Accepted refereed manuscript of:
Farkas JZ, Hinow P \& Engelstadter J (2013) Corrigendum to "Pathogen evolution in switching environments: A hybrid dynamical system approach" [Math. Biosci. 240 (2012) 70-75], Mathematical Biosciences, 241 (1), pp. 147-148.

DOI: 10.1016/j.mbs.2012.10.003
(C) 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Corrigendum to "Pathogen evolution in switching environments: a hybrid dynamical system approach"

József Z. Farkas
Division of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom; jzf@maths.stir.ac.uk Peter Hinow
Department of Mathematical Sciences, University of Wisconsin - Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA; hinow@uwm.edu
Jan Engelstädter
Institute of Integrative Biology, Swiss Federal Institute of Technology, Universitätsstrasse 16, 8092 Zürich, Switzerland; j.engelstaedter@uq.edu.au ${ }^{1}$

Abstract

We provide a corrected proof of Theorems 3.3 and 3.6 in the paper "Pathogen evolution in switching environments: a hybrid dynamical system approach", Mathematical Biosciences 240 (2012), p. 70-75.

In the proofs of Theorems 3.3 and 3.6 of our paper we cannot assume a special structure for the generator matrix Q with nearly identical rows (this would mean that the infinitesimal probability to jump into a new environment is independent of the current environment). Nevertheless, the idea of the proof, namely that the Lyapunov function can be written as a sum of functions, is correct.

To fix notation, we consider the switching differential equation

$$
\begin{equation*}
\frac{d P_{i}(t)}{d t}=P_{i}(t)\left(w_{i}^{k}-\sum_{j=1}^{m} w_{j}^{k} P_{j}(t)\right) \tag{1}
\end{equation*}
$$

[^0]where $w_{i}^{k}>0$ is the fitness value of genotype i in environment (host species) k and
\[

$$
\begin{equation*}
\sum_{j=1}^{m} P_{j}(t)=1 \tag{2}
\end{equation*}
$$

\]

The switching process $k=\alpha(t)$ is a Markov process with generator matrix $Q(P)$ whose entries $q_{k l}(P)$ are defined by

$$
\begin{equation*}
\mathbf{P}\{\alpha(t+\Delta t)=l \mid \alpha(t)=k,(P(s), \alpha(s)), s \leq t\}=q_{k l}(P(t)) \Delta t+o(\Delta t) \tag{3}
\end{equation*}
$$

The elements $q_{k l}$ of the generator matrix Q satisfy $q_{k l} \geq 0$ for all $k \neq l$ and $\sum_{l \in \mathcal{M}} q_{k l}=0$ for every $k \in \mathcal{M}$.

Theorem 1. Assume that the generator matrix $Q=\left(q_{k l}\right)_{k, l=1}^{n}$ is irreducible and let π be its unique stationary distribution. Let P_{1} be the genotype with the highest mean fitness, that is

$$
\begin{equation*}
\pi \cdot \mathbf{w}_{1}>\pi \cdot \mathbf{w}_{i} \quad \text { for all } i=2, \ldots, m \tag{4}
\end{equation*}
$$

Then the equilibrium e_{1} is asymptotically stable in probability and all other equilibria are unstable in probability.

Proof. For $i=2, \ldots, m$ we set $a_{i, 1}^{k}=w_{i}^{k}-w_{1}^{k}$ for the difference of fitness values with respect to genotype 1 and $\mathbf{a}_{i, 1}=\left(a_{i, 1}^{1}, \ldots, a_{i, 1}^{n}\right)$. Using the constraint (2), we eliminate P_{1} and obtain the reduced systems

$$
\begin{equation*}
\frac{d P_{i}(t)}{d t}=a_{i, 1}^{k} P_{i}\left(1-P_{i}\right)-P_{i} \sum_{j=2, j \neq i}^{m} a_{i, 1}^{k} P_{j}, \tag{5}
\end{equation*}
$$

for $i=2, \ldots, m$ and $k=1, \ldots, n$. Notice that for fixed environment k the linear part of this system has a diagonal structure. We define

$$
\beta_{i}:=-\pi \cdot \mathbf{a}_{i, 1}>0
$$

with the last inequality holding true since genotype 1 has the higher mean fitness compared to every other genotype. For $i=2, \ldots, m$ we solve the systems of equations

$$
Q \mathbf{c}_{i}=\mathbf{a}_{i, 1}+\beta_{i} \mathbf{1}
$$

for the vector $\mathbf{c}_{i}=\left(c_{i}^{1}, \ldots, c_{i}^{n}\right)$ where $\mathbf{1}$ is the column vector with n entries 1. The right hand sides of these equation are orthogonal to the kernel of Q which is spanned by $\mathbf{1}$, hence there exist solutions. For $i=2, \ldots, m$ and $k=1, \ldots, n$, we define

$$
V_{i}\left(P_{i}, k\right)=\left(1-\gamma c_{i}^{k}\right) P_{i}^{\gamma}, \quad P_{i}>0
$$

with $0<\gamma<1$ yet to be selected, in such a way that all coefficients are positive. We have

$$
\begin{align*}
\mathcal{L} V_{i}\left(P_{i}, k\right) & =\gamma\left(1-\gamma c_{i}^{k}\right) P_{i}^{\gamma-1}\left(a_{i, 1}^{k} P_{i}+o(1)\right)+\sum_{j=1}^{n} q_{k j}\left(1-\gamma c_{i}^{j}\right) P_{i}^{\gamma} \\
& =\gamma P_{i}^{\gamma}\left(\left(1-\gamma c_{i}^{k}\right) a_{i, 1}^{k}-\sum_{j=1}^{n} q_{k j} c_{i}^{j}+o(1)\right) \tag{6}\\
& =\gamma P_{i}^{\gamma}\left(\left(1-\gamma c_{i}^{k}\right) a_{i, 1}^{k}-\left(a_{i, 1}^{k}+\beta_{i}\right)+o(1)\right) \\
& =\gamma P_{i}^{\gamma}\left(-\gamma c_{i}^{k} a_{i, 1}^{k}+\pi \cdot \mathbf{a}_{i, 1}+o(1)\right),
\end{align*}
$$

where we have made use of the fact that the row sums of Q are zero. In order to make all the factors in parentheses negative, we have to choose $0<\gamma<1$ such that the inequality

$$
\begin{equation*}
\pi \cdot \mathbf{a}_{i, 1}<\gamma c_{i}^{k} a_{i}^{k} \tag{7}
\end{equation*}
$$

holds. By assumption (4), the left hand side of inequality (7) is negative. Therefore, for those indices i and k for which $c_{i}^{k} a_{i, 1}^{k} \geq 0$, no condition arises for γ. If on the other hand $c_{i}^{k} a_{i, 1}^{k}<0$, then we can select

$$
0<\gamma<\min _{\substack{i=2, \ldots m \\ k=1, \ldots, n}}\left\{\frac{\pi \cdot \mathbf{a}_{i, 1}}{c_{i}^{k} a_{i, 1}^{k}}: c_{i}^{k} a_{i, 1}^{k}<0\right\} .
$$

Although the c_{i}^{k} are not explicitly known, this is a minimum of finitely many positive numbers. The Lyapunov function is the sum of functions of a single variable

$$
V\left(P_{2}, \ldots, P_{m}, k\right)=\sum_{i=2}^{m} V_{i}\left(P_{i}, k\right)
$$

and the condition of Proposition 8.6 in [1] follows from the linearity of the operator \mathcal{L} and the choice of γ.

To prove the unstability in probability of equilibrium e_{i} for $i>1$, we use the constraint (2) to eliminate P_{i}. This results in the reduced systems

$$
\begin{equation*}
\frac{d P_{i}(t)}{d t}=a_{l, i}^{k} P_{l}\left(1-P_{l}\right)-P_{l} \sum_{j \neq i, l}^{m} a_{j, i}^{k} P_{j} \tag{8}
\end{equation*}
$$

for $l \neq i$ and $a_{l, i}^{k}=w_{l}^{k}-w_{i}^{k}$. For $i=2, \ldots, m$ let $\mathbf{c}_{i}=\left(c_{i}^{1}, \ldots, c_{i}^{n}\right)$ be the solution of

$$
Q \mathbf{c}_{i}=\mathbf{a}_{1, i}-\beta_{i} \mathbf{1}
$$

We set

$$
V\left(P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{m}, k\right)=V\left(P_{1}, k\right)=\left(1-\gamma c_{i}^{k}\right) P_{1}^{\gamma}, \quad P_{1}>0,
$$

where $0>\gamma>-1$ has yet to be selected, small enough that all coefficients are positive. With a calculation similar to (6) we obtain

$$
\begin{aligned}
\mathcal{L} V\left(P_{1}, k\right) & =\gamma\left(1-\gamma c_{i}^{k}\right) P_{1}^{\gamma-1}\left(a_{1, i}^{k} P_{1}+o(1)\right)+\sum_{j=1}^{n} q_{k j}\left(1-\gamma c_{i}^{j}\right) P_{1}^{\gamma} \\
& =\gamma P_{1}^{\gamma}\left(\left(1-\gamma c_{i}^{k}\right) a_{1, i}^{k}-\sum_{j=1}^{n} q_{k j} c_{i}^{j}+o(1)\right) \\
& =\gamma P_{1}^{\gamma}\left(\left(1-\gamma c_{i}^{k}\right) a_{1, i}^{k}-\left(a_{1, i}^{k}-\beta_{i}\right)+o(1)\right) \\
& =\gamma P_{1}^{\gamma}\left(-\gamma c_{i}^{k} a_{1, i}^{k}+\pi \cdot \mathbf{a}_{1, i}+o(1)\right) .
\end{aligned}
$$

In order to make all the factors in parentheses positive (so that the entire expression becomes negative), we need to have

$$
0>\gamma>\max _{\substack{i=2, \ldots m \\ k=1, \ldots, n}}\left\{\frac{\pi \cdot \mathbf{a}_{1, i}}{c_{i}^{k} a_{1, i}^{k}}: c_{i}^{k} a_{1, i}^{k}<0\right\} .
$$

The expressions whose maximum is taken are all negative since $\pi \cdot \mathbf{a}_{1, i}>0$ by assumption (4). The condition of Proposition 8.7 in [1] is thereby verified.

References

[1] G. G. Yin and C. Zhu, Hybrid Switching Diffusions, Springer, New York (2010)

[^0]: ${ }^{1}$ Current address: School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia

