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Abstract	18	

1. Changes	in	phenology	are	an	inevitable	result	of	climate	change,	and	will	have	19	

wide-reaching	impacts	on	species,	ecosystems,	human	society	and	even	feedback	20	

onto	climate.	Accurate	understanding	of	phenology	is	important	to	adapt	to	and	21	

mitigate	such	changes.	However,	analysis	of	phenology	globally	has	been	22	

constrained	by	lack	of	data,	dependence	on	geographically	limited,	non-circular	23	

indicators	and	lack	of	power	in	statistical	analyses.		24	

2. To	address	these	challenges,	especially	for	the	study	of	tropical	phenology,	we	25	

developed	a	flexible	and	robust	analytical	approach	-	using	Fourier	analysis	with	26	

confidence	intervals	-	to	objectively	and	quantitatively	describe	long-term	27	

observational	phenology	data	even	when	data	may	be	noisy.	We	then	tested	the	28	

power	of	this	approach	to	detect	regular	cycles	under	different	scenarios	of	data	29	

noise	and	length	using	both	simulated	and	field	data.	30	

3. We	use	Fourier	analysis	to	quantify	flowering	phenology	from	newly	available	31	

data	for	856	individual	plants	of	70	species	observed	monthly	since	1986	at	Lopé	32	

National	Park,	Gabon.	After	applying	a	confidence	test,	we	find	that	59%	of	the	33	

individuals	have	regular	flowering	cycles,	and	88%	species	flower	annually.	We	34	

find	time	series	length	to	be	a	significant	predictor	of	the	likelihood	of	35	

confidently	detecting	a	regular	cycle	from	the	data.	Using	simulated	data	we	find	36	

that	cycle	regularity	has	a	greater	impact	on	detecting	phenology	than	event	37	

detectability.	Power	analysis	of	the	Lopé	field	data	shows	that	at	least	six	years	of	38	

data	are	needed	for	confident	detection	of	the	least	noisy	species,	but	this	varies	39	

and	is	often	greater	than	20	years	for	the	most	noisy	species.		40	
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4. There	are	now	a	number	of	large	phenology	datasets	from	the	tropics,	from	41	

which	insights	into	current	regional	and	global	changes	may	be	gained,	if	flexible	42	

and	quantitative	analytical	approaches	are	used.	However	consistent	long-term	43	

data	collection	is	costly	and	requires	much	effort.	We	provide	support	for	the	44	

importance	of	such	research	and	give	suggestions	as	to	how	to	avoid	erroneous	45	

interpretation	of	shorter	length	datasets	and	maximize	returns	from	long-term	46	

observational	studies.	47	

	48	

Key-words:		49	

Flowering;	Phenophases;	Spectral	analysis;	Tropical	forests;	Gabon;	Time-series	data;	50	

Climate	change,	Circular	analysis;	Lopé	National	park	 	51	
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Introduction	52	

Phenology	concerns	the	timing	of	recurring	life-cycle	events	-	such	as	leaf	growth,	53	

flowering	and	fruiting	in	plants	-	and	has	long	fascinated	ecologists	and	evolutionary	54	

scientists.	Questions	range	from	understanding	the	complex	environmental	cues	and	55	

internal	mechanisms	that	initiate	phenology	events	(phenophases)	to	the	adaptive	56	

significance	of	their	timing	and	duration	and	responses	to	environmental	change.	57	

Phenology	has	wide-reaching	influence	within	ecosystems	and	determines	the	nature	of	58	

many	inter-specific	interactions	(Butt	et	al.	2015).		Changes	in	global	climate	will	59	

inevitably	have	long-term	impacts	on	phenology	(Parmesan	2006)	with	knock-on	60	

effects	for	ecosystems	and	people	(Van	Vliet	2010).	It	is	also	clear	that	there	will	be	61	

feedbacks	between	changing	phenology	and	climate,	but	they	are	poorly	characterised	62	

by	current	climate	models	(IPCC	2014).	63	

Tropical	phenology	overlooked	in	reviews	of	change	64	

Major	reviews	of	phenological	change	to	date	have	lent	heavily	on	evidence	from	65	

temperate,	especially	Northern	hemisphere,	regions	(Chambers	et	al.	2013;	Cleland	et	66	

al.	2007;	Parmesan	2006).	In	these	regions	more	phenology	data	is	available	and	67	

analyses	are	arguably	simpler.	The	strong	seasonality	in	temperate	regions	68	

accompanied	by	a	dormant	winter	season	results	in	broad	synchronisation	of	69	

phenology	on	the	annual	cycle.	Years	can	be	treated	to	some	extent	as	independent	70	

repeating	events	and	researchers	are	able	to	make	use	of	a	relatively	simple	suite	of	71	

“spring	indicators”	(e.g.	first	appearance,	first	lay-date,	bud-burst	measured	in	days	72	

since	January	1st).	73	

While	tropical	climates	are	often	seasonal,	annual	variation	is	more	limited	than	in	74	

temperate	regions	and	vegetative	growth	and	reproduction	are	possible	at	any	time	of	75	
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the	year	resulting	in	more	diverse	phenology	and	cycles	other	than	twelve	months	(van	76	

Schaik	et	al.	1993).	Use	of	simple	spring	indicators	is	not	appropriate	for	tropical	77	

phenology	because	of	the	circularity	of	the	data	(e.g.	January	1st	is	an	arbitrarily	low	78	

value	and	not	meaningfully	different	from	December	31st).	79	

Furthermore,	phenology	is	subject	to	many	conflicting	demands,	for	example	an	80	

organism	may	receive	an	environmental	signal	to	reproduce	but	fail	to	do	so	because	it	81	

lacks	critical	resources	(Obeso	2002).	Inconsistencies	and	gaps	in	data	collection	due	to	82	

observation	error	are	also	common	in	long-term	studies,	making	quantification	in	many	83	

cases	harder	still.		Thus	analytical	approaches	for	tropical	phenology	need	to	take	84	

account	of	the	circularity	of	the	data,	be	flexible,	quantitative	and	attribute	confidence	85	

to	conclusions.	86	

Analyses	of	long-tem	tropical	plant	phenology		87	

Published	analyses	of	tropical	plant	phenology	range	from	simple	descriptions	and	88	

correlations	with	environmental	variables	to	more	recent,	quantitative	analyses	of	89	

change	(S1).	The	Newstrom	et	al.	(1994)	framework	was	an	important	step	towards	90	

objective	inter-site	comparisons,	however	categorisation	loses	analytical	power	and	91	

visual	comparisons	lack	objective	rigour.	More	computationally	intensive	methods	have	92	

included	differentiation	of	species-level	reproductive	cycles	using	finite	mixture	theory	93	

and	bootstrapping	methods	(Cannon	et	al.	2007),	modelled	autocorrelation	functions	94	

(Norden	et	al.	2007),	sinusoid-based	regression	(Anderson	et	al.	2005),	spectral	95	

analysis	(Chapman	et	al.	1999),	circular	statistics	(Ting	et	al.	2008;	Zimmerman	et	al.	96	

2007;	Wright	et	al.	1999;	Wright	&	Calderon	1995),	generalized	linear	models	(GLMs)	97	

(Newbery	et	al.	2013)	and	generalized	additive	mixed	models	(GAMMs)	(Polansky	and	98	

Robbins	2013).	While	data	has	often	been	collected	at	the	scale	of	the	individual	plant	99	
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(9/18	studies	in	S1),	this	is	not	always	reflected	in	analysis	where	individuals	are	100	

clumped	into	species,	guilds,	or	a	percentage	score	of	a	whole	community,	losing	power	101	

and	precluding	vital	covariate	information.	The	longest	tropical	phenology	dataset	102	

analysed	to	date	is	22	years	of	flowering	data	(Pau	et	al.	2013)	and	18	years	of	flowering	103	

and	fruiting	data	(Wright	&	Calderon	2006)	from	Barro	Colorado	Island,	Panama	with	104	

many	other	studies	relying	on	fewer	than	ten	years	data	(9/18	studies	in	S1).	105	

Addressing	the	challenges	of	sample	size,	data	quality,	circularity	and	pseudo-106	

replication	is	of	paramount	importance	to	quantify	tropical	phenology	and	compare	107	

between	sites	and	over	time.	Consensus	as	to	the	most	suitable	way	to	analyse	these	108	

data,	what	length	of	data	is	necessary	to	identify	cycles	and	how	to	attribute	confidence	109	

to	results	has	been	missing,	although	progress	is	being	made	(Hudson	&	Keatley	2010).		110	

In	this	article,	we	apply	statistical	theory	to	both	field	and	simulated	data,	to	111	

develop	and	demonstrate	objective	methods	–	based	on	Fourier	analysis	-	to	detect	and	112	

quantify	confidence	in	regular	phenological	cycles.	We	also	test	the	likelihood	of	113	

detecting	cycles	under	different	data	noise	and	length	scenarios	and	discuss	114	

opportunities	for	incorporating	the	resulting	insights	into	research	and	policy.	115	

Explanations	of	technical	terms	related	to	Fourier	analysis	used	in	this	paper	are	given	116	

in	the	glossary	in	Table	1	and	their	first	use	in	the	text	is	indicated	in	bold	italics.	117	

	118	

Introduction	to	Fourier	analysis	for	phenology		119	

The	Fourier	transform	is	a	mathematical	method	used	to	identify	regular	cycles	in	time	120	

series	data	by	comparing	fluctuations	in	the	data	with	sinusoids	(Bloomfield	2000)	and	121	

has	been	used	extensively	in	disciplines	such	as	engineering	and	mathematics.	The	122	

Fourier	transform	calculates	the	tendency	(hereafter	known	as	power)	of	all	possible	123	
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cycles	to	appear	in	the	data	and	can	therefore	be	used	to	quantify	seasonal	phenology	124	

data	without	the	need	for	prior	knowledge	or	hypotheses	of	cycle	length.	However	it	125	

has	been	rarely	used	in	the	context	of	phenology	analysis	and	never	for	long-term	126	

observational	phenology	data.	Chapman	et	al.	(1999)	used	Fourier	to	identify	dominant	127	

reproductive	cycles	from	six	years	of	data	for	a	tropical	tree	community,	but	did	not	use	128	

a	confidence	test.	More	recently	Zalamea	et	al.	(2011)	used	Fourier	to	identify	flowering	129	

cycles	from	reconstructed	12-month	series	of	herbarium	data	for	a	genus	of	neotropical	130	

tree,	attributing	confidence	to	cycles	using	a	bootstrapping	method.		131	

	Compared	to	other	data	for	which	Fourier	has	been	used,	phenology	data	are	often	132	

comparatively	short	and	collected	at	low	resolution	due	to	the	costs	and	effort	incurred.	133	

However,	in	the	field	of	movement	ecology,	Wittemyer	et	al.	(2008)	and	Polansky	et	al.	134	

(2010)	successfully	used	Fourier	to	confidently	identify	regular	cycles	in	animal	135	

movements	by	comparing	outputs	with	a	null	hypothesis	of	random	movement	and	136	

95%	confidence	intervals.	137	

	In	this	paper	we	build	on	Wittemyer	et	al.’s	(2008)	analytical	framework	to	extend	the	138	

existing	uses	of	Fourier	for	the	field	of	long-term	phenology	research.	First	we	139	

demonstrate	appropriate	application	of	Fourier	to	phenology	data	by	quantifying	140	

flowering	cycle	confidence,	length,	power,	timing	and	synchrony	for	individuals	of	a	141	

single	species	from	the	Lopé	long-term	observational	study	of	tropical	forest	plants	142	

(1986	–	2016).	Second,	we	up-scale	this	Fourier-based	approach	to	analyse	flowering	143	

phenology	using	newly	available	data	for	all	species	from	the	Lopé	study	(856	144	

individuals,	70	species).	Third,	we	recognize	that	while	the	Lopé	study	is	one	of	the	145	

longest	and	most	consistent	of	its	kind	in	the	tropics,	data	is	still	often	noisy	or	short	for	146	

certain	individuals	and/or	species.	In	order	to	apply	this	framework	elsewhere,	and	to	147	

inform	best	practice	for	data	collection,	we	test	the	ability	of	the	Fourier	method	to	148	
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detect	regular	phenology	under	different	scenarios	using	both	simulated	data	and	field	149	

data	with	realistic	noise.	 	150	
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How	to	detect	and	describe	flowering	cycles	using	Fourier	analysis		151	

The	Lopé	long-term	observational	phenology	study.	152	

Since	1986,	researchers	from	the	Station	d’Études	des	Gorilles	and	Chimpanzées	153	

(SEGC),	Lopé	National	Park,	Gabon,	have	observed	individual	plants	of	88	different	154	

species	each	month	and	noted	the	proportion	of	each	canopy	covered	by	new,	mature	155	

and	senescing	leaves,	flowers,	unripe	and	ripe	fruits.	Canopy	coverage	for	a	particular	156	

phenophase	is	assessed	from	the	ground	using	binoculars	and	recorded	as	a	score	from	157	

0	to	4.	The	study	area	experiences	an	equatorial	climate,	where	seasonality	is	158	

determined	by	movements	of	the	inter-tropical	convergence	zone	to	form	two	dry	and	159	

two	wet	seasons	annually.	See	Tutin	and	White	(1998)	for	detailed	site	description	160	

including	local	climate	and	vegetation.		161	

In	this	first	section	we	demonstrate	Fourier	analysis	using	flowering	data	for	tree	162	

species	Duboscia	macrocarpa	Bocq.	(Malvaceae,	n=11).	Initial	observation	of	species-163	

level	data	shows	no	apparent	seasonality	in	flowering	(figure	1a-b).	However	this	is	164	

because	the	true	flowering	cycle	for	this	species	is	18	months	long	and	is	not	165	

synchronised	between	individuals.	This	unusual	reproductive	phenology	is	useful	to	166	

demonstrate	the	explicitly	circular	basis	of	Fourier	analysis,	and	how	analysis	at	the	167	

individual-level	allows	for	quantification	of	complex	tropical	phenology.	R	scripts	are	168	

provided	in	supporting	information	(S6)	and	follow	this	description.	169	

Data	input	requirements	170	

For	all	Fourier	analyses	we	used	the	function	spectrum	from	the	R	base	package	‘stats’	171	

(R	Core	Team	2015).	The	method	requires	regular	time	intervals	between	observations,	172	

so	we	interpolated	data	for	gaps	up	to	three	data	points	long	using	a	simple	linear	173	

estimator,	interpNA	from	R	package	‘timeSeries’	(Rmetrics	Core	Team	et	al.	2015).	For	174	
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longer	gaps	we	suggest	analysing	time	series	in	separate	parts	but	more	sophisticated	175	

forms	of	interpolation	could	be	used	or	Lamb	normalized	periodogram	analysis	(Press	176	

et	al.	1992)	which	allows	for	unevenly	spaced	data.	177	

The	periodogram	178	

The	Fourier	transform	decomposes	a	time	series	into	a	series	of	sine	and	cosine	waves	179	

of	differing	frequencies,	quantifying	the	power	of	each	via	the	spectral	estimate,	180	

visualised	in	the	periodogram	(Figure	1c).		The	shortest	possible	cycle	for	our	data	is	181	

two	months	long	(twice	the	observation	interval)	and	the	longest	is	the	full	length	of	the	182	

data	available.	Cycles	not	well	supported	by	the	data	have	low	power	while	cycles	well	183	

supported	by	the	data	have	high	power.	184	

Smoothing	the	spectral	estimate	185	

The	raw	(unsmoothed)	spectral	estimate	shows	all	fine-scale	structure	and	can	be	186	

overly	influenced	by	certain	segments	of	data.	We	smooth	all	spectral	estimates	using	a	187	

moving-average	smoother	-	the	modified	Daniell	kernel	-	available	within	function	188	

spectrum.	The	width	of	the	Daniell	kernel	(known	as	the	span)	is	user-specified	and	is	a	189	

compromise	between	resolution	and	stability.	The	classic	text	on	this	method	190	

(Bloomfield	2000)	recommends	a	trial	and	error	approach	for	span-choice	relying	on	191	

visual	observation	of	the	periodogram.	After	much	experimentation	we	found	that	192	

successively	applying	the	Daniell	kernel	to	achieve	a	smoothed	spectral	estimate	with	a	193	

bandwidth	close	to	0.1	gave	sufficient	resolution	to	identify	dominant	peaks	in	the	194	

periodogram.	For	example,	applying	a	Daniell	kernel	with	a	span	of	seven,	followed	by	a	195	

kernel	with	a	span	of	nine	to	the	first	D.	macrocarpa	flowering	time	series	of	length	353	196	

months	(figure	1b)	resulted	in	a	spectral	estimate	with	bandwidth	0.099.	Spans	to	197	

achieve	this	resolution	vary	depending	on	initial	time	series	length;	we	provide	198	
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appropriate	spans	for	data	ranging	from	24	to	360	months	in	S6	(line	160).	Smoothed	199	

spectral	estimates	derived	from	Fourier	analysis	of	flowering	data	for	five	example	D.	200	

macrocarpa	individuals	are	shown	in	figure	1c.	201	

Identifying	dominant	cycles	202	

Interpreting	the	periodogram	begins	with	observing	the	general	shape	of	the	spectrum	203	

(e.g.	is	the	data	influenced	by	short	or	long	cycles)	and	then	to	identify	the	peaks	with	204	

highest	power,	representing	dominant	cycles	within	the	data.	The	smoothed	spectral	205	

estimates	derived	from	flowering	data	for	D.	macrocarpa	show	a	similar	pattern	206	

between	individuals	(figure	1c).	The	highest	peak	for	each	individual	is	near	to	0.056	207	

cycles	per	month	(equivalent	to	a	cycle	length	of	18	months).		208	

Assigning	confidence	to	dominant	cycles	209	

Tree	phenology	studies	often	rely	on	monthly	canopy	observations	and	are	subject	to	210	

both	measurement	error	(observation	uncertainty)	and	natural	variation	(process	211	

uncertainty).	Because	of	these	uncertainties	a	measure	of	confidence	is	needed	to	212	

differentiate	real	cycles	from	the	surrounding	noise.	Bloomfield	(2000)	suggests	that	213	

spectral	estimates	approximate	a	chi-square	distribution,	and	that	95%	confidence	214	

intervals	can	be	derived	as	follows,	215	

𝑣𝑠 𝑓
Χ!! 0.975

≤ 𝑠 𝑓 ≤  
𝑣𝑠 𝑓

Χ!! 0.025
	

Eqn. 1 216	

where	𝑣	is	the	degrees	of	freedom	(derived	from	the	function	output),		𝑠 𝑓 	is	the	217	

spectral	estimate,	𝑠 𝑓 		is	the	true	spectrum,	and	Χ!! 0.975,0.025 	are	the	2.5%	and	218	

97.5%	quantiles	of	the	chi	square	distribution	with	𝑣	degrees	of	freedom.	219	
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There	are	two	credible	null	hypotheses	-	representing	”no	cyclicity”		-	with	which	to	220	

compare	the	95%	confidence	intervals.	The	first	is	the	null	continuum	of	the	spectrum,	221	

which	is	an	extreme	smooth	of	the	spectral	estimate	such	that	only	the	underlying	222	

shape	remains	(dotted	line,	Figure	1d).	The	second	is	simply	the	mean	spectrum	223	

(otherwise	known	as	the	white	noise	spectrum;	Meko	2015).		We	prefer	the	null	224	

continuum	as	its	use	results	in	fewer	false	positive	results	at	medium	to	high	noise	225	

scenarios	(S2).	226	

We	found	we	could	achieve	sufficient	smoothness	for	the	null	continuum	by	227	

successively	applying	the	Daniell	kernel	to	give	a	bandwidth	similar	to	1	(S1	line	160).	228	

Where	the	lower	confidence	interval	for	a	specified	frequency	does	not	overlap	with	the	229	

null	hypothesis,	the	peak	at	that	frequency	can	objectively	be	considered	as	significantly	230	

different	from	the	surrounding	noise	and	representing	a	real	cycle.		Bloomfield	(2000)	231	

cautions	against	general	fishing	expeditions	for	significant	peaks	because	the	95%	232	

confidence	intervals	calculated	are	not	simultaneous.	We	therefore,	only	recommend	233	

using	this	method	to	test	the	dominant	peak,	not	all	local	peaks.	Occasionally	we	find	234	

that	when	data	are	highly	irregular,	the	dominant	peak	is	identified	at	the	longest	235	

possible	cycle	length	and	is	likely	to	score	as	“significant”	against	the	null	continuum.	To	236	

avoid	these	false	positive	results,	we	screen	Fourier	outputs	and	exclude	dominant	237	

cycles	greater	than	half	the	data	length.	238	

95%	confidence	intervals	for	the	smoothed	spectral	estimate	derived	from	one	example	239	

D.	macrocarpa	time	series	are	shown	in	figure	1d.	We	can	be	confident	that	the	240	

dominant	peak	at	18	months	represents	a	real	flowering	cycle	because	the	lower	241	

confidence	interval	doesn’t	cross	the	null	continuum.		242	
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Assessing	timing	and	synchrony		243	

In	order	to	assess	timing	and	synchrony	within	populations,	we	developed	a	method	to	244	

reference	the	peak	events	of	tropical	phenological	cycles	in	time	using	a	simulated	245	

cosine	curve	within	co-Fourier	analysis.	Co-Fourier	allows	simultaneous	Fourier	246	

analysis	of	any	two	time	series	and	in	addition	to	normal	outputs,	gives	an	estimate	for	247	

the	lag	(phase	difference)	between	the	time	series	for	every	possible	cycle.	Once	a	248	

dominant	cycle	has	been	detected	in	an	empirical	time	series,	we	simulate	a	cosine	249	

curve	with	matching	cycle	length,	by	convention	for	our	data	peaking	on	1st	January	250	

1986.	After	co-Fourier	analysis	of	the	empirical	time	series	alongside	the	matching	251	

simulated	time	series,	we	then	extract	the	phase	difference	associated	with	the	252	

dominant	cycle.			253	

In	figure	1e	we	show	flowering	data	for	an	example	D.	macrocarpa	individual	alongside	254	

a	simulated	cosine	curve	with	matching	cycle	length	(18	months)	and	peaking	on	255	

January	1st	1986.	The	phase	difference	between	these	two	time	series	at	the	dominant	256	

cycle	of	18	months	is	2.11	radians.		257	

Phase	difference	can	be	converted	to	time	(an	estimate	of	the	first	flowering	peak,	in	258	

months	since	January	1st)	by	the	following,	259	

𝑖𝑓 Φ𝑟𝑎𝑑𝑖𝑎𝑛𝑠  >  0, Φ𝑚𝑜𝑛𝑡ℎ𝑠 =  Φ𝑟𝑎𝑑𝑖𝑎𝑛𝑠
2Π λ  	

𝑖𝑓 Φ𝑟𝑎𝑑𝑖𝑎𝑛𝑠  <  0, Φ𝑚𝑜𝑛𝑡ℎ𝑠 =  Φ𝑟𝑎𝑑𝑖𝑎𝑛𝑠 + 2Π
2Π λ 	

Eqn. 2 260	

where	Φ	is	the	phase	difference	and	𝛌	is	wavelength	in	months.		261	

It	is	important	to	consider	that	radians	are	a	circular	unit	and	there	are	2Π	radians	in	a	262	

full	cycle	no	matter	how	many	months	are	in	that	cycle.		Converting	phase	to	months	is	263	
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very	simple	when	the	cycle	is	annual:	one	month	=	2Π/12	and	the	first	peak	month	will	264	

be	the	only	peak	month	in	a	given	calendar	year.	However,	for	cycle	lengths	other	than	265	

12	months,	conversion	to	time	will	need	some	careful	thought.	For	a	six-month	cycle,	we	266	

would	expect	two	peaks	in	each	calendar	year,	and	for	an	18-month	cycle	we	would	267	

expect	one	peak	a	calendar	year	but	in	different	months	in	alternate	years.	268	

For	the	D.	macrocarpa	time	series	used	as	an	example	in	Figure	1e,	the	phase	difference	269	

of	2.11	radians	converts	to	six	months	since	January	1st,	placing	the	first	peak	at	the	270	

beginning	of	July.	The	next	peak	in	flowering	will	occur	18	months	later,	at	the	271	

beginning	of	January.	We	would	expect	this	individual	to	have	flowers	in	January	and	272	

July	in	alternate	years.	273	

Calculating	mean	timing	and	synchrony	for	species	274	

Mean	phenophase	timing	can	be	computed	for	a	sample	with	the	same	dominant	cycle	275	

by	taking	the	circular	mean	of	the	phase	difference	(in	radians)	for	each	individual,	as	276	

calculated	from	co-Fourier	analysis.	Synchrony	can	be	quantified	by	taking	the	circular	277	

standard	deviation	of	the	mean	phase	(all	circular	values	calculated	using	the	R	278	

package	‘circular’	(Agostinelli	&	Lund	2013)).	For	the	D.	macrocarpa	example,	mean	279	

phase	difference	for	all	individuals	with	significant	dominant	cycle	at	18	months	is	280	

0.94+	1.68	SD	radians.	Converted	to	time,	this	references	a	flowering	peak	in	mid-March	281	

and	mid-September	in	alternate	years.	However	synchrony	between	individuals	is	so	282	

low	(SD	of	peak	month	is	4.8	months)	that	“peak	flowering”	for	the	population	has	little	283	

biological	meaning.	284	

	285	

In	S4	we	include	a	detailed	description	of	Fourier	analysis	for	the	flowering	cycles	of	286	

two	additional	species	(Antidesma	vogelianum	Muell.	Arg.	flowering	on	a	six-month	287	
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cycle,	and	Pentadesma	butyracea	Sabine	flowering	on	an	annual	cycle)	and	a	comparison	288	

of	Fourier	alongside	four	other	commonly	used	methods	for	seasonal	phenology	289	

analysis	–	graphical	representations,	circular	statistics,	autocorrelation	analysis	and	290	

GAMs.	291	

Scaling	up	–	quantifying	flowering	phenology	among	many	292	

individuals	and	species	293	

Methods	294	

We	used	the	methods	developed	above	to	quantitatively	describe	flowering	data	for	all	295	

species	monitored	as	part	of	the	Lopé	study.	We	preselected	856	individuals	(70	species	296	

of	26	families)	with	the	following	criteria;	greater	than	five	years	continuous	data,	at	297	

least	one	flowering	event	and	no	persistent	records	of	disease	(species	list	given	in	S3).	298	

Where	we	found	isolated	gaps	longer	than	three	months,	we	excluded	data	before	or	299	

after	(whichever	was	shorter)	from	further	analysis.	Linear	interpolation	for	gaps	300	

shorter	than	three	months	was	necessary	for	95%	of	the	individuals	in	the	sample.	Time	301	

series’	length	ranged	from	60	to	353	months	(mean	=	249	months).	302	

To	quantitatively	describe	regular	cycles,	we	ran	Fourier	analysis	and	a	confidence	test	303	

of	the	dominant	flowering	cycle	for	each	tree.	To	allow	comparison	between	individuals	304	

for	the	power	of	the	dominant	cycle,	we	normalised	the	spectrum	so	that	the	mean	305	

power	across	frequencies	was	equal	to	one	(Polansky	et	al.	2010).		306	

To	summarise	at	the	species-level	we	calculated	the	modal	cycle	length	for	species	with	307	

more	than	five	individuals	with	significant	dominant	cycles.		To	estimate	the	level	of	308	

synchrony	at	the	species-level,	we	ran	co-Fourier	analysis	for	each	individual	with	a	309	

significant	dominant	cycle	equal	to	the	modal	cycle	length	for	that	species	(only	310	
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including	species	with	more	than	five	such	individuals).	From	the	co-Fourier	outputs	we	311	

calculated	the	standard	deviation	of	mean	phase	difference	in	radians	and	converted	to	312	

months	using	Eqn.	2	for	each	species.	313	

	We	present	whole	sample	summaries	for	time	series	length	and	sample	size	per	species	314	

and	compare	these	between	all	individuals	and	those	for	which	we	could	detect	315	

significant	cycles.		We	then	present	the	most	common	flowering	cycles	and	level	of	316	

synchrony	(standard	deviation	of	mean	phase	difference)	per	species.	We	also	tested	317	

the	impact	of	time	series	length	as	a	predictor	of	detecting	significant	regular	phenology	318	

using	a	binomial	Generalized	Linear	Mixed	Model	(GLMM)	with	species	as	a	random	319	

effect.	320	

Results	321	

We	detected	significant	regular	flowering	cycles	for	509	out	of	856	individuals	in	our	322	

sample,	79%	of	which	were	annual.	Of	those	for	which	we	could	not	confidently	detect	323	

regular	cycles,	22	came	from	five	species	for	which	no	significant	cycles	were	detected	324	

(e.g.	Baillonella	toxisperma	Pierre	and	Dacryodes	normandii	nornandii	Aubr.	&	Pell.,	S3:	325	

Table	2).	326	

When	only	trees	with	significant	cycles	were	included,	the	sample	distribution	shifted	327	

toward	longer	time	series	(Figure	2a),	and	mean	sample	size	per	species	for	all	trees	(12	328	

individuals	+	8.1	SD)	was	reduced	(seven	individuals	+	5.8	SD)	(Figure	2b).		We	found	329	

time	series’	length	to	be	a	significant	positive	predictor	(z	value	=	6.42,	p<0.001)	of	the	330	

likelihood	of	detecting	a	significant	regular	cycle	from	the	data	(GLM	outputs	in	S5).			331	

To	assess	modal	cycle	length	we	used	a	subsample	of	42	species	(458	individuals).	The	332	

modal	flowering	cycle	for	most	species	was	annual	(37	species,	e.g.	P.	butyracea,	S4),	333	
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with	others	flowering	on	a	6-month	(4	species,	e.g.	A.	vogelianum,	S4)	and	an	18-month	334	

basis	(1	species,	D.	macrocarpa,	S4)	(Figure	2c,	Figure	3	and	S3:	Table	2).		335	

To	assess	modal	level	of	synchrony	between	species	we	used	a	subsample	of	39	species	336	

(402	individuals).	The	majority	of	species	had	flowering	cycles	well	synchronised	337	

between	individuals,	(38	species	with	standard	deviation	of	mean	peak	less	than	one	338	

month)	(Figure	2d,	S3:	Table	2).		339	

Species	showed	considerable	inter-	and	intra-specific	variation	in	flowering	phenology	340	

(Figure	3).	Some	species	were	split	between	different	cycle	length	strategies;	e.g.	for	a	341	

sample	of	19	Uapaca	guieensis	Muell.	Arg.	trees,	the	dominant	flowering	cycle	was	342	

annual	for	13	trees	and	six	months	for	six	trees.	Species	also	varied	in	the	power	of	their	343	

dominant	flowering	cycles.	Despite	all	individuals	shown	in	Figure	3	having	significant	344	

flowering	cycles,	some	species	such	as	Maranthes	glabra	(Oliv.)	Prance	(mean	power	=	345	

9.3+1.6	S.D.)	and	Xylopia	aethiopica	(Dunal)	A.	Richard	(mean	power	=	8.1+2.6	S.D.)	346	

tended	to	have	much	stronger,	less	noisy	cycles	than	others	such	as	Klainedoxa	347	

gabonensis	Baill.	(mean	power	=	2.1+0.4	S.D.)	and	Pseudospondias	microcarpa	(A	Rich.)	348	

Engl.	(mean	power	=	2.4	+0.7	S.D.)	(S3:	Table	2).	349	

	350	

Testing	Fourier	under	different	scenarios	using	both	simulated	and	351	

field	data	352	

Methods		353	

To	test	the	impact	of	noise	and	sample	length	on	cycle	detectability,	we	undertook	a	354	

power	analysis	of	simulated	phenology	data.	We	simulated	10,000	individual	time	355	

series	representing	an	annually	repeating	flowering	cycle	peaking	in	June,	with	three	356	
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key	parameters	allowed	to	vary	between	“individuals”;	1)	the	regularity	of	the	peak	357	

month	(representing	process	uncertainty),	2)	the	detectability	of	flowering	events	358	

(representing	observation	uncertainty)	and	3)	the	length	of	data	recorded.	For	each	359	

year	of	data,	we	generated	monthly	flowering	scores	of	zero	and	a	peak	of	three-months	360	

duration	with	positive	scores	randomly	chosen	from	a	distribution	similar	to	that	found	361	

in	our	field	data.	We	varied	levels	of	regularity	by	randomly	choosing	the	peak	362	

flowering	month	each	year	from	a	truncated	normal	distribution	(ranging	from	two	to	363	

11,	with	mean	six	and	standard	deviation	randomly	selected	from	0.1	to	six).	The	364	

standard	deviation	of	the	distribution	was	consistent	between	years	but	allowed	to	vary	365	

between	individuals.	We	then	varied	levels	of	detectability	by	replacing	a	certain	366	

percentage	of	randomly	chosen	positive	flowering	scores	with	zeros	(from	zero	to	367	

60%).	Finally,	a	window	of	data	(five,	ten	or	15	years)	was	randomly	cut	from	each	full-368	

length	time	series	prior	to	Fourier	analysis	(example	simulated	data	are	plotted	in	S2).	369	

We	assessed	the	dominant	cycle	using	a	95%	confidence	test	and	whether	it	fell	within	370	

the	expected	interval	for	an	annual	cycle	(11-13	months).	371	

To	demonstrate	the	impact	of	data	length	with	realistic	noise	we	also	conducted	a	372	

power	analysis	using	all	individual	time	series	from	the	Lopé	study	longer	than	20	373	

years,	from	which	we	had	previously	detected	significant	annual	flowering	cycles	and	374	

for	species	with	more	than	five	such	individuals	(233	individuals	of	30	different	375	

species).		We	randomly	chose	individual	time	series	from	this	sub-sample	and	cut	376	

shorter	windows	of	data	(window	length	randomly	selected	from	the	range	2:20	years	377	

with	randomly	selected	start	date),	repeating	10,000	times.	We	analysed	the	windowed	378	

time	series	with	Fourier	as	described	above	and	recorded	if	the	dominant	cycle	was	379	

significant	and	fell	within	the	expected	interval	for	an	annual	cycle	(11-13	months).	We	380	

fitted	binomial	GLMs	to	compare	the	effect	of	time	series’	length	between	species.	381	
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Results	382	

The	power	analysis	of	simulated	phenology	data	(Figure	4)	showed	that	as	time	series’	383	

length	increased,	from	5	to	15	years,	so	did	likelihood	of	confidently	detecting	the	384	

annual	cycle.	For	example,	for	a	mid-level	noise	scenario	(cycle	regularity	2SD;	zero	385	

replacement	20%)	the	proportion	of	the	sample	with	a	significant	annual	cycle	was	zero	386	

after	5	years,	57%	after	10	years	and	81%	after	15	years.	However,	at	relatively	low-	387	

noise	scenarios,	(highly	regular	cycles	<1SD;	low	zero	replacement	<	20%),	the	effect	of	388	

time	series	length	saturated	quickly,	with	100%	likelihood	of	detecting	a	significant	389	

annual	cycle	after	just	five	years.	In	contrast	at	high-noise	scenarios	(highly	irregular	390	

cycles	>4SD;	zero	replacement	>	60%),	likelihood	of	detecting	a	significant	annual	cycle	391	

never	rose	above	20%	even	after	15	years.	For	highly	regular	cycles	(SD<2),	even	poor	392	

event	detectability	(zero	replacement	40	–	60%)	had	little	impact	on	likelihood	of	393	

detecting	the	cycle.	394	

	395	

Similar	to	the	simulated	data,	we	found	that	as	time	series’	length	increased,	so	did	396	

likelihood	of	detecting	regular	cyclic	behaviour	for	our	field	data	(Figure	5).	We	found	397	

that	for	the	species	in	our	sample	with	the	most	positive	slope	estimates	for	time	series	398	

length	(M.	glabra	and	Pycnanthus	angolensis	Welw.)	Warb.,	S5),	just	six	and	seven	years	399	

of	data	respectively	were	required	before	the	annual	flowering	cycle	could	be	detected	400	

with	greater	than	95%	likelihood.	However	species	ranged	widely,	with	19	species	not	401	

reaching	this	95%	threshold	until	after	20	years.	The	species	with	the	least	positive	402	

slope	estimates	were	Detarium	macrocarpum	Harms	and	Greenwaydodendron	403	

suaveolens	Engl.	&	Diels.	(S5).	 	404	
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Discussion		405	

Detectability	and	power	406	

The	flowering	phenology	of	trees	observed	at	Lopé	National	Park,	Gabon,	is	dominated	407	

by	annual	cycles	(88%	species),	in	contrast	with	forests	from	the	neotropics	that	appear	408	

to	be	dominated	by	sub-annual	reproductive	cycles	and	the	Dipterocarp	forests	of	409	

South-East	Asia	that	are	dominated	by	supra-annual	reproductive	cycles	(Sakai	2001).	410	

We	could	not	confidently	describe	regular	cycles	for	many	individuals	in	our	sample	411	

(41%),	where	either	flowering	is	regular	but	the	data	were	too	noisy	or	too	short	for	412	

detection	or	glowering	is	irregular.	Observation	length	was	shown	to	be	a	significant	413	

positive	predictor	of	detecting	regular	cycles	in	both	field	data	and	simulations.	Even	414	

when	cycles	were	confidently	described,	we	found	that	the	power	attributed	to	cycles	415	

ranged	widely,	meaning	that	the	flowering	phenology	of	some	species	is	much	noisier	416	

than	others.	However	the	source	of	this	noise	is	difficult	to	differentiate	for	field	data.	To	417	

explore	this	further	we	simulated	two	forms	of	noise	associated	with	both	process	and	418	

observation	uncertainty	and	found	that	cycle	regularity	has	a	greater	effect	on	ability	to	419	

detect	a	significant	cycle	than	event	detectability:	Fourier	analysis	can	be	used	to	detect	420	

the	cycle	even	if	the	observer	misidentifies	60%	of	flowering	months.	There	are	likely	to	421	

be	additional	sources	of	noise	in	the	field,	such	as	false	recording	of	non-existent	422	

phenophases,	however	we	consider	these	to	occur	less	often.	423	

We	attributed	cycle	characteristics	to	the	species-level	when	we	had	five	or	more	424	

individuals	with	significant	cycles,	under	the	biological	assumption	that	phenology	is	an	425	

evolutionarily	adaptive	trait	and	likely	to	be	constraining	con-specifics	in	a	similar	way.	426	

However,	true	levels	of	intraspecific	variation	are	unknown.	We	find	considerable	427	

intraspecific	variation	for	some	species	(i.e.	Uapaca	guineensis)	and	further	research	428	
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may	reveal	that	phenology	is	not	necessarily	a	stable	trait	within	a	species	or	an	429	

individual’s	lifetime.		430	

Our	results	can	be	used	to	inform	effective	collection,	processing	and	analysis	of	431	

phenological	data.	We	have	shown	that	where	suitable	data	is	available,	objective	432	

analyses	can	be	used	to	confidently	detect	regular	phenology	and	that	frequency-based	433	

outputs	–	cycle	length,	power,	timing	and	level	of	synchrony	–	give	a	suite	of	indicators	434	

that	could	be	used	to	quantitatively	describe	and	compare	phenology	globally.	435	

Development	for	causation	and	change	research	436	

The	indicators	derived	from	Fourier	analysis	can	be	used	to	address	research	questions	437	

such	as	the	proximate	and	ultimate	causes	of	adaptive	phenology	and	detection	of	438	

change.	Where	data	is	available,	analysis	at	the	individual-level	allows	for	inclusion	of	439	

covariates	(e.g.	location,	age,	size	of	individuals	etc.)	in	subsequent	statistical	models,	440	

either	in	combination	with	random	effects	and	best	linear	unbiased	predictors	(BLUPs)	441	

to	account	for	variation	(for	example	between	different	sites,	genera	or	functional	442	

groups)	or	as	fixed	effects	to	test	hypotheses	of	the	causes	of	variation	between	443	

individuals’	phenology.	Co-Fourier	analysis	would	allow	testing	of	other	cyclic	factors	444	

(such	as	climate	data)	alongside	phenology	to	measure	synchrony.	The	advantage	of	445	

these	spectral	approaches	is	that	they	explicitly	model	the	circular	nature	of	phenology	446	

and	weather	data	without	losing	power	by	clumping	data	points	into	arbitrary	time	447	

periods	or	pseudo-replication.		448	

Detecting	long-term	changes	in	phenology	is	challenging	and	field	observations	449	

(Plumptre	2011)	are	vital	to	stimulate	hypotheses	and	further	analysis.	However	it	will	450	

be	increasingly	important	to	measure	the	statistical	confidence	of	detected	changes.		To	451	

date,	studies	of	change	in	tropical	phenology	are	few	(S1),	due	to	the	paucity	of	long-452	
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term	data.	Wavelet	analysis	is	the	natural	extension	of	Fourier	into	the	time-frequency	453	

domain	(Hudson	et	al.	2010;	Polansky	et	al.	2010;	Wittemyer	et	al.	2008),	overcoming	454	

assumptions	of	stationarity,	to	estimate	the	spectrum	as	a	function	of	time	(Cazelles	et	455	

al.	2008).	For	phenology	research,	this	could	enable	analysis	of	whether	individuals	or	456	

species	reproduce	more	or	less	frequently	(e.g.	change	in	dominant	cycle	length),	457	

reproduce	at	the	same	frequency	but	with	more	or	less	certainty	(e.g.	change	in	the	458	

power	of	the	dominant	cycle)	or	shift	phase	and	become	more	or	less	synchronised	over	459	

time.	The	power	of	a	cycle	may	be	a	more	subtle	and	effective	indicator	for	change	than	460	

frequency	to	track	increasing	uncertainty	over	time,	especially	in	the	shorter	term.		461	

In	a	formal	comparison	of	this	Fourier-based	method	with	other	commonly	used	462	

methods	for	quantifying	phenology	(S4),	we	found	Fourier	is	flexible	to	diverse	463	

phenology	and	provides	a	suite	of	quantitative	information	to	describe	seasonal	activity	464	

with	attribution	of	variance	and	confidence.	465	

Steps	forward	466	

We	have	shown	that	at	least	six	years	of	data	are	necessary	to	confidently	detect	467	

reproductive	cycles	amongst	our	species	sample.	For	data-collection	scenarios	resulting	468	

in	noisier	data	–	those	with	high	likelihood	of	measurement	error	(e.g.	inconspicuous	469	

flowers),	systematic	error	(e.g.	high	inter-observer	uncertainty)	or	natural	variation	470	

that	cannot	be	controlled	for	(e.g.	diverse	array	of	phenological	responses	within	a	471	

population)	–	it	will	be	necessary	to	invest	in	large	samples	of	individuals	over	a	longer	472	

time	period	to	detect	cycles	confidently.	To	effectively	monitor	the	response	of	tropical	473	

forests	to	global	change,	it	will	be	necessary	to	focus	efforts	on	suitable	indicator	474	

species	–	those	with	good	signal	to	noise	ratios	-	to	maximise	analytical	power	over	475	

relatively	short	time	periods.		476	
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For	many	phenology	research	questions,	collecting	sufficient	data	will	be	a	challenge	477	

and	require	significant	research	effort.	Ways	to	achieve	this	include:	formation	of	478	

research	networks	and	greater	coordination	of	methods	and	objectives	between	sites,	479	

internet-based	citizen-science	data	collection	networks	and	technical	solutions	to	data	480	

collection,	such	as	automated	canopy	photography	and	GIS.		481	

Conclusions	482	

Phenology	is	a	key	adaptive	trait	shown	to	determine	species	distributions	(Chuine	483	

2010)	and	as	such	will	shape	how	ecosystems	respond	to	rapidly	increasing	regional	484	

and	global	changes	including	human	pressure.	With	the	emergence	of	long-term	485	

tropical	phenology	data,	the	need	also	emerges	for	appropriate	analytical	methods	to	486	

improve	our	understanding	of	the	functioning	of	ecosystems.	We	present	a	Fourier-487	

based	method	that	can	be	further	developed	and	tested,	to	give	simple,	flexible	and	488	

quantifiable	indicators	for	phenology	activity,	and	demonstrate	the	importance	of	489	

consistent	long-term	investment	in	phenological	research.	490	

Acknowledgements:		491	

Phenology	research	at	SEGC,	Lopé	National	Park	was	funded	by	the	International	Centre	492	

for	Medical	Research	in	Franceville	(CIRMF)(1986-2010)	and	by	Gabon’s	National	Parks	493	

Agency	(ANPN)	(2010	–	present).	EB	is	currently	supported	by	an	Impact	Studentship	494	

funded	by	the	University	of	Stirling	and	ANPN.	We	acknowledge	significant	periods	of	495	

independent	data	collection	undertaken	by	Richard	Parnell,	Liz	Williamson,	Rebecca	496	

Ham,	Patricia	Peignot	and	Ludovic	Momont.	Permission	to	conduct	this	research	in	497	

Gabon	was	granted	by	the	CIRMF	Scientific	Council	and	the	Ministry	of	Water	and	498	

Forests	(1986	–	2010),	and	by	ANPN	and	the	National	Centre	for	Research	in	Science	499	



	 24	

and	Technology	(CENAREST)	(2010	–	present.)	We	thank	Daisy	Dent,	Tim	Paine,	Ed	500	

Mitchard	and	two	reviewers	of	a	previous	version	of	this	manuscript	whose	comments	501	

in	preparation	significantly	improved	it.	502	

Data	Accessibility:	503	

R	scripts:	uploaded	as	online	supporting	information	504	

Individual-	and	species-level	flowering	data:	University	of	Stirling’s	DataSTORRE	505	

(https://datastorre.stir.ac.uk)	doi:	XXXX	506	

Author	contributions:		507	

EB,	NB,	KA	and	AJ	conceived	the	ideas	for	this	manuscript;	CT,	LW	and	KA	designed	the	508	

field	methodology;	ED,	JTD,	CT,	KA,	LW	and	KJ	collected	the	data;	EB,	NB	and	KA	509	

analysed	the	data;	EB,	NB,	KA	and	AJ	led	the	writing	of	the	manuscript.	All	510	

authors	contributed	critically	to	the	drafts	and	gave	final	approval	for	publication.	 	511	



	 25	

References:	512	

Agostinelli,	C.	&	Lund,	U.	(2013).	R	package	“circular”:	Circular	Statistics.	513	

Anderson,	D.P.,	Nordhelm,	E.V.,	Moermond,	T.,	Bi,	Z.B.G.	&	Boesch,	C.	(2005)	Factors	514	

Influencing	Tree	Phenology	in	Taï	National	Park	,	Côte	d’Ivoire.	Biotropica,	37(4),	pp.631–515	

640.	516	

Bloomfield,	P.,	2000.	Fourier	analysis	of	time	series:	an	introduction,	John	Wiley	&	Sons.	517	

Butt,	N.,Seabrook,	L.,	Maron,	M.,	Law,	B.,	Dawson,	TS.	&	Syktus,	J.	(2015)	Cascading	518	

effects	of	climate	extremes	on	vertebrate	fauna	through	changes	to	low-latitude	tree	519	

flowering	and	fruiting	phenology.	Global	Change	Biology,	doi:	10.1111/gcb.12869.	pp.1–520	

11.	521	

Cannon,	C.H.,	Curran,	L.M.,	Marshall,	A.J.	&	Leighton,	M.	(2007)	Long-term	reproductive	522	

behaviour	of	woody	plants	across	seven	Bornean	forest	types	in	the	Gunung	Palung	523	

National	Park	(Indonesia):	Suprannual	synchrony,	temporal	productivity	and	fruiting	524	

diversity.	Ecology	Letters,	10(10),	pp.956–969.	525	

Cazelles,	B.,	Chavez,	M.,	Berteaux,	D.,	Ménard,	F.,	Vik,	J.O.,	Jenouvrier,	S.,	Stenseth	&	N.C.	526	

(2008)	Wavelet	analysis	of	ecological	time	series.	Oecologia,	156(2),	pp.287–304.	527	

Chambers,	L.E.,	Altwegg,	R.,	Barbraud,	C.,	Barnard,	P.,	Beaumont,	L.J.,	Crawford,	R.J.M.,	528	

Durant,	J.M.,	Hughes,	L.,	Keatley,	M.R.,	Low,	M.,	Morellato,	P.C.,	Poloczanska,	E.S.,	529	

Ruoppolo,	V.,	Vanstreels,	R.E.T.,	Woehler,	E.J.,	Wolfaardt,	A.C.,	&	Vanstreels,	R.E.T.	(2013)	530	

Phenological	Changes	in	the	Southern	Hemisphere.	PloS	one,	8(10),	p.e75514.	531	

Chapman,	C.,	Wrangham,	R.	W.,	Chapman,	L.	J.,	Kennard,	D.	K	&	Zanne,	A.E.	(1999)	Fruit	532	

and	flower	phenology	at	two	sites	in	Kibale	National	Park,	Uganda.	Journal	of	Tropical	533	

Ecology,	15,	pp.189–211.	534	



	 26	

Chuine,	I.	(2010)	Why	does	phenology	drive	species	distribution?	Philosophical	535	

Transactions	of	the	Royal	Society	B:	Biological	Sciences,	365,	pp.3149–3160.	536	

Cleland,	E.E.,	Chuine,	I.,	Menzel,	A.,	Mooney,	H.A.	&	Schwartz,	M.	D.	(2007)	Shifting	plant	537	

phenology	in	response	to	global	change.	Trends	in	Ecology	and	Evolution,	22(7),	pp.357–538	

365.	539	

Hudson,	I.L.,	Kang,	I.	&	Keatley,	M.R.	(2010)	Wavelet	analysis	of	flowering	and	climatic	540	

niche	identification.	In	I.	L.	Hudson	&	M.	R.	Keatley,	eds.	Phenological	Research.	Springer,	541	

p.	361.	542	

Hudson,	I.L.	&	Keatley,	M.	(2010)	Phenological	Research.	I.	L.	Hudson	&	M.	R.	Keatley,	543	

eds.,	Springer.	544	

IPCC	(2014)	Climate	Change	2014:	Synthesis	Report.	Contribution	of	Working	Groups	I,	II	545	

and	III	to	the	Fifth	Assessment	Report	of	the	Intergovernmental	Panel	on	Climate	Change	546	

[Core	Writing	Team,	R.K.	Pachauri	and	L.A.	Meyer	(eds.)],	547	

Meko,	D.	(2015)	Applied	Time	Series	Analysis,	Online	notes	for	course	(Geosciences	585A)	548	

offered	at	the	University	of	Arizona.	549	

http://www.ltrr.arizona.edu/~dmeko/geos585a.html	550	

Newbery,	D.M.,	Chuyong,	G.B.	&	Zimmermann,	L.	(2013)	Mast	fruiting	of	large	551	

ectomycorrhizal	African	rain	forest	trees:	importance	of	dry	season	intensity,	and	the	552	

resource-limitation	hypothesis.	New	phytologist,	170(3),	pp.561–579.	553	

Newstrom,	L.,	Frankie,	G.	&	Baker,	H.	(1994)	A	new	classification	for	plant	phenology	554	

based	on	flowering	patterns	in	lowland	tropical	rain	forest	trees	at	La	Selva,	Costa	Rica.	555	

Biotropica,	26(2),	pp.141–159.	556	



	 27	

Norden,	N.,	Chave,	J.,	Belbenoit,	P.,	Caubère,	A.,	Châtelet,	P.,	Forget,	Pierre	M.,	&	Thébaud,	557	

C.	(2007)	Mast	fruiting	is	a	frequent	strategy	in	woody	species	of	eastern	South	America.	558	

PLoS	ONE,	2(10).	559	

Obeso,	J.R.	(2002)	The	costs	of	reproduction	in	plants.	New	Phytologist,	155,	pp.321–348.	560	

Parmesan,	C.	(2006)	Ecological	and	Evolutionary	Responses	to	Recent	Climate	Change.	561	

Annual	Review	of	Ecology	Evolution	and	Systematics,	37(1),	p.637-669	562	

Pau,	S.,	Wolkovich,	E.M.,	Cook,	B.I.,	Nytch,	C.J.,	Regetz,	J.,	Zimmerman,	J.	&	Wright,	S	563	

Joseph	(2013).	Clouds	and	temperature	drive	dynamic	changes	in	tropical	flower	564	

production.	Nature	Climate	Change,	3.	p.838	565	

Plumptre,	A.J.	(2011).	The	Ecological	Impact	of	Long-term	Changes	in	Africa’s	Rift	Valley,	566	

Nova	Science.	567	

Polansky,	L.,	Wittemyer,	G.,	Cross,	P.C.,	Tambling,	C.J.,	&	Wayne,	M	(2010)	From	568	

moonlight	to	movement	and	synchronized	randomness:	Fourier	and	wavelet	analyses	of	569	

animal	location	time	series	data.	Ecology	91(5),	pp.1506–1518.	570	

Polansky,	L.	and	Robbins,	M.M.	(2013)	Generalized	additive	mixed	models	for	571	

disentangling	long-term	trends,	local	anomalies,	and	seasonality	in	fruit	tree	phenology.	572	

Ecology	and	Evolution,	3(9),	pp.3141-3151.	573	

Press,	W.H.,	Teukolsky,	S.A.,	Vetterling,	W.T.	&	Flannery,	B.P	(1992)	Numerical	Recipes	in	574	

C:	The	Art	of	Scientific	Computing	Second.,	Cambridge:	Cambridge	University	Press.	575	

R	Core	Team	(2015)	R:	A	language	and	environment	for	statistical	computing.	576	

Rmetrics	Core	team,	Wuertz,	D.,	Setz,	T.	&	Chalabi,	Y.	(2015)	timeSeries:	Rmetrics	-	577	

Financial	Time	Series	Objects.	578	



	 28	

Sakai,	S.	(2001)	Phenological	diversity	in	tropical	forests.	Population	Ecology,	43(1),	579	

pp.77–86.	580	

van	Schaik,	C.P.,	Terborgh,	J.W.	&	Wright,	J.S.	(1993)	The	phenology	of	tropical	forests:	581	

Adaptive	significance	and	consequences	for	primary	consumers.	Annual	Review	of	582	

Ecology	and	Systematics,	24,	pp.353–377.	583	

Ting,	S.,	Hartley,	S.	&	Burns,	K.C.	(2008)	Global	patterns	in	fruiting	seasons.	Global	584	

Ecology	and	Biogeography,	17(5),	pp.648–657.	585	

Tutin,	C.E.G.	&	White,	L.J.T.	(1998)	Primates,	phenology	and	frugivory:	Present,	past	and	586	

future	patterns	in	the	Lope	Reserve,	Gabon.	In	D.	M.	Newbery,	H.	H.	T.	Prins,	&	N.	Brown,	587	

eds.	Dynamics	of	Tropical	Communities:	37th	Symposium	of	the	British	Ecological	Society.	588	

Oxford:	Blackwell	Science,	pp.	309–338.	589	

van	Vliet,	A.J.H.	(2010)	Societal	adaptation	options	to	changes	in	phenology.	In	590	

Phenological	Research.	Springer,	pp.	75–98.	591	

Wittemyer,	G.,	Polansky,	L.,	Douglas-hamilton,	I.	&	Getz,	W.M.	(2008)	Disentangling	the	592	

effects	of	forage	,	social	rank	,	and	risk	on	movement	autocorrelation	of	elephants	using	593	

Fourier	and	wavelet	analyses.	Proceedings	of	the	National	Academy	of	Sciences	of	the	594	

United	States	of	America,	105(49).	595	

Wright,	J.S.	&	Calderon,	O.	(2006)	Seasonal,	El	Nino	and	longer	term	changes	in	flower	596	

and	seed	production	in	a	moist	tropical	forest.	Ecology	letters,	9,	pp.35–44.	597	

Wright	S.	J.	and	Calderon,	O.	(1995)	Phylogenetic	patterns	among	tropical	flowering	598	

phenologies	.	Journal	of	Ecology	83(6),	pp937-948	599	



	 29	

Wright	S.J.,		Carrasco,	C.,	Calderón,	O.	and	Paton,	S.	(1999)	The	El	Nino	Southern	600	

Oscillation,	variable	fruit	production,	and	famine	in	a	tropical	forest.	Ecology,	80(5),	601	

pp1632-1647.	602	

Zalamea,	P.,	Munoz,	F.,	Stevenson,	P.R.,	Paine,	C.E.T.,	Sarmiento,	C.,	Sabatier,	D.	&	Heuret,	603	

P.	(2011)	Continental-scale	patterns	of	Cecropia	reproductive	phenology:	evidence	from	604	

herbarium	specimens.	Proceedings	of	the	Royal	Society	B:	Biological	Sciences	278(1717),	605	

pp.2437–45.	606	

Zimmerman,	J.K.,	Wright,	S.J.,	Calderón,	O.,	Aponte	Pagan,	M.	and	Paton,	S.	(2007)	607	

Flowering	and	fruiting	phenologies	of	seasonal	and	aseasonal	neotropical	forests:	the	role	608	

of	annual	changes	in	irradiance.	Journal	of	Tropical	Ecology	23(02),	pp231	–	251.	609	

	 	610	



	 30	

Supporting	Information	611	

S1:	Review	of	methods	from	the	literature	612	

Review	of	key	literature	analysing	long-term	tropical	plant	phenology	data,	detailing	the	613	

phenophase	of	interest,	site,	data	length,	analytical	methods	used	and	the	scale	of	data	614	

collection	and	analysis.	615	

S2:	Null	hypothesis	choice	and	example	simulated	data	616	

Power	analysis	of	simulated	data	to	show	the	impact	of	null	hypothesis	choice	(null	617	

continuum	vs.	white	noise	spectrum)	for	detecting	periodicity.	618	

S3:	Species	list	from	Lopé	long-term	phenology	study	619	

List	of	families	(n=26),	species	(n=70)	and	individuals	(n=856)	observed	as	part	of	the	620	

Lopé	long-term	phenology	study	included	in	Fourier	analysis	and	summarised	Fourier	621	

outputs	at	the	species	level.	622	

S4:	Demonstration	of	Fourier	analysis	and	comparison	with	other	methods	623	

Demonstration	of	Fourier	analysis	for	three	case	study	species	-	Antidesma	vogelianum,	624	

Pentadesma	butyracea,	Duboscia	macrocarpa		-	and	comparison	with	other	common	625	

methods	for	quantifying	flowering	phenology.	626	

S5:	GLM	outputs	627	

GLM	outputs	for	effect	of	time	series	length	on	likelihood	of	detecting	significant	cycle	628	
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Table	1:	Glossary	to	technical	terms	631	

Term	 Definition	

Bandwidth	 The	distance	at	which	two	peaks	in	the	periodogram	can	be	distinguished	from	each	other,	

a	quantitative	measure	of	resolution.	For	example	a	bandwidth	of	0.1	means	that	cycles	can	

be	distinguished	from	each	other	when	the	difference	between	their	frequencies	is	at	least	

0.1.	

Circular	mean	 A	mean	value	calculated	for	circular	data	where	the	arithmetic	mean	would	be	

inappropriate.	For	example,	the	circular	mean	of	5°	and	355°	is	0°,	in	comparison	to	the	

arithmetic	mean	which	is	180°.	

Circular	standard	

deviation	

A	measure	of	dispersion	calculated	for	circular	data	where	the	arithmetic	standard	

deviation	would	be	inappropriate.	

Circular	data	 Data	from	circular	distributions	(e.g.	months,	hours,	directions	etc.)	where	there	is	no	true	

zero	and	“high”	and	“low”	values	are	arbitrary	(e.g.	Figure	1a).	

Co-Fourier	analysis	 Simultaneous	Fourier	analysis	of	two	time	series.	Additional	outputs	include	relative	

phase	difference	between	the	time	series	at	every	possible	cycle	(Figure	1e).	

Cycle	 A	pattern	of	repeating	events	in	a	regular	order	

Cycle	length	/	

Wavelength	

The	time	taken	for	a	whole	cycle	to	repeat	itself	(e.g.	number	of	months	between	repeating	

flowering	events)	

Daniell	kernel	 A	moving-average	smoother	used	to	eliminate	fine	detail	from	the	raw	spectral	estimate	to	

make	the	output	more	stable	and	easier	to	interpret	(e.g.	smoothed	spectral	estimate	in	

Figure	1c)	

Dominant	cycle	 The	cycle	length	associated	with	the	dominant	peak.	

Dominant	peak	 The	point	in	the	spectral	estimate	with	highest	power	

Fourier	analysis	 Decomposition	of	a	time	series	into	a	series	of	sinusoidal	functions.	The	power	of	each	

cycle	in	the	series	can	be	used	to	identify	dominant	cycles	(Figure	1c).	

Frequency	 The	rate	at	which	something	occurs	(e.g.	number	of	flowering	cycles	per	month	or	per	year)	

Null	continuum	 A	spectral	estimate,	derived	from	the	data	series,	that	has	been	smoothed	extensively	so	

that	only	the	underlying	shape	remains,	and	no	fine	detail	can	be	identified	(Figure	1d).	
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Periodogram	 The	visual	output	of	the	spectral	estimate	derived	from	Fourier	analysis	(Figure	1c-d)	

Phase	difference	 The	distance	between	the	peaks	in	two	cycles	of	matching	frequency	and	referenced	in	time	

(Figure	1e).	

Power	 The	relative	tendency	of	all	possible	cycles	to	appear	in	the	data.	Estimated	in	the	spectral	

estimate	and	plotted	in	the	y-axis	of	a	periodogram	(Figure	1c).	Cycles	not	well	supported	

by	the	data	have	low	power,	while	cycles	well	supported	by	the	data	have	high	power	

Radians	 The	standard	unit	of	angular	measures; 2π radians =  360°.	

Raw	spectral	

estimate	

The	default	output	of	Fourier	analysis	where	all	fine-scale	structure	is	included,	and	can	be	

overly	influenced	by	certain	segments	of	the	data.	

Resolution	 The	ability	to	represent	fine	structure	and	distinguish	between	close	peaks	in	the	spectral	

estimate	derived	from	Fourier,	quantified	as	the	bandwidth	(Bloomfield	2000).	Spectral	

estimates	with	high	resolution	will	show	all	peaks	including	minor	ones,	where	as	spectral	

estimates	with	very	low	resolution	may	show	no	peaks	at	all,	but	rather	the	general	shape	of	

the	data	(e.g.	the	null	continuum	in	Figure	1d).	Increased	resolution	reduces	stability	and	

visa	versa.	

Sinusoid	/	Sine	wave	

/	Cosine	wave	

A	smooth	repeating	pattern	occurring	every	2π	radians	(or	360°)	(e.g.	the	simulated	curve	

in	Figure	1e).	

Smoothed	spectral	

estimate	

The	output	of	Fourier	analysis	after	a	moving-average	smoother	is	applied	to	the	raw	

spectral	estimate	(Figure	1c-d).		

Spans	 The	user-specified	widths	of	the	Daniell	kernel	smoother,	specifically	how	many	data	

points	are	used	to	smooth	the	spectral	estimate	in	each	local	window.	

Spectral	estimate	/	

Spectrum	

The	output	of	Fourier	analysis	showing	the	tendency	of	all	possible	cycles	to	appear	in	the	

data,	from	twice	the	observation	interval	to	the	full	length	of	the	series	(Figure	1c-d).	

Stability	 Extent	to	which	small	fluctuations	in	certain	segments	of	the	data	influence	the	spectral	

estimate	derived	from	Fourier.	Greater	stability	reduces	resolution	and	visa	versa.	

(Bloomfield	2000).	

Synchrony	 The	simultaneous	occurrence	of	two	or	more	events.	

Time	series	 A	sequence	of	data	points	arranged	in	time	order	

	632	



	 33	

	633	

FIGURE	1:	Using	Fourier	analysis	to	detect	flowering	phenology	for	a	single	634	

species	Duboscia	macrocarpa.		635	

a)	Boxplots	showing	the	proportion	of	individuals	(n=11)	in	flower	each	month	from	636	

1986	to	2016.	There	is	no	obvious	seasonal	flowering	pattern	for	this	species.	637	
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b)	Time	series	plots	showing	flowering	canopy	scores	every	month	since	1986	to	2016	638	

(five	individuals	shown	as	an	example).	There	appears	to	be	some	regular	flowering	639	

cycles	for	individuals.	640	

c)	Periodogram	displaying	the	smoothed	spectral	estimates	(bandwidth=0.1)	derived	641	

from	Fourier	analysis	for	each	individual	flowering	time	series	in	(b).	The	x-axis	of	the	642	

shows	all	possible	cycle	frequencies	(from	one	cycle	every	two	months	to	the	full	length	643	

of	the	series).	The	y-axis	shows	the	power	of	each	cycle.	The	highest	peak	in	each	644	

spectrum	occurs	at	a	frequency	of	0.056	cycles	per	month	(indicating	a	flowering	cycle	645	

length	of	18	months).		646	

d)	Periodogram	displaying	smoothed	spectral	estimate	derived	from	Fourier	analysis	647	

for	the	first	flowering	time	series	shown	in	(b)	(red	line).	The	95%	confidence	intervals	648	

for	the	spectral	estimate	(red	shades)	show	that	the	dominant	peak	(grey	arrow)	at	649	

0.056	cycles	per	month	is	different	from	the	null	hypothesis	of	no	cyclicity	(the	null	650	

continuum:	black	dashed	line).	We	can	be	confident	that	the	18-month	cycle	is	different	651	

from	surrounding	noise	and	represents	a	real	flowering	cycle.	652	

e)	Demonstration	of	co-Fourier	analysis	to	derive	the	relative	phase	of	the	flowering	653	

cycle	identified	in	(d).	The	flowering	time	series	(red	line)	is	decomposed	alongside	a	654	

regular	cosine	curve,	simulated	to	have	the	same	cycle	length	as	the	flowering	data	(18	655	

months)	and	by	convention	for	our	data	peaking	on	the	1st	January	1986	(grey	line).	The	656	

phase	difference	(2.11	radians)	between	the	two	time	series	can	be	converted	to	time	657	

(6	months).	658	

	659	

	 	660	
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	661	

FIGURE	2:	Summary	of	flowering	phenology	for	all	tree	species	monitored	at	Lopé	662	

NP,	Gabon.		663	

a) Density	plot	of	time	series’	length	for	all	individuals	analysed	(red,	856	664	

individuals)	compared	to	individuals	with	significant	flowering	cycles	(blue,	509	665	

individuals).	666	
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b) Density	plot	of	number	of	individuals	per	species	for	all	individuals	(red,	856	667	

individuals,	70	species)	compared	to	individuals	with	significant	flowering	cycles	668	

(blue,	509	individuals,	65	species).	669	

c) Density	plot	of	most	common	flowering	cycle	length	(mode)	per	species,	for	a	670	

subsample	of	42	species,	each	more	than	five	individuals	with	significant	671	

flowering	cycles	(458	individuals).	672	

d) Density	plot	of	synchrony	(standard	deviation	of	mean	peak	month)	per	species,	673	

for	a	subsample	of	39	species,	each	with	more	than	five	individuals	with	674	

significant	dominant	cycle	equal	to	the	species	modal	cycle	length	(402	675	

individuals).		676	

	677	

	 	678	
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	679	

FIGURE	3:	Inter-	and	intra-specific	variation	in	flowering	phenology	for	tree	680	

species	monitored	at	Lopé	NP,	Gabon.		681	

Cycle	length	(sub-annual,	annual	and	supra-annual)	and	power	for	each	individual	682	

(grey	dots)	and	modal	cycle	length	and	mean	power	per	species	(red	dots)	from	a	sub-683	
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Klainedoxa gabonensis
Pseudospondias microcarpa

Detarium macrocarpum
Uvariastrum pierreanum
Trichoscypha acuminata

Irvingia grandifolia
Ganophyllum giganteum

Pentaclethra macrophylla
Diospyros dendo

Diospyros zenkeri
Celtis tessmannii

Aucoumea klaineana
Xylopia quintasii

Irvingia gabonensis
Diospyros polystemon

Santiria trimera
Uapaca guineensis

Diospyros mannii
Staudtia kamerunensis

Dialium lopense
Psychotria vogeliana

Canarium schweinfurthii
Scyphocephalium ochocoa

Psidium guineense
Monanthotaxis congoensis

Heisteria parvifolia
Greenwayodendron suaveolens

Vitex doniana
Tetrapleura tetraptera

Sacoglottis gabonensis
Parkia bicolor

Dacryodes buettneri
Cola lizae

Antidesma vogelianum
Porterandia cladantha

Cissus dinklagei
Duboscia macrocarpa

Ongokea gore
Pentadesma butyracea
Pycnanthus angolensis

Xylopia aethiopica
Maranthes glabra

0 5 10 0 5 10 0 5 10
Power of the dominant flowering cycle

S
pe
ci
es



	 38	

sample	of	42	species	with	more	than	five	individuals	with	significant	flowering	cycles	684	

(458	individuals).		685	

	 	686	
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	687	

	688	

FIGURE	4:	Power	analysis	of	simulated	phenology	data	(n=10,000)	to	show	the	689	

impact	of	data	noise	and	length	(5,	10	and	15	years;	(a)-(c))	on	likelihood	of	690	

detecting	cycles	using	Fourier	analysis.		691	

Noise	simulated	as	cycle	regularity	(y-axis:	standard	deviation	-	0.1:	6	-	of	mean	month	692	

of	annual	flowering	event)	and	event	detectability	(x-axis:	proportion	–	0:	60%	-	of	693	

positive	flowering	events	replaced	by	zeros).	694	
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	695	

FIGURE	5:	Power	analysis	of	annually	flowering	phenology	data	from	Lopé	NP	to	696	

show	the	impact	of	time	series	length	(2-20	years	window	length)	on	cycle	697	

detection	using	Fourier	analysis	(10,000	random	samples	from	233	individuals	of	698	

30	species).	Generalised	linear	model	(GLM)	predictions	(family=binomial,	link=logit)	699	

for	each	species	(see	S5,	for	species	key	and	GLM	outputs).	700	

	701	
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