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Abstract 17 

Question: Can increased host resistance drive a pathogen to extinction? Do more complex ecosystems 18 
lead to significantly different evolutionary behaviour and new potential extinctions?  19 

Mathematical Method: Merging host parasite models with predator prey models. Analytically studying 20 
evolution using adaptive dynamics and trade-off and invasion plots, and carrying out numerical 21 
simulations. 22 

Key Assumptions: Mass action (general mixing). All individuals of a given phenotype are identical. Only 23 
prey vulnerable to infection. Mutations are small and rare (however the assumption on the size of 24 
mutation is relaxed later). In simulations, very small (negligible) populations are at risk of extinction. 25 

Conclusions: The presence of the predator can significantly change evolutionary outcomes for host 26 
resistance to a pathogen and can create branching points where none occurred previously. The 27 
pathogen (and sometimes the predator) is protected from exclusion if we take mutations to be 28 
arbitrarily small; however relaxing the assumption on mutation size can lead to its exclusion. Increased 29 
resistance can drive the predator and/or pathogen to extinction depending on inter-species dynamics, 30 
such as predator’s preference for infected prey. Predator co-evolution can move exclusion boundaries 31 
and prevent the predator’s own extinction if its rate of mutation is high enough (in respect to the 32 
prey’s). 33 
 34 
Keywords: adaptive dynamics, co-evolution, extinction, eco-epidemiology, parasite, singular strategy. 35 
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1) Introduction 36 
 37 

Understanding the evolutionary dynamics of infectious diseases remains a key topic in evolutionary 38 
ecology and is central to our management of natural systems. Our theoretical understanding of the 39 
evolution of hosts and their parasites continues to grow (e.g. Levin and Pimental, 1981; Boots and 40 
Haraguchi, 1999; Best et al., 2010), yet studies tend to assume that hosts and parasites interact in 41 
isolation. In reality, ecosystems consist of a complex mix of species, including hosts, parasites, predators, 42 
prey, competitors and mutualists. Understanding how infectious disease dynamics are affected by the 43 
interference of this range of interacting species is clearly crucial for any predictions to be made in real 44 
systems. 45 
 46 
Much of the theory on infectious disease systems has focussed on the evolution of the parasite, 47 
investigating, for example, when disease may become endemic and when highly virulent parasites may 48 
be selected for(e.g. Levin and Pimental, 1981; Anderson and May, 1981; Pugliese, 2002; Svennungsen 49 
and Kisdi, 2009). In response to parasitism, hosts are clearly likely to experience strong selection to 50 
develop defence mechanisms, and there is a growing body of theory focussing on the evolution of the 51 
host (e.g. Frank, 1993; Boots and Bowers, 1999, 2004). Broadly, host defence may be divided into two 52 
sub-classes: resistance and tolerance. Resistance mechanisms, which act to directly harm the parasite, 53 
include avoidance of infection (Boots and Haraguchi, 1999; Boots and Bowers, 1999), clearance of 54 
disease (Boots and Bowers, 1999; van Baalen, 1998) and acquired immunity (Boots and Bowers, 2004), 55 
whilst tolerance mechanisms do not affect the parasite, but rather ameliorate parasite-induced damage 56 
(Boots and Bowers, 1999, 2004; Roy and Kirchner, 2000; Miller et al., 2005). The differing feedbacks 57 
produced by these alternate defence mechanisms can result in very different behaviours (Boots, 2008; 58 
Boots et al., 2009), for example allowing branching to coexistence of host strains when defence is 59 
through resistance but not when it is through tolerance (Roy and Kirchner, 2000; Miller et al., 2005; but 60 
see Best et al., 2009). 61 
 62 
Whilst the evolution of both parasites and hosts (and, increasingly, their co-evolution (van Baalen, 1998; 63 
Dieckmann et al., 2002; Restif and Koella, 2003; Best et al, 2010) is now well studied in relatively simple 64 
one host – one parasite systems, there has been little consideration of how interactions with other 65 
species may impact disease dynamics. Conversely, a number of predator-prey and competition models 66 
have shown that interacting species play an important role in their evolutionary dynamics (e.g. Bowers 67 
et al., 2003; Kisdi, 1999; Hoyle et al., 2008), however these do not include pathogens. In two recent 68 
exceptions, Morozov and Adamson (2011) and Morozov and Best (In Press) studied an SI model where 69 
predators fed on infected prey and found that the evolution of pathogen virulence changes due to the 70 
presence of a predator. In population studies, extensive studies have shown that these interactions, 71 
particularly predate-prey-infection (or eco-epidemiological) models, can have significant effects on the 72 
dynamics of species and on disease control strategies (e.g. Venturino, 2001, 2002; Haque et al, 2009; 73 
Greenman and Hoyle, 2010; Haque and Greenhalgh, 2010; Hudson and Greenman, 1998). These include 74 
unbalancing competitive effects and driving one species to extinction, or in some cases allowing two 75 
species to co-exist where they would usually not be able to (Hudson and Greenman, 1998).   76 
 77 
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Much of the modern literature on the evolutionary ecology of hosts and parasites has been conducted 78 
within the framework of adaptive dynamics (Metz et al., 1996a; Geritz et al., 1998), which allows the 79 
study of trait substitution sequences resulting from the challenge of a resident strain by a closely similar 80 
mutant. One key feature of most of these studies is the evolutionary trade-off between beneficial 81 
mutations (for example, increased defence in the host) and fitness costs incurred elsewhere (for 82 
example, reduced reproductive ability). The shape of these evolutionary trade-offs has been found to be 83 
crucial to the outcomes of a range of ecological systems, and is now central to much of adaptive 84 
dynamics theory (de Mazancourt and Dieckmann, 2004; Rueffler et al., 2004; Bowers et al., 2005). 85 
Focussing on host evolution, where defence comes at accelerating costs – i.e. each additional unit of 86 
benefit is met by an increased cost – the system generally tends to an intermediate strategy which is a 87 
long-term attractor of evolution (or a Continuously Stable Strategy), whereas where defence incurs 88 
decelerating costs hosts may be driven to maximise or minimise defence due to an evolutionary 89 
repellor. Trade-offs that are weakly accelerating or decelerating (or even linear) may display either 90 
behaviour, or may exhibit evolutionary branching, where the initial monomorphic population splits in to 91 
two (or more) coexisting strains. 92 
 93 
The major aim of this paper is to investigate the relevance of the relationship between trade-offs and 94 
evolutionary outcomes in the context of the evolution of host resistance to parasitism in the presence of 95 
an immune predator. In particular we look into what trade-off shapes enhance the possibility of co-96 
existence between species, potentially leading to branching and speciation, and what shapes lead to 97 
significant changes in the ecosystem with the eradication of pathogens and/or predators. We use the 98 
method of Trade-off and Invasion Plots (TIPs) (Bowers et al., 2005), which highlights the role of the 99 
trade-off in determining the evolutionary outcome, and thus intend to show the efficacy of this 100 
approach in such investigations. We also carry numerical simulations which allow the inclusion of some 101 
stochastic behaviour. We initially take a prey only system, modelled by a standard SIS (susceptible- 102 
infected-susceptible) model and investigate the evolutionary behaviour of the system when host 103 
resistance (through decreased transmission) is costly to an aspect of the disease free demography 104 
(decreased birth rate). In particular we look at whether evolution of the host can exclude the pathogen. 105 
We then move on to include the immune predator in the system and look at how the evolutionary 106 
behaviour changes and if the predator can be excluded from the system. We initially do this by looking 107 
at evolution of the prey alone, before moving onto a co-evolutionary set-up where the prey and 108 
predator co-evolve.  109 
 110 
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2) The Model 111 
 112 
Our analysis is based on a predator-prey system where the prey is subject to a pathogen, modelled by 113 
an SIS set-up, but the predator is immune. We use the equations 114 
 115 

dPIScP
dt
dP

IPcIbSI
dt
dI

cSPISIbSqHaH
dt
dS

 

2

      (1) 116 

 117 
where  S  and  I  are the densities of susceptible and infected prey, with ISH , and P  is the 118 
density of predators. In addition, a  is the prey birth rate, q  is the rate of density dependence 119 
competition (acting on births), b  is the natural prey death rate,  is the transmission rate,  is the 120 
parasite induced death rate or pathogenicity,  is the recovery rate, c  is the predation rate,  121 
represents the increase/decrease in predation rate suffered by infected individuals,  relates to the 122 
conversion of predation into the births of new predators and d  is the predator death rate.  123 
 124 
3) Pathogen Exclusion - Evolution of resistance in a prey-only environment 125 
 126 
We stress here that although we are taking 0c  throughout this section, we leave it in the respective 127 
equations as we will later take 0c  and refer back.

 

128 
 129 
With respect to prey evolution and the algebraic analysis throughout this study, we assume that the 130 
host can evolve resistance to parasitism through reducing the transmission rate, . Due to constraints, 131 
such as energetic ones (resource allocation), any benefit gained in one life-history trait must come at the 132 
cost of another and hence we assume a cost to resistance through reduced birth rate, with a trade-off  133 

)(fa  with 0f . We take the trade-off to be of the form: 134 
 135 

)1(
)1(' 
)1('' 2

1
)1('' 

)1(' )1()( f
f

e
f
fffa       (2) 136 

 137 
In each example, the value of )1(' f  is chosen to ensure there is always a singular strategy at 1* , 138 

with 2*a . (We see similar results for other choices.) All other parameters are taken to be constant. 139 
We take a  and  to represent the traits of the resident strain, existing at a stable equilibrium with 140 
densities ),(aSS  and ),(aII , (later coexisting with a predator at density ),(aPP ), and 141 

â  and ˆ  to represent the traits of the mutant strain. If we were to draw up the dynamics for dtSd /ˆ  142 
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and dtId /ˆ  of the mutant population, the invasion part of the Jacobian matrix, evaluated at the resident 143 
only equilibrium, would be  144 
 145 

PcI
qHacPIbqHa

ˆ
ˆˆˆ

       (3) 146 

 147 
where b . The fitness is given by the maximum eigenvalue of this matrix (Metz et al., 1996a; 148 
Geritz et al., 1998), however we can derive a sign equivalent form of the fitness, which we hereafter call 149 
the fitness for convenience, as the negative of the determinant of this matrix (see Appendix A for proof), 150 
i.e.  151 
 152 

qHaIPccPIbqHaaas ˆˆˆˆ,;ˆ,ˆ    (4) 153 
 154 
(We have not yet included the trade-off.) We use the method of trade-off and invasion plots to analyse 155 
the evolutionary behaviour. Here we calculate two invasion boundaries: the 1f  invasion boundary, of 156 

the form ),ˆ(ˆ 1fa  derived from 0),;ˆ,ˆ( aas  (taking )(fa ), which separates the )ˆ,ˆ(a -157 

space into regions where a mutant with traits )ˆ,ˆ(a  can and cannot invade a resident with traits 158 

),(a , and the  2f  invasion boundary, of the form ),ˆ(ˆ 2fa , derived from 0)ˆ,ˆ;,( aas  159 

(again taking )(fa ), which separates the )ˆ,ˆ(a -space into regions where a mutant with traits 160 

),(a  can and cannot invade a resident with traits )ˆ,ˆ(a .  161 
 162 
An evolutionary singularity occurs when the trade-off )ˆ(ˆ fa  is tangential to the invasion boundaries 163 

at the point ),()ˆ,ˆ( aa  (the two invasion boundaries are always tangential at that point). The 164 
relative curvatures of the trade-off and the two invasion boundaries, evaluated at an evolutionary 165 
singularity, determine the evolutionary properties of that singularity, in particular evolutionary stability 166 
(ES) – whether a singularity can be invaded – and convergence stability (CS) – whether species will 167 
evolve towards or away from a singularity. (See Appendix B for full details and workings.)  Combinations 168 
of these determine the nature of the evolutionary singularity. It can be: an evolutionary attractor (CSS) if 169 
it is ES and CS, an evolutionary branching point if it is CS but not ES, or an evolutionary repellor (in which 170 
we also include a ‘Garden of Eden’ point or ES-repellor) if it is not CS (the ES status is then mostly 171 
irrelevant).  172 
 173 
In our model, it is possible for the evolutionary singularity to exhibit any of the long-term behaviour 174 
mentioned above, depending on the choice of parameter values and trade-off shape. 175 
 176 
We find that especially interesting behaviour occurs in the model if the singularity (specifically the 177 
singularity at 1* ) is an evolutionary repellor, and the prey is initially below (lower ) the singular 178 
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point. Here the prey evolves away from the singularity towards an extreme state of high resistance (i.e. 179 
low transmission), which will move the system towards a point where the pathogen is excluded. This 180 
exclusion (or invasion) threshold for infection (although we are assuming a predator-free environment 181 
we have left c in for results later), is given by 182 
  183 

10
XI

XI
I Pcb

SR
         

    (5) 184 

 185 
where XIS

 

(and XIP ) represent the equilibrium density of the prey (and predator) in the absence of the 186 
pathogen. This threshold (along with the host extinction threshold given by ba ) is plotted in trade-off 187 
space in Figure 1A. If the prey evolves to a point where the reproduction ratio IR0   in (5) is less than 1, 188 
then the pathogen can be excluded from the environment. (This may not be the case in more complex 189 
model set-ups where backwards bifurcations can occur – in that case invasion and exclusion boundaries 190 
can be different. However here, and in all simulations throughout our study, backwards bifurcations do 191 
not occur.) However analysis about this point of exclusion reveals some interesting conclusions. 192 
 193 
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 195 

Fig. 1: In (A) we plot the exclusion threshold 100 RR I  in trade-off space. The letters in each region 196 
denote the species that would be present (have positive density): S=uninfected prey only, SI=infected 197 
co-existence. The lower extinction threshold is when the prey birth rate falls below the natural death 198 
rate. The trade-off (dashed line) corresponds to that in Fig, 2B, where “o” denotes the CS singularity, “x” 199 
represents repellor singularity and the arrows the direction of evolution before pathogen exclusion. In 200 
(B) we plot the singularities *  for different trade-off curvatures. The dashed curve represents the 201 
exclusion threshold, and the arrows represent the direction of evolution with respect to . The 202 
parameter values are 5.0q , 2.0b , 2.0 , 2.0 , 0c , 1 , 3.0d , 3. 203 
 204 
 205 
It is clear that in the absence of infection the prey will evolve to maximise the birth rate a, since the cost 206 
of a higher infection rate, , is irrelevant . We therefore have a positive fitness gradient when I=0.  In 207 
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contrast if, with infection present, the prey evolves higher resistance (lower ) and correspondingly a 208 
lower birth rate, then the fitness gradient is negative.  Hence there must be a change of sign in this 209 
fitness gradient near (just above) the exclusion boundary. Consequently, this change in sign means a 210 
singularity must be present before the exclusion boundary is reached – furthermore, given the sign of 211 
the fitness gradient either side, we conclude this singularity must be convergent stable (CS) (i.e. an 212 
evolutionary attractor or branching point.) We can confirm this by plotting the location of the 213 
singularities as we vary the trade-off curvature via )1(f  (Figure 1B). Given a trade-off with an 214 
appropriate curvature, the singularity near the exclusion boundary can be a branching point. A 215 
numerical simulation for this is shown in Figures 2A (see Appendix C for details of how these simulations 216 
were carried out). Here the prey evolves higher resistance, to a point where  is close to the exclusion 217 
boundary. The singularity, which is CS but not ES, then causes the population to branch and the two 218 
branches to evolve away from each other. Although one branch has passed beyond the exclusion 219 
boundary, the presence of the other strain (with increasing ) maintains the infection. 220 
 221 
It is interesting to note that the lower singularity asymptotes towards the exclusion boundary, getting 222 
closer as the trade-off curvature gets larger (Figure 1B). Theoretically, according to adaptive dynamics, 223 
this protects the pathogen from ever being excluded from the system as, assuming small, rare mutations 224 
selection cannot drive the population across the exclusion boundary and the infected population to zero 225 
(although, when the singularity is near the boundary, the pathogen will exist only at very low levels). 226 
This initially occurs in our numerical simulations in Figure 2B (and subsequent figures later in the paper). 227 
Here we plot the evolution of  given that the evolutionary singularity at 1*  is a repellor. Initially 228 

 evolves away from the singularity and towards the lower singularity just above the exclusion 229 
threshold (Figure 2B). As this is an attractor, it ‘stops’ here, near this singularity. However, this is 230 
temporary, the simulations then go on to exhibit further evolutionary behaviour. In the more realistic 231 
case where mutations are not arbitrarily small, when the singular point is sufficiently near the threshold, 232 
a mutant which does not itself support the pathogen can arise. This resistant strain cannot remove the 233 
pathogen from the system deterministically (it cannot truly invade in the sense of adaptive dynamics). 234 
However, its presence suppresses the infection further, essentially to negligible levels, and we find it can 235 
take the resident a very long time to out-compete this mutant strain; hence a strain below the threshold 236 
is temporarily present in our simulations in Figure 2B. During this time the infection levels continue to 237 
fall due to the presence of these resistant mutants below the threshold. We recognize that stochastic 238 
effects occur in nature and correspondingly employ them in our simulations. Thus as the infection falls, 239 
it becomes prone to stochastic extinction. The simulations therefore deviate from adaptive dynamics 240 
theory; they incorporate the fact that at low levels the infection (and in fact any population component 241 
with low enough density) has a high probability of extinction. Here we indeed find that infection levels 242 
reach such negligible levels for a sustained period of time and may easily be driven to extinction by 243 
stochastic effects, and as such it is removed from the simulations (Figure 2C).  Of course the probability 244 
of this extinction is much enhanced by the fact that the lower singularity is near the exclusion threshold 245 
and supports only a very low level of infection. After extinction of the pathogen, any benefit, through 246 
higher resistance, the mutant has will be lost and subsequent mutants that arise will be uninfected and 247 
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a new evolutionary path will be followed, with XISS  and 0I . The prey evolves to maximise the 248 
birth rate a  without encountering any further singularities (  which is also maximised only affects the 249 
fitness via the trade-off and is not selected upon).  However, since at these higher transmission rates, 250 
the population dynamic equilibria are such that R0>1, the prey will be vulnerable to future outbreaks by 251 
the pathogen and to returning to the endemic state. 252 
 253 
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Fig. 2: (A+B) Numerical simulations of the evolution of  with a trade-off of the form )(fa , from 255 
(2), where 05.0)1(f  in (A), and 25.1)1(f  in (B), both giving rise to an evolutionary repellor at 256 

1* . Here  evolves away from this singularity and towards the singularity just above the exclusion 257 
threshold. In (A) this singularity is a branching point and in (B) it is an attractor. In (B) it temporarily 258 
settles at the lower singularity, however random (non-negligible) mutations take  across the 259 
threshold. When it crosses the pathogen exclusion threshold the infected prey density drops to zero. 260 
(See end of section 3 for full details.) (C) Plot of the infected equilibrium density I  and the reproduction 261 
ratio 0R  ( IR0  with 0c ), as given in (5), at each evolutionary step are for the simulation shown in (B). 262 
The infected density, I, reaches negligible levels when the reproduction ratio falls below 1, and is 263 
subsequently in danger of extinction. Due to the exclusion of the pathogen, and hence the change in 264 
selection pressure,  now increases to the upper limit in order to maximise reproduction a . The 265 
parameter values are 5.0q , 2.0b , 4.0 , 2.0 , 0c , 078.0)1('f . 266 
 267 
 268 
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4) Evolution of resistance in the presence of a (non-evolving) predator 269 
 270 
Evolutionary effects of the predator 271 
 272 
We again consider a trade-off between the transmission rate, , and the birth rate, a , however we 273 
now assume a predator is present and take 0c in (1). The fitness is that in (4). The introduction of the 274 
predator immediately increases the dimension of the feedback environment. Consequently this can 275 
produce significant shifts in evolutionary behaviour such that a singularity that was a repellor (non-CS) 276 
can become convergent stable (an attractor or branching point) without the need to change any other 277 
parameter values or trade-off. In Figure 3 we plot the boundaries for the ES and CS properties, in terms 278 
of the trade-off curvature at the singularity at 1* , as we vary the rate of predation. If c is too low 279 
the predator is excluded from the environment, and the system returns to that in the previous section, 280 
and if c is too high the pathogen is excluded in which case the prey maximise their birth rate as there is 281 
no cost in terms of a lower resistance. However for intermediate values of c, where the prey, pathogen 282 
and predator co-exist, the general trend is that the size of the branching region between the two 283 
boundaries (by size we mean range of values of the trade-off curvature which produce a branching 284 
point) increases as c increases.  285 
 286 
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Fig. 3: The trade-off curvature )1(f  needed to satisfy ES (thin line) and CS (thick line) conditions, for 288 
the singularity at 1* , (where below each boundary corresponds to satisfying the relevant property) 289 
for a range of values of c. Below both lines denotes an attractor, above the CS line a repellor and 290 
between the two (when the CS line is above the ES line) a branching point. The letters in brackets 291 
denote the species which is present: S=susceptible prey, I=infected prey and P=predator. The parameter 292 
values are 5.0q , 2.0b , 2.0 , 2.0 ,  2*a , 1* , 1 , 3.0d , 3. 293 
 294 
 295 
We briefly draw attention to the discontiuity in the CS boundary during the transition from a predator-296 
free environment to a predator-prey-infection environment in Figure 3. This discontinuity is caused by 297 
the way the population densities at the demographic attractor (equilibrum) change through the 298 
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transition. Although this is continuous (e.g. P goes towards zero as c passes (decreases) through the 299 
transition), it is not smooth. This results in a discontinuity in the gradient of the densities at the 300 
attractor, i.e. in /S , /I  and /P  - this can be seen by the difference in /S  through 301 
this point as shown in (D.1); similar differences are present in the I  and P  derivatives. This in turn 302 
causes a discontinuity in the CS boundary as this depends on the mixed derivative ˆ/2s , which in 303 
turn depends on the above gradients. Conversely the ES boundary is continuous but not smooth, as this 304 
depends only on the densities (which are continuous but not smooth) and not on their gradients. (See 305 
Hoyle et al (2011), which explains this behaviour for a discrete time system in more detail.)  306 
 307 
 308 
Predator and Pathogen Exclusion Thresholds 309 
 310 
Critically in this system there exists not only a pathogen exclusion threshold, as given by equation (5) 311 
(where c is non-zero now), but also a predator exclusion threshold. This bounds a parameter region 312 
where the predator cannot survive. For our model (1) this is given by 313 
 314 

1 
0 XPXPP IS

d
cR

       

(6)

 

315 

 316 
where XPS  and XPI

 

represent the equilibrium densities of the prey in the absence of the predator.  This 317 
is equivalent to the requirement that the number of offspring a single predator would produce over its 318 
lifetime in an entirely prey environment – equivalent to the reproduction number – needs to be greater 319 
than one for the predator to establish. If evolution were to drive this predator ratio below 1 then the 320 
predator could not survive and would be driven extinct. (Again backwards bifurcations do not occur here 321 
and so invasion and exclusion boundaries are equivalent.) Subsequent evolution of resistance by the 322 
prey would be determined in the predator-free environment (as P would remain zero), and hence as 323 
discussed in section 3.  324 
 325 
Thresholds for when the predator and pathogen will be excluded under different scenarios can be 326 
derived. Combining these we can plot these thresholds in trade-off space. (We note that these 327 
boundaries are independent of the explicit functional form of the trade-off.) Figure 4 shows two 328 
examples, for primarily different values of  (the change in the predation due to prey being infected). 329 
In Figure 4A, with 3  i.e. infectious prey are more vulnerable to predation, the trade-off intersects 330 
three separate regions; starting in a predator-prey-infection environment, moving down the trade-off, in 331 
the direction of higher resistance (lower ), first leads  to the exclusion of the predator and later the 332 
exclusion of the pathogen. In Figure 4B, with  8.0  i.e. infectious prey are less vulnerable to 333 
predation, gaining higher resistance (moving down the trade-off) will lead to the exclusion of the 334 
pathogen but not the predator. In general, whether the pathogen or predator is excluded first (or at all) 335 
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depends on which ratio, PR0  or IR0 , falls below 1 first, with each of them depending on a range of 336 
parameters. 337 
 338 
Numerical simulations of the evolution of resistance for the case where the singularity at 1*  is an 339 
evolutionary repellor are shown in Figure 5, where we focus on the situation described in Figure 4A. 340 
 341 
First we focus on Figures 5A-5D. Here the singularity leads  to evolve to the lower extreme value. 342 
However there is a CS singularity at the threshold, now protecting the predator from exclusion (Figure 343 
5D). This singularity in fact asymptotes towards the predator exclusion boundary but will never cross it. 344 
The reason for this lies in the fact that here 0.0 . Hence, when the predator is excluded, there is no 345 
cost in the prey being infected (as there is no castration, no increased death rate and, with the predator 346 
excluded, no change in predation). Therefore the prey will evolve to maximise its birth rate, with a 347 
higher  giving no cost – i.e. it will have a positive fitness gradient. This positive fitness gradient below 348 
the threshold prevents the singularity from ever passing the threshold (similarly to the pathogen 349 
exclusion case). However once the prey reaches the singularity at the threshold, the predator will only 350 
exist at very low numbers at this singularity, with the predator ratio, PR0  in (6), lying just above 1. Here 351 
a combination of non-arbitrarily small mutations and the exclusion of strains at very low density will 352 
again lead to the extinction of the predator (as in the case of the pathogen at the end of section 3) 353 
(Figure 5C). After this point the change in selection pressure mentioned above causes  to increase and 354 
the infection is maintained in the environment. Again it should be noted that this will leave the prey 355 
vulnerable to future predator invasions.  356 
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Fig. 4: Two plots of the exclusion boundaries given in (5) and (6) in trade-off space, with a trade-off 358 
between the prey reproduction rate and infection rate, )(fa  (with 25.1)1(''f ). The dashed line 359 
in (A) represents a given trade-off used in Figures 5E-H. We plot an equivalent trade-off in (B) just for 360 
comparison. The letters in each region denote the species that would be present (have positive density). 361 
S=uninfected prey only, SI=infected prey, SIP=infected prey and predator, SP=uninfected prey and 362 
predator.  (Assumes we start from an SIP (S>0, I>0, P>0) environment.)  The parameter values are 363 

5.0q , 2.0b , 2.0 , 2.0 , 05.0c  in (A), 12.0c  in (B) 1 , 3.0d , 3  in (A), 364 
8.0  in (B), 0935.0)1(f  in (A) and 0345.0)1(f  in (B). 365 
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 367 
Fig. 5: Numerical simulations of the evolution of  with a trade-off of the form )(fa  (from (2)) 368 

with 25.1)1(f . Here the singularity at 1*  is an evolutionary repellor. These simulations are run 369 
for two values of the pathogen induced death rate , 0 in (A-D) and 0.2 in (E-H). In (A) and (E) we show 370 
the evolution of , where IE=infection exclusion threshold and PE=predator exclusion threshold. In (B) 371 
and (F) we plot the infection density I  at each evolutionary time step along with the ratio IR0 , as given 372 
in equation (4). In (C) and (G) we plot the predator density P  at each evolutionary time step along with 373 
the ratio PR0 , as given in equation (6). In each case, a ratio of below 1 leads to the extinction of the 374 
infection or predator. In (D) and (H) we plot of the location of the evolutionary singularities for various 375 
shapes of trade-off. The dashed line represents the predator exclusion boundary 10PR , as given in 376 

equation (6), and the lower dashed line in (H) represents the infection threshold 10IR . The 377 
parameter values are 5.0q , 2.0b , 2.0 , 05.0c , 1 , 3.0d , 3 , 0935.0)1(f  378 
in (A-D) and 114.0)1(f  in (E-H). 379 
 380 
 381 
In contrast, in Figures 5E-5H, with a small change in   from 0 to 0.2 (i.e.an increase in the pathogen 382 
induced death rate), the lower singularity can now, and does, pass below the predator exclusion 383 
threshold (Figure 5H) and in this case asymptotes towards the pathogen exclusion threshold. Here the 384 
predator will inevitably be excluded deterministically (this can occur with the standard small, rare 385 
mutations of adaptive dynamics). The situation changes such that once the prey has crossed the 386 
predator exclusion boundary, and the predator is excluded, the prey continues to evolve in a way that 387 
leads  to decrease and the infection is subsequently excluded as the prey crosses the infection 388 
exclusion threshold in the manner described previously, Figures 5E-5H. After this point, the infection-389 
free environment changes the selection pressure such that higher  comes at no cost and the prey 390 
subsequently evolves to maximise the birth rate a . Again this leaves the prey vulnerable to future 391 
invasion from both the predator and the pathogen.  392 
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 393 
 394 
5) Co-evolution of prey and predator 395 
 396 
We now expand on the situation above, where the prey evolves in such a way to drive the predator to 397 
extinction (Figure 5); we now let the predator evolve too and investigate whether this co-evolutionary 398 
set-up allows the predator to survive. We focus on the situation (Figure 5A-D) where the prey evolved to 399 
decrease  which eventually excluded the predator and an infected prey-only system remained; this is 400 
the only case we consider here. 401 
 402 
We take the predation rate, c , and predator death rate , d , to evolve and suppose that they are linked 403 
by a trade-off of the form )(cgd . The fitness of a rare mutant predator, with traits )ˆ,ˆ( dc , attempting 404 
to invade an established resident, with traits ),( dc , in a stable equilibrium with densities PIS ,, , 405 
where the prey has traits ),(a , is given by 406 
 407 

dIScadcdcr ˆˆ ,,,;ˆ,ˆ
       

(7)

 

408 
 409 
(Correspondingly, the fitness of (4) is now best denoted ),,,;,( dcaas .) Under this model and 410 
trade-off, the predator’s evolutionary behaviour follows that of an optimisation set-up, whereby 411 

)( IS is minimised, and subsequently any singularity is an evolutionary attractor for acceleratingly 412 
costly trade-offs, or an evolutionary repellor for deceleratingly costly trade-offs – branching points are 413 
not possible. (For full details on this, and the repercussions of a one dimensional feedback environment, 414 
see papers by Metz et al. 1996b; Heino et al. 1998; Kisdi 1998; Rueffler et al. 2006; Hoyle and Bowers 415 
2008.) 416 
 417 
By allowing the prey and predator to co-evolve, we show, via numerical simulations, that the predator 418 
can indeed prevent its own extinction. In particular, we initially assume that the predator has a higher 419 
per capita mutation rate than the prey (with a ratio 3:1), potentially allowing the predator to evolve 420 
'faster' than the prey. As  decreases (Figure 6A), given an appropriate trade-off, c  increases (Figure 421 
6B). This moves the predator exclusion threshold (6) (and Figure 4) in such a way that it moves below 422 
the pathogen exclusion threshold and therefore as  decreases the pathogen threshold is met first and 423 
the pathogen is excluded (Figure 6C). Again there will exist a singularity just above the pathogen 424 
threshold, however sufficiently large mutations again lead to  crossing the exclusion threshold with I  425 
becoming negligible and the pathogen becoming extinct. In Figure 6D we plot the predator density and 426 
the ratio PR0  at evolutionary time step, which remain above 0 and 1 respectively at all times. The 427 
possibility of the above occurring however depends on the predator’s optimal evolutionary strategy, 428 
which subsequently optimises  )( IS , to be in a region which allows predator survival; if this is not 429 
the case then the predator can not survive no matter how fast it evolves. 430 
 431 
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In Figures 6E-H, we plot equivalent results, however in this case we set the per capita mutation rates of 432 
the predator and prey to be equal, such that it would take longer (than previously) for the predator to 433 
decrease its exclusion threshold to a “safe” level to prevent its own extinction. Here the predator does 434 
not evolve enough and the predator exclusion threshold remains above the prey exclusion threshold. In 435 
this case the prey evolves to such a level that  crosses the predator exclusion threshold and the 436 
predator is driven extinct. Again there will exist a singularity very close to the threshold, however 437 
appropriate mutations again lead to the crossing of this threshold and the extinction of the predator. As 438 
was the case in Figures 5A-D, once the predator has been excluded, the system remains in an prey-439 
infection set-up and the prey evolves to maximise , and subsequently their birth rate, as  there is no 440 
cost in the prey being infected (as there is no castration and no increased death rate, as 0 ). 441 
 442 
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Fig. 6: Numerical simulations of the evolution of   for the prey, with a trade-off of the form 446 

)(fa , with 25.1)1(''f , of c  for the predator with a trade-off of the form )(cgd , with 447 

5)05.0(''g  (which we take to have an equivalent form to that in for the prey in (2) with 05.0*c  448 

and 3.0*d ). Evolution is such that the prey evolves to minimise  and the predator evolves to 449 
maximise c . In (A) and (B) the predator manages to keep its ratio PR0  above 1 to allow it to co-exist 450 

with the prey (D); however the pathogen is excluded as its ratio IR0  drops below 1 (C). In (E) and (F) the 451 
predator is not able to keep its ratio above 1 and therefore the predator is driven extinct (H); however 452 
the pathogen remains in the environment (G). The parameter values are 5.0q , 2.0b , 0 , 453 

2.0 , 1 , 3 , 0935.0)1(f , 6)05.0(g . 454 
 455 
 456 
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6) Discussion 457 
 458 
It is well known that for pathogens to invade and persist commonly requires the host population size to 459 
be above a certain threshold, which can generally be derived from the pathogen’s reproduction ratio 460 
R0=1 (Anderson and May, 1981; Bremermann and Pickering, 1983; Bremermann and Thieme, 1989). In 461 
models where pathogen invasion thresholds and exclusion thresholds are coincident, which is the case 462 
here, this reproduction ratio can be used to determine the conditions needed for a pathogen to be 463 
excluded from a host population. Of interest here is the important problem concerning the conditions 464 
under which a host species can evolve in such a way that it falls below this threshold. In the present 465 
work, it is seen that evolving greater resistance (at a cost of lowered fecundity) is not sufficient under 466 
standard adaptive dynamics analysis (with small, rare mutations) to achieve a state where the 467 
population size falls below a level corresponding to R0=1; there is a protective CS singularity preventing 468 
this. However, when this singularity is also ES and is sufficiently close to the exclusion boundary, in the 469 
realistic case where the mutations are not arbitrarily small, this protection may fail. A mutant which 470 
does not itself support the pathogen can arise. Furthermore, this strain can suppress the density of 471 
infected hosts to sufficiently low levels that the infection may be lost due to stochastic effects at low 472 
population numbers. Subsequently, new mutants that arise will be uninfected and a new evolutionary 473 
path will be followed. Such behaviour is seen in the simulations presented here.   474 
 475 
However, as in most previous studies, this result assumes an environment populated by the host and 476 
pathogen only, with secondary species/interactions commonly ignored. However in recent years studies 477 
at a population level have shown that additional interacting species can have a significant effect on the 478 
dynamics of a system (e.g. Greenman and Hoyle, 2010; Haque and Greenhalgh, 2010; Hudson and 479 
Greenman, 1998; Haque, 2010; Venturino, 2010), which in turn causes complications for deriving control 480 
strategies (Greenman and Hoyle, 2010). These interactions still remain relatively ignored at an 481 
evolutionary level. Recent studies by Morozov and Adamson (2011) and Morozov and Best (In Press) 482 
have tried to change this, looking at pathogen evolution in an SI model, where a predator feeds on 483 
infected prey only. They found that the addition of even a simple predator can change the evolutionary 484 
dynamics significantly. This is emphasised even more in the present work where we found an example 485 
where, given specific parameter values, the presence of a predator can create the possibility of 486 
branching points where none were present previously. Significantly, the way in which the predators 487 
affect the exclusion boundaries, R0=1 proves pivotal. Due to the predator, there are now two thresholds 488 
R0I=1 (number of new infections a single infected prey can make in a completely susceptible 489 
environment) and R0P=1 (number of offspring a single predator can produce over its lifetime in prey-only 490 
environment), where the pathogen and the predator respectively can be excluded (can invade) from a 491 
predator-prey-infection environment.  492 
 493 
Although these ratios depend on most of the parameters, a key factor in determining whether the 494 
pathogen or predator is excluded first is , the change in predation experienced by a prey when it 495 
becomes infected (Figure 4). A high value of , where the predator is largely dependent on infected 496 
prey for food, led to the predator being excluded first as resistance decreased the number of infected 497 
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prey and hence the predator’s food source; this result echoes that seen by Morozov and Adamson 498 
(2011). Subsequent evolution depends on the selection pressures in a prey-only SIS system – for 499 
example co-existence of prey and pathogen (Figures 5A-D) or pathogen exclusion (Figure 5E-H). Again, 500 
we found exclusion of the parasite requires finite mutations allowing resistance levels to cross the 501 
corresponding threshold; however exclusion of predators is found to be possible by host evolution by a 502 
parallel mechanism but also in appropriate circumstances by the standard small, rare mutations of 503 
adaptive dynamics theory. A low value of , where the predator mostly consumes uninfected prey, led 504 
to the pathogen being excluded first, as resistance drives down the number of infected prey with the 505 
predator pushing down the susceptible prey. 506 
 507 
Generally throughout we see that if the predator is present, it can go extinct due to host evolution. In 508 
the (final) case where the predator was allowed to co-evolve, it is seen that the predator can prevent its 509 
own extinction by evolving in such a way that it lowers its threshold and allows itself to stay above the 510 
predator reproduction threshold R0P=1. In particular we found that the relative per capita mutation rates 511 
of the predator and prey are key to whether the predator can persist in the population. The 'speed' of 512 
evolution in the two species depends on population sizes, mutation rates and selection gradients 513 
(Dieckmann and Law, 1996; Marrow et al., 1996), and we found that if the predator evolves significantly 514 
'faster' than the prey due to an increased mutation rate, it was able to shift its extinction threshold 515 
sufficiently quickly to prevent the prey driving its extinction. These subtle effects of evolution require 516 
further investigation to fully understand the co-evolutionary dynamics. 517 
 518 
A question that is often raised in these systems, especially at a population studies level, is how the 519 
behaviour would change if the pathogen could infect both prey and predator. Studies have shown that 520 
the resultant behaviour can be more complicated. One population level study by Greenman and Hoyle 521 
(2010) showed that the control maps (plots of invasion/exclusion thresholds in 2 parameter space) can 522 
become ever more complicated and that exclusion boundaries can become very close together 523 
potentially leading to multiple exclusions in quick succession. However more detailed analysis would be 524 
needed to determine the effects of shared-pathogens in an evolutionary sense, and, in particular, to 525 
investigate whether cross species infection levels would allow for a larger potential pool of susceptibles 526 
and make the infection more difficult to exclude, which might perhaps play against the predator.  527 
 528 
Understanding the persistence of pathogens in natural populations is key to the management of many 529 
ecological systems. We have shown here how the evolution of host resistance may drive its pathogen to 530 
extinction and how the shape of the trade-off between resistance and reproduction is crucial to this 531 
possibility. Furthermore, we have shown how this result can be complicated by the presence of an 532 
immune predator, considerably changing the evolutionary outcomes and in some cases producing 533 
opposite results to when species exist alone (e.g. CS switches to non-CS). This alone provides reason why 534 
more studies into complex ecosystems should be carried out. The interactions of all three species can 535 
lead to relatively complex evolutionary dynamics, with the shape of the host’s trade-off and the relative 536 
level of predation experienced by susceptible and infected hosts being key. 537 
 538 
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Appendix A – Sign equivalent form of the fitness 681 
 682 
The invasion matrix for the mutant is given by: 683 
 684 

PcI
qHacPIbqHa

ˆ
ˆˆˆ

DC
BA

     (A.1) 685 
 686 
where B>0 (as a>qH), C>0 and D<0; the sign of A is unknown. The eigenvalues of the invasion matrix are 687 
given by: 688 
 689 

BCDADABCADDADA 4)(5.0)(4)(5.0 , 22  (A.2) 690 
 691 
where the superscript on  represents the sign taken in solution. The discriminant of these is positive 692 
and hence we always have two real eigenvalues. 693 
 694 
As D<0, then it follows that if A<0 then - < 0; if A 0 then it follows that |A+D| |A-D| and therefore that 695 

- < 0. Hence the - eigenvalue will always be negative. In addition it is trivial to show that the other 696 
eigenvalue is always larger, i.e. - < +. Therefore we can say that the eigenvalue + is the maximum 697 
eigenvalue and subsequently the fitness of the invading mutant, which we call s. 698 
 699 
As - <0, we have two options:  700 

1) Non-invasion: s = +<0 and therefore det= - +>0;  701 
2) Invasion: s = +>0 and therefore det= - +<0  702 

Hence the negative of the determinant is sign equivalent to the fitness, s = +. 703 
 704 
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Appendix B – Trade-off and invasion plots (TIPs) 705 
 706 
The method used in this study is a geometric adaptation of adaptive dynamics, namely that of trade-off 707 
and invasion plots (TIPs) (Bowers et al., 2005). Alternative geometric methods to adaptive dynamics 708 
exist (de Mazancourt and Dieckmann, 2004; Rueffler et al., 2004). The advantage of all of these is that 709 
the trade-off is kept at the forefront, something which is of great interest in this work.  710 
 711 
This method takes the fitness ),;ˆ,ˆ( aas  (as given in equation (4)) of a rare mutant strain with 712 

evolving traits )ˆ,ˆ(a  faced with a resident with traits ),(a . The invasion boundary ),ˆ(ˆ 1fa , 713 

between where the mutant can and cannot invade  the resident, is determined by 0),;ˆ,ˆ( aas  714 
(taking )(fa ) and here is given by 715 

IPc
PcbIcPcPbqHf ˆ

ˆ
,ˆ

1      (B.1)

 

716 

A second invasion boundary, ),ˆ(ˆ 2fa , can be gained by solving 0)ˆ,ˆ;,( aas , where the roles 717 
of the mutant and resident are reversed. We do not need the explicit form for this at present. These two 718 
curves are plotted in )ˆ,ˆ(a -space, where ),(a  represents a special point hereby known as an origin. 719 

These invasion boundaries are coincident and tangential at the point ),()ˆ,ˆ( aa .  720 
 721 
The third curve on a TIP is the trade-off curve, )ˆ(ˆ fa . Evolutionary steps result from constructing 722 
TIPs for varying residents on f . For certain , the trade-off is also tangential to the invasion 723 

boundaries; these  are the evolutionary singularities, * . For our model, differentiating (B.1) with 724 

respect to ˆ  gives 725 

2
1

ˆ
1

ˆ IPc

cPPcIf
       (B.2) 726 

Using the fact that )(f  is tangential to the invasion boundary at *ˆ , from (B.2), and the 727 
equilibrium result PcS , we have  728 

2**

***
*1* 1)(       ˆ)(

* H
cPISfff     (B.3) 729 

To determine the nature of an evolutionary singularity we use the relative curvatures (or shapes) of the 730 
three curves at a singularity. The invasion boundaries determine which types of evolutionary 731 
singularities are possible and the trade-off determines which actually occurs.  732 
 733 
To determine the evolutionary stability or ES boundary (Maynard Smith, 1973), we require the locally 734 
possible mutants – those on the trade-off – to be on the appropriate side of the ES (invasion) boundary 735 
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1f . Differentiating (B.2) with respect to ˆ , evaluating at a singularity *ˆ  and using 736 
PcS , gives the right hand side of (A.4) and hence the ES condition as 737 

3*2*

*2**
*

*ˆ
2
1

2
* 12         ˆ 

H
cPISfffES   (B.4) 738 

where 1ˆ/),;ˆ,ˆ(
*

aaassign  in our examples.  739 

 

   740 
To determine whether the singularity is convergent stable or CS (Eshel, 1983), we need to ensure that 741 
the species evolves towards the singularity. The boundary for this is gained by constructing a fourth 742 
curve by taking the mean coordinates of 1f  and 2f  at each value of ˆ . At the evolutionary singularity 743 
this curve has the same gradient as 1f  and 2f ; furthermore its curvature is the mean of that of 1f  and 744 

2f  (Bowers et al., 2005). Hence to be CS the mutants must be on the appropriate side of the boundary 745 
and therefore  746 

*ˆ
2
2

2

2
1

2
*

ˆˆ2
 fffCS       (B.5) 747 

The curvature of the 2f  boundary at a singularity can be calculated using the curvature of 1f  and the 748 
mixed derivative of 1f  (Bowers et al., 2005) in the form 749 

*

1
2

*
2
1

2

*
2
2

2

ˆ2ˆˆ
fff

        (B.6) 750 

Calculating the mixed derivative of 1f , by differentiating (B.2) with respect to  and evaluating at a 751 
singularity, and using PcS  and (B.3), gives 752 

111
ˆ 323

*

1
2

SHIScPP
H

cI
H

IScPSIf
 (B.7) 753 

 754 
Predator-free environment 755 
To explore this further, we first look at the case where the prey exists in a predator free environment, 756 
hence 0P  and 0P . The derivative of the susceptible population is /SS , as 757 

/S . Differentiating dH/dt in (1) through with respect to , evaluating at equilibrium and solving 758 
for 0I , using (B.3) gives 759 
 760 

SqHH
ISHqSf

SqH
qSHI

232

22
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2
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*
ˆ                   (B.10) 761 
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We can put this, and the curvature of 1f  from (B.4), into (B.6) to get the curvature of 2f , and hence use 762 
(B.5) to get the CS condition. Combinations of ES and CS determine the nature of the evolutionary 763 
singularity (Metz et al., 1996a; Geritz et al., 1998; Bowers et al., 2005).  764 
 765 
An example of how the invasion boundaries appear when plotted on a singular TIP is given in Fig. B.1. 766 
 767 
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 768 
Fig. B.1: A typical Trade-off and Invasion Plot for a trade-off between reproduction a  and transmission 769 

. Branching points are not possible for this plot as the 1f  invasion boundary is above the 2f  so that a 770 
region where the singularity is CS but not ES does not occur. (If the two invasion boundaries were 771 
swapped over then the Garden of Eden (ES-repellor) region would be replaced by a branching region.) 772 
The parameter values are 5.0q , 2.0b , 2.0 , 2.0 , 0c , 2*a , 1* . 773 
 774 
 775 
Predator-prey-infection 776 
To gain the results for Fig. 3, we require the CS condition for when both the predator and the infection 777 
are present, i.e. when 0P  (and hence 0dISc ) and 0I  (and hence 778 

0PcS ). Returning to the original dynamical equations in (1) and differentiating the 779 
predator and infection equations through with respect to   we can find the derivatives of S and P as  780 

 
IS

      and     
I

cc
SP

     (B.9) 781 

Differentiating the dynamical equation for the total prey population gives 782 

02 IScPISPcIbqHaHH
d
da

dt
dH

 (B.10) 783 

Evaluating at an evolutionary singularity, and hence using (A.3) for dda /  (and solving for I / ), we 784 
get  785 
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ISbqHaH
ISHcPISI

12
1

     (B.11) 786 

Substituting (A.9) into the mixed derivative from (A.8) gives 787 
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788 

 789 
Appendix C – Numerical Simulations 790 
 791 
Simulation analysis is used to verify the theoretical results about the position and nature of the singular 792 
point. In the simulations, the population dynamics were numerically solved for a fixed time ( at  ) 793 
according to (1) initially with a monomorphic population. Mutant strains, those we defined by trait 794 
values ˆ  (and )ˆ(ˆ fa ), were generated by small deviations around the current trait  795 
(and )(fa ) (the choice of current strain from which to mutate depends on its relative density) and 796 
introduced at low density. The population dynamics were then solved for a further time at  with strains 797 
whose total population density fell below a (very low) threshold considered extinct and removed; in 798 
addition, and a new feature for this study, if the total infection (predator) level across all strains fell 799 
below this threshold, the pathogen (predator) was considered extinct and removed, but the susceptible 800 
counterparts remain. After this removal, new mutations were created and the procedure repeats. In this 801 
way, the parameter  (and therefore a via the trade-off) could evolve. One difference between the 802 
theory and simulations is that the simulations are not mutation-limited (i.e. new mutants could evolve 803 
before previous mutants had reached equilibrium or gone extinct). Although this could be overcome by 804 
increasing at , this set-up has generally been shown to correctly approximate the evolutionary behaviour 805 
predicted by adaptive dynamics in studies where the dynamical attractor is an equilibrium point (see, for 806 
example, Hoyle et al. 2011). 807 
 808 
Appendix D - Discontinuity in the CS condition 809 
 810 
By combining (B.9) and (B.11), it can be shown that as c goes towards the critical value that allows the 811 
predator to invade from above, and hence as 0P , the derivative /S  does not equal the 812 
equivalent derivative if you were to approach that same point from the other direction (see result near 813 
(B.7)): 814 
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