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Abstract 25 

Commercial plantations are primarily managed for timber production, and are frequently considered 26 

poor for biodiversity, particularly for mammalian species. Bats, which constitute one fifth of 27 

mammal species worldwide, have undergone large declines throughout Europe, most likely due to 28 

widespread habitat loss and degradation. Bat use of modified landscapes such as urban or 29 

agricultural environments has been relatively well studied, however, intensively managed 30 

plantations have received less attention, particularly in Europe. We assessed three of the largest, 31 

most intensively managed plantations in the UK for the occurrence of bats, activity levels and 32 

relative abundance in response to environmental characteristics at multiple spatial scales, using an 33 

information theoretic approach. We recorded or captured nine species; Pipistrellus pipistrellus and 34 

P. pygmaeus were the most commonly recorded species on acoustic detectors and female P. 35 

pygmaeus were the most commonly captured. The influence of environmental characteristics on bat 36 

activity varied by species or genus, although all bat species avoided dense stands. Occurrence and 37 

activity of clutter and edge adapted species were associated with lower stand densities and more 38 

heterogeneous landscapes whereas open adapted bats were more likely to be recorded at felled 39 

stands and less likely in areas that were predominantly mature conifer woodland. In addition, 40 

despite morphological similarities, P. pipstrellus and P. pygmaeus were found foraging in different 41 

parts of the plantation. This study demonstrates that with sympathetic management, non-native 42 

conifer plantations may have an important role in maintaining and supporting bat populations, 43 

particularly for Pipistrellus spp.  44 

1. Introduction 45 

Unsustainable exploitation of native forests is considered one of the greatest threats to biodiversity 46 

and has led to the fragmentation and degradation of forests worldwide (Anon., 2011). Demand for 47 

wood-based products is likely to increase in the future and there is a growing need for this to be met 48 

by sources other than primary forests. Plantation forests, defined as cultivated forest ecosystems 49 

established by planting and/or seeding in the process of afforestation and reforestation, are 50 

economically important worldwide as sustainable sources of wood fibre become more necessary 51 

(Carnus et al., 2003). Widespread historical deforestation, post war planting initiatives and a need 52 

for wood products meant many countries established plantations during the 20th Century. Globally, 53 

plantation forests cover 54.3 million hectares with temperate regions such as the US, Japan, Oceania 54 

and Europe accounting for more than 50% of plantation areas and demand for wood products is 55 

predicted to increase (FSC, 2012; Honnay, 2004). Due to their lack of structural complexity, intensive 56 

management, and often single or low species composition, plantations are often considered to be 57 

devoid of biodiversity (Bremer and Farley, 2010) although there is evidence that for some taxa this is 58 

not the case (Humphrey et al., 2003). 59 

Maintaining and restoring biodiversity is a key tenet in sustainable ecosystem management, the 60 

paradigm currently guiding habitat management practices across Europe, North America and 61 

Australasia (Ober and Hayes, 2010; Paquette and Messier, 2009). This is driven by concern about 62 

world-wide declines in species and populations across a range of taxa (Dirzo et al., 2014) and 63 

recognition that much of this is driven by habitat loss and fragmentation, caused by anthropogenic 64 

change (Thomas et al., 2004). In many countries the timber industry has responded by shifting focus 65 

from purely timber production to one which encourages sustainable practices that promote both 66 

wildlife conservation and sustainable timber yields (FSC, 2012). In Europe this has been driven by 67 

policy change initiated as a result of the Convention of Biological Diversity, requiring explicit 68 
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consideration of environmental, economic and social objectives and a multi-purpose approach to 69 

forestry (Watts et al., 2008)  70 

Previous studies have suggested that species diversity will be positively influenced if management 71 

operations such as felling mimic natural disturbances, for example by creating multi-aged rather 72 

than even aged plantations (Bardat and Aubert, 2007). Multi-aged forest systems can support a 73 

higher diversity of species through the provision of different habitats for a wide range of flora and 74 

fauna, from those reliant on early successional habitats e.g. some song birds (Sweeney et al., 2010) 75 

to species dependent on mature habitats e.g. canopy dwelling Coleoptera (Ohsawa, 2007). As a 76 

result, many forest managers are moving away from practices such as clear felling (the removal of all 77 

trees within a stand, a forestry unit denoting a distinct area of woodland that is composed of 78 

uniform group of trees in terms of species composition, age class distribution and size class 79 

distribution) to more targeted harvesting approaches such as continuous cover forestry 80 

(Lindenmayer and Hobbs, 2004; Pawson et al., 2006). Other forest management practices such as 81 

retention of stands with longer rotations, leaving dead wood (Humphrey et al., 2003) and 82 

restructuring plantations have had positive impacts for a wide range of taxa (e.g. Oxbrough et al. 83 

2010).  84 

Bats have undergone major historical declines across many temperate regions, in part due to 85 

widespread habitat loss (Walsh et al., 1996). The majority of temperate bat species rely on forest for 86 

at least part of their life cycle (Altringham, 2013), but while bat associations with native woodlands 87 

are well established (e.g Boughey et al., 2011; Dietz et al., 2009), less is known about use of 88 

plantation habitats. This paucity of research is perhaps in response to many habitat studies showing 89 

active avoidance of plantations by individual species (Boughey et al., 2011; Russo and Jones, 2003; 90 

Smith and Racey, 2008; Walsh et al., 1996). However, there is growing evidence from Europe 91 

(Charbonnier et al., 2016; Cistrone et al., 2015; Cruz et al., 2016; Mortimer, 2006; Pereira et al., 92 

2016; Russo et al., 2010), New Zealand and Australia (Borkin and Parsons, 2011; Borkin et al., 2011; 93 

Burgar et al., 2015) and North America (Morris et al., 2010; Patriquin and Barclay, 2003) that 94 

suggests that bat use of plantations may be more widespread than previously assumed.  While 95 

management for biodiversity and protection of European Protected Species is a key requirement for 96 

European forestry management (Boye & Dietz 2005), the lack of broad scale studies in European 97 

plantation forests means that there is currently insufficient information for forest managers to 98 

ensure sufficient and appropriate mitigation is carried out (Russo et al., 2016). Understanding 99 

whether there are general patterns that underpin how highly mobile species make use of plantations 100 

may be an important strategy for protecting against future species declines.  101 

Here, we examine the extent to which bat species use plantation woodlands in northern Britain by 102 

assessing the influence of various environmental characteristics on bat abundance and activity at 103 

multiple spatial scales. Specifically, our objectives were to: 104 

1. Assess the composition of bat populations in commercial coniferous plantations.  105 

2. Identify local and landscape scale variables which influence occurrence, abundance and 106 

activity, and how this varies between species. 107 

3. Compare how two morphologically similar species (Pipistrellus pipistrellus and P. pygmaeus) 108 

respond to plantation characteristics. 109 

4. Use these findings to give appropriate management recommendations.  110 
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Nine of the seventeen species resident in Britain occur within the study area, including Myotis, 111 

Nyctalus and Pipistrellus spp. These can be categorised into different foraging “guilds”, bats with 112 

similarities in morphology, hunting technique and echolocation call structure (Schnitzler et al., 2003). 113 

Bats in the genus Nyctalus forage primarily in open spaces (open adapted) compared to M. nattereri 114 

(clutter adapted) or P. pipistrellus (edge adapted) and are therefore likely to respond differently to 115 

both local and landscape scale characteristics. Pipistrellus pipistrellus and P. pygmaeus are of 116 

particular interest as they are common, sympatric species which share morphological and dietary 117 

similarities (Barlow, 1997) and may use habitat selection as a mechanism for resource partitioning. 118 

2. Methods 119 

The study was conducted in three plantation forests in Central and Southern Scotland and Northern 120 

England (Figure 1). We chose forests for their large size (ranging from 30,000 ha in Cowal and 121 

Trossachs to 60,000 ha in Kielder and 114,000 ha in Galloway), high productivity and the 122 

predominance of Picea sitchensis (Sitka spruce), the most commonly planted and intensively 123 

managed coniferous tree species in Europe (Boye and Dietz, 2005). Within each forest, multiple sites 124 

were selected using a Forestry Commission sub-compartment database within a Geographic 125 

Information System (GIS) (ArcMap 10.1, ESRI) based on stand age and species composition (Figure 126 

1).   127 

In total, seven sites were surveyed in Cowal and Trossachs, 12 in Galloway Forest and 12 in Kielder 128 

Forest. Where possible, a stand of trees at each management stage (from a total of six management 129 

stages: see appendix 1) were selected in each site, which was a maximum of 2km2 in size and at least 130 

4km from another site. Not all sites had all stands of each management stage resulting in an 131 

unbalanced design of between four and six stands per site and a total of 285 stands across 31 sites 132 

(Figure 1).  133 

2.1 Bat abundance surveys 134 

For some species identification from echolocation calls is not possible (Schnitzler et al., 2003), 135 

therefore capturing individuals for inspection in the hand can be the only way to confirm species 136 

occurrence, while also allowing confirmation of reproductive status (Hill and Greenaway, 2005). We 137 

assessed relative bat abundance (number of captures per site) by placing an Austbat harp trap (2.4 x 138 

1.8m) and three Ecotone mist nets (2.4 x 6m) at one location in each site to trap bats. The location 139 

was selected based on ease of access and nets were placed across potential flight lines (e.g. tracks or 140 

rides) between either two mature stands or extending from the edge of a mature stand into felled 141 

stands. Nets were placed at least 50m from each other, with placement dictated by the plantation 142 

structure and deliberately chosen to maximise capture rates. We used an acoustic lure (The Autobat, 143 

Sussex University, Brighton, UK) with four different synthesised bat calls (Pipistrellus spp mix, a 144 

mixture of Myotis sp., Nyctalus leisleri and M. nattereri), which has been demonstrated to greatly 145 

improve capture rates (Hill and Greenaway, 2005) and attracts a variety of different bat species 146 

present in the study area (following Lintott et al. 2014). Each call was played at each trap for 15 147 

minutes, with the lure moved between traps every 30 minutes. Traps were checked every 15 148 

minutes and any captured bats were identified to species, weighed, measured, aged, sexed, 149 

assessed for reproductive status and marked temporarily by fur clipping. All captures were carried 150 

out under licences 19584 and 20131093 (Scottish Natural Heritage, Natural England) 151 
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2.2 Bat acoustic surveys 152 

All surveys were carried out between 12th June and 3rd September 2013. We surveyed all the stands 153 

within a site simultaneously and for a single night, starting 30 minutes after sunset to ensure that 154 

recorded individuals would be actively foraging rather than commuting from roosts. Surveys finished 155 

4 hours later as this represents the length of the shortest night in this area during summer. Bat 156 

activity was quantified using a SongMeter SM2 Bat+ (Wildlife Acoustics, Inc., Concord, MA) using two 157 

microphones at a height of 1m and positioned at a 45 degree angle. One microphone was placed at 158 

the stand edge pointing towards adjacent tracks or rides; the other was positioned 20 – 40m into the 159 

trees (depending on ease of access) pointing towards the stand interior, allowing simultaneous 160 

recording of both the stand edge and interior.  161 

2.3 Bat call analysis 162 

We identified all calls manually to species or genus and counted the number of bat passes (defined 163 

as at least 2 echolocation calls within one second of each other) resulting in a measure of activity per 164 

four-hour recording period at each stand edge and interior. Pipistrellus species can be separated due 165 

to differences in the characteristic frequency of the call (Fc = frequency of the right hand end of the 166 

flattest part of the call; Russ, 2012) and the call shape. Bats in the genus Myotis have a similar call 167 

structure and as such were identified only to genus. It can be difficult to distinguish between 168 

Nyctalus calls in cluttered environments (Schnitzler et al., 2003), so again these were only identified 169 

to genus. Plecotus auritus have very quiet calls, so their occurrence will be underestimated by using 170 

acoustic recordings alone. Due to low activity levels of Nyctalus and Myotis species, we were unable 171 

to analyse activity and assessed presence / absence instead. 172 

2.4 Local habitat characteristics 173 

We carried out vegetation surveys in two 0.01 ha plots around each microphone point within two 174 

weeks of bat surveys. Due to the homogenous nature of stands these plots were considered 175 

representative of the stand as a whole. At each plot we recorded the total number of trees with 176 

diameter at breast height greater than 7 cm (stand density), and recorded the dominant ground 177 

cover according to the following categories: bare, needle, moss, grass, tussock, bracken, flowering 178 

plant. We also recorded the total number of standing dead trees (snags) in each plot, as these can be 179 

associated with higher species richness and abundance of a variety of taxa in managed forests and 180 

provide potential roost sites for bats (Elmore et al., 2005). However, it was very rare to see standing 181 

dead wood that was appropriate for bat roosts at any of our study sites. We assessed the amount of 182 

dead wood on the forest floor using the following scale: 0 – no coarse woody debris, 1 – small twigs, 183 

2 – large twigs and branches over 7cm in diameter, 3 – both large and small branches. Understory 184 

vegetation height (defined as all ground vegetation not including trees) was measured at 10 evenly 185 

spaced points across the radius of the circle and canopy cover was recorded at each point using a 186 

sighting tube with an internal crosshair; if the crosshair intersected with any canopy vegetation 187 

presence of canopy cover was recorded and converted to a percentage cover score (Lintott et al., 188 

2015). We also recorded stand age (as years since planting). 189 

2.5 Landscape analysis 190 

We used Arcmap 10.1 to determine landscape scale features within 250, 500, 1000, 2000, 3000 and 191 

4000m of the centre point of each site. The smaller scale allows the extraction of site-specific 192 

characteristics, whereas the larger scale reflects the home range of low and intermediate vagility 193 

species such as P. pygmaeus (Lintott et al., 2015). Data from the OS Mastermap (EDINA, 2014) was 194 
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combined with a high resolution Forestry Commission database specific to the study areas to 195 

reclassify the landscape within each specified distance into the following eight categories: 1. Human 196 

infrastructure (e.g. buildings), 2. Felled (recently felled or conifers < 5 years old), 3. Broadleaved 197 

trees, 4. Thicket conifer (between 5 and 20 years old), 5. Closed canopy conifer (> 20 years old), 6. 198 

Water (tidal or inland), 7. Open (heathland, upland areas, scree), 8. Tracks and roads. Fragstats 4.2 199 

(Mcgarigal, 2014) was used to calculate the proportion of land covered by each category and 200 

Shannon’s diversity index (a measure of landscape heterogeneity which increases as the number of 201 

different patch types increases) within each buffer. Additionally, the Largest Patch Index (a measure 202 

of habitat dominance, LPI is the percentage of the landscape comprising the largest patch of any of 203 

the habitats outlined above), Euclidian Nearest Neighbour distance (ENN, mean value of ENN 204 

distances between all patches of a type in a landscape), and total Edge Density (ED, the sum of the 205 

lengths of all stand edge segments divided by the total landscape area) were calculated as previous 206 

studies have shown these influence bat foraging activity (Fuentes-Montemayor et al., 2013; Lintott 207 

et al., 2015). Additional features were measured as proxies for either water, roost or food availability 208 

(Hayes and Loeb, 2007), the full list of local and landscape variables considered in analyses is 209 

outlined in appendix 2.  210 

2.6 Statistical analysis 211 

All analysis was carried out in R Studio using R version 3.2.2 (R core development team), using the 212 

lme4, effects, MuMIn, ggplot2, arm and glmmADMB packages. Analysis involved four stages:  213 

1). To select the local characteristics to be entered into the maximal model, we constructed species- 214 

or genus-specific models, which explained variation in bat responses (occurrence, activity or 215 

abundance of each species or genus separately) between stands. A generalised linear mixed effect 216 

model (GLMM), with site nested in forest as a random effect was used to account for differences 217 

due to geographical location, with the error structure dependent on the species or genus being 218 

tested (see step 4 for more details). We tested models consisting of either stand type or quantitative 219 

descriptors of stand type (e.g. stand density, % canopy cover, supplementary data, appendix 2), 220 

selecting those with the highest F statistic to be entered into the maximal model (step 4).  221 

2). To select the landscape variables to be entered into the maximal model we tested land cover 222 

type parameters (e.g. proportion of land cover and LPI, appendix 2) at multiple spatial scales (250m 223 

– 4km; see section 2.5) on bat response variables (occurrence, activity or abundance of each species 224 

or genus separately) using linear regression models, as no random factor was required. Individual 225 

models for each landscape parameter at each scale were performed and R2 values calculated to 226 

quantify the amount of variation in the data explained; the variables with the highest R2 at the 227 

relevant scale were chosen for inclusion. 228 

3). All predictor variables selected for inclusion in the maximal model were tested for collinearity, 229 

retaining those which were not collinear (Pearson’s correlation < 0.5). See appendix 3 for description 230 

of model construction. 231 

4). Maximal models; all continuous predictors included in the maximal models were scaled and 232 

centred around a mean of zero with a standard deviation of 1 to allow direct comparisons between 233 

the estimates regardless of differences in scale. All possible combinations of variables within the 234 

maximal model were ranked using Akaike’s Information Criterion adjusted for small samples (AICc) 235 

(Burnham and Anderson, 2002). Model fit was assessed using change in AIC and Akaike weights. As 236 
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there was no single best model (change in AIC greater than 4), we accounted for model uncertainty 237 

by computing model averaged predictions and standard errors across the models retained within a 238 

95% Akaike weights confidence set (Burnham and Anderson, 2002). The full model averaged 239 

coefficients with shrinkage are presented to reduce model selection bias from parameters which do 240 

not appear in all the “best” models (Burnham and Anderson, 2002). Where possible, the marginal R2 241 

is presented following Nakagawa & Schielzeth 2013, which quantifies the proportion of variance 242 

explained by the fixed effects without considering the random effects. Predictions from model 243 

outputs are given as means with 95% confidence intervals. Using a mixed effect generalised linear 244 

modelling approach allows us to account for a lack of independence between stands within sites, 245 

while controlling for other influential variables, and the model averaging approach allows 246 

assessment of the influence of variables across multiple models when no single best model is found.   247 

We only modelled abundance for P. pygmaeus, as we caught insufficient numbers of other bat 248 

species. Pipistrellus pygmaeus abundance was modelled using a Poisson distribution, P. pygmaeus 249 

and P. pipstrellus activity using negative binomial distributions, and Nyctalus and Myotis occurrence 250 

using binomial GLMMs (objective 2) as activity was low for these species. R2 was used as a measure 251 

of explanatory power for all models except those with negative binomial error distributions, for 252 

which we used F statistics. 253 

We assessed differential responses to plantation management for the two Pipistrellus spp. due to an 254 

ecological interest in understanding how morphologically similar species may partition resources 255 

(objective 3). We used a GLMM with a binomial distribution to determine the relative effects of 256 

landscape and local characteristics on P. pygmaeus in comparison to P. pipistrellus. The model was 257 

run with the proportion of P. pygmaeus to total identified Pipistrellus passes at each stand location. 258 

An equal proportion of P. pipistrellus and P. pygmaeus passes indicates stands where activity was 259 

similar and unequal proportions where one species dominates compared to the other. After 260 

examining the data, we included an interaction between stand type and distance with water, in 261 

addition to other measures as previous work has shown P. pygmaeus have a preference for riverine 262 

habitats compared to P. pipistrellus (Davidson-Watts and Jones, 2005; Nicholls and Racey, 2006). We 263 

also included stand age as a quadratic term to allow for a non linear relationship and an interaction 264 

between temperature and altitude as bats may forage at higher altitude in warmer weather. In 265 

summary, models were constructed for the following bat responses: P. pygmaeus abundance; P. 266 

pygmaeus and P. pipistrellus activity (passes per four hour period); occurrence of Myotis and 267 

Nyctalus; proportion of P. pygmaeus to P. pipistrellus activity. 268 

Finally, we tested the influence of the acoustic lure on our bat capture rates using Wilcoxon’s paired 269 

test. 270 

3. Results 271 

3.1 Bat use of commercial coniferous plantations 272 

We caught a total of 85 bats between May and August 2013 (sites = 31, Table 1); capture rates were 273 

considerably improved by use of an acoustic lure (Wilcoxon’s paired test, n= 31, w = 665, p = 0.006). 274 

Over 80% of bats were P. pygmaeus (41 adults, 28 juveniles). Of the adult bats the majority (28) 275 

were females, of which 84% were either pregnant, lactating or post lactation. We also caught a small 276 

number of other species including P. pipistrellus and N. leisleri lactating females (Table 1) and 277 

juvenile N. noctula, N. leisleri, P. pygmaeus and M. nattereri.  278 
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We recorded a total of 19,222 passes during 1,104 hours of acoustic sampling (Table 1); bats were 279 

recorded within all stand types and at all sites. The majority of calls were Pipistrellus spp. (some 280 

could not be identified to species), but we also recorded Myotis and Nyctalus. In addition both P. 281 

auritus and P. nathusius were recorded in plantations but in very low numbers, and were excluded 282 

from further analysis (Table 1).  283 

3.2 Factors affecting bat abundance and activity in coniferous plantations  284 

Pipistrellus pygmaeus abundance was highest in sites closer to buildings (Figure 2D), with mean 285 

captures falling from 3.9 (95% Confidence Interval 2.3 – 7.4) in sites within 400m of buildings to 0.8 286 

(0.3 – 1.6) in sites more than 2km from buildings. There was a trend towards higher abundance in 287 

sites with a higher landscape heterogeneity but the effect size was small (Table 2). Both local and 288 

landscape scale factors influenced P. pygmaeus activity in coniferous plantations (Table 3); activity 289 

was highest at stand edges and stands surrounded by a relatively low proportion of open ground, 290 

falling by 90% as the percentage of surrounding open space increased from 30 to 65% (Figure 2A). 291 

Activity of P. pygmaeus decreased with increasing stand density falling from 29 (16 – 53) passes in 292 

stands of less than 50 trees ha-1, to 7 (3 – 15) passes in stands of 3000 trees ha-1 (Figure 2B). Activity 293 

was also lower (11; 5 – 23 passes) in stands over 50 years old, compared to 25 (14 – 44) passes in 294 

clear felled stands (Figure 2C).  295 

Pipistrellus pipistrellus was most influenced by stand type, with the highest activity occurring in 296 

felled areas and at stand edges compared to stand interiors, apart from at felled stands where P. 297 

pipistrellus used both stand edges and stand interiors (Table 3).  298 

The probability of recording Myotis sp. was greater at stand edges compared to interiors (Table 4) 299 

and was strongly influenced by stand density; there was a 0.7 (0.5 – 0.9) likelihood of recording 300 

Myotis in stands with fewer than 50 trees ha-1 which fell to a 0.3 (0.1 – 0.6) in denser stands (>2750 301 

trees ha-1). 302 

Occurrence of Nyctalus in plantations was influenced by both local and the landscape factors; this 303 

group were most likely to be recorded at the edge of felled stands and least likely to be recorded in 304 

stand interiors, particularly stands where canopy closure has occurred (“mature” and “thinned” 305 

stands; see appendix 1). At the landscape scale, as distance between patches of closed canopy 306 

conifer increased, the likelihood of recording Nyctalus species also increased from 0.1 (0.0 – 0.3) in 307 

stands within 100m of closed canopy cover to 0.7 (0.3 – 0.9) in stands with more than 1km between 308 

mature conifer stands (Figure 3A). Nyctalus were also less likely to be recorded in stands in which 309 

water is the largest patch in the surrounding landscape (Table 4). Nyctalus species responded 310 

negatively to the built environment; in less populated areas (fewer than 50 houses within 4km) there 311 

was a 60% (28 – 85%) likelihood of recording Nyctalus but this fell to 2% (0.2 – 32%)  likelihood of 312 

recording Nyctalus in stands with more than 1500 buildings within 4km (Figure 3B).  313 

3.3 Differential use of plantations by P. pygmaeus and P. pipistrellus 314 

Proximity to broadleaved woodland was the most influential variable explaining differences in 315 

activity between P. pygmaeus and P. pipistrellus (Table 5). At stands close to broadleaved woodland 316 

(< 1km), approximately 40% (20 – 62) of activity was P. pygmaeus compared to P. pipistrellus, rising 317 

to nearer 80% (60 – 91) in stands further away (~  4km) from broadleaved woodland (4A). A higher 318 

proportion of P. pygmaeus to P. pipistrellus calls was predicted in felled or freshly planted stands (< 319 

5 years) and older (60+ years) stands but was approximately equal for those between 20 to 40 years 320 



10 
 

(Figure 4B). Stands close to buildings had higher P. pygmaeus activity (0.68; 0.46 – 0.84) compared to 321 

those over 2.5km from buildings which had higher P. pipistrellus activity (0.36; 0.18 – 0.59, Figure 322 

4C). Finally, there was a trend for P. pygmaeus to dominate in stands close to water, and P. 323 

pipistrellus in stands > 1km from water, particularly in felled areas (Table 5; Figure 4D).  324 

4. Discussion 325 

Plantation woodlands have been viewed as “green deserts”, often presumed to be hostile to wildlife 326 

and of little intrinsic value for biodiversity (Gardner, 2012). However, as most bat species rely on 327 

forests during their life cycle, understanding how forestry management impacts bat use of 328 

plantations is highly important for bat conservation (Russo et al., 2016), particularly as plantation 329 

landscapes are receiving growing interest as sites of alternative energy generation. In this study we 330 

found a wide diversity of bat species used commercial plantations, with edge, clutter and open 331 

adapted foragers detected. However, the extent of plantation use depended on both local and 332 

landscape habitat composition, and varied between species and species’ guilds.  333 

4.1 Composition of bat populations in commercial coniferous plantations: 334 

Relative abundance, assessed through captures, was generally low in comparison to studies in a 335 

similar geographical area (Fuentes-Montemayor et al. 2013; Lintott et al. 2015). Despite the fact that 336 

levels of activity of P. pygmaeus and P. pipistrellus were very similar, P. pipistrellus was under 337 

represented in the capture records. Lintott et al (2014) found comparable capture rates when using 338 

a lure for both P. pygmaeus and P. pipistrellus in a similar geographical region, therefore it is unlikely 339 

that the difference in capture rate in this study is due to capture bias from the acoustic lure. Rather 340 

this may be in part due to higher P. pipistrellus activity in felled and open areas which we did not 341 

target for catching due to the lack of clearly defined flight lines. Nevertheless, it is evident that we 342 

cannot use capture data for P. pipistrellus to infer relative abundance. Analyses using the capture 343 

data have been restricted to P. pygmaeus, as a previous, larger scale, study indicated that measures 344 

of abundance using the lure was complementary to activity levels; Lintott et al. 2014. 345 

This study indicates that plantation woodlands support the foraging activities of breeding 346 

populations of P. pygmaeus (and potentially P. pipistrellus and N. noctula), which are likely to roost 347 

in nearby buildings (Altringham et al., 1996) as we caught relatively high numbers of lactating 348 

females. However, we found no evidence that breeding colonies of forest specialist bats such as 349 

Myotis and Plecotus species are using plantation woodlands.  The lack of woodland specialists in 350 

plantations has been reported from other studies and has been attributed to the paucity of 351 

appropriate natural roost structures such as tree cavities (Bender et al., 2015; Burgar et al., 2015; 352 

Pereira et al., 2016; Rodríguez-San Pedro and Simonetti, 2015; Russo et al., 2010). Although standing 353 

dead wood is retained as part of forestry operations, we saw no evidence of any standing dead 354 

wood being appropriate for roosting. In addition, we saw no evidence of any tree holes, rot or 355 

damage in Picea sitchensis which could be used as a potential roost, and found no evidence of 356 

lactating female P. pygmaeus using (Picea sitchensis) as temporary roosts, as part of a later radio 357 

tracking study (Kirkpatrick, unpublished data). Myotis species such as M. nattereri, M. daubentoni 358 

and M. mystacinus roost switch regularly and use a combination of tree holes, man-made structures 359 

such as bridges, and occasionally bat boxes (Altringham et al., 1996), which were uncommon in the 360 

plantations surveyed for this study (pers. obs). Therefore, it is highly likely that the lack of 361 

appropriate roosting structures for forest specialist bats is responsible for the sex specific differences 362 

in bat diversity and abundance we observed.  363 



11 
 

4.2 Responses of bats to features at the local scale: 364 

In this study, although bat associations with plantation habitat features separated into two broad 365 

guilds (those using more complex habitats such as P. pygmaeus and Myotis spp., and open space 366 

foragers such as Nyctalus and to some extent P. pipistrellus), all species preferentially used stand 367 

edges. Edges may allow both clutter tolerant and clutter sensitive bats access in and around 368 

different areas of the plantation (Heer et al., 2015; Hein et al., 2009; Rodríguez-San Pedro and 369 

Simonetti, 2014), provide protection from wind for weak flying Diptera or act as windbreaks 370 

collecting airborne insects blown in from adjacent open or felled areas and also provide protection 371 

from predators (Nicholls and Racey, 2006a; Verboom and Spoelstra, 1999). The exception was at 372 

felled stands which were used by both open and edge-space foragers such as Nyctalus and P. 373 

pipistrellus. Pipistrellus pygmaeus foraged more near water and in older stands compared to P. 374 

pipistrellus which more commonly used areas near to broadleaved woodland, further from buildings 375 

or water, particularly felled stands. Whilst there are small differences in the diet of the two 376 

pipistrelle species (Barlow 1997), both primarily feed on Nematoceran Diptera; a parallel study not 377 

presented here (Kirkpatrick, unpublished data) found no difference in the abundance of this group 378 

between stand types within plantations. Therefore, prey abundance does not appear to be driving 379 

the within plantation differences in foraging activity we see here. Rather, a high dipteran abundance 380 

may attract Pipistrellus spp. to plantations, but within plantations the two different species 381 

segregate based on local stand characteristics and different foraging styles, such as the well 382 

documented association of P. pygmaeus with riverine habitats (Davidson-Watts and Jones, 2005; 383 

Nicholls and Racey, 2006). 384 

Activity of P. pygmaeus and occurrence of Myotis spp. decreased with increasing stand density, 385 

being highest at felled stands and decreasing at thin and thicket aged stands which are harder to 386 

negotiate (Dietz et al., 2009; Jung et al., 2012). Adams and Law (2011) suggested that thinning to a 387 

threshold of below 1100 stems ha-1 would benefit bat species in Australian plantation forests, with 388 

other studies from Australia and America supporting this recommendation (Bender et al., 2015; 389 

Blakey et al., 2016; Cistrone et al., 2015; Cox et al., 2016; Morris et al., 2010; Patriquin and Barclay, 390 

2003). We were unable to directly test the impacts of thinning as mechanical thinning was rare in 391 

our study system but as the average density of mature stands was 1200 stems ha-1 and P. pygmaeus 392 

activity was predicted to fall by a third in stands over 1000 stems ha -1, it is likely that thinning would 393 

be beneficial.  394 

4.3 Responses of bats to features at the landscape scale 395 

In general, bat species or genera had stronger responses to local rather than landscape features. 396 

However, P. pygmaeus responded strongly and negatively to the proportion of open land within 3 397 

km, which was strongly correlated with increased landscape heterogeneity. Firstly, P. pygmaeus 398 

distinguished between open ground (i.e. moorland or upland) compared to felled land. Structurally, 399 

felled stands and open areas are similar, so access to prey and exposure to predators will be similar 400 

in both land cover types. However, felled stands may support different prey abundance and diversity 401 

than open areas. Felling causes soil disturbance and results in a boggy environment which may be a 402 

better breeding ground for Nematoceran Diptera (Blackwell et al., 1994). Landscapes with a higher 403 

proportion of open ground may have a lower proportion of suitable edge habitats and linear 404 

features which P. pygmaeus may use for commuting into and through plantations (Law et al., 2015). 405 

Bender et al (2015) found that most species specific bat occupancy and activity was related to stand 406 

level, rather than landscape level features, similarly to Erickson et al (2003).  The lack of strong 407 
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associations with landscape at larger spatial scales may reflect the fact that bats do not perceive 408 

different management stages in plantations as inhospitable habitat (Bender et al., 2015; Heer et al., 409 

2015), compared to woodland patches within an agricultural or urban matrix (e.g. agricultural 410 

dominated landscape; Fuentes-Montemayor et al., 2013; urban dominated landscape; Lintott et al., 411 

2015). In contrast, the likelihood of detecting Nyctalus was higher in stands surrounded by a lower 412 

proportion of mature conifer. Nyctalus are large, fast flying bats which forage by gleaning in open 413 

habitats and will avoid cluttered habitats such as mature conifer (Russ, 2012). 414 

4.4 Management implications for commercial coniferous plantations 415 

The lack of information regarding bat use of commercial plantations in Europe means that current 416 

management recommendations are sparse and predominantly drawn from research in America and 417 

Australia (e.g. Bender et al., 2015; Blakey et al., 2016; Borkin and Parsons, 2011; Heer et al., 2015). 418 

Although plantation management regimes can vary markedly between countries resulting in 419 

differences in composition and structure, we have outlined a number of recommendations likely to 420 

benefit bat species across a range of plantation forests: 421 

1. Increasing roost availability: it is likely that roost rather than food availability is 422 

constraining the use of commercial plantations for many bat species. We saw no evidence of 423 

suitable roosting features in stands of Picea sitchensis, although other conifer species such as Pinus 424 

nigra can house maternity colonies of M. nattereri (Mortimer, 2006). Therefore, although felling 425 

operations have been shown to reduce colony size and available roosting habitat in Eucalyptus 426 

plantations in New Zealand (Borkin et al., 2011), it is unlikely that felling directly causes roost loss or 427 

increased mortality in Picea sitchensis plantations. In fact, in the current study Pipistrellus and 428 

Nyctalus species preferentially foraged in these areas. Installing bat boxes in riparian areas, near 429 

broadleaved woodland or in stands not included in felling schedules should allow more bat species, 430 

particularly lactating females, to make use of plantation areas without impacting forest operations. 431 

Other studies have demonstrated accelerated uptake of bat boxes adjacent to plantation 432 

woodlands, probably as a result of the lack of alternative roosting possibilities (Ciechanowski, 2005; 433 

López-Baucells et al., 2016; Russo et al., 2010; Smith and Agnew, 2002). It is unlikely that boxes will 434 

be used by P. pygmaeus maternity colonies, although harem formation in late summer and autumn 435 

would be expected (Park et al., 1996). However, for forest specialist bats such as M. nattereri, bat 436 

boxes may be appropriate for the formation of maternity colonies (Mortimer, 2006). Long term 437 

monitoring of mitigation such as installing bat boxes is essential to assess the effectiveness of 438 

installing bat boxes in commercial plantations and should be built into any management plan (Russo 439 

et al., 2016). 440 

2. Enhancing plantation heterogeneity: We found that the presence and activity of different 441 

species or genera was impacted at multiple spatial scales. Plantations can cover huge areas as 442 

contiguous forest; maintaining a variety of stand types and ages will allow species such as P. 443 

pygmaeus which preferred the edges of mature or felled stands as well as Nyctalus species which 444 

preferred felled stands to both make use of plantation landscapes.   445 

3. Reducing stand density: In line with various other studies across temperate zone 446 

plantations, maintaining and enhancing thinning programs where possible may allow stands to reach 447 

similar densities to mature stands at a younger age, which will benefit edge and clutter adapted 448 

species (Bender et al., 2015; Blakey et al., 2016; Cox et al., 2016; Morris et al., 2010). In addition, 449 
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felling creates new foraging patches for open and edge adapted species. Studies which have found 450 

no effect of thinning may not have thinned sufficiently; Blakey et al (2016) found that felling to 451 

densities below 1100 stems ha-1  resulted in greater bat activity whereas Patriquin and Barclay (2003) 452 

found no impact of thinning to 1250 stems ha-1. Adams et al (2011) recommend thinning to below a 453 

threshold of 1100 stems ha-1 where appropriate. We found a 30% increase in activity in stands below 454 

1000 stems ha-1, although the mean density of mature stands in our dataset was 1260 stems ha-1, 455 

which may still be too dense for even clutter adapted bats to make use of. 456 

4. Improving feeding opportunities: the presence of bats in plantations is likely a reflection 457 

of food availability, as Nematoceran Diptera were abundant across all stand types and dominated 458 

invertebrate diversity (Kirkpatrick, unpublished data). Shifts in plantation management toward 459 

continuous cover forestry and maintaining riparian habitat will support a wider diversity of 460 

invertebrates (Kerr, 1999), benefiting species that forage on other invertebrates. In addition, 461 

continuous cover forestry may benefit clutter adapted bat species such as M. nattereri and even P. 462 

auritus which are gleaning foragers, while maintaining clear felling will benefit open adapted species. 463 

Both P. pipistrellus and Nyctalus associated strongly with freshly felled areas. Felling operations 464 

resulting in a change in land use should be aware that bats may be using these areas in greater 465 

numbers post felling and ensure that the new operations are not likely to harm bat species. 466 
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Tables: 643 

Table 1. Total adult abundance and the number of passes recorded for species / genera in three forests. 644 

Numbers in parentheses indicate adult females. We were unable to identify some Pipistrellus calls to species 645 

and were removed from further analysis. We caught Myotis nattereri, M. daubentoni and M. mystacinus in the 646 

plantations but due to echolocation similarities we did not differentiate between their call types. We caught 647 

Nyctalus leisleri and N. noctula but again recorded occurrence at the genus level. We caught Plecotus auritus 648 

and recorded Pipistrellus nathusii in very low numbers and present these results here for interest. Sites at 649 

which species were present was determined by both acoustic and capture data. 650 

Species/species group 

Total 
abundance 
(of which 
females)     

Total 
passes 

recorded 

% of 
bat 
calls 

Kielder (%) 
Galloway 

(%) 

Cowal and 
Trossachs 

(%) 

Sites present 
(total n = 31)  

Pipistrellus pygmaeus 42 (26) 6569 34.17 17.59 9.23 7.35 31 
Pipistrellus  
pipistrellus 

1 (1) 
6333 32.95 28.58 2.47 1.90 30 

Pipistrellus spp. 0 4849 25.23 12.22 7.26 5.75 31 

Myotis spp. 3 (0) 737 3.83 2.93 < 1 % < 1 % 30 

Nyctalus spp. 1 (1) 540 2.81 < 1 % 2.20 < 1 % 20 

Plecotus auritus 2 (0) 117 < 1 % < 1 % < 1 % < 1 % 23 

Pipistrellus nathusii 0 (0) 77 < 1 % < 1 % < 1 % 0.00 7 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 
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Table 2. Best approximating GLMM models (with shrinkage) using an information theoretic approach 667 

based on Akaike’s Information Criterion (AICs) adjusted for small sample sizes for P. pygmaeus 668 

abundance. Listed are the parameters and their respective influence on P. pygmaeus abundance in 669 

commercial plantations. Parameters in bold have a large effect size.  R2 = 0.27. 670 

GLM Model Habitat parameters Estimate Error Z value 

Abundance of   
   

P. pygmaeus spp. (Intercept) -29.7 12.6 0.22 

 (poisson) Distance to buildings -0.51 0.18 -2.74 

 

Total buildings within 4km 0.23 0.11 2.114 

Shannon’s diversity index (Landscape heterogeneity) 0.28 0.14 1.96 

% ASNW within 4km -0.15 0.17 0.37 
    

    
Date 0 0 0.69 

  Temperature 0.18 0.11 0.11 

 671 

 672 

 673 

 674 

675 
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Table 3. Best approximating GLMM models (with shrinkage) using an information theoretic approach based on 676 

Akaike’s Information Criterion adjusted for small sample sizes (AICc) for both Pipistrelle species. Listed are the 677 

parameters and their respective influence on (a) P. pygmaeus (intercept is for stand edge), and (b) P. 678 

pipistrellus (intercept is stand edge at felled stands).  It is not possible to calculate R2 for negative binomial 679 

mixed effects models. Bold indicates parameters where the error of the estimate does not cross zero. ASNW is 680 

ancient semi natural woodland 681 

GLMM Model Structural parameters Estimate Error Z value 

(a) Local characteristics    
P. pygmaeus (Intercept) 3.06 0.28 10.79 

activity (negative binomial) Stand interior -1.46 0.21 -6.83 

 Stand density (ha) -0.42 0.12 -3.59 

 

Stand Age -0.30 0.12 -2.58 

Altitude (m) -0.09 0.16 0.56 

 
 

   

 Landscape characteristics    

 % Open land (3km) -0.57 0.18 -3.14 

 

Distance to broadleaved woodland 
(m) -0.14 0.19 -0.70 

 Distance to water (m) 0.00 0.05 0.07 

 % ASNW (4km) -0.06 0.14 -0.39 

 Total buildings 0.21 0.21 1.08 

 
 

   

 Environmental characteristics    

 Temperature (°C) 0.10 0.15 0.53 

 
 

   
(b) Local characteristics    
P. pipistrellus Intercept 3.58 0.70 5.05 

activity (negative binomial) Stand Interior -1.64 0.21 -7.79 

 Stand type: Mature  -1.88 0.33 -5.68 

 

Stand type: Thicket  -1.63 0.34 -4.78 

Stand type: Thin  -0.96 0.37 -2.60 

 Stand type: Young  -1.12 0.32 -3.43 

 Altitude (m) -0.23 0.23 -0.98 

 
 

   

 Landscape characteristics    

 Edge density -0.01 0.11 -0.11 

 Distance to water (m) 0.25 0.18 1.36 

 Distance to nearest building (m) 0.09 0.07 0.60 

 % Felled land (3km) 0.16 0.21 0.76 

 % ASNW (4km) -0.05 0.16 -0.34 

 

ENN distance to closed canopy 
conifer (m) -0.40 0.23 -1.77 

 
 

   

 Environmental characteristics    
  Temperature (°C) 0.54 0.25 2.14 

 682 
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Table 4. Best approximating GLMM models (with shrinkage) using an information theoretic approach based on 683 

Akaike’s Information Criterion adjusted for small sample sizes (AICc) for both Myotis and Nyctalus occurrence 684 

in commercial coniferous plantations. Listed are the parameters and their respective influence on (a) Myotis 685 

spp (marginal R2 = 0.29). (b) Nyctalus (marginal R2 = 0.86). Bold indicates parameters where the error of the 686 

estimate does not cross zero. 687 

GLMM Model Habitat parameters Estimate Error Z value 

Occurrence of Myotis spp. Local scale    
 Intercept 0.54 0.50 1.09 

Presence (binomial) Stand interior -1.30 0.31 -4.22 

 

Stand density per hectare -0.60 0.17 -3.45 

Altitude (m) 0.00 0.10 0.01 

Stand age -0.05 0.12 -0.40 

Landscape scale    
Distance to water (m) -0.20 0.19 -1.72 

Shannons diversity index 0.08 0.15 0.53 
 LPI (open land within 250 m) 0.06 0.14 0.46 
 % ASNW (4km) -0.08 0.20 -0.41 
 

    
 Environmental variables   

 
 Mean nightly temperature (oC) 0.02 0.10 0.21 

 
Occurrence of Nyctalus 

   
 

Local scale   
 

 Intercept  -0.53 0.65 0.82 

Presence (binomial) Stand interior -1.46 0.39 -3.73 

 

Stand type: Mature  -2.04 0.70 -2.90 

Stand type: Thicket -1.39 0.65 -2.13 

Stand type: Thin -1.71 0.67 -2.53 

Stand type: Young -0.93 0.60 -1.53 
 Altitude (m) -0.03 0.17 -0.19 
 

    
 LPI (open water within 500m) -4.85 1.43 -3.38 
 Shannon's diversity index 0.26 0.32 0.81 
 Distance to water (m) -0.07 0.17 -0.44 
 % ASNW (4km)  -0.09 0.32 -0.27 
 Total buildings -1.58 0.65 -2.44 

 ENN distance to nearest patch 
of closed canopy conifer (m) 1.00 0.31 3.21 

 
    

 Environmental variables    
 Temperature 1.66 0.40 4.12 
 

    
688 
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Table 5. Best approximating binomial distributed generalised linear mixed models (GLMM’s) for the differential responses of P. pygmaeus and P. pipistrellus to local and 

landscape scale habitat parameters. Presented are the best approximating models (with shrinkage) using an information theoretic approach based on Akaike’s Information 

Criterion adjusted for small sample sizes (AICc). Listed are the parameters and their respective impact on P. pygmaeus activity proportional to P. pipistrellus activity. 

Positive estimates predict a higher probability of recording P. pygmaeus, negative estimates predict a higher probability of recording P. pipistrellus. No response does not 

necessarily indicate that neither species was impacted but could mean both respond in the same way. Marginal R2 = 0.09. Bold indicates parameters where the error of the 

estimate does not cross zero. 

GLMM Model Habitat parameters Estimate Error Z value   

Proportion of P. pygmaeus to Local scale     
P. pipistrellus Intercept  0.15 0.45 0.35  

Activity (binomial)      

 

Mature* stand interior -0.44 0.44 -1.02  

Thicket* stand interior -0.28 0.19 -1.45  

Thin* stand interior -1.45 0.25 -5.64  

Young* stand interior 0.26 0.13 2.12  

Mature* distance to water 0.55 0.07 7.15  

Thicket* distance to water 0.32 0.09 3.28  

 Thin* distance to water 0.23 0.08 2.58  

 Young* distance to water 0.40 0.08 4.89  

 Stand age (quadratic term) 0.19 0.04 4.68  

 
 

    

 Landscape scale     

 Distance to nearest building (m) -0.32 0.06 -5.50  

 %  felled land  (3km) -0.24 0.17 -1.42  

Distance to broadleaved woodland (m) 0.55 0.05 9.96  

      

 Environmental variables     

 Temperature*Altitude -0.36 0.07 -4.25  
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Figures: 

 

Figure 1. Location of field sites at three different study areas in (A) Cowal and Trossachs, South West 

Scotland, (B) Galloway, South West Scotland and (C) Kielder, Northern England. Stand types were as 

follows: Clearfell (felled less than 5 years ago, 1), Young (planted between 5 and 10 years ago, 2), 

Thicket (planted between 10 and 20 years ago, 3), Thin (planted between 20 and 40 years ago, 4), 

Mature (planted more than 40 years ago, 5).  
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Figure 2A – C. Estimated mean P. pygmaeus activity against (A) Proportion of open land within 3km 

radius of sampling point, (B) Stand tree density per hectare and (C) Stand age (years), using model 

averaged estimates. Original data on activity (number of passes in a four hour sampling period) are 

superimposed as grey circles with diameter proportional to the number of sampling points where 

mean activity occurred. Bold line indicates line of best fit from the top model set. Dashed lines 

represent 95% confidence intervals around the predictions. Figure 2D. Estimated probability of P. 

pygmaeus abundance in relation to distance to nearest building (m), using model averaged 

estimates. Original data on abundance (number of individuals caught) are superimposed as grey 

circles with diameter proportional to the number of sampling points where mean abundance 

occurred. Bold line indicates line of best fit from the top model set. Dashed lines represent 95% 

confidence intervals around the predictions. 

 

A B 

C 
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Figure 3. Estimated probability of recording Nyctalus with (A) increasing Euclidean distance (ENN) 

between closed canopy conifer patches, (B) Total number of buildings within 4km. Original data on 

activity (number of passes in a four-hour sampling period) are superimposed as grey circles with 

diameter proportional to the number of sampling points where mean activity occurred. Bold line 

indicates line of best fit from the top model set. 
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Figure 4 A - D Model averaged estimated probability of P. pygmaeus activity proportional to P. 

pipistrellus activity in relation to (A) Distance to broadleaved, (B) Stand age (quadratic term), (C) 

Distance to nearest building (D) Stand type and distance to water. Original data on the proportion of 

P. pygmaeus to P. pipistrellus are superimposed as grey circles with diameter proportional to 

number of sampling locations where proportional activity was recorded. Dashed red line indicates 

the proportion at which P. pygmaeus and P. pipistrellus activity was equal. Bold line indicates line of 

best fit from the top model set. 

 


