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a  b  s  t  r  a  c  t

The  ornamental  plant  trade  has  been  identified  as  a key  introduction  pathway  for  plant  pathogens.  Estab-
lishing  effective  biosecurity  measures  to reduce  the  risk  of  plant  pathogen  outbreaks  in the  live plant  trade
is  therefore  important.  Management  of  invasive  pathogens  has  been  identified  as  a weakest  link public
good,  and  thus  is reliant  on the  actions  of individual  private  agents.  This  paper  therefore  provides  an anal-
ysis  of  the  impact  of  the  private  agents’  biosecurity  decisions  on pathogen  prevention  and  control  within
the  plant  trade.  We  model  the  impact  that an  infectious  disease  has  on  a plant  nursery  under  a constant
pressure  of  potentially  infected  input  plant  materials,  like  seeds  and  saplings,  where  the spread  of  the
disease  reduces  the  value  of  mature  plants.  We explore  six  scenarios  to understand  the  influence  of  three
key  bioeconomic  parameters;  the  disease’s  basic  reproductive  number,  the  loss  in value  of a  mature  plant
from acquiring  an  infection  and  the  cost-effectiveness  of  restriction.  The  results  characterise  the  disease
dynamics  within  the  nursery  and  explore  the  trade-offs  and synergies  between  the  optimal  level  of  efforts
on restriction  strategies  (actions  to  prevent  buying  infected  inputs),  and  on removal  of  infected  plants  in
the  nursery.  For  diseases  that  can be  easily  controlled,  restriction  and  removal  are  substitutable  strategies.
In contrast,  for highly  infectious  diseases,  restriction  and removal  are  often  found  to be  complementary,
provided  that  restriction  is  cost-effective  and  the  optimal  level  of removal  is  non-zero.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

. Introduction

Increases in the movement of people and traded goods as a consequence of globalisation have led to growing concerns about the threat
osed by invasive species. especially invasive pathogens of humans, plants and animals (e.g. Anderson et al., 2004; Waage and Mumford,
008; Perrings et al., 2010; Hulme, 2014; Dalmazzone and Giaccaria, 2014). Recent disease outbreaks in plants, such as the Chalara fungus
Hymenoscyphus pseudoalbidus)  affecting ash trees across Europe (Pautasso et al., 2013) and the oomycete Phytophthora ramorum affecting

any plants including larch in Europe (Brasier and Webber, 2010) and oaks in the US (Rizzo et al., 2002), have focused attention on the
olicy options to reduce the risks of similar plant disease outbreaks occurring in the future, and the management options to reduce damage
rom newly established pathogen populations. These disease outbreaks have also raised concerns about patterns of plant trade, which has
een identified as a key introduction pathway for invasive pathogens (Santini et al., 2013), and on the need for a more prominent role of
he private sector in biosecurity practices to mitigate existing risk (Liebhhold et al., 2012). Understanding the economic impacts of damage
nd mitigation is essential for determining optimal policy and management options for invasive pathogens (Stohlgren and Schnase, 2006).
The body of the literature that combines invasion ecology with economic analysis to deal with these issues has drastically increased
n the last decade (for an overview see Olson, 2006; Marbuah et al., 2014). Bioeconomic studies explore the management problem from a
entral authority perspective, focusing on the potential social welfare benefits from policy intervention to limit the risk of invasive species
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amages using instruments that include port inspections, quarantine and import tariffs (McAusland and Costello, 2004; Mérel and Carter,
008), import risk screening programmes (Keller and Springborn, 2014; Springborn et al., 2015), the use of public funds to detect, eradicate
nd/or control established invaders, and habitat restoration (e.g. Olson and Roy, 2002; Mehta et al., 2007; Sims and Finnoff, 2013). Other
tudies have examined the trade-off between preventive measures before the arrival and control measures after the invader is known to
e in the country in order to determine the optimal allocation of limited public resources between these two strategies (e.g. Leung et al.,
002, 2005; Finnoff et al., 2005, 2007; Haight and Polasky, 2010; Sanchirico et al., 2010) Here we add to this literature by adopting a private
ector perspective, in order to understand the biosecurity vulnerability and management incentives affecting individual businesses.

One of the challenges for developing policy to reduce the risk of outbreaks of pathogens is the fact that the potential routes of invasion
re not only diverse, but also that they are controlled by a mixture of public and private agents. Trading decisions made by private decision-
akers may  have significant implications for public interest at a regional or national level, but the public costs of an outbreak are likely

o far exceed the costs experienced by any one private business, and a privately optimal trading decision is very unlikely to match the
ublicly optimal one due to potential conflicting interests (Perrings et al., 2005; Mills et al., 2011). Effective control of the risk posed by

nvasive pest and diseases has been defined as a ‘weakest-link’ public good (e.g. Perrings et al., 2002; Burnett, 2005). Therefore, the risk of
utbreak can be in the hands of a single private firm in the trading network. This can limit the level of success of decentralised biosecurity
fforts, although it may  also allow the firm to take a leadership role, creating incentives for other firms to take action (Hennessy, 2008).

This paper studies the relationship between prevention and control strategies in the context of plant trade. We  take a single nursery
erspective in order to understand the biosecurity vulnerability and incentives affecting private firms, that can inform subsequent analysis
n networks and policy development. We  develop a simple bioeconomic model of a private nursery owner who buys in, grows and sells
n plants in the face of the threats posed by an infectious pathogen. The management options available to the nursery owner are some
ombination of (1) restriction, i.e. prevention measures to reduce the number of infected plant materials coming from input sources (for
xample, inspecting inputs and/or investigating and discriminating input suppliers based on perceived cleanliness) and (2) removal, i.e.
aking out infected plants within the nursery. Other means of management like cleanliness and fungicide use are assumed to at constant
ptimal levels.

Prior bioeconomic research on the plant trade has focused on its role as a significant pathway to the introduction of potentially exotic
nvasive plants, exploring the use of taxes or annual license fee to reduce this risk and cover the expected environmental damages (Knowler
nd Barbier, 2005; Barbier et al., 2011). However, implementing these market-based instruments is challenging due to the lack of support
mong stakeholders in the industry (Barbier et al., 2013; Touza et al., 2014). In this paper, we  follow current research on private biosecurity
esponses to livestock diseases, where disease risk does not only depend on agents’ choices but also is characterised by an underlying
pidemiological dynamics (Horan et al., 2010). In this framework, (Horan and Fenichel, 2007) are concerned on the management problem
haracterised by livestock-wildlife interactions in disease transmission; and (Gramig and Horan, 2011) studied the role of government
olicies as regular testing on encouraging farmers’ biosecurity investments. More recently, (Horan et al., 2015) focused on assessing whether
rade always increase risk or whether it can act as a disease management mechanism.

Our focus, however, is the threat associated with private trading decisions, as infected goods can be bought in and sold on. We contribute
o the above work by focusing on plant trade, and addressing the role of both private preventing and controlling behaviour to limit disease
ransmission risk characterised by epidemiological dynamics. Thus, we examine the potential trade-offs and synergies between these

anagement decisions when the nursery owner’s objective is to minimise the expected private costs from infection management and
evenue losses associated with the reduced value of infected plants. We  find that if the disease spreads faster than the ability to control the
isease, removal and restriction complement each other whereas if the disease is controllable, removal and restriction become substitutes.

. Model derivation

.1. Disease dynamics

We  consider a plant nursery with a nursery owner who  constantly buys plant material, grows it and sells it on when the plant becomes
ature (i.e. reaches a target age). A disease is introduced within the input plant material and spreads within the nursery. For simplicity

nd generality, we assume that the plant population is split into two classes, susceptible plants (S) and infected plants (I). Infected plants
an infect susceptible plants, and once infected a plant remains infected for the rest of its time in the nursery; there is no recovery from
he infection.1 The consequence of infection for the nursery owner is that infection alters (assumed here to reduce) the net price obtained
rom selling of a mature plant.

To combat the spread of the infection within the nursery, the nursery owner has two different control measures. The owner can invest
i) in restriction to reduce the proportion of infected inputs (be it from inspecting inputs and rejecting infected plants or by selecting
uppliers with less infected material); and (ii) in the removal of infected plants within the nursery. Removal reduces the time an infected
lant stays in the nursery, avoiding additional secondary invasions, but provides no revenue.

Schematically, the plant-disease dynamics can be described as (see Fig. 1):

Change in S = Input of S − Output of S − Disease Transmission,
Change in I = Input of I − Output of I − Removal of I + Disease Transmission.
For simplicity, we assume that the stock of plants at the nursery is fixed, N, which may  mean for example that the nursery is always
ull (this is a simplifying assumption that is not necessarily realistic; we address this in Section 4). To do this, we  set Total Input = Total
utput + Removal, where Output of S = ıS and Output of I = ıI, where ı is the rate of plants become mature and sold off (i.e. plants stay

1 Although there is no recovery, infected plants can leave the system via being sold on or being removed and be replaced by a susceptible plant. This means there is some
ind  of pseudo-recovery, meaning the system behaves more like a classic SIS system than SI.
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Fig. 1. A transfer diagram representing the disease dynamics within the nursery.

or an expected time of ı−1 in the absence of removal).2 This means instantaneous replacement of any removed plant is assumed; when
omething is either sold or removed by control, it is immediately replaced to keep the stock at nursery constant. We  also set removal
s proportional to the infected plant stock, i.e. removal of I = uremI, where urem is removal control effort (with units of removal effort per
nfected plant per unit time). We  will assume that urem is bounded between 0 and uremmax, the maximum possible effort spent on removal.
ncorporating this, we have:

Total Input = ı(S + I) + uremI. (1)

This input is split between susceptible and infected plants; p(uins) is the proportion of plant inputs that are infected (as a function of
estriction effort per unit time uins, which is a control variable) and thus (1 − p(uins)) is the proportion of plant inputs that are susceptible.

Incorporating the control measures into standard SI equations (Kermack and McKendrick, 1927; Anderson and May, 1991; Britton,
003), and assuming density dependent transmission (ˇSI), we get:

dS

dt
= (1 − p(uins))(ı(S + I) + uremI) − ıS − ˇSI, (2)

dI

dt
= p(uins)(ı(S + I) + uremI) − ıI − uremI + ˇSI. (3)

Given the assumption of constant total plant stock at the nursery (S + I = N), we can reduce the system down to one equation by substi-
ution S = N − I. We  can also rescale the infected population by the total population and consider disease prevalence, i = I/N, the proportion
f infected plants in the population (0 ≤ i ≤ 1).

Then we get:

di

dt
= 1

N

dI

dt
= p(uins)(ı + uremi) − ıi − uremi + ˇN(1 − i)i. (4)

Furthermore, we rescale time by ı−1, the expected time a susceptible plant stays in the nursery. Consequently, �(=ıt) is the number of
enerations. Thus:

di

d�
= p(uins)(1 + ûremi) − i − ûremi + R0(1 − i)i, (5)

here ûrem = uremı−1, the removal effort per plant generation (which is bounded above by ûremmax = uremmaxı−1), and R0 = ˇNı−1, the basic
eproductive number, the expected number of secondary infections from a single infected plant over the lifespan of the infected plant in
he nursery in an otherwise wholly susceptible plant stock. The basic reproductive number is fundamental to whether a disease will spread
nd is discussed in Section 3.

As mentioned previously, the proportion of plants brought into the nursery being infected (p(uins)) is a function of restriction (uins). We
ssume that the proportion of infected plant inputs has the following properties:

p(uins) is a continuously differentiable function of the restriction effort uins.
With no restriction of plant inputs (u = 0), some proportion of infected plants, a, will enter the nursery, i.e. p(0) = a where a ∈ (0, 1].
ins
With any finite restriction effort, some proportion of infected plant will enter the nursery, i.e. p(uins) > 0 for all finite uins. This means
that it is not possible to completely stop infected inputs from arriving no matter how high the level of effort, be it from the difficulty to
recognise asypmtomatic infected inputs, or machine and human error.

2 Another approach is to have assume that infected plants stay longer in the nursery due to slower growth. However, this approach would ultimately lead to the same
eduction in revenue, since revenue is price × output. Consequently, the only real difference would be that different output rates would lead to a more complex replacement
erm.
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ig. 2. Proportion of infected plant inputs, p(uins), where p(uins) = (a − b)exp(−duins) + b with a = 0.2, b = 0 and various of values of d. The solid lines are values used in Scenarios
ound  in Section 3.

For all restriction efforts, increasing restriction effort reduces the proportion of infected plant entering the nursery, i.e. p(uins) is a
monotonically decreasing function of uins (equivalently, dp

duins
≤ 0 everywhere).

Any function that is (a) continuous, (b) bounded below (by zero in this case) and (c) monotonically decreasing, must converge to some
imit as uins goes to infinity. We  denote this limit b, the proportion of inputs that are infected when unlimited restriction effort is used,

here b ∈ [0, a]. A simple candidate that satisfies all of these characteristics is p(uins) = (a − b) exp(−duins) + b, is plotted in Fig. 2 for various
alues of d, where d can be interpreted as the effort-effectiveness of the restriction measures, i.e. the reduction in the proportion of infected
lant inputs per unit of restriction effort.

.2. Bioeconomic model

We  consider a price-taking representative nursery owner who  seeks to maximise profit, faced with the impact of an infectious plant
isease. In our model, two types of outputs are taken into account: fully matured susceptible and infected plants with PS and PI representing
he unit net price of those outputs, respectively.3 We  assume that PI < PS since the infection would likely decrease the plants value when

ature and could incur higher production costs.4 The dynamics of the proportion of infected plants within the nursery is given by Eq.
5). In addition, we assume that disease symptoms become more apparent as infected plants mature. This, together with an assumption
f a regime of inspections within the nursery (inspection regime is independent of the state of the nursery, i.e. a constant cost and thus
an be ignored), leads to the nursery owner having good knowledge of which plants are infected and so can act accordingly if desired. All
he mature plants sold, or those subject to removal control, are immediately replaced given a constant price Pin of plant inputs. This is
onsistent with our earlier assumption of constant stock within the nursery.

We also consider the costs of removing infected plants and undertaking restrictions measures to prevent buying infected input plant
aterial. The cost of removing infected plants should increase both with the number of infected plants and with the removing control

ffort, urem. Consequently, we will assume for simplicity that the cost of removing infected plant is linearly dependent on the number of
nfected plants and to prevent the unfeasible case of unbounded removal control effort, we will set a maximal value of removal control
ffort of uremmax. Similarly, the cost of the restriction regime is proportional to the restriction effort uins, assumed to be dominated by fixed
osts and thus is independent from the level of removal effort and number of infected plants (i.e. there is no additional cost from restricting
easures when buying input material to replace the removed infected plants).
The management decision problem is to maximise the present value profits by selecting the level of control in restriction and removal

easures over the time horizon T and is characterised by the optimising equation:

max
uins,urem

Profit =
∫ T

0

Discounting︷︸︸︷
e−rt (

Revenue from selling S︷︸︸︷
PSıS +

Revenue from selling I︷︸︸︷
PIıI −

Purchase of replacement stock︷  ︸︸  ︷
Pin(ıN + uremI) −

Cost of removing︷ ︸︸  ︷
cremuremI −

Cost of restriction︷  ︸︸  ︷
cinsuins )dt (6)

ubject to Eqs. (2) and (3) where urem ∈ [0, uremmax] and uins ≥ 0, and where r is the discount rate. Eq. (6) is very amenable to analytic
echniques around static solutions if we focus on the terms within the brackets. This means ignoring the discounting terms and the effects
round terminal and initial conditions by assuming the terminal time is large enough for dynamics solution to have converged to the
tatic solution. These static solutions will be the focus of this paper. Appendix C demonstrates that taking the Hamiltonian approach with
ptimal conditions used in much of the economic literature (using Pontryagin’s maximum principle Pontryagin, 1987) and then assume
onstant controls, will arrive at the same optimality conditions, perturbed by a term proportional to the discount rate (which is rescaled

o r̂ = r

ı
). This discounting perturbation should be negligibly small since plant nurseries usually keep plants for a few months, possibly up

o a couple of years.

3 We assume a fixed price for plant outputs and inputs for simplicity. However, it has been suggested that nurseries work under monopolistic competition (Barbier et al.,
011).
4 A few diseases can be beneficial, e.g. mild infestations of Botrytis cinerea on grapes results in noble rot, which is desirable for dessert wines; in such cases where PI > PS ,

he  optimal control is always to do nothing, which is trivial.
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Taking the static problem, and rescaling parameters and variables in (6) as for (5), we  get:

max
ûins,ûrem

PS(1 − i) + PIi − Pin(1 + ûremi) − cremûremi − ûins (7)

ubject to Eq. (5) where ûrem = uremı−1 ∈ [0, ûremmax] (as before), ûremmax = uremmaxı−1 and ûins = cinsuins(ıN)−1).
Note that uins has been rescaled to ûins, which now represents restriction control costs (with units of restriction cost per plant in nursery

er unit time). Thus, we need to define the proportion of infected inputs as a function of this rescaled restriction control cost. For the
ase p(uins) = (a − b) exp(−duins) + b, as p̂(ûins) = (a − b) exp(−d̂ûins) + b where d̂ = dıNc−1

ins
such that p̂(ûins) = p(uins). Here d̂  represents the

ost-effectiveness of restriction efforts, i.e. the reduction in the proportion of infected inputs per dollar invested in restricting measures.
Given some terms are constant and thus have no influence on the optimised solution, we can simplify slightly and gather terms in the

bjective function (7) to arrive at

max
ûins,ûrem

⎛
⎜⎝

revenue lost from infecteds︷  ︸︸  ︷
PI − PS −

costs of removing and replacing infecteds︷  ︸︸  ︷
(Pin + crem)ûrem

⎞
⎟⎠ i −

restriction costs︷︸︸︷
ûins. (8)

Eq. (8) can be simplified further by setting L : = PS − PI and C : = Pin + crem. Therefore, L is the loss incurred from selling a mature infected
lant instead of a mature susceptible plant, whereas C is the total cost of removing which includes both the expenses associated with the
emoval and replacement of an infected plant. Using this notation, it becomes clear that the nursery owner management problem consists
f minimising the loss in revenue due to selling infected plants and the costs of management (removal and restriction). To simplify notation
urther, we will henceforth remove all the hats (i.e. set ûrem as urem, ûins as uins, p̂(ûins) as p(uins) and d̂ as d). Consequently, the nursery

anagement decision is to choose between the two  control strategies to minimise these costs of the infection,

min
uins,urem

Q := (L + Curem)i + uins (9)

ubject to

di

d�
= p(uins)(1 + uremi) − i − uremi + R0(1 − i)i, (10)

here uins ≥ 0 and urem ∈ [0, uremmax].

.3. Analysis

We  start the analysis of the system (9) and (10) by looking at the long term disease dynamics for a given constant control regime. We
ompare the case where restriction is perfect, i.e. all plant inputs are susceptible (p(uins) = 0) with a case where restriction is imperfect,
.e. some plant inputs are infected (p(uins) > 0). Following this, we  derive the necessary conditions describing optimal level of effort in
estriction and removal strategies, using the equilibrium found in Section 3.1.2. Subsequently, we demonstrate some of the theoretical
esults with numerical solutions. For simplicity, we  will focus on exploring how the optimal level of management changes with respect to
hanges in key parameters: the basic reproductive number (R0), the loss in revenue from selling an infected mature plant (L) and the cost-
ffectiveness (d) (the decay in the proportion of infected plant inputs per dollar spent in restriction efforts) and keep all other parameters
xed. This means, as a baseline, we assume that (i) the background level of infection within the input plant material is a = 0.2, so the disease

s widespread within the traded plant material; (ii) it is possible to restrict all infected inputs with unlimited restriction b = 0, and (iii) the
ost of removing and replacing an infected is set at C = 10. The nursery’s maximum level of effort on removal is assumed to take any value
p to uremmax = 6.

For the basic reproductive number, we will consider two  cases, R0 = 0.5 (i.e. the disease cannot spread within the nursery, Scenario
) and R0 = 5 (i.e. the disease spreads fast within the nursery, Scenario 2). Although the value of R0 will depend on the characteristics of
he particular disease and the plant, given that established human diseases can have values up to the mid  teens (measles has a value of
0 = 12–18) and that many human diseases have basic reproductive numbers in the realms of 5 (Anderson and May, 1991), values of R0
ave rarely been found in plants diseases. Even though, one study has found that R0 is of the order of 50 for wheat stripe rust in large wheat
elds (Mikaberidze et al., 2014). Moreover, the values of R0 is a factor that depends not only on disease traits, but also on the properties of
he nursery. For example, actions like the routine application of fungicides, the routine cleaning of equipment or the arranging the nursery
o limit contact between plants could lower R0. Consequently, one could consider Scenario 1 as the case where the nursery has effective
leanliness whereas Scenario 2 is where there is a lack of effective cleanliness.

For the loss of revenue from selling an infected plant, we  consider a value of L = 10 as our baseline, which implies that the costs of
emoval are the same as the losses made from selling an infected plant; this would be compared to scenarios with smaller values for L, in
articular, in Scenario 1b, L = 5 and in Scenario 2b, L = 1. It is reasonable to assume that smaller values of L would correspond to situations
here the diseased plants have superficial damage and/or there are secondary markets for infected plant outputs with little difference

n the net price of healthy mature plants. Higher values of L correspond to diseases that have a large impact on the net price of a highly
aluable plant, without an effective secondary market for infected plants. In particular, plants with that take a long time to mature or
espoke plants sold to the landscape sector tend to sell for higher prices and thus prone to large losses from infection.

Lastly, for the cost-effectiveness parameter, we  consider d = 1 as the baseline. d = 1 corresponds with a (1 − exp −1) × 100%(≈63%) reduc-
ion in the proportion of infected plants coming into the nursery (p(uins)) with an additional unit in restriction (solid red line in Fig. 2). For

omparison, we assume d = 0.3 for scenarios where the disease is costly to restrict (Scenario 1c and 2c). Using d = 0.3 corresponds with a
1 − exp −0.3) × 100%(≈26%) reduction in p(uins) when the restriction costs increase by one unit (solid blue line in Fig. 2). Traits of systems
here d is large are where it is easy to detect infected plant inputs, because either the inputs have symptoms that can be spotted by eye or

here exist diagnostic technology that is cheap, quick and easy to use. On the other hand, traits of systems where d is small are measures
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Table 1
The Scenarios and their key results.

Scenario R0 L d ↓p Optimal result

1a 0.5 10 1 63% Maximum removal with restriction
1b  0.5 5 1 63% No removal with restriction
1c  0.5 10 0.3 26% Maximum removal, no restriction
2a  5 10 1 63% ‘Do nothing’ if uremmax � 3.5, else maximum removal with restriction
2b  5 1 1 63% ‘Do nothing’ is optimal everywhere
2c  5 10 0.3 26% ‘Do nothing’ if uremmax � 4.75, else maximum removal with restriction

Here, ‘↓p’ is the reduction of infected inputs from an increase in costs of restriction in one unit (i.e. (1− exp(−d)) × 100 % rounded to the nearest percentage point). ‘Do nothing’
means zero removal and zero restriction.

Fig. 3. Perfect restriction (p = 0). (a) If Rrem
0 = R0

1+urem
> 1, then the prevalence equation is negative for all positive prevalence. There is one non-negative steady state, i* = 0,

which  is stable. then the prevalence equation is a form of logistic growth. There are two steady states (where di
d�

), i* = 0 and i∗ = 1 − 1
Rrem . i = 0 is unstable and that for the
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egion between i = 0 and i = 1 − 1
Rrem

0
, di

d�
> 0 and thus disease prevalence will increase over time (represented by the arrow at the top). (b) If Rrem

0 < 1, then the prevalence

quation is negative for all positive prevalence. There is one non-negative steady state, i* = 0, which is stable. Note that when urem = 0, Rrem
0 = R0.

hat require a lot of labour, time or machinery to detect infected plant inputs. We  suspect that this is often true for bacteria, viruses and
uch with no clear symptoms in infected inputs, which need expensive and potentially time-consuming tests to detect infected inputs.

Putting this all together, we have six different cases, three of which are where the disease is not particular infectious (which will
ollectively be known as Scenario 1) and three of which consider a highly infectious disease (collectively known as Scenario 2). A summary
f all six Scenarios, including results, is in Table 1.

. Results

.1. Long term disease dynamics

.1.1. Perfect restriction (p(uins) = 0)
In the absence of the removal of infected plants (i.e. urem = 0), we have two cases: (1) R0 < 1: In this case, on average, a single infected plant

nfects less than one susceptible plant over the lifetime of the infected plant and hence the disease will die out eventually. Consequently,
he only stable state is the disease-free state and thus the disease cannot become endemic (i* = 0) (Fig. 3(b)). (2) R0 > 1: Here, a single
nfected plant infects more than one susceptible over the lifetime of the infection and hence the disease will spread out from any single
ntroduction. Hence, the only stable steady state is the endemic steady state i∗ = 1 − 1

R0
and thus any introduction will result in the disease

eing endemic (Fig. 3(a)).
In the presence of the removal of infected plants (i.e. urem > 0), the results are similar to the absence of removal, except the threshold

etween a disease-free nursery and an endemic disease in the nursery is based on value of Rrem
0 = R0

1+urem
. For Rrem

0 > 1, for any introduction

f disease, the disease will invade and approach the steady state i∗ = 1 − 1
Rrem

0
(Fig. 3(a)). For Rrem

0 < 1, the disease will not become endemic

rom any single introduction (Fig. 3(b)).
Now, for urem > 0, we have that Rrem

0 < R0. Thus, the disease will find it harder to survive as infected plants have less time in the nursery
o infect other plants because of removal. In particular, if the removal effort (urem) is sufficiently large (urem > R0 − 1), we can reduce Rrem

0
elow 1 and consequently rid the nursery of the disease in the long run.

.1.2. Imperfect restriction (p(uins) = p > 0)
With imperfect restriction, the disease will always persist in the nursery plant stock to some level (Fig. 4). There is always only one

teady state that is non-negative,

i∗ = R0 − 1 − (1 − p)urem +
√

(R0 − 1 − (1 − p)urem)2 + 4pR0

2R0
, (11)

nd it is always stable. The lack of a disease-free steady state is due to the constant inflow of infected plants into the system. In particular,
di

d� = p > 0 at i = 0 and thus disease prevalence will always increase when starting with a disease-free nursery.

Despite the disease always persisting in the nursery, we wish to distinguish between two  cases. If Rp
0 = R0

1+urem(1−p) > 1 (Fig. 4(a)),

he disease spreads through the plant stock like before. Notice that R0 > Rp
0 > Rrem

0 . This is because the removal control is only effective
1 − p) × 100% of the time, since p × 100% of the time in the removing infected is replaced by another infected. In particular, if p = 0, Rp

0 = Rrem
0 ,



A.M. Bate et al. / Ecological Modelling 334 (2016) 27–43 33

Fig. 4. Imperfect restriction (p > 0). (a) Rp
0 = R0

1+urem(1−p) > 1 and (b) Rp
0 = R0

1+urem(1−p) < 1. For both figures have only one steady state that is stable; there is no disease-free
steady  state unlike the case with p = 0.

Table 2
Summary of constant control.

Endemic Disease-free

Perfect restriction, no removal R0 > 1 R0 < 1
Perfect restriction with removal Rrem > 1 Rrem < 1
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0 0
Imperfect restriction Always Never

Here, Rrem
0 = R0

1+urem
.

hereas for p = 1, Rp
0 = R0. Consequently, imperfect restriction undermines the removal control. In particular, if Rrem

0 > 1, the disease would

ersist without any infected inputs (as shown in the previous subsection for perfect restriction). If R0
1+urem(1−p) < 1 (Fig. 4(b)); the disease

oes not spread effectively within the nursery and instead its persistence in the nursery is dependent on constant introduction of infected
lant inputs into the nursery.

The disease dynamics for the imperfect restriction are essentially logistic growth with an additional constant introduction of infected
lants. In particular, Fig. 4(a) can be seen as a shifted and transformed version of the logistic growth in Fig. 3(a), which results in the loss of
he disease-free steady state and an increase in the endemic steady state. Likewise, Fig. 4(b) can be seen as a shifted version of the ‘negative
ogistic growth’ in Fig. 3(b), where the disease-free steady state becomes an endemic steady state.

Table 2 summarises the results about when the disease is endemic in the nursery for both the perfect and imperfect restriction.

.2. Optimal management: Analytical results

Working with the prevalence steady state, we seek to find the optimal combination of removal and restriction, urem and uins that
inimises the costs of the plant disease at the nursery:

Q = (L + Curem)i∗ + uins = (L + Curem)
M +

√
M2 + 4R0p(uins)

2R0
+ uins (12)

here M(uins, urem) = R0 − 1 − (1 − p(uins))urem. Note, M is fundamentally linked with Rp
0 with equivalent threshold properties: M = 0 corre-

ponds with Rp
0 = 1, M > 0 corresponds with Rp

0 > 1 and M < 0 corresponds with Rp
0 < 1.

To find the combination of urem and uins that minimise Q, we need to consider the partial derivatives of Q to find internal and boundary
inima. When optimal prevention and control policies are interior they satisfy the first order conditions:

∂Q

∂urem
= MCrem − MBrem = 0 (13)

∂Q

∂uins

= MCins − MBins = 0 (14)

here

MBrem = (L + Curem)(1 − p(uins))
2R0

(
1 + M√

M2 + 4R0p(uins)

)

MCrem = C

2R0

(
M +

√
M2 + 4R0p(uins)

)

MBins = −
(L + Curem)

∂p(uins)
∂uins

2R0

(
urem + Murem + 2R0√

M2 + 4R0p(uins)

)

MCins = 1

As expected, Eq. (13) (Eq. (14)) requires a nursery owner to allocate resources to removal (restriction) until the last dollar spent on
emoval (restriction) equals the marginal benefits gained in terms of reduction in infection costs. The analysis of the properties of local
nd global minima for removal (Eq. (13)) and restriction (Eq. (14)), can be found in Appendices A and B, respectively.
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Looking at Eqs. (13) and (14) and incorporating the results found in Appendices A and B, we  have the following:

With respect to removal, if MBrem>MCrem at urem = 0 then MBrem>MCrem for all urem and thus urem = uremmax is the global minimum with
respect to urem.
If  MBrem<MCrem at urem = uremmax then MBrem<MCrem for all admissible urem and thus urem = 0, i.e. no removal effort, is the global minimum
with respect to urem.
The only other case with respect to urem is that there exists a value of urem ∈ (0, uremmax) such that MBrem =MCrem, and this internal solution
is a local maximum. Both urem = 0 and urem = uremmax are local minima with respect to urem. One of these will be the global minimum with
respect to urem and direct comparison of the values of Q at these local minima is required.
With respect to restriction, if MBins<MCins at uins = 0, then MBins<MCins for all uins > 0 and thus Q is minimised at uins = 0, i.e. no restriction
is optimal.
Conversely, if MBins>MCins for uins = 0 (for fixed urem), then there is a value of uins > 0 such that MBins =MCins (i.e. a level of restriction where
the marginal benefit is equal to the marginal cost), and this value is the global minimum with respect to uins, i.e. moderate restriction is
optimal.

One can analyse whether removal and restriction work together as complements or as substitutes by analysing ∂2
Q

∂uins∂urem
. For comple-

ments, ∂2
Q

∂uins∂urem
< 0 (since Q represents costs, not profit or utility) and ∂2

Q
∂uins∂urem

> 0 for substitutes. The expression for ∂2
Q

∂uins∂urem
is

complex and can be either sign. In particular, if M and R0 are large and urem is zero, then ∂2
Q

∂uins∂urem
< 0 and thus restriction and removal

are complements; whereas, if urem is large and thus M is large and negative, ∂2
Q

∂uins∂urem
> 0, making restriction and removal substitutes.

From this and by looking at Eqs. (13) and (14), we can establish some rules of thumb. Firstly, by looking at Eq. (14), we  can see that
ncreasing L and/or C, will increase the marginal benefits in damages avoided and thus generally results in higher restriction (in particular,
t never leads to lower levels of restriction). Secondly, looking at Eq. (13), we  can see that increasing L and C proportionally results in no
hange in whether urem = 0 or urem = uremmax are optimal. Consequently, the values of L and C themselves have no impact on the optimal
trategy for removal, only the ratio between L and C (in other words, the nursery owner would apply the same effort if losses for an infected
lant were $1 and removal costs $1 as $10 losses with $10 removal costs, it is just a matter of scale). This is not the case for uins, since both,
evenue losses and removal costs are compared with the cost of restriction.

The effects of R0 and the parameters in p(uins) on Eqs. (13) and (14) are not straightforward, partly because they are also included within

, although the presence of ∂p(uins)
∂uins

in MBins suggests that increasing the cost-effectiveness of restriction, d, increases MBins around uins = 0,

aking restriction measures more likely.

.3. Optimal management: numerical solutions

Table 1 provides a summary of the results for all the scenarios analysed.

.3.1. Scenario 1: low infectiousness
Scenario 1 represents cases of diseases that would not persist in the nursery without the constant introduction of infected plant materials.

irst we will consider the baseline case where L = 10 and d = 1 (Scenario 1a), before focusing on the effects a reduction in L (to L = 5) has on
he optimal solution (Scenario 1b) and then consider the effect of reducing the effectiveness per dollar in restriction effort d to 0.3 (Scenario
c).

In Scenario 1a (Fig. 5(a)), we have that the marginal benefit of removal is always greater than the marginal cost

since ∂Q
∂urem

< 0 at urem = 0
)

. Consequently, the optimal removal is maximum removal urem = uremmax. This is to be expected, since remov-

ng an infected plant prevents not only losses from that infected plants (which are assumed to be equal to the removal cost, L = C) but
lso losses from secondary infections. Given that R0 > p(uins) this additional loss from secondary infections is considerably greater than the
otential loss that could result from the possibility of buying infected inputs when replacing plants that were subject to removal.

In Fig. 5(a) and all other contour plots, the optimal level of restriction is determined by the line MBins=MCins. For Scenario 1a (Fig. 5(a)),
ith no removal effort, the optimal level of restriction is around uins = 1.2. As the nursery increases its capacity to remove infected plants,

t slowly reduces the optimal level of restriction.
Next, we consider the case where the revenue losses from infection are considerably lower (Scenario 1b, Fig. 5(b)). Reducing the revenue

osses from infection from L = 10 to L = 5 has made removal less viable. It is better to leave an infected plant in the nursery, because the
osts of removing and replacing an infected plant is too expensive relative to the revenue loss associated to its lower net price.

Now, in contrast to Scenario 1a, Scenario 1c (Fig. 5(c)) simulates a situation where restriction is more costly. This is represented
y decreasing d from 1 to 0.3 and consequently spending an extra unit in restriction results in a reduction in infected inputs of
1 − exp −0.3) * 100%(≈26%), considerably worse than the 63% in Scenario 1a. This decrease in d has shifted the optimal restriction line
here MBins=MCins to the left, in this case the line is now to the left of the y-axis and thus beyond the realms of reality, and consequently

estriction has become inviable. Thus the optimal strategy in Scenario 1c is maximum removal with no restriction (Fig. 5(c)).

.3.2. Scenario 2: high infectiousness
Increasing the basic reproduction number from R0 = 0.5 (Scenario 1) to R0 = 5 (Scenario 2) increases the complexity of the results.

When a disease is highly infectious, any small introduction of infected plants will spread the disease through the nursery quickly.

onsequently, investing in restriction does not prevent the disease going through the plants growing in the nursery. However, restriction
oes have a mild effect on disease prevalence when prevalence in the nursery is high as the ‘cleaner’ inputted plants that replace those

eaving the nursery will have a mild rinsing effect. Thus, without removal effort, restriction is often not viable (i.e. no restriction is optimal)
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Fig. 5. Contour plots of Q with respect to both removal and restriction for (a) Scenario 1a, (b) Scenario 1b and (c) Scenario 1c. Red regions are the regions of lowest costs
whereas blue regions signify highest costs. The black solid line represents MBins=MCins (there are no lines for removal in this Scenario). Black dots are local minima, white
dots  are local maxima and grey dots are saddle points (points on the right boundary are local maxima/saddle point if we  limit u to regions in these figures). R0, L and d
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re  given in Table 1. Other parameters: C = 10, a = 0.2 and b = 0. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this
rticle.)

hen the disease is highly infectious. This is particularly the case here when contrasting the viable restriction in Scenario 1a (Fig. 5(a)
here R0 = 0.5) and the inviable restriction in Scenario 2a (Fig. 6(a)) when there is no removal.

In Scenario 2a (Fig. 6(a)) there are up to two local minima. We  know from the analytical results that optimal removal is either urem = 0
r urem = uremmax. Consequently we can argue about the importance of uremmax by varying urem = uremmax in the contour plots, following the
Bins=MCins line. If the nursery capacity to remove is small, in particular such that uremmax is below the intersection of the MBins=MCins

nd MBrem=MCrem curves, then there is only one local (and thus global) minimum, which is to do nothing and let the disease take its
ourse. If uremmax is beyond the intersection, then there are two  local minima, the aforementioned ‘do nothing’ and urem = uremmax with the
orresponding restriction level given by MBins=MCins. The global minimum is one of these two local minima and which one depends on the
alue of uremmax; if uremmax is small enough that the contour is either blue or green (below uremmax ≈ 3.5) then ‘do nothing’ is optimal, whereas
eyond uremmax ≈ 3.5 where the contours are yellow to red, then maximum removal (urem = uremmax) is the optimal strategy. Consequently,
here is a great range of values uremmax where the optimal solution is to ‘do nothing’, that it is futile to try and control the disease without
eing able to really get on top of it.

One particularly interesting result in Scenario 2a (Fig. 6(a)) is the kink that occurs in the MBins=MCins curve. This kink occurs indistin-
uishably close to Rp

0 = 1 since the kink occurs around where the MBins=MCins and Rp
0 = 1 curves intersect. Below this kink, we have that

ncreasing level of removal is linked with increasing level of restriction, i.e. removal and restrictions are complements. This occurs since
estriction improves the effectiveness of removal as it reduces the chances that an infected plant, which has been removed, is replaced
y another infected plant. However, above the kink, we have that increasing level of removal results in a decrease in the optimal level
f restriction, i.e. they are substitutes. This agrees with the final bullet point of the analytical results, where restriction and removal are
omplements when R0 is large and urem is small, whereas restriction and removal are substitutes when urem is substantially larger than R0.

Going from Scenario 2a to 2b (Fig. 6(b)), there is a reduction in the loss in revenue from selling an infected plant from L = 10 to L = 1
note that this is a considerably smaller revenue loss than in Scenario 1b). The effect of this small revenue loss in the optimal effort of
ontrolling the disease is relatively minor with respect to Scenario 2a; MBins=MCins has shifted a little to the left, and thus the optimal
evel of restriction is reduced everywhere and MBrem=MCrem has shifted a bit to the right and a little up. The consequence of the move in

Brem=MCrem is that removal is also less viable everywhere. In particular, the intersection between these two lines that separates the two
ocal minima has shifted up, increasing the region where there is only one local minimum; and consequently, ‘do nothing’ has become the
ptimal control irrespective to the value of uremmax.

Notice that L has to be really small to achieve the result above. For L = 5, the global minimum is maximum removal as long as uremmax is
ufficiently above the kink around Rp

0 = 1 (figure not given, use Fig. 6(a) as guide). Conversely, a large increase in revenue losses, L, is needed

o exclude ‘do nothing’ as a local optimal minimum; first, optimal restriction expenditure becomes positive for zero removal around L = 25
i.e. MBins=MCins intercepts the x-axis), and this ‘restriction only state’ becomes a local minimum. The ‘restriction only state’ remains a
ocal minimum while the curves representing MBins=MCins and MBrem=MCrem intercept. This intercept disappears around L = 45, beyond

hich there is no ‘zero-removal’ local minimum. This means that even for large revenue losses, if the nursery capacity to remove is small
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Fig. 6. Contour plots of profit Q with respect to both removal and restriction for (a) Scenario 2a, (b) Scenario 2b and (c) Scenario 2c. Red regions are the regions of lowest costs
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hereas blue regions signify highest costs. The black lines represent MBins=MCins and MBrem=MCrem whereas the grey line represents the values of (uins , urem) that correspond
o  Rp

0 = 1. The dots have the same meaning as Fig. 5(a). R0, L and d are given in Table 1. Other parameters are the same as Fig. 5. (For interpretation of the references to colour
n  this figure, the reader is referred to the web  version of this article.)

uremmax small) then the nursery is very likely to be in the region where no expenditure in removal is optimal. This is because the disease
ill still spread through the nursery since Rp

0 is still considerably larger than 1, making removal efforts futile.
Now, consider the case where restriction is less cost-effective as d is decreased to 0.3 (Scenario 2c, Fig. 6(c)). This decrease has a relatively

inor effect on the removal line MBrem=MCrem in Fig. 6(c), the line keeps the same intercept with the y-axis and it is flatter than in Fig. 6(a).
his is predictable since decreasing cost-effectiveness means that more needs to be spent in restriction in order to have the same effect
n the reduction of the probability of buying infected inputs. Likewise, the line of MBins=MCins has (a) a higher intercept with the y-axis,

aking restriction less worthy if there is low removal, and (b) at the kink the expenditure on restriction has increased. The latter effect is
ue to the reduction in the cost-effectiveness (essentially an increase in the price of a 50% reduction in infected inputs) which does reduce
estriction effort, but it does increase total spending on restriction.

. Discussion and conclusions

In this paper, we have analysed the prevention and control management options available to a nursery owner in order to minimise
he impacts of an infectious disease that may  spread within the nursery. To this end, we derived a bioeconomic model of a plant nursery,
here the manager can opt either to restrict the proportion of infected plant material coming into the nursery (prevention), or remove

nfected plants within the nursery (control), or a combination of both strategies. We  assume that there is an upper limit on removal effort.
ur analytical results show that (a) if infected inputs are always coming into the nursery, the disease would persist in the nursery, and will
pproach a unique endemic steady state (Section 3.1.2 and Fig. 4); (b) the optimal removal is either maximum removal (i.e. the upper limit
n removal efforts given the nursery’s capacity) or no removal, as long as restriction efforts are optimally allocated, i.e. where the marginal
ost of restriction equals its marginal benefit in terms of disease damages avoided (Section 3.2); (c) optimal restriction expenditure increase
ith both the revenue losses for selling mature infected plants and costs of removal; while maximal removal is more likely to be optimal

f either revenue infection losses increase or removal costs decrease (Section 3.2); (d) since any removed infected plant stock needs to be
eplaced buying new plant inputs, which could potentially be infected, the manager can increase the effectiveness of removal effort by
ncreasing restriction effort (see expressions of Rp

0 and i* in Section 3.1.2).
The numerical analysis of the Scenarios (summarised in Table 1) with varying conditions in the level of infectiousness of the disease,

amages to the nursery, and cost-effectiveness of management efforts, highlights three relevant results for private biosecurity decisions.
irst, results indicate that it is optimal to spend on maximum removal efforts unless the revenue losses from selling infected mature plants
re considerable lower than the cost of removal (especially for highly infectious diseases, e.g. Scenario 2).
Secondly, if the capacity to remove infected plants is very limited, due for example to temporal or monetary constrains, it may  be
ptimal to ‘do nothing’ (again, particularly for highly infectious diseases, Scenario 2). It is only worth removing infected plants if the efforts
pplied can limit the expansion of the disease through secondary infections within the nursery, otherwise removal resources could be
aste; it is not worthwhile removing an infected plant if the replaced plant will likely become infected. The private benefits of removal
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fforts in curbing the disease have therefore threshold properties. Benefits can only be achieved once at least a minimum amount has been
ontributed to their production. This property on removal efforts is expected to affect the probability of cooperating (e.g. Sandler, 2004;
ouza and Perrings, 2011), when strategic decisions among private agents is relevant to limit the probability of outbreaks (e.g. Hennessy,
008; Epanchin-Niell and Wilen, 2015).

A third result is the finding of synergies between restriction and removal strategies, which are determined by the reproduction number,
.e. how contagious a disease is and could be spread through trade. This contributes to previous existing literature that only focus on
ubstitutionary effects between prevention and control. For example, Olson and Roy (2005) examine the conditions under which the
ptimal policy relies solely on either prevention or control. Kim et al. (2006) examine the optimal combination of pre-discovery prevention,
ost-discovery prevention and post-discovery control where the discovery time is stochastic, and find that post-discovery prevention and
ontrol are substitutes. Leung et al. (2005) consider that if there is expensive control activities, this reduces social welfare at the post-
nvasion state, and consequently higher social welfare can be achieved from avoiding invasion, and substituting control by prevention
fforts. Similarly, Finnoff et al. (2007) conclude that a risk averse agent would substitute more prevention expenditures with control
olicies when compared to a risk neutral agent. Here, we  found that the optimal level of restriction is complementary with removal efforts

f the disease is beyond the nursery owner’s ability to limit its spread. The underlying reason for this is that, restriction measures may  not be
ery effective in the case of highly infectious diseases (Scenario 2), since some infected plants materials will always get past the restriction
egime, and once infected plants are in the nursery the disease will spread fast within the nursery. In those situations, if the manager
ncreases the level of effort in removing infected plants, the disease becomes more manageable, and consequently making expenditures in
estriction measures more effective. In addition, increased efforts on restriction makes also removal more effective, reducing the probability
f buying infected inputs when the nursery owner has to buy new stock to replace those infected plants that were removed. Consequently,
emoval and restriction efforts are complementary for highly infected diseases.

This phenomenon where ‘prevention’ and ‘cure’ are complementary has been found in the human health literature in Hey and Patel
1983) and Hennessy (2008). Hennessy (2008) argue that for ‘prevention’ and ‘cure’ being complements is that increasing prevention
educes the chance that cured individuals become sick again and thus improving the long term benefit of curing sick individuals. This argu-
ent is analogous to the reasons that can explain why restriction improves the effectiveness of removal in Scenario 2, as the replacement

f a removed infected plant with an infected plant can be seen as (instantaneous) reinfection.
We also show that this complementary relationship between prevention and control continues as removal level increase until around

p
0 = 1. Beyond this point the disease no longer is able to spread through the nursery and instead relies on the constant introduction of

nfected plant inputs to persist in the nursery. In this case, the disease could be manageable through the removal programme, and the
ursery owner can choose whether to remove it once it is in the nursery or prevent it from entering the nursery. This means, restriction
nd removal efforts are substitutes, akin to the classic ‘prevention vs cure’ argument.

However, it should be noted that the analysis in this paper is based on the long term dynamics of the disease and decision making, thus
ur work fits more the endemic stage of an infection with the nursery being subject to continual invasion pressure. Consequently, it neglects
he epidemic/invasion stage, and uncertain benefits from delaying the spread of the disease through prevention and/or surveillance during
his stage (e.g. Haight and Polasky, 2010; Mehta et al., 2007). Moreover, we also recognise that many nurseries work on a shorter term
asis than used in this model. For example, some nurseries are seasonal and only have a generation or two  of plants in the nursery for
ne season before an annual reset of the nursery, with new plants stock. In this case, a steady state might not be appropriate analysis as
ot enough time has occurred for a steady state to be reached. Following the above literature, in cases like those in Scenario 2 with highly

nfectious diseases, restriction and removal may  be more viable in the early stages of disease introduction (unlike the long term) since they
an delay the inevitable disease spreading through the nursery. However, even in shorter time-scales, equilibrium-based analysis form a
trong baseline for understanding optimal decisions.

In the model derivation process we assumed that the nursery stock is fixed (i.e. the nursery is always full). This is not always true,
specially if seasonal effects (like weather or seasonal demand) occur or if the nursery owner reduces the size of the nursery as a disease
anagement tool. During periods with a reduced nursery stock, the basic reproductive number R0 is reduced (since the disease is density

ependent) as is the cost-effectiveness of restriction, ‘d’. The reduction in R0 means the disease will spread less within the nursery and thus
s easier to control by removal. Consequently, the constant full nursery assumption used in this paper gives an upper limit to the extent
f the disease will spread and thus a worst case scenario in terms of uncontrolled damages from a pathogen. On top of that, the reduction
n R0 from a lower N reduces the range of urem where restriction and removal are complements. On the other hand, the reduction in the
ost-effectiveness of restriction would result in a less stringent restriction regime (i.e. an increase in the proportion of infected plant inputs,
(uins)), akin to what is found when comparing Scenarios 1a and 2a with Scenarios 1c and 2c.

In this paper, we have assumed the disease is an SI disease, i.e. each plant is either susceptible or infected and there is no recovery
rom the disease. This was for simplicity and generality. However, many plant diseases have recovery, latency, asymptomatic infection and
mmunity, as well as free-living stages in the environment (i.e. in the soil or water). The presence of asymptomatic and latent infected plant
nputs undermines the owner’s ability to restrict infected inputs coming into the nursery since identifying infected plants material inputs
ecomes much more complex or even impossible if no symptoms of infection or clear evidence of pathogens are present. In addition, our
nalysis only focuses on diseases that can only enter the nursery via infected plant material inputs (i.e. though plant trade). However, for
any different nurseries, pathogens and pests get into the nursery through a number of different pathways. In particular, contaminated
ater is often the reason for Phytophthora and other pathogens getting into plant nurseries (Hong and Moorman, 2005, and references

herein). We  suspect that in this situation, restriction strategies that focus on inspecting plant inputs would have a limited effect on
reventing the diseases, which would reduce their cost-effectiveness and therefore their optimal level of provision.

The level of restriction in this paper depends greatly on the choice of the function p(uins), the proportion of infected plant material inputs
hat are infected for a given level of restriction. In this paper, we  used an exponentially decreasing function to obtain numerical results
ince it was the simplest function that satisfies the desired properties of p(uins) (i.e. which, in short, is monotonic decreasing of uins). This

unction has the property that the first dollar spent on restriction is always the most effective, and that each dollar spent has a smaller effect
n p(uins) than the previous dollar. This property would not necessarily be appropriate in several cases. For example, functions where a
mall investment in restriction has little effect and a substantial investment that more has to spent for a restriction regime to start to have

 noticeable effect on the proportion of infected plant materials coming in could be more appropriate if substantial funds are needed for
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ffective levels of knowledge, labour, machinery and skills to be maintained. A suggested simple function that could provide useful incite

nto management satisfies this property is (a − b)exp−du2
ins + b (in which case the most cost-effective level of restriction is at uins = (2d)−1/2).

Finally, note that this paper deals with one disease of concern for the nursery owner to control. Generally, a nursery owner has a
ultitude of diseases to be concerned about. For example, the tomato Solanum lycopersicum is known to be a host for over 500 different

ests and pathogens (CABI, 2015). Likewise, a nursery can have many pathogens present. For example, at least 13 different species of
hytophthora were found in the irrigation water at three nurseries in northern Germany in 1995 (Themann et al., 2002; Brasier, 2008).
ikewise, in Bavaria in 2002, there were five different species of Phytophthora found in the soil around a single open-planted alder seedling
T. Jung, LWF, D-85354 Freising, personal communication cited in Brasier, 2008). With a multitude of diseases to manage, a common
ptimal strategy on restriction and removal would be needed, a strategy that would likely differ from the strategy of each of the diseases
n isolation.
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ppendix A. Optimal solution with respect to urem: ‘all or nothing’

To find out what the optimal solutions with respect to urem, we need to investigate:

∂Q

∂urem
= (L + Curem)

∂M
∂urem

+
2M ∂M

∂urem

2
√

M2+4R0p(uins)

2R0
+ C

M +
√

M2 + 4R0p(uins)
2R0

= 0, (A.1)

here M(uins, urem) = R0 − 1 − (1 − p(uins))urem. First, we need to manipulate this into something more manageable.

∂Q

∂urem
= − (L + Curem)(1 − p(uins))

2R0

(
1 + M√

M2 + 4R0p(uins)

)
+ C

2R0

(
M +

√
M2 + 4R0p(uins)

)
(A.2)

= − C

2R0

((
L

C
+ urem

)
(1 − p(uins))

(
1 + M√

M2 + 4R0p(uins)

)
−
(

M +
√

M2 + 4R0p(uins)
))

(A.3)

= − C

2R0

√
M2 + 4R0p(uins)

(((
L

C
+ urem

)
(1 − p(uins)) − M

)  (√
M2 + 4R0p(uins) + M

)
− 4R0p(uins)

)
(A.4)

Consequently, solutions of ∂Q
∂urem

= 0 are solutions of
((

L
C + urem

)
(1 − p(uins)) − M

)
(
√

M2 + 4R0p(uins) + M)  − 4R0p(uins) = 0. Now, if
uch solutions exist and are admissible, we need to find out if one of these solution is a maximum with respect urem. To do so, we need to
ook at the second derivative.

∂2
Q

∂u2
rem

= − C

2R0

∂M

∂uins

∂
∂M

(
1√

M2 + 4R0p(uins)

) =0︷  ︸︸  ︷(((
L

C
+ urem

)
(1 − p(uins)) − M

)  (√
M2 + 4R0p(uins) + M

)
− 4R0p(uins)

)
− C

2R0

√
M2 + 4R0p(uins)

(
(1 − p(uins))

(√
M2 + 4R0p(uins) + M

)
− ∂M

∂uins

(
1 + M√

M2 + 4R0p(uins)

)

+
(

L

C
+ urem

)
(1 − p(uins))

∂M

∂uins

∂
∂M

(√
M2 + 4R0p(uins)

))
(A.5)
= − C

2R0

√
M2 + 4R0p(uins)

(
2(1 − p(uins))

(√
M2 + 4R0p(uins) + M

)
− (1 − p(uins))

((
L

C
+ urem

)
(1 − p(uins)) − M

)(
1 + M√

M2 + 4R0p(uins)

)) (A.6)

= − C(1 − p(uins))
2R0(M2 + 4R0p(uins))

(
2
(

M2 + 4R0p(uins) + M
√

M2 + 4R0p(uins)
)

−
((

L

C
+ urem

)
(1 − p(uins)) − M

)(√
M2 + 4R0p(uins) + M

)) (A.7)
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= − C(1 − p(uins))
2R0(M2 + 4R0p(uins))

(
2
(

M2 + 2R0p(uins) + M
√

M2 + 4R0p(uins)
)

−

=0︷  ︸︸  ︷((((
L

C
+ urem

)
(1 − p(uins)) − M

)  (√
M2 + 4R0p(uins) + M

))
− 4R0p(uins)

)⎞⎟⎟⎠
(A.8)

= − C(1 − p(uins))
R0(M2 + 4R0p(uins))

(
M2 + 2R0p(uins) + M

√
M2 + 4R0p(uins)

)
(A.9)

If M > 0, then ∂2
Q

∂u2
rem

< 0 and thus all internal solutions are local maxima with respect to urem. It is not completely clear if this is the case

or M < 0 so instead look to find the value of M where M2 + 2R0p(uins) + M
√

M2 + 4R0p(uins) has its minimum. So we  look at the properties

f solutions of ∂
∂M

(
M2 + 2R0p(uins) + M

√
M2 + 4R0p(uins)

)
= 0.

∂
∂M

(
M2 + 2R0p(uins) + M

√
M2 + 4R0p(uins)

)
= 2M +

√
M2 + 4R0p(uins) + M2√

M2 + 4R0p(uins)
(A.10)

= 2√
M2 + 4R0p(uins)

(
M2 + 2R0p(uins) + M

√
M2 + 4R0p(uins)

)
= 0 (A.11)

Solutions of this satisfy M = − M2+2R0p(uins)√
M2+4R0p(uins)

. Substituting this into M2 + 2R0p(uins) + M
√

M2 + 4R0p(uins) gives:

− M2 + 2R0p(uins)√
M2 + 4R0p(uins)

(
− M2 + 2R0p(uins)√

M2 + 4R0p(uins)
+
√

M2 + 4R0p(uins)

)
+ 2R0p(uins)

= −M2 + 2R0p(uins)
M2 + 4R0p(uins)

(
−(M2 + 2R0p(uins)) + M2 + 4R0p(uins)

)
+ 2R0p(uins)

= 2R0p(uins)

(
1 − M2 + 2R0p(uins)

M2 + 4R0p(uins)

)
> 0

(A.12)

nd thus M2 + 2R0p(uins) + M
√

M2 + 4R0p(uins) > 0 always and thus ∂2
Q

∂u2
rem

> 0 and thus internal solutions are always local maxima with

espect to urem. As there is no internal minimum with respect to urem, the global minimum must occur on the boundary, either at urem = 0
r urem = uremmax. If ∂Q

∂urem
< 0 at urem = 0 then urem = 0 is a local (global) maximum and urem = uremmax is the global minimum. Conversely, if

∂Q
∂urem

> 0 at urem = uremmax then urem = uremmax is a local (global) maximum and thus urem = 0 is a global minimum. If ∂Q
∂urem

> 0 at urem = 0 and
∂Q

∂urem
< 0 at urem = uremmax, then you have must compare Q for urem = 0 and urem = uremmax since both are local minima.

ppendix B. Optimal control with respect to restriction uins: ‘do something or do nothing’

We  need to find out the global minimum with respect to restriction uins by analysing:

∂Q

∂uins

= (L + Curem)

∂M
∂uins

+
2M ∂M

∂uins
+4R0

∂p(uins)

∂uins

2
√

M2+4R0p(uins)

2R0
+ 1 = 0. (B.1)

here M(uins, urem) = R0 − 1 − (1 − p(uins))urem. First, we  will look at the second partial derivative to see if ∂Q
∂uins

is an increasing or decreasing

unction of uins: ⎛ ⎞

∂2

Q

∂u2
ins

= ∂2
p(uins)

∂u2
ins

(L + Curem)
2R0

(
urem + Murem + 2R0√

M2 + 4R0p(uins)

)
+
(

∂p(uins)
∂uins

)2
(L + Curem)

2R0

⎜⎝−2R0(Murem + 2R0)

(M2 + 4R0p(uins))
3
2

⎟⎠ (B.2)
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= ∂2
p(uins)

∂u2
ins

L + Curem

2R0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

urem +

(Murem + 2R0)(M2 + 4R0p(uins)) − 2R0

(
∂p

∂uins

)2

∂2
p

∂u2
ins

(Murem + 2R0)

(M2 + 4R0p(uins))
3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.3)

= ∂2
p(uins)

∂u2
ins

L + Curem

2R0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

urem +

M2 + 4R0p(uins) − 2R0

(
∂p

∂uins

)2

∂2
p

∂u2
ins

M2 + 4R0p(uins)
Murem + 2R0√
M2 + 4R0p(uins)︸ ︷︷  ︸
always >−urem

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.4)

Now, since we do not have sufficient knowledge on the properties of ∂2
p

∂u2
ins

in general, we  will continue with p(uins) = b + (a − b) exp(−duins).

hus ∂p
∂uins

= −d(a − b) exp(−duins) = −d(p(uins) − b) and ∂2
p

∂u2
ins

= −d ∂p
∂uins

= d2(a − b) exp(−duins) = d2(p(uins) − b). Armed with this, we  have:

∂2
Q

∂u2
ins

= (L + Curem)d2(p(uins) − b)
2R0

⎛
⎜⎜⎜⎝urem +

∈ (0,1)︷  ︸︸  ︷
M2 + 2R0(p(uins) + b)

M2 + 4R0p(uins)

︷  ︸︸  ︷
Murem + 2R0√
M2 + 4R0p(uins)

always >−urem

︸  ︷︷  ︸
>0

⎞
⎟⎟⎟⎠ (B.5)

> 0 when L + Curem > 0 (B.6)

Firstly, we note that if L + Curem ≤ 0 (which could be true if L < 0), there are no internal solutions from possible for Eq. (14) from the main
ext and we have ∂Q

∂uins
= 0 is monotonically increasing to −1. Hence, ∂Q

∂uins
< 0 always and thus zero restriction is always the best (a disease

hat is beneficial should not be restricted). For L + Curem > 0, we have that ∂Q
∂uins

is monotonically increasing (to 1 as uins→ ∞).  In other words,

ncreasing restriction has even diminishing returns, reducing the marginal benefit, whereas the marginal cost remains the same. Given we
ave that ∂Q

∂uins
is monotonically increasing to 1 (and is continuous), we know that there exists one and only one admissible solution with

espect to uins (for fixed urem) if ∂Q
∂uins

< 0 at uins = 0 and that this solution is a global minimum with respect to uins, i.e. the optimal control

nvolves some restriction. Otherwise, ∂Q
∂uins

≥ 0 at uins = 0, there is no internal solution and the global minimum with respect to uins is at

ins = 0, i.e. no restriction is optimal.
If such solutions do not exist within admissible controls (urem ∈ [0, uremmax] and uins ≥ 0), we  need to pick the minimising values on the

oundary, i.e. if ∂Q
∂uins

> 0 at uins = 0, then either uins = 0 and uins =∞ are the global maximum. However, since ∂Q
∂uins

→ 1 as uins→ ∞ (because

(uins) is converging to b and thus ∂p(uins)
∂uins

→ 0, uins =∞ is always a local maximum and thus uins = 0 is the global minimum, i.e. the cost

inimising strategy, when ∂Q
∂uins

> 0 at uins = 0.

ppendix C. Linking dynamic and stationary approaches

Taking Eq. (6) and following the rescaling and rearrangement that occur between Eq. (7) and (9) leads to:

min
uins,urem

∫ T̂

0

e−r̂t ((L + Curem)i + uins) dt (C.1)

here T̂ = Tı and r̂  = r
ı

(henceforth, we will drop these hats for simplicity, being consistent with what was done in the main text). First,
e establish and analyse the Hamiltonian of Eqs. (9) and (10). This Hamiltonian is:

H = e−rt ((−L − Curem)i − uins) + � (p(uins)(1 + uremi) − i − uremi + R0(1 − i)i) . (C.2)
Consequently, the adjoint equation is:

d�

dt
= −∂H

∂i
= −(e−rt(−L − Curem) + �(p(uins)urem − 1 − urem + R0(1 − 2i))). (C.3)
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The optimality conditions for uins and urem are:

∂H

∂uins

= −e−rt + �

(
∂p(uins)

∂uins

(1 + uremi)

)
= 0 (C.4)

nd

∂H

∂urem
= i(�(p(uins) − 1) − Ce−rt) = 0, (C.5)

espectively.
To link the solutions in this paper to those of this Hamiltonian, we will assume an infinite time interval, and treat urem, uins as constants.

n top of this, we will insert the steady state value of i* from Eq. (11) given from the population dynamics. Rearranging (C.4) gives:

� = e−rt(
∂p(uins)

∂uins
(1 + uremi)

) . (C.6)

nserting this into (C.3) gives:

d�

dt
= e−rt

⎛
⎝L + Curem + p(uins)urem − 1 − urem + R0(1 − 2i)

∂p(uins)
∂uins

(1 + uremi)

⎞
⎠ . (C.7)

From this, using the constant urem, uins and i* assumption and assuming � = 0 at infinity, gives:

� = −1
r

e−rt

⎛
⎝L + Curem + p(uins)urem − 1 − urem + R0(1 − 2i)

∂p(uins)
∂uins

(1 + uremi)

⎞
⎠ . (C.8)

Using the two expressions for � (C.6) and (C.8), we  get:

1
∂p(uins)

∂uins
(1 + uremi)

= −1
r

⎛
⎝L + Curem + p(uins)urem − 1 − urem + R0(1 − 2i)

∂p(uins)
∂uins

(1 + uremi)

⎞
⎠ . (C.9)

Inserting i∗ = M+
√

M2+4p(uins)R0

2R0
, where M = R0 − 1 − (1 − p(uins))urem, and with a little rearranging, we  arrive at:

r = −
(

(L + Curem)
∂p(uins)

∂uins

(
1 + urem

M +
√

M2 + 4pR0

2R0

)
+
√

M2 + 4pR0

)
. (C.10)

Dividing everything by −
√

M2 + 4p(uins)R0 and rearranging gives:

− r√
M2 + 4p(uins)R0

= 1 −

⎛
⎝−

(L + Curem) ∂p(uins)
∂uins

2R0

(
urem + Murem + 2R0√

M2 + 4R0p(uins)

)⎞⎠ . (C.11)

Notice that the right hand side is dQ
duins

= MCins − MBins from Eq. (14). Thus for zero discounting (r = 0), dQ
duins

= 0 gives the optimal

estriction, whereas for a positive discounting rate (r > 0), the optimal restriction satisfies dQ
duins

= − r√
M2+4R0p(uins)

. However, since dQ
duins

is

onotonically increasing function, we know that increasing the discount rate (r) would lower the optimal level of restriction. This effect is
ery dependent on how long the plant is expected to be in the nursery due to the time rescaling (i.e. since r̂ = r

ı
). If the average plant stay

s short (i.e. weeks to months) then this discounting effect is negligible, whereas for longer period (i.e. years), this term becomes larger,
aving more impact on the optimal restriction.

Moving on to optimal removal, (C.5) is generally never satisfied, and instead the optimal removal is a ‘bang–bang’ control (i.e. all or
othing) which is consistent with the static analysis. Consequently, the optimal solution is either urem = 0 or urem = uremmax, which depends
n the sign of �(p(uins) − 1) − Ce−rt.

To determine the sign, we will focus on the threshold �(p(uins) − 1) − Ce−rt = 0. Substituting Eq. (C.6) and rearranging gives:

C
∂p(uins)

∂uins

(1 + uremi) = −(1 − p(uins)). (C.12)

Now, rearranging Eq. (C.9) and inserting the steady state value of i* from Eq. (11) gives

∂p(uins) (1 + uremi) = − r +
√

M2 + 4p(uins)R0
. (C.13)
∂uins L + Curem

Substituting this into (C.12) and arranging gives

Cr = (L + Curem)(1 − p(uins)) − C
√

M2 + 4p(uins)R0. (C.14)
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Multiplying by −1
2R0

(
1 + M√

M2+4R0p(uins)

)
we arrive at:

− rC

2R0

(
1 + M√

M2 + 4R0p(uins)

)
= C

2R0
(M +

√
M2 + 4p(uins)R0) − (L + Curem)(1 − p(uins))

2R0

(
1 + M√

M2 + 4R0p(uins)

)
. (C.15)

This of condition is analogous with the static problem, with the right hand side being dQ
durem

= MCrem − MBrem from Eq. (13).
This alone does not give the global optimal since there are two �’s to compare, one where urem = 0, the other where urem = uremmax. In

ases where �(urem = 0)(p(uins) − 1) − Ce−rt < 0 but �(urem = uremmax)(p(uins) − 1) − Ce−rt > 0, a comparison in terms of profit must be made,
hich is analogous to the two local optima solutions found in the static solutions. Again, like with restriction, we have that no discounting

ives the same result, and increasing the discount rate makes urem = uremmax less likely to be globally optimal.
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