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Abstract 

The neural correlates of encoding mode, or the state of forming new memory 

episodes, have been found to change with age and mnemonic training. However, it is 

unclear whether neural correlates of encoding success, termed subsequent memory 

(SM) effects, also differ by age and mnemonic skill. In a multi-session training study, 

we investigated whether SM effects are altered by instruction and training in a 

mnemonic skill, and whether such alterations differ among children, younger adults, 

and older adults. Before and after strategy training, fMRI data were collected while 

participants were memorizing word pairs. In all age groups, participants receiving 

training showed greater performance gains than control group participants. Analysis 

of task-relevant regions showed training-induced reductions in SM effects in left 

frontal regions. Reductions in SM effects largely generalized across age, and 

primarily reflected greater training-induced activation increases for omissions than for 

remembered items, indicating that training resulted in more consistent use of the 

mnemonic strategy. The present results reveal no major age differences in SM effects 

in children, younger adults, and older adults. (173 words) 
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Episodic memory (EM; Tulving, 1972), the ability to remember events 

situated in time and place, increases from childhood to early adulthood (Schneider & 

Pressley, 1997) and decreases from around age 60 and onwards (Kausler, 1994; 

Rönnlund, Nyberg, Bäckman, & Nilsson, 2005). Several studies have investigated if 

the generally lower EM performance of older adults can be increased through 

strategy-based training. These studies typically demonstrate that older adults benefit 

from strategy training, either to a lesser (Ball, Berch, & Helmers, 2002; Kliegl & 

Baltes, 1987; Kliegl, Smith, & Baltes, 1990; Singer, Lindenberger, & Baltes, 2003), 

or similar (Bherer et al., 2006; Derwinger, Stigsdotter Neely, Persson, & Bäckman, 

2003; Nyberg et al., 2003) extent compared to younger adults. In previous work, we 

found that children performed similarly to older adults before training or after being 

instructed in a mnemonic strategy, although they profited more than older adults from 

subsequent adaptive practice in the strategy (Brehmer, Li, Müller, von Oertzen, & 

Lindenberger, 2007; Shing, Werkle-Bergner, Li, & Lindenberger, 2008).  

Regarding neural correlates of training-induced changes in memory across the 

lifespan, not much work has been conducted so far. To our knowledge, no study has 

investigated training-induced neural correlates of changes in EM functioning during 

childhood. Research examining training-induced activation changes in adulthood 

reveals activity changes following instruction and practice in mnemonic techniques or 

semantic encoding strategies (Jones et al., 2006; Kirchhoff, Anderson, Barch, & 

Jacoby, 2012; Nyberg et al., 2003), mostly in prefrontal and medial-temporal regions. 

Thus, these regions were targeted in the present research. 

Moreover, all age-comparative training research using brain imaging has 

investigated training-related changes in encoding mode, which refers to changes in 

activity differences between an attempt to remember information (independent from 
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success) and a no-memory explicit baseline (i.e., a task similar in visual complexity to 

the memory task that only requires simple perceptual decisions; Jones et al., 2006; 

Kirchhoff, Anderson, Barch, & Jacoby, 2012; Nyberg et al., 2003). In contrast, 

encoding success refers to the contrast between remembered and not-remembered 

information (i.e., omission errors), and thus helps to identify regions that are relevant 

to successful memory formation. In functional magnetic resonance imaging (fMRI), 

subsequent memory (SM) effects refer to regional activation differences during 

encoding of trials that are later retrieved successfully and encoding of trials that are 

not retrieved. The present study investigates whether SM effects are altered by 

instruction and training in a mnemonic skill, and whether such alterations, if present, 

differ among children, younger adults, and older adults.  

 We used a cued-recall paradigm to investigate EM performance before and 

after mnemonic strategy instruction and training. Individuals were scanned during 

encoding of word pairs. We expected training-related performance changes for all 

three age groups in comparison to age-matched controls. As SM effects focus on the 

relation between remembered and not-remembered information and not on the level 

of activation per se, it is conceivable that differences between remembered and not-

remembered items are reduced after strategy training. This is so because activations 

for remembered and not-remembered information may become more similar after 

training, reflecting that the strategy is applied more consistently during encoding. The 

chief objective of the current research was to explore this hypothesis with special 

focus on potential differences in training-related activation patterns across the lifespan. 

Methods 

Participants 
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This study is part of a large-scale lifespan study with an initial sample of 95 

children, 49 younger adults, and 165 older adults. Thirty-four persons from each age 

group were eligible to participate in an fMRI study after passing several screening 

criteria: (a) a minimum raw score of 24 on the digit symbol test (Wechsler, 1981); (b) 

at least 28 points on the Mini-Mental State Exam (Folstein, Folstein, & McHugh, 

1975); (c) a score of 30 or higher on the CES-D scale on depression (a lower score 

indicates risk for depression; Radloff, 1977); (d) at least 3 word pairs correctly 

recalled from a study list of 10 pairs. The last screening criterion was decided upon 

extensive piloting and was included to increase the likelihood that participants would 

produce enough remembered word pairs in the in-scanner memory task for the fMRI 

analyses.  

For this study, 21 individuals had to be excluded from analysis: 16 individuals 

(2 children, 2 younger adults, and 12 older adults) due to not producing enough 

remembered or not-remembered items, either before or after training (i.e. less than 6 

responses in a given category per run; Murphy & Garavan, 2005), 3 children due to 

excessive motion artifacts (i.e., more than 3 mm in any direction), 1 younger adult 

due to technical error in the scanning procedure, and 1 child based on extreme values 

in brain activation (i.e., above three standard deviations of the group mean). Hence, 

the effective sample consisted of 28 children (aged 10.30 – 11.93 years, M = 11.09), 

31 younger adults (aged 21.39 – 25.77 years, M = 24.05), and 22 older adults (aged 

63.03 – 70.64 years, M = 66.73). Assessments of crystallized (vocabulary) and fluid 

(perceptual speed) intelligence before training indicated that the age groups were 

representative of their respective cohorts showing a steep increment from middle 

childhood to young adulthood followed by stability from early to late adulthood in 

crystallized intelligence, and a steep increment during middle childhood with a peak 
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in young adulthood and decline in old age for fluid intelligence (Table 1). All 

participants were right-handed, native German speakers, and did not report having 

neurological or psychiatric disorders. None of the participants was familiar with 

memory strategies or had any experience with strategy training. All were distributed 

randomly into either training or control groups. The training groups consisted of 16 

children, 16 younger adults, and 11 older adults. The control groups comprised 12 

children, 15 younger adults, and 11 older adults. The training and control groups did 

not differ in age, education, or general cognitive functioning (Table 1).  

Materials 

Lists of unrelated word pairs were used to assess EM performance. The words 

were concrete, highly imaginable German nouns (Brehmer et al., 2004; Hasselhorn, 

Jaspers, & Hernando, 1990; Scheithe & Bäuml, 1995). The word pairs were 

assembled randomly; however, we ensured that the words in the pairs were not 

semantically or associatively related. In addition, words forming a pair never started 

with the same letter or rhymed. Words used before and after training (assessment 

sessions) were unique and not used before, whereas words used during instruction and 

practice sessions were partly re-used and mixed across word pairs and lists.  

In the assessment sessions, length of study lists was adjusted for each age 

group to attain an average task difficulty across groups at the level of 25-45 percent 

accuracy before training to provide room for training-induced performance gains. In 

addition, a sufficient number of trials for the specific fMRI analysis were needed (i.e., 

at least 6 responses in a given category per run). Thus, extensive piloting resulted in 

the following age-specific set up: Children received two lists of 72 word pairs each, 

younger adults received two lists of 96 word pairs each, and older adults four lists of 

28 word pairs each. Four word pairs were added to each study list as filler pairs (the 
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first two and the last two pairs) to avoid primacy and recency effects. These word 

pairs were not used in the fMRI analyses.  

The training groups were exposed to a total of 90 word pairs during instruction 

and 192 word pairs during practice of the memory strategy. Although all age groups 

received six lists of 15 word pairs each during instruction, age-specific arrangements 

of list length were applied during the two practice sessions: During each session, 

children received three times 32 word pairs, younger adults two times 48 word pairs, 

and older adults six times 16 word pairs. Thus, the total number of trials was identical 

for all age groups, but the length of the practice lists was between 40 and 60 percent 

of the list lengths used during the assessment sessions to provide an equally 

challenging context across age groups.  

Experimental Procedure  

Encoding phase. The design of the in-scanner procedure is presented in Figure 

1. Word pairs were presented visually on a computer screen for 6 seconds (one at the 

top, one at the bottom) followed by a question prompting for judgment of learning for 

2 seconds (“how sure are you that you will later remember the word pair?”). This 

question phase served to ensure that participants remained attentive to the task. 

Participants entered their responses by pressing ‘very sure’, ‘sure’, or ‘unsure’. An 

explicit baseline condition was included to better separate activations for memory 

versus non-memory processes, avoiding the problem of an ambiguous rest baseline 

(Stark & Squire, 2001). In the explicit baseline condition, participants saw pairs of 

letter strings (xxxxx – kkkkk). Six trials were presented sequentially forming one 

block, each trial lasting for one second. In 1/3 of these control blocks, there were 

trials where the pairs of letter strings consisted of the same letters. To ensure that 

participants were engaged in the low-level task, they were asked to monitor the 



 

 8 

occurrence of these trials and to press a button. In 2/3 of the blocks, no button presses 

were required and these blocks were the explicit baseline condition for the memory 

task. Scanning time for the baseline task was roughly 1/3 of the scanning time for the 

actual memory task. Memory trials and baseline blocks were presented in randomized 

order, each separated by a jittered fixation period, ranging from 500 to 1500 ms (in 

500 ms steps).  

Recall phase. After each encoding list, participants were tested using a cued-

recall procedure. Participants saw one word (the one presented on top of the screen 

during encoding) at the top of the screen and were asked to recall the corresponding 

word from the pair. They indicated whether they could remember the word by 

pressing either ‘yes’ or ‘no’. If ‘yes’ was pressed, participants reported the 

corresponding word followed by a confidence rating. When ‘no’ was pressed, the next 

trial appeared.  

During the assessment sessions, the procedure differed slightly for children 

compared to younger and older adults. For younger and older adults, retrieval was 

done inside the scanner without scanning. Based on piloting, lying in the scanner at 

both encoding and retrieval was too strenuous for children, potentially lowering the 

quality of subsequently acquired MRI data due to movement artifacts. Therefore, 

children’s retrieval was done outside the scanner on a computer in a quiet room. 

Children entered the scanner again after completing retrieval of the first list. During 

assessment sessions, participants reported the answer verbally (in the case of younger 

and older adults, through the scanner speaker). In the instruction and practice sessions, 

participants entered their answers using the keyboard.  

Experimental Sessions 
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Table 2 summarizes the various sessions of the study. All participants took 

part in a first behavioral session that consisted of assessment of demographic 

information and a psychometric test battery. During the second session, participants 

were trained on getting comfortable with the MRI environment inside a scanner 

simulator (NordicNeuroLab). They also practiced on the task to get used to encoding 

word pairs while lying in the simulator. Motion was detected using a camera and 

feedback was given directly when head movement was detected. In the third session 

(pre-training assessment) participants were scanned during word-pair encoding. They 

were instructed to encode the words as pairs for an upcoming cued-recall test. 

Presentation order of word pairs within lists was randomized during encoding and 

retrieval to minimize the use of semantic strategies (e.g., sentence/story generation 

across word pairs) and to maximize the relative contribution of associative processing 

for each word pair. After completing the memory task, participants were asked to 

describe all strategies they had used for encoding the word pairs in an open format. 

These strategies were later on coded into three broad categories based on Dunlosky 

and Hertzog (1998): visual, semantic, and shallow (e.g., rote repetition) strategies. 

The training groups continued with four strategy instruction and practice 

sessions, whereas the control groups had a break for the same amount of time. The 

essence of the strategy was to elaborate on the word pairs using visual imagery to 

integrate the two words (Paivio, 1969). The first instruction session took place in age-

homogenous groups of 3 to 4 individuals. Participants were introduced to the main 

principles of the strategy using concrete examples. Several short lists word pairs were 

used to practice the generation of interactive and dynamic images integrating the two 

un-related words into one coherent memory representation. Afterwards participants 

practiced the technique with two word lists on a computer individually. In the 
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following single-instruction session, instruction and supervised training were 

continued individually to improve the quality of the visual images generated by the 

participants. This was done by (a) using prompts to verbalize and discuss all aspects 

of image formation and image retrieval, (b) assistance during recall, (c) repetition and 

elaboration of instructions, as well as various other forms of encouragement (see 

Brehmer et al., 2007 for a similar instruction approach). The instruction sessions 

lasted about 1 hour each.  

Participants practiced the imagery strategy in two consecutive sessions with 

several lists of age-group specific lengths (see description above). Practice sessions 

took place in groups of 2 to 5 individuals. Individuals in these groups practiced the 

task on separate computers at an individualized pace and without any further strategy-

relevant assistance from the experimenter. The practice sessions lasted between 40 

and 60 minutes each.  

The final session (post-training assessment) was identical to the pre-training 

assessment. Trained participants were again scanned during word-pair encoding. 

Participants from the control groups were given the same instruction as during pre-

training assessment, namely to encode the word pairs as pairs for an upcoming cued-

recall test. Participants from the training groups were instructed to use the newly 

acquired memory strategy to encode and later recall the word pairs. As during pre-

training assessment, word pairs were presented visually on a computer screen for 6 

seconds (one at the top, one at the bottom) followed by a question phase for 2 seconds. 

Although the control groups received the same question as during pre-training 

assessment, namely prompting for judgment of learning (“How sure are you that you 

will remember the word pair?”), the trained groups were asked to judge the quality of 

the generated image for each word pair (“Were you able to generate an interactive 
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image for this word pair?”). Participants entered their responses by pressing ‘no 

image’, ‘a kind of image’, or ‘interactive image’.  

This was done to emphasize the consistent use of interactive imagery during 

encoding for the trained individuals.  

After completing the memory task, participants were again asked to describe 

all strategies they had used for encoding the word pairs in an open format. 

MRI protocol 

Whole-brain MRI data were collected with a Siemens 3T Trio Magnetom. 

Functional scans. Blood-oxygen-level-dependent (BOLD) fMRI images were 

generated using an echo-planar-imaging (EPI) pulse sequence (TR/TE= 2000/30ms, 

flip angle=90°, matrix=72 x 72, FOV= 216 mm, voxel size = 3 x 3 x 3 mm
3
; 36 

slices). Slices were acquired interleaved in axial orientation. Three dummy scans were 

performed prior to image acquisition to eliminate signals arising from progressive 

saturation. Before acquisition of each functional sequence, a new localizer was 

acquired to adjust the scanning window (alignment based on genu-splenium of the 

corpus callosum). 

Structural scans. For registration of functional images, 2 structural sequences 

were collected, one T2-weighted turbo-spin echo sequence (TR/TE = 8170/93 ms; 

matrix = 256 x 256; in-plane resolution = 1 x 1 mm, slice thickness = 3 mm) in the 

same orientation as the functional sequences; and one high resolution T1-weighted 

MPRAGE sequence (TR/TE = 1550/2.34 ms; matrix = 256 x 256, in-plane resolution 

= 1 mm, slice thickness = 1 mm). Gradient echo images were measured for correction 

of magnetic field inhomogeneities.  

Data analyses  



 

 12 

Functional brain activity 

Preprocessing. A quality check of the functional data was conducted using 

dataQuality, a Matlab-based tool (http://cbi.nyu.edu/software/dataQuality.php), which 

identifies spikes (signals greater than 10 standard deviations above the mean (across 

time) and corrects these by substituting the value with an average of the intensity of 

the two time points before and after the problematic time point.  

Data for each run from each participant were analyzed using FEAT in FSL 

(Version 6.00, FMRIB’s Software Library, http://www.fmrib.ox.ac.uk/fsl, Smith et al., 

2004). Before images were subjected to pre-processing, BET (Brain Extraction Tool; 

Smith, 2002) was used to strip away the skull and other non-brain parts of the images. 

Images were motion corrected using rigid body transformation as implemented in 

MCFLIRT (Motion Correction using FMRIBs Linear Image Registration Tool; 

Jenkinson, Bannister, Brady, & Smith, 2002), and smoothed using an isotrophic 8.0 

mm full-width half-maximum Gaussian filter to remove low-frequency noise. Data 

with motion more than 3 mm in any direction were handled by either removing that 

particular run entirely or leaving out the volumes (and subsequent volumes) affected 

by motion if it occurred toward the end of the measurement. During pre-training 

assessment, this affected 2 children (1 had one run removed, 1 had specific volumes 

removed), whereas none was affected during post-training assessment. A pre-

whitening technique was used to account for the intrinsic temporal autocorrelation of 

BOLD imaging. Low-frequency artifacts were removed by applying a high-pass 

temporal filter (Gaussian-weighted straight-line fitting, sigma = 50 s). Age-group 

specific brain templates were created from participants’ high-resolution images using 

the non-linear registration ANTS program (Avants, Epstein, Grossman, & Gee, 2008; 

Avants et al., 2011), following the iterative procedures of Sanchez, Richards, and 

http://cbi.nyu.edu/software/dataQuality.php
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Almli (2012). Functional scans were registered to their own high-resolution scans, 

then to the age-specific brain templates, and finally to standard space (MNI) using 

FLIRT (Jenkinson et al., 2002). 

fMRI data analysis. Analysis of the imaging data was performed according to 

the general linear model. First-level individual analyses modeled the time series with 

separate regressors for subsequently remembered, not remembered, and incorrectly 

remembered trials for each run and MRI session (pre training and post training). 

Additional regressors included the question phase, the explicit baseline phase (with 

and without button presses, separately), and filler pairs at the beginning and end of the 

run. The regressors were generated by convolving the impulse function related to the 

onsets of events of interest with a Gamma hemodynamic response function (HRF). 

The critical contrast for the SM effect was [remembered > omissions or R > O)]. 

Contrast images were computed for each run per subject, spatially normalized, 

transformed into MNI standard space, and submitted to a within-subject fixed-effects 

analysis across runs for pre- and post-training, separately. To estimate activation 

changes across time, these contrasts were then compared between pre- and post-

training on an individual level using fixed effects. These individual time contrasts 

were entered into a higher-level analysis across subjects using a mixed-effects model 

in FSL (FLAME, Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). All 

brain coordinates are reported in MNI space.  

The first analysis tested age-general training-induced changes in BOLD 

activity for the different experimental groups in task-relevant regions. Task-relevant 

regions were identified as follows: Within each age and experimental group (i.e., 

CHTrain, CHCon, YATrain, YACon, OATrain, OACon), we computed the condition contrast 

(R > O) separately for pre- and post-training assessments. Based on these contrast 
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maps of each age group, we computed a disjunction map (p < .01, uncorrected). Thus, 

the disjunction image showed activation in regions in which any of the six groups 

showed SM effects either at pre- or post-training assessment. By using this 

disjunction image, we avoid the problem of biasing the selection of voxels with 

regard to the age/experimental condition manipulation of interest here (non- 

independence errors; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009) and 

maximize the probability of finding activation changes in regions relevant before 

and/or after training. In a GLM group analysis, the time contrast ([R > O]pre-training 

versus [R > O]post-training) of the training and control groups was compared, controlling 

for exact age (as an indirect control of age-related differences in list length), using the 

disjunction image as the only whole-brain restriction. Functional activation was 

thresholded at a significance level of p < .01 (Z > 2.3, uncorrected) and reported 

effects show a cluster volume of at least 54 contiguous voxels, as determined by a 

Monte Carlo simulation for minimum cluster size where the probability of type I error 

was < .05 (https://www2.bc.edu/~slotnics/scripts.htm; Slotnick, 2003). 

To investigate whether training-induced changes in SM effects were 

comparable across age or specific to one or the other age group, we defined ROIs by 

placing a 3-mm sphere around the peak activation in those brain regions showing a 

time x treatment interaction in the GLM group analysis (for MNI coordinates of ROIs, 

see Table 4). From these ROIs, mean percent signal change was extracted per subject 

for SM effects pre- and post-training separately for each ROI. Percent signal changes 

were analyzed with age x time repeated-measures ANOVAs for the trained 

individuals. A main effect of time without a time x age interaction would indicate 

similar changes for all three age groups. However, a time effect and a time x age 

interaction would reflect that the groups differed in degree of change. When this was 
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the case, pair-wise comparisons were conducted to specify which group was driving 

the effect. Corresponding analyses were conducted for the control groups to ensure 

that the observed findings were unique to the trained groups and not related to 

repeated testing. 

Third, a ROI-based approach was applied to investigate potential age-related 

differences in training-induced changes in SM effects in brain regions known to be 

most critical in supporting successful encoding (i.e., left BA9, BA44/45 and BA46, 

bilateral hippocampus (HC) and parahippocampal gyrus (PHG); see Kim 2011; 

Spaniol et al., 2009). First, anatomical ROIs of these regions were delineated using 

the WFU PickAtlas (Maldjian, Laurienti, & Burdette, 2004; Maldjian, Laurienti, Kraft, 

& Burdette, 2003) for the frontal regions and the Harvard-Oxford Cortical and 

Subcortical Structural Atlas (http://www.cma.mgh.harvard.edu/fsl_atlas.html), with 

voxels thresholded at a minimum 25% probability of being within a specific region 

for HC and PHG. To ensure that only task-positive regions in these ROIs were 

entered into the analysis, a conjunction was made between the anatomical ROIs and 

the map of SM effects (R > O) of task-positive brain regions in any of the six 

age/experimental groups at either pre- or post-training assessments. Here, functional 

activation was again determined by thresholding Z (Gaussianized T/F) statistics 

image using clusters determined by Z > 2.3, uncorrected (minimum cluster size = 54 

contiguous voxels). Percent signal changes of SM effects were extracted for each 

individual before and after training. These signal changes were subjected to repeated 

measures ANOVAs, with age as between-subjects factor and time (pre- and post-

training assessment) as within-subjects factor. To ensure that these effects were 

training-induced and not evoked by repeated testing, a similar analysis was again 

http://www.cma.mgh.harvard.edu/fsl_atlas.html
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conducted for the control groups. Effects were considered significant at an alpha level 

of .05.  

Results 

Behavioral data 

Cued recall of word pairs. As noted, list length of each age group was 

adjusted to achieve an accuracy level between 25 and 45 percent before training. 

Nevertheless, an ANOVA with age and experimental condition as between-subjects 

factors before training revealed a significant effect of age F(2, 75) = 6.25, p < .01, η
2
 

= .14, indicating that children (M = .25, SE = .03) remembered fewer word pairs than 

younger adults (M = .40, SE = .04), p < .01. However the difference between children 

and older adults (M = .32, SE = .03) and between older and younger adults did not 

reach statistical significance (ps > .08; see Table 3). Furthermore, pre-training 

performance of the training and control groups was indistinguishable (F < 1). 

A repeated measures ANOVA with age and experimental condition as 

between-subjects factors and time as a within-subjects factor was conduced to 

investigate if strategy training resulted in greater improvement than repeated testing. 

The main effects of experimental condition (F(1, 75) = 11.58, p < .01, η
2
 = .13, age 

(F(2, 75) = 10.20, p < .001, η
2
 = .21), and time F(1, 75) = 181.90, p < .001, η

2
 = .71 

reached significance. Further, the experimental condition x time interaction was 

significant, F(1, 75) = 81.21, p < .001, η
2
 = .52, indicating larger gains from pre- to 

post-training for the trained groups than the controls. However, the age groups did not 

differ in degree of change (p > .11) and the age x experimental condition x time 

interaction felt far short of significance (p > .26; Figure 2).  

Strategy use. To investigate the effectiveness of strategy instruction and 

practice, we examined how the different age and intervention groups reported 
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encoding the word pairs at pre- and post-training assessments (Figure 3). Reported 

strategies were sorted into visual, semantic, or shallow. The most commonly used 

strategy before training was semantic (M = .65, SE = .05), followed by visual (M 

= .23, SE = .04), and shallow (M = .12, SE = .03) strategies. Significant age effects 

were observed for visual and shallow strategies, reflecting that younger adults 

reported more use of visual strategies than children (p < .05), whereas younger and 

older adults did not differ (p > .10). Children reported using more shallow strategies 

than both adult groups (ps < .05), which again did not differ (p > .10). Importantly, 

training and control groups did not differ in strategy use before training (p = .39). 

Regarding training-related strategy changes, experimental condition x time 

interactions were observed for all three types of strategies  (ps < .05). To trace the 

sources of these effects, separate analyses for the training and control groups were 

conducted. For the training groups, time effects were observed for semantic and 

visual strategies (ps < .001), reflecting an increase for visual strategies and a decrease 

for semantic strategies. A trend toward a significant age x time interaction was 

observed for shallow strategies (p = .054), suggesting that children showed more 

decreases in using shallow strategies than younger adults (no shallow strategies were 

reported by older adults before or after training). No main effect of time and no age x 

time interaction were observed for the control groups.  

fMRI data 

General training-induced changes in the subsequent memory effect 

In the first fMRI analysis, training-induced changes in SM effects were 

investigated in task-positive brain regions comparing trained individuals with controls 

(across all groups, controlling for exact age). Overall, the training groups showed 

intervention-related decreases in SM effects in several brain areas, including left 
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frontal (inferior, middle), left temporal (inferior, middle, superior), right inferior 

temporal, left parietal (precuneus), bilateral occipital (cuneus), left middle occipital, 

and left HC and PHG regions. No training-related activity increases for SM effects 

were observed. A direct comparison with the control groups revealed training-specific 

changes in SM effects in left frontal regions (i.e., inferior (BA45), middle (BA9), and 

medial (BA6; see Table 4 for details)). Possible age-related differences in training-

induced changes in the SM effect in these regions were investigated next.  

Age differences in training-induced changes in the subsequent memory effect  

All three age groups exhibited comparable decreases in the SM effects for the 

left inferior frontal (BA45) and the left middle frontal (BA9) regions (ps < .05). Only 

the left medial frontal (BA6) region showed an age x time interaction (p < .05; Figure 

4). Follow-up analysis revealed that this effect was mainly driven by older adults’ 

greater reduction in the SM effect compared to that of younger adults (p < .05; for the 

difference in reduction between older adults and children, p = .063). In the same 

region, there was also a trend for age-group differences in the SM effect at baseline (p 

= .09), suggesting a larger SM effect in older adults before training in comparison to 

younger adults and children, which disappeared at post-training assessment (p > .32). 

Activation changes underlying the training-induced reduction in the 

subsequent memory effect 

To examine whether reductions in SM effects were due to activation changes 

for remembered items, not-remembered items, or both, percent signal change was 

extracted from the relevant frontal regions (using spheric ROIs with a 3 mm radius) 

for the contrasts remembered items [R > explicit baseline] and omissions [O > 

explicit baseline], separately for pre- and post-training assessments. Using repeated 
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measurement ANOVAs with age as between-subjects factor and time as a within-

subjects factor for remembered items and omissions, we investigated which activation 

changes were driving the training-related alterations in SM effects (Figure 5). 

The reduction of the SM effect in the left inferior frontal region was driven by 

greater activation increases for omissions than for remembered items after training 

F(1, 40) = 6.97, p = .012, η
2
 = .15. A trend in the same direction was observed in 

middle frontal gyrus, F(1, 40) = 3.55, p = .067, η
2
 = .08. This indicates that the 

activations for omissions were more similar to those for remembered items after 

instruction and practice in the mnemonic strategy. In contrast, the reduction of the SM 

effect in left medial frontal regions was primarily driven by activation decreases for 

remembered items compared to omissions, F(1, 40) = 10.22, p = .003, η
2
 = .20. No 

three-way interactions involving changes for remembered items, changes for 

omissions, and age were observed, indicating that such changes, when observed, did 

not differ reliably among children, younger adults, and older adults. 

Age-related differences in training-induced changes in subsequent memory in 

PFC and MTL: ROI analyses 

Next, focusing the analysis on regions known to be critical to EM functioning, 

we investigated potential age-related differences in training-induced changes in SM 

effects targeting left PFC and bilateral MTL, using a conjunction of anatomical and 

functional masks. In accordance with the findings reported above, only training-

related reductions in SM effects were observed in this analysis (see Figure 6). 

Children, younger adults, and older adults showed similar decreases in SM effects for 

left BA44/45 and left BA46 as well as for left HC and PHG (main effects of time, ps 

< .05). However, in addition to overall time effects, an age x time interaction was 

observed for left BA 9, reflecting that older adults showed greater reductions in the 
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SM effect than children and younger adults (ps < .04). At post-training assessment, 

older adults showed a significantly smaller SM effect in comparison to children and 

younger adults (ps < .04). No significant time effects were observed for right HC and 

right PHG. No main effect of time and no age x time interaction were observed in the 

control groups. To investigate whether activation changes for remembered items, 

omissions, or both, accounted for the reductions in SM effects, repeated measurement 

ANOVAs with age as between-subjects factor and time as a within-subjects factor for 

remembered items and omissions were conducted for those pre-defined EM ROIs, 

which showed a significant decrease in the SM effect from pre to post training. 

Percent signal change was extracted for the contrasts remembered items [R > explicit 

baseline] and omissions [O > explicit baseline] separately for pre- and post-training 

assessments. Overall, activation for remembered items and omissions increased from 

pre- to post-training assessments (see Figure 7). However, even though the interaction 

between remembered items and omissions did not reach statistical significance (p 

> .05), the patterns are in line with the previous analysis, indicating that activation 

increases were larger for omissions than remembered items. The larger decrease of 

the SM effect for older adults compared to children and younger adults seems to 

reflect that older adults’ increases for omissions were larger than those for 

remembered items (see Figure 8). However, this effect did not reach conventional 

significance (p > .05). 

Discussion 

We examined training-induced changes in SM effects in children, younger 

adults, and older adults. Individuals were scanned while encoding lists of word pairs 

and instructed to remember the items as pairs (before training) or to apply an 

associative memory strategy following instructions and practice (after training). 
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Across age, trained participants showed greater performance gains from pre- to post-

training than controls. Further, trained individuals reported using more visual 

associative strategies after training.  

There were training-induced reductions in the SM effect in left frontal regions 

(inferior (BA45), middle (BA9) and medial (BA6)). These regions have been linked 

to generation/selection of new representations (inferior PFC) and to the ability to 

organize multiple pieces of information, enhancing memory for item associations 

(middle PFC; Blumenfeld & Ranganath, 2007; Park, Leal, Spann, & Abellanoza, 

2013). Reductions in the SM effect in inferior frontal and middle frontal regions were 

comparable across age groups, although older adults showed greater reductions in the 

SM effect in left medial frontal cortex (BA6) than the other age groups.  

These training-related changes in SM effects were primarily due to greater 

activation increases for omissions than for remembered items across all age groups. 

ROI-based analyses on brain regions known to be critical to EM functioning (i.e., 

prefrontal and medial-temporal) extended these findings demonstrating that children, 

younger adults, and older adults showed similar reductions in the SM effect for left 

BA44/45 and BA46 as well as for left HC and PHG. However, older adults showed 

greater training-related reductions in the SM effect for left BA9 than younger adults 

and children. In general, these regions have been found to be relevant in previous 

work on the influence of strategy training on neural activity (Jones et al., 2006; 

Nyberg et al., 2003). 

Similar performance gains across age groups. In agreement with some age-

comparative research indicating comparable training gains across adulthood (Bherer 

et al., 2006; Derwinger et al., 2003; Nyberg et al., 2003), we observed similar 

performance increments following training for all age groups. At first glance, these 
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findings seem to be at odds with results from our previous research (Brehmer et al., 

2007). In that study, children, younger adults, and older adults were instructed and 

trained in a variant of the Method of Loci. Instruction-related gains were comparable 

for children and older adults, although larger gains were observed for children 

compared to older adults after up to six sessions of adaptive training. In Brehmer et al. 

(2007), the adaptive training targeted the associative binding process by reducing the 

encoding time available to form an interactive image between to-be-remembered 

words and location cues during up to six sessions of practice. By contrast, the current 

study included only two practice sessions with a constant encoding time of 6 seconds 

and is, therefore, more comparable to the strategy instruction phase than the adaptive 

training phase used in previous research. This lack of adaptive practice might have 

strengthened the relative importance of strategy use and lowered the relative 

importance of pure associative binding processes in remembering the word pairs. In 

addition, note that the samples in this study were selected on the basis of associative 

memory performance prior to training, as one of the inclusion criteria was the ability 

to remember at least three out of 10 word pairs, to allow for sensitive analyses of the 

fMRI data. This positive selection, especially for older adults, might contribute to 

their high level of visual-associative strategy use at pre-training assessment, as well as 

their marked training-related performance gains.  Before training, children and older 

adults as well as younger and older adults did not differ reliably from each other in 

task performance, but children remembered fewer word pairs than younger adults. It 

is worth noting that children, in contrast to younger and older adults, retrieved the to-

be-learned words outside the scanner. This was done to reduce the time of lying still, 

and hence movement artifacts, in the group of children. Thus, we cannot exclude that 
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some portion of the performance difference between children and younger adults 

reflects differences in retrieval context. 

Comparable training-induced reductions in SM effects across the lifespan. 

The main finding of this study is that instruction and practice in an associative 

memory strategy lead to reductions in SM effects, primarily in left prefrontal regions, 

that are independent of age. Hence, training an associative memory strategy may 

involve similar brain mechanisms in children, younger adults, and older adults when 

investigating a fine-grained contrast, namely encoding success (see Mark & Rugg, 

1998; Li et al., 2004; Wang et al., 2015 for similar findings regarding retrieval 

success). The reductions in SM effects indicate that activations for later on 

remembered and not-remembered items during encoding became more similar as a 

function of training. This pattern primarily reflected greater activation increases for 

omissions compared to remembered items. Conceivably, this indicates a more 

consistent application of the trained strategy at post-training assessment, irrespective 

of recall success. This interpretation is in line with the training-related increase in the 

reported use of visual-associative strategies in all age groups. Note that in this age-

comparative study, children, younger adults, and older adults had different numbers 

of word lists with different lengths (Children 2 x 72 word pairs, younger adults = 2 x 

96 word pairs, and older adults = 4 x 28 word pairs). This procedure was decided after 

extensive piloting with the aim to avoid ceiling and floor effects at pre- and post-

training assessments and to reach comparable performance levels at before training. 

Even though we controlled indirectly for the difference in total number of word pairs 

by including age as covariate into the brain analysis, future studies should try to 

equalize the to-be-remembered material for the different age groups even better. 
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The present findings shed new light on the brain maintenance hypothesis of 

cognitive aging (Lindenberger, 2014; Nyberg, Lövden, Riklund, Lindenberger, & 

Bäckman, 2012). Originally, this hypothesis has been formulated at the between-

person level, and refers to the notion that older adults with more “youth-like” brains 

are expected to show patterns of performance and functional activation that are more 

similar to those of younger adults than age-matched peers whose brains show greater 

signs of aging-related deterioration (Fandakova, Lindenberger, & Shing, 2015; Pudas 

et al., 2013). The current findings suggest that a generalization of this hypothesis also 

serves to explain variations within subjects. According to the generalized version, 

normal aging reduces the likelihood that the brain’s activity is configured in ways that 

support successful task performance, such as successful associative encoding, without 

modifying the target activation pattern as such. According to this view, brains that 

have undergone greater decline in task-relevant regions are less likely to attain a state 

that is germane to successful encoding, and brains that have undergone smaller 

decline are more likely to attain that state, with the target state itself being largely 

comparable across age. 

Exploring age differences in accessibility versus availability. After instruction 

and practice in an associative memory strategy, memory failures are less likely to 

reflect inadequate encoding, and more likely to reflect poor consolidation, retrieval 

failure, or both (Cohn, Emrich, & Moscovitch, 2008; Hertzog et al., 2013). The cued-

recall paradigm used in this study is highly demanding regarding accessibility of 

information, but less informative when it comes to availability of information (Habib, 

Nyberg, & Nilsson, 2007). Thus, future studies should combine cued-recall and 

recognition paradigms to distinguish between remembered (recalled and recognized), 
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inaccessible (not recalled but recognized), and forgotten (not recalled and not 

recognized) information in lifespan samples. 

Select and small age group differences of training-induced reductions in SM 

effects. In general, the results of this study suggest that the brain areas supporting 

successful memory encoding following strategy instruction and practice remain rather 

stable across large portions of the lifespan. The only age-related difference observed 

in this study was that older adults showed greater decrease in the SM effect in left 

medial frontal (analysis of task-relevant areas) and left inferior frontal (analysis on 

encoding-success specific ROIs) regions than the other age groups. Apparently, these 

regions were less relevant in distinguishing between remembered items and omissions 

after instruction and practice in an associative-memory strategy for older adults. This 

statement applies when comparing the older adults after training to their pre-training 

activity (left medial frontal) and in comparing the older adults to children and younger 

adults after training (left inferior frontal).  In the case of medial frontal regions, the 

greater reduction in the SM effect for older adults was accompanied by a trend for a 

larger SM effect before training than for younger adults and children (see Figure 4). 

As this region has been linked to self-initiated use of semantic encoding strategies 

(e.g., sentence generation; Kirchhoff et al., 2012), it is conceivable that this region 

was particularly memory-relevant for older persons before training. This 

interpretation is supported by the fact that older adults mostly reported semantic 

strategy use before training (Figure 3).  However, this effect was diminished after 

training. In fact, as with younger adults and children, no significant SM effects were 

observed here for older adults after training, indicating that this region was less 

critical in distinguishing between remembered and not remembered information, 

underscoring the effectiveness of our strategy instruction and practice. This finding is 
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in accordance with results from a recent meta-analysis (Maillet & Rajah, 2014), 

which reported over-recruitment in the medial frontal cortex in contrast to younger 

adults, for whom this region was consistently involved in unsuccessful encoding (i.e., 

greater activity for omissions than remembered items). Interestingly, the over-

recruitment of older adults at pre-training assessment was reduced after training in 

this study. 

In all three age groups, reductions of the SM effect in medial frontal cortex 

reflected reduced activity for remembered items. Again, this finding suggests that 

medial frontal cortex was less important for successfully remembering word pairs 

after instruction and training in a visual associative memory strategy. The observation 

that older adults showed greater reductions in SM effects than children and younger 

adults in left BA 9 (ROI-based analysis on pre-defined EM regions) is surprising – as 

this finding suggests this region to be less important for successfully remembering 

word pairs after instruction and training in older adults in comparison to younger 

adults and children (see Figure 6). Investigating the training-induced change for 

remembered and omitted trials separately, the pattern (even though not reaching 

statistical significance) suggests that the age-related difference in reduction in SM 

effect is based on larger activation increases for omissions than remembered items in 

older adults in comparison to children and younger adults. As this region has been 

linked to the generation and selection of new representations and the ability to 

organize multiple pieces of information, enhancing memory for item associations, it is 

difficult to find an argument why this region should be less involved in separating 

between remembered and omitted items in older adults in comparison to children and 

younger adults. It might be that the difference between remembered and not-

remembered items in older adults does not reflect inadequate encoding, but rather 
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poor consolidation or retrieval failures (see discussion above). Future research is 

needed to investigate the specific roles of different prefrontal brain regions in 

successful memory encoding across the lifespan, including a more fine-grained 

assessment of strategy use, and an examination of training-induced changes in 

functional connectivity. 

Finally, in this study, we included confidence/imagery success ratings during 

encoding. Unfortunately, it was not possible to completely separate between brain 

activity associated with word pair encoding and brain activity associated with JOL’s 

or imagery success ratings, due to the absence of jitter between the two types of 

events. In addition, it also was not possible to analyze data as a function of confidence 

ratings in this study, due to the low number of trials in each of the three confidence 

categories. Future work should seek to overcome these limitations so that the neural 

mechanisms associated with age group differences in training-induced changes in 

judgment of learning can be examined. 

Conclusions 

This is the first age-comparative fMRI study investigating training-induced 

changes in SM effects during encoding, which refer to greater regional activity for 

associative information that is learned and retrieved successfully than information that 

is not remembered. This is also the first study investigating the impact of strategy 

instruction and practice on the SM effect. Encoding success is much less dependent 

on general age-related performance differences in the task in question, because the 

contrast compares remembered and not remembered items. We show similar SM 

effects across age groups before training, and that instruction and practice in a simple 

and effective strategy lead to similar changes in successful memory formation across 

the lifespan. These patterns extend the brain maintenance hypothesis (Lindenberger, 
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2014; Nyberg et al., 2012) to the within-person level. The reductions of the SM effect 

reflected greater activation increases for not remembered compared to remembered 

items, indicating that all age groups applied the trained strategy more systematically 

after instruction and practice. Importantly, these findings are obtained using age-

matched controls, what has not been done in related intervention studies (e.g., Jones et 

al., 2006; Kirchhoff et al., 2012; Kondo et al., 2005; Nyberg et al., 2003); the effects 

are thus intervention-specific. Training-induced reductions in the SM effect were 

primarily observed for left frontal (inferior and dorsal prefrontal) regions, which is 

sensible, given that our intervention focuses on the flexible and systematic use of an 

effective encoding strategy. 
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Table 1 

Sample characteristics 

 Training  Control  

Measures CH 

(n = 16) 

YA  

(n = 16) 

OA 

(n = 11) 

CH 

(n = 12) 

YA  

(n = 15) 

OA  

(n = 11) 

Age 11.02 

(.37) 

24.21 

(1.32) 

67.13 

(1.99) 

11.18 

(.45) 

23.88 

(1.19) 

66.33 

(2.42) 

% females 37.5% 50% 36.36% 33.33% 46.67% 45.45% 

Years of 

education 

5.25 

(.68) 

21.07 

(1.98) 

21.5 

(4.70) 

5.33 

(.49) 

21.67 

(3.91) 

23.36 

(4.57) 

Digit symbol 37.53 

(7.36) 

72.19 

(10.09) 

48.45 

(7.45) 

43.67 

(7.83) 

68.33 

(11.24) 

49.73 

(8.70) 

Vocabulary 10.56 

(4.02) 

23.05 

(2.96) 

28.81 

(2.98) 

9.25 

(3.92) 

21.75 

(4.30) 

28.98 

(2.15) 

Nr. of 

strategies at 

pretest 

1.50 

(.73) 

1.44 

(.63) 

1.64 

(.81) 

1.25 

(.45) 

1.53 

(.64) 

1.18 

(1.63) 

Note. Mean (SD). CH = children, YA = younger adults, OA = older adults. Training 

and control groups did not differ in any of the above variables.  
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Table 2 

Overview of the Study Design 

Study phase Content Session (no.) 

Covariate session I Assessment of general demographic 

information and psychometric intelligence 

1 

Covariate session II MRI simulator 

Memory questionnaires 

Visual and auditory acuity 

2 

Pre-training 

assessment 

fMRI assessment during memory encoding 

Strategy use questionnaire 

3 

Imagery Strategy 

Instruction 

Group and single instruction sessions with 

practice of word lists 

4 + 5 

Imagery Strategy 

Practice 

Several practice lists 6 + 7 

Post-training 

assessment  

fMRI assessment during memory encoding 

Strategy use questionnaire 

8 

Note. Training groups participated in all sessions, control groups performed sessions 

1-3 and 8 only.  
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Table 3.  

Number of remembered items and omissions at pre- and post-training assessments 

across age and experimental groups 

 Training  Control  

 CH YA  OA CH YA  OA  

Total number 

of trials  

144 192 112 144 192 112 

Remembered 

trials T1 

35.81 

(25%) 

70.44 

(37%) 

35.45 

(32%) 

32.58 

(23%) 

80.73 

(42%) 

35.45 

(32%) 

Omissions T1 96.94 

(67%) 

107.25 

(56%) 

68.09 

(61%) 

94.83 

(66%) 

101.20 

(53%) 

69.09 

(62%) 

Remembered 

trials T2 

72.81 

(51%) 

135.06 

(70%) 

70.27 

(63%) 

36.17 

(25%) 

90.07 

(47%) 

48.64 

(43%) 

Omissions T2 54.50 

(38%) 

42.75 

(22%) 

31.09 

(28%) 

96.75 

(67%) 

94.67 

(49%) 

56.91 

(51%) 

Note. Mean number of trials and percentage (%) for remembered and omitted trials 

before and after training across age and experimental groups. Deviations from the 

total of 100% are based on small numbers of incorrectly remembered trials, which 

were not used in the subsequent-memory analysis. CH = children. YA = younger 

adults. OA = older adults. 
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Table 4 

Clusters indicating peaks of decrease in subsequent-memory effects (R > O) from pre- 

to post-training assessments across all participants in the training groups and regions 

where the training groups showed a larger decrease in subsequent-memory effects 

than the control groups. Analyses were thresholded at a voxel-level level of p < 0.01 

and a minimum cluster size of 54 contiguous voxels.  

 Training group 

Brain area BA Z max X Y Z Nr. of Voxels 

Inferior, middle frontal Left 10, 13, 

46 

4.6 -44 44 -6 7408 

Inferior, middle, 

superior temporal 

Left 20, 21, 

37, 38 

4.75 -60 -42 -6 1281 

Inferior temporal Right 20 3.71 64 -36 -20 83 

Precuneus, parietal Left 7 3.41 -18 -80 42 128 

Cuneus, occipital Left/ 

Right 

17/18 3.23 -6 -88 18 137 

 

Middle occipital Left 18 2.94 -18 -86 18 68 

Cerebellum, HC, PHG Left n.a. 3.25 -26 -34 -8 362 

 Training > Control 

Brain area BA Z max X Y Z Nr. of Voxels 

Inferior frontal Left 45 3.21 -44 16 8 303 

Middle frontal Left 9 2.76 -44 16 26 87 

Medial frontal Left 6 2.67 -2 18 44 106 

Note. Coordinates X, Y, Z are reported in MNI space.  
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Figure captions 

Figure 1. Design of the associative memory task used in scanner.  

Figure 2. Performance changes from pre- to post-training sessions. Trained 

individuals showed larger performance gains compared to controls, independent of 

age. Percentage correct (across lists) for children, younger adults, and older adults in 

training and control groups. Pre-training performance is given in white/light gray and 

post-training performance is depicted in black/dark gray. Error bars represent standard 

errors. 

Figure 3. Reported strategies during pre- and post-training assessment across 

age. (a) trained individuals, (b) controls. Visual strategies are depicted in black, 

semantic strategies in dark gray, and shallow strategies in light gray. Trained 

individuals increased in visual strategy use across age – no changes were observed for 

the control groups.  

Figure 4. Activation changes in subsequent-memory effects from pre- to post-

training in left inferior frontal, left medial frontal, and left middle frontal regions for 

trained children, younger adults, and older adults. In general, subsequent-memory 

effects decreased as a function of training. Only in left medial frontal cortex, older 

adults showed a larger decrease in the subsequent-memory effect than children and 

younger adults. Subsequent-memory effects before training = gray bars. Subsequent-

memory effects after training = white bars. PSC = percent signal change. Error bars 

represent standard errors. 

Figure 5. Activation for remembered items [R > explicit baseline] and 

omissions [O > explicit baseline] pre- and post-training for the trained groups across 

age. Whereas reductions of SM effects in inferior and middle frontal regions reflected 
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a larger activity increase for not remembered compared to remembered word pairs 

after training, the reduction of the SM effect in medial frontal regions reflected a 

decrease in activity for remembered word pairs. Error bars represent standard errors. 

Figure 6. Changes in subsequent-memory effects from pre to post training in 

pre-defined ROIs (i.e., left BA 9, left BA44/45, left BA46, left HC, left PHG, R HC, 

R PHG) for trained children, younger adults, and older adults. Subsequent-memory 

effects decreased as a function of training in left frontal, left HC, and left PHG ROIs. 

In BA 9, older adults showed a larger decrease in the SM effect than children and 

younger adults. No significant activation changes for right HC and PHG ROIs were 

observed. SM effects before training = white bars. SM effects after training = black 

bars. PSC = percent signal change. Error bars represent standard errors of the mean. 

Figure 7. Activation for remembered items [R > explicit baseline] and 

omissions [O > explicit baseline] pre- and posttraining for the trained groups 

separately by age for pre-defined EM ROIs. L = left, R = right, BA = Brodmann area, 

HC = Hippocampus, PHG = Parahippocampal gyrus. Error bars represent standard 

errors. 

Figure 8. Activation for remembered items [R > explicit baseline] and 

omissions [O > explicit baseline] before and after training for the trained groups 

separately for children, younger adults, and older adults in the pre-specified inferior 

frontal episodic memory ROI (BA9). A non-significant pattern suggests larger 

activation increases for omissions than for remembered items in older adults, while 

the activation increases for omitted and remembered items were more comparable in 

children and younger adults. Error bars represent standard errors of the mean. 
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