areas of floating vegetation. 

producer accuracy % user accuracy % producer accuracy % user accuracy % 

Land 97.41 97.41 99.89 98.26 

Mixed 88.28 84.74 83.46 84.73 

Water 94.15 97.14 94.15 97.14 

Overall 
accuracy % 

94.91 96.47 

Overall kappa 0.913 0.934 

 

Table 4-9: Summary statistics for classifications of Landsat ETM+ data using a threshold value for a single NDSI (bands 2 
and7), or two NDSIs (bands 2 and 7, and 3 and 4). 

 

NDSI from bands 2 
and 7. Accuracy 
assessed against 
GCPs including areas 
of floating 
vegetation. 

NDSI from bands 2 
and 7. Accuracy 
assessed against 
GCPs excluding areas 
of floating 
vegetation. 

NDSIs from from 
bands 2 and 7, and 3 
and 4. Accuracy 
assessed against 
GCPs including areas 
of floating 
vegetation. 

NDSIs from from 
bands 2 and 7, and 3 
and 4. Accuracy 
assessed against 
GCPs excluding areas 
of floating 
vegetation. 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

Land 99.59 98.12 99.59 99.59 99.59 98.12 99.59 99.59 

Mixed 91.21 96.04 92.48 93.18 93.31 98.67 96.24 97.71 

Water 98.15 97.85 98.15 97.85 100 99.39 100 99.39 

Overall 
accuracy % 

97.69 98.40 98.54 99.33 

Overall kappa 0.960 0.970 0.975 0.987 

 

4.4 MODIS data used in the current study 

A single MODIS scene covered the study area as defined by the Landsat coverage and Bangladesh 

boarder (h26v6). For initial classification and comparison with Landsat data MODIS products 

MOD09A1 and MOD09Q1 were obtained from the Terra satellite collection for 31st October 2008. 
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Both data sets are available at 8 day intervals and represent a composite image of best available data. 

Details of the contents of the two MODIS products used are given in Table 4-10. 

 

 

Table 4-10: Contents of MODIS products used in the current study. 

MOD09A1 (approx. 500m resolution) MOD09Q1 (approx. 250m resolution) 

500m Surface Reflectance Band 1 (620–670 nm) 250m Surface Reflectance Band 1 (620–670 nm) 

500m Surface Reflectance Band 2 (841–876 nm) 250m Surface Reflectance Band 2 (841–876 nm) 

500m Surface Reflectance Band 3 (459–479 nm) 250m Reflectance Band Quality 

500m Surface Reflectance Band 4 (545–565 nm)  

500m Surface Reflectance Band 5 (1230–1250 nm)  

500m Surface Reflectance Band 6 (1628–1652 nm)  

500m Surface Reflectance Band 7 (2105–2155 nm)  

500m Reflectance Band Quality  

Solar Zenith Angle  

View Zenith Angle  

Relative Azimuth Angle  

500m State Flags  

Day of Year  

 

4.5 MODIS cloud and cloud shadow mask 

The MODIS MOD09A1 product includes two sets of bit field quality control data (500m Reflectance 

Band Quality, and 500m State Flags). Both data sets contain information relating to cloud cover 

however the MODIS surface reflectance user guide (Vermote et al., 2011) states that the data labelled 

as reflectance band quality should not be considered as reliable as the state flags. For the current 

study masks for cloud areas and cloud shadow areas were extracted via the use of the 'create_mask' 

tool that forms part of the Land Data Operational Products Evaluation (LDOPE) tools package (Roy et 

al., 2002). Inspection of the MODIS data, especially bands relating to the visible spectrum, and in 

particular band 3 (459–479 nm), suggested that the cloud state flags were generally quite 

conservative with areas designated as cloud even where it was not visually obvious in the data. That 

said, there were a small number of instances where high reflectance values were seen in the visible 
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spectrum for areas not marked as clouds. It was also noted that in some cases these areas had 

straight edges and had the appearance of errors in the data other than that caused by cloud. 

Inspection of the other parameters available from the bit field quality control data did not reveal any 

masks that seemed to relate specifically to these errors. In view of this the decision was taken to also 

use band 3 with a threshold value of 0.2 to mask out cloud and other errors not covered by the state 

flags for cloud and cloud shadow. The band 3 value of 0.2 is slightly above the maximum reflectance 

seen in relation to ground objects and as an approach has been adopted in a number of previous 

studies in relation to MODIS data (Handisyde et al., 2014, Islam et al., 2010, Sakamoto et al., 2007, 

Xiao et al., 2006). 

 

4.6 Classification of MODIS data 

With the exception of the ISOCLUST classification which would not be easily implemented across a 

time series, the four classification methods applied to the Landsat ETM+ images were applied to the 

MODIS data. For the two methods based on the use of thresholds of NDSIs slight changes were made 

to the thresholds used as it was found that this gave superior results with the lower resolution MODIS 

data. 

 

4.6.1 Sakamoto method 

The method adapted from Sakamoto et al. (2007) was applied to MODIS data using the same 

classification scheme as was applied to the Landsat data (see Figure 4-2) but was applied twice: once 

using all the data from the MOD09A1 product at a resolution of approximately 500m, and once using 

higher resolution (approximately 250m) data available for bands 1 and 2 from the MOD09Q1 product. 

In this case the band 3 and 6 data were resampled to the higher resolution using nearest neighbours.  
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4.6.2 Classification using a single NDSI from bands 4 and 7 (equivalent of Landsat 

ETM+ bands 2 and 7) 

In terms of spectral response MODIS bands 4 and 7 are comparable to Landsat ETM+ bands 2 and 7 

and are used here to generate a land, mixed, and water map in a similar fashion to the Landsat data 

through the use of thresholds of a normalised difference index. Examination of NDSI values in relation 

to the frequency distribution of ground control points representing land, water and mixed areas did 

not result in obvious threshold points as was the case for the higher resolution Landsat data. Given 

the lower resolution of the data this may be the result of an increased proportion of mixed pixels that 

contain more than one land cover type. Instead, the use of different classification thresholds was 

investigated through the direct effect on classification accuracy when compared to GCPs as well as 

the most accurate Landsat based classification. When compared to Landsat it was found that while 

the best threshold for defining land remained the same, a reduction in the mixed to water threshold 

gave better overall classification accuracy. The MODIS data were classified as follows <0.1 = land, 0.1 

to 0.4 = mixed, and >0.4 = water. 

 

4.6.3 Two stage classification of MODIS using NDSIs from bands 4 and 7 and 1 and 

2 at 250m 

The two stage classification process using the green and shortwave infrared bands to define land 

areas followed by the red and near infrared bands to separate the remaining areas in to mixed or 

water classes was implemented using MODIS data from the MOD09A1 and MOD09Q1 data sets. The 

MOD09Ql provides the red and near infrared bands at a resolution twice that of MOD09A1 

(approximately 250m). To allow combination of the two data sets bands 4 and 7 from MOD09A1 were 

resampled to the higher resolution based on nearest neighbours. While the threshold of the NDSI 

from bands 2 and 7 used for defining land areas remained the same as used for the equivalent 

Landsat based classification, it was found that a change in threshold used for the NDSI of bands 1 and 

2 gave better results. Details are provided in Figure 4-6.  
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MODIS MOD09A1 bands 4 and 7

MODIS MOD09Q1 bands 1 and 2

NDSI (bands 4 and 7) less 

than 0.1

NDSI (bands 1 and 2) more 

than -0.4

Land pixels

No

Yes YesNo

Mixed pixels Water pixels

 

Figure 4-6: Two step process for defining land water and mixed pixels using MODIS bands 1,2,4,and 7. 

 

4.7 MODIS based classifications - outputs 

Figures 4-7 and 4-8 show classification results using MODIS data for a single time point (31-10-08)  

corresponding as closely as possible to the previously conducted Landsat ETM+ based classification. 

Images A and B were produced using the method adapted from Sakamoto et al. (2007). Image A was 

produced with a resolution of approximately 500m with all data coming from MOD09A1 data set. 

Image B was created with a resolution of approximately 250m using data sets MOD09A1 and 

MOD09Q1. Image C was produced at approximately 500m resolution using the single NDSI of MODIS 

bands 4 and 7, while image D was produced at approximately 250m resolution using the 2 stage 

classification process with NDSIs of bands 4 and 7 from MOD09A1, and 1 and 2 from MOD09Q1. Table 

4-11 shows areas covered by the different classes in image A to D. Image B has noticeably less mixed 

pixels compared with image A. The analysis in Table 4-11 support this and show that the difference is 

made up by increases in both water and land area. Image D has a considerably larger area classified 

as water and less as mixed compared with image C, while the land area classification method, data 

and therefore area is the same in both images. Comparing the images C and D with those produced 

using the Sakamoto method there is a noticeable difference in the distribution of mixed pixels with 

much of the Sundarban region classed as mixed in images C and D. Given that the region is comprised 

of a mangrove ecosystem the mixed classification may well be reasonable. Another difference 

between the two pairs of images is that when compared to images C and D images A and B have 

noticeably more defined (i.e. wider) major river systems.  

Figure 4-8 shows a magnified area of south western Bangladesh for each of the images from Figure 4-

7. Comparing the two images (A and B) produced using Sakamoto method; image B produced using 
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higher resolution data for two of the four input bands appears to show more detail, especially in 

relation to small areas of water such as smaller river channels that tend to be shown as mixed pixels 

and / or become fragmented with the lower resolution output (image A). Comparing images C and D 

shows a similar situation although less pronounced as, while mixed and water pixels are separated at 

the higher resolution, the separation of land from mixed or water areas is the same for both images.  

  
(A) Sakamoto method at approximately 500m 
resolution with all data from MOD09A1  
 

(B) Sakamoto method at approximately 250m 
resolution with bands 1 and 2 from MOD09Q1 
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(C) Classification of a single NDSI from bands 4 and 
7 at approximately 500m resolution with all data 
from MOD09A1 

(D) Two stage classification using NDSIs - bands 4 
and 7 from MOD09A1, bands 1 and 2 from 
MOD09Q1. Output at approximately 250m 
resolution. 

Figure 4-7: Comparison of MODIS-derived classifications for Bangladesh. 
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(A) Sakamoto method at approximately 500m 
resolution with all data from MOD09A1 
 

(B) Sakamoto method at approximately 250m 
resolution with bands 1 and 2 from MOD09Q1 

  
(C) Classification of a single NDSI from bands 4 and 
7 at approximately 500m resolution with all data 
from MOD09A1 

(D) Two stage classification using NDSIs - bands 4 
and 7 from MOD09A1, bands 1 and 2 from 
MOD09Q1. Output at approximately 250m 
resolution. 

Figure 4-8: Comparison of MODIS-derived classifications in an area of South-western Bangladesh. 

 



 

159 

 

Table 4-11: Total area (km2) covered by each class within the borders of Bangladesh and excluding areas of cloud and 
missing data for the MODIS based images shown in figure 7. 

 (A) Sakamoto all 
bands from 
MOD09A1 (approx. 
500m resolution) 

(B) Sakamoto using 
MOD09Q1 for bands 
1 and 2 (approx. 
250m resolution) 

(C) MODIS bands 4 
and 7 from MOD09A1 
(approx. 500m 
resolution) 

(D) MODIS bands 4 
and 7 from 
MOD09A1, bands 1 
and 2 from 
MOD09Q1 (approx. 
250m resolution 

Land 79125.33 80568.04 78178.02 78178.02 

Mixed 11065.97 8927.75 12704.41 10913.95 

Water 10800.26 11495.78 10109.13 11899.60 

 

4.7.1 Accuracy assessment of MODIS classification - procedure and results 

Accuracy assessments were conducted for the four MODIS based classifications used to produce the 

layers displayed in Figures 4-7 and 4-8. For each classification method two accuracy assessments 

where conducted: one against the same GCPs that were used previously when assessing the accuracy 

of the Landsat ETM+ based classifications, and the other against the results of the most accurate of 

the Landsat based classification. Tables 4-12 and 4-13 provide summaries of the accuracy 

assessments against GCPs and the previously classified Landsat imagery respectively, while full error 

matrices for each accuracy assessment are provided in Appendix 2 (Tables 9-10 to 9-17). 

The accuracy assessment against the previously classified Landsat imagery was included as it was felt 

that due to the high degree of accuracy it had shown it potentially provided a useful source of data, 

assumed to be reasonably accurate, and with a far larger sample size that covered the whole country. 

It was also felt that, compared to the limited sample size of the GCPs, it would potentially be more 

useful in highlighting the effects of the reduced resolution seen in the MODIS data. This can be 

illustrated in particular by looking at the accuracy assessment for image D that used the same two 

stage classification process as the Landsat based image which it was classified against. Given that the 

images where produced using the same methodology it would be expected that accuracy would be 

high. However the result is an overall Kappa value of 0.5919 with fairly poor accuracy scores seen in 

relation to mixed pixels. As the same methodology was used for creating both images the level of 

accuracy shown probably gives a reasonable indication of the limit of accuracy that may be expected 

when comparing MODIS imagery against Landsat under the current land, mixed, water classification 

scheme.  
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The fairly good overall accuracy scores that are seen under all four classification schemes can be 

largely attributed to the land class which covers a large portion of each image and is relatively well 

classified in each case. Out of the two classifications based on using the Sakamoto method the one 

making use of the higher resolution data for the red and near infrared bands seems to offer 

marginally better performance when compared against the previously classified Landsat image. The 

classification based on the use of a single NDSI from bands 4 and 7 performed poorly when assessed 

against GCPs and no better than the adapted Sakamoto method when assessed against the classified 

Landsat image. In summary, both of the classification schemes (B and D) making use of higher 

resolution data for bands 1 and 2 seem to offer marginally better performance than the lower 

resolution classifications. While the two stage classification of NDSIs (D) appears to offer slightly 

better performance than the adapted Sakamoto method (B), due to reasons already discussed here, 

and previously in relation to the collection of ground truth data, this difference may well not be 

significant.  

 

Table 4-12: Summary of accuracy assessments for the four different MODIS based classifications with accuracy assessed 
against GCPs.  

 

(A) Sakamoto 500m (B) Sakamoto 250m 
(C) NDSI bands 4 and 
7 (500m) 

(D) NDSIs from bands 
4 and 7, and 1 and 2 
(250m) 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

Land 95.50 87.17 94.00 81.35 98.64 80.96 98.64 80.96 

Mixed 56.39 36.06 39.10 40.31 37.59 30.67 45.11 52.63 

Water 46.77 84.44 60.00 90.70 37.85 91.11 55.38 97.83 

Overall 
accuracy 
% 

77.83 78.59 75.23 80.86 

Overall 
kappa 

0.5772 0.5726 0.4969 0.6059 
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Table 4-13: Summary of accuracy assessments for the four different MODIS based classifications with accuracy assessed 
against the most accurate map obtained from classification of Landsat ETM+ data (two step process with NDSIs of bands 2 
and 7, and 3 and 4). 

 

(A) Sakamoto 500m (B) Sakamoto 250m 
(C) NDSI bands 4 and 
7 (500m) 

(D) NDSIs from bands 
4 and 7, and 1 and 2 
(250m) 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

producer 
accuracy 
% 

user 
accuracy 
% 

Land 92.36 81.35 93.54 87.54 92.59 89.27 92.59 89.27 

Mixed 33.90 40.31 29.44 44.19 40.55 42.81 41.85 51.42 

Water 69.93 90.70 76.73 81.57 64.88 78.43 76.94 79.01 

Overall 
accuracy 
% 

81.94 

 

83.05 

 

82.38 

 

84.00 

 

Overall 
kappa 

0.5324 

 

0.5512 

 

0.5503 

 

0.5919 

 

 

4.8 Construction of a classified MODIS data time series 

MODIS data from MOD09A1 and MOD09Q1 were downloaded from the earliest available date (18-

02-2000 until 09-05-2014). Images were available at 8 day intervals and the time series was complete 

with the exception of 18-06-2001 giving 654 images in total. Given the discussion above in relation to 

accuracy assessment and the comparable performance of the different methods considered, three 

time series of classified images were initially created using: the Sakamoto method with all data 

coming from MOD09A1 to produce images at approximately 500m resolution, the Sakamoto method 

with data from MOD09A1 and MOD09Q1 with an output at approximately 250m, and the two stage 

classification using NDSIs and data from MOD09A1 and MOD09Q1, again with an output at 

approximately 250m.  

While ground truth data were only available for the one time point, the resulting time series were 

inspected for obvious errors and in relation to prior knowledge regarding surface water patterns 

within Bangladesh. The two classifications based on the adapted Sakamoto method appeared to show 

consistent performance throughout the time series with the version using higher resolution data 

seemingly showing more detail in a similar fashion to the images shown in Figure 4-8. The results of 

the time series based on the reclassification of NDSIs from bands 4 and 7, and 1 and 2 were less 
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encouraging due to the fact that some images seemed to suffer atmospheric effects, such as would 

normally be associated with cloud contamination, beyond the areas covered by the cloud mask. There 

was also the tendency, as discussed in relation to the images in Figure 4-7, to reduce the width of 

rivers compared to the Sakamoto method. This was especially noticeable during the dry season but 

without adequate ground truth data for these periods it is not possible to say if this is valid or not. 

  

4.9 MODIS time series outputs 

Figure 4-9 shows, on a pixel by pixel basis, the total number of cloud free images that were available 

from the time series. Figure 4-10 shows the percentage of cloud free images that were classified as 

water, while Figure 4-11 shows the percentage of cloud free images that are water related (classified 

as either water or mixed). The dark blue areas in Figure 4-10 highlight areas of permanent water 

including major river channels and a significant area in the south west of the country that is 

associated with pond aquaculture. Areas with regular seasonal inundation such as the large Haor 

basin in the North West of the country are also clearly visible when the data is viewed at the national 

scale. Areas in orange i.e. those that are only inundated occasionally may be vulnerable in terms of 

flood risk (Handisyde et al., 2014). Such areas may represent situations where significant flooding 

does not normally take place and thus may be treated as largely flood free, but where flooding can 

occur during more extreme scenarios. It is tentatively suggested that such areas could be of interest 

under changing climate conditions involving increased precipitation and / or runoff as locations 

potentially prone to more severe inundation.  
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Figure 4-9: Number of available MODIS images for Bangladesh (2000-2014), after removal of cloud and cloud shadow. 
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Figure 4-10: Percentage of the available time series for Bangladesh (2000-2014), where pixels classified as water are 
present. 
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Figure 4-11: Percentage of available time series for Bangladesh (2000-2014),where water related pixels classified as 
belonging to the mixed or water class are present. 
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4.10 Concluding remarks 

Based on the previous discussion in relation to the construction of classified MODIS time series, the 

results of the accuracy assessments, and its track record within the literature it is suggested here that 

the approach described by Sakamoto et al. (2007) and adapted for use in the current study offers a 

valid means of attempting to define land, mixed and water related pixels using MODIS data within 

Bangladesh.  

The time series presented here in terms of inundation frequency as a percentage of total time series 

provides valuable insight into areas that contain largely permanent water, are frequently flooded, or 

infrequently flooded and therefore perhaps areas that are considered largely flood free but may be at 

risk under future climate regimes. Such information, while valuable in itself, can also make important 

contributions to broader site suitability models designed to inform development activities such as 

aquaculture and it is in this context that the current study was originally conceived.  

The classification methods investigated based on the use of NDSI thresholds while not outperforming 

the Sakamoto method when classifying MODIS data performed very well with Landsat ETM+ images 

for the Bangladesh region and may prove useful in that sense in their own right. 

Often classification of water areas using MODIS has aimed to detect relatively large and distinct water 

bodies or areas of flooding and have made use of a two class system with pixels designated as land or 

water (e.g. Feng et al., 2012, Li et al., 2011, Khan et al., 2011, Huang et al., 2012). While Bangladesh 

does contain large uninterrupted areas of water, especially during flood season, much of its area 

presents a genuinely mixed scenario when attempting classify land cover using moderate resolution 

data. As such the inclusion of a mixed class as in the case of the current study would seem useful.  

In the case of the current study regardless of classification method the mixed class achieved low 

accuracy scores when using both ground control points and higher resolution ETM+ classifications 

and ground truth data. Visual inspection of MODIS based classifications using the method adapted 

from Sakamoto et al., (2007) in comparison and similarly classified ETM+ data, as well as true and 

false colour composites of ETM+ bands, suggests that overall patterns of land cover appear accurate. 

This and the fact that low accuracy scores are seen for mixed areas when MODIS based classified data 

is assessed against ETM+ data classified using exactly the same methods suggests that much of the 

problem lies in the lower resolution of the MODIS data. Due to the complex and intricate nature of 
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land and water coverage in Bangladesh many areas could be seen where ETM+ based classifications 

would show patterns of land and water pixels within an area that would be covered by a single 

MODIS pixel. In such a situation the classification of MODIS data as mixed could be viewed as 

technically correct although it would be viewed as incorrect when accuracy is assessed against the 

higher resolution data and corresponding ground control points. 

With the above in mind it would seem there is potential for further research with regard to mixed 

pixels over Bangladesh when using MODIS data. Two broad approaches can probably be considered: 

1) algorithms that attempt to quantify the level of land and water within a pixel, and 2) data blending 

methods where data with a high spatial but low temporal resolution (e.g. ETM+) is blended with low 

spatial resolution, high temporal resolution data (e.g. MODIS).  

Guerschman et al. (2011) developed the Open Water Likelihood (OWL) algorithm that has been 

applied in a number of further studies (Chen et al., 2013, Huang et al., 2014, Karim et al., 2011). The 

OWL algorithm aims to predict the probability that a MODIS pixel contains water, however it's 

development and evaluation was based around the proportion of a MODIS pixel occupied by water 

based on higher resolution Landsat data. It's development and subsequent use has focused on areas 

within Australia, an environment that is very different to Bangladesh where truly mixed surfaces are 

likely to be common even at the higher resolutions found in Landsat imagery. Even so the 

methodology and principles behind it may be worthy of further investigation in the context of 

Bangladesh.  

Methods for blending of MODIS and Landsat data with the spatial resolution of Landsat and temporal 

resolution of MODIS have been reviewed by Emelyanova et al. (2012). The authors note that the 

complex algorithms: Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM, Gao et al., 

2006), and the Enhanced version of STARFM (ESTARFM, Zhu et al., 2010) were computationally 

expensive and didn't always outperform simpler methods: the Linear Interpolation Model (LIM) and 

the Global Empirical Image Fusion Model (GEIFM). In the context of Bangladesh while the 

implementation of data blending approaches may be worth further consideration, the highly dynamic 

nature of land cover combined with often very infrequent availability of cloud free Landsat imagery 

may well limit the feasibility of such methods.  
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A key consideration with regards to the implementation of any of the mixed pixel approaches 

outlined above would be obtaining ground truth data of sufficient quality and quantity to make such 

exercises worthwhile. 
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5 LANDSAT ETM+ DERIVED 30 METRE RESOLUTION LAND COVER 

FOR BANGLADESH 
 

5.1 Introduction 

 

Maps that detail land cover type (e.g. crops, forest, bare ground, urban, water etc.), either used 

directly or as part of a more complex modelling process, are potentially highly useful sources of 

information for a wide range of decision making processes (Herold et al., 2008) including those 

relating to aquaculture site suitability (e.g. Giap et al., 2004, Giap et al., 2005, Karthik et al., 2005, 

Nath et al., 2000, Rajitha et al., 2007, Salam et al., 2003). 

While it is technically possible to produce high quality and detailed land cover maps through 

traditional survey techniques, for all but the smallest survey areas such an approach will be extremely 

resource intensive and as a result detailed mapping is often dated, or not available at all for many 

regions. This situation is likely to be especially true for developing regions where due to the 

potentially high costs, the development of detailed mapping may not be a priority. 

An alternative and common approach to the development of land cover maps is the use of remotely 

sensed data that in the majority of cases is obtained from satellite mounted sensors. While active 

sensors using synthetic aperture radar (SAR) such as RADARSAT-1 and RADARSAT-2 are highly useful 

in that they are unaffected by atmospheric conditions such as cloud, most land cover classification 

work makes use of imagery obtained by passive sensors that provide a number of distinct bands 

within the electromagnetic spectrum. A wide range of techniques exist for classifying remotely sensed 

data that at a basic level are built around the principle that different land cover types will have 

different reflectance values at given points within the electromagnetic spectrum. In theory this allows 

ground based objects to have a unique spectral pattern that can be compared with known spectral 

responses obtained from either existing spectral signature libraries, or often from carefully selected 

sample areas on the ground that specifically relate to the required land cover classes (Campbell and 

Wynne, 2011, Eastman, 2012, Jensen, 2006). 

Resolution of multi band remotely sensed data varies considerably. At one extreme instruments such 

as GeoEye-1 and QuickBird achieve resolutions of less than a metre for the panchromatic band, while 
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other sensors such as the Advanced Very High Resolution Radiometer (AVHRR) have resolutions of 

over 1km. As would be expected the swath width and thus area covered by individual scenes varies 

with sensor resolution and thus there is a trade off between resolution and coverage. While it is 

common practice to combine more than one scene in order to cover a study area resolution still 

becomes relevant in as much as while it would be theoretically possible to cover a large area with a 

large number of very high resolution images, the data acquisition, processing and storage implications 

of such an exercise are likely to be restrictive.  

Low resolution instruments with frequent return periods and a large swathe width such as AVHRR 

and the Moderate-resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua and 

Terra satellites are extremely useful in terms of estimating land cover and monitoring change over 

large areas or even globally, and have formed the basis of a number of global land cover products 

(Friedl et al., 2010, Hansen et al., 2000, Loveland et al., 2000). However low resolution sensors such 

as these are unable to pick out smaller land cover features and are more likely to suffer from mixed 

pixel situations where an individual pixel includes more than one land cover type making accurate 

classification considerably more challenging (Kaptué Tchuenté et al., 2011). The Landsat program 

launched its first satellite in 1972 carrying the MultiSpectral Scanner (MSS) instrument that recorded 

data across multiple bands at a resolution of 80m. In 1982 the launch of Landsat 4 carrying the 

Thematic Mapper (TM) instrument saw the resolution increased to 30m, while Landsat 7 launched in 

1999 with its Enhanced Thematic Mapper (ETM+) saw the inclusion of a panchromatic band with a 

resolution of 15m. Landsat TM and ETM+ with their swathe widths of approximately 185km strike a 

good compromise between detail and coverage. This, combined with the fact that there is a large 

archive of freely available data spanning a number of decades, means that along with Terra ASTER, 

Landsat TM imagery is the most commonly used source for regional land cover assessment (Lu and 

Weng, 2007, Purkis and Klemas, 2011).   

The current study details the production of a classified land cover layer for Bangladesh at 30m 

resolution via the use of Landsat ETM+ imagery. This land cover layer will contribute to geographic 

information system (GIS) based model of site suitability for aquaculture. Bangladesh is one of the 

world's most densely populated countries with a 2013 estimate of 1203 people per square kilometre 

(World_Bank, 2014b). As a consequence land use in the country is intensive and intricate with many 

small parcels of land resulting in interesting but challenging land cover classification scenarios. 
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5.2 Methods and data 

 

5.2.1 Data choice and acquisition  

Images obtained by the Enhanced Thematic Mapper Plus (ETM+) instrument aboard the Landsat 7 

satellite were used for the current study. A major advantage of ETM+ data is that it is freely available 

for download as a level 1T product meaning that images are georeferenced and terrain corrected 

based on the use of a digital elevation model (DEM) and a number of ground control points. Images 

had an individual scene size of approximately 185 x 185km allowing for virtually the whole of 

Bangladesh to be covered by combining 9 scenes into a single image with an overall resolution that 

still allows for relatively easy processing. Another advantage of Landsat is that data is collected 

continuously with a return period of approximately 16 days. This contrasts with the on-demand 

nature of data collection with instruments such as ASTER and SPOT meaning that the potential of 

obtaining images that cover the whole country over a relatively small time period is higher and that it 

is more likely that this time period can be close to that when ground truth data were collected.  

While Landsat ETM+ data have a lot to recommend it one disadvantage results from the failure of the 

scan line corrector (SLC) on 31st May 2003 (Markham et al., 2004). The result is that ETM+ images 

obtained since that time are complete in the centre but show increasingly large gaps in data towards 

the edge of the swath with approximately 22 percent of each scene missing. For the current study 

ETM+ images created before the SLC error were used to fill gaps in data. Details of all Landsat data 

used are provided in Table 5-1. The dates for the primary images were chosen to correspond as 

closely as possible to the dates on which ground truth data used to guide image classification was 

collected. It was fortunate that images for this period were largely cloud free resulting in all primary 

images used being obtained from dates within a week each side of ground truth data collection. 

Images used for gap filling the primary images were obtained for dates as close as possible to the 

primary images in terms of time of year while at the same time providing cloud free data. 
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Table 5-1: Landsat scenes used in the current study 

Path and row Acquisition data of main scene Acquisition data of fill scene 

P136 R43 09/11/2008 08/10/2002 

P136 R44 09/11/2008 08/10/2002 

P136 R45 09/11/2008 19/12/1999 

P137 R43 31/10/2008 31/10/2002 

P137 R44 31/10/2008 31/10/2002 

P137 R45 31/10/2008 31/10/2002 

P138 R43 07/11/2008 17/11/2000 

P138 R44 07/11/2008 17/11/2000 

P138 R45 07/11/2008 17/11/2000 

 

5.2.2 Cloud and cloud shadow removal 

The primary ETM+ scenes contained a small amount of cloud. These clouds were mostly small but had 

the potential to cause errors in two ways: the clouds themselves result in high reflectance values that 

can be mistaken for areas of bare ground or urban structures, while cloud shadows result in low 

reflectance values, especially in the infrared bands, which gives the potential for wrongly identifying 

them as areas associated with water. Clouds and cloud shadow areas were removed using an 

approach similar to that described by (Martinuzzi et al., 2007). For a full discussion and details of the 

cloud removal procedure see section 4.2.4. 

 

5.2.3 Filling gaps in primary ETM+ images 

A number of methods have been proposed to address the issue of gaps in ETM+ images as a result of 

the SLC problem. Gap filling methods can generally be categorised as those that attempt to fill gaps 

using the original image (i.e. interpolation, segmentation and kriging methods), and those that make 

use of additional images from a different time point and attempt to adjust the relative reflectance of 

the fill pixels to match the main scene. Table 5-2 (adapted from: Jabar et al., 2014) provides an 

outline of potential methods for dealing with SLC-off related gaps. 
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Table 5-2: Potential methods for dealing with SLC-off related gaps 

Gap filling method Single or 
multi source 

Advantages Limitations Relevant 
publications 

Simple interpolation Single source Simple and easy 
implementation 

Inaccurate results 
because the gap 
value calculated 
from surrounding 
pixels 

 

Multi-scale 
segmentation 

Single source Most of gap pixels with 
high accuracy were 
interpolated 

At pixel level the 
accuracy of the 
reflectance 
prediction is low 

(Maxwell et al., 
2007) 

Global histogram 
matching (GHM)  

Multi source Suitable results with 
invariant terrain scene 

Visible error in 
heterogeneous 
scene where there 
were transient areas 

(Scaramuzza et al., 
2004) 

Local linear 
histogram matching 
(LLHM) 

Multi source Suitable results with 
predefined condition 
of minimal cloud, snow 
and time acquired 
separation 

Inaccurate results 
when there were 
differences in target 
radiances 

(Scaramuzza et al., 
2004) 

Adaptive window 
local histogram 
matching (AWLHM) 

Multi source Good results in 
homogeneous 
landscape 

Still, gaps visible 
when the significant 
change has occurred 
in areas smaller than 
the local window 
size 

(NASA., 2004) 

Geo statistical 
methods 

Kriging (single 
source) Co 
kriging (multi 
source) 

Provide uncertainty of 
prediction 

1 - Could not predict 
the reflectance well 
at a pixel level  

  

2 - computationally 
complex 

(Zhang et al., 2007) 

 

(Pringle et al., 2009) 

Multispectral 
projection 
transformation 
based on principal 
component 
transformation. 

Multi source Preserving the 
radiometric 
characteristic of 
multispectral data 

Visible gap lines with 
sharp radiometric 
differences areas. 

(Boloorani et al., 
2008) 
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Neighbourhood 
similar pixel 
interpolator (NSPI) 

Single source 1 - Recovering 
heterogeneous 
landscape  

2-The spatial 
continuity of the filled 
images can be retained 
even using the 
auxiliary image with a 
long time interval 

Cannot produce 
statistical 
uncertainty of 
prediction 

(Chen et al., 2011) 

 

(Zhu et al., 2012) 

 

The current study makes use of the adaptive window local histogram matching (AWLHM) approach 

(NASA., 2004) via the use of the freeware program Frame and Fill produced by Richard Irish 

(SSAI/NASA). Potential options for gap filling included using multiple SLC-off images where the gaps 

are at slightly different locations, or to use a single SLC-on image obtained prior to the SLC 

malfunction. Choice of fill scenes was significantly limited by cloud contamination and after 

preliminary investigation it was decided to use a single SLC-on fill image. These images where then 

used to fill gaps resulting from both the SLC-off issues as well as those where cloud and cloud shadow 

had been removed. 

 

5.2.4 Standardisation and concatenation of images 

ETM+ images are supplied with surface reflectance values expressed using an arbitrary 8bit scale (0-

255) of digital numbers. These numbers indicate relative variation of reflectance over an individual 

image but are not directly comparable between images with values being influenced by atmospheric 

effects. The MODIS MOD09GA product has bands with a similar spectral response to ETM+, albeit at a 

much lower resolution, and provides daily images that are atmospherically corrected and have 

standardised surface reflectance values. By carefully selecting areas of homogeneous pixels within 

the ETM+ images a linear relationship was established between MOD09GA and ETM+ on a band by 

band basis for each of the images enabling all ETM+ images to be converted to standardised surface 

reflectance values. It was then possible to combine the 9 ETM+ scenes to form one large one using a 

simple concatenation process within a GIS. This process is described in full section 4.2.3. 
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5.2.5 Ground truth data collection 

Ground truth data were collected for a range of locations within Bangladesh and covered a variety of 

land cover types including areas of mixed land and water such as wetlands and flooded cropland. 

Data collection took place over a 4 day period (02/11/2008 to 05/11/2008) and consisted of a series 

of photographs with corresponding GPS information.  

 

5.2.6 Creation of ground control points and selection of land cover classes 

Land use in Bangladesh is very diverse both in space and time with very little land in low lying areas 

remaining unused. An ideal land cover data set would contain a large number of classes that would 

cover variables such as types of crops and cropping / land use patterns throughout the year. In reality 

data availability, both in terms of cloud free images and corresponding ground truth data, does not 

allow for such detailed analysis and there is a trade-off between number and specificity of classes and 

classification accuracy. 

The ground control points GCPs produced and described in relation to Chapter four where they were 

reclassified to represent water, mixed, and land classes were used here under a more complex 

classification scheme. Data were initially assigned to nine classes: clear water, turbid water, mixed 

vegetation and water, crops, crops with water, trees and shrubs, bare ground, floating 

vegetation/dense vegetation in wetland areas, and urban. Preliminary investigation suggested that 

separating areas of crops and water from other mixed water and vegetation areas using a single 

Landsat image was not feasible so these two classes were combined into a single mixed vegetation 

and water class. The two water classes were subsequently combined as the point of transition 

between the two was arbitrary and the distinction was considered unimportant in terms of 

application of the resulting land cover map. Vegetation indexes such as the enhanced vegetation 

index (EVI) indicate the floating vegetation/dense vegetation in wetland areas class as being densely 

vegetated which in a sense it is, although the areas would be more accurately classed as water, or 

mixed land and water areas. Examination of the spectral response for individual ETM+ bands, as well 

as combinations of bands, suggested that these areas would easily be confused with other densely 

vegetated areas such as trees. Given the small overall area occupied by this class and the potential for 
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it to introduce errors when classifying important areas such as trees and croplands, it was decided to 

exclude it from the classification process. The result of these refinements was a six class scheme: 

1. Water 

2. Bare ground including crop areas post harvest / pre-planting 

3. Trees and shrubs 

4. Crops 

5. Mixed water and vegetation 

6. Urban 

 

GCPs derived from collected ground truth data were randomly split into two equally sized groups: one 

used to guide classification, often referred to as training data, and the other set reserved for accuracy 

assessment. Ideally GCPs for the purposes accuracy assessment would be derived from a totally 

random sampling scheme with a sufficient number of points that all classes are adequately 

represented (Campbell and Wynne, 2011, Foody, 2002, Stehman and Czaplewski, 1998). As discussed 

in Chapter four in relation to accuracy assessment of ETM+ classifications, sampling was conducted 

from roads and was constrained by time, access, finances, and other logistical issues. The result is 

that sampling points tended to be grouped in a number of areas and cannot be considered randomly 

distributed. While GCPs were randomly allocated for either training or verification of image 

classification in reality they are likely to be from similar areas in many cases which in turn has the 

potential to indicate a greater degree of accuracy than would be seen under a truly random sampling 

scheme.  

With the above in mind a second set of GCPs were produced. Given the small overall area occupied 

by urban areas, in particular when compared to other classes, an unrealistically large number of 

sample points would be required under a completely random sampling scheme in order to achieve a 

reasonable quantity for accuracy assessment. To compensate for this, images were loosely classified 

under the 6 class scheme described above using a basic decision tree approach and the resulting layer 

was used to create a stratified random sampling scheme where 125 points were randomly selected 

across the areas occupied by each class. Each point was then assigned to one of the six classes on a 

best effort basis through careful inspection of high resolution true colour satellite images (Google 

Earth and Bing maps), false colour ETM+ composites, and ETM+ based vegetation indices whilst 
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making use of knowledge gained from field visits and working with the original ground truth data. Any 

points that bordered equally between more than one land cover type or where class membership was 

considered uncertain were discarded. The resulting distribution of sample sites is shown in Figure 5-1.  

 

Figure 5-1: Ground control points created using a stratified random sampling scheme. 
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5.2.7 Image classification 

Classification routines can be broadly classed as supervised or unsupervised with outputs taking the 

form of hard or soft classifications. Supervised classification makes use of training data (i.e. the 

previously described GCPs) that represent the desired classes. The job of the classification algorithm 

is then to compare the spectral patterns of these areas with that of the pixels to be classified and 

estimate the degree of membership a pixel has to each class. In the case of a hard classification 

output the pixel is then assigned completely to the class which it matches most closely regardless of 

the proportional membership. Alternatively soft classification outputs use a number of approaches 

that indicate the relative membership of a pixel to the different available classes. Unsupervised 

classification methods work quite differently and can essentially be viewed as a method looking for 

common and distinctive spectral patterns and consequently grouping pixels into a number of classes 

without any knowledge of what those classes may represent (Eastman, 2012). It is then the job of the 

analyst to assign meaningful labels to these classes i.e. through cross referencing with ground truth 

data. 

In the case of the current study preliminary investigation into the use of unsupervised classification 

highlighted a number of issues. If a small number of classes were specified then they did not match 

well with the desired classification system resulting in a low overall classification accuracy. Specifying 

a large number of classes, in order to narrow the range of pixel in a single class, and then reclassifying 

and grouping these classes into the desired classes would in theory be expected to improve 

classification performance. However, in practical terms this process was significantly limited by the 

quantity and detail of ground truth data. This was especially true in the case of classes that 

represented a small portion of the overall image.  

In view of the issues discussed above the decision was made to focus on supervised classification 

methods.  The current study made use of the IDRISI software package which addresses both image 

processing and classification as well as GIS operations. A variety of classification routines available 

within the software package were evaluated (see Table 5-3 for details). In addition to the established 

routines a unique decision tree approach constructed in relation to the current study was also 

evaluated. For each classification method results were tested against the GCPs derived from the 
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collected ground truth data as well as the second set of GCPs based on a stratified random sampling 

strategy.  

 

Table 5-3: Established classification routines tested in the current assessment. Brief descriptions are provided based on 
Eastman (2012). 

Classifier  Description 

Maximum Likelihood 
classification 
(MAXLIKE) 

Uses a probability density function related to training site signatures. Pixels are assigned 
to classes based on comparison of the posterior probability that it belongs to the 
signatures being considered. There is also the option to incorporate prior knowledge by 
providing a probability that each class exists. Probabilities can be applied equally to all 
pixels or on a pixel by pixel basis using a probability image. In the case of the current 
assessment all classes and pixels where given equal prior probability. 

Minimum Distance 
to Means 
classification 
(MINDIST) 

In common with MAXLIKE MINDIST uses a set of signature files created from specified 
training sites. Mean reflectance values for each class and spectral band are established 
from the signature files and pixels are assigned to the class where they most closely 
correspond to these means.  

Parallelepiped 
classification (PIPED) 

Again uses a set of signature files derived from training sites. Upper and lower 
reflectance thresholds are established for each signature in relation to each band. Pixels 
are then assigned to a class based on reflectance values falling between these 
thresholds. Parallelepiped is a computationally light classifier and runs quickly but is 
potentially inaccurate. 

Self-Organizing Map 
(SOM) 

Can be used to undertake supervised and unsupervised classification based on 
Kohonen's Self-Organizing Map (SOM) neural network. Tends to be computationally 
intensive. 

Multi-Layer 
Perceptron neural 
network classifier 
(MLP) 

Uses information from training sites to classify remotely sensed data via a Multi-Layer 
Perceptron neural network using a back propagation algorithm. 

Adaptive Resonance 
Theory (ARTMAP) 
classifier 

Can perform supervised and unsupervised classification using Adaptive Resonance 
Theory (ART) based neural network analysis. 

K-Nearest Neighbour 
classifier (KNN) 

Uses k-nearest neighbours from a specified size subset of potential training samples in 
determining a pixel’s class.  

FISHER Linear 
Discriminant 
Analysis (LDA) 
classifier 

The FISHER (LDA) classifier uses a linear discriminant analysis of the specified training 
areas to produce a set of linear functions that express the degree of support for each 
class. Pixels are then assigned to classes based on which one receives the highest level 
of support when all functions are considered. 

Classification Tree 
Analysis (CTA) 

Splits data into homogenous subsets and produces a hierarchical set of decision rules 
that are used to classify data.  
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5.2.7.1 Decision tree approach 

A decision tree approach was devised that uses a series of Boolean intersections in relation to 

threshold values for a number of ETM+ derived normalised difference spectral indices (NDSIs) and the 

enhanced vegetation index (EVI). The use of population density data from the Landscan 2008 data set 

is reviewed thoroughly in section 3.2.1.7. Here, Landscan data were used in order to separate urban 

areas from bare ground. Threshold values for ETM+ data were selected by using the set of GCPs 

designated as training data to generate frequency distributions of values from all individual ETM+ 

bands as well as NDSIs and EVI for each of the land cover classes. The classification process is 

described in Figure 5-2 while the frequency distributions for the each of the band combinations used 

are shown in Figures 5-3 to 5-6. 

Land pixels

NoYes

YesNo

Mixed land and 

water
Water

Yes

Vegetation pixels

EVI > 0.275

((B2 – B4)/(B2 + B4)) > -0.7

((B2 – B7)/(B2 + B7)) < 0.1

Water related pixels

((B3 – B4)/(B3 + B4)) > -0.2

Yes No

Crops Trees

No

Bare ground or 

urban related pixels

Lanscan population density 

greater than 5000 people 

per km
2

Yes No

Urban Bare ground

 

Figure 5-2: Decision tree created for current study to classify data into 6 land cover classes. B2, B3, B4, and B7 = Landsat 
ETM+ bands 2, 3, 4, and 7 respectively. EVI = enhanced vegetation index calculated from Landsat ETM+ bands 1, 3, and 4. 
Population density 
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Figure 5-3: Frequency distribution of ETM+ band combination ((B3-B4)/(B3+B4)) in relation to GCPs representing land 
cover classes. 

 

Figure 5-4: Frequency distribution of ETM+ band combination ((B2-B4)/(B2+B4)) in relation to GCPs representing land 
cover classes. 

 

Figure 5-5: Frequency distribution of ETM+ band combination ((B2-B7)/(B2+B7)) in relation to GCPs representing land 
cover classes. 
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Figure 5-6: Frequency distribution of ETM+ Enhanced Vegetation Index (EVI) in relation to GCPs representing land cover 
classes. 

 

5.2.8 Accuracy assessment 

Accuracy was assessed through the use of error matrices providing results in terms of proportional 

error for both errors of commission and errors omission. Kappa Index of Agreement (KIA) values are 

also provided. The KIA is similar to a proportional accuracy figure with the difference being that it 

adjusts for chance agreement (Eastman, 2012). For each classification two accuracy assessments 

were made: one using the set of GCPs designated for verification that were produced from ground 

truth data collected in the field, and one from the second set of GCPs produced using the stratified 

random sampling scheme. 

 

5.3 Results 

Table 5-4 shows a summary of error matrix results for each of the 10 classification methods tested 

where accuracy is being tested against the set of GCPs designated for verification that were derived 

from ground truth data collected in the field. An overall error figure is given i.e. proportion of pixels 

out of the total available that are wrongly classified, along with an overall KIA figure. Results are 

ranked from highest to lowest (right to left) based on overall KIA score. With the exception of PIPED 

all the classifiers performed well with the MLP and decision tree approach achieving the highest levels 

of accuracy. As already discussed in relation to GCP creation, while the GCPs used in this instance for 

verification were different from those used for classification purposes they were both derived from a 
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common set of ground truth data and It would seem reasonable to assume that this would increase 

accuracy above what would be achieved with a truly random set of verification points. With this in 

mind the relatively poor performance of the PIPED classifier should perhaps be considered even more 

significant. 

Table 5-5 shows a similar summary of error matrix results assessed for accuracy against the set of 

GCPs produced using the random stratified sampling scheme. Compared to values in Table 5-4 there 

is a noticeable reduction in accuracy scores. While every effort was made to produce GCPs as 

accurately as possible it should be remembered that in this case they were produced without direct 

ground truth data and therefore it is possible that some level of error may be present in the 

classification of GCPs themselves, which in turn could theoretically lead to an underestimation of 

accuracy. Results are again ranked from highest to lowest Kappa value from right to left. The decision 

tree classifier is notable in having the highest accuracy scores followed by the MLP classifier that also 

scores noticeably higher than the other methods. The PIPED classifier again comes last achieving an 

extremely low level of accuracy. 

With the exception of the poorly performing PIPED classifier Appendix 3 (Tables 10-1 to 10-9) 

provides full error matrices for each classification method tested with accuracy assessed against the 

GCPs created using the stratified randomly sampling scheme. In the case of the decision tree classifier 

(Table 10-1) the largest cause of error was between bare ground and urban areas with a considerable 

number of bare ground areas wrongly classified as urban. As would be expected with two classes that 

are similar in their spectral response there was some degree of error between tree and crop areas 

with trees wrongly classed as crops and crops wrongly classed as trees in roughly equal proportions. 

The MLP classifier (Table 10-2) also had problems classifying bare ground as urban areas as well as 

tree areas as crops, and overall had slightly lower accuracy scores in these areas compared with the 

decision tree approach. The remaining classifiers (Tables 10-3 to 10-9) had similar issues but with 

increasing severity.  
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Table 5-4: Summary of error matrix results for each of the 10 classification methods. Accuracy assessed against GCPs derived from ground truth data collected in the field. 

  MLP Decision 
tree 
(current 
study) 

MAXLIKE CTA  SOM ARTMAP KNN LDA MINDIST PIPED 

Overall 
error (95% 
confidence 
interval) 

0.0176 
(0.0075) 

0.0243 
(0.0088) 

0.0260 
(0.0090) 

0.0327 
(0.0101) 

0.0327 
(0.0101) 

0.0361 
(0.0106) 

0.0487 
(0.0122) 

0.0605 
(0.0135) 

0.0630 
(0.0138) 

0.2049 
(0.0229) 

Overall 
Kappa 

0.9782 0.9699 0.9679 0.9596 0.9595 0.9555 0.942 0.9396 0.9219 0.7490 

 

Table 5-5: Summary of error matrix results for each of the 10 classification methods. Accuracy assessed against GCPs produced using a stratified random sampling approach 
in association with careful inspection of ETM+ composites and high resolution true colour imagery. 

  Decision 
tree 
(current 
study) 

MLP ARTMAP KNN MAXLIKE LDA SOM MINDIST CTA PIPED 

Overall 
error (95% 
confidence 
interval) 

0.1955 
(0.0291) 

0.2193 
(0.0303) 

0.2556 
(0.0320) 

0.2737 
(0.0327) 

0.2779 
(0.0328) 

0.2863 
(0.0331) 

0.2933 
(0.0333) 

0.2989 
(0.0335) 

0.3017 
(0.0336) 

0.5642 
(0.0363) 

Overall 
Kappa 

0.762 0.7326 0.6894 0.6677 0.6604 0.6532 0.6448 0.6372 0.6306 0.3436 
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Figure 5-7 shows the resulting land cover layers from the decision tree and MLP classifications. The 

relative areas occupied by each class within Bangladesh are compared in Figure 5-8. The decision tree 

classification results in a greater proportion of the total area allocated to the bare ground, trees, and 

mixed land and water classes, while the MLP classifier assigns a greater area to the crops and urban 

classes with the difference in the case of the urban class being particularly striking. The areas 

classified as water is similar for both methods. Comparing the two images in Figure 5-7 and focusing 

specifically on the northwest quarter of the country there is a significant amount of land classed as 

urban by the MLP classifier, and as bare ground by the decision tree method. In reality most of this 

area is not urbanised to the extent suggested by the MLP classifier and highlights the difficulties that 

the classifiers encountered in separating the two classes. Another notable difference can be seen in 

the Sundarban area in the south west of the country where when compared to the MLP classifier the 

decision tree approach classes much more of the mangrove area as mixed vegetation and water 

rather than trees. In this case, since much of the area is a tidal ecosystem, both classifications could 

be argued to be correct. 

Figures 5-9 to 5-12 focus on some specific areas within Bangladesh in more detail to allow for a visual 

comparison to be made between the classification methods. Along with the two classified images a 

true colour high resolution image is also shown. The date of the true colour imagery is unknown 

although it most likely represents the dry season due to the higher probability of cloud free images 

being obtained. Regardless of when the true colour image was obtained the important point to 

consider is that the classified images are not meant to represent exactly what is seen in the true 

colour image. Observation of the true colour image can provide some useful insight into features less 

likely to change over time such as trees, urban areas and river channels, and open areas that may 

represent bare ground, crops, water, or mixed land and water depending on conditions at the time. 

Figure 5-9 shows Barisal and its surrounding area. In these images the decision tree classifier can be 

seen to produce a larger urban area as a result of designating a greater area as belonging to either 

the bare ground or urban classes and then using the lower resolution population density dataset to 

split the two. The decision tree classifier also shows a greater area of tree cover although the overall 

pattern of distribution is similar between the two methods and when compared to the true colour 

image both appear to represent the overall pattern of tree cover quite accurately. Figure 5-10 shows 

Khulna and its surrounding area. Again, the decision tree classifier shows denser tree cover as well as 

the effect of the lower resolution population density data. Some degree of striping is also evident in 
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this area as a result of the gap filling process that was required for the SLC-off ETM+ data. It is worth 

remembering that the gaps were filled using data recorded from a period between 6 and 8 years 

before that of the primary image and it is possible that land cover may have changed in that time. 

This is especially true in the case of the mixed land and water areas that will change over a relatively 

short time in response to weather, as well as in relation to seasonal patterns and inter-annual 

variability. Figure 5-11 shows an area in southwest Bangladesh that contains a significant area of 

ponds and which borders on the Sundarbarns. As is the case with all the images discussed thus far the 

distribution of water appears very similar between the two classification methods. The distribution of 

the mixed land/water class also appears fairly consistent between the two methods in the areas 

examined with exception been here in Figure 5-11 where some of the mangrove area is classified as 

mixed land/water by the decision tree classifier and as tree cover by the MLP method. Figure 5-12 

shows the area around Dhaka where the image produced by the decision tree approach can again be 

seen to show a trend for more tree and bare land coverage compared to the MLP classifier. Water 

and land/water areas are very similar in both images while the effect of the lower resolution 

population density used by the decision tree classifier is manifested by the blocky appearance of the 

urban class. 

******************************************************************* 
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Decision tree classifier. MLP classifier. 

Figure 5-7: Comparison of decision tree and MLP classifier outputs. 
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Figure 5-8: Differences in area (km2) covered by the six land cover classes produced by the decision tree and MLP 
classifiers. 
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Decision tree classifier MLP classifier 

  

True colour image (ESRI base map). Date unknown. Location of area shown 

Figure 5-9: Comparison of decision tree and MLP classification results for Barisal and surrounding area. 
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Decision tree classifier MLP classifier 

  

True colour image (ESRI base map). Date unknown. Location of area shown 

Figure 5-10: Comparison of decision tree and MLP classification results for Khulna and surrounding area. 
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Decision tree classifier MLP classifier 

  

True colour image (ESRI base map). Date unknown. Location of area shown 

Figure 5-11: Comparison of decision tree and MLP classification results for an area in southwest Bangladesh showing 
ponds and the edge of the Sundarbans. 
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Decision tree classifier MLP classifier 

  

True colour image (ESRI base map). Date unknown. Location of area shown 

Figure 5-12: Comparison of decision tree and MLP classification results for the Dhaka area. 
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5.4 Discussion 

Remotely sensed data have seen a moderate amount of use within the Bangladesh region for 

classifying land cover, with its application often focusing on using images from different dates as a 

means of detecting change. Giri et al. (2007) used a series of images spanning a number of Landsat 

missions to investigate potential change to the Sundarbans between 1975 and 2000 with the 

conclusion that on the Bangladesh side at least there had been very little change. Redowan et al. 

(2014) used Landsat Thematic Mapper (TM) data from 1988 and 2010 to investigate change in forest 

cover in the Khadimnagar national park, Sylhet, Bangladesh. The authors used a simple 3 class system 

(dense forest, medium dense forest, and bare) in association with a supervised classification method 

(maximum likelihood). In terms of classification accuracy Redowan et al. (2014) report Kappa values 

of 0.75 and 0.8 for the 1988 and 2010 images respectively although it should be noted that the 

sample size for ground control points was extremely small with a total of 13 and 16 points used for 

the two classifications. Dewan and Yamaguchi (2009a) used a maximum likelihood classifier along 

with post classification refinement to classify Landsat data (MSS, TM and ETM+) in order to 

investigate land use and land cover change for the Dhaka area. A six category system that is relatively 

similar to the one used in the current study (bare soil/land, built-up, cultivated land, vegetation, 

water bodies, and wetlands/lowlland areas) was used to classify land cover for the years: 1975 1992 

and 2003. Kappa values of 82.7, 87.5 and 87.9 are given for the three classifications although full 

confusion matrices are not provided. The authors state that a stratified random sampling method was 

used although the total number of sample points used for accuracy assessments were somewhat 

moderate at 125 for the 1975 and 1992 images and 100 for the 2003 image. 

Remotely sensed data have been incorporated into a range of GIS models with the aim of guiding site 

selection for aquaculture. For example Karthik et al. (2005) used a land cover product derived from 

data obtained by the LISS III instrument aboard the Indian IRS 1D satellite when modelling site 

suitability for brackish water aquaculture in Palghar Taluk, Thane district of Maharashtra, India. Giap 

et al. (2005) incorporated SPOT data when modelling shrimp farming potential in Haiphong, Vietnam. 

Within Bangladesh Hossain et al. (2007) used ASTER data as part of a GIS-based land-suitability model 

for tilapia farming in Sitakunda Upazila, Chittagong, Bangladesh. Hossain et al. (2009) and Hossain and 

Das (2010) conducted similar exercises using ASTER data and focusing on carp species and giant 

prawn (Macrobrachium rosenbergii) respectively. Unfortunately the methodology described by 
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Hossain et al. (2007), Hossain et al. (2009), and Hossain and Das (2010) is somewhat lacking in detail. 

Salam et al. (2003) used Landsat TM data when assessing land use as part of GIS model designed to 

evaluate site suitability for the development of crab and shrimp aquaculture in south western 

Bangladesh.  

A notable feature of the studies outlined thus far in relation to remotely sensed data use within 

Bangladesh, as well as its broader use in relation to aquaculture site suitability assessments, is that 

the focus has been on localised study areas. Use of remotely sensed data at the national scale for 

Bangladesh has been fairly limited. Islam and Sado (2000a) used three Advanced Very High Resolution 

Radiometer (AVHRR) images that covered a period of 21 days to analyse the extent of Bangladesh's 

extreme flood event of 1988. Islam et al. (2010) used a MODIS time series along with a methodology 

originally described by Sakamoto et al. (2007) to examine flooding patterns within Bangladesh. In 

terms of country wide mapping of multiple land cover classes Giri and Shrestha (1996) used AVHRR 

data with its relatively low resolution at nadir of approximately 1.1km to produce land cover layers 

and examine changes in cover between the periods 1985–86 and 1992–93. For higher resolution land 

cover mapping over the entire Bangladesh region the only work in the peer-reviewed literature 

relates to the recent efforts to produce a Landsat-derived global 30m resolution land cover product. 

Gong et al. (2013) described the development of a global land cover map at 30m resolution based on 

Landsat TM and ETM+ data. The authors tested four classification methods: maximum likelihood, the 

J4.8 decision tree classifier, the random forests ensemble classifier, and the support vector machine 

(SVM) with the SVM found to be most effective with an overall classification accuracy of 64.89%. Yu 

et al. (2013) refined the dataset through the use of a segmentation approach to allow the integration 

of data sets at varied resolutions including: MODIS EVI time series data, Bioclimatic variables (1km) 

(Hijmans et al., 2005), global DEM (1km) (Hijmans et al., 2005), Soil-water variables (1km) (Trabucco 

and Zomer, 2010, Zomer, 2007, Zomer et al., 2008). The result when assessed using the same 

verification points as Gong et al. (2013) had an improved overall accuracy of 67.08%. Yu et al. (2014) 

have attempted further improvement by aggregating the two land cover products of Gong et al. 

(2013) and Yu et al. (2013) with two low resolution maps indicating impervious surfaces: Night time 

Light Impervious Surface Area (Elvidge et al., 2007) and MODIS urban extent (Schneider et al., 2009, 

Schneider et al., 2010). Figures 5-13 to 5-15 show results for the whole country and the Dhaka area 

from the three classifications described above. Results from the decision tree used in the current 

study are shown for the same Dhaka area for comparison purposes (Figure 5-16). The images in 
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Figure 5-14 (Yu et al., 2013) appear to show an increase in cropland, bare land, and water areas 

(much of which represents seasonal water within Bangladesh) with reduced forest area when 

compared with Figure 5-13 (Gong et al., 2013). The classification output from the aggregation 

approach shown in Figure 5-15 (Yu et al., 2014) has some of the Dhaka area classified as 

impervious/urban while this is missed by the previous two classifications. When viewing the country 

as a whole a noticeable feature of all three classifications shown in Figures 5-13 to 5-15 is the sudden 

transition between adjacent Landsat images with quite different classification seen from one scene to 

the next. This may well be a consequence of applying a common classification method to images 

obtained at different times over what is a temporally dynamic landscape. Alternatively it may 

highlight a need for improved atmospheric correction methods and standardisation between images. 

The different classification schemes, and lack of knowledge in terms of acquisition dates for the 

images used, preclude formal accuracy assessment of the images shown in Figures 5-13 to 5-15 

against the GCPs constructed for the current study. However, careful visual inspection suggests some 

degree of inaccuracy beyond that created by differing Landsat scenes, part of which seems to be a 

result of clouds and associated shadow. The production of an accurate global 30m land cover product 

would be highly useful and such efforts should be strongly supported however in view of the outlined 

issues the land cover data sets described by Gong et al. (2013), Yu et al. (2013), and Yu et al. (2014) 

clearly require further refinement when applied to Bangladesh.  

The maximum likelihood classification (MAXLIKE) is a very commonly used routine for classification of 

remotely sensed data and has been suggested as superior to other methods where classes have 

normally distributed data(Bolstad and Lillesand, 1991, Dewan and Yamaguchi, 2009a, Dewan and 

Yamaguchi, 2009b) However in the case of the current study it was outperformed by a number of 

classifiers when tested against the randomly distributed sample points. From the pre-existing 

classification routines investigated the MLP classifier stood out as producing the best results. One 

feature that was noted for the MLP routine was that running the process more than once with 

identical inputs would produce slightly different results due to the random initialization of weights 

used in the 'learning' process.  

The decision tree approach developed for the current assessment outperformed all the pre-existing 

classification routines when tested against the randomly distributed GCPs. While part of this success 

is likely as result of the careful inspection of the spectral response of individual, and combinations of, 
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ETM+ bands in relation to GCPs, there was also the inclusion of additional geographic information in 

the form of the Landscan (2008) gridded population data set.  

Inspection of the error matrices for the various classification routines used showed that the largest 

cause of error was confusion between the bare land and urban classes, and the crop and tree classes. 

In both cases this can be considered a result of the variable nature of each class in terms of spectral 

response with considerable overlap between the two. The issue of overlapping spectral patterns from 

differing land cover is a common one and it is in these instances that the rule based inclusion of 

additional data, such as the population density data set in the current study, within a GIS can be 

especially useful. Such processes are often described in terms of post classification refinement and 

are fairly common in the literature (e.g. Dewan and Yamaguchi, 2009a, Manandhar et al., 2009, 

Rozenstein and Karnieli, 2011, Shalaby and Tateishi, 2007). Unfortunately in the case of the current 

study potentially useful geographic data at the national scale was lacking. Elevation data and values 

derived from it such as those relating to slope and runoff are potentially useful sources of data for 

classification refinement in many areas (e.g. Sesnie et al., 2008). Gridded elevation values can be 

obtained as a globally consistent data set with 90m resolution in the form of the Shuttle Radar 

Topography Mission (SRTM) product (Jarvis et al., 2008). The use of these data as part of a land 

classification process was investigated. However much of Bangladesh is extremely flat to the point 

that much of the variation in elevation values seen can be accounted for by ground based objects 

such as tree canopies. The result was that obtaining meaningful indicators relating to land cover was 

not found to be feasible.  

The use of multi-temporal data have received attention as a means to potentially improve land cover 

classification based on the assumption that many land use practices such as crop production have 

seasonal cycles with associated variation in reflectance. For example (Zhang et al., 2008) used a one 

year MODIS-based time series along with land surface temperature and slope values to classify land 

cover over the North China plain. The methodology involved noise reduction of the MODIS time 

series via harmonic analysis and subsequent classification into 100 classes using a self organising 

ISODATA routine. A rule-based decision tree based on time series EVI values along with information 

provided by the ancillary data were then used to group the ISODATA output into a smaller number of 

classes representing land cover. Mingwei et al. (2008) used unsupervised ISODATA as well supervised 

maximum likelihood classification routines on a Fourier transformed one year time series of MODIS 
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NDVI data at an 8 day temporal resolution to identify crop areas and crop type in northern China. 

Wardlow et al. (2007) demonstrated the ability of a 12 month time series of MODIS EVI and NDVI 

data with a 16 day temporal resolution to differentiate between crop types in Kansas, USA. Wardlow 

and Egbert (2008) used MODIS based 250m resolution NDVI time series in conjunction with a a 

hierarchical classification approach that made use of an unsupervised ISODATA routine as well as a 

commercially available decision tree based classifier (See5) to map crops in Kansas, USA. Brown et al. 

(2013) used the same classifier (See5) in association with MODIS vegetation index data to map 

cropping patterns over a five year period in Mato Grosso, Brazil. The authors compared classifications 

using both EVI and NDVI data with no significant difference in accuracy found between the two data 

sets. Carrão et al. (2010) used a stack of 6 bimonthly MERIS scenes in combination with a supervised 

classification routine (Linear Discriminant Classifier) to map land cover over Portugal. Van Niel and 

McVicar (2004) compared methods for using multi date ETM+ images to classify crop type (4 potential 

classes) in an area of New South Wales, Australia. The authors used maximum likelihood classification 

to classify scenes from 17 dates throughout a one year period. The authors compared classification 

results from a single scene with those obtained from two routines using data from multiple time 

points: a) an iterative approach where the best performing classification of the 17 scenes was 

identified. That crop area was then masked out and the 17 scenes were analysed again based on the 

remaining three potential crops where again the best performing classification was used. The process 

was repeated for a third time for the two remaining crop species. b) All 7 spectral bands from the 

three scenes identified during the iterative process were combined into a single image stack which 

was then analysed with the same maximum likelihood classifier. The two methods were also tested 

with a reduced number of bands for each scene (bands 3,4, and 5). Overall the iterative process was 

found to outperform the image stack. The authors note that applying the iterative method to 

situations where individual crops are not identified with a high degree of accuracy the care 

consideration would be needed in relation of propagating errors from one iteration to the next. A 

similar iterative approach was applied by Turker and Arikan (2004) when using ETM+ to identify and 

map crops in Karacabey, Turkey. 

The use of multi-temporal data for classifying land cover in Bangladesh and similar regions is a 

potentially interesting area for future research with the aim of improving accuracy and the amount of 

information provided by land cover assessments with the ultimate goal of gaining significant 

understanding of land use as well as land cover. The success of such approaches will be highly 
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dependent on the availability of cloud free images at multiple dates with accompanying quality 

ground truth data, requirements that in the Bangladesh context are likely to be challenging due to the 

often intricate nature of land use and the potential for considerable year on year variability in 

response to flood patterns. The methodologies in the examples above can be broadly grouped into 

three categories: 1) applying a classifier to a stack of scenes from multiple time points either directly 

or using transformed data, 2) iterative approaches, and 3) rule based decision trees constructed 

based on knowledge of the region and land use practices. While these three approaches are certainly 

not mutually exclusive and all may be useful in a Bangladeshi context, it is suggested here that the 

incorporation of a rule based approach may be a good place to start in situations where land cover 

data have been produced as part of wider assessments and where particular land cover and use 

scenarios are considered significant.  

Another area that has received considerable attention in recent years is object based classification of 

remotely sensed data (e.g. Blaschke et al., 2014, Myint et al., 2011, Whiteside et al., 2011). Whereas 

traditional classification methods treat pixels individually, object based classifiers typically group 

common pixels into segments before using rule based decision processes to classify segments based 

on features such as shape, texture, reflectance and spatial relationship to other objects. A general 

requirement of object based classification is imagery with a spatial resolution considerably smaller 

than the objects being classified (Myint et al., 2011) with much work making use of the current 

generation of very high resolution sensors. Given the intricate nature of land cover in Bangladesh it 

would seem likely that data with a resolution considerably higher than that used in the current study 

would be required for object based classification to be implemented successfully. With this in mind 

while object based land classification for Bangladesh should be considered as a potential option it 

may be better suited for more localised endeavours where the use of higher resolution data sets 

would be more practical. 

************************************************************************** 

In summary the land cover maps produced for the current study were created with the intention of 

supporting climate focused GIS modelling of site suitability for inland aquaculture within Bangladesh. 

However in view of the above discussion in relation to the relative lack of existing land cover data for 

Bangladesh the land cover layers produced here can be considered unique in terms of covering the 

majority of the country while at the same time having a reasonable degree of total accuracy (80.45% 
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in the case of the decision tree approach) resulting from thorough ground truthing.  As such they can 

be considered as a highly useful source of spatial data that can be integrated into spatial databases 

with the potential to play a valuable role in addressing a range of spatial questions and contributing 

to modelling exercises that require a land cover component. 

 

  

Figure 5-13: Land cover for Bangladesh and focused on the Dhaka area. Data source: Global 30m land cover data set as 
described by Gong et al. (2013). 
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Figure 5-14: Land cover for Bangladesh and focused on the Dhaka area. Data source: Global 30m land cover data set as 
described by Yu et al. (2013). 

 

  

Figure 5-15: Land cover for Bangladesh and focused on the Dhaka area. Data source: Global 30m land cover data set as 
described by Yu et al. (2014) 
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Figure 5-16: Land cover for the Dhaka area using the decision tree classifier described in the current study. For 
comparison with figures 13 to 15. 
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6 CLIMATE RELATED SITE SUITABILITY FOR AQUACULTURE – A CASE 

STUDY FOR BANGLADESH        
 

6.1 Introduction 

Bangladesh is the developing world’s most densely populated country with approximately 1203 

people per square kilometre in 2013 (World_Bank, 2014b). The total population of Bangladesh has 

increased steadily with an annual growth rate of over one percent during the last decade 

(World_Bank, 2014b). While projecting future population growth is challenging a range of projections 

produced by the United Nations Population Division (United_Nations, 2014) give a median projection 

of total population peaking at just over 200 million around the year 2060. Higher estimates suggest a 

more substantial increase while even under the lowest estimate population is projected to increase 

considerably beyond where it is today (Figure 6-1).  

 

Figure 6-1: Projected population growth for Bangladesh. 
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Bangladesh can also be considered financially poor with an estimated 43.3% of the population living 

on less than 1.25USD per day as of 2010 (World_Bank, 2014c). As may be expected given a dense and 

poor population issues of food security are not uncommon. The Food and Agriculture Organisation 

(FAO) estimates that 16.7% of the population can be considered undernourished, a figure that has 

remained relatively static over the last decade (FAOSTAT, 2014).  

Average fish consumption in Bangladesh is approximately 20kg per capita per year and accounts for 

more than half of total animal protein intake (FAO, 2012). Capture fishery production in Bangladesh is 

strongly linked to annual flooding with many small indigenous fish species being a popular food 

source. Fish also represents an important source of micronutrients in diets often lacking in diversity 

and as such can be viewed as highly important in terms of food security (Belton et al., 2014). Statistics 

compiled by the FAO and made available via FishStatJ software suggest capture fishery output has 

declined since 2009 (see Figure 6-2). While it is almost certain that reporting of fish production from 

both caught and cultured sources will be subject to errors, the view that capture fishery growth is 

limited or in decline has been supported by a number of authors (Belton et al., 2011, Belton et al., 

2014, Halls et al., 2008) with factors such as water management, intensification of agriculture, urban 

expansion, pollution, and increased fishing effort being cited as contributory.  

 

Figure 6-2: Aquaculture and capture fisheries production quantities for Bangladesh. 
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In terms of percentage growth rate aquaculture production has increased considerably faster than 

that from capture fisheries over the last several decades, and based on FAO data have exceeded 

capture fisheries production since 2012 (see Figure 6-2) (FishStatJ, 2014). Belton et al. (2014) 

analysed changes in fish consumption using data collected by the International Food Policy Research 

Institute (IFPRI) during the periods 1996/7 and 2006/7. The authors noted that while there had been 

a shift towards eating more cultured fish among all household income levels the greatest shift had 

been seen within the poorest quartile of households with farmed fish as a percentage of total fish 

consumed increasing from 23 to 52 percent. It is also worth noting that total fish consumption had 

increased slightly among all household groups but the disparity between the poorest and richest 

households in terms of total fish consumption remained large with annual per capita figures of 10.5 

and 33.2kg respectively. Overall, aquaculture would appear to have had a strong positive effect in 

compensating for reduced capture fisheries production and as such can be viewed as extremely 

important in food security terms (Belton et al., 2014, Dey et al., 2008, Jahan et al., 2010). There has 

been suggestion that consideration needs to be given to nutritional quality of aquaculture products 

when compared to wild alternatives (Allison, 2011, Belton et al., 2014), especially in the case of 

poorer households where total fish consumption and food diversity is low, and that there may be 

benefits in promoting the culture of smaller indigenous fish species that are often eaten whole. 

However, regardless of the species cultured aquaculture would appear to have an increasingly 

important role to play if fish consumption levels are to be maintained, or increased, for Bangladesh's 

growing population. 

At the national level aquaculture makes a significant contribution to the Bangladesh economy 

representing approximately 3.37 percent of GDP for 2012 (FishStatJ, 2014, World_Bank, 2014a). 

Cultured shrimp (Penaeus monodon) and giant freshwater prawn (Macrobrachium rosenbergii) 

represent a significant export commodity, only exceeded by the garment industry, with a value of 412 

million US$ in 2009/2010 (Belton et al., 2011). At a more localised level aquaculture represents a 

source of income in rural areas either through self-employment or as hired labour (Dey et al., 2008, 

Karim et al., 2006). Small scale aquaculture promotion has been demonstrated as a means of 

enhancing livelihoods within poor communities (Barman and Little, 2011, Barman and Little, 2006) 

and recent work by Pant et al. (2014) demonstrated livelihood improvement within extremely poor, 

landless and marginalised communities through the introduction of aquaculture and associated 

technologies. It has also been suggested that commercial aquaculture may have an important role to 
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play within Bangladesh by potentially providing more stable employment, either through direct 

involvement in production or in connection with associated goods and services (Belton et al., 2012). 

 

6.1.1 Aquaculture production systems in Bangladesh 

In recent years Bangladesh has seen a move towards more intensified and larger scale aquaculture 

operations (Belton and Azad, 2012). Figure 6-3 shows production quantities for the years 2008 to 

2012 for the 12 highest volume species in terms of weight, while Figure 6-4 shows production for the 

same species in terms of product value. Data for both graphs was extracted from the FAO FishStatJ 

database and while the data should probably be interpreted with care it does suggest a number of 

significant trends: 1) there has been a increase in recorded production for most species, 2) in terms of 

quantity the Indian and Chinese carp species (Labeo rohita, Catla catla, Hypophthalmichthys molitrix, 

and Cirrhinus mrigala) have dominated production in recent years, 3) As in other areas of Asia 

Pangasianodon hypophthalmushas seen a rapid increase in production in recent times and now 

represents an important aquaculture species within Bangladesh, 4) the production of crustaceans 

(Penaeus monodon and and Macrobrachium rosenbergii) are high value species that represent a 

major contribution in monetary terms, 5) Tilapia (Oreochromis niloticus) have seen a notable increase 

in production during recent years that along with the increase in Pangasianodon hypophthalmus 

production is likely related to increasing interest in more intensified and commercially orientated 

aquaculture practices.  
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Figure 6-3: Aquaculture production quantities for most commonly cultured species in Bangladesh. 

 

 

Figure 6-4: Aquaculture production value for most commonly cultured species in Bangladesh. 
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At it’s most basic level aquaculture in Bangladesh takes the form of homestead ponds that are often 

formed when soil is removed in order to create a raised area on which houses can be built with some 

resistance to flooding. Such ponds are typically small with average areas of between 0.08 and 0.1 

hectares (Belton and Azad, 2012) and often serve multiple purposes such as washing and watering 

livestock. Traditionally such ponds were often allowed to fill with fry of native species during the 

flood season that were then left to grow with little if any input. However a number of development 

projects have encouraged improved management of such ponds through practices such as deliberate 

stocking of selected species at appropriate densities and application of feeds and fertilizer. The result 

has been a considerable improvement in yields (Belton and Azad, 2012, Belton et al., 2011) with some 

evidence suggesting that carp species are most common (Bloomer, 2012). 

Larger commercial aquaculture operations generally take place in purposely constructed ponds that 

most often comprise of converted rice fields although the enclosure of other natural water bodies is 

also practiced. Such operations typically make use of pelleted feeds with the main culture species 

being pangasius and tilapia (Belton et al., 2011) although other species including carps, prawn, and 

shrimp (in areas nearer the coast) are also produced in such systems. Pangasius grow-out from 

fingerlings generally takes between 7 and 10 months (Belton et al., 2011, Griffiths et al., 2010) with 

the main growing season running from March to September. Farms with better financial capital are 

likely to grow fish for longer in order to obtain a better market price and in such cases harvesting may 

be as late as December (Belton et al., 2011). Tilapia produced by commercial pond-based operations 

are often harvested at a relatively small size (200-300g) which can be achieved after a 3-4 month 

grow-out period potentially making 2 cycles a year possible (Anwar, 2011, in Belton et al., 2011).  

Aquaculture is also conducted by making use of Bangladesh's extensive seasonal floodplains. 

Embankments are constructed to retain flood waters creating large culture areas in the region of 50-

100 hectares which are then stocked with a range of indigenous and exotic species that are then 

cultured with the aid of added fertilisers and feed. During the dry season a crop of irrigated rice can 

also be grown (Gregory et al., 2007). Some questions have been raised with regard to the loss of 

access by subsistence fishers and potential impacts of stocking non native species. However there 

would seem to be significant benefits of such systems to local economies as a result of improved fish 
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yields in the region of 1-3 t/ha/year, a figure approximately 10 times that of unstocked floodplains 

(Belton et al., 2011, Gregory et al., 2007). 

Combined rice and fish culture has the potential to provide an extra cash crop in the form of 

harvested fish while the fish themselves may provide additional benefits including: supply of 

nutrients, release of nutrients from sediments, and control of pests and weeds (Ahmed and Garnett, 

2011). Methods involve the improvement of embankments surrounding rice fields and the creation of 

deeper refuge areas where fish can congregate during times of limited water. Rice and fish may be 

cultured at the same time and depending on water availability fish may be stocked either for the 

aman (rain fed summer rice) season only, or both the summer and winter (boro) rice crops. An 

alternative method is to alternate between mono crops of boro rice and then fish during the summer 

wet season (Belton et al., 2011). The most common species stocked are Indian and Chinese carps 

along with tilapia and silver barb (Barbonymus gonionotus) (Belton et al., 2011), while the use of 

freshwater prawn (Macrobrachium rosenbergii) with small native species has also been successfully 

trialled (Kunda et al., 2008).  

The majority of shrimp (Penaeus monodon) farming takes place in the southwest of Bangladesh in 

ghers (converted rice fields) found on very low lying land often protected from the sea by a system of 

polders. The area consists of a complex network of tidal channels that are often connected to shrimp 

ghers through a series of canals and sluice gates. Due to the saline nature of the ground water in 

many of these areas the opportunity for traditional agriculture, especially during the dryer parts of 

the year when salinity is higher, can be limited making culture of brackish water species an attractive 

option. Giant freshwater prawn (Macrobrachium rosenbergii) are also cultured in ghers and in 

practice there is considerable cross over between the on growing stages of the two species in terms 

of salinity tolerances and the species may be cultured together along with salt tolerant fish species 

(Belton et al., 2011, Wahab et al., 2012). While shrimp and prawn may coexist simultaneously they 

may also be cultured in seasonal rotation. Such systems are for a large part determined by salinity 

which is in turn influenced by the wet and dry seasons as well as land elevation and distance from the 

sea. During the low salinity period (August to December) the inclusion of prawn and freshwater fish 

species is likely to be more common as well as the culture of aman rice in some instances (Belton et 

al., 2011). Freshwater prawn are typically stocked in May/June and harvested from November to 

January (Ahmed et al., 2008, Hasanuzzaman et al., 2011). Shrimp grow out periods are generally 
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quicker depending on harvest size, intensity of culture, and feed input with grow out ranging from 3.5 

to 6 months (Kongkeo, 2005). 

Land cover in Bangladesh varies considerably both spatially and seasonally, and is strongly influenced 

by annual flooding that on average covers 20.5% of the country while in the extreme case of the 1998 

flood around 70% of the country was inundated (Mirza, 2002). As already highlighted Bangladesh has 

an extremely dense, and growing, population that places considerable strain on available land in 

terms of its agricultural and fisheries resources. Another potentially significant factor is that of 

changing climate and its influence on temperature and precipitation regimes as well as sea level. 

Given the increasing significance of aquaculture, both as a source of food and income, an 

understanding of which areas may be most suitable for further aquaculture promotion and 

development should be seen as highly useful. The potential of geographic information systems (GIS) 

as a means of assessing and modelling site suitability for aquaculture has been discussed earlier. 

Chapter three also contain an overview of climate change and its potential impact on aquaculture 

along with the description of the use observed values, weather reanalysis data, and modelled future 

projections to model pond temperature and water balance under late 20th century conditions, as 

well for a 2°C mean global warming scenario. These components along with the MODIS-derived 

surface water time series (chapter four), and the Landsat ETM+ derived land cover data (chapter five) 

are used here to investigate site suitability for pond-based aquaculture in Bangladesh including 

consideration of changing climate conditions. Issues surrounding sea level rise and tropical storms are 

also discussed and MODIS time series data is used to show storm surge inundation resulting from 

cyclone Aila which hit Bangladesh on the 25th May 2009. 

 

6.2 Methods and data 

6.2.1 Land cover and associated aquaculture systems 

As described earlier, remotely sensed data from the Landsat Enhanced Thematic Mapper Plus (ETM+) 

instrument was used to produce a land cover data layer for Bangladesh with a six class classification 

scheme. The land cover data were derived from 9 ETM+ scenes obtained between dates 31-10-08 and 

09-11-08 which represents the transition from the wet to dry seasons (see Figure 6-5 for average 

monthly precipitation over the whole of Bangladesh). The use of a single time period, and the specific 
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dates, for which Landsat was obtained was dictated by the need to coincide with the collection of 

field based ground truth data. That said, the time period in question can be considered favourable in 

that it represents a transition from wet to dry. For example, areas classified as mixed water and 

vegetation are quite likely to be wetland areas that would have experienced deeper flooding during 

the peak of the wet season but are now drying out and will probably become totally dry during the 

dry season.  

 

Figure 6-5: Average monthly rainfall over the whole of Bangladesh. Derived from the CRU CL2.1 data set(New et al., 
2002). 
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Table 6-1: The combination of ETM+ based land classification and MODIS time series surface water data to create a new 6 class system based on potential aquaculture 
scenarios. 

Landsat ETM+ 
derived land 
cover classes 

Assumptions based on land cover type being 
present at the beginning of November, and 
potential land cover scenarios throughout a 
typical year 

Incorporation of MODIS-derived time series data 
showing the percentage of the available time series 
where land is classified as being covered by water, 
or both mixed and water. 

In the case of areas indicated as having tree cover 
Shuttle Radar Topography Mission (SRTM) data is 
used to calculate slope values in order to 
differentiate forested hill areas . 

Potential aquaculture scenarios. 
Numbers indicate membership of one 
of six classes. 

Cropland The majority of crops at this time of year are 
likely to be aman rice which is planted from 
the end of May to September and harvested 
in November and December. It is likely that 
such areas don't normally experience 
prolonged periods of deep flooding and are 
probably fields that are used year round for 
a number of crops. Such fields can be 
considered for conversion to fish ponds, or 
fish/rice type systems.  

Water < 2.5 %  

Likely to represent areas of fields with potential 
year round use with a relatively low risk of flooding. 

Areas where conversion of fields to 
pond aquaculture or combined 
fish/rice culture could be considered. 
(1) 

Water>2.5% 

Likely to represent areas of fields with potential 
year round use with an increased risk of flooding. 

Areas where conversion of fields to 
pond aquaculture or combined 
fish/rice culture could be considered 
but in an area with a greater risk of 
flooding. (2) 

Bare land  There is little in the way of permanent bare 
land in Bangladesh. At the time period over 
which the Landsat data were collected areas 
indicated as bare land are most likely to 
represent areas of recently harvested or 
planted crops, or areas that have recently 

Mixed and water > 25% 

Assumed to represent areas that have recently 
dried out after wet season inundation and may be 
used for winter crops or pond culture. 

 

Could be considered for seasonal 
floodplain aquaculture. May also be 
some potential for more traditional 
pond culture outside of the wet 
season. (3) 
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dried out after being covered in water during 
the wet season. 

Mixed and water <25% water <2.5% 

Assumed to represent recently harvested or 
planted areas. Given the time of data collection 
recently harvested aman rice would be most likely 
with fields then prepared for winter vegetable 
crops or boro rice.  

Potential for conversion of fields to 
pond aquaculture or combined 
fish/rice culture. (1) 

Mixed and water <25% water >2.5% Potential for conversion of fields to 
pond aquaculture or combined 
fish/rice culture but in an area with a 
greater risk of flooding. (2) 

Trees With the exception of hilly areas in the west 
of the country and a few forests, areas 
indicated as having tree cover tend to small 
and represent areas of homes and 
associated homestead ponds.  

Shuttle Radar Topography Mission (SRTM) 
elevation data at 90m resolution was used to 
calculated slope values. The resulting slope 
values were filtered using a 5x5 cell mean to 
reduce noise associated with vegetation of 
differing heights in otherwise flat areas. 

Slope < 5% 

 

 

Areas of homes and where the 
potential for increase in the number 
and/or efficiency of homestead ponds 
can be considered. (5) 

Slope > 5% 

These areas were assumed to represent areas of 
forest in the hilly areas in the west of the country 
where population density is low and aquaculture 
would not be practical. 

Areas considered unsuitable for 
aquaculture. (6) 

Water Areas indicated as water could be: 

1. Aquaculture ponds. 
2. Flooded fields - ready for boro rice 

planting or from recently harvested 
aman - unless vegetation is really 

Water <40%  

Assumed to be temporary water areas associated 
with wet season flooding . 

Areas could be considered in relation 
to floodplain aquaculture methods in 
association with receding water 
levels. (4) 
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sparse and there is lots of water 
these may well show up as mixed. 

3. Permanent water e.g. rivers, natural 
ponds and lakes, and canals. 

4. Semi permanent water still standing 
from wet season that will dry up at 
some point as the dry season 
progresses. In this situation given 
that water is still present at the 
start of the dry season it is likely 
that water is present for at least 
two or three months in these areas. 

 

Water>40% 

Assumed to be permanent or semi permanent 
areas of water where water is present for a large 
part or the year and is likely to be deed during the 
wet season. 

Considered unsuitable for 
aquaculture. (6) 

Mixed water 
and vegetation 

Based on careful inspection of MODIS time 
series outputs it seems that mixed areas 
largely represents areas that are drying after 
wet season flooding. There may be some 
flooded cropland but not much. There may 
also some small areas of genuine mixed 
pixels that represent a fairly permanent 
situation e.g. vegetation at the edge of a 
river or canal.  

Mixed and water<30% Areas could be considered in relation 
to floodplain aquaculture methods in 
association with receding water 
levels.. In this cases the areas 
indicated maybe those where 
flooding is less deep and prolonged. 
(3) 

Mixed and water >30%  < 60%  Areas could be considered in relation 
to floodplain aquaculture methods in 
association with receding water 
levels. (4) 

Mixed and water> 60% May represent areas of permanent 
mixed water and vegetation, or areas 
where flooding is present for much of 
the year. Assumed to be unsuitable 
for aquaculture.(6) 

Urban   13. Considered unsuitable for 
aquaculture. (6) 
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6.2.2 Pond temperature 

Pond water temperature is determined by pond design and a range of climatic variables including: 

solar radiation, air temperature, humidity, and wind speed. From an aquaculture perspective water 

temperature regimes are highly significant in terms of: a) growth performance, both in terms of 

specific growth rate, and food conversion efficiency, and b) survival rates of culture organisms which 

may be impacted acutely if temperature exceeds a species thermal limits, or chronically as a result of 

stress related increases in disease susceptibility. 

6.2.2.1 Suitable temperature ranges for pond aquaculture in Bangladesh 

The investigation of critical thermal maxima and minima (CTmax and CTmin) under laboratory conditions 

has been completed for a range of aquaculture species. Animals are typically acclimated at a constant 

temperature (e.g. for 30 days) and then subjected to a steady increase or decrease in temperature 

(e.g. 0.3°C per minute) until loss of equilibrium is observed. High acclimation temperatures generally 

result in higher CTmax and CTmin values while lower acclimation temperatures tend to lower CTmax and 

CTmin. CTmax and CTmin values from a number of studies for relevant species are summarised in Table 6-

2. Rakocy (2005) suggests minimum and maximum temperature tolerance of 11-12°C and 42°C for 

Nile tilapia (Oreochromis niloticus) while Hassan et al. (2013) cites Ernst et al. (1991) and suggests 

that Nile tilapia will not survive below 10-12°C for more than a few days. While critical thermal 

maxima and minima are relatively easy to establish in the laboratory they are not generally directly 

applicable to pond aquaculture situations where temperatures are liable to change at slower rates 

and persist for longer periods. Although laboratory based investigation of chronic lethal temperature 

values for fish species are less common, Beitinger et al. (2000) cites Fields et al. (1987) and notes that 

for the North American largemouth bass (Micropterus salmoides) heating at 1°C per day compared 

with 0.2°C per minute resulted in upper lethal temperatures between 1.8 and 3.6°C lower for the 

slow heating regime. In the case of ponds within Bangladesh extremes of high and low temperatures 

will almost certainly take place during the respective warm and cold seasons and thus from a critical 

thermal tolerance perspective animals are likely to be relatively well acclimatised. 

From a site suitability and pond temperature modelling perspective the use of critical thermal 

tolerance data as outlined above is perhaps most applicable in relation to temperature extremes that 

may be experienced during brief periods of unusually hot or cold weather. Perhaps more applicable in 
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the case of average temperature regimes are studies that consider survival rates for animals cultured 

at different temperatures along with measures of growth performance such as specific growth rate 

(SGR) and food conversion ratio (FCR). Key outcomes from a number of such studies for relevant 

culture species are outlined in Table 6-3.  

In summary, it would appear that the optimum culture temperature for common aquaculture species 

in terms of growth performance can be considered be from the upper twenties to low thirties. At 

higher and lower temperatures FCR, and in some cases SGR, is reduced indicating increased 

physiological stress. For the popularly cultured crustaceans laboratory based studies suggest potential 

impacts on survival when maintained at constant high temperatures.  

Table 6-2: Critical thermal maxima and minima for a number of significant aquaculture species. 

Species Acclimation 

temperature(°C) 

CTmax(°C) CTmin(°C) Reference 

Macrobrachium 

rosenbergii 

 

Values are for juveniles 

20 36.5 ± 1.1 10.5 ± 0.3 (   az Herrera et al., 1998) 

23 38.4 ± 0.1 11.3 ± 0.1 

26 39.2 ± 0.8 13.3 ± 0.9 

29 41.5 ± 1.0 14.6 ± 0.1 

32 42.0 ± 0.8 16.4 ± 0.7 

Macrobrachium 

rosenbergii 

 

25 40.73 ± 0.16 14.9 ± 0.13 (Manush et al., 2004) 

 30 41.06 ± 0.17 15.4 ± 0.14 

35 41.96 ± 0.17 16.98 ± 0.21 

Labeo rohita 

 

Values are for fry 

(aprox. 10 - 19g) 

26 42.33 ± 0.07 12.00 ± 0.08 (Das et al., 2005) 

31 44.81 ± 0.07 13.46 ± 0.04 

33 45.35 ± 0.06 13.80 ± 0.10 

36 45.60 ±0.03 14.43 ± 0.06 

Labeo rohita 25 40.2 ± 0.04 12.9 ± 0.04 (Chatterjee et al., 2004) 

30 41.6 ± 0.08 14.2 ± 0.04 

35 42.2 ± 0.11 15.0 ± 0.05 

Labeo rohita 26 40.63 7 0.17 13.73 7 0.07 (Das et al., 2004) 

31 41.91 ± 0.22 14.20 ± 0.25 

33 42.65 ± 0.01 15.00 ± 0.18 

36 42.86 ± 0.05 15.58 ± 0.06 

Catla catla 26 40.45 ± 0.38 13.92 ± 0.01 

31 41.39 ± 0.38 14.40 ± 0.03 

33 42.63 ± 0.02 15.20 ± 0.09 

36 42.73 ± 0.02 15.63 ± 0.13 

Cirrhinus mrigala 26 42.25 ± 0.14 12.12 ± 0.22 

31 42.55 ± 0.01 13.70 ± 0.31 

33 42.76 ± 0.05 13.81 ± 0.22 

36 43.07 ± 0.08 13.95 ± 0.10 
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Table 6-3: Summary of key findings from a number of studies investigating growth performance and or survival of 
significant aquaculture species in relation to temperature regimes. 

Species  Key findings Reference 

Oreochromis 
niloticus 

Investigation of growth performance at 25, 28, 31, 34, and 
37°C. Growth performance was found to be best in the 28, 
31, and 34°C groups while optimum growth temperature was 
estimated at 30.1°C with maximum protein retention at 28°C. 
At 37°C growth performance and protein retention was 
worse than all other treatments 

(Xie et al., 2011) 

Oreochromis 
niloticus 

Investigation of SGR and FCR at 24, 26, 28, 30, 32, and 34°C. 
The best SGR and FCR was at 32°C followed by 30°C, then 
28°C, then 34°C, 26°C, and 24°C.  

(Workagegn, 2012) 

Labeo rohita Fry reared at 26, 31, 33, and 36°C. The 31°C treatment 
resulted in the highest SGR and FCR (0.89 ± 0.05 and 1.01 ± 
0.01). The 33°C treatment gave results with no statistical 
difference (p<0.05) (0.81 ± 0.02 and 1.02 ± 0.04). The next 
best in terms of growth performance was the 26°C (0.64 ± 
0.02 and 1.32 ± 0.02) with 36°C been the worst overall (0.52 ± 
0.02 and 1.59 ± 0.02). 

(Das et al., 2005) 

Macrobrachium 
rosenbergii 

Investigation of the effects of temperature and salinity on 
growth and reproduction with salinity set at 0, 8, or 16 ppt 
and temperature at 24, 29, and 34°C. The lowest salinity 
treatment performed best at each temperature in terms of 
final weight of both animals and eggs. In terms of 
temperature the 29°C treatment performed best with a final 
weight of prawns in the 0ptt salinity treatment being 
40.53±3.707g. This was followed by the 24°C treatment 
(33.1±2.346g), and then a substantial decrease in the case of 
the 34°C treatment (16.93±1.76). A similar pattern but with 
lower final weights was seen at the higher salinity levels. 

(Habashy and Hassan, 
2011) 

Macrobrachium 
rosenbergii 

Similar experiment to that described above with 
temperatures of 26, 30, and 34°C and salinity values of 0, 6, 8, 
12, and 16ppt. In this case growth and egg production was 
higher at moderate salinities (6 and 8ppt). Overall the 30°C 
temperature treatment gave resulted in the best growth of 
animals as well as greatest egg production followed by the 
26°C then 34°C treatments.  

(Ch et al., 2012) 

Macrobrachium 
rosenbergii 

In a guide to freshwater prawn farming New (2002) states the 
following "Temperature is a key factor. Seasonal production 
is possible in semi-tropical zones where the monthly average 
air temperature remains above 20°C for at least seven 
months of the year. This occurs, for example, in China and 
some southern States of continental USA. For successful year-
round farming, sites with large diurnal and seasonal 
fluctuations should be avoided. The optimum temperature 

(New, 2002) 
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range for year-round production is between 25 and 31°C, 
with the best results achievable if the water temperature is 
between 28 and 31°C." 

Penaeus monodon Investigation of survival over a 96 hour period for post larvae 
at different stages (pl1 and pl15) at temperatures of 29, 33, 
and 35°C, and salinities of 25, 33, and 35ppt. While salinity 
didn't appear to have any obvious effect on survival rate 
temperature did with lower temperature being preferable. 
The effect was most pronounce in the case of the PL15 larvae 
and especially at 35°C. Average survival rates for all salinities 
were as follows: PL1: 29°C = 95.8%, 33°C = 87.1%, 35°C = 
69.8%. PL15: 29°C = 70.6%, 33°C = 67.2%, 35°C = 43.1%. 

(Chaitanawisuti et al., 
2013) 

 

Litopenaeus 
vannamei 

Survival and SGR of postlarvae under a range of temperature 
and salinity treatments were investigated over a 40 day 
period with twice daily unlimited feeding. Salinities of 20, 25, 
30, 35, 40, and 50ppt were used and for each salinity there 
where treatments with temperatures of: 20, 25, 30, and 35°C. 
The authors note that growth was considerably lower at 20°C 
than at other temperatures. At the higher temperatures (20 
and 35°C) growth rate was best but in the case of the 35°C 
treatment survival rates were considerably reduced at all 
salinities.  

(Ponce-Palafox et al., 
1997) 

 

6.2.2.2 Reclassification of modelled pond temperature data 

The use of spatially represented climate and weather data based on observed values, weather 

reanalysis data, and an ensemble of future climate projections  to  model of pond temperature under 

late 20th century conditions, as well for a 2°C mean global warming scenario, are described in detail 

in chapter three. The modelled data takes the form of a time series of daily mean pond temperatures 

spanning two ten year periods (late 20th century conditions and 2°C average global warming).  

For the current assessment the monthly average temperature was reclassified on a continuous scale 

from least suitable (0) to most suitable (255). Temperatures between 29°C and 32°C were considered 

most suitable while those below 22°C and above 37°C were considered least suitable. The minimum 

and maximum temperatures reached during the time series for each month were also reclassified as a 

means of considering the effects of unusually hot and cold weather events. Figure 6-6 illustrates the 

suitability classification applied to the mean, maximum, and minimum monthly temperatures. Finally 

Boolean layers where generated for any areas with temperatures above 37°C or below 16°C as a 

means of highlighting situations where temperatures may be approaching the critical thermal limits 

of culture species. 
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Mean Maximum Minimum 

Figure 6-6: Temperature suitability for average monthly temperatures as well as maximum and minimum values reached 
for each month during the 10 year time series. The horizontal axis shows temperature (°C) while the vertical axis 

represents corresponding suitability on a scale of 0 to 255. 

 

 

 

6.2.3 Precipitation, evaporation and water balance and water balance 

As well as estimates of pond temperature chapter three also described the use of historic climate 

data sets along with climate model output to estimate rates of precipitation and evaporation (from a 

water surface) under the late 20th century and 2°C warming climate scenarios. Subtracting 

evaporation from precipitation to obtain a water balance figure provides a useful indicator of water 

availability for rain fed ponds. Chapter three made use of a number of seepage scenarios in 

combination with water balance to estimate the likelihood of ponds containing water at a given time 

of year. Given the nature of extensive surface water coverage in Bangladesh potentially allowing for 

immediate filling of ponds it seems probable that such a method would often underestimate pond 

water availability. With this in mind water balance is considered in the current assessment as a means 

of comparing the relative wet or dryness both spatially and between climate scenarios. This is 

achieved by normalising the water balance range (lowest to highest values within Bangladesh, 

including both climate scenarios) over a range of 0-255 to allow combination with other variables 

using a common scale.  
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6.2.4 Low elevation coastal zones and associated storm surge flooding 

Much of Bangladesh is extremely low lying and essentially consists of the delta areas for a number of 

major rivers. Many coastal regions employ polder systems; areas of land surrounded by dikes that 

prevent salt water inundation and thus allow for agricultural activity. Bangladesh experiences 

relatively frequent tropical storms and cyclones with an average of one severe cyclone every three 

years (Dasgupta et al., 2010). Such storms often result in storm surges where a combination of 

extreme low pressure and wind action can cause a temporary dramatic increase in coastal sea level. 

In the case of Bangladesh surge heights of between 3 and 6 meters are experienced, with theoretical 

predictions of up to 7.5m (Salam and Ross, 2000), resulting in flooding of low lying coastal areas.  

A number of studies have attempted to model potential storm surge impacts on coastal regions in the 

bay of Bengal under a range of sea level rise and surge height scenarios (e.g. Karim and Mimura, 

2008, Lewis et al., 2013). While such efforts should be encouraged they are typically constrained by 

availability of high quality data, notably that relating to elevation. At a more local scale factors such as 

the height and quality of dikes surrounding polder areas will be extremely relevant in terms of flood 

risk, and it is in this respect that a generally unpredictable and constantly changing human element 

can play a significant role. 

While detailed hydrodynamic modelling is beyond the scope of this case study use was made of 

Shuttle Radar Topography Mission (SRTM) data to highlight low elevation coastal zones (LECZ) and 

thus gain some insight into potential flood risk. SRTM data is available globally with a horizontal 

resolution of 3 arcseconds (approximately 90m), and a vertical resolution of 1m. An unfortunate 

characteristic of SRTM data, when compared to high resolution data provided by technologies such as 

airborne light detection and ranging (LiDAR), is that it is affected by the height of vegetation and 

other ground based objects (Sanders, 2007). In order to reduce the impact of scattered tree cover on 

elevation values a mean value 7x7 grid square filter was applied to effectively smooth the data. A cost 

distance algorithm within a GIS was then adapted to highlight all contiguous pixels with an elevation 

of 5 metres or less, and 3 metres or less, that have contact with the sea.  
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6.2.4.1 Visualising the impact of cyclone Aila using MODIS surface water time series 

Cyclone Aila made landfall in Bangladesh on the 25th of May 2009 with an associated storm surge 

height in the region of 2 to 3 metres and resulted in an estimated 3500 casualties (IFN, 2009). A 

polder area in south western Bangladesh was visited in early October 2009 that was still inundated 

with saline water resulting in the displacement of a significant number of people.  

The MODIS based surface water time series described in chapter 4 is used to demonstrate the extent 

of flooding throughout coastal Bangladesh in the immediate aftermath of cyclone Aila. The extent of 

flooding in the polder area is shown in more detail at the time of visit, over 5 months after initial 

inundation, and compared to its pre-flood state.  

 

6.2.5 Combining factors to assess site suitability 

A number of studies have used the combination of varied spatial data sets within a GIS in conjunction 

with multi criteria evaluation (MCE) approaches to model site suitability for aquaculture within 

Bangladesh (Hossain et al., 2007, Hossain et al., 2009, Hossain and Das, 2010, Salam et al., 2005, 

Salam et al., 2003). Such work has focussed on relatively small areas within the country and made use 

of locally sourced data sets, often involving data collection in the field, that include variables such as: 

water sources, water quality, local markets, road networks, and location of hatcheries. While in 

theory such an approach could be expanded to encompass the whole country, in practice there are 

significant limitations. As discussed in chapter three in relation to global site selection modelling there 

is a strong need for data used to be consistent across the entire extent of the study area. In the case 

of Bangladesh the availability of high quality nationwide data is extremely limited. During the current 

study considerable time was invested in trying to acquire suitably detailed data for highly significant 

indicators such as road networks and population centres. Ultimately, little was obtained and while 

some available datasets looked promising initially, checking against high resolution true colour 

satellite imagery such as that seen in Google earth showed that they were inaccurate and spatially 

inconsistent. 

In common with other GIS site suitability assessments for aquaculture such as those listed above the 

current study made use of an MCE approach using weighted linear combination. Given the data 

limitations it is stressed that the aim is not to try to produce a detailed site suitability outcome as 
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would be expected from localised assessments with a greater body of data to draw on. Instead, the 

aim is to provide a broad suitability assessment at the country scale with the focus on climate 

variables that can be overlaid with the ETM+ and MODIS-derived land classification data.  

Normalised maximum, minimum and mean temperature suitability values were used along with 

normalised water balance data was also included. Population density and soil property data that form 

part of global gridded data sets were included with full details of data sources and reclassification to 

the 0-255 suitability ranking system described in chapter three. A number of areas were considered 

as completely unsuitable for aquaculture production and excluded from the final output. These 

consisted of: Areas with a slope above 3% or an elevation above 30 metres (the vast majority of 

Bangladesh is extremely low lying and flat and this effectively excluded the hilly forested areas to the 

east and north where aquaculture potential would be extremely limited), Urban areas as designated 

by the reclassified ETM+ data, and areas with very high or low population densities (see figure 3-9).  

Three different MCE combinations were made using slightly different weightings (Table 6-4) with 

outcomes geared towards the aquaculture scenario related land classifications produced from the 

ETM+ land cover and MODIS surface water data. 

Table 6-4: Weightings used for MCE. 

Site suitability factors Weightings 

Conversion of fields to 
pond aquaculture 

Floodplain 
aquaculture 

Homestead ponds 

Temperature - mean - normalised 0.3 0.4 0.3 

Temperature - maximum - normalised 0.1 0.1 0.1 

Temperature - minimum - normalised 0.1 0.1 0.1 

Water balance (normalised) 0.2 0.2 0.2 

Population density 0.2 0.1 0.15 

Soil suitability 0.1 0.1 0.15 

Constraints: 

Slope >3%, Elevation >30m, 
Population density (see chapter 3), 
Urban areas. 
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6.3 Results and discussion 

6.3.1 Land cover reclassification 

Figure 6-7 shows the result of the reclassification of the Landsat based land cover data using 

additional input from the MODIS-derived surface water time series and SRTM elevation data to 

indicate how land cover may relate to different potential aquaculture systems assuming other 

suitability factors are favourable. 

 

Figure 6-7: Land cover in Bangladesh and how it may relate to potential aquaculture systems. 
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6.3.2 Temperature suitability 

Figure 6-8 shows annual modelled pond temperature profiles for different regions within Bangladesh. 

It should be noted that temperatures represent daily mean values i.e. mean pond temperature 

represents the average of all daily mean pond temperatures for a given month during the 10 year 

time series while the maximum and minimum temperatures represent the single highest or lowest 

average daily value achieved for each month. From an aquaculture perspective there is also likely to 

be some degree of diurnal temperature fluctuation taking temperatures beyond the mean daily 

maximum and minimums presented here and thus potentially placing greater stress on culture 

organisms. However, as discussed earlier under normal conditions unless a pond is artificially mixed, 

very shallow, or wind speeds are very high, then there is likely to be a degree of stratification during 

daytime warming. Studies aiming to model pond water temperature in aquaculture ponds while 

taking account of stratification have noted temperature variations of around 1 - 3°C in ponds of 

around one meter deep while surface fluctuation have been much greater (Culberson and Piedrahita, 

1996, Losordo and Piedrahita, 1991). The issue of pond depth was highlighted during discussions with 

aquaculturists in Bangladesh who very much viewed lack of water and high temperatures as a 

common problem in that temperature related stock losses occurred when water depths were 

significantly reduced. 

In terms of spatial variation areas in the south of the country nearer the coast (Khulna and Cox's 

Bazar) show the least seasonal temperature variability while Bogra in the north west of the country 

showed the highest, with both maximum and minimum temperatures exceeding those in other areas. 

In terms of fish culture potential the southern sites and especially Cox's Bazar in the extreme south 

east would seem to be most favourable with a considerable part of the year experiencing 

temperatures in the ideal 28-30°C range whilst maintaining higher temperatures during the coldest 

part of the year, potentially allowing for better growth performance, and having less in the way of 

extreme maximum temperatures. 

The impact of the 2°C global warming scenario is potentially both positive and negative depending on 

location and season. In all regions of the country higher temperatures during the colder months 
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(November to March) would almost certainly have a positive effect in terms of growth performance 

of commonly cultured species. During the warmest part of the year (June to September) mean 

temperatures are projected to be in the low thirties in most areas and thus still reasonably 

favourable, while in Cox's Bazar they are mostly one or two degrees lower. In terms of extremes of 

temperature directly impacting on production through loss of stock it seems unlikely that minimum 

low temperatures will be significant for most culture species with the risk continuing to reduce in line 

with increasing global temperatures. In terms of the short-term impact of maximum temperatures 

the months of May and June probably represent the greatest risk in situations where ponds are low in 

water and waiting to be filled during the monsoon period. Under the 2°C warming scenario modelled 

maximum temperatures range from around 34°C in Cox's Bazar to approximately 37°C in Bogra in the 

north west of the country. These temperatures in the warmer parts of the country are likely to 

represent a significant source of stress for many aquaculture species. If factors such as ponds with a 

limited water depth and thus a greater degree of diurnal temperature fluctuation and other possible 

water quality issues are considered then it would seem that the potential for damage to stocks during 

these extreme hot periods could be considerable.  
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Figure 6-8: Modelled pond temperature data for different regions of Bangladesh. Solid lines represent late 20th century 
conditions while dashed lines represent 2°C average global warming. Green = average monthly temperature, blue = 
monthly minimum, and red = monthly maximum. 
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Figure 6-9 shows average annual (mean of monthly suitability scores) suitability scores for pond 

aquaculture using the classification schemes outlined in Figure 6-6 for both climate scenarios as well 

as the difference between the two. In terms of mean pond temperature there is an overall increase in 

suitability in most areas as a result of more favourable temperatures during colder parts of the year. 

This effect is further emphasised when looking at the reclassified minimum temperature data. The 

impacts of the 2°C warming scenario on maximum temperature suitability is quite striking with the 

biggest reduction in suitabiilty seen in the north west of the country. A small area is highlighted as 

having temperatures exceeding 37°C although this was only the case in June and July, and only by 

about 0.5°C. Overall, in terms of temperature regime the south and east areas of the country would 

appear to be more suitable for aquaculture production. 
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Suitability based on modelled mean pond 
temperature under late 20

th
 century conditions. 

Suitability based on modelled mean pond 
temperature under 2°C average global warming 
scenario. 

Change in suitability between 2 scenarios - based 
on modelled mean pond temperature. 

Figure 6-9: Annual average suitability of monthly mean, minimum and maximum temperatures. 
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Suitability based on modelled maximum pond 
temperature under late 20

th
 century conditions. 

Suitability based on modelled maximum pond 
temperature under 2°C average global warming 
scenario. 

Change in suitability between 2 scenarios - based 
on modelled maximum pond temperature. 

Figure 6-9 continued. 
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Suitability based on modelled minimum pond 
temperature under late 20

th
 century conditions. 

Suitability based on modelled minimum pond 
temperature under 2°C average global warming 
scenario. 

Change in suitability between 2 scenarios - based 
on modelled minimum pond temperature. 

Figure 6-9 continued. 



 

230 

 

 

6.3.3 Water balance 

Figure 6-10 shows water balance as mm per year under late 20th century conditions and for the 2°C 

average global warming scenario along with the difference between the two, while Figure 6-11 shows 

water balance values for the two scenarios normalised (lowest to highest values encounter across 

both scenarios) over the same scale (0-255) as used to describe suitability in the case of pond 

temperature. Results suggest that the west of the country is driest with the northwest and southwest 

corners being wettest. Under the 2°C warming scenario there is a slight increase in water balance 

throughout the country with the largest increase being in the already wetter northeast of the 

country. 

From an aquaculture perspective the drier conditions in the west of the country can be considered 

less favourable for ponds that have limited access to water sources other than rain. As highlighted in 

relation to pond temperature regimes the west of the country is also where higher maximum 

temperatures are to be expected potentially compounding issues arising from inadequate water 

supply.  

The 2°C climate change scenario used in the current assessment was created using a consensus of 13 

Atmosphere-Ocean Global Circulation Models (AOGCMs). While the use of multi-model ensembles is 

generally considered superior to individual models in terms of accuracy (Fordham et al., 2011, Pierce 

et al., 2009, Reichler and Kim, 2008) it is still worth considering that uncertainties remain and while 

agreement between models over patterns of temperature change is quite strong, for patterns of 

precipitation change model agreement is generally weaker. In terms of precipitation patterns over 

Bangladesh and the surrounding areas the ensemble of 39 climate models (CMIP5 (Taylor et al., 

2012)) used to inform Intergovernmental Panel on Climate Change (IPCC) fifth assessment report 

(AR5) (IPCC, 2013) broadly agree with the (CMIP3) climate model ensemble used to guide the 

previous assessment report, as well as provide the climate model data used in the current study, in 

suggesting an increase in wet season rainfall while the dry season will remain relatively unchanged or 

very slightly wetter. In AR5 (IPCC, 2013) the IPCC states that there is medium confidence that 

monsoon inter annual rainfall variability will increase, that an increase monsoon related precipitation 

extremes are very likely, and that there is medium confidence that the Indian monsoon will weaken 
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but increased atmospheric moisture will compensate for this leading to more rainfall. Monsoon 

statistics based on the CMIP5 ensemble are summarised in Figure 6-12 extracted from IPCC AR5 

(IPCC, 2013). While it is difficult to draw definite conclusions for aquaculturists in Bangladesh it seems 

that there will be more water for rain fed aquaculture but much of this will be during the monsoon 

period where water is already in plentiful supply and in some cases increased flood risk may be more 

of a concern.  

 

   

Average annual total water balance 
(precipitation - potential 
evaporation from a water surface) 
under late 20

th
 century condistions 

(mm). 

Average annual total water balance 
(precipitation - potential 
evaporation from a water surface) 
under 2°C average global warming 
scenario (mm). 

Change in average annual total 
water balance between late 20

th
 

century and 2°C average global 
warming scenarios (mm). 

Figure 6-10: Water balance. 
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Normalised water balance values for late 20
th

 century 
conditions 

Normalised water balance values under the 2°C 
average global warming scenario 

Figure 6-11: Normalised water balance values. 

 

 

Figure 6-12: Projected percentage change in monsoon statistics for 4 emissions scenarios using the CMIP5 climate model 
ensemble. Comparison between time periods (1986–2005) and the future (2080–2099). Emissions scenarios: RCP2.6 (dark 
blue: 18 models), RCP4.5 (blue: 24), RCP6.0 (yellow: 14), and RCP8.5 (red: 26). Statistics: seasonal average precipitation 
(Pav), standard deviation of inter-annual variability in seasonal precipitation (Psd), seasonal maximum 5-day precipitation 
total (R5d) and monsoon season duration (DUR). Source: (IPCC, 2013). 
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6.3.4 Low elevation coastal zone and potential risk of storm surge flooding 

Figure 6-13 shows low elevation coastal zones (LECZ) using SRTM data and highlighting contiguous 

pixels with contact to the sea with thresholds of 3 metres or less, and 5 metres or less. In terms of 

storm surge related flooding distance from the sea will also have a significant impact with storm 

surges typically loosing intensity in relation to distance, elevation and roughness of the land surface. 

The 3 metre elevation threshold highlights substantial areas in the southwest of the country that is 

particularly low lying and much of which contains large areas of aquaculture ponds with an emphasis 

on brackish water production of shrimp and prawn. Using the 5 metre threshold a much larger area is 

highlighted. While some of the highlighted area is a considerable distance inland and may be at lesser 

risk, areas highlighted nearer the coast and on the many islands of the delta should probably be 

considered vulnerable in relation to large storm surge events. 

  

Contiguous pixels with contact with the sea and an 
elevation of 3m or less. 

Contiguous pixels with contact with the sea and an 
elevation of 5m or less. 

Figure 6-13: Low elevation coastal zones. 

 

Figure 6-14 shows a time sequence of images extracted from the MODIS surface water time series 

that focuses on flooding associated with cyclone Aila. The immediate effect of the cyclone can be 

seen in the third image in the series with an increase in surface water area in the south west of the 

country that corresponds to some extent with the 3 metre LECZ highlighted in Figure 6-13 and is 

probably a result of storm surge flooding. The large increase in areas classified as mixed in many 

regions may well be a result of the extreme rainfall that typically accompanies tropical storms.  
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While the extent of flooding shown in Figure 6-14 can be seen to reduce gradually during the time 

periods after the cyclone event there are likely to be areas where water remains for a considerable 

period. This is likely to be especially true for very low lying polder areas which, once inundated, may 

be difficult to drain. An example of such an event is provided here via a series of images in Figure 6-

15. Image A shows the area of interest which is a polder in the southwest of Bangladesh, image B 

shows elevation and while the highlighted area has predominantly low elevation values of around 2-

3m it is no lower than areas to the north that remain unaffected. It is also worth noting that the area 

to the east indicated as being higher in elevation is part of the Sundarban and actually represents 

very low lying land with dense mangrove cover giving a false impression of elevation height , Image C 

shows ETM+ derived land cover and indicates that the area in question mostly consists of cropland, 

image D show the percentage of the MODIS surface water time series where water is present and 

highlights that the area is not normally flooded, image E shows MODIS surface water data for a single 

time point in early October 2008, while image F shows MODIS surface water data for early October 

2009 when the area, still flooded after cyclone Aila, was visited. The first two photographs in Figure 6-

16 show part of the flooded area including homes and trees which appeared in some cases to be 

dying as a consequence of the saline water, the third image highlights the immediate human impact 

and shows people forced to abandon their homes and take refuge on the road which represents the 

only area of land in the immediate vicinity that is significantly above flood height. The final image 

shows pens funded by an NGO and being used to culture tilapia in the flood water. 

Taken together the information outlined above highlights a number of points: 1. The human impact of 

storm surge events can be severe and can persist long after the event with saline water being 

particularly damaging for agriculture, 2. Vulnerability to such flooding depends on local factors and 

cannot be reliably predicted with relatively low resolution elevation data, although it can help in 

indicating areas that may be at risk and should be considered for further evaluation. While no direct 

evidence was observed it is interesting to note that during discussion with affected people there was 

a suggestion that protective dikes had been damaged by people attempting to fill shrimp ponds with 

saline water, a situation that would be hard to account for within a risk modelling exercise no matter 

how sophisticated, 3. That the use of remotely sensed data can be useful in monitoring such events, 

and 4. That aquaculture represents a flexible technology that may have potential benefits in helping 

adaptation to climate driven events (Karim et al., 2014). 
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Bangladesh is often highlighted as one of the world's most vulnerable countries in terms of sea level 

rise (Houghton, 2009) with the suggestion that land subsidence (Ericson et al., 2006) is leading to an 

effective sea level rise beyond the global average (Pethick and Orford, 2013, Singh et al., 2000). 

Brammer (2014) suggests that some sea level rise scenarios described for Bangladesh are perhaps 

overly pessimistic and points out that both the coastal geomorphology and people of Bangladesh are 

dynamic, and it is not a simple case of them being overwhelmed one contour at a time. That said it 

does seem likely that for the very low lying and polder areas increases of sea level will increase the 

risk of flooding in the face of storm surge events.  

Coastal regions of Bangladesh, especially the southwest, show a salinity gradient of surface and 

ground waters that extends a considerable distance inland. A long term gradual effect of sea level rise 

combined with impacts on freshwater inputs such as upriver damming is to increase salinity levels, 

effectively moving salinity contours further inland with potential negative consequences for 

agriculture (Rahman et al., 2011, Haider and Hossain, 2013). In areas where salinity has negatively 

affected rice production (Haider and Hossain, 2013) showed that farmers had taken up shrimp culture 

as an alternative livelihood strategy. However there is also evidence that shrimp farming itself leads 

to increased salination of surrounding land (Pouliotte et al., 2009, Rahman et al., 2011). Clearly this is 

an area where ongoing research is needed in line with careful policy making to promote sustainable 

production across all sectors. Nevertheless, in situations where salinity levels arising from increasing 

sea levels and reduced freshwater inputs preclude the majority of agricultural practices, the culture of 

salt tolerant aquaculture species would seem to provide a means of income and food generation 

from land that may have little in the way of alternative value. 
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Figure 6-14: Time series of images showing flooding caused by cyclone Aila on 25th May 2009. 

 

  
A. Area of interest. B. Elevation based on unfiltered SRTM data. 

  
C. Landsat ETM+ land cover classification. D. MODIS surface water time series - inundation 

frequency. 

Figure 6-15: Inundation of a polder area with sea water during cyclone Aila. 
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E. Early October 2008. F. Early October 2009 - time of field visit. 

Figure 6-15 continued. 

  

  

Figure 6-16: The impact of cyclone Aila on a polder area in southwest Bangladesh. Top images give an impression of 
flooding, the bottom left image shows people forced to live in temporary accommodation on the road, bottom right 

shows NGO sponsored pen culture of tilapia in flood waters. 
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6.3.5 MCE results combined with land cover classifications 

The results of the land cover reclassification described in Figure 6-7 overlaid with the results from the 

site suitability MCE are shown in Figures 6-17 to 6-21 with each land cover class represented 

separately. In each case results for late 20th century conditions are shown along with changes in 

suitability in response to the 2°C global warming scenario. The MCE weightings used were chosen so 

as to place quite a strong emphasis on the climate-related variables of water balance along with 

mean, minimum, and maximum temperature. In each of the classifications there is a general trend 

towards lower levels of suitability in the north west of the country as a result of higher maximum 

temperatures and lower water balance figures, while the east of the country, and particularly the 

extreme south east, are considered most favourable. Comparing the two climate scenarios shows an 

increase in suitability in the east of the country driven by: more favourable mean temperatures 

throughout the year, increased water balance figures in the northeast, and limited impact in terms of 

maximum temperatures. This contrasts with the northwest regions where suitability is decreased due 

to the effects of higher maximum temperatures. It is worth noting that while changing the weightings 

used when combining the temperature and water balance data have some bearing on outcome in 

terms of the extent of suitability differences seen between both regions and climate scenarios, the 

general pattern remains largely the same suggesting a fairly robust result. 

The results displayed in Figures 6-17 to 6-21 have a strong focus on climate and surface water 

patterns and in doing so provide unique and valuable insights not seen in the much more localised 

site suitability conducted within Bangladesh to date. This focus combined with the already discussed 

scarcity of quality data at the national level means that many areas highlighted as suitable here 

maybe less than ideal when viewed at a more local level with an increased variety and resolution of 

data. Given that a key strength of site suitability modelling within a GIS environment is the iterative 

process and ability to build on and improve existing models and databases, the current assessment 

can be viewed as a strong foundation which can be used to inform future work within the region. 
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Figure 6-17: Suitability MCE results overlaid with areas classified as crop areas that could be considered for conversion to pond aquaculture. Image on left shows suitability 
under late 20

th
 century climate conditions while the image on the right shows suitability change in response to the 2°C average global warming scenario.
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Figure 6-18: Suitability MCE results overlaid with areas classified as crop areas that could be considered for conversion to pond aquaculture but with potentially greater flood 
risk. Image on left shows suitability under late 20

th
 century climate conditions while the image on the right shows suitability change in response to the 2°C average global 

warming scenario.
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Figure 6-19: Suitability MCE results overlaid with areas that receive a moderate amount of seasonal inundation and that could be considered in relation to floodplain 
aquaculture or well protected ponds. Image on left shows suitability under late 20

th
 century climate conditions while the image on the right shows suitability change in 

response to the 2°C average global warming scenario. 
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Figure 6-20: Suitability MCE results overlaid with areas that receive larger amounts of seasonal inundation and that could be considered in relation to floodplain aquaculture. 
Image on left shows suitability under late 20

th
 century climate conditions while the image on the right shows suitability change in response to the 2°C average global 

warming scenario.
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Figure 6-21: Suitability MCE results overlaid with area that have tree cover that in many instances will represent areas with homes and could be considered in relation to 
creating, or enhancement of, homestead ponds. Image on left shows suitability under late 20

th
 century climate conditions while the image on the right shows suitability 

change in response to the 2°C average global warming scenario.
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6.4 Concluding remarks 

Bangladesh is often highlighted as especially vulnerable to climate change due to a combination of 

factors including: being an extremely low lying deltaic country that experiences inland river based 

flooding as well as that in coastal areas as a result of storm surge activity, an extremely dense human 

population, and significant issues of poverty. The aquaculture sector is growing rapidly in Bangladesh 

and production is now believed to have overtaken that of capture fisheries (FishStatJ, 2014). 

Aquaculture is extremely important for the country both in terms of food security and as a source of 

income generation (Dey et al., 2008, Karim et al., 2006). 

The current case study incorporates the land cover data set described in chapter 4 with the surface 

water time series described in chapter 5 to evaluate land cover in terms of potential aquaculture 

environments. The pond temperature model described in chapter 3 is also incorporated along with 

water balance data, population density data, and elevation derived slope values to assess site 

suitability for pond-based aquaculture under late 20th century conditions and for a 2°C global 

warming scenario. Outputs are presented as a series of raster images with a ground resolution of 

30m.  

To date site suitability assessments for inland aquaculture within Bangladesh and elsewhere have 

been localized in nature (Giap et al., 2005, Hossain et al., 2007, Hossain et al., 2009, Hossain and Das, 

2010, Salam et al., 2005, Salam et al., 2003) and have focused on individual species. Such studies have 

typically made use of localised data sources many of which are not available at the national scale. As 

such the current study does not attempt to emulate these previous assessments but instead makes a 

number of valuable, and to date unique, contributions to the understanding of site suitability for 

aquaculture in Bangladesh: a) by covering the majority of the country it provides insights into 

suitability at the national level, b) the incorporation of remotely sensed data describing land cover 

and surface water distribution allows for the indication of areas in terms of potential aquaculture 

environments (conversion of fields to fish ponds, floodplain aquaculture, and smaller homestead 

ponds), c) the inclusion of climate data, and especially modelled pond temperature data, representing 

both recent and potential future conditions provides an extremely useful indication of how changing 

climate conditions may impact on aquaculture at the national scale. 
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Overall The south and east of the country was indicated as most suitable for aquaculture as a result of 

more favourable cold season temperatures and higher water balance values. The north west of the 

country was considered least suitable due to higher maximum modelled pond temperatures and 

lower water balance values. The effect of the 2°C warming scenario was to enhance these trends 

throughout the country in terms of temperature while the already wetter north east corner is 

projected to have a noticeable increase in precipitation.  

The idea that climate change may have both positive and negative impacts for Bangladesh depending 

on location is an important one in that it underlines the potential for further aquaculture 

development while emphasising the value of spatial modelling exercises such as the current one in 

relation to guiding development. 
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7 SUMMARY 

7.1 Global assessment of vulnerability of aquaculture related livelihoods to 

climate change 

The modelling process and results described in chapter two provide a global assessment of where 

changing climate may have the greatest impacts on aquaculture related livelihoods. While the model 

was similar in concept to previous assessments of climate related vulnerability (Allison et al., 2005, 

Allison et al., 2009, Metzger et al., 2005, o’Brien et al., 2004, Schröter et al., 2005) in that it viewed 

vulnerability as a function of exposure (extent of climate change), sensitivity (significance of 

potentially impacted resource - in this case aquaculture, and adaptive capacity, it differed in that it 

deliberately used a moderate number of focussed indicators to specifically target aquaculture.  

To date there has been one previous global scale assessment of climate change-driven vulnerability of 

aquaculture related to livelihoods (Handisyde et al., 2006) that also made use of spatial data and was 

based around the concept of vulnerability as a function of sensitivity, exposure and adaptive capacity. 

Notable improvements in the current assessment included the use of a more sophisticated set of 

climate change projections in the form of a multi-model ensemble of data obtained using the 

MAGICC/SCENGEN package, and improved methods of data combination including the use of 

geometric rather than arithmetic means to reduce the likelihood of countries with very small 

aquaculture sectors (low sensitivity) being considered as highly vulnerable in situations where metrics 

for exposure and adaptive capacity scored highly. To complement this approach the impacts of 

exposure and adaptive capacity were also considered in isolation to provide insight into where 

vulnerability may exist irrespective of national aquaculture industry size. Such a view may be 

especially useful when considering areas with emerging aquaculture industries that may be expected 

to develop significantly in the future. 

Unsurprisingly, due to their substantial aquaculture industries a number of Asian countries, notably 

Vietnam, Laos, Bangladesh, and to a lesser extent China, were considered most vulnerable to impacts 

on freshwater aquaculture production. Vietnam along with Ecuador was also considered highly 

vulnerable in terms of brackish water production meaning that when inland aquaculture production 

(brackish and freshwater) is considered as a whole Vietnam stands out significantly in terms of 

vulnerability.  
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In terms of mariculture Norway was indicated as most vulnerable despite being one of the world's 

most highly developed countries. Chile, another nation with relatively high levels of development  

also scored highly. The results in the case of Norway and Chile were influenced by the extremely high 

per capita levels of production compared with other nations. Other notable areas with indicated 

mariculture vulnerability include: China, Vietnam, the Philippines, Thailand, Greece, and Madagascar. 

The current assessment has a number of limitations. Much of the data used is only available at the 

national scale. Data availability, quality and resolution are typically the limiters for spatial modelling 

exercises and the current study was no exception. While higher resolution data for indicators such as 

aquaculture production may exist in some regions it is extremely unlikely that such data will become 

available with a consistent global coverage and resolution. With this in mind it would seem that for 

global scale impact assessments the best strategy at the current time is to focus on making best use 

of available data that provides consistent coverage across the entire study area. Another potential 

limitation is the widely held assumption that exposure to a greater degree of climate change, i.e. 

temperature increase, results in a greater negative impact. Such an approach is common in terms of 

global vulnerability assessments (Allison et al., 2005, Allison et al., 2009, Handisyde et al., 2006), and 

again given the data limitations with a global scale model there would seem to be little practical 

alternative. However real impact will depend on a complex combination of factors including the base 

climate before change and its relationship to specific culture species and practices where in reality 

impacts may range from strongly negative to strongly positive. With this in mind an important 

consideration is the context in which the model and its outputs are viewed. As with most modelling 

exercises results should not be followed blindly but should be considered as a valuable contribution 

to an informed decision making process.  

In summary, the model of vulnerability provides a highly useful tool to be used by informed decision 

makers when assessing where aquaculture-related vulnerability to climate change may occur. While 

further refinement of the model may be possible if improved data sets become available, future 

research may be best focused on more detailed regional analysis guided by the current findings. 

 



 

249 

 

7.2 Modelling site suitability in relation to climate changes at a global scale  

To date, the largest scale GIS-based site suitability assessments for aquaculture have been at the 

continental scale with good examples for Africa (Aguilar-Manjarrez and Nath, 1998, Kapetsky, 1994) 

and Latin America (Kapetsky and Nath, 1997). These studies were based on raster grids with 

resolutions of 10 arcminutes, 3 arcminutes, and 5 arcminutes respectively. Along with a global extent, 

the current assessment makes considerable advances in resolution by making use of land cover and 

elevation data at 10 arcseconds (approximately 300 metres at the equator) along with population 

density and soil property data to indicate site suitability. Another way in which the current 

assessment improves on previous on previous work that that has made use of climate data when 

investigating site suitability for aquaculture (e.g. Aguilar-Manjarrez and Nath, 1998, Kapetsky, 1994, 

Kapetsky and Nath, 1997) is through the use of data from an ensemble of GCMs when modelling 

pond temperature. The approach of using combined output from multiple climate models has 

potential benefits in projection accuracy when compared to results from a single model (IPCC, 2007b, 

Pierce et al., 2009) and was used in the current study to represent conditions under a 2°C average 

global warming compared with late 20th century conditions. These climate change scenarios were 

then applied to a 10 year daily time series of reanalysed gridded weather data as a means of gaining 

valuable insight into potential variability and temperature extremes that would not be visible if only 

monthly averages had been used. Along with temperature effects, water availability for rain fed 

ponds was also considered for the two climate scenarios and in relation to low, medium and high 

rates of water loss via seepage.  

The three main model components (land suitability (based on topography, soil and population), pond 

temperature, and water availability) each provide valuable insights in their own right. However a key 

advantage of a GIS modelling approach is that once a spatial database is established it is relatively 

easy to combine data in a range of ways to ask specific questions of the data. For the current 

assessment, two methods of data combination were demonstrated with Nile tilapia (Oreochromis 

niloticus) used as a model species representing warm water culture conditions. Firstly pond 

temperature data were reclassified over a continuous range of values (0-255) representing the least 

to most suitable conditions. This reclassified data were then combined with a land suitability 

(topography, soil properties and population density) component that was classified using the same 0-

255 scheme by means of an ordered weighted average. The second method made use of thresholds 

for temperature and pond water availability to create a Boolean layer indicating areas of potential 
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aquaculture that were then overlaid with the land suitability layer. In both cases layer combinations 

were made for both late 20th century conditions and for the 2°C global warming scenario.  

While outputs from the modelling processes described above are best viewed as a series of spatial 

images it is possible to draw a number of general conclusions: 

 Pond temperatures are projected to increase less than air temperatures in most areas. It 

should, however, be noted that in the case of the 2°C average global warming increase in air 

temperatures over land will be greater than the 2°C average in many areas. 

 Projected changes in suitability in relation to reclassified temperature data vary depending on 

location and time of year, however overall there would appear to be a positive trend for 

culture of warm water species in most tropical regions. This positive trend is especially 

pronounced in relation to colder seasons. There are some significant areas from an 

aquaculture perspective that are indicated as having lower levels of suitability during warmer 

parts of the year, notably parts of Asia including Bangladesh, Thailand, Myanmar, and parts of 

India. There were also some negative impacts projected for the warmest part of the year in 

western Africa, notably in Ghana.  

 Location is again significant when interpreting water availability for rain fed ponds results. 

Overall, under most seepage and runoff scenarios used there is a projected increase in 

potential pond area. However, while the projected increases appear quite large in percentage 

terms for many of the scenarios it is worth noting that the overall areas involved are quite 

small in relation to the pixel size of the data used meaning that the inclusion of a small 

number of extra pixels would have a substantial impact on results. 

As it stands the current model provides a useful and unique evaluation of site suitability for pond-

based aquaculture at the global scale while at the same time providing insight into the potential 

implications of a warming climate. There are a number of areas where future work could complement 

the existing database and model. One area of particular value would be that of water availability for 

ponds that make use of permanent or semi permanent surface water sources. One potential 

approach would be the use of remotely sensed data as a means of detecting existing water bodies, 

ideally at a number of time points throughout the year to give an indication of how permanent a 

water source may be. MODIS data have been demonstrated as a means of monitoring surface water 

both as part of the current work and elsewhere (e.g. Guerschman et al., 2011, Handisyde et al., 2014, 
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Sakamoto et al., 2007). While the manageable resolution and frequent return period would make 

detecting surface water at a global scale for multiple time points a feasible exercise, the resolution of 

MODIS is not sufficient to resolve smaller water bodies, especially those taking the form of smaller 

rivers and canals. There have been recent attempts to produce a global land cover data set at 30m 

resolution based on Landsat data (Gong et al., 2013, Yu et al., 2014, Yu et al., 2010). Such work could 

be beneficial in terms of identifying surface water but in its current state only represents a single time 

point that varies depending on location and as such cannot really be considered suitable at this stage. 

For some regions detailed vector based mapping may be available with one potential source of freely 

available data being the OpenStreetMap project. Unfortunately such data is not available consistently 

at a global scale and is significantly lacking in detail for some areas such as Bangladesh in the case of 

the current work. Modelled runoff data based on digital elevation data have been used as an 

indicator of water availability at the global scale in relation to climate changes (e.g. Islam et al., 2007, 

Murray et al., 2012, Oki et al., 2003, Sperna Weiland et al., 2012) although it is important to note that 

such studies have used very low resolutions e.g. 0.5 degrees. While the idea is attractive the 

application at resolutions appropriate for aquaculture site selection over large areas, let alone 

globally, is probably not realistic. There is also the added issue that aquaculture often takes place in 

very flat areas where the relative noise in data such as SRTM originating from surface features such as 

vegetation and buildings may make results unreliable. 

 

7.3 MODIS as a tool for monitoring surface water for Bangladesh 

Sakamoto et al. (2007) proposed a method for using MODIS data to classify areas as either land, 

water, or mixed based on the use of the Enhanced Vegetation Index (EVI) and a Land Surface Water 

Index (LSWI). This method was applied to Bangladesh as a means of indicating areas of flooding by 

Islam et al. (2010). While the authors make some effort to assess the accuracy of the data 

classification through the use of a single RADARSAT image no use was made of ground based data and 

the exact methodology used was somewhat unclear.  

The current study made use of data collected on the ground to evaluate the accuracy of the method 

described by Sakamoto et al. (2007) for use within Bangladesh. A broad range of alternative 

classification options were considered using both single and multiple NDSIs and all classification 

methods were initially examined using higher resolution Landsat ETM+ data which has a similar range 
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of spectral bands to MODIS. Another key area of investigation was whether it was possible to make 

use of the two MODIS bands (red and near infrared) that are available at approximately 250 metre 

resolution compared with approximately 500 metres for the remaining bands in the visual and 

infrared parts of the spectrum, and whether this would improve overall results. 

While best results from Landsat ETM+ data were obtained using a combination of two NDSIs it was 

found that the classification scheme originally described by Sakamoto et al. (2007) gave the most 

consistent results when using MODIS data. Careful visual inspection of the data classified using the 

method described by Sakamoto et al. (2007) but using the higher resolution data from the red and 

near infrared bands appeared better able to show smaller water surface water features such as rivers. 

However when tested against ground control points overall accuracy was very similar to that of the 

lower resolution data although the ability to separate water areas was improved. 

A time series was created based on the Sakamoto method and using all available MODIS images 

covered the time period 18-02-2000 until 09-05-2014 resulting in 654 images. Areas of cloud were 

masked out and then the entire time series was analysed to show the percentage of the time series 

where water, or mixed and water pixels where present. 

The surface water time series produced during the current study provides a highly useful insight in to 

surface water distribution and flood pattern in Bangladesh. It is also worth noting that the method 

described by Sakamoto et al. (2007) has been applied in an aquaculture development context within 

the Parana river basin (Handisyde et al., 2014). It's evaluation here against other classification 

methods using ground truth data can also be seen as highly valuable in terms of making best use of 

the data within the Bangladesh region. 

In terms of future research and development in relation to remote sensing and surface water for 

Bangladesh, and similar low-lying areas appropriate for aquaculture, it is worth considering that land 

cover and flood patterns within the region are often complex and intricate with parcels of land 

frequently being small. Efforts to quantify water coverage within mixed pixels or produce higher 

resolution representations of water patterns using data such as that supplied by Landsat and ASTER 

at a range of time points may be useful in creating a greater understanding of flood distribution at a 

more local level. Ideally such work should involve further collection of ground truth data that 

coincides with the time of data acquisition. In reality such work is likely to be challenging due to the 
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presence of cloud cover which is especially common during the wetter parts of the year when 

flooding is most prevalent.  

 

7.4 Land cover data set for Bangladesh 

A 30m resolution land cover data set was produced using 9 Landsat ETM+ scenes that focused on late 

October early November 2008 and classified data as either: crops, trees, bare land, water, mixed 

vegetation and water, or urban areas . Overall 10 classification routines were tested, 9 of these 

formed part of the IDRISI software package and included commonly used classifiers such as 

'maximum likelihood' and 'minimum distance' along with more complex classification routines. In 

addition, a unique decision tree type classifier was constructed for the current study.  

Accuracy of classifications was assessed against two sets of ground control points (GCPs). The first set 

was produced using data collected in the field at a time that coincided with the acquisition dates of 

the ETM+ data used. An ideal sampling scheme would involve the collection of ground truth data at 

pre-selected random sample points that cover the study area and have sufficient density to provided 

an acceptable number of samples for each land cover class (Congalton and Green, 2009, Foody, 

2002). The current work was focused on a large (national scale) study area and available resources 

and practical access issues meant that data collection was limited to a range of locations accessible by 

road. With this in mind a second set of ground truth data were produced using a stratified random 

sampling scheme in conjunction with careful inspection of high resolution true colour imagery as well 

as false colour ETM+ composites. 

Classification accuracy results were considerably higher for the non-randomly distributed sample 

points. This would be expected to some extent as while different points were used for classifying data 

and accuracy assessment they were all derived from a common set of ground truth data collected 

over a limited number of sample sites. Under both accuracy assessments the two best performing 

classifiers were the decision tree classifier constructed for the current study and the Multi-Layer 

Perceptron (MLP) neural network based classifier. In the case of the stratified random GCPs the 

decision tree method achieved the best results with an overall accuracy of 80.5% and a Kappa value 

of 0.762.  
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To date, land cover data for Bangladesh beyond what is available from global products is very limited. 

The recent efforts to produce a global land cover data set based on 30m Landsat-derived data (Gong 

et al., 2013, Yu et al., 2013, Yu et al., 2014), while commendable, appear to have significant issues in 

accurately representing Bangladesh. With this in mind, while the land cover data set was produced in 

the current study was created with the intention of contributing to a site suitability assessment for 

inland aquaculture, it can be seen as a potentially valuable resource for other analyses where land 

cover information is required.  

There is strong potential for further development and refinement of land cover data for Bangladesh. 

As well as improving accuracy efforts to gain an increased understanding of land use as well as land 

cover could be extremely useful. In this respect and as discussed in detail previously (section 5.4) use 

of multi-temporal data is suggested as a potential area for further research.  

 

7.5 Bangladesh case study 

Bangladesh is a financially poor country with an extremely high, and increasing, population density. 

Much of the country is extremely low lying and consists of the deltas and floodplains for a number of 

major river systems (Ganges, Brahmaputra, Meghan). Approximately 92.5% of the combined 

catchment area for these rives is outside of Bangladesh with much of this areas being subject to 

monsoon rainfall resulting Bangladesh experiencing significant cross border drainage (Mirza et al., 

2001) resulting in widespread seasonal flooding. Despite these annual flood events lack of water 

during the dry season can also a potential issue (Yu et al., 2010). Many coastal regions are extremely 

low lying with polder systems being common. As a result many regions are potentially vulnerable to 

increases in sea level increases either through gradual increases in salinity potentially affecting crop 

production, or as a result of sudden flooding from storm surges that are associated with the relatively 

frequent cyclone activity within the region. With these points in mind it is unsurprising that 

Bangladesh is often highlighted as one of the most vulnerable nations in terms of climate change 

impact (Yu et al., 2010).  

Fish from inland sources is an extremely important commodity within Bangladesh both in terms of 

food security as well as income generation (Belton et al., 2014, Dey et al., 2008, Karim et al., 2006). 

Aquaculture within Bangladesh has seen substantial development over recent decades while at the 
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same time capture fishery production would appear to have peaked with production figures 

suggesting that aquaculture production has now surpassed that of capture fisheries (FishStatJ, 2014).  

The Landsat ETM+ based land cover layer described in chapter five was combined with the MODIS 

based surface water frequency distribution layer (chapter four) as well as elevation and population 

density data to produce site suitability layers for three potential aquaculture environments: 

conversion of fields to ponds, floodplain aquaculture, and homestead ponds. Modelled pond 

temperature (chapter four) was also incorporated along with water balance data with both these 

variables being considered for late 20th century conditions as well as under 2°C average global 

warming.  

Overall the south and east of the country, and in particular the south east corner, were shown to be 

most suitable for aquaculture production of commonly cultured species. The effect of the 2°C 

warming scenario was to increase suitability in eastern regions and reduce it in the north west. The 

south west of the country remained relatively unchanged. While the north east of the country was 

projected to have increased water availability, most of the increase in suitability seen in most eastern 

regions was a result of projected higher average pond temperatures during the colder months of the 

year potentially allowing for improved growth performance of aquaculture species. The low suitability 

indicated for western regions was a result of projected high maximum pond temperatures during the 

warmest months of the year in combination with lower water balance values. The decrease in 

suitability seen in the north west of the country in response to the 2°C warming scenario was a result 

of increased maximum pond temperatures which especially when combined with limited water 

availability at the end of the dry season could potentially put cultured animals under stress resulting 

in reduced growth performance and/or loss of stock. 

Use was made of SRTM data to highlight low elevation coastal zones and the MODIS surface water 

time series data were also used to show the impact of storm surge flooding resulting from cyclone 

Aila which struck Bangladesh on 25th May 2009. Particular attention was given to a polder area in the 

south west of the country that had been visited in October 2009 when it was still severely flooded 

after the cyclone Aila storm surge event. It was interesting to note that aquaculture was taking place 

in pens in the flood water illustrating its potential use as an adaptive strategy (Karim et al., 2014). 
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In summary the current study provides a valuable insight into site suitability for aquaculture in a 

number of environments at the national scale under both late 20th century conditions and a 2°C 

global warming scenario. Aquaculture is extremely important to Bangladesh. The sector has seen 

significant growth in recent years and there appears to be considerable scope for further expansion, a 

process in which site suitability modelling can be extremely useful. The effects of the 2°C warming 

scenario in the current assessment were mixed with the east of the country projected to see 

increased suitability for aquaculture while the while in the north west it is reduced due to high 

maximum modelled pond temperatures.  

The idea that climate change may have both positive and negative implications is an important one, 

especially when it come to adaptation, a process in which aquaculture may be able to play an 

valuable role.  In this respect there would appear to be scope for considerable further research within 

Bangladesh in which spatial modelling may play a role. It is suggested that the following topics be 

considered:  

 Pond temperature data from a range of locations where temperature is taken at specified 

depths and for a number of time points throughout the day would be useful in validating and 

potentially calibrating models such as the one applied in the current study to local 

conditions. The investigation of more complex stratified pond temperature models (e.g. 

Cathcart and Wheaton, 1987, Culberson and Piedrahita, 1996, Losordo and Piedrahita, 1991) 

would be potentially useful in terms of providing insight into the effects of depth and diurnal 

temperature fluctuations. However in reality the data requirements for such exercises may 

be a limiting factor. With this in mind the investigation of simpler methods for estimating 

pond temperatures such as those based on air temperature relationships (e.g. Wax and Pote, 

1990) may also be useful. 

 There may be options for further development of site suitability models if more data is 

available. Studies that focus on specific regions within the country may also play a role in 

making use of more localised data sources. 

 The incorporation of salinity data into spatial models could be valuable. Consideration should 

be given to the possibility of aquaculture of brackish water species offering an adaptation 

strategy in areas where saline intrusion has affected traditional agriculture. The aim should 
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be to promote and develop aquaculture in a sustainable way that doesn't exacerbate existing 

problems (Ahmed, 2013). 

 

7.6 Concluding remarks 

Globally aquaculture represents a highly important, and rapidly growing, industry both in terms of 

food security and income generation. While the potential effects of changing climate and 

atmospheric carbon dioxide concentrations have seen a moderate amount of research in relation to 

marine aquaculture in recent years, research focusing on impacts for inland aquaculture has been 

very limited. The literature that does exist, while valuable, largely takes the form of either general 

reviews of possible interactions and implications for aquaculture (e.g. Bell et al., 2013, Cochrane et 

al., 2009, Rosa et al., 2012), or focuses on specific issues, species, and locations (e.g. Hanson and 

Peterson, 2014, Villanueva et al., 2013).  

For aquaculture operations to be successful they are dependent on a broad range of factors of which 

those relating to climate such as temperature and water availability play an extremely important role. 

Given that these factors vary depending on location, site suitability for aquaculture can be viewed as 

a spatial problem. Potential changes in climate are also predicted to show considerable variability 

depending on location and as such add considerable uncertainty to potential future aquaculture site 

suitability.  

The current study provides an important global investigation of potential vulnerability of aquaculture 

related livelihoods to changing climate. In addition highly valuable and unique site suitability 

assessments are made for inland pond-based aquaculture both at the global scale and for the 

potentially vulnerable nation of Bangladesh. Site suitability is assessed in relation to both recent 

climate conditions as well as those under 2°C global warming with results suggesting areas of both 

reduced and increased suitability for warm water aquaculture.  

It is suggested here that a focus on the positive, as well as negative, effects of climate change is 

important in terms of aiding adaptation. In this context assessments such as the current one can be 

highly useful in providing insight into where negative impacts may affect existing aquaculture 

methods and where alternative strategies may need to be sought. Conversely by understanding 
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where positive impacts are likely it may be possible to capitalise on changing conditions and locations 

that may previously been unfavourable.  

While the current assessment provides a strong starting point for understanding climate related site 

suitability issues for aquaculture, there is considerable scope for further work and development in 

this so far under researched field. It is hoped that the work presented here can contribute to future 

efforts.  
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Figure 8-1: Modelled mean pond temperature under late 20th century conditions and for a 2°C warmer world. 
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Figure 8-2: Modelled maximum pond temperature under late 20th century conditions and for a 2°C warmer world. 
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Figure 8-3: Modelled minimum pond temperature under late 20th century conditions and for a 2°C warmer world. 
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Figure 8-4: Modelled standard deviation of pond temperature (°C)  under late 20th century conditions and for a 2°C 
warmer world. 
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Figure 8-5: Modelled pond temperature difference under late 20th century and 2°C Global warming. 
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9 APPENDIX 2 
Table 9-1: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the adapted Sakamoto method. 
Accuracy assessed against GCPs excluding areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 654 14 0 668 0.0210 0.9494 

Mixed 2 110 0 112 0.0179 0.9800 

Water 77 9 325 411 0.2092 0.7291 

Total 733 133 325 1191   

ErrorO 0.1078 0.1729 0.0000    

KIA 0.7546 0.8091 1.0000    

Total Error  (95% Confidence Interval) = 0.0856 (0.0159) 

Overall Kappa = 0.8443 

 

Table 9-2: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the adapted Sakamoto method. 
Accuracy assessed against GCPs including areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 654 120 0 774 0.1550 0.6435 

Mixed 2 110 0 112 0.0179 0.9781 

Water 77 9 325 411 0.2092 0.7208 

Total 733 239 325 1297   

ErrorO 0.1078 0.5397 0.0000    

KIA 0.7327 0.4092 1.0000    

Total Error  (95% Confidence Interval) = 0.1604 (0.0200) 

Overall Kappa = 0.7174 

 

Table 9-3: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the adapted Sakamoto method. 
Accuracy assessed against GCPs excluding areas of floating vegetation and urban areas. 

 Land Mixed Water Total ErrorC KIA 

Land 450 14 0 464 0.0302 0.9400 

Mixed 2 110 0 112 0.0179 0.9791 

Water 1 9 325 335 0.0299 0.9536 

Total 453 133 325 911   

ErrorO 0.0066 0.1729 0.0000    

KIA 0.9865 0.8028 1.0000    

Total Error  (95% Confidence Interval) = 0.0285 (0.0108) 

Overall Kappa = 0.9522 
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Table 9-4: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the ISOCLUST routine. Accuracy 
assessed against GCPs excluding areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 732 13 0 745 0.0174 0.9546 

Mixed 1 111 19 131 0.1527 0.8281 

Water 0 9 306 306 0.0286 0.9607 

Total 733 133 325 1191   

ErrorO 0.0014 0.1654 0.0585    

KIA 0.9964 0.8141 0.9205    

Total Error  (95% Confidence Interval) = 0.0353 (0.0105) 

Overall Kappa = 0.9335 

 

Table 9-5: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the ISOCLUST routine. Accuracy 
assessed against GCPs including areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 714 19 0 733 0.0259 0.9404 

Mixed 19 211 19 249 0.1526 0.8129 

Water 0 9 306 315 0.0286 0.9619 

Total 733 239 325 1297   

ErrorO 0.0259 0.1172 0.0585    

KIA 0.9404 0.8550 0.9228    

Total Error  (95% Confidence Interval) = 0.0509 (0.0120) 

Overall Kappa = 0.9129 

 

Table 9-6: Error matrix for accuracy assessment of  Landsat ETM+ data classified using a single NDSI from bands 2 and 7. 
Accuracy assessed against GCPs excluding areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 730 3 0 733 0.0041 0.9894 

Mixed 3 123 6 132 0.0682 0.9232 

Water 0 7 319 326 0.0215 0.9705 

Total 733 133 325 1191   

ErrorO 0.0041 0.0752 0.0185    

KIA 0.9894 0.9154 0.9746    

Total Error  (95% Confidence Interval) = 0.0160 (0.0071) 

Overall Kappa = 0.9701 
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Table 9-7: Error matrix for accuracy assessment of  Landsat ETM+ data classified using a single NDSI from bands 2 and 7. 
Accuracy assessed against GCPs including areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 730 14 0 744 0.0188 0.9567 

Mixed 3 218 6 227 0.0396 0.9514 

Water 0 7 319 326 0.0215 0.9713 

Total 733 239 325 1297   

ErrorO 0.0041 0.0879 0.0185    

KIA 0.9904 0.8935 0.9753    

Total Error  (95% Confidence Interval) = 0.0231 (0.0082) 

Overall Kappa = 0.9602 

 

Table 9-8: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the two stage process with NDSIs 
from from bands 2 and 7, and 3 and 4. Accuracy assessed against GCPs excluding areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 730 3 0 733 0.0041 0.9894 

Mixed 3 128 0 131 0.0229 0.9742 

Water 0 2 325 327 0.0061 0.9916 

Total 733 133 325 1191   

ErrorO 0.0041 0.0376 0.0000    

KIA 0.9894 0.9578 1.0000    

Total Error  (95% Confidence Interval) = 0.0067 (0.0046) 

Overall Kappa = 0.9874 

 

Table 9-9: Error matrix for accuracy assessment of  Landsat ETM+ data classified using the two stage process with NDSIs 
from from bands 2 and 7, and 3 and 4. Accuracy assessed against GCPs including areas of floating vegetation. 

 Land Mixed Water Total ErrorC KIA 

Land 730 14 0 744 0.0188 0.9567 

Mixed 3 223 0 226 0.0133 0.9837 

Water 0 2 325 327 0.0061 0.9918 

Total 733 239 325 1297   

ErrorO 0.0041 0.0669 0.0000    

KIA 0.9904 0.9189 1.0000    

Total Error  (95% Confidence Interval) = 0.0146 (0.0065) 

Overall Kappa = 0.9748 
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Table 9-10: Error matrix for accuracy assessment of land, mixed, water map created at approximately 500m resolution 
using the method adapted from Sakamoto et al. (2007) and data from MOD09A1. Accuracy assessed against GCPs 
designated for accuracy assessment. 

 Land Mixed Water Total ErrorC KIA 

Land 700 56 47 803 0.1283 0.6664 

Mixed 7 75 126 208 0.6394 0.2802 

Water 26 2 152 180 0.1556 0.7861 

Total 733 133 325    

ErrorO 0.0450 0.4361 0.5323    

KIA 0.8618 0.4716 0.3729    

Total Error  (95% Confidence Interval) = 0.2217 (0.0236) 

Overall Kappa = 0.5772 

 

Table 9-11: Error matrix for accuracy assessment of land, mixed, water map created at approximately 500m resolution 
using the method adapted from Sakamoto et al. (2007) and data from MOD09A1. Accuracy assessed against the most 
accurate map obtained from classification of Landsat ETM+ data (two step process with NDSIs of bands 2 and 7, and 3 and 
4). 

 Land Mixed Water Total ErrorC KIA 

Land 77916142 8929845 1700386 88546373 0.1201 0.5244 

Mixed 4862957 5054315 2382423 12299695 0.5891 0.3213 

Water 1581513 923375 9494470 11999358 0.2088 0.7627 

Total 84360612 14907535 13577279 112845426   

ErrorO 0.0764 0.6610 0.3007    

KIA 0.6452 0.2582 0.6635    

Total Error  (95% Confidence Interval) = 0.1806 (0.0001) 

Overall Kappa = 0.5324 
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Table 9-12: Error matrix for accuracy assessment of land, mixed, water map created at approximately 250m resolution 
using the method adapted from Sakamoto et al. (2007) and data from MOD09A1 (bands 3 and 6), and MOD09Q1 (bands 1 
and 2). Accuracy assessed against GCPs designated for accuracy assessment. 

 Land Mixed Water Total ErrorC KIA 

Land 689 79 79 847 0.1865 0.5149 

Mixed 26 52 51 129 0.5969 0.3281 

Water 18 2 195 215 0.0930 0.8721 

Total 733 133 325    

ErrorO 0.0600 0.6090 0.4000    

KIA 0.7922 0.3170 0.5119    

Total Error  (95% Confidence Interval) = 0.2141 (0.0233) 

Overall Kappa = 0.5726 

 

Table 9-13: Error matrix for accuracy assessment of land, mixed, water map created at approximately 250m resolution 
using the method adapted from Sakamoto et al. (2007) and data from MOD09A1 (bands 3 and 6), and MOD09Q1 (bands 1 
and 2). Accuracy assessed against the most accurate map obtained from classification of Landsat ETM+ data (two step 
process with NDSIs of bands 2 and 7, and 3 and 4). 

 Land Mixed Water Total ErrorC KIA 

Land 78912940 9573037 1653986 90139963 0.1246 0.5066 

Mixed 4038459 4389319 1504791 9932569 0.5581 0.3570 

Water 1409213 945179 10418502 12772894 0.1843 0.7905 

Total 84360612 14907535 13577279 112845426   

ErrorO 0.0646 0.7056 0.2327    

KIA 0.6791 0.2263 0.7377    

Total Error  (95% Confidence Interval) = 0.1695 (0.0001) 

Overall Kappa = 0.5512 
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Table 9-14: Error matrix for accuracy assessment of land, mixed, water map created at approximately 500m resolution 
through the reclassification of a single NDSI using bands 4 and 7 from MOD09A1. Accuracy assessed against GCPs 
designated for accuracy assessment. 

 Land Mixed Water Total ErrorC KIA 

Land 723 71 99 893 0.1904 0.5050 

Mixed 10 50 130 163 0.6933 0.2196 

Water 0 12 123 135 0.0889 0.8778 

Total 733 133 325    

ErrorO 0.0136 0.6241 0.6215    

KIA 0.9455 0.2770 0.2990    

Total Error  (95% Confidence Interval) = 0.2477 (0.0245) 

Overall Kappa = 0.4969 

 

Table 9-15: Error matrix for accuracy assessment of land, mixed, water map created at approximately 500m resolution 
through the reclassification of a single NDSI using bands 4 and 7 from MOD09A1. Accuracy assessed against the most 
accurate map obtained from classification of Landsat ETM+ data (two step process with NDSIs of bands 2 and 7, and 3 and 
4). 

 Land Mixed Water Total ErrorC KIA 

Land 78106230 7369018 2017282 87492530 0.1073 0.5750 

Mixed 5324852 6045154 2751392 14121398 0.5719 0.3410 

Water 929530 1493363 8808605 11231498 0.2157 0.7548 

Total 84360612 14907535 13577279 112845426   

ErrorO 0.0741 0.5945 0.3512    

KIA 0.6700 0.3205 0.6100    

Total Error  (95% Confidence Interval) = 0.1762 (0.0001) 

Overall Kappa = 0.5503 
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Table 9-16: Error matrix for accuracy assessment of land, mixed, water map created at approximately 250m resolution 
based on a two stage reclassification using NDSIs from  bands 4 and 7 (MOD09A1), and 1 and 2 (MOD09Q1). Accuracy 
assessed against GCPs designated for accuracy assessment. 

 Land Mixed Water Total ErrorC KIA 

 723 71 99 893 0.1904 0.5050 

 8 60 46 114 0.4737 0.4668 

 2 2 180 184 0.0217 0.9701 

Total 733 133 325 1191   

ErrorO 0.0136 0.5489 0.4462    

KIA 0.9455 0.3930 0.4723    

Total Error  (95% Confidence Interval) = 0.1914 (0.0223) 

Overall Kappa = 0.6059 

 

Table 9-17: Error matrix for accuracy assessment of land, mixed, water map created at approximately 250m resolution 
based on a two stage reclassification using NDSIs from  bands 4 and 7 (MOD09A1), and 1 and 2 (MOD09Q1). Accuracy 
assessed against the most accurate map obtained from classification of Landsat ETM+ data (two step process with NDSIs 
of bands 2 and 7, and 3 and 4). 

 Land Mixed Water Total ErrorC KIA 

Land 78106230 7369018 2017282 87492530 0.1073 0.5750 

Mixed 4779117 6238354 1113717 12131188 0.4858 0.4403 

Water 1475265 1300163 10446280 13221708 0.2099 0.7614 

Total 84360612 14907535 13577279 112845426   

ErrorO 0.0741 0.5815 0.2306    

KIA 0.6700 0.3484 0.7388    

Total Error  (95% Confidence Interval) = 0.1600 (0.0001) 

Overall Kappa = 0.5919 
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10 APPENDIX 3 
 

Table 10-1: Error matrix for accuracy assessment  of the decision tree classification. Accuracy assessed against GCPs 
produced using a stratified random sampling approach in association with careful inspection of ETM+ composites and 
high resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 117 5 0 0 9 0 131 0.1069 0.8718 

Bare 0 75 2 8 4 1 90 0.1667 0.8034 

Trees 0 0 100 22 0 0 122 0.1803 0.7774 

Crops 0 1 23 116 1 8 149 0.2215 0.7158 

Mixed 2 4 11 12 127 2 158 0.1962 0.7553 

Urban 0 24 0 0 1 41 66 0.3788 0.5915 

Total 119 109 137 158 142 52 716   

ErrorO 0.0168 0.3119 0.2647 0.2658 0.1056 0.2115    

KIA 0.9794 0.6432 0.6809 0.6643 0.8645 0.7670    

Total Error  (95% Confidence Interval) = 0.1955 (0.0291) 

Overall Kappa =  0.7620 

 

Table 10-2: Error matrix for accuracy assessment  of the MLP  classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 115 3 0 0 6 1 125 0.0800 0.9041 

Bare 2 76 3 14 8 5 108 0.2963 0.6505 

Trees 0 0 93 17 0 0 110 0.1545 0.8092 

Crops 0 7 37 115 1 10 170 0.3235 0.5849 

Mixed 2 2 3 12 128 2 149 0.1429 0.8218 

Urban 0 21 0 0 1 34 56 0.3929 0.5764 

Total 119 109 137 158 142 52 716   

ErrorO 0.0336 0.3028 0.3162 0.2722 0.1127 0.3462    

KIA 0.9593 0.6435 0.6264 0.6431 0.8582 0.6245    

Total Error  (95% Confidence Interval) = 0.2193 (0.0303) 

Overall Kappa =  0.7326 

 



 

296 

 

 

Table 10-3: Error matrix for accuracy assessment  of the ARTMAP  classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 105 1 0 0 2 0 108 0.0278 0.9667 

Bare 2 62 4 21 5 7 101 0.3861 0.5445 

Trees 0 0 93 18 0 0 111 0.1622 0.7998 

Crops 0 7 38 107 4 7 163 0.3436 0.5592 

Mixed 11 1 1 12 129 1 155 0.1677 0.7908 

Urban 1 38 0 0 2 37 78 0.5256 0.4332 

Total 119 109 137 158 142 52 716   

ErrorO 0.1176 0.4312 0.3162 0.3228 0.0915 0.2885    

KIA 0.8615 0.4980 0.6258 0.5821 0.8832 0.6763    

Total Error  (95% Confidence Interval) = 0.2556 (0.0320) 

Overall Kappa =  0.6894 

 

Table 10-4: Error matrix for accuracy assessment  of the KNN  classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 106 1 0 0 3 0 110 0.0364 0.9564 

Bare 0 46 0 12 1 1 60 0.2333 0.7248 

Trees 0 0 97 33 0 0 130 0.2538 0.6866 

Crops 0 10 38 106 8 10 172 0.3837 0.5076 

Mixed 10 2 1 7 125 1 146 0.1438 0.8206 

Urban 3 50 0 0 5 40 98 0.5918 0.3618 

Total 119 109 137 158 142 52 716   

ErrorO 0.1092 0.5780 0.2868 0.3291 0.1197 0.2308    

KIA 0.8709 0.3692 0.6496 0.5668 0.8496 0.7326    

Total Error  (95% Confidence Interval) = 0.2737 (0.0327) 

Overall Kappa =  0.6677 
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Table 10-5: Error matrix for accuracy assessment  of the MAXLIKE  classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 92 0 0 0 2 0 94 0.0213 0.9745 

Bare 12 97 3 26 11 19 168 0.4226 0.5015 

Trees 0 0 69 8 0 0 77 0.1039 0.8717 

Crops 0 3 60 106 4 5 178 0.4045 0.4810 

Mixed 15 1 4 18 125 0 163 0.2331 0.7092 

Urban 0 8 0 0 0 28 36 0.2222 0.7604 

Total 119 109 137 158 142 52 716   

ErrorO 0.2269 0.1101 0.4926 0.3291 0.1197 0.4615    

KIA 0.7388 0.8562 0.4480 0.5620 0.8450 0.5140    

Total Error  (95% Confidence Interval) = 0.2779 (0.0328-) 

Overall Kappa =  0.6604 

 

Table 10-6: Error matrix for accuracy assessment  of the LDA  classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 119 8 0 0 27 1 155 0.2323 0.7214 

Bare 0 38 1 8 1 0 48 0.2083 0.7543 

Trees 0 0 102 32 0 0 134 0.2388 0.7052 

Crops 0 7 31 105 3 8 154 0.3182 0.5917 

Mixed 0 3 2 31 108 4 148 0.1496 0.8134 

Urban 0 53 0 2 2 39 96 0.6020 0.3508 

Total 119 109 137 158 142 52 716   

ErrorO 0.0000 0.6514 0.2500 0.3354 0.2394 0.2500    

KIA 1.0000 0.3018 0.6924 0.5726 0.7089 0.7104    

Total Error  (95% Confidence Interval) = 0.2863 (0.0331) 

Overall Kappa =  0.6532 
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Table 10-7: Error matrix for accuracy assessment  of the SOM classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 100 1 0 0 9 0 110 0.0909 0.8910 

Bare 0 50 2 21 1 6 80 0.3750 0.5577 

Trees 0 0 95 26 0 0 121 0.2339 0.7113 

Crops 0 4 33 97 2 6 142 0.3169 0.5934 

Mixed 17 4 4 10 126 2 163 0.2270 0.7169 

Urban 2 50 2 1 4 38 97 0.6082 0.3441 

Total 119 109 137 158 142 52 716   

ErrorO 0.1597 0.5413 0.3015 0.3861 0.1127 0.2692    

KIA 0.8114 0.3906 0.6354 0.5184 0.8541 0.6886    

Total Error  (95% Confidence Interval) = 0.2933 (0.0333) 

Overall Kappa =  0.6448 

 

Table 10-8: Error matrix for accuracy assessment  of the MINDIST classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 112 1 0 0 17 0 130 0.1385 0.8339 

Bare 0 45 1 15 1 1 63 0.2857 0.6630 

Trees 0 0 94 40 0 0 134 0.2985 0.6315 

Crops 0 10 40 95 7 9 161 0.4099 0.4740 

Mixed 4 8 1 8 116 2 139 0.1655 0.7936 

Urban 3 45 0 0 1 40 89 0.5506 0.4063 

Total 119 109 137 158 142 52 716   

ErrorO 0.0588 0.5872 0.3088 0.3987 0.1831 0.2308    

KIA 0.9281 0.3562 0.6201 0.4856 0.7728 0.7365    

Total Error  (95% Confidence Interval) = 0.2989 (0.0335) 

Overall Kappa =  0.6372 
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Table 10-9: Error matrix for accuracy assessment  of the CTA classification. Accuracy assessed against GCPs produced 
using a stratified random sampling approach in association with careful inspection of ETM+ composites and high 
resolution true colour imagery. 

 Water Bare Trees Crops Mixed Urban Total ErrorC KIA 

Water 96 0 0 0 5 0 101 0.0495 0.9406 

Bare 3 73 1 18 6 16 117 0.3761 0.5564 

Trees 0 0 62 15 0 0 77 0.1948 0.7595 

Crops 0 8 62 113 1 7 191 0.4084 0.4760 

Mixed 20 8 11 12 130 3 184 0.2935 0.6339 

Urban 0 20 0 0 0 26 46 0.4348 0.5312 

Total 119 109 137 158 142 52 716   

ErrorO 0.1933 0.3303 0.5441 0.2848  0.0845 0.5000    

KIA 0.7750 0.6052 0.3903 0.6116 0.8863 0.4657    

Total Error  (95% Confidence Interval) = 0.3017 (0.0336) 

Overall Kappa =  0.6306 

 


