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Abstract. We use the Local Optima Network model to study the struc-
ture of symmetric TSP fitness landscapes. The ‘big-valley’ hypothesis
holds that for TSP and other combinatorial problems, local optima are
not randomly distributed, instead they tend to be clustered around the
global optimum. However, a recent study has observed that, for solutions
close in evaluation to the global optimum, this structure breaks down
into multiple valleys, forming what has been called ‘multiple funnels’.
The multiple funnel concept implies that local optima are organised into
clusters, so that a particular local optimum largely belongs to a partic-
ular funnel. Our study is the first to extract and visualise local optima
networks for TSP and is based on a sampling methodology relying on the
Chained Lin-Kernighan algorithm. We confirm the existence of multiple
funnels on two selected TSP instances, finding additional funnels in a
previously studied instance. Our results suggests that transitions among
funnels are possible using operators such as ‘double-bridge’. However, for
consistently escaping sub-optimal funnels, more robust escaping mecha-
nisms are required.

1 Introduction

The structure of combinatorial fitness landscapes is known to impact the per-
formance of heuristic search algorithms. Features such as the number and distri-
bution of local optima and their basins of attraction are among the most stud-
ied. The relationship among local optima for the symmetric Traveling Salesman
Problem (TSP) under the standard 2-change neighbourhood was first analysed
in [4], where a globally convex structure was discovered. The global optimum was
found to be ‘central’ to all other local optima conforming a ‘big-valley’ struc-
ture. This is interpreted as a landscape where many local optima exists, but
they are easy to escape and the gradient, when viewed at a coarse level, leads to
the global optimum (Fig. 1). However, a more recent study has found that the
big valley structure breaks down when considering solutions near in evaluation
to the global optimum [7]. The big-valley separates into multiple valleys, con-
forming what has been called ‘multiple funnels’ in the study of energy surfaces
in chemical-physics [19]. The multi-funnel concept implies that local optima are
organised into clusters, so that a particular local optimum largely belongs to a
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Fig. 1: Depiction of the ‘big-valley’ structure.

particular funnel. The appearance of multiple funnels explains why certain it-
erated local search heuristics can quickly find high-quality solutions, but fail to
consistently find the global optimum. In a series of studies, Whitley et al. [20, 7,
21] have proposed a crossover operator (Partition Crossover), which has demon-
strated the ability to escape funnels at evaluations close to the global optimum.
A similar recombination operator [12] is used by Helsgaun [8] in the so called
LKH-solver.

This article uses the Local Optima Network (LON) model [15, 16, 14, 18] in
order to explore in more detail the structure of TSP landscapes near the global
optimum. Local optima networks compress the whole search spaces into a graph
having as vertices the local optima, and as edges transitions among them accord-
ing to a given search operator. This network-based model brings the tools from
the new science of networks [13] (e.g., metrics and visualisation) to the study of
fitness landscapes in combinatorial optimisation.

Our study considers Chained Lin-Kernighan (Chained-LK), one of the best
performing heuristic algorithms for TSP [11, 2]. Chained LK is an iterated local
search approach combining the variable depth local search of Lin and Kernighan
(LK-search) [10] with the double-bridge move [11] (a form of 4-change, depicted
in Fig. 2b) as the perturbation or ‘kick’ operator. Therefore, the proposed LON
model considers local minima according to LK-search, and transitions among
them according to the double-bridge move. Our goal is to gain a deeper under-
standing of the multi-funnel structure of the TSP under Chained-LK, which will
help in selecting and designing stronger escape mechanisms (such as Partition
Crossover [20, 21]) to avoid being trapped in a sub-optimal funnel. The main
contributions of this article are the following:

1. First study of local optima networks for TSP, including their sampling and
analysis.

2. Definition of the DLON model (distance local optima networks) and adap-
tation of the escape edges model (ELON) to TSP.

3. Network visualisation of the multi-funnel structure of TSP fitness landscapes.
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Fig. 2: Illustration of tours obtained after 2-change or double-bridge move.

2 Local Optima Networks for TSP

For a TSP instance with n cities, the search space is the set of permutations of
the n cities. The number of tours, which equals the number of permutations, is
factorial in n. The fitness function f is given by the length of the tour, which is
to be minimised. Before presenting formal definitions in Section 2.1, we briefly
describe the following notions relevant to our model.

LK-search: The well-known Lin-Kernighan heuristic is a powerful local
search algorithm. It is based on the idea of k-change moves: take the current
tour and remove k different links from it, which are then reconnected in a new
way to achieve a legal tour. A tour is considered to be ‘k-opt’ if no k-change exists
which decreases its length. Fig. 2a illustrates a 2-change move. LK applies 2, 3
and higher-order k-changes. The order of a change is not predetermined, rather
k is increased until a stopping criterion is met. Thus many kinds of k-changes
and all 3-changes are included. There are many ways to choose the stopping
criteria and the best implementations are rather involved. We use here the im-
plementation available in the Concorde software package [1], which uses do not
look bits and candidate lists.

Double-bridge move: Proposed by Martin et al. [11] as the ‘kick’ mecha-
nism in the Chained-LK heuristic, the double-bridge move (drawn in Fig. 2b)
is a type of 4-change. It consists of two improper 2-changes, each of which is a
‘bridge’ (i.e, it takes a legal, connected tour into two disconnected parts). The
combination of both bridges, must then be chosen as to produce a legal final
tour.

Bond distance: Measures the difference between two tours t1 and t2 ac-
cording to the number of edges or ‘bonds’ that differ in both tours. Specifically,
b(t1, t2) is equal to n minus the number of edges that are present in both t1 and
t2 disregarding edge direction [4].

Our approach requires defining and extracting local optima networks for TSP
instances. To construct the networks, we need to define their nodes and edges.
Nodes will be local optima according to LK-search, and two types of weighted
edges are considered: escape edges and distance edges. The escape edges are



based on the number of double-bridge moves required to escape from a local
optimum, while distance edges consider the bond distance between solutions.

Since combinatorial explosion renders the full enumeration of local optima for
TSP instances of non-trivial size impossible, we resort to sampling local optima
which are close in evaluation to the global optimum. The sampling procedure is
further described in Section 2.2.

2.1 Definitions

Definition 1. A funnel floor solution is a high quality local optimum that is
conjectured to be at the bottom of a funnel. Indeed, they were called funnel
bottom solutions in [7], and are generated running Chained-LK for a large enough
number of iterations. The set of funnel floor solutions is denoted by F .

Definition 2. A funnel basin solution is a local optimum within a funnel. Each
funnel basin solution is obtained by first locating a funnel floor, and then escaping
from the funnel floor in order to discover a nearby local optimum. In this article,
this is done using a random walk with double-bridge followed by improvement
using LK-search. The set of local optima defining the funnel basins is denoted
by B. Specifically, for some x ∈ F , y ∈ Bx ⊆ B if it can be obtained from x
after a sequence of length d of double-bridge moves followed by LK-search. Since
after a double-bridge followed by LK-search the local optimum obtained y can
be equal to the starting point x, the length d of the random walk is incremented
until y 6= x.

The set of local optima, L, is the union of the funnel floors and local optima
that define the funnel basins, L = F ∪B.

Definition 3. An escape edge is a weighted edge from a funnel floor to a local
optimum. Specifically, there is an edge ex,y of weight d between the funnel floor
point x ∈ F and the local optima y ∈ B if y can be obtained from x after a
sequence of length d of double-bridge moves followed by LK-search. No self-loops
are considered. The set of escape edges is denoted by Eesc.

Definition 4. A distance edge is a weighted edge, according to the bond dis-
tance, between any two local optima. Specifically, there is an edge ex,y of weight
d between local optima x and y ∈ L if the bond distance b(x, y) = d. The set of
distance edges between any two local optima in L is denoted by Edist.

Definition 5. The Escape Local Optima Network (ELON) is the graph
ELON = (L,Eesc) where nodes are the local optima L, and edges Eesc are
the escape edges.

Definition 6. The Distance Local Optima Network (DLON) is the graph
DLON = (L,Edist) where nodes are the local optima L, and edges Edist are the
distance edges.



Data: I , a TSP instance
Result: F , the set of tours on the funnel floors

B, the set containing the escape tours from sampled funnel floors
F ← ∅;
for i← 1 to 10, 000 do

x← chainedLK(I, stallcount = 10, 000);
if x /∈ F then

F ← F ∪ {x};
end

end

S ← mostFrequentSolutionForEachFitnessLevel(F );
B ← ∅;
for v0 ∈ S do

Bv0
← ∅;

for j ← 1 to 1, 000 do

i← 0;
repeat

i← i+ 1;
vi ← randomDoubleBridgeMove(vi−1);
v′ ← LK(vi);

until v′ 6= v0;
Bv0
← Bv0

∪ {v′};

end

B ← B ∪Bv0
;

end

Algorithm 1: TSP local optima network sampling procedure

2.2 Sampling Methodology

We apply a sampling strategy similar to that used by Hains et al. [7] where
two stages are considered. This process also resembles the one used by Iclan-
zan et al. [9] to sample the landscape of Quadratic Assignment Problem in-
stances. In the first stage, local optima of very good quality are identified which
define the funnel floors (set F defined in Section 2.1). In the second stage, ran-
dom walks are generated to escape these local optima in order to determine the
funnels’ basins (set B defined in Section 2.1). These approaches are detailed
below and through pseudocode in Algorithm 1.

The funnel floor solutions are tours obtained when Chained-LK stalls. In
practice, we determine stalling to occur when fitness does not improve for 10,000
consecutive iterations of Chained-LK. This procedure is itself repeated 10,000
times from a randomly generated initial tour and the unique tours produced are
saved in F , the set of funnel floor solutions. This procedure corresponds to the
first loop in Algorithm 1.

To determine a funnel’s basin, we identify a start point in its floor, let us call
it v0, and follow a random walk using a sequence of double bridge perturbations.
More precisely, at each step i of the random walk, a random move is performed
on vi−1, producing a tour vi. An LK-search is then applied to vi to produce a



locally optimal tour v′. If v′ is different from v0, then we have escaped from the
basin of attraction of v0. The random walk is stopped and its length i is the
escape distance. Tour v′ is saved in Bv0 , the set of tours having escaped from
v0. This escape procedure is repeated 1,000 times.

When there are many tours on the funnel floors, it is impractical to try to
escape from all of them. When Hains et al. [7] computed the funnels floors from
1,000 Chained-LK applications, they found that tours with the same fitness level
formed a connected component under 2-change. These could thus be considered
to form a plateau and they, therefore, randomly chose one tour to escape from
out of each plateau.

In our case, having performed 10,000 Chained-LK applications, we find many
more tours on the funnel floors and, furthermore, they are not all on 2-change
plateaus. Our approach selects the most frequently occurring solution within
each fitness level as a starting solution. Ties are broken at random.

3 Results

Our study considers two ‘milestone’ TSP instances: lin318 and att532 (as named
in TSPLIB [17], also listed in Table 1.5 from [3]). They are composed of 318 and
532 cities, and were first solved to optimality in 1980 and 1987, respectively. The
lin318 instance is a circuit board drilling example (i.e., it models the routing
of a numerically controlled drilling machine efficiently through a set of hole
positions), and was presented by Lin and Kernighan in their seminal paper
[10]. It remained the largest TSP instance solved to optimality for a span of
seven years in the 1980s. The att532 instance is comprised of pseudo-Euclidean
coordinates that go through the 532 largest cities of the USA. It is very well
known given the difficulty that the distances to the next node are very short at
the east coast, whereas in other regions of the USA they are very long.

Results are discussed in the following two subsections. Section 3.1 analy-
ses the sampled local optima and the bond and escape distances among them.
Section 3.2 visualises the escape and distance local optima networks.

3.1 Local Optima and Distances

For instance lin318, 4 unique funnel floor solutions were identified, each with
a different fitness level (Table 1). The global optimum was found in the over-
whelming majority, 96%, of cases. The other funnel floor solutions’ fitness is
within 0.32% of the global optimum.

When considering att532, 47 unique funnel floor solutions were identified,
distributed among 8 different fitness levels (Table 2). This is in contrast to the
20 unique solutions and 4 different fitness levels found by Hains et al. [7]. A
closer look at the data reveals that these 4 fitness levels amount to the most
frequent fitness levels in our data, comprising 99% of the solutions found. The
seldom found solutions are therefore a result of carrying out a greater number
of Chained-LK searches to sample solutions close to the global optimum.



Table 1: lin318 summary data

All Sols Fitness Levels

42029 42143 42155 42163

Unique Solutions 4 1 1 1 1

Fitness Level Freq. (%) 96.02 3.59 0.09 0.30

Colour of funnel in figures P P P P

Symbol in Fig. 4a E A

+
�

Table 2: att532 summary data

All Sols Fitness Levels

27686 27693 27703 27704 27705 27706 27708 27715

Unique Solutions 47 2 1 8 8 13 8 5 2

Fitness Level Freq. (%) 41.78 0.04 33.17 0.65 20.69 3.58 0.07 0.02

Start Point Freq. (%) 21.35 0.04 5.80 0.16 4.64 0.57 0.03 0.01

Colour of funnel in figures P P P P P P P P

Symbol in Fig. 4b E A

+
� F C

⊠ ✳

The two globally optimal solutions account for only 42% of all funnel floor
solutions found but all the fitnesses are within 0.10% of the global optimum. As
previously mentioned, for att532, the starting points we try to escape from are
the most frequent funnel floor solution within each fitness level. These make up
33% of the solutions found.

The pairwise bond distances between the starting points for both instances
are given in Fig. 3. In most cases, the pairwise distance between any two solutions
is non-trivial. For example, the bond distance between the first two best solutions
for lin318 is 37.

For att532, the smallest bond distance between start points is only 16. This
seems to be a bridgeable distance with a small number of double-bridge moves.
The starting point with fitness 27,693 only represents 0.04% of funnel floor solu-
tions. It is at distance 16 from the start point with fitness 27,686 that constitutes
21% of solutions found. These numbers suggest that there is a reasonable way
to move between these funnels, which explains why so few solutions with fitness
27,693 are found. This is corroborated by the local optima networks visualised
in Section 3.2.

To analyse the fitness distribution of local optima within funnels, let us con-
sider Figure 4. Dot plots of fitness versus bond distance to the global optimum
are presented for both instances. In addition, kernel density estimation distribu-
tions of points are provided.

Here our results match those of Hains et al. [7]. Firstly, local optima within
a funnel are correlated in fitness and distance to their own respective starting
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Fig. 3: Pairwise distances between funnel floor solutions for instances lin318 and
att532. Fitness levels are indicated on the left of each plot. In (a), instance lin318
has a single solution per fitness level. In (b), the most frequent solution is selected
for each fitness level of att532.

point. Secondly, there is little correlation between fitness of local optima near
the global optimum and their distance to it. However, for att532, the great
majority of the local optima observed by Hains et al. when using double-bridge
were below the 27,750 fitness level and a plot similar to ours was only obtained
when using 2-change instead of double-bridge. They therefore concluded that
double-bridge exacerbates the multi-funnel structure. We found instead that,
when comparing the two escape operators, it is 2-change that exacerbates the
multi-funnel structure. In other words, it is harder to escape funnels using 2-
change as compared to double-bridge.

Figure 5 gives the escape and pairwise bond distance distributions for both
instances. With a mean and mode of 1 for the escape distance, we can see that
the double-bridge move is highly effective in escaping from the starting points.

For bond distances, the distribution for all edges differs from the distribution
considering only edges between a start point and the solutions it escaped to. For
lin318, when considering all start points, the distribution roughly resembles a
step function with 2 steps which then quickly tapers off. The same distribution
can be observed when considering each start point separately (not shown here).
For att532, the bond distance distributions when considering a single start point
to the local optima within the funnel appear to be bimodal (not shown here) or
similar to the distribution when considering all start points. We intend to look
more closely at distributions within individual funnels in future work.
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Fig. 4: Dot plots and corresponding density distribution plots of the local optima
generated when escaping from funnel floors. Bond distance is computed w.r.t. to
the global optimum, or the most frequent of the two global optima in the case
of att532. The range of fitness values displayed is chosen to encompass at least
95% of points. Start points are indicated by a black symbol.

3.2 Local Optima Networks

The two local optima networks models, using escape and bond distance edges,
were extracted and visualised for the two selected TSP instances. Both models
clearly suggest a multi-cluster (multi-funnel) structure (see Figure 6 explained
below). The escape edges give a network view of the search process by Chained-
LK, while the bond distance model is more general and illustrates the distribu-
tions of local optima which are close in distance.

At the heart of network visualisation is the graph layout. We use here the
Fruchterman and Reingold’s method [6] provided by the igraph package [5] for the
R statistical language. The method is based on exploiting analogies between the
relational structure in graphs and the forces among elements in physical systems.
Specifically, considering attractive and repulsive forces by associating vertices
with balls and edges with springs. The heuristic is concerned with drawing graphs
according to some generally accepted aesthetic criteria such as a) distribute the
vertices evenly in the frame, b) minimise edge crossings, c) make edge lengths
uniform, and d) reflect inherent symmetry [6].

Figure 6 visualises the two network models (escape and distance edges) on
the two studied instances. In order the make the picture manageable in size,
sub-graphs of the whole sampled networks were selected for visualisation. The
sub-graphs include all the funnel floor solutions (drawn as squares), and all the
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Fig. 5: Escape and bond distance distributions. The most frequent escape dis-
tance is 1. The maximum escape distance is 4 on att532, but occurred only once.

solutions that we call frontier nodes (drawn in black). These frontier nodes are
those that can be attained from more than one funnel start point by the escaping
mechanisms (i.e., a sequence of double bridge moves followed by LK-Search). The
colour of the remaining nodes indicates the funnel (fitness level) membership (as
indicated in Tables 1 and 2 for lin318 and att532, respectively) with the red
colour identifying the funnel of the global optimum. For the lin318 instance,
10% of the funnel basin points were selected for visualisation. This percentage
was 5% for the larger att532 instance. All the escape edges are visualised, with
darker grey indicating edges with escape distance 1. Visualising all bond distance
edges is not feasible, so we set a threshold of 1/10 of the maximum distance to
the global optimum in the sampled points (i.e., there is an edge if the distance
between nodes is below the given threshold). This threshold was a distance of 9
for lin318 and 14 att532. Again the darker grey identifies edges with the minimum
distance.

The multi-funnel structure can be visualised in the network plots in Fig-
ure 6, which separate in clearly defined clusters of solutions. The lin318 instance
features 4 clusters, while att532 has 8 clusters. The clusters are more clearly de-
fined for the escape edges, but interestingly, the same overall structure appears
for the distance edges. It is interesting to observe that some points (drawn in
black) ‘belong’ to more than one funnel. That is, they can be reached from more
than one funnel floor by double-bridge moves followed by LK-search. Therefore,
it is possible for Chained-LK to escape some funnels, but it seems difficult for it
to consistently escape from all funnels.
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(c) att532 – Escape Edges
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(d) att532 – Distance Edges

Fig. 6: Visualisation of Local Optima Networks for lin318 (top) and att532 (bot-
tom). Both networks models, using escape and distance edges, are visualised.
Nodes are local optima and edges represent escape or distance edges (with a
set threshold), respectively. Square nodes represent solutions that belong to the
funnel floors, while circle nodes to funnel basins. The larger square nodes (in red)
are the global optima. Colours identify the different funnels (or fitness levels)
as indicated in Tables 1 and 2. The black nodes are ‘frontier’ points, i.e., points
that can be reached from more than one funnel.



An interpretation of the effectiveness of Chained-LK may be obtained when
considering the local optima networks together with the fitness levels of the start
points of each funnel, their frequency when sampling the funnel floors and the
pairwise bond distance between start points.

For lin318, the two connected funnels are the ones whose start points have
fitness 42,143 and 42,155 and were sampled 3.59% and 0.09% of the time re-
spectively. They are also the two closest start points for lin318, with a distance
of 26. For att532, as was observed in Section 3.1, start points with fitness 27,686
and 27,693 are at a distance of 16 and constitute 21.35% and 0.04% of sampled
funnel floors. They are at a bond distance of 16 to each other and their corre-
sponding funnels are linked in the local optima networks. The start point with
fitness 27,703 (5.80%) is connected to the start point with fitness 27,704 (0.16%
and distance 18). While these three observations are not sufficient to draw broad
conclusions, an initial interpretation is that ‘close enough’ start points exhibit
funnels that are linked to each other. Furthermore, when two funnels are con-
nected, it is highly probable that the search will end up in the funnel with the
funnel floor with better fitness.

The start point with fitness 27,703 is also connected to the one with fitness
27,706 (0.57% and distance 33), but through two other floor solutions (indicated
by black squares in the figure) that were not used as start points. These two floor
solutions are also of fitness 27,703 and 27,706 and are only at a bond distance
of two from the start point with the same fitness.

4 Conclusions

We have implemented a sampling procedure to extract local optima networks
for TSP instances. In particular, we studied the search space structure close
to the global optimum and confirmed the existence of multiple funnels. Our
study is the first to analyse local optima networks for TSP and provide a clear
visualisation of its multi-funnel structure. The proposed distance local optima
network model is a contribution of this article, which may find easy application
in other combinatorial optimisation problems.

Our analysis considered the well-known Chained-LK heuristic as implemented
in the Concorde software package. Chained-LK is an iterated local search ap-
proach combining LK-search with double-bridge as the perturbation or escape
operator. On two selected TSP instances, we found that while some funnels
are directly connected to other funnels via double-bridge escape moves, most
of them are not. This gives a visual insight of why Chained-LK produces sub-
optimal solutions in some runs, and justify the multiple restarts used in the
default Concorde implementation. We hypothesise that when Chained-LK pro-
duces sub-optimal solutions, it is because it gets trapped in a sub-optimal funnel
and the double-bridge escape mechanism, while generally efficient to escape local
optima, is not strong enough to escape some funnels. Future work will explore
alternative funnel-escape mechanisms such as the recently proposed Partition
Crossover [20, 21], and will study Tunneling Crossover Networks for TSP [14].
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3. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press (2007)

4. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique
for combinatorial global optimizations. Operations Research Letters 16, 101–113
(1994)

5. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006)

6. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software Practice Exper. 21(11), 1129–1164 (Nov 1991)

7. Hains, D.R., Whitley, L.D., Howe, a.E.: Revisiting the big valley search space
structure in the TSP. Journal of the Operational Research Society 62(2), 305–312
(2011)

8. Helsgaun, K.: An effective implementation of the LinKernighan traveling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (Oct 2000)

9. Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven Local Optima Network Char-
acterization of QAPLIB Instances. In: Proceedings of the 2014 Conference on Ge-
netic and Evolutionary Computation. pp. 453–460. GECCO ’14, ACM, New York,
NY, USA (2014)

10. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research 21, 498–516 (1973)

11. Martin, O., Otto, S.W., Felten, E.W.: Large-Step Markov Chains for the Traveling
Salesman Problem. Complex System 5, 299—-326 (1991)
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