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Abstract

The fatty acid profile of vegetable oils (VOs), together with the poor ability of marine fish to
convert polyunsaturated fatty acids (PUFA) to highly unsaturated fatty acids (HUFA), lead to
important changes in the nutritional value of farmed fish fed VO, which include increased fat
and 18:2n-6 and reduced n-3 HUFA. Echium oil (EO) has a good n-3/n-6 balance as well as an
interesting profile with its high content of unusual fatty acids (SDA, 18:4n-3 and GLA, 18:3n-6)
that are of increasing pharmacological interest. The effects of substituting 50 % of dietary fish
oil (FO) by EO on gilthead seabream (Sparus aurata L.) enterocyte and hepatocyte lipid
metabolism were studied. After 4 months of feeding, cell viability, total lipid contents and lipid
class compositions were not affected by EO. The cells clearly reflected the fatty acid profile of
the EO showing increased SDA, GLA and its elongation product 20:3n-6, and only minorly
decreased n-3 HUFA compared to other VO. Metabolism of [1-'*C]18:2n-6 and [1-'*C]18:3n-3
was also unaffected by EO in terms of total uptake, incorporation, B-oxidation and elongation-

desaturation activities.
Keywords:
1. Introduction

Diets for the major carnivorous finfish species farmed in Europe have traditionally been based
on fish meal and fish oil (FO) (Turchini et al., 2009). However, aquaculture will potentially
utilize 80-100 % of the global fish oil supply by 2010 (Bell and Waagbo, 2008; Turchini et al.,
2009). As a consequence, the sustainable development of aquaculture requires dietary FO to be
substituted with vegetable oils (VO) that are available, sustainable and cost effective (Sargent et
al., 2002; Bell and Waagbo, 2008; Turchini et al., 2009).

The poor ability of marine fish to convert linolenic (18:3n-3, LNA) and linoleic (18:2n-6, LA)
acids to the highly unsaturated fatty acids (HUFA), 20:5n-3 (eicosapentaenoic, EPA), 22:6n-3
(docosahexaenoic, DHA) and 20:4n-6 (arachidonic, ARA) compared to fresh water fish may be
associated with the latter having higher concentrations of LNA and LA and limited EPA and,
especially, DHA in their diet compared to the former (Sargent et al., 2002; Bell and Tocher,
2009). Therefore, HUFA are essential fatty acids (EFA) for marine fish, and are important as
structural components of cell membranes (Sargent et al., 2002; Marsh, 2008), eicosanoids
precursors (Tocher, 2003; Bell et al., 2006; Villalta et al., 2007) and regulators of gene
expression (Zheng et al., 2005; Miller et al., 2008; Leaver et al., 2008). The fatty acid profile of
VO, together with this poor ability of marine fish to convert C;s polyunsaturated fatty acids



(PUFA) to HUFA, lead to important changes in the fatty acid composition of flesh of fish fed
VOs, which include decreased n-3 HUFA and increased fat and LA contents (Sargent et al.,
2002; Menoyo et al., 2004; Bell et al., 2006; Benedito-Palos et al., 2007; Diaz-Lopez et al.,
2009; Fountoulaki et al., 2009). Excessive consumption of VO and, particularly 18:2n-6, has
been related to some detrimental effects on health of fish (McKenzie, 2001; Sargent et al., 2002;
Montero et al., 2003, 2008). For these reasons, replacement of dietary FO must be approached
with caution, and is only possible in marine fish when HUFA are present in feeds at sufficient
quantities to meet EFA requirements, and to maintain nutritional value for human consumption.
In this sense, up to 50-70% substitution of FO by VO has been reported to maintain the correct
growth and health of some marine fish species including seabream and seabass (Sargent et al.,
2002; Montero et al., 2003; Menoyo et al., 2004; Mourente et al., 2005; Benedito-Palos et al.,
2007; Diaz-Lopez et al., 2009; Fountoulaki et al., 2009). However, research is now focused at
identifying VOs or blends that avoid excessive deposition of fat and LA, provide a good n-3/n-6
HUFA ratio, and maximize potential for conversion of C;gs n-3PUFA to EPA and DHA. In this
sense, there are several studies demonstrating that dietary VOs induce the conversion of LA to
ARA, and LNA to EPA and DHA in both hepatocytes and enterocytes in salmonids, although
total n-3 HUFA levels are still significantly decreased in flesh and liver (Bell et al., 2001, 2002;
Tocher et al., 2002, 2004, 2006; Fonseca-Madrigal et al., 2006). However, HUFA synthesis is
very low and generally not increased by dietary VOs in marine fish (Mourente et al., 2005;
Almaida-Pagan et al., 2007).

The Echium genus (Boraginaceae) seed oils are relatively rich in LNA and 18:4n-3 (stearidonic
acid, SDA) as well as 18:3n-6 (y-linolenic acid, GLA), and only contains moderate levels of LA
compared to other VOs (Guil-Guerrero et al., 2000a,b). Thus, Echium oil (EO) has a good n-3/n-
6 PUFA balance as well as an interesting profile with its high content of unusual fatty acids
(SDA and GLA) that are of increasing pharmacological interest based on their competitive and
inhibitory effects in the production of proinflammatory eicosanoids derived from ARA (Tocher,
2003; Villalta et al., 2007; Chilton et al., 2008; Whelan, 2009). The high levels of SDA,
compared to LNA, may also facilitate its conversion into n-3 HUFA, since it does not require
the first, rate-limiting, A6 desaturation step.

Gilthead seabream, Sparus aurata L., is the most important marine fish species in
Mediterranean and Canarian aquaculture, and several studies have shown that it can generally be
grown well on diets with FO partially replaced by VO (Montero et al., 2003; Caballero et al.,
2003, 2004; Menoyo et al., 2004; Benedito-Palos et al., 2007; Diaz-Lopez et al., 2009;
Fountoulaki et al., 2009). However knowledge of seabream lipid metabolism is still incomplete

compared to other fish species, such as salmonids, turbot, and seabass (Sargent et al., 2002;



Rodriguez et al., 2002; Mourente et al., 2005; Bell et al., 2001, 2002, 2006; Tocher et al., 2002,
2004, 2006; Fonseca-Madrigal et al., 2006). Thus, neither HUFA synthesis, nor -oxidation
processes have been investigated in gilthead seabream.

Hepatocytes and enterocytes play critical roles in lipid metabolism including uptake, oxidation,
and conversion of fatty acids and the supply of HUFA to the other tissues. Much information of
the biosynthetic pathways of HUFA synthesis and other aspects of fatty acid metabolism has
been obtained by incubating isolated fish cells with radiolabeled fatty acids (Bell et al., 2001,
2002, 2006; Rodriguez et al., 2002; Tocher et al., 2002, 2004, 2006; Mourente et al., 2005;
Fonseca-Madrigal et al., 2006; Almaida-Pagan et al., 2007). Therefore, the aim of the present
study was to evaluate the effects of 50% substitution of dietary FO by EO, in gilthead seabream

lipid profile and fatty acid metabolism in isolated hepatocytes and enterocytes.

2. Material and methods

2.1. Fish, diets and sampling

Gilthead seabream juveniles obtained from a local fish farm (CEDRA S.L.L.) were distributed
into six S00L circular tanks (14 fish per tank) and reared under constantly flowing seawater, and
natural photoperiod at 19-19.5 °C, at Centro Oceanografico de Canarias (I.E.O.) (Tenerife,
Spain). After a 4-week acclimatization period, where fish were fed an extruded commercial diet
(Aqualife 17, Biomar S.A., France), fish from three of the tanks were changed to a pelletized
experimental diet containing 50 % FO and 50 % EO, manufactured by the Institute of
Aquaculture at Stirling University (Scotland, U.K.). EO was produced by cold pressing of seeds
from both Echium plantagineum and Echium vulgare (Goerlich Pharma, Spain). Proximate
composition, lipid class and fatty acid profiles of the diets are shown in Table 1.

The fish were fed ad libitum twice a day, from Monday to Friday. The fish, initial mass 265.05
+49.75 g, were sampled at the beginning of the experimental trial and then monthly, to obtain
final growth and specific growth rates (SGR). Mortality was registered daily. After 4 months of
feeding, 6 fish per dietary treatment were randomly collected, anesthetized with 1 mL of
chlorobutanol in ethanol per litre seawater and killed by a blow to the head and liver and gut
rapidly removed for cell isolation and subsequent metabolic assays. The entire experiment was
conducted in accordance with Spanish law 223/1988 (B.O.E. 18th March) for protection of

experimental animals, in agreement with European law 89/609/CE.

2.2. Preparation of isolated enterocytes and hepatocytes.

After 48 h of starvation, the foregut, including pyloric caeca, was rapidly removed from the



carcass, cleaned of adhering adipose tissue, and contents removed with cold (4 °C) physiological
saline solution III (Dépido et al., 2004). The intestine was then filled, immersed and incubated
with a hyperosmolar solution. The process was repeated twice with the same solution containing
0.2 mM EDTA and 0.5 mM dithiothreitol (DTT) as disaggregants and then the luminal
solution, mainly enterocytes loosened from the epithelia, was filtered. The resultant cell
suspension was centrifuged and the pellet resuspended and incubated in a similar solution
containing collagenase (0.5 mg/mL). Hepatocytes were prepared basically as described by
Rodriguez et al. (2002). Liver was cannulated through the hepatic portal vein or another
suitable vessel to clear the liver of blood with a physiological solution. The liver was then finely
chopped in a beaker with HBSS solution containing collagenase (1 mg/mL). Both gut and liver
preparations were incubated with collagenase for 15 min at 25 °C with shaking. The resultant
cell suspensions were filtered through a 60-100 pm nylon mesh and centrifuged. The cell pellet
was washed with 20 mL of HBSS containing 1% w/v fatty acid-free bovine serum albumin
(FAF-BSA) and re-centrifuged at 700 g for 15 min. The isolated cells were then suspended in 50
mL of cold M199 medium (Rodriguez et al., 2002). Fifty to 100 pl samples of cell suspensions

were collected and stored at -80 °C for protein determination (Lowry et al., 1951).

2.3. Enterocyte and hepatocyte viability.

Cell viability was assessed by Trypan-blue dye exclusion and an oxygen consumption test prior
to metabolic assays. In the Trypan blue dye exclusion method, 50ul cell suspensions were
diluted with 200 pL 0.4% Trypan blue solution, stained for 5 min. at room temperature, and
viable cells (dye excluded) counted using a Neubauer haemocytometer. Data were expressed as
mean percentage of total viable cells. This measure was also taken after the incubation period in
both, the control cells and cells with radiolabelled fatty acids.

Oxygen consumption was measured on freshly isolated cells in an O,-saturated closed system
using a Clark electrode connected to a computerized data acquisition system, and processed with
RESPI software (Jeulin SAV, France). Approximately 120x10° cells in 3 mL M199 solution
were added to the incubation chamber and maintained at 20 °C. After a 5 min stabilization
period, O, concentrations were linear with time and plotted on-line for 10-15 min. Experimental
zero O, concentration was obtained by adding sodium dithionite. The rate of O, consumption
(Roxygen) Was calculated as the slope of the linear relationship in the plots [O,] versus time, and

expressed in nmol O,/mg protein/hour (nmol O, mg pp 'h™") (Dépido et al., 2004).

2.4. Enterocyte and hepatocyte incubation with '*C-labelled fatty acids.

Six mL of each cell preparation were incubated as monolayers in plastic tissue culture flasks for



2 h at 20°C with 70 pL (0.35 uCi) of either [1-'*C]18:2n-6 or [1-'*C]18:3n-3. The radiolabelled
fatty acids were added to the medium as their potassium salts bound to FAF-BSA (Ghioni et al.,
1997). A third, control group of cells was also maintained under the same conditions, but

without adding fatty acid to the incubation media, for subsequent lipid analysis.

2.5. Enterocyte and hepatocyte lipid composition.

After incubation, the 6 mL samples of control cells were centrifuged (700 x g, 15 min) and
washed with Hanks balanced salt solution (HBSS). Chloroform/methanol (2:1, v/v) containing
0.01% butylated hydroxytoluene (BHT) as antioxidant, was added to extract total lipids (TL) as
described by Christie (1982). The organic solvent was evaporated under a stream of nitrogen
and the lipid content determined gravimetrically. The TL extracts were stored in
chloroform/methanol (2:1) with BHT at -20° C until analysis. The lipid class composition of TL
from the control cells was determined by HPTLC using single-dimension double-development
as previously described (Tocher and Harvie, 1988). The classes were quantified by charring
followed by calibrated densitometry using a dual-wavelength flying spot scanner CS-9001PC
(Shimadzu) (Olsen and Henderson, 1989) and identified according to known lipid class
standards. Samples of TL were subjected to acid-catalyzed transmethylation in 1 mL toluene
and 2 mL 1% sulfuric acid (v/v) in methanol, for 16 h at 50 °C, and the resultant fatty acid
methyl esters (FAME) purified by TLC (Christie, 1982). The FAME were separated and
quantified using a Shimadzu GC-14A gas chromatograph equipped with a flame ionization
detector (250 °C) and a fused silica capillary column, Supelcowax TM 10 (30 m x 0.32 mm
I.D.), as described in Diaz et al. (2009).

2.6. Enterocyte and hepatocyte fatty acid metabolism

Fatty acid metabolism was determined in the cells incubated with radiolabelled fatty acids.

2.6.1. Beta-oxidation

The assay of fatty acid oxidation in intact cells requires the determination of acid-soluble
radioactivity as previously described (Froyland et al., 2000). Briefly, after incubation, 1 mL of
cells (1/6 of cell suspensions) was homogenized and centrifuged at 16000 g for 5 min, and 500
ul supernatant placed into a microcentrifuge tube and 100 pL of 6% HBSS/FAF-BSA solution
added. After mixing, protein was precipitated by the addition of 1 mL of ice-cold 4 M perchloric
acid. After vortexing, tubes were centrifuged (16000 g, 10 min), 500 uL supernatant transferred
to scintillation vials, and radioactivity determined in a RackBeta 1214 liquid scintillation -

counter (LKB, Wallac, USA). Radioactive in dpm was transformed into pmol/mg protein/hour



(pmol-mg pp'h™), taking into account specific activity of each substrate and cell protein
y p

contents (Lowry et al., 1951).

2.6.2. Incorporation into total lipids

Lipid was extracted from the remaining 5 mL of cells as described in section 2.5 and 1/10 of the
TL extracts taken for determining radioactive incorporation as described above. Data of total
uptake of radiolabelled fatty acids was calculated as the sum of B-oxidation and incorporation
into TL.

2.6.3. Fatty acyl desaturation/elongation.

The remainder of the TL extracts were subjected to acid-catalyzed transmethylation as described
above (section 2.5), and FAME then applied as 3-cm streaks to TLC plates previously
impregnated with 2 g silver nitrate in 20 mL acetonitrile and preactivated at 110 °C for 30 min.
The plates were fully developed in toluene/acetonitrile (95:5, v/v) to separate the labelled fatty
acids according to chain length and degree of unsaturation (Wilson and Sargent, 1992). The
developed TLC plates were placed in closed exposure cassettes (Exposure Cassete-K, BioRad,
Madrid, Spain) in contact with a radioactive-sensitive phosphorus screen for 7 days (Imagen
Screen-K, Biorad, Madrid, Spain). The screens were then scanned with an image acquisition
system (Molecular Imager FX, BioRad), and the bands quantified first in percentage by the
“Quantity One” image software and then transformed into pmol-mg pp 'h™' taking into account
incorporation into total lipids of each sample. Identification of labelled bands was confirmed by

radiolabelled standards run on the same plates (Rodriguez et al., 2002).

2.7. Chemical and reagents

TLC (20x20 cm, @ 0.25 mm) and HPTLC (10x10 cm, @ 0.15 mm) plates, precoated with silica
gel (without fluorescent indicator), were from Machery-Nagel (Diiren, Germany). Fish oil
standard (PUFA N-3) was supplied by SUPELCO (Supelco PARK, Bellefonte, PA, USA). All
organic solvents used were of reagent grade and were from Panreac (Barcelona, Spain).
OptiPhase “HiSafe” 2 scintillant liquid and radiolabelled fatty acids, [1-'*C]18:2n-6 and [1-
14C]18:3n-3 were from PerkinElmer (USA). HBSS (Hanks Balanced Salt Solution), M199 with
Hanks salts, collagenase type IV, FAF-BSA (bovine serum albumin essentially fatty acid free),
butylated hydroxytoluene, potassium chloride and potassium bicarbonate were from Sigma

(Spain).

2.8. Statistical analysis



Results are presented as means + S.D (n=42 for growth parameters and n=6 for the rest of data).
The data were checked for normal distribution by the one-sample Kolmogorov-Smirnoff test as
well as for homogeneity of the variance with the Levene test and, when necessary, arcsine
transformation was applied. Effect of treatment was determined using the Student t-test (2
variables) and P<0.05 was considered statistically different. Total lipid content of enterocytes
and hepatocytes was analyzed by two-way ANOVA. The percentages of lipid classes and main
fatty acids of enterocytes and hepatocytes were included as variables in a principal components
analysis (PCA) model. Factor scores were subsequently analyzed by two-way ANOVA to study
the combined effects of both: dietary treatments and type of cell, and their interactions.
Statistical analysis was performed using SPSS (versions 15.0 and 17.0, SPSS Inc, Chicago, IL,
USA).

3. Results

3.1. Diet composition

Total lipid contents of the diets were equal and close to 21% (DWB) (Table 1). Total saturated
fatty acids, particularly 16:0, were higher in the FO diet than in the EO diet. Monounsaturated
fatty acids other than 16:1 were higher, and n-6 PUFA, 18:2n-6 and 18:3n-6, 3-fold higher in the
EO diet compared to the FO diet. Total n-3 PUFA fatty acids were similar in the two diets, but
EPA and DHA were 2- to 3-fold lower in the EO diet compared to the FO diet, whereas 18:4n-3
and, especially, 18:3n-3, were much higher in the EO diet (Table 1).

3.2. Growth and survival

No significant differences were observed in fish final weight or length among dietary
treatments, with values of 351.0 £ 60.0 g and 25.7 £ 1.5 cm for FO-fed fish and 343.3 +51.1 g
and 25.5 + 1.3 cm for EO-fed fish, and with an average specific growth rate (SGR) of 0.3 from
the second month until the end of the experimental period, for both dietary regimes. Mortality

over the experimental period was less than 1% for both treatments.

3.3. Enterocyte and hepatocyte viability

Viability of isolated enterocytes and hepatocytes was not significantly (P<0.05) different
between the two dietary groups, with values of oxygen consumption of 42.6 + 15.3 and 47.8 +
12.9 nmol/ mg pp for enterocytes from FO- and EO-fed fish, respecitively, and 28.6 + 15.7 and
37.9 £ 13.2 nmol/ mg pp for FO and EO-fed fish hepatocytes, respectively. Similarly, viability
rate obtained by the Trypan-blue cell exclusion test was not significantly (P > 0.05) different



between the dietary groups with more than 91 % viability achieved even when radioactive

substrates were added.

3.4. Enterocyte and hepatocyte lipid composition.

Two-way ANOVA of total lipid contents showed they were not affected by diet (p=0.745) but
differed according to cell type (p=0.004) (Table 2). Similarly, lipid class profiles were generally
not significantly affected by the dietary regime with the exception of cholesterol and steryl
esters (SE) that were lower and higher, respectively, in hepatocytes from EO-fed fish (Table 2).
There was a trend in EO enterocytes for TAG to be lower and structural lipids including
phospholipids and cholesterol to be higher. The PCA (Fig 1) and two-way ANOVA of PCA
highlights the significant differences between the lipid class profiles of the two cell types
reflected in principal component 1 (PC1, p=0,000). PC1 was positively related with TAG and
negatively with phosphatidylethanolamine (PE), phosphatidylcholine (PC), sphingomyelin (SM)
and SE. Phospholipids (PC and PE) were more abundant in hepatocytes than enterocytes.

After 4 months of feeding, enterocyte and hepatocyte fatty acid profiles clearly reflected those
of diets (Table 3). Fish fed the EO diet showed significantly higher proportions of n-6 PUFA,
including LA and GLA and also 20:3n-6, with the latter not being present in the diet. Similarly,
LNA and SDA were also higher in cells from EO-fed fish, whereas n-3 HUFAs, trended to be
lower. As a result, the n-3/n-6 ratio was significantly reduced in cells of fish fed the EO diet
(Table 3). The PCA and two-way ANOVA for CP1 of fatty acids (p=0.000) confirmed these
differences between dietary treatments (Fig. 2). The PC1 component was clearly related with the
most abundant fatty acids in fish fed EO: LA, GLA, LNA, SDA and one of their elongation
products (20:3n-6), so PCI reflects the characteristic EO profile. However, the fatty acid profile
was also affected, in principal component 2 (PC2), by the differences between enterocytes and
hepatocytes profiles (p=0.009), which was negatively correlated with HUFA (ARA, 20:3n-3,
20:4n-3, EPA, 22:5n-3 and DHA) and positively with oleic acid. The effect of EO was
influenced by the cell type in PC1, shown by an interaction between dietary treatment and cell
type (Interaction, p=0.031). Thus, enterocytes were more affected by EO showing higher levels
of the characteristic EO-derived C;3 PUFA compared to hepatocytes. Hepatocytes, in general,

had more HUFA and less oleic acid than enterocytes.

3.5. Enterocyte and hepatocyte metabolism of radiolabelled substrates

3.5.1. Beta-oxidation, incorporation into total lipid and total absorption

Diet had no effect on p-oxidation of [1-'*C]18:2n-6 or [1-'*C]18:3n-3 in either enterocytes or

hepatocytes (Table 4). Although B-oxidation expressed in absolute terms was similar in both



cellular types, when data were expressed relatively to total uptake, enterocyte B-oxidation was
lower than that of hepatocytes (11-15 % in enterocytes vs. 27-37 % in hepatocytes).
Incorporation of fatty acids into total lipids as well as total uptake (sum of B-oxidation and
incorporation) were also similar for [1-'*C]18:2n-6 and [1-'*C]18:3n-3, independent of diet, but
fatty acid uptake and incorporation were 2-3 times higher in enterocytes than hepatocytes (Table
4).

3.5.2. Fatty acyl desaturation/elongation.

There were no marked differences between treatments in the production of elongated or
desaturated products from the two fatty acid substrates (Table 4). Irrespective of experimental
group, cell type, or fatty acid assayed, total radioactivity was almost recovered in a single band
(97-99 %) which corresponded to the C;s PUFA added to the cells ([1-'*C]18:2n-6 or [1-
'4C]18:3n-3). Bands corresponding to elongation activity were clearer to define than those of
desaturation. In this sense, some activity was recovered in 20:2n-6, 22:2n-6, 20:3n-3 and 22:3n-
3 whereas no clear bands for 18:3n-6 or 18:4n-3 or any of their elongation-desaturation products

were found.
4. Discussion

As reported by other authors (Montero et al., 2003; Izquierdo et al., 2005) a 50% substitution of
FO by VO is possible in gilthead seabream without negatively affecting the fish growth.

In agreement with other similar studies performed with enterocytes and hepatocytes from fish
fed VOs, cell viability was high (Rodriguez et al., 2002; Almaida-Pagan et al., 2007). Cell
oxygen consumption was neither affected by diet showing values that were in the range
previously reported for gilthead seabream enterocytes (Dopido et al., 2004).

The inclusion of VOs in carnivorous fish diets is often associated with increased fat contents
and lipid droplets in liver and enterocytes, usually when substitution is over 75% (Rodriguez et
al., 2002; Caballero et al., 2003; Menoyo et al., 2004; Francis et al., 2007), or at lower levels of
substitution when an unbalanced fatty acid profile is provided (Caballero et al., 2003, 2004;
Menoyo et al., 2004). Nevertheless, when the substitution level is not too large (50-75 %) and
the fatty acid profile of the VO is well balanced, fat deposition in enterocytes and liver is not
reported (Caballero et al., 2004; Mourente et al., 2005; Francis et al., 2007). Moreover, in cod,
Arctic charr and Atlantic salmon fed up to 100 % EO, TL in muscle and liver did not increase
(Bell et al., 2006; Tocher et al., 2006; Miller et al., 2007), in agreement with our previous trial
where muscle TL content of gilthead seabream fed EO was even decreased (Diaz-Lopez et al.,

2009). Therefore, studies in marine fish should focus on the use of blends of VOs to obtain a

10



balanced fatty acid profile such as that present in EO to avoid excessive tissue fat deposition. In
the same way, the lipid class profile of gilthead seabream enterocytes and hepatocytes was
unaffected by EO as reported for other balanced VOs including EO in liver (Mourente et al.,
2005; Bell et al., 2006), enterocytes (Tocher et al., 2002) and muscle (Bell et al., 2006; Miller et
al., 2007, 2008), of different fish species.

Fatty acid profiles of enterocyte and hepatocyte reflected the dietary VO profile as widely
observed for several fish species fed VO. In both cells types, the C;g fatty acids were
significantly increased, but 22:5n-3 was only significantly reduced in hepatocytes. There was
also a trend for DHA and EPA to decrease but not in a significant way. In many other trials, fish
fed VOs displayed significant reductions in n-3HUFA together with increased C,g fatty acids in
liver (Rodriguez et al., 2002; Menoyo et al., 2004; Mourente et al., 2005; Bell et al., 2006;
Almaida-Pagan et al., 2007) and enterocytes (Caballero et al., 2003; Mourente et al., 2005;
Almaida-Pagan et al., 2007) of different marine fish. Nevertheless, in seabass fed a balanced
blend of VOs, enterocytes were capable at regulating fatty acid levels, with C;g fatty acids not
increasing greatly, and EPA and DHA levels relatively maintained (Mourente et al., 2005). In
our previous trial with seabream fed 50% EO, EPA, 22:5n-3 and DHA were reduced in muscle
and liver after 4 months of feeding but, surprisingly, DHA was partly recovered in muscle after
7 months of feeding (Diaz-Lopez et al., 2009). In agreement with these findings white muscle of
Atlantic salmon parr fed 100% EO, displayed an increment of DHA whereas EPA and 22:5n-3
were maintained although growth rate was relatively low in this trial (Miller et al., 2007). The
apparent compensation in the reduction of n-3 HUFA when using EO could be related to the
moderated and balanced levels of C; fatty acids of EO and some blends of VOs (Mourente et
al., 2005). In this sense, the probability to esterify a n-3 HUFA instead of a C;5 PUFA during
phospholipid turnover may increase when proportions of dietary fatty acids are balanced.
However, growth rate and duration of the feeding trial are also factors likely to affect final fatty
acid compositions.

The most abundant C;g fatty acids of VOs are LA, LNA and 18:1n-9, which were increased in
enterocytes and hepatocytes of seabass, sharpsnout seabream and turbot fed VOs (Rodriguez et
al., 2002; Mourente et al., 2005; Almaida-Pagan et al., 2007). Nevertheless, with EO other C;
PUFA, including GLA (18:3n-6) and SDA (18:4n-3) increased in liver and muscle of freshwater
and marine fish (Bell et al., 2006; Tocher et al., 2006; Miller et al., 2008; Diaz-Lopez et al.,
2009), and also in enterocytes and hepatocytes in the present trial. The elongation products of
these fatty acids, 20:3n-6 and 20:4n-3, are precursors of eicosanoids that have competitive and
inhibitory effects on the production of proinflammatory eicosanoids derived from ARA in fish
(Bell et al., 2006; Villalta et al., 2007) and in mammals (Chilton et al., 2008; Whelan, 2009). In

11



this respect, the fatty acid profile of seabream fed EO can be considered beneficial for human
consumption.

Another objective of the present study was to determine if the inclusion of EO improves the
metabolism of the two main n-3 and n-6 HUFA precursors as has been described for some VOs
in salmonids (Tocher et al., 2002, 2004; Fonseca-Madrigal et al., 2006) as studies with marine
fish were lacking. The uptake of [1-'*C]18:3n-3 and [1-'*C]18:2n-6 by enterocytes and
hepatocytes was unaffected by the EO diet, whereas in rainbow trout enterocytes fed linseed oil,
increased uptake of [1-'*C]18:3n-3, which was very abundant in this VO, was observed
(Geurden et al., 2009). In rainbow trout fed rapeseed oil the uptake of [1-'*C]18:3n-3 was
maintained (Geurden et al., 2009) whereas it was decreased in hepatocytes of salmon fed a VO
blend (Stubhaug et al., 2005). This might be due to a higher uptake of 18:1n-9, more abundant
than LNA in these diets. In the same way, the incorporation of both labelled fatty acids into TL
was maintained with the EO in the present study and decreased in hepatocytes of salmon fed a
VO blend with both fatty acids (Stubhaug et al., 2005).

There was no effect of diet on B-oxidation as occurred in enterocytes and hepatocytes of other
marine fish fed VOs (Mourente et al., 2005; Almaida-Pagan et al., 2007). We could expect that
oxidation of the C;s PUFA, 18:2n-6 and 18:3n-3, abundant in VOs, would be increased in EO-
fed fish but this did not happen. However, studies measuring -oxidation capacity in subcellular
fractions, showed that long-chain monoenes were preferred over C;s PUFA as substrates in
salmonids (Henderson 1996; Freyland et al., 2000). Therefore, lower levels of long-chain
monoenes and higher levels of Cig PUFA in VOs than in FO may result in increased B-oxidation
of Ci3 PUFA in VO-fed gilthead seabream muscle (Menoyo et al., 2004), salmon enterocytes
(Tocher et al., 2002), and sharpsnout seabream hepatocytes (Almaida-Pagén et al., 2007).
However, in the present study, the EO diet had higher levels of long-chain monoenes than the
FO diet so they were available for f-oxidation. Consistent with this, f-oxidation of the Cig
PUFA was similar in fish fed FO and VO when the VO blend had a similar level of long-chain
monoenes to the FO diet (Mourente et al., 2005). In general, fish cells may use the most
abundant fatty acids for B-oxidation but prefer long-chain monoenes to PUFA.

Desaturation of the [1-'*C] PUFA in gilthead seabream cells was very low as expected for a
marine fish (Rodriguez et al., 2002; Mourente et al., 2005; Almaida-Pagan et al., 2007), and
much lower than that reported for salmonids (Tocher et al., 2002, 2004, 2006). Increased HUFA
synthesis has been described mainly in freshwater fish and salmonids fed VO diets at different
levels of substitution (Bell et al., 2001, 2002; Tocher et al., 2002, 2004; Zheng et al., 2005;
Stubhaug et al., 2005; Fonseca-Madrigal et al., 2006). Some of these trials also used EO, or even
borage oil from the same plant family in salmonids (Tocher et al., 1997, 2006). These
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increments have been related with increased expression of desaturases and elongase genes
(Seiliez et al., 2003; Zheng et al., 2004, 2005; Miller et al., 2008). However, in marine fish, the
effects of dietary VO appear to depend upon the species and does not increase HUFA synthesis
unless the substitution is such that HUFA is under requirement levels which it is the case of
Rodriguez et al. (2002) when feeding turbot 100% olive oil. Therefore, desaturation of [1-
14C]18:2n-6 and [1-'*C]18:3n-3 was not increased in cod with 50 % VO substitution (~12% n-3
HUFA) and in our trial with 50% of EO (11% n-3 HUFA), but it was in cod with 75 and 100%
(7.9 and ~1.5 % n-3HUFA) (Francis et al., 2007) and with 100 % of EO (7.9 % n-3 HUFA)
(Bell et al., 2006). In contrast, 100% VO substitution did not increase HUFA synthesis in the
omnivorous marine fish, sharpsnout seabream (Almaida-Pagan et al., 2007). Moreover, studies
with gilthead seabream larvae fed different degrees of substitution of FO by VOs did not show
any indications of desaturation activity in tissue fatty acid profiles (Robin and Vincent, 2003;
Robin and Peron, 2004), as in the present trial. However, molecular studies reported that the
expression of the A6 desaturase gene was increased when seabream were fed 100% olive oil
(Seileiz et al., 2003), similarly to the above mentioned results obtained in turbot fed 100% olive
oil (Rodriguez et al., 2002).

Despite the poor desaturation activity displayed for [1-'*C]18:2n-6 and [1-'*C]18:3n-3, 20:3n-6
was significantly increased in the EO enterocytes and hepatocytes. This fatty acid was not
supplied by the diet, which suggests elongation of the dietary precursor GLA, as happened in
larvae seabream fed VO diet supplemented with Spirulina algae rich in GLA (Robin and Peron,
2004). This elongation product is probably accumulated in seabream fed VO because A5
desaturase activity required to produce 20:4n-6 is absent or very limited in these marine fish
species (Tocher and Ghioni, 1999; Seiliez et al., 2003; Zheng et al., 2004). In contrast, there
were no differences between the two treatments with respect to the presence of 20:4n-3 in cells.
This may simply be a consequence of GLA, the 20:3n-6 precursor, being much higher in the EO
diet (22 times fold) than in FO diet. Whereas, SDA, the 20:4n-3 precursor, was only two-fold
higher in the EO diet compared to the FO diet, and also 20:4n-3 was much higher in the FO diet
than 20:3n-6 and so differences in elongation were only able to be observed with 20:3n-6. The
same situation concerning differences in dietary levels and the accumulation of elongation
products, 20:3n-6 compared to 20:4n-3, were reported in liver of Arctic char fed EO and FO
(Tocher et al., 2006), muscle and liver of cod fed EO and FO (Bell et al., 2006), and muscle and
liver of gilthead seabream fed EO or FO in our previous trial (Diaz-Lopez et al., 2009).

In summary, enterocytes and hepatocytes TL contents and lipid class composition were not
affected by 50 % substitution of FO by EO. The cells clearly reflected the fatty acid profile of
the EO showing increments of healthy fatty acids including SDA, GLA and the elongation
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product 20:3n-6. Metabolism of [1-'*C]18:2n-6 and [1-'*C]18:3n-3 was unaffected in terms of

uptake, incorporation, B-oxidation and elongation-desaturation activities.
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Legends

Fig 1. a) Factor loadings plot for the lipid classes data. b) Plot of factor scores of the lipid classes for
each fish categorized by dietary treatment (O: fish oil. m: Echium oil); c) Plot of factor scores of the lipid
classes for each fish categorized by type of cell (A: enterocytes. A : hepatocytes). SM: Sphingomyelin.
PC: Phosphatidylcholine. PS: Phosphatidylserine. PI: Phosphatidylinositol. PG: Phosphatidylglycerol
(may also include phosphatidic acid and cardiolipin). PE: Phosphatidylethanolamine. DAG:
Diacylglycerol. CHO: Cholesterol. FFA: Free fatty acids. TAG: Triacylglycerols. SE: Sterol esters. UK:

Unknown.
Fig 2. a) Factor loadings plot for the fatty acids data. b) Plot of factor scores of the fatty acids for each

fish categorized by dietary treatment (O: fish oil. m: Echium oil); c) Plot of factor scores of the fatty acids

for each fish categorized by type of cell (A: enterocytes. A : hepatocytes). UK: Unknown.
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Table 1. Proximate composition (%DWB) and fatty acid composition (weight %) of dietary

treatments.

FO diet EO diet
Moisture 9.0 + 1.1 89 £ 03
Ash 73 £ 0.2 8.7 + 04
Crude fibre 3.0 £ 0.1 3.1 = 0.1
Protein 41.6 = 0.6 434 + 0.9
Fat 20.7 £ 1.6 20.7 £ 0.8
Neutral lipid 19.1 + 0.1 18.8 = 0.1
Polar lipid 1.6 £ 0.1 1.9 £ 0.1
16:0 18.7 + 04 10.8 + -
18:0 36 £ 0.2 22 £ -
Total saturates 305 £ 03 17.0 £ -
16:1" 6.7 £ - 35+ -
18:1 n-9 98 = 0.3 123 + -
20:12 21 £ - 6.5 £ -
22:12 1.8 £ 0.2 73 £ -
Total monoenes 259 + 0.1 329 £ 0.2
18:2 n-6 44 = 0.1 134 + -
18:3 n-6 02 = - 47 £ -
20:2 n-6 02 + - 02 + -
20:3 n-6 0.1 = 0.1 0.0 + -
20:4 n-6 08 £+ - 0.1 £ 0.2
Total n-6 PUFA 6.1 £ 0.2 185 £ 0.3
18:3 n-3 14 + 0.1 140 £ -
18:4 n-3 28 + 0.1 54 £+ -
20:3 n-3 02 + - 0.3 = 0.1
20:4 n-3 0.7 £ - 0.1 £ 0.2
20:5 n-3 123 + 0.5 43 £ -
22:5n-3 14 + 0.1 04 £ -
22:6 n-3 13.1 + 0.2 56 £+ -
Total n-3 PUFA 329 £+ 0.7 30.6 =+ 0.3
Total n-3 HUFA 282 + 0.7 11.0 £ 0.3
UK 1.5 + 0.3 0.5 + 0.1
n-3/n-6 54 +£ 03 1.7 £ -
18:1/n-3 HUFA 04 + - 13 £ -
DHA/EPA 1.1 £+ - 1.3 £ -
ARA/EPA 0.1 + - 0.0 + -
Results represent means = SD (n=3), SD < 0.1 is represented as “-”. Totals include some minor components not

shown. DWB: Dry weight basis. pp: protein. FO: Fish oil. EO: Echium oil. UK: Unknown. ! May contain n-9 and

n-7 isomers. > May contain n-11 and n-9 isomers.
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Table 2. Total lipid contents (ug lipid-mg pp™') and lipid class composition (% of total lipid) of

enterocytes and hepatocytes of gilthead seabream fed fish oil or Echium oil.

Enterocytes Hepatocytes

FO diet EO diet FO diet EO diet
TL 100.8 + 384 106.8 +£19.0 156.8 + 60.1 148.0 +35.9
Sphingomyelin 06 £ 05 09 £ 02 12 + 04 08 + 0.2
Phosphatidylcholine 109 £+ 35 141 £+ 33 140 = 25 132 + 0.8
Phosphatidylserine 1.1 £ 05 19 +£ 06 0.8 £+ 05 0.8 £ 03
Phosphatidylinositol 22 £ 1.0 32 + 07 1.7 + 1.0 1.5 £ 09
Phosphatidylglycerol' 23 £ 1.0 22 + 09 36 £+ 09 3.1 £ 09
Phosphatidylethanolamine 5 £ 13 73 + 26 114 =+ 3.1 135 £ 3.0
Diacylglycerol 09 + 1.1 02 £ 05 04 + 07 04 + 03
Cholesterol 170 + 48 202 =+ 24 156 £ 1.5 134 £ 20 *
Free fatty acids 56 £ 40 49 = 5.1 7.0 £ 27 45 £ 19
Triacylglycerols 47.1 £106 376 =+ 6.0 357 £ 5.6 375 £ 6.7
Sterol esters 38 £ 13 48 + 14 57 £ 1.7 91 £ 2.6 *
UK 32 £ 20 27 = 20 27 = 1.6 20 + 1.7
Total polar lipids 223 £ 66 295 £+ 7.0 328 + 3.7 331 £ 3.2
Total neutral lipids 745 + 59 678 £+ 8.8 645 £ 4.6 649 + 4.0

Results represent means = SD (n=6). Pairs of values within a given cell type which are significantly different
(P<0.05) are shown (*). pp: protein. FO: Fish oil. EQ: Echium oil. TL: Total lipid. ' May also include phosphatidic

acid and cardiolipin. UK: Unknown.
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Table 3. Total fatty acid contents (ug-mg’'pp™) and fatty acid composition (weight %) of isolated

enterocytes and hepatocytes of gilthead seabream fed fish oil or Echium oil.

Enterocytes Hepatocytes

FO diet EO diet FO diet EO diet
Total FA 47.1 £ 2.7 512 + 5.8 60.5 + 14.1 675 £ 122
14:0 37 £ 1.1 26 + 0.7 36 £ 0.6 28 + 09
16:0 23.0 =+ 3.9 20.1 + 1.9 21.8 £ 3.8 20.0 + 2.9
18:0 77 + 23 7.6 £ 0.5 6.2 + 0.9 73 + 1.8
Total saturates 36.7 £ 64 324 £ 3.0 333 £ 53 31.8 £ 5.0
16:1" 53 £ 1.0 48 + 09 6.8 + 5.9 50 + 1.3
18:1 n-9 11.8 + 1.7 13.8 £ 3.3 11.7 £ 2.0 122 + 1.1
20:12 36 £ 1.2 30 £ 1.0 24 + 03 24 £ 03
22:12 31 £ 1.9 16 £ 0.6 22 £ 05 1.8 + 0.6
24:1 n-9 08 = 0.2 1.1 £ 0.6 1.6 £ 03 1.8 = 1.0
Total monoenes 284 + 4.1 275 £ 54 276 £ 34 269 + 39
18:2 n-6 44 + 0.7 88 = 1.1 * 3.8 £ 0.3 75 £ 1.5
18:3 n-6 0.1 £ 0.1 1.5 £+ 03 * 0.1 + 0.1 1.1 + 04 *
20:2 n-6 03 £ 0.1 03 = 0.1 03 = - 03 + 0.2
20:3 n-6 0.1 £ 0.2 08 + 04 * 0.1 + 0.1 08 + 03 *
20:4 n-6 1.2 £ 0.2 1.0 £ 04 1.2 £ 03 1.2 £ 0.6
Total n-6 PUFA 64 = 1.0 124 £ 1.8 * 59 £ 0.6 113 £ 25 *
18:3 n-3 08 + 0.2 45 £ 0.8 * 08 + 0.1 37 £ 1.5
18:4 n-3 07 £ 04 14 + 03 * 08 = 0.1 1.3 £+ 04 *
20:3 n-3 00 £ - 0.1 + 0.1 0.1 + 0.1 02 + 02
20:4 n-3 0.6 = 0.1 06 + 0.2 0.8 + 0.1 0.8 + 0.2
20:5n-3 59 + 19 44 + 1.8 54 £ 14 38 + 1.1
22:5n-3 1.5 £ 0.6 08 + 0.5 25 + 0.5 1.6 £+ 03 *
22:6 n-3 157 + 2.8 133 £ 6.7 19.1 £ 5.9 153 + 4.0
Total n-3 PUFA 296 + 4.6 276 £ 59 364 £ 6.2 322 + 32
Total n-3 HUFA 236 + 44 19.3 £ 8.5 28.0 £ 7.8 217 £ 53
UK 1.5 £ 04 1.2 £ 09 1.5 £ 0.5 1.5 + 09
n-3/n-6 47 £ 04 23 + 06 * 62 = 0.8 29 + 06 *
18:1/n-3 HUFA 05 + 0.2 09 + 0.6 05 +£ 0.2 0.6 = 0.2
DHA/EPA 29 + 09 30 £ 1.1 35 £ 03 42 + 0.6 *
ARA/EPA 02 + - 02 + - 02 + - 03 + 0.1
Results represent means £ SD (n=6) , SD<0.1 is represented as “-”. Totals include some minor components not

shown. Pairs of values within a given cell type which are significantly different (P<0.05) are shown (*). pp: protein.
FO: Fish oil. EO: Echium oil. FA: fatty acids. ' May contain n-9 and n-7 isomers. > May contain n-11 and n-9

isomers. UK: Unknown.
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Table 4. Metabolic activities: uptake, B-oxidation, incorporation and elongation-desaturation (pmol-mg
pp'l‘h'l), of enterocytes and hepatocytes of gilthead seabream fed fish oil or Echium oil, incubated with of [1-

C118:2n-6 and [1-'*C]18:3n-3.

Enterocyte Hepatocyte

FO diet EO diet FO diet EO diet
18:2n-6
Uptake 161.1 + 46.1 1334 + 423 | 57.1 + 21.0 ¥ 535 + 104 7
B-oxidation 202 £ 154 182 + 57 | 155 £ 10.6 199 + 24
Incorporation 1409 = 41.1 1153 + 443 | 41.7 + 125 § 336 = 10.7 ¥
18:2n-6 1382 + 327 1132 + 38.8 | 41.0 + 122 + 332 + 104 ¥
20:2n-6 1.0 £ 0.8 0.7 £ 0.6 02 + 0.1 0.0 £ 0.0 *y
22:2n-6 08 £+ 05 07 + 04 02 + 0.1 ¥ 0.1 £ 02 7
tri-tetraenes 03 =+ 02 04 + 03 03 + 0.2 02 + 0.2
pent-hexaenes 0.6 + 04 04 =+ 03 00 = 0.1 7 0.1 £ 0.1 t
elongation 1.8 £ 13 1.3 £ 0.8 04 £ 02 0.1 £ 03 *y
desaturation 09 £ 05 0.8 £ 0.6 03 £ 02 ¥ 02 + 0.2
elongation/desaturation 28 + 14 21 + 14 0.7 £ 04 7 04 + 04 ¢
18:3n-3
Uptake 1369 £ 192 1343 + 42.0| 633 += 137 ¥ 61.0 £ 165 7
B-oxidation 204 + 15.1 16.0 = 6.3 19.6 + 133 204 + 33
Incorporation 1165 + 31.8 1183 + 432 437 + 182 1 40.6 = 167 ¥
18:3n-3 1156 + 57.1 1166 + 41.4| 435 + 180 + 40.0 £ 17.7 ¥
20:3n-3 06 £ 03 1.0 £ 14 0.1 £ 0.1 03 £ 02 *
22:3n-3 05 + 04 0.5 £ 04 02 + 02 ¥ 02 + 0.1
tetraenes 0.0 £ 0.1 0.0 =+ 0.0 0.0 = 0.1 0.0 =+ 0.0
pent-hexaenes 0.6 £ 05 02 + 04 0.0 £ 00 7 0.1 £ 0.1
elongation 1.1 =+ 07 1.5 + 1.6 02 +£ 03 7 0.5 £ 0.2
desaturation 0.6 £ 0.6 02 £ 04 0.0 £ 0.1 ¢ 0.1 £ 0.1
elongation/desaturation 1.7 £ 12 1.7 £ 2.0 03 £ 03 7 0.6 £ 03

Results represent means = SD (n=6). Pairs of values within a given cell type which are significantly different
(P<0.05) are shown (*). Pairs of values within a given dietary treatment which are significantly different (P<0.05)
are shown (). pp: protein. h: hour. FO: Fish oil. EO: Echium oil. Elo/des: the sum of elongation and desaturation

activity.
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