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Abstract.  
There is considerable opportunity to develop new modelling techniques within a 

Geographic Information Systems (GIS) framework for the development of sustainable 

marine cage culture. However, the spatial data sets are often uncertain and incomplete, 

therefore new spatial models employing “soft computing” methods such as fuzzy logic 

may be more suitable. 

The aim of this study is to develop a model using Neuro-fuzzy techniques in a 3D GIS 

(Arc View 3.2) to predict coastal environmental vulnerability for Atlantic salmon cage 

aquaculture. A 3D hydrodynamic model (3DMOHID) coupled to a particle-tracking 

model is applied to study the circulation patterns, dispersion processes and residence 

time in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system), an 

area of restricted exchange, geometrically complicated with important aquaculture 

activities.  

The hydrodynamic model was calibrated and validated by comparison with sea surface 

and water flow measurements.  The model provided spatial and temporal information on 

circulation, renewal time, helping to determine the influence of winds on circulation 

patterns and in particular the assessment of the hydrographic conditions with a strong 

influence on the management of fish cage culture. 

The particle-tracking model was used to study the transport and flushing processes. 

Instantaneous massive releases of particles from key boxes are modelled to analyse the 

ocean-fjord exchange characteristics and, by emulating discharge from finfish cages, to 

show the behaviour of waste in terms of water circulation and water exchange. 

In this study the results from the hydrodynamic model have been incorporated into GIS 

to provide an easy-to-use graphical user interface for 2D (maps), 3D and temporal 

visualization (animations), for interrogation of results. 
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Data on the physical environment and aquaculture suitability were derived from a 3-

dimensional hydrodynamic model and GIS for incorporation into the final model 

framework and included mean and maximum current velocities, current flow quiescence 

time, water column stratification, sediment granulometry, particulate waste dispersion 

distance, oxygen depletion, water depth, coastal protection zones, and slope. 

The Neuro-fuzzy classification model NEFCLASS–J, was used to develop learning 

algorithms to create the structure (rule base) and the parameters (fuzzy sets) of a fuzzy 

classifier from a set of classified training data. A total of 42 training sites were sampled 

using stratified random sampling from the GIS raster data layers, and the vulnerability 

categories for each were manually classified into four categories based on the opinions 

of experts with field experience and specific knowledge of the environmental problems 

investigated.  

The final products, GIS/based Neuro Fuzzy maps were achieved by combining modeled 

and real environmental parameters relevant to marine fin fish Aquaculture. 

Environmental vulnerability models, based on Neuro-fuzzy techniques, showed 

sensitivity to the membership shapes of the fuzzy sets, the nature of the weightings 

applied to the model rules, and validation techniques used during the learning and 

validation process. The accuracy of the final classifier selected was R=85.71%, 

(estimated error value of ±16.5% from Cross Validation, N=10) with a Kappa 

coefficient of agreement of 81%. Unclassified cells in the whole spatial domain (of 

1623 GIS cells) ranged from 0% to 24.18 %. 

 A statistical comparison between vulnerability scores and a significant product of 

aquaculture waste (nitrogen concentrations in sediment under the salmon cages) showed 

that the final model gave a good correlation between predicted environmental 
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vulnerability and sediment nitrogen levels, highlighting a number of areas with variable 

sensitivity to aquaculture.  

Further evaluation and analysis of the quality of the classification was achieved and the 

applicability of separability indexes was also studied. The inter-class separability 

estimations were performed on two different training data sets to assess the difficulty of 

the class separation problem under investigation. The Neuro-fuzzy classifier for a 

supervised and hard classification of coastal environmental vulnerability has 

demonstrated an ability to derive an accurate and reliable classification into areas of 

different levels of environmental vulnerability using a minimal number of training sets.  

The output will be an environmental spatial model for application in coastal areas 

intended to facilitate policy decision and to allow input into wider ranging spatial 

modelling projects, such as coastal zone management systems and effective 

environmental management of fish cage aquaculture. 
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Chapter 1  General introduction. 

Aquaculture is the fastest growing food production system on the planet and accounted 

for 47 percent of the world’s fish food supply in 2006.  World aquaculture has grown 

tremendously during the last fifty years from a production of less than a million tonnes 

in the early 1950s to 51.7 million tonnes by 2006 (FAO, 2008) (Fig 1.1). 

. 

 

Fig 1.1. Trends in world aquaculture production: mayor species groups from FAO (2008) 

 

In 2004, aquaculture production from mariculture was 30.2 million tonnes, representing 

50.9 percent of the global total. Freshwater aquaculture contributed 25.8 million tonnes, 

or 43.4 percent of the total. The remaining 3.4 million tonnes, or 5.7 percent, came from 

production in brackish environments. (FAO, 2006). 

According to FAO projections (FAO, 2002), it is estimated that in order to maintain the 

current level of per capita consumption, global aquaculture production will need to 

reach 80 million tonnes by 2050. 
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Salmon is one of the most popular food fish species in the United States, Europe, and 

Japan, and salmon aquaculture has increased over the past decades to meet this market 

demand. In 1980 farmed salmon made up a negligible percentage of world salmon 

supply, but by 2003 approximately 60% of global salmon supply was farmed. In 

aquaculture, the Atlantic salmon (Salmo salar) represents 90% of production and is by 

far the most economically important cultured salmon, currently being produced in 24 

countries. The major producers of salmon are Norway, Chile, the United Kingdom, and 

Canada, although Chile and Norway account for close to 75% of farmed salmon 

production (FAO, 2006), but an ongoing outbreak of the virus infectious salmon 

anemia, ISA and an accelerated harvesting have led to a drop from 650,000 tons to 

400,000 tons of Chilean salmon, according to Gallardo (2010).  

1.1 Integrated Coastal Zone Management and aquaculture.  

 
Clearly, if aquaculture is to grow as predicted by FAO, then there will be increasing 

pressure on space. This applies to continental aquaculture as well as to developments in 

the coastal zone.  The coastline has traditionally attracted a very large proportion of the 

world’s human population. This growing population demands, competes and generally 

uses the coastal space, frequently in an incompatible way and placing continually 

increasing pressure on coastal resources. The United Nations conference on 

environment and development (UNCED) in Rio de Janeiro in 1992 developed the 

concept of Integrated Coastal Zone Management (ICZM) in order to tackle the urgent 

need to manage littoral and sub-littoral zones. The development and approval of coastal 

aquaculture projects should be based on ICZM principles, taking into account the use 

of, and  conflicting demands upon, identified resources while  simultaneously  
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supporting coastal livelihoods and tourism, protecting marine habitats, and preserving  

ecological functions and biodiversity (Perez, 2003).  

1.2 Introduction to Geographic Information Systems.    

 
For the implementation and development of ICZM policies it clear that decision making 

requires access to appropriate, reliable and timely data. Almost without exception, this 

information has a spatial component and Geographical Information Systems (GIS) have 

a clear role in managing such data. A GIS is a technological tool for comprehending 

geography and making intelligent decisions, (ESRI, 2008). Burrough, (1986) and  

Kapetsky and Travaglia  (1995) defined GIS as an “integrated assembly of computer 

hardware, software, geographic data and personnel designed to efficiently acquire, 

store, manipulate, retrieve, analyze, display and report all forms of geographically 

referenced information geared towards a particular set of purposes”.  

The world's first GIS was developed in the 1960s and 1970s in Canada, by the federal 

Department of Forestry and Rural Development. This was called the "Canada 

Geographic Information System" (CGIS) and was used to store, analyze, manipulate 

and display data collected for the Canada Land Inventory (Jones, 1997). 

Nath et al. (2000) categorized  several phases in a GIS project: identifying 

requirements, formulating specifications, developing the analytical framework, locating 

geodata sources, organizing and manipulating data sets for initial input, analyzing data 

and verifying outcomes, and finally  evaluating the spatial outputs. 

Geographic location is the key for much of the potential of GIS, which has the ability to 

map and to tie together with a common referencing system  different kinds of 

information from several sources, scanning, air borne image, satellite images etc, 

because they geographically refer to the same place (Fig 1.2). The location attributes 
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use coordinates stored digitally and GIS is therefore structured around a straight 

forward X,Y co-ordinate system (LAT/LONG, UTM, etc)  to which a number of 

thematic layers such as  socio-economic, environmental, military information can be 

referenced (Fig 1.2). GIS represents real world objects (land use, elevation, etc) with 

digital data. Real world objects can be divided  

into two abstractions: discrete objects (e.g. aquaculture cages and roads) or continuous 

fields (e.g. salinity or temperature). There are two main methods used to store, 

manipulate and display data in a GIS, 

Raster and Vector (Longley et al., 

2005). Raster data consists of rows and 

columns of cells, with each cell storing 

a single value. Raster data can be 

images (raster images) with each pixel 

(or cell) containing a numerical or 

colour value.  Vector data considers all 

features as geometrical shapes and 

geographical features are expressed by 

different types of geometry; points, 

lines, polylines or polygons. 

1.3 GIS in Aquaculture. 

 
The spatial information needs for decision-makers and planners developing aquaculture, 

are well served by geographical information systems (Kapetsky and Travaglia, 1995), 

The technology is a proven tool for natural resource management and space planning 

and should be used extensively for planning in aquaculture (Dempster and Sanchez-

 

Figure 1.2. Geographical data layers 
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Jerez, 2008). GIS also allows information management without complex and time 

consuming manipulations (Wright and Barlett, 2000). 

GIS application in aquaculture has targetted  a broad range of species and well as 

geographical scales ranging from local areas (Ross et al., 1993; Scott and Ross 1999) to 

sub national regions and islands ( Aguilar-Manjarrez and Ross, 1995; Goulletquer and 

Le Moine,  2009; Perez et al., 2005) to nations (Arid et al., 2005; Salam and Ross, 

2000) to geographical areas (Guneroglu et al., 2005; Aguilar-Manjarrez and Nath, 

1998) and world wide (Handisyde et al., 2006). Specific topics have included  site 

selection for target species such as molluscs,  (Chenon et al., 1992; Krieger and 

Mulsow, 1990; Scott et al., 1998; Arnold et al., 2000; Halvorson, 1997) crustaceans 

(Alarcon and Villanueva, 2001) fish (Benetti et al., 2001; Perez et al., 2005; Perez, 

2003) seaweeds, (Brown et al., 1999) environmental impact assessment (Fuchs et al., 

1998; Gupta 1998; Corner et al., 2006) uses of natural resources (Angell, 2009; Biradar 

and Abidi, 2000), potentialities of aquaculture, technical assistance and food security 

(Meaden and Kapetsky, 2001; Kapetsky, 1994; Kapetsky and Nath, 1997); mapping to 

assist the aquaculture industry, coastal zone managers and stakeholders in their 

deliberations about aquaculture potential (Chang et al., 2005),  modeling biodiversity to 

support net pen site selection (Hunter et al, 2006)  and climate change (Handisyde et al., 

2006).   

There have been many applications of GIS for coastal salmonid culture. The Canadian 

ministry of agriculture fisheries and food (MAFF) developed factors and guidelines for 

individual site assessment using biophysical capability maps for salmon farming 

(Caine, 1987).  The Norwegian programme, LENKA, was used to model the ability of 

the marine environment to absorb organic loading from salmon culture and the 

outcomes were used to assign organic loading capacities to 500 geographically defined 
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zones along the coast (Ibrekk et al., 1993). Ross et al. (1993) developed GIS models for 

coastal salmonid cage culture site selection using GIS in a small (20 ha) bay in Scotland 

using a minimum number of spatial variables. Krieger and Mulsow (1990) studied the 

suitability of finfish in a coastal area in Chile. Perez et al., (2002) developed GIS spatial 

modelling techniques for particulate waste distribution for Atlantic salmon, Salmo 

salar, raised in cages. This work has been extended by Corner et al., (2006) so that the 

model is fully integrated into the GIS. Chang et al., (2005) analyzed open ocean 

aquaculture in the Bay of Fundy, Canada with the objective of assisting the aquaculture 

industry, coastal zone managers and stakeholders, principally aimed at cage farming of 

Atlantic salmon. More recently, with the goal of promoting the use of GIS and remote 

sensing in aquaculture and inland fisheries in developing countries, the FAO 

Aquaculture Management and Conservation Service has produced reviews and 

documented the use of GIS for aquaculture   with the main aim of maintaining and 

extending the use of GIS, remote sensing and mapping to improve the sustainability of 

marine aquaculture (Meaden and Kapetsky, 2001; Kapetsky and Aguilar-Manjarrez, 

2007). 

1.4 Introduction to Enviromental modelling.  

 
Implementation of decision support tools within a GIS is predicated upon the creation 

of a series of mathematical models. The principal components of a mathematical 

modelling framework (Thomann, 1982) are shown in Fig 1.3  

The two steps enclosed within dashed lines, theoretical construct and numerical 

specification, constitute the mathematical model distinguishing the simple writing of 

equations for the model from the task of assigning a set of representative numbers to 

input and parameters. Following this initial general model specifications are the steps of 
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evaluating model sensitivity, calibration and validation.  Sensitivity analysis is used to 

increase the confidence in the model and its predictions by providing an understanding 

of how the model response variables respond to change in the inputs, be they data used 

to calibrate it, model structure, factors used and model independent variables (Saltelli, 

2000). Model calibration is the determination of the model parameters and/or structure 

on basis of measurement and prior knowledge (Janssen and Heuberger, 1995).  

 

Figure 1.3. Principal components of mathematical modeling framework. Modified from 

Thomann (1982). 

 
The accuracy of a coastal model is closely related to the input provided to it, such as 

bathymetry and meteorological conditions. The mathematical model developer will 

apply the best data sources available in order to generate high quality modeled outputs. 

However, the precision of the model may be limited by the quality of data available and 

the reliability of the sources. The scientific and technical components of model 

evaluation are the estimation of consistency between model predicted results and the 

prevailing scientific theory. A complete model evaluation requires both operational and 

scientific examination (Wilmott, 1981). The final users will be coastal zone managers 
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and engineers who are concerned with the fitness for purpose of the model and perhaps, 

most importantly its credibility (Sutherland et al., 2004), and a wide range of 

stakeholders representing various sectors of industry and the community. 

1.5 Environmental problems in aquaculture.  

 
Coastal waters are subject to the same seasonal cycles as the open ocean, but the 

processes are greatly complicated by factors peculiar to the coastal zone, mainly the 

shallowness, the presence of tidal currents and aspects of the land/water interface 

(Mann and Lazier, 2006). Coastal ecosystems are characterised by strong seasonality of 

stratification, nutrient, insolation and topographic factors which play an important role 

in determining the dynamics of primary production and the vertical flux of organic 

matter (Wassmann, 1991). The capacity of the marine environment to assimilate waste 

from aquaculture activities in general is limited by the local hydrodynamic conditions 

and biological characteristics of the water bodies affected (Gillibrand et al., 2006). 

Regions of restricted exchange (RRE’s) are traditionally preferred sites for human 

settlement in which aquaculture and their ecosystems and consequent human use may 

be at environmental risk. Fjordic environments in general are vulnerable ecosystems 

which readily become subjected to environmental strains because the residence time of 

anthropogenic derivatives is significantly higher than in the open ocean. 

The scale on which aquaculture can impact the environment depends on a combination 

of factors, including the nature of the pressure, the dispersion rate and pattern and the 

response time following any impact. 
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Three impact scales (CSTT, 1994) have been proposed (Fig 1.4):  

 Zone A scale is that representing the water volume and sediment area immediately 

influenced by a fish farm(s). 

 Zone B scale is that of the water body and any region of restricted exchange. 

 Zone C scale is that of the entire water body that provides the boundary conditions.  

 

 

Figure 1.4 .The scales proposed by the UK Comprehensive studies task team (CSTT, 

1994) 

 

The size of each box in Fig 1.4 is determined by the local dispersion and by the time-

scales of critical biochemical processes in relation to the residence time of nutrients 

within the box. The degree of the nutrient enrichment depends upon farm species, food 

quantity and quality, management, water currents and depth (Beveridge, 2004).  

Carroll (2003) suggested that the potential sensitivity to impacts from fish farming is 

based on the hydrodynamism at the site. The term Ecohydrodynamics in aquaculture 

has been coined by Tett (2008) to describe the physical conditions at a site and in the 

water body and the chemical and biological conditions that would naturally occur under 
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such conditions. The sensitivity to waste of the water or sea bed at a particular farm site 

depends on the Ecohydrodynamic conditions at and around that site and the spatial and 

temporal scale.  The term sensitivity (SAMS, 2004) is used here to mean the extent to 

which a given amount of aquaculture will result in an 'impact' on the ecosystem in 

which the aquaculture takes place. 

The extent to which a proposed site is sensitive to pressures from the wastes from 

farmed fin-fish depends on key parameters such as minimum current speed, depth, 

residence time (SAMS, 2004). Descriptions of hydrodynamic processes that dominate 

water exchange were used to predict the environmental impact of waste and nutrient, 

and to develop a carrying capacity model based on the potential for nutrient enrichment 

from estimated numbers and sizes of salmon held in cages (Strain et al., 1995). 

 

Figure 1.5. Effects of aquaculture in a region of restricted exchange. 

 

The potential effects of farming fish in cages (Fig 1.5) on the marine environment 

coming from uneaten food and excreted material may lead to organic enrichment of the 
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sediments below the cages, and hypernutrification and oxygen depletion in the water 

column (e.g. Gillibrand et al., 1996  Silvert, 1992;  Brown et al., 1987; Pearson and 

Gowen, 1990). Wildish et al., (2004), suggest how in the near field this waste may be 

transported and dispersed from the fish farm to the local coastal environment by the 

action of all types of water movements in the immediate vicinity of the cages.  

Hargrave (2003) considered that the environmetal impacts of fin fish aquaculture may 

be classified into three types of broad-scale distant changes from farm sites: 

eutrophication, sedimentation and effects on the food web. Beveridge (2004) also 

suggests that there will be increases in nitrogen and phosphorous compounds in the 

overlying waters. The difficulty in interpreting environmental affects is the difficulty in 

relating the occurrence of harmful algal blooms due a nutrient enrichment from finfish 

farms. In addition, local hydrographic conditions that characterize the farm area may 

influence the recovery rates in quiescent and low hydrodynamically energetic areas, the 

recovery may take much longer than in more energetic areas (Pearson and Black, 2001).  

1.6 Coastal models in aquaculture. 

 
Numerical circulation models, based on a set of mathematical equations that govern 

fluid motion, provide a practical solution to the problem of understanding coastal 

mixing in aquaculture areas (Wildish et al., 2004). “Coastal modeling” is defined as the 

modeling of coastal and shelf seas excluding specialist topics such as beach processes 

or river models that do not include a portion of the adjacent shelf sea (Jones, 2002). 

These coastal models can be applied to many different ecological and environmental 

problems by using a range of model configurations and forcing (wind and tides mainly) 

in a depth-averaged two-dimensional (2-Dimensions) application or in a full three-

dimensional (3-Dimensions) form. 3D models would be extremely useful not only for 
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aquaculture but also for a wide range of research and management applications 

(Andréfout et al., 2006).   

The main potential and recommendations for such models in aquaculture could be as an 

indicator, as a descriptor of well understood physical processes, as a tool for guiding 

best practices in development and regulation, or as a cost effective alternative to 

extensive field studies.  They may also provide fast predictions for potential impacts for 

different aquaculture scenarios (Henderson et al., 2001).  

A number of authors have addressed the questions of circulation, flushing time and 

oxygen depletion (Greenberg et al., 2005; Trites and Petrie, 1995; Brooks and 

Churchill, 1991), nutrient and pesticide dispersion (Falconer and Hartnett, 1993),  sea 

lice dispersion (Murray and Gillibrand, 2006) and waste dispersion  in finfish 

aquaculture (Dudley et al., 2000). Taboada et al. (1998) studied the residual circulation 

in the Ria of Vigo, an important area of mussel culture. The Hong Kong bay area has 

been fully modeled (Lee et al., 1991; Lee and Arega, 1999; Lee et al., 2003) and it is 

clear that marine fish farms in the area are located in eutrophic coastal waters, often 

with severe dissolved oxygen depletion, algal blooms and red tides. The models 

provided predictions of algal biomass, dissolve oxygen and nutrients. 

Andréfout et al. (2006) described the state of the art in designing well constrained 3D 

models, useful for aquaculture applications and estimated the cost of implementing, 

calibrating and validating a numerical model for an semi-enclosed atoll lagoon for 

mollusc aquaculture. Duarte et al. (2003) implemented a 2D hydrodynamic model 

coupled with a physical-biogeochemical model in an area with extensive polyculture, 

and used it to estimate the environmental carrying capacity for polyculture of scallops 

and oyster. Ferreira et al. (2007) used a 3D model to simulate tidal, wind and ocean 

currents in the studies areas to develop dynamic ecosystem-level carrying capacities for 
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some Irish Sea Loughs for shellfish culture.  Skogen et al. (2009) coupled a physical 

chemical and biological 3D ocean model and modelled a fjord and concluded that there 

was a small increment in the primary production and no impact in the oxygen level 

form fish farming in the study area. 

1.7 Fuzzy logic in environmental modeling. 

 
 Mathematical models in general combine a variety of inputs and procedures to derive 

an output and are widely used, particularly in environmental modeling. Although such 

model outputs represent a single point in time and typically combine multiple inputs 

into a single output, the results are often of great value as predictors or indicators of  

environmental problems (Longley et al., 2005). Ambiguity may also arise in the 

conception and construction of these indicators and in environmental classification.  

A particular problem arises where the boundary of a piece of information is not clear-

cut and there is no single quantitative value which can be assigned in that area. For 

example, concepts such as young, small, good, low or medium are relative concepts and 

have no clean boundary.  For some people, age 20 is young, while for others, age 35 is 

still young. Age 5 years old is definitely young and age 70 is definitely not young, 

however, age 35 has different possibilities depending upon the context in which it is 

being considered. The representation of this kind of information is based on the concept 

of “fuzzy” set theory (Zadeh, 1965) in which the use of fuzzy sets relaxes the definition 

of a boundary and admits intermediate values of class membership. 
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Unlike classical or Boolean set theory where one deals with objects whose membership 

to a set can be clearly described, viz:  

   0,1U: 
A

µ    Eq (1) 

where a number µ A (x)  is associated with the values {0,1}, 1 or 0  with each element x 

of U, in fuzzy set theory, membership of an element to a set can be partial, i.e., an 

element belongs to a set with a certain grade (possibility) of membership.  

More formally, a fuzzy set A in a universe of discourse U is characterized by a 

membership function: 

 0,1U : 
A

µ      Eq (2) 

where a number µ A (x) in the interval [0,1] is associated with each element x of U. 

This numerical value represents the grade of membership of x in the fuzzy set A. For 

example, the fuzzy term young might be defined by the fuzzy set in Table 1.1. 

 

Table 1.1.Example of young membership grade.  

Age Grade of Membership 

20 1.0 

30 0.8 

35 0.4 

40 0.0 

 

Regarding equation (1), one can write 

µ young  (20) = 1, µ young  (35) = 0.4, ... , µ young  (40) = 0 

Grade of membership values constitute a possibility distribution of the term young. The 

table can also be shown graphically (Fig 1.6) 
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Figure 1.6. Possibility distribution of young. 

 

Relative water temperatures such as cold, warm and hot can also be represented as 

fuzzy sets and Fig 1.7 shows how any temperature between 0 to 40 oC can be given 

numerical values as members of the cold, warm and hot fuzzy sets.  

 

 

Figure 1.7. Cold warm and hot as fuzzy set from Openshaw and Openshaw (1997) 

 

The important point is that linguistic concepts, terms and classes such as young, cold  

and hot  are being cast into a form that can be represented and incorporated in computer 

software for which there is also mathematical basis for handling the varying degrees of 

imprecision that is present (Openshaw and Openshaw, 1997). The fuzzy sets are defined 

by two main components; membership functions and rule bases.   

The membership function is a mathematical function which defines the degree of an 

element’s membership in a fuzzy set and is denoted by a membership value between 0 

and 1. The shapes of the fuzzy sets are defined by these membership functions which 

are a representation of a linguistic variable to a fuzzy set as a matter of degree. There 
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are five kinds of functions that are commonly used. These are triangular, trapezoidal, 

bell-shaped (Fig 1.8) and S function and exponential functions.  

 

Figure 1.8. Three types of fuzzy memberships. 

 
 

A fuzzy model is a series of IF-THEN rules that when processed as fuzzy set connects a 

set of inputs to a set of outputs. It is a means of giving a computer the capability of 

reasoning with fuzzy numbers in the form of fuzzy rules. 

The knowledge or intelligence comes from associating fuzzy set events for example “If 

the temperature is high and the oxygen concentration is low then high vulnerability “,in 

this association of two fuzzy events the rules reflect any knowledge about the systems 

being modeled. Fuzzy logic provides yet another framework for redoing, rethinking and 

re-expressing most of the conventional modeling and statistical applications of 

geography (Openshaw and Openshaw, 1997). GIS and spatial databases are suited for 

fuzziness, because of the uncertainty and vagueness inherent in the assimilation, errors,  

storage, representation and final visualization of spatial data (Morris and Jankowski, 

2009), and due to the fact that there are many geographic objects with uncertain 

boundaries and fuzzyness is a natural way to represent this uncertainty, vagueness and 

inaccuracy (Burrough, 1986). In many real world problems and situations, the spatial 
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extent of geographical entities are uncertain and vague. In such cases features may be 

represented using fuzzy sets through the construction of “fuzzy geographical entities” 

(Fonte and Lodwick, 2006). 

Morris and Petry (1998) and Counclelis (1996) provide many examples of how 

fuzziness can exist in the objects within a GIS. In the environmental modelling context 

the most important are the boundaries, temporality and resolution and missing data. GIS 

research can be complex and it is vital for the viability of GIS technology to provide for 

approaches that deal with inaccuracy and uncertainty (Goodchild and Gopal, 1990; 

Morris and Jankowski, 2009). Openshaw and Openshaw (1997) identify several types 

of systems and GIS problems where adopting a fuzzy approach may be necessary or 

beneficial in different situations. These include complex systems that are difficult or 

impossible to model as they have no firm mathematical basis, systems for which there 

is descriptive and theoretical knowledge expressed only in a linguistic form, situations 

in which when there is little or no training data from which to estimate anything but 

there is sufficient knowledge to specify a linguistic model that is be used to make 

predictions, and when human reasoning, human perception or human decision-making 

are inextricably involved. The authors also noticed that the Fuzzy logic based modelling 

offers a number of potential benefits: It provides a linguistic, non numerical, non- 

mathematical and non statistical based approach to modelling complex systems and 

robustness because of its ability to handle imprecision. 

Finally fuzzy logic may be combined with other areas such as neural networks and 

genetic algorithms, providing a basis for a new generation of advanced intelligent 

hybrid Neuro-fuzzy systems. Neuro- Fuzzy systems are fuzzy systems that are trained 

by a learning algorithm (normally a neural network theory), or enhanced by learning 

from examples, training data sets, (Nauck and Kruse, 1999). They can be used to 
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develop new approaches and solve specific existing geographical and environmental 

problems. They have strong potential in the combination of technologies such as 

hydrodynamic models, GIS and intelligent systems and, while computationally 

challenging, their use has been facilitated by the new advancements in computer 

technologies. 

1.8 Objectives. 

 
1. The main objective of this study is to develop a model to predict coastal 

environmental vulnerability for salmon marine cage aquaculture.  

2. The study focuses upon the description of the physical processes, including the 

circulation patterns, dispersion and transport processes and the water renewal in 

Mulroy Bay. 

3. A specific objective is the development of an environmental spatial model that 

can be applied in coastal areas and which is intended to facilitate policy 

decisions, taking into account the intrinsic characteristics of the target area.  

4. Finally, a soft computing application will be developed for classification of GIS 

cells and further evaluation and analysis of the quality of the classification 

achieved. 

Mulroy Bay is an Irish fjard, an area of restricted water exchange in which there are 

several important aquaculture activities. These activities may increase the risk of 

environmental problems intensified by the poor water exchange and hence a rational 

and sustainable aquaculture management system is needed.  
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A 3D hydrodynamic model coupled to a particle-tracking model is applied the water 

circulation patterns, dispersion processes and flushing and residence time in Mulroy 

Bay. The hydrodynamic model is intended to provide spatial and temporal information 

on circulation and renewal time and help to determine the influence of winds on 

circulation patterns.  This model can also be used to study the effects of mean current 

speed, quiescent water periods, stratification and bulk water circulation in Mulroy Bay. 

These spatial models developed can also be used to identify areas for appropriate site 

selection for salmon aquaculture and a Langangrian method was used to simulate 

discharges from finfish cages to show the behaviour of waste in terms of water 

circulation and water exchange (Chapters 3 and 4).  

Neuro-fuzzy techniques were used in a GIS to predict coastal vulnerability for marine 

cage aquaculture (Chapter 5). Finally, a Neuro-fuzzy classifier was developed for 

supervised and hard classification of GIS cells in the coastal environmental 

vulnerability using minimal training sets and further evaluation and analysis of the 

quality of the classification achieved (Chapter 6). 

The chapters in this thesis take the form of series of draft manuscripts readied for 

publication. The contribution of Juan Moreno to all of them includes the totality of the 

field sampling, data collection, laboratory work, statistical analyses and writing up the 

manuscripts. All other authors provide assistance with the experiment design, guidance 

and proof reading for all of the chapters.    
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Chapter 2  Study area. 

2.1 Topography. 

Mulroy Bay is an extremely sheltered, narrow inlet situated on the north coast of 

County Donegal Ireland  (Long 7° 45” , Lat 55° 15”) (Fig 2.1).  It is bounded on the 

west by the Rosguill Peninsula and on the east by Fanad Peninsula. It is a convoluted 

and complex environment, extending inland for about 19 km, with a range of 

hydrodynamic conditions. The long narrow embayment, covers approximately 35km2 

and the catchment of the bay extends to 136km2. The bay is a glacial fjard ranging in 

depth from 0 to 51m and is the most convoluted of the marine inlets in north-west 

Ireland. The bay is divided into four main areas: the Outer Bay, Northwater, 

Broadwater and the Narrows (Fig 2.1). The Narrows is further sub-divided into three 

sections each approximately 100-150 m wide, known as first, second and third 

Narrows. In addition to aquaculture, marine activities in the area include sea angling, 

diving, boat building and repair. 

2.2 Geology and Land Use. 

 
The surrounding geology, summarized by Parkes (1958), is principally a metamorphic 

bedrock of quartzite, schist, crystalline limestone, and gneiss, with intrusive granite at 

the mouth. The beaches range from boulders to stones, sand or sand and mud with rock 

outcrops. The adjacent soils are mainly brown and peaty podzols and tend to be well 

draining and are suitable for arable land. The land is used for  a mixture of improved 

grazing, both broadleaf and deciduous forestry, intermingled with moor, heath and bog, 

The main farming practices are grazing and beef production. Principal freshwater inputs 

are the Burnside, Loughkeel Burn, the Bunlin, and the Big Burn. The population of the 
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catchment is approximately 10 to12.000 inhabitants with the main settlements being 

Carrickart (Pop. 828), Milford (Pop. 1,385), and Carrowkeel (Pop. 200).   

 

Figure 2.1.  Landsat image of Mulroy Bay 

. 
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2.3 Meteorology. 

 
The nearest meteorological weather station is located in Malin Head, 35 km north east 

of Mulroy Bay. The winds in 2005 had a mean velocity of 6.8 m/s and were 

predominantly from a south-westerly direction; 225º gridN (Met Eireann Institute) (Fig. 

2.2). The average monthly air temperature recorded at Malin Head was 10.4º C with the 

highest monthly average temperatures in August. The average annual rainfall of 1245 

mm was recorded at in Carrowkeel on the shores of in Mulroy Bay, with a mean of 

relative humidity of 89%.  

 

      

Figure 2.2.  Percentage frequency of occurrence of wind direction and speed in 2005 and 

2006. 
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2.4 Biodiversity. 

 
There is little published work on the physical environment, fauna, flora and biotopes of 

Mulroy Bay. Parkes (1958) studied the intertidal algae and there is some data on species 

of fishes and molluscs  of the area (Fahy ,1983; Minchin, 1996, 1981, Nunn, 1996).  

Mulroy Bay contains of two habitats listed in Annex I of the EU Habitats Directive – 

reefs and large shallow inlets and bays and is a special area of conservation (SAC). 

The site contains a good range of different sediment and habitat types and include 

coarse sand in which is found two species of the free-living red calcareous algae called 

maerl  Lithothamnion coalloides and Phymatolithon calcareum. Both are listed in annex 

V of the EU habitats directive (Directive 92/43/EEC). The variety of different habitats 

within the site is reflected in the high number of communities found in the bay and the 

high species diversity. Rare species found in Mulroy Bay include Couches goby Gobius 

couchi, the file shell Limaria hians, the anthozoan Paraerythropodium coralloides and 

the hydroid Halecium muricatum. 

The shores of Mulroy Bay are a mixture of rocks, boulder, cobbles and gravel which 

support a community typically comprising the common brown alga Ascophyllum 

nodosum. The shallow water reefs and pools exposed to wave action are characterised 

by the brown seaweeds and support a range of invertebrate epifauna such as bryozoans, 

hydroids and ascidians and epiflora. 

The intertidal areas support the brown seaweeds Halidrys siliquosa and kelp forests of 

Laminaria hyperborea, the red alga Dudresnaya verticillata and the reddish orange 

encrusting soft sponge Esperiopsis fucorum. 
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The seagrass Zostera marina and Zostera noltii (Fig 2.3) is found in inner Mulroy Bay 

and this community normally harbours the sea cucumber Leptosynapta inhaerns.  

Fifty-nine species of fish were found in a survey by Minching 1996, with five species 

being seasonal or occasional: Clupea harengus, Clupea spratus, Belone belone, 

Scomber scombrus and Chelon labrosus.  In common with the native salmonids such as 

Salmo trutta, Salmo salar and the introduced Onchorhynchus mykiss also occurs.  

Species classed as sensitive to aquaculture (Hunter et al 2006) include Phymatolithon 

calcareum, Ascophyllum nodosum, Zostera marina, Zostera noltiir, Lithothamnion 

coralloides, Ostrea edulis, and Nucella lapillus. 

  

Figure 2.3 . Zostera marina and C. melops. (Biomar CD-ROM from Picton and Costello, 

1998 ) 

 

 The otter, Lutra lutra, a species listed in Annex II of the EU Habitats Directive, 

frequents the site and Mulroy bay is one of the fourteen major European breeding sites 

for the harbour or common seal, Phoca vitulina  listed in the Appendix III of the Berne 

convention and annexes II and IV of the Habitats Directive. 

The Bay also supports significant numbers of wintering birds, with mute swan present 

in nationally important numbers and several species (brent goose Branta bernicla, 

shelduck Tadorna tadorna, wigeon Anas penelope, teal Annas crecca, red-breasted 
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merganser Mergus serrator, oystercatcher Haematopus ostralegus and dunlin Calidris 

alpina ) recorded in regionally important numbers. 

2.5 Water Quality. 

 
Water quality has been measured throughout Mulroy Bay since the Institute of 

Aquaculture (University of Stirling) began its annual monitoring surveys in 1986. Both 

physical and chemical parameters have been monitored, including  temperature, 

dissolved oxygen (D.O.), pH, salinity, nitrite, nitrate, ammonia, dissolved reactive 

phosphorus (DRP) and chlorophyll-a at various locations in the Bay. These parameters 

have been assessed annually at 8 to 12 sites at the same time each year (i.e. during the 

final week of July), thus allowing comparisons to be made between survey results from 

different years. The findings have been summarized by Telfer and Robinson (2003). 

Water temperatures were found to be consistently lowest at the two outermost sample 

stations in Mulroy Bay, located near to its mouth while the innermost stations were 

consistently warmer. Similarly, temperatures near the seabed were generally lower than 

those in the surface waters, as is usually the case. 

Salinity values were very similar at the surface and seabed at each sample station, with 

little variation occurring between sample years. Values generally ranged between 31 

and 36 psu.  

Data collected indicated that little overall variation occurred in D.O. between 1986 and 

2000, with levels varying annually at the surface between a minimum of 6.3 mg / l and 

10 mg / l. Deep water D.O. varied between a minimum of 2.4 mg/l to a maximum of 9.8 

mg/l. 
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pH values were consistent between the surface and seabed at each sample station, with 

little overall variation between years. Values ranged from 8.33 to 8.53 at the surface, 

and from 8.31 to 8.52 at the seabed. 

The trends in ammonia were found to be very similar in both surface and deep waters, 

with large variations in concentrations being recorded between sampling stations and 

between sampling years. The nitrate levels showed no overall trends either increasing or 

decreasing over the 14 years. The nitrate concentrations varied between sample years 

and sites, but were generally low in Mulroy Bay. C-Mar (2000) found that nitrate levels 

tended to fluctuate throughout the year. In general, dissolved reactive phosphorus levels 

increased and fell between the studied years, showing small signs of an overall trend. 

Considerable fluctuations in phosphate concentrations were also found by C-Mar 

(2000) both throughout the year. Values for biochemical oxygen demand measured by 

C-Mar (2000) showed that water quality within the fjord was acceptable at present 

aquaculture production levels. 

Telfer and Robinson (2003) concluded that there was no indication of a general 

augmentation in nutrient levels within the area over the several years studied, although 

they did emphasize that concentrations elevated occasionally due to reduced water 

exchange rates in the inner parts of the bay. 

 

 

 

 

 

 

 



34 
 

2.6 Current and future developments and potential effects on water 

quality. 

The primary development pressures in the area are for housing, both for the local 

population and for houses as holiday homes and civil engineering projects.  

 

Figure 2.4. New bridge in the second narrow area in Mulroy Bay. 
Copyright Colin Park and licensed for reuse under this Creative Commons Licence 

 

A new bridge construction (Fig 2.4) has temporarily increased environmental pressure 

in this area and specially in the large salmon production area held in the study area .The 

bridge is located at Boathill Bay, usually referred to as The Second Narrows, and will 

be 342m in length, and is the largest bridge built  in Donegal County. The construction 

of the bridge began in March 2007 and it will connect the Rosguill and Fanad 

Peninsulas. A real time monitoring was used a 24hour real time monitoring buoys in 

four locations of the bay. The sensors measured turbidity, dissolved oxygen, 

chlorophyll, salinity and current velocity. Monitoring carried at 15 minute intervals. 
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The monitoring continued throughout the construction of the Mulroy Bay Bridge until 

the bridge was completed and operational. The new bridge in was officially opened on 

15th May, 2009 without environmental problems reported.  

In accordance with the monitoring requirements of Directive 79/923/EEC, on the 

quality required of shellfish waters, and Directive 91/492/EEC, dedicated shellfish 

monitoring data has been collated and compared with shellfish water quality parameter 

mandatory and guideline values outlined in Annex I of the Shellfish Waters Directive ( 

Directive 2006/113/EC). Data are available for several water samples which were taken 

between 2004 and 2008 and 6 biota samples which were taken between 2004 and 2008 

(Department of the Environment, Heritage and Local Government, 2008b). During the 

study years the mandatory values for copper and nickel, lead, zinc and faecal coliforms 

were breached. The shellfish guideline standards were never exceeded during the study 

period (Department of the Environment, Heritage and Local Government, 2008b).  

The Water Framework Directive ( Directive 2000/60/EC) status of the coastal water 

bodies, within Mulroy Bay was either ‘high’ and therefore satisfactory or ‘moderate’ 

and therefore unsatisfactory, reflecting the results of zinc in some of the pollutant 

sampling. Two rivers, Burnside and Bunlin, discharge into the area and are both 

classified as ‘poor’ and therefore unsatisfactory reflecting issues with the macro 

invertebrates. Shellfish flesh classifications (carried out under the European 

Communities (1996). Live Bivalve Molluscs, Health Conditions for Production and 

Placing on the Market Regulations, 1996 (S.I. No. 147 of 1996) indicate faecal 

contamination in shellfish flesh. 
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The population of these Electoral Districts is 10,000. Of these, it is estimated that is 

only 76% are served by sewage collection systems (Department of the Environment, 

Heritage and Local Government, 2008a,b). The key and potential secondary pressures 

identified those most likely and possibly affecting the water are: A) On-site waste water 

treatment plants, where the risk to surface and ground waters from pathogens and 

nutrients is also high throughout the catchment. There is also the possibility of 

inadequate percolation and located in the coastal areas.  B) Urban waste water treatment 

plants. One such plant situated within the catchment has been designated as ‘at risk’ due 

to inadequate treatment capacity resulting in exceeding the shellfish water quality 

parameters. C) Agriculture. This catchment is predominantly farmed land (45%) and 

the prevalence of wet soil types in the catchment means that there is a risk of 

agricultural runoff to the coastal areas (Department of the Environment, Heritage and 

Local Government, 2008b). 

Tributyltin (TBT) was used in Ireland as an antifoulant on shipping, small boats and 

yachts and on nets of salmon cages. In Mulroy Bay the principal source of TBT was 

from salmon farms. From 1981-1985 TBT was used within the Bay as an antifoulant on 

salmon cages and associated with a decline in the population of Lima hians. (Minchin, 

1995; Minchin, 2003).  The native scallop settlements showed a decline in intensity in 

1982 followed by three years of settlement failure. In addition, Pacific oysters, 

Crassostrea gigas, ongrown in several areas of the bay in 1985, developed shell 

thickening. In 1994 the Mulroy Bay population had recovered to 1980 levels, and 

Minchin (2003) showed that there were minimal levels of TBT contamination in 2000, 

which are unlikely to have ecological effects on mollusc culture or fisheries in the area 

(Minchin, 2003). 
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2.7 Aquaculture in Mulroy Bay. 

 
Mulroy Bay was designated as a mariculture site in 1981 under council directive 

79/923/EC for shellfish culture, although salmonid culture started in 1979. 

Aquaculture in Mulroy Bay is intensive (Fig 2.5), with up to 16 operators currently 

licensed for Mussel, Mytilus edulis (19 licences with 0.6 km2), oyster Crassostrea gigas 

(9 licences with 0.34 km2), clams Tapes semidecussata  (3 licences with 0.1 km2), 

scallops Pecten maximus (30 licences with 5.04 km2), abalone Haliotis tuberculata  (2 

licences with 0.9 km2) and atlantic salmon Salmo salar production. The total value for 

aquaculture production within Mulroy Bay for 2001 was approximately £8m, with up to 

243 people employed on a fulltime, part time or casual basis. Oysters are cultured on 

trestles in the intertidal zone while mussels are suspended on ropes from floating barrel 

rafts, and the scallops are grown on bottom trays relying on natural recruitment 

processes. Abalone and clams are not currently in production within the bay. 

Dramatic increases have occurred in shellfish production, with figures rising from 250 

tonnes per annum to approximately 1000 tonnes per annum between 1994 and 1999, 

(C-Mar, 2000). In 2004, 600 tonnes of bottom mussels were harvested from the area.   

Between 2000 and 2004, average tonnage of Pacific oysters was 14 tonnes. Native 

oyster production between 2003 and 2004 averaged 3 tonnes per annum.  Between 2000 

and 2004, the average rope mussel harvest was approximately 586 tonnes.  Mature 

scallops landed for the same period were 45 tonnes per annum. 

The licensed area is classified as Class B for Mussels meaning that shellfish may be 

placed on the market for human consumption only after treatment in a purification 

centre or after re-laying so as to meet the health standards for live bivalve molluscs 

laid down in the EC Regulation on food safety (Regulation (EC) No 853/2004).  
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Figure 2.5 . Areas licensed for aquaculture in Mulroy Bay (from County Donegal 

Development Plan 2005). 
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Mulroy Bay is classified ‘A’ for oysters in accordance with the European Communities 

(1996) .However, within the designated area this is a seasonal classification and it 

reverts to Classification B. This indicates that there is faecal contamination in this 

shellfish area. 

The salmon operation (Fig 2.6) is owned by Marine Harvest Ireland, which is part of 

the largest salmon farming and marketing group in the world, with operations in 

Scotland, Chile, Ireland, Norway and Canada and sales offices in all the world’s major 

outlets. Marine Harvest Ireland represents about 12 % of the production in Ireland and 

currently employs 190 staff across its operations and a number of subcontracted 

businesses. Atlantic salmon  production within Mulroy Bay and the adjacent  Lough 

Swilly  is approximately 3500 tonnes per annum (Bermingham and Mulcahy, 2007) 

 

      
Figure 2.6 . Mulroy Bay. Looking across Boat Bay towards the salmon fishery. 

Copyright Willie Duffin and licensed for reuse under this Creative Commons Licence. 
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Mulroy Bay, had  suffered elevated lice levels occasionally during the critical spring 

period, (O'Donohoe et al., 2004). The amoebic gill disease (AGD), described as 

amoebic-associated gill pathology, has been experienced annually since 1996 with 

mortalities reaching 60% in site. This  disease is associated with compromised marine 

environmental factors, principally ammonium, nitrite and chlorophyll (Bermingham and 

Mulcahy, 2007). Donnelly and Reynolds (1994) reported the occurrence of the 

ectoparasitic copepod Leposophilus labrei  on the wrasse, C. melops. This fish has been  

used to control biologically  infestation of sea lice (Copepoda: Caligidae)  in  farmed 

sea salmon in Ireland (Costello, 1994).  

 Telfer and Robinson (2003) found that the environmental quality within Mulroy Bay 

was acceptable, although localized impacts were found near to fish farms. Two 

scientific methods to assess this were used; the calculation of food availability for 

sustainability of shellfish culture, developed by Carver and Mallet (1990) and, the 

oxygen budget estimation of the system to ensure the environmental sustainability of 

both finfish and shellfish farming at current levels. However, C-Mar, (2000) concluded 

that the  capacity of the environment to support aquaculture indicated that while present 

production levels are within this capacity they may be approaching the upper limits. An 

Irish national   program “Co-ordinated Local Aquaculture Management systems” 

(CLAMS) has been developed at local level to manage the development of aquaculture 

in coastal areas and  Mulroy Bay is included in the program. The main objectives are to 

improve environmental compliance, product quality and consumer confidence.  
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2.8 The Mulroy Bay spatial database.  

 
The data used for model construction came from one of four sources. A range of 

parameters of hydrography, water quality and sedimentology have been  measured 

throughout Mulroy Bay since the Institute of Aquaculture (University of Stirling) began 

its annual monitoring surveys in 1986. These data were used as a basis for the present 

study but were supplemented by field campaigns designed to update and expand the 

datasets necessary for this study (Fig 2.7). Further datasets were obtained either from 

the Internet or by direct purchase from relevant government agencies.  All data used for 

spatial modeling was rasterised to 50 m resolution.  

 

 

Figure 2.7. Locations of sediments, water and current speed measurements. 
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2.8.1 Bathymetry. 

A bathymetric model was obtained by digitizing from Admiralty Chart (SNC 2699) to 

produce initial vector data followed by interpolation to a 50 m grid resolution. A  digital 

elevation model in 3D was produced (Fig 2.8). 

 

  

Figure 2.8. Admiralty Chart (SNC 2699) and the bathymetry raster layer overlaid onto a 

digital elevation model in 3D GIS of Mulroy Bay 

.  

2.8.2 Hydrographic data.    

Hydrographic measurements were taken from two stations within Mulroy Bay (Fig. 8). 

Valeport BFM 308 Direct Recording current meters (Fig 2.9) were deployed at 2 meters 

below the surface and 2 meters above the seabed. The deployment was for 16 days 

between the 8th to 24th February 2005. Parameters recorded were the current speed 

(m/s), direction (degrees magN) and the pressure (dB). 
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Figure 2.9. Valeport BFM 308 Direct Recording current meter. 

 

2.8.3 Water quality.  

A series of surveys were carried out in the study area during spring and summer 2007 

and winter 2008. Salinity and temperature profiles were taken at 1 m depth intervals at 

7 stations in order to characterize and compare differences in the study area. 

Temperature readings were taken using a WTW portable oxygen meter. Salinity was 

measured using an Oxi 197, LF 196 conductivity meter and probe (Fig 2.10). 
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Figure 2.10. The dissolved oxygen DO YSI Instruments, Y550A, Y58 and GPS (left) and 

the Oxi 197, LF 196 used for measuring salinity (right) 

 

 

 

Figure 2.11. Van Veen grab (0.025 m2) 
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2.8.4 Granulometry. 

Seabed sediment sampling for granulometric analysis was carried out in August 2007 

using a hand operated Van Veen grab (0.025 m2) (Fig 2.11) at 30 locations throughout 

the bay system. A sub-sample of sediment was taken from each grab and stored  frozen 

at -20±1oC until laboratory analysis by dry sieving (Folk 1974).  

 

2.8.5 Sediment nutrients. 

Sediment samples for measurement of nitrogen content were collected by grab at eight 

fish production sites, operated by Marine Harvest Ireland Ltd., between 2002 and 2006. 

Each year triplicate samples were taken from beneath the centre of each cage block and 

at the downstream end of each cage block. Each year triplicate samples were taken from 

beneath the centre of each cage block and at the downstream end of each cage block.  

Samples were transported as frozen and, after thawing, were oven dried overnight at 

90oC. Carbon and nitrogen content were analysed as percentage by dry weight sediment 

using a Perkin Elmer 2400 Series ii CHNS/O analyser. 

2.8.6 Protected areas. 

The Environment Heritage and Local Government is responsible, through the National 

Park and Wildlife Service, for the designation of conservation sites in Ireland. There 

three main types of protected areas designation in Mulroy Bay: Special Areas of 

Conservation SAC, Special Protection Areas, (SPA), the Natural Heritage Areas 

(NHA).The GIS data was downloaded from the web page url: 

http://www.npws.ie/en/MapsData/. 
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2.8.7 Data base components.  

All data collected for classification of environmental parameters were layers consisting 

of 50 x 50 m2 grid cells. All grid layers were incorporated into the GIS framework (Arc 

view 3.2 ESRI).  The components of the spatial database used in this study are 

summarized in Table 2.1.  

 
 

Table 2.1. Principal database components used in this study. 
 
 

Database 
Layer 

Description Supplier/Creator Source resolution  & 
projection 

Nautical chart  Bathymetry map UK Admiralty Chart 
2699 

 
Lat/long  

Bathymetry  Vector  Digitized  Lat /long 
Bathymetry/ 

depth  
Raster  Interpolated  Lat/long 

50 x 50 m 
Aquaculture 
sites licence  

Vector and 
Points 

Digitized and GPS  Lat/long  

Coast line  Vector  Digitized Lat /long 
Protected areas  Vector  National Park and 

Wildlife Service 
Ireland  

Irish grid reference 
system convert to lat/long  

Mean current 
velocity  

Raster Modeled/Author  Lat/long 
50 x 50 m 

Quiescent 
period 

Raster Modeled/Author Lat/long 
50 x 50 m 

Stratification 
index  

Raster Modeled/Author Lat/long 
50 x 50 m 

Seabed type Raster Modeled/Author Lat/long 
50 x 50 m 

Waste 
dispersion 
distance  

Raster Modeled/Author Lat/long 
50 x 50 m 

Oxygen 
depletion index 

Raster Modeled/Author Lat/long 
50 x 50 m 

Current speed 
max  

Raster Modeled/Author Lat/long 
50 x 50 m 

Slope  Raster Author  Lat/long 
50 x 50 m 
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2.9 GIS systems and Modelling Software.  

 
The core hardware used for  modelling was a Dell Precison Workstation, model 490, 

with twin 3GHz dual core processors, 4Gb RAM and running the Windows XP 

operating system.  

The chosen GIS system was Arc View 3.2 ESRI which is primarily a basic GIS 

software suite for the integration and visualization of different sources of geodata sets. 

It was ideally suited for the objectives of this study for visual representation of model 

outcomes.  

The hydrodynamic models were created using MOHID 3D developed by MARETEC 

(Marine and Environmental Technology Research Center) at Instituto Superior Tecnico 

(IST), Technical University of Lisbon. MOHID has shown its ability to simulate 

complex features of the flows. It has been used, for example, in coastal circulation, 

nutrient loads and residence time models in several places around the world, recently, 

modelling the influence of nutrient loads in an estuary (Saraiva et al., 2007), modeling 

the temperate coastal lagoon (Vaz et al., 2007), oil spills forecast (Carracedo, et al., 

2006)  Modelling macroalgae (Trancoso, 2005), estuarine Plumes, (Vaz et al., 2009), 

effect of large scale atmospheric pressure changes on water level, (Canas et al., 2009) 

and  the effect of the Bathymetric Changes on the Hydrodynamic and Residence Time 

in a lagoon (Malhadas, 2009), for more examples  see 

http://www.mohid.com/Publications/JP.asp . 

Vertical eddy viscosity/diffusivity was determined with a turbulence closure model 

selected from those available in the General Ocean Turbulence Model (GOTM)  

(Burchard et al., 1999) is integrated in MOHID 3D. In this application a 3D model 

forced with both tide and wind was implemented. At the boundary conditions the water 
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level taken from the FES2004 global tide solution is imposed (Lyard et al., 2006).The 

neuro-fuzzy systems are applied in various domains e.g. control, data analysis decision 

support. The neuro-fuzzy software NEFCLASS- J for JAVA platforms (NEruro Fuzzy 

CLASSifier, see: http://fuzzy.cs.uni-magdeburg.de/nefclass/) (Nauck and Kruse 1999)  

was used. This program have been used in  land soil erosion (Zhu et al., 2009), medical 

aplications, (Keles et al., 2007; Hardalac, 2008) and ground water vulnerability to 

nitrate  (Dixon, 2005). 

The software systems used throughout this study are summarized in Table 2.2.  

Table 2.2.Principal software and used in this study. 

 

Software  Description  Supplier/web 
ArcView 3.2 GIS ESRI 
3D MOHID Hydrodynamic and water 

quality model  
Open source. 
http://www.mohid.com/ 

FES2004  Global tide model Open source  
http://www.legos.obs-
mip.fr/en/share/soa/cgi/getarc/v0.0/i
ndex.pl.cgi?contexte=SOA&donnees
=maree&produit=modele_fes 

GOTM   General Ocean model 
Turbulence Vertical eddy 
viscosity/diffusivity turbulence 

Open source.  
http://www.gotm.net/ 

NEFCLASS Data analysis 
Neuro fuzzy systems 

Open source 
http://fuzzy.cs.uni-
magdeburg.de/nefclass/ 
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Chapter 3  A three-dimensional hydrodynamic and particle    

tracking   model in a shallow fjordic system: 

water circulation and exchange.  

J. Moreno, T. Telfer, Campuzano, F.J and L.G. Ross. 

 

 

This chapter describes the development of a 3D hydrodynamic model coupled to a 

particle-tracking model which is applied to water circulation patterns, dispersion 

processes and flushing and residence time in Mulroy Bay. A rigorous statistical testing 

of the sensitivity, calibration and validation of the model was also performed with the 

data available.This chapter forms the baseline for other parts of the thesis. The vertical 

discretization used provided five independent layers that have be extracted and  

incorporated into a GIS system. 

The main author, J Moreno Navas, conducted all field work and developed all sub 

models and final models. Prof Lindsay G Ross and Dr Trevor C Telfer provided 

supervisory and editorial support throughout the whole study. Dr F J Campuzano 

provided expert assistance with 3DMOHID. The body of the text is presented as a 

publication-ready manuscript. This manuscript has been submitted to Environmental 

Modelling and Software, an international journal committed to the contributions on 

recent advances in environmental modelling and/or software, model development, 

model evaluation, process identification and applications in diverse sectors of the 

environment. 
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3.1 Abstract. A 3D hydrodynamic model MOHID coupled to a particle-tracking model 

is applied to study the circulation patterns, dispersion processes and residence time in 

an Irish fjard, a shallow fjordic system that is host to many important aquaculture 

activities. The model was applied to two climatic situations; the first with no wind 

stress and the second with application of real time wind stress data from a nearby 

meteorological station. A Lagrangian method was used to study the transport and 

flushing processes. Instantaneous massive releases of 15000 particles from key boxes 

are modelled to analyse the ocean- fjord exchange characteristics. The relative absolute 

error, root mean square error and the index of agreement measure of the tidal elevation 

and the longitudinal and lateral velocities were determined between measured and 

predicted time series results to quantify the model performance.  

The general flow circulation was characterized by several residual tidal eddies, with a 

clearly wind driven scenario. This study demonstrated the strong influences of wind 

forcing on circulation patterns and flushing characteristics of this restricted region. This 
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model can be successfully calibrated and used in future studies of important issues 

concerning hydrodynamic activity, water quality and aquaculture activities.  

 

Keywords: 3D hydrodynamic models, particle-tracking model, regions of restricted 

exchange. 

3.2 Introduction. 

 
Fjards are coastal inlets of glacial origin and similar to fjords in nature but they exist in 

low lying areas and thus are without high-sided borders. Fjards may be deep and long 

with sills or shallow with significant areas of sand and mud flats. These inlets are 

common in Scotland, Ireland and Finland. The variations depend  on the geometry and 

hydrology of the adjacent watershed, the oceanographic conditions outside the fjard and 

fjordic systems and meteorological conditions (Pedersen, 1978). Fjards, like fjords, are 

considered as regions of restricted exchange (RREs), which in biological terms are 

defined as almost closed ecosystems showing less variability than the open coast or 

ocean. Their biological production and productivity is generally high (Brattegard, 

1980). The surrounding lands are preferred sites for housing, while the waters are used 

for fisheries, aquaculture, navigation and recreation. All these activities increase the 

nutrient and pathogen loading and may increase the risk of eutrophication (Tett et al., 

2003) and environmental problems, which may be intensified by poor water exchange.  

Cross (1993) suggested that finfish net cage sitting should consider the circulation 

dynamics evaluating back eddy potential and mass transport potential for the site the 

dispersion. Therefore, numerical circulation models could provide a practical solution 

to the problem of coastal mixing and dispersion of wastes in areas with finfish 

aquaculture (Wildish et al., 2004). 
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Numerous studies have verified the importance of local wind on the upper layer 

circulation in enclosed water bodies such as fjords (Leth, 1995), estuaries (Geyer, 1997) 

and tidal lagoons  (Dronkers and Zimmerman, 1982). If the width of the enclosed water 

body is small, sufficient to be able to neglect the effect of the earth’s rotation in the 

governing equations, then there will be no Ekman transport and wind stress will only be 

in the direction of the wind. The significance of the Earth’s rotation on the upper layer 

dynamics is given by the Rossby radius for the first baroclinic mode (equation 1) 

  fhga /2/1'
1    …………….. (1) 

where, 'g is the reduce gravity, h  is the upper layer thickness and f   is the Coriolis 

parameter. 

RREs with short flushing times will export nutrients and pollutants from upstream 

sources more rapidly than others and the flushing characteristics associated with water 

quality implications are important when conducting environmental impact assessments. 

Renewal time scales also characterize the retention of nutrient and the exchange 

between the water column and the sediment. The deposition of particulate matter and 

adsorbed species depends on the particle’s settling velocity, water depth and particle 

residence time; a very important consideration for the fine fractions with lower sinking 

velocities (Braunschweig et al., 2003). Transport time has a number of defined 

measures  (Monsen et al., 2002), the two most commonly used being “flushing time” 

and “residence time”, where the flushing time is the ratio of the mass of constituent 

(water) in the water body to its rate of renewal and residence time is the time until the 

water volume at  a specific location leaves the water body. Residence time in the 

systems are complementary each other and depend on the water volume in the location 

whereas flushing time is an integrative time scale for the entire embayment. 
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Simple tidal prism models have been used for a considerable period of time in tidal 

flushing calculations (Dyer, 1973; Takeoma, 1984). However  Luketina (1998) 

indicated that generally the classical tidal prism method has never been properly 

explained and  may not be formulated correctly. Various authors therefore have 

proposed a reformulated method. For example, Tkalich (1996) used a two box tidal 

prism method suitable for calculation of the bay-ocean water exchange.  

Other issues with such models include the effects of seabed on water flow. Aldridge 

and Davis (1993) concluded that the volume of water flowing through a given section 

dropped when the friction coefficient was increased. In addition, they confirmed that 

the effect of spatial variation of the bed friction as a function of bed composition was 

shown to have a small effect on tidal currents but a significant effect on the bed stress 

derived from a three dimensional hydrodynamic tidal model of the eastern Irish Sea. 

They also found a limitation of limited area models where the solution can be 

dominated by the open boundary. 

 This paper describes the use of the hydrodynamic model MOHID 3D, to simulated  key 

features of the tidal, wind induced circulation and the flushing time within Mulroy Bay 

Co Donegal, a fjardic system in an area of restricted exchange. The model describes 

spatial and temporal aspects of circulation and renewal time and helps to determine the 

influence of winds on circulation patterns. A modelling scenario was used which 

defined water movement from areas within the vicinity of fish farms situated in the bay. 
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3.3  Study area. 

 
Mulroy Bay is as a fjardic inlet (shallow fjordic system) situated on the northern coast 

of Co Donegal, Ireland (55 15’N, 7 45’W). It is bounded on the west by the Rosguill 

Peninsula and on the east by Fanad Peninsula. It is a convoluted and complex 

environment, extending inland for about 19 km, with a range of hydrodynamic 

conditions (Fig 3.1). The whole area is a proposed Special Area of Conservation (SAC). 

Aquaculture is intensively developed within the fjard, with up 16 operators currently 

licensed for mussel, oyster, clams, scallops, abalone and salmon production. 

The bay is divided into four main geographical areas: the Outer Bay, Northwater, 

Broadwater and the Narrows. The Narrows is further sub-divided into three sections 

each approximately 150-200 m wide, known as First, Second and Third Narrows    

The bathymetry (Fig 3.1) was taken from UK Admiralty Chart Number 2698, but the 

area is not well charted and considerable changes of depths have occurred on the Bar 

(Outer Bay).  

Broadwater and Northwater are not influenced by ocean swells, are sheltered from the 

wind by the low lying surrounding hills. With a maximum fetch of 11 km, it is rare to 

have significant wave action. The nearest meteorological weather station is located in 

Malin Head, 35 km to north east of Mulroy Bay. 
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Figure 3.1. The location of Mulroy Bay, Co Donegal, the sampling stations (A to E), the 

division of the fjard into 6 boxes, the bathymetry of the study area and the position of the 

two hydrological stations.  

 

The wind in 2005 had a mean velocity of 6.8 m/s and was predominantly from a south-

westerly direction; 225º gridN (Met Eireann Institute). The average monthly air 

temperature recorded at Malin Head was 10.4º C with the highest monthly average 

temperatures in August. The average annual rainfall of 1245 mm was recorded at in 

Carrowkeel on the shores of Mulroy Bay. The tidal range in Mulroy Bay varies from 

3.2 to 4.2m at the Bar in the Outer Bay to 1.2 to 1.6 m in Broadwater. The tidal stream 

is very strong particularly at the Narrows,  Parkes (1958) quoted a delay of 143 minutes 
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between the time of high water at the Bar, in the Outer Bay, and in Broadwater. Current 

speed measurements in the Narrows, taken over a 24 h period, show that the average 

flood tide velocity is larger than the average ebb tide velocity. The dominant flood 

current is about of 20 cm/s higher than the ebb current magnitude.  Tidal  current 

asymmetry may be caused by tidal harmonics constituents in forcing tide, generated by 

friction, tidal interaction with channel geometry and generated by basin hypsometry 

(Walton, 2002).   

Temperature fluctuation within Mulroy Bay follows typical seasonal patterns for a 

temperate climate. Mean seasonal temperatures range from 6.2º C in January to 18ºC in 

August in Northwater and from 5.4º C in January to 17.9ºC in August in Broadwater 

(C-Mar. 2000).  

The Irish Marine Institute maintains a network of temperature probes in the area,   and 

the data at different depths can now be accessed via internet for the years 2004 to 2007. 

url:  http://www.marine.ie/home/publicationsdata/data/temperaturedata 

The seasonal superficial temperature in 2005 resulted in a mean range from 6.7 ºC in 

February to 16.8ºC in July in Broadwater (Cranford Bay). The annual average was 11.3 

ºC. The institute also maintains a Weather Buoy Network, and  the buoy  M4 recorded  

water temperature values in the Irish Sea  in 2005   ranging from 7.4 ºC  in February  to 

17.3ºC in July. Thermal stratification was observed in Northwater and Broadwater (C-

Mar, 2000; Minchin, 1981)  and in the southern reaches of the bay near Milford (Telfer 

and Robinson, 2003). No thermal variance with depth has been reported in the Narrows 

where currents are strong and the water column is well mixed. 

There are no large rivers draining into the bay which could significantly affect salinity. 

A shallow halocline can develop in parts of Northwater and Broadwater where the 

freshwater runoff lies on the surface during calmer weather. Salinity in the Narrows 
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varies  seasonally from 29.5 PSU in January to 34.7 PSU in August in Northwater and 

from 28 PSU in January to 35 PSU in August in Broadwater  (C-Mar, 2000). A  salinity 

depth profile,  obtained in January 1999, C-Mar (2000) indicated that there was 

stratification in the southern region of the Broadwater probably caused by rain and 

freshwater draining into the area from the shore line, but have not found sufficient 

salinity data set to validate the model.  

 Flushing times calculated using the  simple tidal prism method (C-Mar, 2000; Telfer 

and Robinson , 2003) have given varied results. The flushing time between Broadwater 

and  Northwater to the ocean were 6.91 and 8.75 tides respectively according to (Telfer 

and Robinson, 2003)  and 11.5 and 15 tides (C-Mar, 2000).  

3.4 Numerical hydrodynamic model. 

 
The hydrodynamic model MOHID 3D used in this work (Martins et al., 2001; Martins 

et al., 1998; Santos, 1995) solves the equations of three-dimensional flow for 

incompressible fluids and an equation of state relating density to salinity and 

temperature. Hydrostatic equilibrium and the Boussinesq approximation are assumed. 

The Coriolis parameter has been considered constant as the study area is small.  

Following Martins et al. (2001), in the Cartesian coordinate frame the equations are as 

follows: 
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Where  ijiu  are the velocity components in the Cartesian ix ,  is the free surface 

elevation, i  turbulent viscosity coefficients, f  is the Coriolis parameter, 
Sp  the 

atmospheric pressure,  g  is the gravitational acceleration,   is the density and    its 

anomaly. 

A single value for water density over the whole domain was calculated by the equation 

of state (Leendertsse and Liu, 1978) using the assumption that values for salinity and 

temperature were constant. These values were incorporated into the model parameters 

(Table 1).  

Accurate bathymetry representation is one of the most important and fundamental 

requirements in hydrographic modelling (Cheng et al., 1991). The bathymetry was 

digitized from the UK Admiralty Chart and a bathymetric model was developed by 

interpolation to a 50 m grid resolution (Fig 3.2).  
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Figure 3.2 Example of the high resolution finite element mesh used for the Mulroy Bay 

model, which used 193 x 244 cells in 5 vertical layers based on Sigma vertical coordinate. 

 
 
At model resolution the Courant-Friedrichs-Lewy stability condition (Equation 6) 

dictated a time step of 2s. 

ghxt 2/     (6) 

where: t  is the time step, x is the grid spacing, g is gravitational constant, h is the 

maximum depth in the calculation domain. 

An Arakawa C grid was used for spatial discretization (Arakawa and Lamb, 1977).  

MOHID allows several options for the vertical discretization: Cartesian coordinates, 

sigma coordinates or a generic vertical coordinate. In this study a sigma coordinate was 

chosen with 5 vertical layers (see Animation 1,2,3). This guaranteed that the layers 
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were separate enough to prevent numerical instability in very shallow zones (Phillips, 

1957). However, a sigma co-ordinate transformation has certain disadvantages. In 

transforming the curved physical region to the computational domain, the governing 

equations of flow and solute transport are also transformed, leading to more complex 

equations and some of the additional terms involving cross-derivatives. When large 

bathymetric irregularities exist, the layer thickness may be too large in deep water to 

represent 3-D features accurately  (Lin and Falconer 2008). These authors suggest that 

if the area has a large tidal regime the use of fixed grids when flooding and drying may 

be extensive, for example in some UK estuaries.  

The model used a semi-implicit ADI algorithm introduced by Peaceman and Racford in 

1955 (Fletcher, 1991). This algorithm computed alternately one component of velocity 

implicitly while the other was calculated explicitly. This method has the advantage 

accruing from the stability of implicit methods without the drawbacks of computational 

expensiveness and associated phase errors. 

Bottom stress is calculated following Backhaus (1985). It was parameterized using a 

quadratic law. Cd , the bottom drag coefficient, is calculated with the expression: 
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Where K  is Von Karman constant, z  is the observation length and bz0  is the bottom 

roughness length.   

Vertical eddy viscosity/diffusivity was determined with a turbulence closure model 

selected from those available in the General Ocean Turbulence Model (GOTM) 
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(Burchard et al., 1999). The residual current eu  is estimating by averaging the 

horizontal flow u  over a complete time periodT : 

 
T

e udtTu
0

/1       (8) 

In this application a 3D model forced with tide and wind (Fig 3.3) was implemented  

at the boundary, and the water level taken from the FES2004 global tide solution is 

imposed  (Lyard et al., 2006) . 

 

 

Figure 3.3.  Sample records of the direction and wind speed from Malind Head, used in 

the model. Data from February 2005. 

 

 

The FES (Finite Element Solution)  model was based on the resolution of the barotropic 

tidal equation on a global finite element grid without any open boundary conditions and 

no assimilation, which leads to a solution independent of in situ data. FES2004 gave 

heights of tidal constituents (one of the harmonic elements in a mathematical expression 

for the tide-producing force with a ⅛º x ⅛º grid resolution for a global coverage, and 

provided the main tidal constituents M2, S2, N2, K2, 2N2, K1, O1, Q1). Wind was 

assumed equal in all domains to the one measured by the closest meteorological station. 

The parameters used for calculations are summarized in (Table 3.1). There are no large 

rivers draining into the bay which could significantly affect salinity and there was 

complete thermal vertical mixing of temperature in the water column with a mean of 
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6.67 º C and 6.81º C at one meter and 10 meters depth respectably in February 2005  

(source: Irish Marine Institute network of temperature probes in the area). The constant 

value of 32 psu at all depth  in a one day salinity profile covering the  whole area in Feb 

2008 were measured (Institute of Aquaculture, unpublished data). It was incorporated in 

the model parameters (see table 3.1).  

Table 3.1.  Parameters used in the calculations. 

 
Physical parameter                     Numerical value 

 
Units 

Time step:                               2 s 
Grid mesh:                                  50 m 
Horizontal cells (x,y):                 192, 244  
Vertical coordinate:                    Sigma  
Vertical layers:                            5  
Horizontal Eddy Viscosity:        0.407738 12 sm  
Vertical Eddy viscosity:             0.001 12 sm  
Drag coefficient:                         0.03  
Wind rugosity coefficient:   0.0025  
River discharge:                          No  
Temperature:                               7 º C 
Salinity:  
Density:                                      

32.6 
1025.434 

(psu) 
kgm-3 

 

A particle tracking model was coupled to the hydrodynamic model to describe the 

movement of passive tracers. This model assumes that the velocity of each particle ( pu ) 

can be split into a large scale organized flow characterized by a mean velocity ( Mu ) 

provided by the model and the smaller scale random movement ( Fu ) given by: 

FMP uuu   (9) 

The particle tracking model used computed the equation: 
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Where iu  is the mean velocity and ix   the particle position. This equation was solved 

using the explicit method in equation 10. 

t
i

t
i

tt
i tuxx       (11) 

The random movement was calculated following the procedure of (Allen, 1982). The 

random displacement was calculated using the mixing length and the turbulent velocity 

standard deviation provided by the hydrodynamic model.  

3.5 Materials and methods. 

 
Hydrographic measurements were taken from two stations within Mulroy Bay (Fig 3.1) 

using two Valeport BFM 308 Direct Recording current meters deployed at 2 meters 

below the surface and 2 meters above the seabed. The deployment was for 16 days 

between the 8th to 24th February 2005. Two cross-sections of the data were separated for 

use in the calibration and validation processes, independently (cross validation). 

Parameters recorded were the current speed (m/s), direction (degrees magN) and the 

pressure (dB). It must be noted that during deployment there were evidently several 

periods where the sea bed current meter at Station 2 was not recording flow. It was 

likely that in these periods the impeller was temporary fouled, but the data was still 

regarded as adequate for the needs of this study. 

The wind data for the modelled period (Fig.3.3) were acquired from the Irish 

Meteorological Office. Met Eireann ( www.met.ie).  

  In order to characterize the study area and provide environmental information for 

inclusion into the model, salinity (Oxi 197, LF 196 conductivity meter and probe) and 

temperature (WTW portable meter) profiles were taken in February 2008 at 1 m depth 

intervals at stations A, B, C, D and E (see Fig 3.1). In addition, temperature data from 
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the Irish Marine Institute (network of temperature probes) were obtained for February 

2005.     

Sensitivity analysis studies the relationships between information flowing in and out of 

the model. The analysis can be employed prior to a calibration exercise to investigate 

the tuning importance of each parameter and to identify a candidate set of important 

factors for calibration (Saltelli, 2000). Sensitivity tests were initially carried out in order 

to analyse the sensitivity of the hydrodynamic model to variation.  

The sensitivity of the model was tested to variation in horizontal eddy viscosity and 

drag coefficient following Walstra et al. (2001), wind rugosity coefficient and wind 

directions. These parameters were varied and the results (Fig 3.4) were compared to 

those from the reference run with a drag coefficient of 0.005, horizontal eddy viscosity 

of 0.407 12 sm , wind rugosity coefficient of 0.005 and wind direction of 0º N degrees 

and wind speed of 7 m/s  (‘Ref’in Fig 3.4).  

Several sensitivity runs were carried out over a period of one day (9/2/05) to gain an 

overview. The parameters were varied one at time by an incremental proportion of their 

values and this was repeated using two parameters at a time to test for interaction 

between them. The RMSE as in equation 15, was calculated to compare the time series 

of current speed from the different runs (fig 3.4,a,b), and the time series errors  in the 

current speed, current direction and tidal elevation in a series of runs with constant wind 

directions and speed (fig 3.4, c). The percentage deviation from the reference parameter 

set was calculated to assess the sensitivity to the mean current velocity, mean current 

direction and mean tidal elevation (fig 3.4,d). It is important to note that the 

measurement data set is not used in this analysis. 
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During the model calibration a period of two days was selected (8-9/2/05). High values 

of drag coefficient were expected, and so this parameter was modified and the model 

was run for several values between 0.0045 and 0.05. In the calibration process the 

RMSE was computed between predicted and observer flow values. The value of Cd that 

minimized the error, Cd = 0.03 was adopted for use. For the validation process the 

relative mean absolute error (RMAE), the root mean square error (RMSE) and the index 

of agreement  (IoAd) were computed as in equation 14,15 and 16 respectively. 

The RMAE has been used by several authors to the evaluate numerical model results, 

(Fernandes et al., 2001; Sousa and Dias, 2007; Sutherland et al., 2004) and is given by:  

 

m

cm

Q

QQ
RMAE


   (14) 

 

where 
m

Q  and 
C

Q  are the measured and computed velocity vectors respectively.  

The preliminary classification of RMAE ranges suggested by (Walstra et al., 2001) is 

shown in table 3.2. 

Table 3.2. Classifications error for RMAE (after Walstra et al., 2001). 

 
Classification               RMAE 
 
Excellent                      < 0.2 
Good                             0.2-0.4  
Reasonable                    0.4-0.7 
Poor                                0.7-1 
Bad                                  >1 
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The root mean square error (RMSE), records in real units the level of overall agreement 

between the measured and the computed datasets. 
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where mQ  and cQ is the measured and computed velocity vector respectively. 

The index of agreement measure (IoAd) (Watson et al., 2007; Wilmott, 1981)) is given 

by: 

 















 




n

i
imic

n

i
cm

QQQQ

QQ
IoAd

1

2
1

2

1    (16) 

 

where mQ  and cQ are the measured and computed velocity vectors respectively 

and iQ  is a time mean velocity vector measured.  

This descriptive statistic reflects the degree to which the observed variation is 

accurately estimated by the simulated variation. The maximum positive score of 1 

represents a perfect model. The IoAd has been used to evaluate numerical model results 

by several authors (Fernandes et al., 2001; Warner, 2005). These parameters are 

summarized in Tables 3.3 and 3.4. 

 
Following  Braunschweig et al. (2003), the fjard was divided in 6 boxes which covered 

the whole area of the inlet (Fig 3.1). The boxes are used in two ways: for release of the 

Lagrangian tracers (2500 particles in every box, 15000 in total) and to examine the 

tracers which pass through them. A box’s average residence time was defined as the 

time needed until the water volume initially in a given region was replaced by new 
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water. This  were  computed  by releasing an amount of tracers with a volume equal to 

the entire water body. The water fraction inside the box i  in each instant of time, with 

origin from box  jifj ,  was calculated as: 

   
 0,

,
,

ji

ji
ji V

tV
tf      (17) 

where  tV ji,  is the volume of tracers emitted in box j , present inside  box i  at time 

t and  0, jiV  represents the water volume in box i at the beginning of the simulation. 

For the special case ji   the average residence time for a given box is computed. 

When  tV ji, reaches zero all the water is renewed in the box and the box’s average 

residence time is found.  

The e-folding time approach was used to define the flushing time, which is the time   

required to decrease the initial number of particles in a particular region by a factor of 

e , the flush out a fraction  36788.011 1  e  of particles deployed inside the fjard. 

This approach has been used by several authors  (Abdelrhman, 2005; Bilgili et al., 

2005; Inoue and Wiseman.W.J.Jr, 2000).  The particle tracking model was used with 

depth one layer only, behaving as a 2D depth integrating model. Most parts of the fjard 

are shallow and the effect between layers was not considerable and   is only present in 

the superficial part. This justified the use of the two dimensional approximation as the 

computational effort for 3D would be excessive. The number and the location of the 

boxes were arranged to fill the whole area   in order to provide a value for global 

residence time.  The influences of the wind over the renewal process were also studied. 

Two scenarios were used, one with wind and the other without.  
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3.6  Model results. 

 
The time periods modelled were forced the model using the real data set, in which the 

average wind velocity of 9 m/s and the average wind direction is 222º, which is a good 

approximation of the real annual wind characteristics from the MET and which 

provided acceptable wind forcing in the model. The meteorological data sets used are 

shown in the Figure 3.3.  

 

Figure 3.4. Sensitivity analysis; (A) effect of drag coefficient and horizontal eddy viscosity 

and (B) drag coefficient and the wind rugosity coefficient on the RMSE of current speed 

time series’ (12 model runs). (C) effect on current speed, current direction and tidal 

elevation time series on the RMSE, with different constant wind direction and speed.  (D) 

percentage of variation of mean current speed, mean tidal elevation and mean current 

direction.  
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The sensitivity analysis (Fig.3.4A) showed that the variation from the reference run 

(“Ref”) did not have a large influence on the modelling predictions, with the drag 

coefficient having the highest relative sensitivity. Increasing or decreasing this 

coefficient from the reference run caused linear variation in the mean current velocity 

(not shown) and the RMSE.  Fig. 3.4D shows that mean current speed changes 

significantly as expected (+21 to -23 %), if the drag coefficient is modified, although no 

significant variation was found in current direction and tidal elevation (both close to 

zero). No significant variation was found by modifying the horizontal eddy viscosity 

and wind rugosity coefficient (Fig 3.4B). A significant variation was found in current 

direction in the constant wind scenarios.    

There are no large rivers which could significantly affect salinity draining into the 

Mulroy Bay. Results for water temperature in Broadwater show that there was complete 

thermal vertical mixing of temperature in the water column in February 2005 with a 

mean of 6.67 º C and 6.81º C at 1 m and 10 m depth, respectively. (source: Irish Marine 

Institute network of temperature probes). In February 2008, temperature profiles ranged 

between 6.1 ºC to 6.6 ºC and showed complete thermal vertical mixing in the water 

column over the whole study area. Results for February 2008 showed no large changes 

in salinity with depth (Fig 3.5) thus no stratification. Mean water column salinity values 

ranged between 30.8psu and 32.6 psu, with the lowest value being found at Kindrum 

and in the Moross Channel which may due to rain or freshwater draining.  
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Figure 3.5 Examples of salinity vs. Bottom-depth plot from the stations illustrated the 

difference in salinity between zones in winter season. 

 

For sea surface elevation, the calculated values of IoAd were close to 1 and low values 

of RMAE reveal a good agreement between the prediction of the model and the 

observation (Fig 3.6). The RMSE value of 0.275 m suggests that the model did not 

produce highly accurate tidal elevation values (Table 3.3) due to the bathymetry and the 

use of the FES2004 model for forcing the 3D model in the open boundaries. 
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Figure 3.6.  Water level time series at the two station in Mulroy Bay shows in fig 1 

comparing observed (dotted line) with modeled (solid line) data. Station one (left)  RMAE 

= 0.025, IoAD= 0.95. Station two (right )  RMAE = 0.057 , IoAD= 0.92  

 

The values of the observed and modelled mean current velocity at the two stations, 

were similar with little differences (Table 3.3).  For general comparison the RMSE 

values for the two stations were between 0.1159 m/s and 0.1359 m/s. The highest 

RMSE value was at station 2 in the bottom layer (Table 3.3), because there were several 

periods where the sea bed current meter at Millstone did not record flow.  The current 

direction means were almost identical at both stations, showing that the model can 

predict the current direction accurately (Table 3.3).  

The IoAd values were high even with the gaps in data, the minimum value being 0.762 

at Station 2 for the seabed measurement. The high values demonstrated a good 

approximation between modelled and measured current intensity data sets (Table 3.3). 

At station 1 the model agreed very well with the eastward velocity measurements (Fig 

3.7) surface and the bottom layers, with IoAd values close to 1 and low values of 

RMAE (Table 3.4) which were within the excellent category according to Walstra et al, 

(2001) (Table 3.2).  
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Table 3. 3.Values of the mean intensity measured (Mean Int me) and modelled (Mean Int 

mo), RMSEi, IoADi in for the intensity values, current direction measured (Dir me) and 

modelled (Dir mo), IoADe RMSEe, RMAEe for the elevation values for the two stations 

(st1, st2) at the surface (sup) and at the bottom (bed). 

 
 St1       Mean int me       Mean int mo  RMSEi       IoAdi    Dir me  Dir mo  IoAde   RMSEe  RMAEe   

 

Sup       0.379 m/s            0.394 m/s       0.122 m/s   0.903    180       183       0.950   0.275m   0.025 

Bed       0.329 m/s            0.364 m/s       0.121 m/s   0.896    180       181        

 
St2       Mean int me      Mean int mo   RMSE i      IoAD i   Dir me  Dir mo  IoAde RMSEe  RMAEe   

 

Sup       0.383 m/s         0.467 m/s        0.115m/s     0.903      227       222       0.927  0.2723m 0.057 

Bed      0.185 m/s         0.273 m/s        0.135m/s     0.762      227       221     
 
 
 
 
Table 3.4. RMAE, RMSE, and IoAD for the eastward (U) and northward (V) velocities at 

the superficial (s) and the bottom (b) for the stations. 

 
Station 1                         RMAE      RMSE      IoAd 
 
Us                                    0.008       0.123 m/s   0.971 
Vs                                    0.54         0.008 m/s   0.341 
Ub                                    0.05         0.126 m/s   0.976 
Vb                                    0.28         0.057 m/s   0.620               
 
Station 2                         RMAE      RMSE      IoAd 
 
Us                                    0.3            0.138 m/s   0.960 
Vs                                    0.05          0.08 m/s      0.980 
Ub                                    0.39          0.12 m/s     0.929 
Vb                                    0.18          0.07 m/s     0.937               
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Figure 3.7. Time series of the eastward and northward velocities in Mulroy Bay measured 

(dotted line) and modelled (grey line) at the two stations 1 and 2 at the surfaces (Fig.1S ,2S 

) and at the bottom (Fig, 1B, 2B). Values of RMAE, RMSE and IoAd are given  in table 

3.6  .It must be noted that during deployment there were evidently  several periods where 

the sea bed meter at station 2 recorded no flow. 
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The northward velocity results were more complicated (Fig 3.7), with the mean 

modelled and  observed values close to zero,  so the influences on the final intensity and 

direction of the flow will be low. The highest RMAE value was 0.54 (Table 3.4). The 

model was not able to predict accurately this velocity component with very low values 

and the IoAd values were low, however as shown in (Table 3.4), although the model 

provided a very good approximation of current speed and direction, the northward 

velocity influences were low in the total intensity.  

At station 2 the model agreed well with the northward and eastward velocities measured 

at the surface and the bottom (Fig 3.7), with IoAd values close to 1 and excellent and 

good values of RMAE (see Tables 3.3 and 3.4). 

3.7 Circulation. 

 
 Knowledge of the residual velocity field (the displacement of water over a complete 

tidal cycle divided by the tidal period) helps the understanding of long term water 

exchange inside the fjard, and for that reason the residual flow for an entire tidal period 

was computed. The Narrows of Mulroy Bay are the region with strongest velocities (Fig 

3.8, Animation 4), with the maximum velocity modelled in the proximity of the second 

narrow of  about  2.5 (m/s)  similar to that  measured  by Nunn (1996).  

A very clear circulation structure can be identified with an anticlockwise residual tidal 

eddy in the Millstone area. In the Narrows the model showed the same current patterns 

in all wind scenarios and the three vertical layers, top, medium and bottom were similar 

due to the shallow depth (Fig 3.8).  
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Figure 3.8.  Snapshots of the surface current, at ebb and flood A, and the residual 

circulation, B, in the middle layer of Broadwater and the channels  during the period 

modelled. The model used real wind data and the arrows show the direction and the speed 

of the current.  

 

In the third and innermost part of the Narrows the proximity of the current stream, the 

very shallow depth and presence of rocks created a flood tide current jet into the 

Broadwater that influences the internal circulation structure (Fig 3.8). The northern part 

of Broadwater was dominated by a large anticlockwise residual tidal eddy close to the 

entrance to the Narrows, which was evident in the all vertical layers. A strong residual 
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velocity flowing to the north was identified in the middle and bottom depth layers in 

Broadwater. In the mouth two Eddies were modelled at the medium depth (Fig 3.8). 

The Kindrum area is connected with Broadwater by the Moross channel the residual 

velocity a main north flows cross the area at mid-water and bottom depth (Fig 3.9).  At 

the mouth of Moross an eddy was clearly visible. In the surface layer the water flow 

travelled in a southerly direction and was probably dominated by the wind driven 

forces. 

 

Figure 3.9.  The residual circulation in the Kindrum ,Broadwater and Millford areas in 

the three layers, (A bed, B middle and  C surface depth) during the period modelled.  
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When there was no wind forcing applied to the model the residual velocity was 

insignificant in the north part of Kindrum, which is sheltered by hills. This is probably 

the most realistic scenario for this sheltered area.  A clockwise eddy was modelled in 

the area connected to the Moross channel in the mid-water layer. However, the figure 

clearly showed a wind driven scenario in the three layers system. When wind was taken 

into account a residual current in the direction of the wind stress was demostrated in the 

surface layer, a return current was found in the deep central part at the bottom and 

mixed residual current directions in the medium layer. 

 In Broadwater’s central and southern section, water flows to the south in the superficial 

layers were identified very close to the shore line and flowed to the north in the centre 

of the water body (Fig 3.9). In the scenario of no wind (not shown in the figures), it is 

clear that the residual velocities were insignificant. 

3.8  Flushing and Residence Time. 

 
The water volume computed at neap is 2.6x108 m3 while in the spring period it is 

3.4x108 m3. The e-folding time (the particle fraction value of 0.36) was about 10 days in 

the scenario of including real wind data and 17 days without wind (Fig 3.10, Animation 

5). The  residence time in the three boxes that cover the channels (Boxes 1, 2, 3) are 

consequently low, reaching the e-folding value of 0.36  in less than two days and  with 

no evidence of wind influences. The Kindrum and Moross channel (Box 4) never 

achieved the e-folding value within the   20 days period modelled. The total percent of 

losses are 30% with no wind and 50% with wind. The two boxes, 5 and 6 in the 

Broadwater area, achieved the e-folding value at 11 and 8 days, respectively, with wind 

and at 12 days without wind, box 6 achieved e-folding value at 12 days but box 5 has 

approximately 50% loss and never achieved the e-folding value in the time modelled. 
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Figure 3.10.  A: Evolution of the water fraction in the whole fjord. B: fraction of tracers 

after 20 days for no wind ( B sc1), real wind ( B sc2),  fractions of the tracers in every box 

in the two scenarios (C,wind and D no wind). The e-folding threshold is shown as a black 

horizontal line. 

 

3.9 Discussion. 

 
The numerical modelling was challenging because of the lack of information on factors 

such as the sea bottom type for the drag coefficients, the model for forcing by tidal 

constituents provided by the FES2004 and the incomplete bathymetry and its change 

with time. It is also important to note that these water bodies were very narrow and 

therefore some differences may be explained by insufficiently detailed bathymetry. 
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The high resolution grid of 50 x 50 metres was appropriate and provided a good 

approximation of the actual topography within the Narrows area. Sousa and Dias (2007) 

used a 40x 40 meter resolution grid in similar narrow systems to good effect. A further 

sensitivity analysis using the model presented in this paper investigating different grid 

resolutions would be worthwhile 

The vertical discretization used provided five independent layers that can be extracted 

and  incorporated into a GIS system to allow input into a wide range of environmental 

modelling projects for coastal aquaculture activities. In such activities and applications 

using a 2D model, with a depth averaged approach, will not provide much needed 

differential information for near seabed environments. A 3D approach, as used in the 

present model, is thus more appropriate for modeling environmental factors in relation 

to coastal aquaculture. 

Sensitivity analysis showed that variation in the eddy viscosity and wind rugosity 

coefficient does not have a large influence, while the drag coefficient has the highest 

influence. Around the reference parameter set, a linear effect of drag coefficient is 

assumed. Therefore, appropriate parameterisation is most important for this parameter. 

Similar conclusions were found by (Fernandes et al., 2001)  and  (Walstra et al., 2001). 

Little changes in the wind directions may caused significant variations in current 

directions and must be taken into account in scenarios where is considered constant 

wind direction and speed and it can be a source of errors due a extrapolating winds from 

single and multiple sites.    

In six tidal channels with the same configuration at Mulroy Bay, (rocky, gravelly, 

rippled and indistinct), Sternberg (1968) firstly  examined the friction coefficient used 

by  several authors and concluded that this can vary from about 2.4 x10-3  to 5.0 x 10-2. 

He found the value for the drag coefficient at 100 cm above the bed the magnitude 
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varied from 3 x 10-4 to 3 x 10-2. Ludwick (1975) carried out a similar study at the 

entrances of Chesapeake Bay and found a mean value of 1.3 x 10-2 with two thirds of 

the values obtained between 3.5 x 10-3 to 5.4 x 10-2. Nowell et al. (1981) report an 

increment of the roughness caused by animal tracks.  

Whitehouse and Chesher (1994), describe a review of field measurements concerning 

seabed roughness length throughout a tidal cycle. A detailed examination was carried 

out by Soulsby (1983), providing  typical values of the roughness length and the drag 

coefficient for different bottom types. He noted that the value of the friction coefficient 

at 1 m above the seabed varied by a factor of 4 from the smoothest to the roughest 

substrate, illustrating the danger of using a constant drag coefficient for all substrates, 

this is the case in the present study but no previous information about bottom types 

available for inclusion in the parameterizations of the model.  The friction coefficient of 

0.03 used in this study is in the same order as those of the authors mentioned above 

The interaction between submerged vegetation and hydrodynamics has also been 

investigated. Houwing et al. (2002) examined this interaction using the work of several 

authors and showed that there is a clear reduction in current velocity, current redirection 

or possibly a blocking effect of the current and a dissipation of wave energy. Seaweed 

and sea grass cover have been found in several areas and either may increase the bed 

drag coefficient value. 

The hydrodynamic measurements used to validate the model   were carried out in 

Mulroy Bay between 15 to 24 /02/05 (9 days in total). Such measurements give a good 

indication of the fjardic circulation. Several authors (Fernandes et al., 2001; Sousa and 

Dias 2007; Sutherland et al., 2004) have used one  or two days of such data to calibrate 

and validate models successfully.  It was not possible to perform a harmonic analysis in 



84 
 

order to evaluate the model, as no reliable information was available and the tidal 

period recorded over 15 days, is not long enough for an accurate harmonic analysis.  

In general the RMAE values were between 0.08 and 0.54, and the model gave a good 

representation of the 3D tidal flow characteristic in the area.  A comparison between 

modelling predictions for the longitudinal and lateral velocities and field measurements 

indicate that the model reproduces well the behaviour of the system. However the 

northward velocity had the highest values of RMAE and RMSE showing that the model 

did not   predict this velocity component accurately, but  the model did provide very 

good approximation of current speed and current direction and  the northward velocity 

influences were  low (Table 3.5). The RMSE values for sea surface elevation were also 

be considered acceptable, ranging about 10-15 % of the local amplitude. 

The magnitude of the residual circulation and spatial variation of the tidal velocity 

distribution are determined to a large extent by the fjord geomorphology. The residual 

circulation is generated by wind, interactions of the tidal flow with the bottom 

topography and shoreline geometry and in this case not by density differences. The area 

had no influence from fresh water inflow and the irregular topography and winds are 

the most important factors. As river inflow is very low no important density 

stratification will occur and the water body is well mixed vertically. The vertical and 

horizontal variations found in salinity and temperature in winter  were insignificant with 

less than 2 psu  difference between stations and almost the same value of temperature 

over the study area, for these reasons a constant value of density in the whole area was 

used assumed for the period modelled. We consider these to be a good approximation 

of these environmental factors and the particle tracking over the time modelled is likely 

to be unlikely to be affected by this approximation and assumption. 
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 In areas where the tidal currents are weak, wind driven currents may develop more 

strongly and become the principal agent of mixing and renewal of the fjord waters. The 

wind stress on the water surface induces horizontal circulation and as the wind is 

predominantly from a south-westerly direction the fetch is almost the maximum 

longitudinal distance of the fjord.  In Broadwater and Kindrum areas a wind driven 

scenario with a three layer residual current in the direction of the wind stress was 

computed in the superficial layer, with a return current in the deep central part at the 

bottom and mixed residual current directions in the medium layer. The narrows and 

channels were not affected by the winds, although they have a large tidal velocities and 

irregular bottom topography and consequently have strong vertical mixing.  

The current eddies were the major circulation features that define the study area. 

Zimmenman (1981) studied the dynamic characteristics of residual tidal eddies and the 

fluid response of an irregular sea bed or coastline to the current tidal regime. He 

classified and described different situations according to the geomorphologhical 

background into three types: residual basin circulation given by the ebb- flood 

interaction generated by frictional boundary layers in a semi enclosed basin; headland 

eddies around a coastal promontory where the tidal flow was accelerated and 

decelerated in the current direction and had a maximum near the headland and finally 

sand ridge eddies when the tidal current crosses a submarine sand ridge and the flow is 

accelerated going up the slope and decelerated going down the slope. The first and 

second scenarios described the formation of the numerous eddies in Mulroy Bay well, 

based on the ebb and flood surpluses in an enclosed basin.  The relatively shallow 

narrows and channels create a series of streams and flows against rocks forming ebb- 

flood tidal current jets that influenced the internal circulation structure and create 

several eddies. 
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Dronkers and Zimmerman (1982) found that a strong vertical mixing does not 

necessarily imply a strong longitudinal mixing or a high flushing rate and so the fluid 

particles which are introduced into the fjord will remain there for some time. From this, 

these authors suggest that specific ecosystems may develop, different from those in the 

sea.  

Mulroy Bay is an enclosed body of water with areas of restricted exchange, resulting in 

potential confinement of larvae and self-recruitment. Heipel et al. (1999) noted the 

distinctive nature of populations of Pecten maximus, in Mulroy Bay where the lowest 

genetic variability was recorded from this enclosed habitat.  The author also suggested 

that hydrographic features like tidal circulation systems, can potentially restrict 

distribution and lead to differences in size, age, and genetic structure between different 

fishing grounds. 

A comprehensive study of the ecology of fjord ecosystems must include the evaluation 

of appropriate hydrodynamic time scales. Tartinville et al. (1997) suggest that 

numerical modelling is capable of estimating the residence time with a high spatial 

resolution, and this enables a range of sensitivity analyses to be carried out, which helps 

understand the hydrodynamics of the area and the role of flow forcing factors. As 

expected the wind had an important role in the flushing characteristics of the area. This 

is clearly seen in the differences modelled with and without wind.  The flushing time 

approach to define the exchange in a particular region, and corresponds to 5400 

particles to be exported to the sea in the case of the whole area initially filled with 

15000 particles. Fig 3.10 shows that the e-folding periods for boxes were between one 

day and more than twenty days. As a whole the fjord system flushed roughly between 

10 to 17 days in the different scenarios. The effect of the initial particle release time 
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(spring or neap tidal period) on the predicted residence time values requires further 

investigations. 

The results of this study suggest that the residence time in Mulroy Bay varies 

significantly in space. Three regions, can be differentiated, a) the Narrows with low 

values of e-folding due to shallow depth, high speed currents and no effect of the wind 

stress, b) Broadwater which is affected by the narrowness of the channel that connects 

different areas, increased e-folding time, and also by the wind stress and, c) the  

Kindrum-Moross channel as expected with highest level of e-folding and considerably 

affected by the wind. The  Kindrum area is the most sheltered  against the winds and 

using the residence time calculated in the scenario without wind, it is clear that the 

pelagic larvae of P. maximus could spend the entire pelagic phase in the same area  (Le 

Pennec et al., 2003). These results differ from those of Telfer and Robinson (2003) and  

C-Mar (2000), who calculated the residence and flushing time from tidal prisms. The 

flushing time modelled is greater than the values provided by the tidal prism. 

Braunschweig et al. (2003) suggested that the definition of the Lagrangian approach 

make it difficult to define residence and flushing times and could lead to excessively 

high values as the water is never fully replaced. Taking into consideration the tidal 

prism methodology, a shorter flushing time maybe expected. The simple box models do 

not include the  effects of geometry, bathymetry and bottom roughness on mixing and 

circulation (Abdelrhman, 2005). The tidal prism methods consistently underestimate the 

exchange times and cannot predict the exchange rate of the deep isolated basin water 

and should be limited to estimating the exchange above the sill depth in fjord like 

systems (Gillibrand, 2001). The main and the deepest parts of Mulroy Bay, Kindrum 

and Broadwater are connected by a narrow area less than 200 meters wide and  the 

water flux in this area shows clearly that water was flushed out and transported back to 
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the areas increasing the water renewal. The channels and narrows are relatively shallow, 

which decreases their renewal time. 

  

3.10  Conclusions. 

 
Although the numerical modelling was challenging due to scarcity of information for 

3D model parameterization, the model showed good agreement between prediction and 

measurement for the hydrodynamically complicated area of Mulroy Bay; a shallow 

fjordic system. Consequently, this model clearly has the potential to be successfully 

calibrated and used in similar situations in the future to study important issues 

concerning the hydrodynamic activity and water quality. In particular, it could be 

specifically adapted as a management tool for multiple aquaculture activities within 

complex bay systems. The barotropic flow is characterized by several eddies and  the 

residual water velocities in this area show clearly that waters flushed out and in and are 

transported back to the areas and thus increase water renewal. In addition, the model 

has established the dominance of tidal-driven over wind driven circulation in the narrow 

areas and of wind driven flows in the inner areas. This study demonstrates the strong 

influences of wind forcing on the flushing characteristics of a hydrodynamically 

restricted system for which the tidal prism method is not appropriate 
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Chapter 4  Application of a 3D hydrodynamic model for 

sustainable marine finfish culture.  

 
 
 Juan Moreno Navas, Trevor C Telfer and Lindsay G. Ross 

 

This chapter describes the use of the 3D hydrodynamic and particle tracking model  

developed and validated in chapert 3 to study the effects of mean current speed, 

quiescent water periods, stratification and bulk water circulation in Mulroy Bay. A 

series of surveys were carried out to measure salinity and temperature profiles in the 

study area during spring and summer 2007 and winter 2008. The hydrological 

parameters modelled have been extracted as an independent layers and incorporated 

into a GIS system. These environmental models can also be used to identify areas for 

appropriate site selection for salmon aquaculture and a Langangrian method will be 

used to simulate discharges from finfish cages to show the behaviour of waste in terms 

of water circulation and water exchange.  

The main author, J Moreno Navas, conducted all field work and developed all sub 

models and final models. Prof Lindsay G Ross and Dr Trevor C Telfer provided 

supervisory and editorial support throughout the whole study.   

The body of the text is presented as a publication-ready manuscript. This manuscript 

has been submitted to Continental Shelf Research an international journal dealing with 

the physical oceanography, sedimentology, geology, chemistry, biology and ecology of 

the shallow marine environment, from coastal and estuarine water out to the shelf 

break. 

 
 



95 
 

Application of a 3D hydrodynamic model for sustainable marine 

finfish culture.  

 
Juan Moreno Navas (1), Trevor C Telfer and Lindsay G. Ross 

 
 
4.1 Abstract. Hydrographic conditions, in particular current speeds, have a strong 

influence on the management of fish cage culture. These hydrodynamic conditions can 

be used to predict  particle movement within the water column and results used to 

optimize environmental conditions for effective site selection, setting of environmental 

quality standards, waste dispersion, and potential disease transfer. To this end, a 3D 

hydrodynamic model has been coupled to a particle tracking model to study the effects 

of mean current speed, quiescent water periods and bulk water circulation in Mulroy 

Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the 

aquaculture industry. A Langangrian method simulated the instantaneous release of 

6000 “particles” emulating discharge from finfish cages to show the behaviour of waste 

in terms of water circulation and water exchange. 

The 3D spatial models developed were used to identify areas of mixed and stratified 

water using a version of the Simpson-Hunter criteria, and for appropriate site selection 

for salmon aquaculture.  

The modelled outcomes for the stratification were in good agreement with the direct 

measurements of water column stratification based on observed density profiles. 

Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay 

was potentially stratified with a well mixed region over the shallow channels where the 

water is faster flowing.  
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The fjard was characterized by areas of both very low and high mean current speeds, 

with some areas having long periods of quiescent water. The residual current and the 

particle tracking animations created through the models revealed an anticlockwise eddy 

that may affect waste dispersion and potential for disease transfer from a major 

production area for Atlantic salmon culture, as it influences movement of water among 

cages and ensures that the retention time of waste substances from cages is extended.  

The hydrodynamic model results were incorporated into the ArcViewTM GIS system to 

provide an easy-to-use graphical interface for visualization and interrogation of results, 

and to allow input into wider ranging spatial modelling projects, such as coastal zone 

management systems and effective environmental management of fish cage 

aquaculture.  

 
Key words: 3D hydrographic models, fish-cage waste dispersion, environmental 
management. 
 

1 Corresponding author: Institute of Aquaculture. University of Stirling. FK94LA. 

Stirling.UK (jmn1@stir.ac.uk) Tel: 01786767882 .Fax: 01786472133 

4.2 Introduction. 

 
Hydrographic conditions have an important influence on biological and physical 

processes related to marine aquaculture, including settlement and transport of larval 

molluscs or fish ectoparasites, rates of particle capture by suspension feeders, oxygen 

supply, influence on fish behaviour, growth and possibly flesh quality of cultivated 

molluscs and fishes, and transport and accumulation of soluble and particulate wastes 

released from the cultured organisms. Hydrographic measurement and use of this data 
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in modelling water flow throughout coastal systems is becoming an important 

management tool for marine aquaculture. 

The velocity profile of water currents depends on flow properties such as the Reynolds 

number (ratio of inertia to viscosity), turbulence, acceleration, fluid properties and 

boundary characteristics. Fjordic systems are considered regions of restricted exchange 

(RREs), and are often areas associated with settlement of humans due to fisheries, 

aquaculture, shipping and recreational activities. These activities have the potential to 

enhance any nutrient loading which may in turn increase the risk of eutrophication (Tett 

et al., 2003). Additional use of these water-based resources to expand existing or  

develop new aquaculture production will increase this risk further if not properly 

managed. Monitoring of the environment for this risk will only allow post hoc 

management after impact has occurred. Effective management requires predictive tools 

to model potential impacts and thus identify risks of aquaculture development or to 

locate its activities in order to minimise these impacts and to adopt best practice for 

development and regulation. 

The physical environment and vertical mixing within fjordic systems has been 

extensively reviewed (Farmer and Freeland,1983; Freeland et al., 1980; Stigebrandt and 

Aure, 1989) along with wind/water interactions  (Farmer, 1976; Farmer and Osborn, 

1976; Dronkers and Zimmerman, 1982; Leth, 1995; Svendsen and Thompson, 1978). It 

is accepted that fjordic systems may be represented by a tripartite division within the 

water body: the near surface circulation zone, the intermediate zone between the 

surfaces and the sill, and the deep basins. In a wind-driven three layer system, for 

example, the residual current is in the direction of the wind-stress in the superficial 

layer, has mixed residual current directions in the intermediate layer, and has a return 

current in the deep basins. 
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The widely used tidal front model proposed by Simpson and Hunter (1974) identifies 

well-mixed and stratified regions separated by a boundary or front in which various 

combinations of tidal velocity and water depth produce mixed and stratified regions 

under constant heat flux. Its usefulness is that the buoyancy inputs are spatially uniform 

and the tides are the dominant energy source for vertical mixing, and consequently a 

tidal front plot is a useful indicator of the spatial distribution of tidal mixing. The 

potential energy of the water column is given by integrating the gravitational potential 

energy over the depth. The energy required to mix the water column thus increases with 

increasing stratification (Lee et al., 2005), with  the  potential energy contributors being  

heating or cooling across the water surface, the tides and the winds (Simpson and 

Bowers, 1981).   

The production of finfish in cages causes a measurable impact on the quality of nearby 

water and seabed sediments due to ammonia excretion, depletion of available dissolved 

oxygen and release of faecal material and uneaten feed (Beveridge, 2004). The most 

severe impacts of marine fish cages have been associated with intensive aquaculture 

operations in areas with inadequate water circulation. The use of a hydrodynamic 

modelling approach in aquaculture planning regulation and monitoring was encouraged 

by Henderson et al. (2001).  Such hydrodynamic models have been used in different 

salmon culture studies focused on different environmental problems such as  nutrient 

waste, pesticide dispersion, oxygen depletion and dispersion of ectoparasite larvae 

(Table 4.1).  
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Table 4.1. Summary of the use of hydrographic models in salmon culture in different 

countries and the environmental problems. 
 

Author  Country       Software                 Dimensions    Grid size (m2) Target 

      
Falconer, A. and Hartnett, M.,1993.             Scotland         DIVAST                      2D 200      Nutrient , pesticide dispersion 
Trites, R.W. and L. Petrie., 1995. 
Panchang et al., 1997. 
Dudley, R.W.et al., 2000.                     
Greenberg et al., 2005.                           

Canada 
USA 
USA 
Canada          

unknown 
 AWAST 
 AWAST 
QUODDY                   

2D 
2D 
2D 
3D 

100 
75 

  30,75,150 
500                  

Oxygen depletion 
Waste dispersion   
Waste dispersion   
Oxygen depletion 

Murray,A.G. and Gillibrand.P.A., 2005. 
Skogen et all, 2009 

Scotland  
Norway 

GF8 
NOWERCOM            

3D 
3D 

100 
800 

Sea lice dispersion 
Etrophication 
 

      
 

This study applied a 3D hydrodynamic and particle tracking model, MOHID, to predict 

water circulation and to map the main hydrological parameters that influence salmonid 

cage culture in a complex fjardic system with substantial aquaculture production 

(Mulroy Bay, Co Donegal, Ireland). The use of the model for investigation of sensitive 

and well flushed areas was investigated and the potential for such models in 

management and regulation of these sites was assessed. 

4.3  Study area. 

 
Mulroy Bay is a fjardic inlet (Fig 4.1), a glacially-derived embayment in low lying land 

situated on the northern coast of Co Donegal, Ireland (55 15’N , 7 45’W ).  Mulroy Bay 

can be divided into four main areas: the Outer Bay, Northwater, Broadwater and the 

Channel. The latter is about 100-150 m wide and has three distinct sections; the First, 

Second and Third Narrows. Several areas within the Bay are licensed for Atlantic 

salmon farming with a production of approximately 800 to 900 tonnes per annum over 

the last five to ten years. 

Maximum depths within the Bay are 47m in Northwater and 40 m in Broadwater. Most 

of Northwater and the northern half of Broadwater is deeper than 20m, with most of the 



100 
 

Channel, the Outer Bay and the southern half of Broadwater being less than 10 m deep 

with significant areas less than 5m deep. The area between 0m to 10m is approximately 

62 % of the total, 10m to 20m is 28 % and 20m to 47m is 10 %.  

Wind speed data from 2005 indicated a mean speed of 6.8 m/s (at Malin Head), 

predominantly from a south-westerly direction (180º-270º), though on occasion wind 

directions were highly variable. The tidal range varies from 3.2 to 4.2 m (neap to 

spring) at the Bar at the mouth of the Outer Bay to 1.2 to 1.6 m in Broadwater. The tidal 

stream was very strong in the three Narrows sections, and there is some delay in 

turnover of water from the inner to outer bays illustrated by 143 minutes  difference 

between high water at the mouth and Broadwater (Parkes, 1958) .  

 

Figure 4.1. The location and bathymetry of the study area, Mulroy bay, off Ireland’s 

north coast.The positions of the salmon cages are shown as white circles and the two 

hydrological stations (1,2).  
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The general flow circulation is characterized by several eddies, and a clearly wind 

driven scenario. The system can be considered as three layers, with a residual current in 

the direction of the wind stress in the superficial layer, a return current in the deep parts 

of the bay and mixed residual current directions in the mid-water layer. Moreno et al., 

(unpublished) modelled the residual velocities and showed clearly that waters flushed in 

and out were transported back to the fjard increasing the water renewal and also 

demonstrated the strong influences of wind forcing on the circulation patterns and the 

flushing characteristics of this restricted area. 

4.4 Field sampling and data collection. 

 
Hydrographic measurements were taken at two stations within Mulroy Bay (Fig. 4.1) 

using two Valeport BFM 308 Direct Recording current meters deployed at 2 meters 

below the surface and 2 meters above the seabed. Deployment was for 16 days from the 

8th to 24th February 2005 during which current speed (m/s), direction (degrees magN) 

and water pressure (dB) were recorded at 20 minute intervals over a 60 s averaging 

period. For comparison of the quiescent period, only, an additional data set was used 

which was collected between 13th to 28th September 2000 at three different stations 

within the area (Institute of Aquaculture, unpublished data).  

A series of surveys were carried out in the study area during spring and summer 2007 

and winter 2008. Salinity and temperature profiles were taken at 1 m depth intervals at 

7 stations (Fig 4. 2) in order to characterize and compare differences in the study area. 

Temperature readings were taken using a WTW portable oxygen meter. Salinity was 

measured using an Oxi 197, LF 196 conductivity meter and probe. Each probe was 

connected to the meter using 100 m of pressure resistant armoured cable. The density  

was calculated as a function of temperature, salinity and pressure (Fofonoff and 
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Millard, 1983). Delta Sigma -T   
t

  was calculated by the density differences 

between superficial and bottom values. 

 

 

Figure 4.2. Distribution of  Hunter-Simpson stratification criteria in Mulroy Bay, showing  

the mixed areas as light grey (values <1), stratified as dark grey (values >2) and the 

sampling stations (A to H) used. 
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4.5 The three-dimensional (3D) water modeling system, MOHID. 

 
The hydrodynamic model MOHID 3D used in this work  (Martins et al., 1998; Martins 

et al., 2001; Santos, 1995) solves the equations of a three-dimensional flow for 

incompressible fluids and an equation of state relating density to salinity and 

temperature. The MOHID model has been applied to several coastal and estuarine areas 

and it has shown its ability to simulate complex features of the flows. It has been used, 

for example, in coastal circulation, nutrient loads and residence time models in several 

places around the world (see http://www.mohid.com/Publications/JP.asp).  

Following Martins et al. (2001), the Cartesian coordinate framework  equations are as 

follows: 
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Where  
i

u  are the velocity components ix ,  is  the free surface elevation, i  

turbulent viscosity coefficients. f  is the Coriolis parameter. sp  the atmospheric 

pressure  g  is the gravitational acceleration.   is the density and    its anomaly. 

The density is calculated as a function of salinity and temperature by the equation of 

state, (Leendertsse and Liu, 1978).  

A bathymetry model was obtained by digitizing from Admiralty Chart (SNC 2699) to 

produce initial vector data followed by interpolation to a 50 m grid resolution. An 

Arakawa C grid was used for spatial discretization (Arakawa and Lamb, 1977). The 

MOHID model allows several options for vertical discretization: Cartesian coordinates, 

sigma coordinates or a generic vertical coordinate. In this study a sigma coordinate was 

chosen with 5 vertical layers. The temporal discretization is carried out by means of a 

semi implicit ADI (Alternate Direction Implicit) algorithm, introduced by Peaceman 

and Racford in 1955 (Fletcher, 1991).  

Bottom stress was parameterized using a quadratic law, by calculating the bottom drag 

coefficient, Cd, from the expression: 
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Where K  is the Von Karman constant, z  observation length and bz0  is the bottom 

roughness length. 

Vertical eddy viscosity/diffusivity was determined with a turbulence closure model 

selected from those available in the General Ocean Turbulence Model GOTM  

(Burchard et al., 1999). 
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In this application a 3D model forced with both tide and wind was implemented. At the 

boundary the water level taken from the FES2004 global tide solution is imposed 

(Lyard et al., 2006). Wind was assumed equal in all domains to that measured by the 

closest meteorological station. The parameters used in the model calculations are 

summarized in Table 4.2.  

Table 4.2.  Parameters used in the calculations. 

 
Physical parameter                     Numerical value 
 
Time step:                                   2s 
Grid mesh:                                  50m 
Horizontal cells (x,y):                 193, 244 
Vertical coordinate:                    Sigma 
Vertical layers:                            5 
Horizontal Eddy Viscosity:        0.407738   12 sm  
Vertical Eddy viscosity:             0.001         12 sm  
Drag coefficient:                         0.03 
Wind rugosity coefficient:          0.0025 
River discharge:                          No 
Temperature:                               7. º C 
Salinity:                                       32.6 psu 
 
 

The residual current eu  was estimated by averaging the horizontal flow u  over a 

complete time periodT : 

 
T

e udtTu
0

/1       (6) 

A particle tracking model was coupled to the hydrodynamic model to describe the 

movement of the passive tracers.  
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The particle tracking assumed that the velocity of each particle ( pu ) can be split into a 

large scale organized flow, characterized by a mean velocity ( Mu ), provided by the 

model, and a smaller scale random fluctuation ( Fu ) such as FMP uuu  . 

The particle tracking model used the equation: 

 txu
t
x

ii
i ,




     (7) 

Where i
u is the mean velocity and ix   the particle position, this equation is solved using 

an explicit method: 

t
i

t
i

tt
i tuxx       (8) 

Random movement was calculated following the procedure of (Allen, 1982) in which 

random displacement was calculated using the mixing length and the turbulent velocity 

standard deviation provided by the hydrodynamic model.  

For the validation process the relative mean absolute error (RMAE) and the Index of 

Agreement, (IoAd) were computed using equations 9 and 10 respectively. The RMAE 

has been used by several authors to the evaluate numerical model results (Fernandes et 

al., 2001; Sousa and Dias, 2007; Sutherland et al., 2004) and is given by: 

m

cm

Q

QQ
RMAE


   (9) 

where  mQ and cQ  are the measured and computed velocity vector respectively.  

The preliminary classification of RMAE ranges suggested by (Walstra et al., 2001) is 

shown in Table 4.3. 
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Table 4.3. Classifications error for RMAE (after Walstra et al., 2001). 

 
Classification               RMAE 
 
Excellent                      < 0.2 
Good                             0.2-0.4  
Reasonable                    0.4-0.7 
Poor                                0.7-1 
Bad                                  >1 
 
 

The index of agreement measure, (IoAd) ( Dawson et al., 2007; Wilmott,1981) is given 

by: 
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where mQ  and cQ is the measured and computed velocity vector respectively 

and iQ  is a mean velocity vector measured, the best results are when IoAd close to 1. 

The IoAd has been used to evaluate numerical model results by Sousa and Dias (2007) 

and Warner et al. (2005).  

Stratification was quantified by determining the potential energy anomaly,   , 

following Simpson et al. (1978) and Simpson and Bowers (1981)   using the equation:  

  


 
0

H

zdzz
H
g

  (11) 

where the z coordinate is positive vertically upwards from the sea surface, g is the 

gravitational acceleration 


  is the mean density and H the water column height.  
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The Hunter Simpson stratification parameter  (Simpson and Hunter, 1974) is given by:   
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310log
U
hS    (12) 

where, S is the stratification parameter, h the water depth, and U is the magnitude of the 

instantaneous tidal stream velocity over one tidal cycle. The stratification parameter 

was calculated with h as the mean water depth for each cell and U as a mean tidal 

velocity modelled for each grid position. Although the Hunter Simpson stratification 

parameter was selected, it must be assumed that the stratification was only caused by 

thermal heat. 

The value of S at 1.5 indicates the presence of a front. Values of S < 1 indicate well 

mixed regions and S >2 well stratified areas (Perry et al., 1983). To verify the existence 

of well mixed and stratified zones the surface stratification was calculated, defined as 

the difference in Delta Sigma -T   
t

  between the surface and the bottom densities 

following Perry et al. (1983) and Muelbert et al. (1994) ..The energy required to mix the 

water column thus increases with increasing stratification, so in mixed waters it is < 10 

3Jm , in frontal waters 10-20 3Jm , and in stratified waters >20 3Jm   (Lee et al., 

2005). 

The quiescent period was given by the percentage incidence of current speeds within 

the range 0-3cm/s  (SEPA, 2005), and was obtained from the modelled numerical 

values. To obtain the residence time, a modification of the approach of Braunschweig et 

al. (2003)   was used, in which the six fish production cage-blocks were considered as 

boxes either 100 x 150 meters or 100 x 200m in area.  These boxes are used as the 

release points for the Lagrangian tracers (1000 particles in each box simulating cages, 

6000 in total) and the movement of these tracers throughout the fjard system was 
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examined. The time period simulated was based on the worst case, represented by a day 

with neap tides and the initial model running in the flood tide period without wind. The 

hydrodynamic model results were incorporated into the Arc View GIS system in order 

to provide an easy-to-use graphical user interface for visualization, interrogation of 

results and as an input to a further spatial modelling project. 

4.6 Results.  

4.6.1 Field data.  

Mean seasonal temperature ranged from 6ºC in February 2008, to 12ºC in April 2007 to 

16ºC in August  2007. In the summer (16ºC) and winter (6ºC) seasons there was 

complete thermal vertical mixing with the same values of temperature in the water 

column in the whole study area. The density profile (Fig. 4.3) shows that during the 

spring period, April 2007, several stations showed stratified patterns (stations C, D, G, 

H) mainly due  to differences between superficial and bottom values of 1.6ºC maximum 

in Kindrum and 1ºC in the Milford area. No variation was observed at the sampling 

stations at Glinsk and Millstone (stations A and B respectively) in the Narrows.   

 

Figure 4.3. Density variation with depth from all stations for April 2007. 
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The salinity during the summer and winter seasons was completely vertically mixed 

with the same values throughout the water column. Seasonal salinity values fluctuated 

from 30.9 psu in January to 34.0 in August.  The values at several stations over the 

whole area were very similar for summer and winter periods (sampled in February 2008 

and August 2007) both at the surface and the seabed with little variation occurring 

between stations. Salinity depth profiles obtained in February 2008 (Fig. 4.4) indicated 

that there were different values in the different areas of the fjard, 30.9 to 31.0 in 

Kindrum area, possibly caused by rain and small rivers draining into the area, while 

elsewhere within the Broadwater values were close to 32.6.  

 

Figure 4.4. Examples of salinity vs. bottom-depth plot from the stations H and  E  

illustrated the difference in salinity between zones in winter season. 
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In spring time the Delta Sigma T  
t

  at the Narrows stations A and B and Station D 

were less than 0.056 kgm-3 units, whereas at Broadwater and Kindrum stations 

(H,G,E,C)  there was more stratification  with values greater than 0.110 kgm-3, the 

maximum values 0.295 kgm-3    being in the Kindrum area. The potential energy at the 

narrows station (Station A,B,C) was almost zero, between 0 and 0.95 Jm-3 , while in  

Broadwater, Moross channel and Kindrum values were between the maximum in 

Kindrum zone with 13.47Jm-3   and the minimum of 1.038 Jm-3  in Moross channel. 

4.6.2 Modelled results. 

In this study, the 3D hydrodynamic model was based on a 15 day lunar tidal cycle with 

forcing by a real wind data set.  A mathematical sigma coordinate was used with 5 

vertical layers; the first layer was the bottom and the fifth at the surface. The sensitivity 

analysis showed that the variation in the eddy viscosity did not have a large influence 

on the modelling outcomes, while the drag coefficient has the highest relative 

sensitivity (see chapter 3). The hydrodynamic measurements used to validate the model 

were carried out in Mulroy Bay between 15 to 24 /02/05 (9 days in total).  

For sea surface elevation (Fig 4.5), the calculated values of IoAd were close to 1 and 

low values of RMAE revealed a good agreement between the prediction of the model 

and the observations (Fig 4.5 and Table 4.4) according to Walstra et al. (2001).  The 

values of the observed and modelled mean current velocity (Fig 4.5), at station 1, were 

similar with differences of 0.015 m/s at the surface and 0.035 m/s near the seabed. At 

station 2 the differences in mean modelled current velocity was higher, being 0.084 m/s 

at the surface and 0.088 m/s near the seabed between observed and modelled values.   
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Table 4.4. RMAE, and IoAd for the eastward (U) and northward (V) velocities, current 

intensity at the superficial (s) and the bottom (b) and the tidal surface elevation for the 

stations 

Parameter Station 1 Station 2 
 RMAE IoAd RMAE IoAd 
     
Us 0.008 0.971 0.3 0.960 
Vs  0.54 0.341 0.05 0.980 
Ub 0.05 0.976 0.39 0.929 
Vb 0.28 0.620 0.18 0.937 
Current intensity s  0.903  0.903 
Current intensity b  0.896  0.762 
Elevation  0.025 0.950 0.057 0.927            

 

The current directions  were almost identical at both stations (Fig. 4.5),  showing that 

the model can predict the current direction accurately.  

At station 1 the model agreed well with the eastward velocity measurements (Table 4.4) 

in the surface and bottom layers, with IoAd values close to 1 and low values of RMAE 

(Table 4.4) which were within the excellent category according to Walstra et al. (2001). 

The northward velocity results were more complicated. The RMAE values were 0.28 

and 0.54 for bottom and superficial levels, respectively, with IoAd values varying from 

0.341 to 0.62 (Table 4.4). The model did not predict this velocity component accurately 

although it did provide very good approximation of current speed and current direction 

and the northward velocity influences may be low. 

At station 2 the model agreed well with the northward and eastward velocities measured 

at the surface and the bottom, with IoAd values close to 1 and excellent and good 

values of RMAE  (see Table 4.4). 
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Figure 4.5. Time series of the elevation, current direction and current intensity in Mulroy 

Bay measured (dotted and dark line) and modelled (grey line) at the two stations 1 and 2. 

Values of RMAE and IoAd are given in Table 4.4. 
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The average measured current speeds were used for the 4th layer within the model as 

this gave the best estimation of the cage environment, as it approximated the depth of 

the mid and bottom of the cages, where the majority of the waste originates (Corner et 

al., 2006) The mean current speed modelled in this layer is given in (Fig. 4.6), from 

which two regions can be differentiated; 1) the Narrows, where  modelled mean current 

speeds ranged from 0.2 m/s to more than 1 m/s., and 2) Broadwater, where the 

modelled mean current speeds ranged between 0.03 m/s at Kindrum to 0.2 m/s within 

the Morross channel. 

 

Figure 4.6. Distribution of modelled mean current speed in Mulroy bay. The data shown is 

the   current speed (m/s) in layer 4 which approximates cage positions in the water 

column.  
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The quiescent period, defined as percentage of the tidal period where current speeds 

were less than 0.03 m/s (SEPA, 2005), were given for the first layer (bottom), as this 

provided an approximation of the seabed environment (Fig. 4.7). The quiescent period 

in this layer ranged from 10% to 80% of the tidal period. Areas of Kindrum and Milford 

were considered mostly quiescent, in contrast to the well flushed and only minimally 

quiescent areas within the Narrows and Moross Channel (defined according to criteria 

set by SEPA, 2005). The modelled and measured quiescent periods at the two stations 

at the surface and bottom were very similar at about 1 % (Table 4.5).  

 

Figure 4.7. Distribution of the modeled percentage of quiescent period in Mulroy Bay. The 

data shown is the quiescent period in layer 1 which approximates the bottom 

environment. 
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Comparing  the modeled result with the hydrographic data set from 2000 but with the 

same time period (15 days)  that include  the locations of three  fish cages, it can be 

seen  that in Broadwater differences are in order of less than 10 %, with 25 %  at 

Kindrum and 10 % at  Moross .    

 

Table 4.5. Quiescent period at the surface (S) and the bottom (B) for stations 1 and 2, and 

three cage sites, showing the data set used.  

 

Station Data set Quiescent Period 
  Measured S   Measured B   Modelled S   Modelled B   
      
Station 1   Feb 2005 1% 1% 1% 1% 
Station 2  Feb 2005 1% Nr 1% 1% 
Broadwater  Sep 2000 10% 25% 17% 20% 
Kindrum Sep 2000 95% 99% 98% 75% 
Moross Sep 2000 16% 30% 10% 20% 
 
nr = not measured due to current meter failure 
 
 

The modelled residual currents (Fig. 4.8) show a circulation structure with an 

anticlockwise eddy in the Millstone area where the maximum salmon production is 

located. At the Narrows the 3D hydrodynamic model showed the same patterns in the 

top, medium and bottom layers which are similar due to the low depth.  

To illustrate the mixing of the volume of water (simulating effluents) from the cages, 

the particles in different cages positions were colour-coded. The particles were then 

advected by the model flow field for one day (17/2/2005). The results are presented as 

an animated dispersion model (Animation 6). The animation clearly shows the current 

eddy, at certain times of the tide, in the Millstone area and mixing water from the 

Glinsk (colour red) and Millstone (colour yellow). 
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Figure 4.8. Distribution of residual current in the central sections of Mulroy Bay. A very 

clear circulation structure can be indentified with anticlockwise and a clockwise eddies in 

different areas of the narrows. In Millstone area an anticlockwise eddy (black square)  

may affected the cage water exchange 

 

 

The water from Glinsk is eventually flushed away to the Broadwater area, while in 

Millstone part is flushed to Broadwater and the rest remains to feed the eddy. Particles 

originating from fish farms in the inner bays (Moross in green and Broadwater in blue) 

exhibited small changes at the beginning of the model run but by the end the volume of 

particles are dispersed so that the Broadwater particles end up in the mouth and in 

Moross Channel while Moross Channel particles area are spread throughout the 

channel. 

The distribution of the modelled Hunter Simpson criteria can be separated into two 

areas (Fig. 4.2). The narrows, Glinsk, Millstone and the northern part of  the Moross 

Channel are considered well mixed, with values less than 1 for the Hunter-Simpson 

criteria while the  remainder of Mulroy Bay can be considered as stratified with 

modelled Hunter-Simpson criteria values of greater than 2.  
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4.7 Discussion.   

 
Numerical circulation models can provide a practical solution to the problem of coastal 

mixing (Wildish et al., 2004) and water exchange in Regions of Restricted Exchange 

that host important industries, such as aquaculture, and can improve resolution of the 

combined effects of tidal and wind-driven forcing as well as reflecting complex 

topography and intertidal drying zones (Hargrave, 2003). The 3D modeling schemes 

require intensive computer resources and may suffer from computational instability 

problems, but the models can provide a complete spatial and temporal dataset on water 

currents for the entire computational domain. 2D models will provide vertical and depth 

averaged components of velocity (speed and direction) but this information is 

insufficient in some cases, particularly when the differences between the surface and 

the bottom velocities may differ considerably. In addition, the 2D approach does not 

provide differential information for near seabed environments such as the extended 

quiescent period. Panchang et al. (1997) suggest that the vertical variations in the 

current speed are likely to affect the dispersion of waste and resuspension of settled 

wastes and a 3D approach would therefore be more appropriate for modeling such 

wastes. 

The study area on which the present work is based is characterized by two main 

hydrographic areas that could host aquaculture sites; a highly energetic and well flushed 

part of the fjard in the narrows and a low energy, poorly flushed part in the Broadwater, 

Kindrum and Millford areas. The results indicate that the area follows a seasonal cycle 

that contains three contrasting regimes. In the summer and winter the systems show 

complete thermal vertical mixing while in spring the inner bay system is stratified but 

the more hydrodynamic Narrows area is always well mixed. Similar hydrological 
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behaviour was encountered in a Scottish fjord (Rippeth et al., 1995). The measured 

values for temperature and salinity are in good agreement with those directly measured 

in Mulroy Bay by other authors (C-Mar, 2000; Nunn, 1996;Telfer and Robinson, 2003). 

The temperature is highest (16-17ºC) and the oxygen concentration is lowest, close to 7 

mg/l, in summer time. 

The model has been forced by tides and winds.  C- Mar (2000) found a direct 

relationship between wind forcing and the concentration of dissolved oxygen in the 

water and the increase of water exchange with the ocean. The numerical model could 

provide important insight by showing how the fjard would respond to a considerable 

increment in the temperature, changing wind direction and intensity scenarios and 

dissolved oxygen evolution, so providing the possibility of modelling climate-related 

“what-if” scenarios in advance. 

Cross (1993) suggested that net cage locations must consider circulation dynamics, 

including the evaluation of back eddy and mass transport contribution to waste 

dispersion for a site.  Brooks and Churchill (1991) noticed that finer grid resolution 

(less than 100m) is important for characterization of the circulation in coastal areas 

similar to Mulroy Bay, and Panchang et al. (1997) suggested the use of a fine (75m) 

grid size in areas with aquaculture activities. The latter modelled the presence of an 

eddy which inhibited the exit of salmon waste. 

 Hargrave et al. (1995) note that most studies in aquaculture have shown that the local 

extent of altered benthic community structure and biomass is limited to less than 50 m 

from the edge of the cages and for this reason the model was parameterized to this 

horizontal resolution.   

Residual current velocity and the developed animation show the presence of an eddy in 

the largest fish production area in Millstone which may affect environmental quality by 
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retaining rather than dispersing waste. This is the first animated example of how a 

physical circulation structure could affect different aquaculture sites. It is clearly 

important to consider the inter-relationship among them and to be able to identify such 

areas for environmental management because nutrient, waste dispersion, and potential 

disease transfers from the cages may affect the other sites.  

The general flow circulation in Mulroy Bay is characterized by several eddies, which 

are clearly wind driven (Moreno et al, unpublished). The tidal range varies from the Bar 

in the Outer Bay (3.2-4.2 m) to Broadwater (1.2-1.6m), and tidal streams are very 

strong, particularly in the Narrows which have the lowest quiescent values and 

maximum mean current speeds. Hargrave et al. (1995) noticed that benthic variables 

which are correlated with organic matter sedimentation can be used to scale the degree 

of organic enrichment. However, the author suggested that biological processes are not 

always sufficient to limit organic matter accumulation especially in areas where 

hydrographic conditions and/or low current speeds result in low rates of oxygen supply 

to the sediment surface. A 3D scheme could provide much improved spatial and 

temporal information about the conditions in the sea bed. 

The modelled periods of quiescent water and mean current speed were confirmed as 

reasonably accurate by comparison with measurements of hydrographic conditions  at 

different  locations within Mulroy Bay, and even comparing hydrographic data sets 

from different time periods  that include  the locations of the three fish cages sites. It is 

important to note that although the times modeled were almost the same 15 day  tidal 

lunar cycle the different wind conditions could affect the result.   Water quality 

measurements from Telfer and Robinson (2003) showed that the areas with the lowest 

values of oxygen in deep water coincide with areas with the highest values of quiescent 

water (Kindrum and Milford). C- Mar (2000) reported high values of sediment oxygen 
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demand in the area, and the quiescent period may be a good modelled indicator of 

potential oxygen depletion in the sea bed. 

In strongly stratified marine systems, dissolved material can be effectively trapped in 

the upper or lower parts of the water column. In an aquaculture context, stratification 

can be an important factor in the dispersal of organic matter from certain farms in the 

inner portions of fjords (Wildish et al., 2004). A slight thermal stratification was 

observed in the spring period during this study.  A thermal stratification was observed 

in Northwater and Broadwater, (C-Mar, 2000; Minchin, 1981) and in the southern 

region at Milford. Although there are no large rivers draining into the bay to 

significantly affect salinity, a shallow halocline can develop in parts of Northwater and 

Broadwater where water from land runoff lies on the surface during calmer weather. 

Salinity depth profiles obtained in January 1999 (C-Mar, 2000) indicated that there was 

saline stratification in the southern region of Broadwater, probably caused by land 

runoff and streams which drain into this area.  

The modelled Hunter-Simpson tidal stratification parameter indicated that most of 

Mulroy Bay was potentially stratified in spring time with well mixed areas in the 

shallow narrows. The values are in good agreement with the direct measurements of 

water column stratification based on observed density profiles. In terms of potential 

energy, where the sigma value is low and potential energy is close to zero the Hunter- 

Simpson criterion is below 2. Stations with highest values of Delta Sigma-T and 

potential energy have the highest values of the Hunter-Simpson criteria with values 

more than 2. 

 Simpson and Hunter (1974) used the surface current amplitude at springs, whereas in 

this study the mean surface current speed of a lunar tidal cycle was used. This provided 

a better cage site approximation but produced lower values of current speed which 
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could lead to higher values of the Hunter-Simpson criteria. Several stratification 

parameters have been defined by other authors but  Hunter and Sharp (1983) noticed 

that, at a given site, all could be approximately related to each other. Lu et al. (2001) 

used only four tidal constituents: M2, S2, K1 and O1, and found that the resulting 

modeled stratification distributions did not change significantly in comparison to  

modeled results  given by Pingree and Griffiths (1980) who used  only one constituent, 

M2. In the present study, both elevation and current data were generated and included 

more tidal constituents from the FES2004 model, M2, S2, N2, K2, K1, O1, Q1, P1 and 

M4. No significant changes of stratification parameter distribution were expected. 

 The Hunter-Simpson stratification criteria was selected for its simplicity and ease of  

calculation. It was used to model the worse possible scenario where the stratification 

was only caused by thermal heat. The area has no influences from river discharge 

affecting the stratification and other important energy sources for the water mixing of 

the water column, such as wind mixing and tidal stirring, are not taken into account. A 

strong wind blowing for many hours and high turbulence from the bottom can produce 

a mixed layer and reduce the density differences. 

The results from the hydrodynamic model can be incorporated into GIS to provide an 

easy-to-use graphical user interface for 2D, 3D and temporal visualization, for 

interrogation of results and as an input to other spatial models. This offers the 

possibility of combining the data with layers of spatial information about economic and 

social aspects, communications and security of the study area to develop an integrated 

ecological approach to aquaculture activities. As described by Henderson et al. (2001) 

the main potential and recommendation for using modelling in aquaculture activities is 

as an indicator of environmental change, as a strong descriptor of physical processes, as 

a tool for best practices in development and regulations, as a cost effective alternative to 
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extensive field’s studies, and to provide fast predictions of potential impacts for 

different aquaculture scenarios. In addition, the hydrodynamic and water quality models 

could be useful in the assessment of the mixing zone and in designating allowable zones 

of effect for nutrient and chemical discharges. However, any modelling process may 

give false or inaccurate predictions and thus there are risks in applying modelling 

approaches to any decision making process, where complex environmental processes 

are oversimplified (Henderson et al., 2001). The process of  3D circulation modelling is 

expensive; however the benefits of such a decision support tool which is well tuned for 

aquaculture development are also considerable (Andréfout et al., 2006).  

4.8 Conclusion. 

 
Hydrographic conditions play an important role in several environmental processes 

related to aquaculture. Knowledge of local hydrography is thus fundamental in any 

decision making process.  The production of finfish in cages causes a measurable 

impact on the surrounding water and seabed due to excreted soluble nutrients, faeces 

production and uneaten feed. The most severe environmental impact and management 

problems have been associated with intensive operations in areas with inadequate water 

circulation. 3D hydrodynamic modelling coupled to particle tracking modelling 

provides spatially explicit information on the key variables governing the dynamics of 

marine coastal areas and the transport and fate of pollutants in the near and far field 

cage marine environment. Its integrative approach and analytical capabilities is a 

powerful tool to guide effectively the environmental management of marine 

aquaculture. It can provide information on environmental sensitivity through mapping 

hydrographic characteristics using important parameters, such as, current speed, 

stratification index, quiescent periods, water circulation, exchange and renewal. This is 
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particularly important in the areas that host intensive aquaculture activities. The use of 

modelling approaches in aquaculture planning regulation and monitoring should be 

encouraged. 
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Chapter 5  Modelling environmental vulnerability of finfish 

aquaculture using GIS-based neuro fuzzy techniques. 

Authors:  J. Moreno 1 T. Telfer and L.G. Ross. 

 
This chapter describes the neuro-fuzzy techniques used in a GIS to predict coastal 

vulnerability for marine cage aquaculture. The hydrological parameters calculated in 

Chapter 3 and 4 have been incorporated as an independent layers into a GIS system. 

Sediment samples for measurement of nitrogen content and granulometry were 

collected by grab at eight fish production and several sites between 2002 and 2006 

The main author, J Moreno Navas, conducted all field work and developed all sub- 

models and final models. Prof Lindsay G Ross and Dr Trevor C Telfer provided 

supervisory and editorial support throughout the whole study.   

The body of the text is presented as a publication-ready manuscript. This manuscript 

has been submitted to Environmental Modelling and Software, an international journal 

committed to the contributions on recent advances in environmental modelling and/or 

software, GIS, remote sensing, image processing, fuzzy logic, or knowledge elicitation,  

knowledge acquisition methods, decision support systems and environmental 

information systems. 
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Modelling environmental vulnerability of finfish aquaculture using 

GIS-based neuro fuzzy techniques. 

 
Juan Moreno Navas1, Trevor C Telfer and Lindsay G. Ross 

 
 
 5.1 Abstract. The aim of this study was to develop a predictive model of coastal 

vulnerability to marine aquaculture using neuro-fuzzy techniques in a Geographic 

Information System (GIS) framework. Combination of GIS with a robust neuro-fuzzy 

modeling approach has the advantage that expert scientific knowledge in coastal 

aquaculture activities can be incorporated into the fuzzy neural network to “train” 

models to enhance accuracy of the output. Here we utilize an adaptive neuro-fuzzy 

system to classify vulnerable areas of the environment in a complex coastal scenario 

within Mulroy Bay, a fjard in Co Donegal Ireland, which is host to a number of 

different aquaculture activities. Data on the physical environment and aquaculture 

suitability were derived from a 3-dimensional hydrodynamic model (3DMOHID) and 

GIS (Arc View 3.2) for incorporation into the final model framework and included 

mean and maximum current velocities, current flow quiescence time, water column 

stratification, sediment granulometry, particulate waste dispersion distance, oxygen 

depletion, water depth, coastal protection zones, and slope. 

Environmental vulnerability models, based on neuro-fuzzy techniques, showed 

sensitivity to the membership shapes of the fuzzy sets, the nature of the weightings 

applied to the model rules, and validation techniques used during the learning and 

validation process. The overall training had an accuracy of 85.71%, with a Kappa 

coefficient of agreement of 81%. The unclassified GIS cells ranged from 0% to 24.18%.  

A statistical comparison between vulnerability scores and a significant product of 



131 
 

aquaculture waste (nitrogen concentrations in sediment under the salmon cages) showed 

that the final model gave a good correlation between predicted environmental 

vulnerability and sediment nitrogen levels, highlighting a number of areas in Mulroy 

Bay of variable sensitivity to aquaculture.  

The neurofuzzy technique for GIS modeling can appropriately classify coastal regions 

into areas of different levels of environmental vulnerability to a range of aquaculture 

activities. This is therefore a useful tool for identifying locations where such activities 

have a higher risk of contaminating the marine environment in relation to other coastal 

activities. Such a model can be used to facilitate policy decision for aquaculture site 

selection.  

 

Key words: Neuro-fuzzy techniques, environmental vulnerability, Geographic 

Information Systems, marine cage aquaculture, aquaculture site selection. 

1  Corresponding author 

5.2  Introduction. 

 
Recent improvements in the capabilities of Geographic Information Systems (GIS) have 

enabled their increasing use as tools for decision-making and policy formulation. The 

ability to store, manipulate and model using spatial data has meant that GIS has an 

important application in many sectors, including Integrated Coastal Zone Management 

and management of marine resources. There is considerable opportunity to develop new 

modelling techniques within the GIS framework to classify and assess the suitability of 

coastal areas for development of sustainable marine cage culture. However, locational 

data sets are often uncertain and incomplete, therefore new models employing “soft 

computing” methods such as  fuzzy logic may be more suitable (Zadeh, 1965). Nauck et 
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al. (1997) defined “soft computing” as taking into account approaches to human 

reasoning and tolerance for incompleteness, uncertainty, imprecision and fuzziness in 

decision making processes”. To date, the use of this approach for resolving coastal 

environmental problems has clearly been underutilised.  

Fuzzy data sets naturally lend themselves to modelling uncertainty in vague and 

ambiguous conditions. The approach has been applied to problems where domain 

knowledge is abundant but numerical data have been difficult to obtain (Abe, 2001). In 

particular, neuro-fuzzy systems have been applied in various and different domains e.g. 

control, data analysis and decision support. 

Many types of ecological and environmental data are qualitative or use discrete 

categories (Silvert, 1997) and combinations of quantitative and qualitative data, so are 

difficult to incorporate into environmental modelling and classification schemes which 

produce numerical indices of environmental  quality. The use of fuzzy data sets 

provides a consistent method for incorporating ambiguous quantitative and non-

quantitative data into ecological studies. For example, ambiguous or fuzzy geographical 

boundaries can be used between areas when the following criteria (Jacquez et al., 2000) 

are present: 1) Continuousness: when boundaries and thresholds  are difficult to assess  

because the measurements of an entity produce a gradient (e.g. polluted areas); 2) 

Ambiguity: where boundaries are defined and tied to linguistic descriptions or 

parameters (e.g. “High”, “Low” levels).  

Fuzzy logic methodology has been used in several instances to study the marine 

environment, such as for marine eutrophication (Urbanski, 1999), water pollution  

(Pimpas et al., 1999), benthic faunal community mapping (Meaille and Wald, 1990), 

vulnerability of marine areas to scuba diving and marine fishes to fishing (Di Franco et 

al., 2009; Cheung et al., 2005) and assessing impacts of marine fish farming (Angel et 
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al., 1998). In the latter case, the scoring methodology used fuzzy classification systems 

to quantify changes in benthic macrofauna under fish farms over time. A fuzzy logic 

method was also applied to an inventory of aquaculture suitability (Field, 2001) and for 

aquaculture site selection for planning, for strategic assessment and site selections 

(Zeng and Zhou, 2001). SimCoast is a "fuzzy logic", rule-based, expert system in which 

a combination of fuzzy logic has been used to produce a soft intelligence system for 

multi-objective decision-making (Anon, 1999). It is designed to enable researchers, 

managers, and decision-makers to create and evaluate different policy scenarios for 

coastal zone management.  (Wood and Dragicevic, 2007) examined the applicability of 

an integrated spatial decision support framework based on GIS, multi-criteria 

evaluation (MCE) and fuzzy sets to objectively identify priority locations for future 

marine protection. 

A neuro-fuzzy system is a fuzzy system that is trained by either a learning algorithm,  

such as neural network theory, or by using specific examples for initial learning or 

enhanced learning  (Nauck and Kruse, 1999). A neuro-classifier is a fuzzy classifier 

obtained by a learning procedure, which is used when interpretation and the 

employment of prior knowledge is required (Nauck and Kruse, 1999) . 

Neuro-fuzzy techniques can learn a system’s behaviour from sufficiently large data sets 

and automatically generate fuzzy rules and fuzzy sets to a predefined level of accuracy 

(Dixon, 2005).  Neuro-fuzzy methods, pattern classifications and their comparison are 

discussed in detail by Nauck et al. (1997) and Abe (2001).  Neuro-fuzzy  methodology  

has also been used within GIS to determine suitable sites for the locations of public golf 

courses (Purvis et al., 1999), modelling ground-water vulnerability  (Dixon, 2005), soil 

erosion assessment (Zhu et al., 2009) and for irrigation water needs mapping (Valdes et 

al., 2003). Zheng and Kainz (1999) discussed an adaptive neural network based on a 
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fuzzy inference system that was able to learn fuzzy sets and fuzzy rules from GIS for 

decision making. 

Environmental vulnerability is concerned with the risk of damage to the natural 

environment. Due to its complex nature, vulnerability theory has been developed to 

provide a framework for logical development and measurement (Kaly et al., 2002). 

Marine environmental vulnerability is the susceptibility of sea- and transitional water 

resources to pollution by various activities and contaminants. 

In the early 1990s the United States Environmental Protection Agency (USEPA) 

attempted to distinguish between the sensitivity of single aquifers and their relationship 

to the overall vulnerability to contamination of an area’s ground water resources. In 

contrast, vulnerability combines the hydrodynamic and topographic characteristics to 

determine sensitivity of “human” vulnerability factors by addressing specific coastal 

uses, management practices, and/or contaminant properties from aquaculture activities. 

The present study has attempted to adapt this concept to an aquaculture framework, by 

investigating the relative ease with which an aquaculture contaminant applied on or 

near the coast could affect the zone of interest based exclusively upon hydrodynamic 

and topographic factors, which is a function solely of the intrinsic characteristics of the 

zone in question.  

The aim of this study was to develop a classification using neuro-fuzzy techniques in a 

GIS framework to predict coastal environmental vulnerability for marine cage 

aquaculture. 
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5.3  Study area. 

 
Mulroy Bay is a fjardic inlet situated on the northern coast of Co Donegal, Ireland 

(Long. 7o 45’W, Lat. 55o 15’N) (Fig. 5.1). It is bounded on the west by the Rosguill 

Peninsula and on the east by Fanad Peninsula (Fig 5.1). It is a convoluted and complex 

environment, extending inland for about 19 km with a range of hydrodynamic 

conditions. Although it is a proposed Special Area of Conservation (SAC), aquaculture 

is intensively practiced within the bay, with up to 16 operators currently licensed for 

mussel, oyster, clam, scallop, abalone and Atlantic salmon production. Production of 

Atlantic salmon  within Mulroy Bay and Lough Swilly  is approximately 3500 tonnes 

per annum (Bermingham and Mulcahy 2007) and considerable increases have occurred 

in shellfish production from around 20 to 800 tonnes in two decades (C-Mar, 2000). 

There are three main types of protected areas designation in Mulroy Bay: Special Areas 

of Conservation SAC, Special Protection Areas, (SPA), and proposed Natural Heritage 

Areas (NHA) (http://www.npws.ie/en/MapsData/). The bay is divided into four main 

geographical areas: the Outer Bay, Northwater, Broadwater and the Narrows. The 

Narrows is further sub-divided into three sections each approximately 100-150 m wide, 

known as First, Second and Third Narrows.  The tidal range varies from the Bar at the 

mouth of the Outer Bay (3.2 - 4.2 m) to Broadwater (1.2 - 1.6m), tidal streams vary 

considerably within the bay being very strong in the Narrows and weak in Broadwater 

and at Kindrum (Northwater). There is a delay of 2 hours and 23 minutes between the 

time of high water at the Bar and the southern end of Broadwater (Parkes, 1958). No 

large rivers drain into the bay meaning there is little significant affect of freshwater 

inflow on salinity. 
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Figure 5.1. The study area in Mulroy bay off Ireland’s north coast showing the positions 

of licensed salmon cages (white dots). 

 

The general circulation flow is clearly influenced by wind driven currents, particularly 

within the inner bay, and characterized by several current eddies.  As a result, the flow 

systems can be considered as three layers; a superficial (upper) layer where the residual 

current is in the direction of the wind stress, a bottom layer consisting of a return 

current and a medium (middle) layer where mixed residual current directions occur. 

The water  circulation  is characterized by several eddies and  the residual water 

velocities in this area show clearly that waters flushed out and in and are transported 

back to the areas and thus increase water renewal (Moreno et al., unpublished). 
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Water temperature varies seasonally from 6ºC in February (measured in 2008), to 12ºC 

in April (2007) to 16ºC in August (2007). In summer (~16ºC) and winter (~6ºC) the 

waters within the study area are normally vertically well mixed. However, thermal 

stratification was observed in Northwater and Broadwater (Minchin, 1981; C-Mar, 

2000)  and in the southern reaches of the bay near Milford (Telfer and Robinson 2003).   

5.4 Methods.  

 
Several initial data inputs were required for model development, including information 

about hydrodynamic and marine environmental parameters.  These primary data were 

either collected as cartographic reference data, hydrographic and bathymetric data and 

GPS positions of the finfish cages, or were derived directly from these data.  The 

secondary layers (see Fig. 5.2), physical environmental parameters and suitability 

parameters were derived from the hydrodynamic model and the GIS models. In the 

processing phase, a 3D hydrodynamic model provided spatially explicit information on 

the key variables governing the dynamics of marine coastal areas and the transport and 

fate of pollutants. This was calibrated and validated using in situ data and, along with 

other environmental models (waste dispersion and oxygen depletion), is coupled with a 

GIS (ArcViewTM ver 3.2, ESRI) to predict the evolution of the environmental 

parameters and to allow simulation of a number of "what if" scenarios. The final 

outputs, are in the form of GIS-based neuro fuzzy layers which show environmental 

vulnerability. Fig. 5.2 outlines the relationships of these layers. 
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Figure 5.2.  Data and process linkages within the suitability and vulnerability model. 

 

The simultaneous consideration of suitability and vulnerability, can conceptually define 

sustainability as having maximum coastal suitability for aquaculture but minimum 

coastal vulnerability. The output is a spatial environmental model applied to coastal 

areas intended to facilitate policy decisions, taking into account the intrinsic 

characteristics of the target area.  

The first stage in the neuro-fuzzy analysis was construction of a spatial database for the 

study area taking into account potential environmental effects which contribute to 

vulnerability. Several information layers were indentified for this purpose: 

5.4.1 Bathymetry. 

The bathymetry was digitized from the Admiralty Chart and from this data a 

bathymetric model was developed by interpolation to a 50 m grid resolution (Fig 5.1).  

5.4.2 Mean current velocity. 

Current velocity is an indicator of potential sensitivity to impacts from fish farming 

(Carroll et al., 2003) and an indication of a site’s hydrographic and environmental 
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characteristics (SEPA, 2005). The current velocity was derived from a 3-dimensional 

hydrodynamic model, (Moreno et al., unpublished) 

5.4.3 Quiescence time. 

 The percentage incidence of current velocities within the range 0-3cm/s may be used as 

a further indication of a site’s hydrographic and environmental characteristics (SEPA, 

2005). The quiescence time was derived from a 3-dimensional hydrodynamic model, 

(Moreno et al., unpublished) 

5.4.4 Granulometry. 

This provides basic information on sediment composition and is important for the 

determination of oxygen and nutrient exchange between sediment and water column 

(Viaroli et al., 2004). Seabed sediment sampling for granulometric analysis was carried 

out in August 2007 using a hand operated Van Veen grab (sample area 0.025 m2) at 30 

randomly assigned locations throughout the bay system. A sub-sample of sediment was 

taken from each grab and stored frozen (-20±1oC) until laboratory analysis by dry 

sieving (Folk, 1974). The maximum velocities from hydrodynamic simulations using 

the 3D hydrodynamic model MOHID, (Moreno et al., unpublished) were plotted against 

the mean grain diameters for each sampling location to give a linear regression model 

of the relationship, enabling modeled current velocity over the whole system to be used 

as a proxy for sediment type 

5.4.5 Predicted particulate waste dispersion.  

The particulate effluents from a fish farm, consisting of excess feed from the fish, will 

be dispersed and for a large part will settle under or near to the farm. Where and how 

much will settle depends on the amount and disintegration of the effluent, the sinking 
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velocity of the particles, the current velocity and the water depth. The predicted 

dispersion distance of particulate waste from the fish cages (uneaten feed) was 

determined using a simple waste dispersion model, based on the equation of (Gowen 

and Bradbury, 1987)  for estimating horizontal pellet dispersion.  

5.4.6 Oxygen Depletion Index. 

This index,  developed by Page et al., (2005), is the time required for the fish biomass 

to reduce the ambient concentration of oxygen to a specified threshold level in the 

absence of water renewal within the fish cage or farm. Dissolved oxygen (DO) levels 

were measured at fish farms in the Moross Channel, at Millstone and in the Broadwater, 

during the one summer (July 2007). DO was recorded (±0.3 mg/l; YSI Instruments, 

Y550A, Y58) over two 5 min sampling periods from a location situated downstream of 

the main current direction from the fish cages. This gave a worst case scenario for DO 

influence by fish production. 

The oxygen depletion index (ODI) (Page et al., 2005) is calculated by the ratio of the 

time necessary for the salmon biomass to reduce the ambient concentration of dissolved 

oxygen  to a specified threshold level in the absence of flushing τthres to the time needed 

to flush the cage or farm τfl.  

fl

thresODI



   (Eq 1) 

When the value is much less than 1, it means that the salmon are able to reduce 

dissolved oxygen to a threshold value in less time than oxygen can be replenished by 

flushing within the cage.   

The τthres is calculated as: 
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R
CC thres

thres


 0    (Eq 2) 

Where R is the respiration rate of the fish per unit volume of water within the cage, C0 

is the ambient concentration of dissolve oxygen away from the cage and Cthres is the 

minimum concentration of dissolve oxygen that is desired within the cage. 

τfl is therefore calculated as L/U where L is the diameter  of a cage, and U is the typical 

water velocity in the area. 

In this study the ODI was calculated for a representative single salmon cage using an 

oxygen concentration threshold of 6 mg/l , an ambient level of 7 mg/l, a 25 m diameter 

cage, pre-market fish of 4 kg biomass with a swimming velocity of 1 body length per 

second, a stocking density of 5 fish per m3 (20 kg/m3) and water temperature of 16ºC. 

The respiration rate for a non-feeding fish is approximately 111mg O2/kg/h and the 

methodology of Grottum and Sigholt (1998) was used to estimate the specific oxygen 

consumption rate by salmon. A worst case scenario was adopted by assuming a 50% 

reduction of the current velocity due to bio-fouling, no reduction in  DO was assumed 

either due to feeding or oxygen demand associated with waste and bio-fouling. 

5.4.7 Stratification Index. 

In strongly stratified marine systems, dissolved material can effectively be trapped in 

the upper or lower parts of the water column. The Hunter-Simpson stratification 

parameter (Simpson and Hunter, 1974) was used to represent this and is given by:  

 













310log
U
hS   (Eq 3) 

where, S is the stratification parameter, h the water depth (m) and U is the magnitude of 

the instantaneous tidal stream velocity over one tidal cycle (m/s). The stratification 
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parameter was calculated for h as the mean water depth for each 50 x 50 m grid cell and 

U as a mean tidal velocity modelled for each grid position. A value of S = 1.5 indicates 

the presence of a front, values of S < 1 indicates well mixed regions and S >2 shows 

highly stratified areas, (Perry et al., 1983). 

5.4.8 GIS layers and suitability derivation. 

All data collected for classification of environmental parameters were not interpolated 

as layers consisting of 50 x 50 m grid cells. All grid layers were incorporated into a GIS 

framework (Arc view 3.2 ESRI). The combination of the layers, depth, slope, maximum 

current velocity and protected areas enabled the apparent suitability of an area to be 

assessed according to the criteria of Perez (2003) and Beveridge (2004). The GIS was 

used to filter and extract areas of < 10 m depth, more than 14 degrees of bathymetric 

slope, a maximum current velocity >1 m/s and within protected areas, from the data set. 

Following this process, the remaining cells were classified using the neuro fuzzy 

classifiers.  

5.4.9 Neuro-Fuzzy Systems. 

In this study the neuro-fuzzy software NEFCLASS-J for JAVA platforms (NEuro 

Fuzzy CLASSifier, (see: http://fuzzy.cs.uni-magdeburg.de/nefclass/ ) was used (Nauck 

and Kruse, 1999). The neuro-fuzzy classification model NEFCLASS –J, offers learning 

algorithms to create the structure (rule base) and the parameters (fuzzy sets) of a fuzzy 

classifier from a set of labeled data (training sites) to create interpretable classifiers. The 

software applies a fuzzy variant of the back propagation algorithm to tune the 

characteristic parameters of the fuzzy membership functions. It is also possible to use 

fuzzy systems for classifications with rules such as; if 1  is 1 and 2  is 2 and…. n  
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is n then pattern ( 1 , 2 …, n ). In this case cell 1, cell 2, cell n from the GIS, belongs 

to class i, where the 1 …., n  are fuzzy sets (low, medium, high environmental 

vulnerability fuzzy sets). 

NEFCLASS  architecture, ( Fig 5.3),  has  a three-layer fuzzy perceptron in which the  

first layer, n , consists of input neurons, the second layer, Rn, of hidden neurons and 

the third layer, Cn, of output neurons. The hidden layer neurons represent the fuzzy 

rules and the output layer neurons the different environmental vulnerability classes of 

the classification problem with one output neuron per class. After an observation has 

been propagated through the network, its predicted class is assigned according to the 

output neuron with the highest activation value on a winner-takes-all basis. 

 

Figure 5.3. An idealized data flow of the GIS /3DHydrodynamic model integration, the  

classification scene and the NEFCLASS program architecture with three layers  

feedforward neural network. 
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The neuro-fuzzy systems needs several initial data inputs (Fig 5.3)  and these were 

provided from a 3D hydrodynamic model calibrated and validated using in situ data 

distribution, coupled with a GIS. Independent learning and validation data sets were 

extracted from the study area layers using the GIS. 

Fuzzy sets are defined by membership functions and rule bases and the shapes of the 

fuzzy sets are defined by the membership functions (Fig. 5.4) which are a 

representation of a linguistic variable to a fuzzy set as a matter of degree. Two types of 

membership functions allow realistic representation of the environmental parameters, 

trapezoidal and bell membership shapes. We selected the classifier with the highest 

accuracy and the lowest values of misclassification of cells for the total spatial domain. 

 

Figure 5.4 .Types of fuzzy membership functions. 

 

5.4.10 Sensitivity analysis. 

Sensitivity analysis was used to investigate how the model responded to changes in the 

inputs and the different configuration of the software provided. In order to assess the 

sensitivity of neuro-fuzzy model (the number and the shape of the fuzzy sets), 

validation methods and rule weights were varied over 16 different runs covering all the 

possibilities that the NEFCLASSS program provided.  
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5.4.11 Training of neuro-fuzzy classifiers. 

Training sites with mostly different hydrodynamic characteristics were selected using 

stratified random sampling in different geographical areas of the study area.  A total of 

42 training sites were sampled from the GIS raster data layers, and the vulnerability 

categories for each were manually classified into four categories based on expert 

opinions from focus group meetings and interviews (Table 5.1). For simplicity and 

clarity for the experts the training sites table was developed using both numerical and 

text values, although only the numerical values were used in the neuro-fuzzy 

classification. A total of 6 experts, with more than 15 years research and academic 

experience in environmental management of salmonid culture and 2 years aquaculture 

industry experience, were used. A descriptive statistics (minimum, maximum, mean, 

standard deviation) of every classifier category for some of the environmental 

vulnerability parameters used was also calculated. 

The classification performance was evaluated by the recognition rate, R, given by 

(%)
100

M
MR c   (Eq 3) 

Where Mc is the number of correctly classified data and M is the number of classified 

data (Abe, 2001). The kappa coefficient of agreement, (Congalton and Mead, 1983),  a 

discrete multivariate technique, was used in the classifier accuracy assessment.  

The final results from NEFCLASS were imported into Arc View providing an easy-to 

use graphical user interface for visualization, interrogation of results and as an input to 

a further spatial modelling project. 
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Table 5.1. Examples of training sites used for the classifier and the final classification by the experts in aquaculture activities. 
 

Depth (m) Average (m/s) Quiescent % Bottom type Stratification 
     
ODI Dispellet (m) 

High 
Vulnerability 

Medium/High 
Vulnerability  

Medium/Low 
Vulnerability 

Low 
Vulnerability  

28.43 0.01 72 fine sand HIGH  YES  2.75 X    

11.35 0.09 7 
medium 

sand 
HIGH 

 NO  4.53   x  
10.02 0.03 93 fine sand HIGH NO 0.71 X    

10.31 0.02 42 
medium 

sand 
HIGH YES 

1.66 X    

24.69 0.03 41 
medium 

sand 
HIGH NO 

4.36  X   

30.35 0.02 48 
medium 

sand 
HIGH YES 

4.72  X   

37.64 0.02 58 
medium 

sand 
HIGH YES 

5.14 X    
19.86 0.13 7  coarse sand HIGH  NO  10.41    X 

16.17 0.07 18 
medium 

sand 
HIGH  NO  

4.62   X  

11.12 0.41 2 
very coarse 

sand NO  
 NO  

18.17    X 
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As an indicator of the overall predictive performance of the model, seabed total nitrogen 

percentages were compared among sites classified into different environmental 

vulnerability categories.  

Sediment samples for measurement of nitrogen content were collected by grab (0.025 

m2) at eight fish production sites between 2002 and 2006. Each year, triplicate samples 

were taken from beneath the centre of each cage block and at the downstream end of 

each cage block.  Samples were transported as frozen and, after thawing, were oven 

dried overnight at 90 oC. Nitrogen content was analysed as percentage by dry weight of 

sediment using a Perkin Elmer 2400 Series ii CHNS/O analyser. 

Seabed total nitrogen percentages were square-root transformed and analyzed using a 

non-parametric method (Kruskal-Wallis’ test). Follow-up tests were conducted to 

evaluate pairwise differences among the four categories, controlling for Type I errors 

across tests by using the Bonferroni approach. The  pairwise comparisons  were made 

using the Mann-Whitney U test, as the data did not follow the assumptions of normality 

and homogeneity of variances  as determined by Shapiro-Wilks and Bartlett’s test, 

respectively  (Sokal and Rohlf, 1981). Spearman’s rank correlation coefficient was 

calculated between percentage seabed nitrogen and vulnerability categories to assess 

trends in the data. A similar statistical methology as that used by Lake et al. (2003) was 

used to assess the predictive performace of a GIS model.  The analyses were performed 

in SPSS 13.0 Statistical Package for Social Sciences (SPSS Inc., Chicago, USA).   

5.5 Results. 

5.5.1 Hydrodynamic characteristics. 

The predicted maximum dispersion distance (Fig 5.5a) for feed pellets shows that the 

channels and the Narrows, are the highest dispersive areas with 10 to 20 meters 
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settlement from the cage edges. However, the majority of the Bay system had a low 

dispersive distance of less than 4 m from the cage edges. 

The mean current velocities (Fig. 5.5b) ranged between 0.03 m.s-1 in areas such as 

Kindrum (Northwater) and Milford (Broadwater) to > 1 m.s-1  in the second Narrows. In 

the less dynamic areas within Broadwater and Northwater water currents were between 

0.03 and 0.1 m.s-1, whereas throughout the Narrows and in Moross Channel water 

currents were mostly between 0.1 and 0.5 m.s-1.  

Modelled stratification for the bay indicated by the Hunter-Simpson criteria (Fig. 5.5c) 

shows that the two areas of fastest current flow and least quiescence, the Narrows and 

Moross Channel, are considered well mixed with values of < 2 whereas the rest of 

Mulroy Bay was more stratified with values of >2. 

Percentage time of quiescent waters modelled for the bottom (seabed) water column 

layer (Fig. 5.5d) provided an indication of dynamic conditions at the sediment interface. 

The quiescent periods at the seabed were shown to range between 20 to 80% through 

the bay. Again, the less dynamic areas of Broadwater and Northwater were also the 

most quiescent. 

 The maximum simulated current velocity, for specific locations within Mulroy Bay, 

against the mean sediment grain diameter shows a significant correlation (R2 =  0.70; p 

< 0.001). The sediment distribution layer (Fig. 5.6a) shows that the areas affected by 

high currents, the channels and the proximity of the third narrows, are covered by 

stones, gravel and coarse sand while, the rest is dominated by medium/fine sand areas. 

The areas with lowest currents such as Kindrum and Millford are characterized by very 

fine grain sediments. 
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Figure 5.5. Distributions of  a) dispersion distance, b) mean current speed, c) stratification 

index, and d) quiescence period. 
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Figure 5.6.  Distributions of  a) sea bed type, b) oxygen depletion index, c) slope and c) 

protected areas. 
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5.5.2 Protected Areas. 

Only a Special Protection Area at Greer Island in Kindrum and two Natural Heritage 

Areas in the third narrow and in the center of Broadwater (Fig 5.6d) were considered 

relevant and included in the GIS as Boolean constraints. 

5.5.3 Oxygen depletion. 

ODI maps (Figs 5.6b) show that the time required for the representative single salmon 

cage fish biomass to reduce the ambient concentration of oxygen to specified threshold 

level is only a problem in Kindrum, Millford and the central and northeast areas in 

Broadwater. For the rest of the Bay the current is strong enough to maintain the oxygen 

at an optimal level for salmon cage culture.  

The oxygen measured in the proximity of the  block cages (Fig 5.7) shows that there is a 

possibility that ambient concentration may be reduced to a low level due to the presence 

of the fish. The oxygen measurements were not taken during slack water at an unknown 

current velocity. For the two types of cage configurations considered (Fig 5.7) when the 

temperature was close to 16ºC the ambient dissolved oxygen concentration varied close 

to 7 mg/l.  

For the first example, block cage 1, dissolved oxygen concentration was reduced from 7 

mg/l to 5 mg/l and the cages were heavily fouled. The fish were also being fed at the 

time of measurement. The second example, block cage 2, also shows reduced dissolved 

oxygen concentration from 7 mg/l to 5 mg/l. The third example, block cage 3, was 

located in more hydrodynamically exposed conditions and showed only moderate 

dissolved oxygen depletion.      
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Figure 5.7. Dissolved oxygen levels measured in the proximity of the block cages ( the 

circular and squares grey figures) illustrating the reduction in the ambient concentration 

of oxygen caused by fish biomass. 

 

Across all of the 16 sensitivity runs (Table 5.2) the various permutations and 

combinations of the learning and validation parameters showed that the change in rule 

weights, the validation method and number and types of fuzzy set appear to have 

significant influences in the sensitivity analysis (Fig 5.8). The values of accuracy and 

the number of unclassified cells varied in every model, showing that the models with 

weighted rules produced less unclassified cells (3.59%) while the trapezoidal models 

produced the highest (24.18%).  

 



153 
 

Table 5.2 Summary characteristics of the sensitivity models.   

 
Model * 
 

No fuzzy sets 
 

Accuracy % 
 

Non classified % 
 

Type fuzzy set 
 

Rule weight 
 

Validation 
 

Model 1 3 83.33 1.58 triangle No CV 
Model 2 3 66.67 1.92 trapezoidal No CV 
Model 3 3 73.81 1.61 bell No CV 
Model 4 4 85.71 4.82 triangle No CV 
Model 8 4 78.57 23.01 trapezoidal No CV 
Model 12 4 85.71 0.19 bell No CV 
Model 5 4 76.19 13.34 triangle No ST 
Model 9 4 71.43 24.18 trapezoidal No ST 
Model 13 4 78.57 0 bell No ST 
Model 6 4 71.43 3.40 triangle Yes C 
Model 10 4 73.84 5.5 trapezoidal Yes CV 
Model 14 4 73.84 0.25 bell Yes CV 
Model 7 4 71.43 3.34 triangle Yes ST 
Model 11 4 73.81 3.59 trapezoidal Yes ST 
Model 15 4 73.84 0.49 bell Yes ST 

 
 

* All neuro-fuzzy models have following identical learning and validation parameters. Aggregation function, 

maximum; interpretation of classification results, winner takes all; No prior knowledge used; Size of the rule 

base, automatically determined; Rule learning procedure, best per class;  Learning rate, 0.1: Stop controls 

maximum of epochs, 800; minimum number of epochs, 0; Number of epochs after optimum, 10: admissible 

classification errors, 0.  
  

The neuro-fuzzy classification of the training sites (42 in total) showed R values from 

66.7 % to 85.7 % suggesting that they were well classified.  The higher values were in 

the triangular and trapezoidal fuzzy data shapes. The accuracy of the final classifier 

selected was R= 85.71%, (36 correctly classified and 6 misclassified, with an estimated 

error value of ±16.5% from Cross Validation, N=10) and a Kappa coefficient of 

agreement of 81%. Unclassified cells in the whole spatial domain (of 1623 GIS cells) 

ranged from 0% to 24.18 %, the higher unclassified values being in trapezoidal fuzzy 

shapes models and the lowest in the bell fuzzy shapes models. 

In order to provide a general description of the local hydrology and sea bed 

characteristics, depth, mean current velocity, quiescent period and granulometry were 

selected as classifiers in each vulnerability category (Table 5.3). These statistics show 



154 
 

that the examples classified by the experts as most vulnerable tend to have longer 

periods of quiescent waters, the lowest mean current velocity, and the finest 

granulometry.  

 

Table 5.3. Descriptive statistic for the classifiers of the categories for environmental 
vulnerability. 
 

   Depth (m) Mean Current velocity (m/s) Quiescence (%) Granulometry (mm)  
Cat 1      
 Mean  13.70 0.35 2.36 1311.91 
 Sta Devs 3.68 0.13 2.16 407.76 
 Min 9.03 0.13 0.00 496.00 
 Max 19.86 0.52 7.00 1854.00 
      
Cat 2      
 Mean  16.01 0.10 10.45 480.45 
 Sta Devs 6.22 0.03 6.04 128.43 
 Min 9.52 0.06 2.00 287.00 
 Max 27.93 0.16 20.00 672.00 
      
Cat 3      
 Mean  19.32 0.04 32.18 368.73 
 Sta Devs 7.20 0.02 10.38 71.00 
 Min 11.70 0.02 16.00 250.00 
 Max 31.83 0.07 48.00 466.00 
      
Cat 4      
 Mean  19.93 0.02 55.33 250.00 
 Sta Devs 11.27 0.01 16.39 103.96 
 Min 9.06 0.01 40.00 87.00 
 Max 37.64 0.04 96.00 439.00 
 

The 16 environmental vulnerability maps produced during the sensitivity runs showed 

that the majority of the models indicated similar locations of the vulnerability in the 

Narrows, Kindrum and Millford areas, although the total extent of the area for 

vulnerability categories 2 and 3 varied from model to model for Broadwater (Fig 5.8).   
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Figure 5.8. Sensitivity analysis of environmental vulnerability in the study area developed 

from models 3, 9, 6 and 12.  

 

The Kindrum area had the highest level of unclassified cells. The environmental 

vulnerability tended to be lower where the hydrographic conditions were more dynamic 

(e.g. high mean current velocity, short periods of quiescent water and coarse sediment), 

and influenced stratification, oxygen depletion and distance of particulate waste 

dispersion. Four regions can be differentiated (Fig 5.9) with different levels of 

environmental vulnerability. The Outer Bay and the Narrows have low values of 

environmental vulnerability in categories 1 and 2.  The northern part of Broadwater and 

areas in the proximity of Moross Channel have medium/low environmental 

vulnerability (Cat 2) but this increased  from category 1 in the mouth of the Third 
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Narrows  to category 4 in the Rosnakill area. The central part of the Broadwaters was 

characterised with medium/high (Cat 3) and high (Cat 4) values of vulnerability, 

whereas Kindrum and Milford showed the highest environmental vulnerability 

classification (Cat 4). The areas of vulnerability classes 1 to 4 were, respectively, 

approximately 6 %, 17 %, 44 %, and 33% of the total area from the final model.  

The mean percentage of total sediment nitrogen concentration (an indicator of likely 

environmental impact by fish farms) in each vulnerability class are summarised in the 

table insert in Fig 5.10.  In the final model selected the nitrogen concentration declines 

from the highest vulnerability classes to the lowest indicating that the areas classified as 

most vulnerable tended to have higher nitrogen concentrations (Fig 5.10).  The 

percentage of seabed total nitrogen was significantly different between the vulnerability 

categories (Kruskal-Wallis; 2 = 29.012, df 3, p<0.001). The results of the pairwise 

Mann-Whitney U tests also indicated a significant difference in nitrogen levels for each 

pair of environmental vulnerability categories.  Spearman’s correlation coefficient, 

(Spearman’s rho = 0.862, p< 0.001), showed a strong correlation between increasing 

percentages in sediment nitrogen and increasing vulnerability from Categories 1 to 4, 

(Fig 5.10), indicating a clear relationship between the modeled environmental 

vulnerability and the influence by fish farms on seabed. 
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Figure 5.9. Environmental vulnerability classes in the study area. The histogram shows the 

numbers of cell per category.   
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Figure 5.10. The relationship between vulnerability classes and percent of total nitrogen in 

sediment. 

5.6  Discussion. 

 
The spatial information needs for decision-makers for aquaculture planning can be well 

served by geographical information systems (Kapetsky and Travaglia, 1995). However, 

only two applications of using GIS for site selection for coastal salmon aquaculture at a 

similar scale as in this study can be found (Ross et al., 1993; Krieger and Mulsow, 

1990). Nath et al. (2000) also noted that the deployment of spatial decision support in 

aquaculture planning and management continued to be very slow. This is attributable to 

a number of constraints including a lack of appreciation of the technology, limited 
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understanding of GIS principles and associated methodology, and inadequate 

organizational commitment to ensure continuity of these spatial decision support tools.  

The Scottish Environment Agency SEPA, (SEPA, 2005) suggest that local hydrography 

is fundamental in any decision making process.  Hydrodynamic characteristics  such as 

tidal flow, water exchange,  residual circulation, patterns of turbulence, wind and wave 

energy, and flocculation of particles (aggregation) will determine near and large-scale 

patterns of particle dispersion and discharges  from the cages (Hargrave, 2003 ; Wildish 

et al., 2004) and play the main role in the characterization of the environmental 

vulnerability. In an aquaculture context, strongly stratified marine systems can be an 

important factor in the dispersal of organic matter (Wildish et al., 2004). The Hunter- 

Simpson criteria provides a general view of the water column stability due to tidal 

mixing, and as the area has no influence from river discharge this is not taken into 

account the wind and seabed mixing are not taken into account. The main reason for 

selecting this criterion was the simplicity and ease of calculation from the 3D 

hydrodynamic modeled data set, although only the worst case scenario of thermal 

stratification was modeled for the area. 

Aquaculture has many potential environmental effects and impacts, including an 

accumulation of solid nutrient waste and associated oxygen degradation effects under 

the site,  respiration of fish within a confined area leading to lowered oxygen levels 

under certain hydrological conditions, and the release of excess nutrients into the water 

column possibly causing higher pelagic productivity (Silvert, 1992).  

Hargrave et al. (1995) noticed that ecological benthic variables were correlated with 

levels of organic matter sedimentation. The author suggest that the biological processes 

are not always sufficient to limit organic matter accumulation especially in areas where 

hydrographic conditions and/or low current velocity result in low rates of oxygen 
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supply to the sediment surface. Carroll et al. (2003) classified the potential sensitivity to 

impacts from fish farming based on the average current velocity at a site. Two main 

hydrographic characteristics which provide environmental vulnerability and carrying 

capacity of the area, the mean current velocity, and the period of quiescent water, were 

incorporated into this study.   

Fish farms in areas of weak currents have the potential to reduce the concentration of 

dissolved oxygen below ambient values on localized scales, varying temporally and 

spatially. This depletion was calculated using the Oxygen Depletion Index (Page et al., 

2005) which was chosen because of its relative ease of  calculation in the whole spatial 

domain using the current velocity from the modeled data set. ODI  however, is still only 

a preliminary indicator of the potential influence of the fish farming component on the 

concentration of dissolved oxygen. 

Organic deposition is usually restricted to the immediate area of the cages and most 

studies have shown that the local extent of altered benthic community structure and 

biomass is limited to less than 50 m, (Holmer et al., 2005). The GIS cell dimension 

selected for this study (50 x 50 meters) takes this into account.  The maximum pellet 

dispersion distance provides a simple waste dispersion capacity of a location. In this 

study, only pellet dispersion was used because if the faecal dispersion distance modeled 

is more than the grid resolution, 50 meters, the faecal dispersion will be affected by 

other value of current velocity of a continuous cell, the pellet dispersion distance was 

always less than the grid resolution for this reason was only selected. The MOM model 

used a more sophisticated  dispersion capacity  of a location based upon  the dispersion 

length, (Stigebrandt et al., 2004). Simple dispersion measurements were selected as they 

are easy to use and easier for the experts involved in the classification of the training 

sites to understand.  
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Water depth and current velocity are critical factors determining patterns of 

sedimentation around cage sites. Cages change the bottom type to more fine-grained 

sediments through enhanced deposition of flocculated, fine-grained material. Viaroli et 

al. (2004) propose adoption of the simple and rapid assessment of the potential 

vulnerability of sediment for the identification of vulnerable sites, where the finer the 

granulometry the more vulnerable the site.  

Hargrave (2002) used a decision support system (DSS)  to assess far- and near-field 

variables potentially affected by marine finfish aquaculture found that intermediate 

conditions where boundaries between acceptable and unacceptable effects are not 

clearly known or agreed upon could be assessed  by a fuzzy classification technique. 

Because of this, there is concern about how to use vague environmental boundary 

conditions without compromising scientific objectivity. Silvert (1997) suggested that 

fuzzy logic is ideally suited to the processing of this kind of data. Salmon aquaculture 

has many potential environmental effects, and it is clear from the present study of 

marine environmental vulnerability that susceptibility and vulnerability are fuzzy 

concepts.    

Assessment of environmental vulnerability in the present study used simple descriptive 

factors (high, low, medium). However, geographical and classification boundaries are 

difficult to define, and boundaries are not sharply defined and the employment of prior 

scientific knowledge is required. Fuzzy sets naturally lend themselves to modelling this 

uncertainty in vague and ambiguous conditions and coincide with the views of  Jacquez 

et al., (2000)  on continuousness and ambiguity. The advantage of fuzzy classifiers is 

that implicit knowledge acquired from experts in coastal aquaculture activities can be 

incorporated into the fuzzy neural network, and that data driven knowledge can be 

learned from training samples to enhance the accuracy of the output. While the 
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objective of the training samples is to identify a set of cells that accurately represents 

the variation present within each class, clearly the analyst must know the correct class 

for the selected cells. Campbell (2002)  proposed that the analyst must have some field 

experience with the specific area and should be familiar with the particular problem the 

study is to address at the  point at which the expert and scientific knowledge is taken 

into consideration. In the present study, expert (supervised) classification was used to 

develop a neuro-fuzzy classifier from which the remaining areas could be classified 

without the limitations of strict boundaries among environmental vulnerability classes. 

This capacity is the strength of this innovative approach and could open a new route for 

spatial management under conditions of uncertainty and data scarcity.  

Dixon (2005) noted that all studies using neuro-fuzzy techniques should conduct a 

sensitivity test to determine which model strategy is more suitable for the region and the 

environmental problem.  The results of the present study agree with those of Dixon, 

who found that changes in the shape of the fuzzy sets, the nature of the rule weights, 

and the validation techniques used during the learning processes could all lead to 

different class assessment. Although correct selection and parameterization is important, 

the final classifiers selected produced a highly accurate outcome.      

Of the few studies which have examined nitrogen flow through intensive cage farms in 

marine waters, most have concluded that the majority (67-80 %) is lost to the  

environment either as dissolved excretory products or by benthic flux of solid wastes 

from the cages (Hall et al.,1992;Holmer et al., 2005). The salmon biomass licence varies 

among cage sites. The higher tonnage sites, Glinks (cat 1) and Millstone (cat 2) are 

situated in the narrows, where the classification showed the lowest values of 

environmental vulnerability and total nitrogen in sediment. The highest values of 

vulnerability and nitrogen in sediment are in the areas with the lowest biomass licence, 
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Kindrum and Milford areas both with cat 4. This suggests that the percentage of total 

nitrogen used as an environmental indicator is not influenced by the salmon biomass. 

Sediment nitrogen is often used as a more accurate indicator of sediment enrichment, 

due to the fact that this is mostly derived from external inputs, such as cage wastes. 

Perhaps a more reliable indicator of nutrient inputs to sediment is a measure of organic 

nitrogen content. Nitrogen levels reflect the nutrient status of sediments and unlike 

carbon, are not influenced by the presence of shell matter (Telfer and Robinson, 2003).   

The neuro fuzzy models perform reasonably well at differentiating between areas with 

different nitrogen concentrations in sediment providing a final classification in which 

the highest mean nitrogen value is in Class 4. The non parametric Kruskal-Wallis test 

and the Spearman rank correlation showed that the differences between environmental 

vulnerability classes is significant and with a high trend of increasing values nitrogen 

values through the classes.  

The environmental vulnerability will be defined on the basis of the intrinsic properties 

and the nature of the aquaculture activity. Once identified, different vulnerable areas can 

then be subjected to use restrictions, codes of practice or targeted for more detailed 

assessment. Outputs produced as GIS layers can then be assessed against relevant 

criteria to determine marine environmental vulnerability and may also be linked to 

appropriate planning responses or easily incorporated in an aquaculture Spatial Decision 

Support System (SDSS). The neuro fuzzy technique can appropriately classify coastal 

areas into different levels of environmental vulnerability to a range of aquaculture 

activities. It is, therefore, a useful tool in identifying locations where such activities 

have a higher risk of contaminating the marine environment. This study used an 

adaptive neuro-fuzzy system to train, adapt and classify areas of vulnerability to 
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aquaculture in a complex coastal scene and it is suggested that this approach may have 

advantages over previously used methods. 
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Chapter 6  Separability indexes and accuracy of Neuro-fuzzy 

classification in Geographical Information Systems for 

assessment of coastal environmental vulnerability.  

Authors:  J. Moreno 1 T. Telfer and L.G. Ross. 

 
 
This chapter describes the development of a Neuro-fuzzy classifier for supervised and 

hard classification of GIS cells in the coastal environmental vulnerability using minimal 

training sets and further evaluation and analysis of the quality of the classification 

achieved. The training numerical values of the GIS cells classified have been extracted 

from the GIS layers developed in chapter 5. A second training data set used was the 

multivariate Iris Flowers data set a classic data set used in statistical studies.      

The main author, J Moreno Navas, conducted all field work and developed all sub- 

models and final models. Prof Lindsay G Ross and Dr Trevor C Telfer provided 

supervisory and editorial support throughout the whole study.   

The body of the text is presented as a publication-ready manuscript. This manuscript 

has been submitted to Applied Soft Computing: an international journal promoting an 

integrated view of soft computing to solve real life problems. 
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Separability indexes and accuracy of Neuro-fuzzy classification in 

Geographical Information Systems for assessment of coastal 

environmental vulnerability.  

Authors:  J. Moreno 1 T. Telfer and L.G. Ross. 

 
 
 
6.1 Abstract. The aim of this study was the development, evaluation and analysis of a 

Neuro-fuzzy classifier for a supervised and hard classification of coastal environmental 

vulnerability due to marine aquaculture using minimal training sets within a Geographic 

Information System (GIS). The neuro-fuzzy classification model NEFCLASS–J, was 

used to develop learning algorithms to create the structure (rule base) and the 

parameters (fuzzy sets) of a fuzzy classifier from a set of labeled data.  

The training sites were manually classified based on four categories of coastal 

environmental vulnerability through meetings and interviews with experts having field 

experience and specific knowledge of the environmental problems investigated. The 

inter-class separability estimations were performed on the training data set to assess the 

difficulty of the class separation problem under investigation. The two training data sets 

did not follow the assumptions of multivariate normality. For this reason Bhattacharyy  

and Jeffries-Matusita distances were used  to estimate the probability of correct 

classification. 

Further evaluation and analysis of the quality of the classification achieved a high value 

for the Kappa coefficient of agreement and a good overall accuracy. For each of the four 

classes the user and producer values for accuracy were between 77 % to 100%.   



171 
 

In conclusion, the use of a neuro-fuzzy classifier for a supervised and hard classification 

of coastal environmental vulnerability has demonstrated an ability to derive an accurate 

and reliable classification using a minimal number of training sets.  

 

Keywords: Neuro-fuzzy classification, Geographic Information System, separability 

indices, coastal environmental vulnerability. 

 1 Corresponding author: Institute of Aquaculture. University of Stirling. FK94LA. 

Stirling.UK (jmn1@stir.ac.uk) Tlf :01786767882 .Fax: 01786472133 

6.2 Introduction. 

 
Geographic Information Systems (GIS) provide an easy-to-use graphical user interface 

for visualization and interrogation of results, and as an input for data for the 

development of spatial environmental models. The integrative approach and analytical 

capabilities of GIS are a powerful tool to effectively guide environmental management 

of marine aquaculture. The basics of classification within Geographical Information 

Systems is the process of assigning cells, the unit of information in raster data, to 

classes. GIS and remote sensing software places almost no constraints upon a user’s 

selection of classification methods and the user can to choose appropriate procedures 

and settings that are fit for purpose. Campbell (2002) and  Smith et al. (2007) described 

selected examples and definition  of classifiers for such classification systems. The 

latter authors define hard classification as where the objects to be classified are regarded 

as discrete and distinct items that can only reside in a single class. Conversely, soft or 

fuzzy classification exists where objects have an uncertain class membership and /or 

unclear boundaries. Within a GIS framework the objective of classification is to identify 

distinct areas or features (represented as a collection of cells in space) and assign all 
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occurrences of such features to distinct groupings. This is either performed semi- 

automatically (supervised but requiring training data) or automatically (unsupervised by 

statistics methods). Supervised classification procedures require considerable 

interactions with the user, who must guide the classification by identifying areas and/or 

training sites, that are known to belong to each category. Unsupervised classification 

takes place with only minimal interaction with the user. A third category of 

classification uses hybrid classifiers which share characteristics of both methods 

(Campbell, 2002). 

   Real data can be used  to train a neuro-fuzzy system to identify a group of spatial cells 

within the GIS that accurately represents the variation present within each class. Here 

the class is designated by the analyst who must know the correct class for the selected 

cells (Campbell, 2002), meaning that the analyst must have considerable field 

experience in the area of investigation and be familiar with the particular problem being 

addressed. Many authors comment that the quality and size of training data are of key 

importance. Kavzoglu (2009) highlighted the fact  that the data set developed to train 

the system by the analyst makes a considerable impact on the performance of a 

supervised classification process. The training data must therefore be defined in such a 

way that they are typical and representative of each individual class.  

A Separability Index can be used to estimate the degree of closeness of classes within 

the training data before the classification system is selected, and estimation of 

separability can be performed to assess the difficulties of the class separation issues  and 

this has  been extensively used by researches in remote sensing (Kavzuglu and Mather, 

2001).  

Another important step in classification using training data is to evaluate the robustness 

and strength of the classes defined by ground-truthing or comparing them with field 
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data (Smith et al., 2007).  If the training data gives classifications containing a large 

number of unclassified or misclassified samples, it can be considered as 

unrepresentative and should be either supplemented or replaced. 

Static models within GIS represent single points in time and typically combine multiple 

inputs into a single output (Longley et al., 2005), but the results are often of great value 

as predictors or indicators. Spatial models that combine a variety of parameters as  

inputs to procedures which generate  final mapped output are widely used, particularly 

in environmental modeling.  Ambiguity also arises in the conception and construction of 

indicators and in classification scenes. Longley et al. (2005) suggest that the classes 

used for maps are often fuzzy in such a way that two people asked to classify the same 

location might disagree, either because the classes themselves are not perfectly defined, 

or because opinions vary. There are “soft computing” methods which take these 

demands into consideration.  

The term “soft computing” was coined by Zadeh (1965), the founder of fuzzy logic. 

Soft computing includes approaches to human reasoning that try to make use of the 

human tolerance for incompleteness, uncertainty, imprecision and fuzziness in decision 

making processes  (Nauck et al., 1997; Nauck et al., 1999). Fuzzy logic provides yet 

another framework for re-doing, re-thinking and re-expressing most conventional 

modelling and statistical applications used in spatial applications (Openshaw and 

Openshaw, 1997). Threre are few classifiers derived from computational intelligence 

used in GIS such as, multi-level perceptron, self organizing maps , and fuzzy artmaps 

(Smith et al., 2007). Some of the most well-known neuro fuzzy pattern recognition and 

classification systems include FuNe, (Halgamuge and Glesner, 1994), Fuzzy RuleNet, 

(Tschichold-Gürman, 1994) ANFIS, (Jang, 1993) Fuzzy Artmap, (Carpenter et al., 

1992).   
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Fuzzy data sets provide a formal approach for incorporating ambiguity and lack of 

quantitative data in a classification scheme. Many types of ecological and 

environmental data are qualitative or use discrete categories and boundaries and for 

these reasons are difficult to incorporate into classification schemes designed to produce 

a numerical index of ecological quality (Silvert, 1997). Openshaw and Openshaw 

(1997) identified several instances in the use of GIS where adopting a fuzzy approach 

may be necessary or beneficial, for example when there is little or no training data as 

may be the case with aquaculture environmental problems even though there is 

sufficient expert knowledge to specify a spatial model that may be used to make 

environmental predictions and classification. Hargrave (2002) used a decision support 

system (DSS) to assess far- and near-field variables potentially affected by marine 

finfish aquaculture and found that intermediate conditions where boundaries between 

acceptable and unacceptable environmental effects are not clearly known or agreed 

upon could be assessed  by a fuzzy classification technique. 

Within such classifications it is usual to consider knowledge bases and management 

decisions that exist within a general management framework. As management decisions 

are influenced directly by the quality and quantity of information available in relevant 

knowledge bases, knowledge and decision making are intrinsically connected (Close 

and Hall, 2006). Fuzzy sets provide a consistent method for incorporating ambiguous or 

qualitative data into a classification scheme. The neuro-fuzzy classifier has several 

advantages as vague knowledge can be used when boundaries are difficult to define. 

The classifier is interpretable in its original form and is easy to implement, use and 

understand (Nauck and Kruse, 1999).  
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The aim of this study was the development of Neuro-fuzzy classifiers for a supervised 

and hard classification of coastal environmental vulnerability due to salmon marine 

cage aquaculture. The study undertook extended evaluation and analysis of the quality 

of the classification achieved. The inter-class separability estimation, using several 

separability indices, were performed on a training data set to assess the difficulty of 

class separation.  

6.3 Neuro fuzzy classification and project design. 

 
The neuro-fuzzy software NEFCLASS- J (NEruro Fuzzy CLASSifier) for JAVA 

platforms was used. NEFCLASS–J, offers learning algorithms to create the structure 

(rule base) and the parameters (fuzzy sets) of a fuzzy classifier from a set of labeled 

data, the aim of the approach being to create interpretable classifiers. The software 

applies a fuzzy variant of the well-known back propagation algorithm to tune the 

characteristic parameters of the fuzzy membership functions. 

The software architecture and functions,  described in Nauck and Kruse (1999), has a 

three-layer fuzzy perceptron (Fig 6.1), the first layer, χn, consisting of input neurons, the 

second layer, Rn, of hidden neurons and the third layer, Cn, of output neurons. The 

difference between this and a classical multilayer perceptron is that the weights now 

represent fuzzy sets and that the activation functions are now fuzzy set operators. The 

hidden layer neurons represent the fuzzy rules and the output layer neurons the different 

classes of the classification problem with one output neuron per class. 
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Figure 6.1. An idealized data flow of the project and the NEFCLASS architecture. 

 

The latter authors suggest that after an observation has been propagated through the 

network, its predicted class is assigned according to the output neuron with the highest 

activation value (winner-takes-all). The fuzzy sets are defined by membership functions 

and rule bases. Shapes of the fuzzy sets are defined by the membership functions, these 

being a representation of a linguistic variable to a fuzzy set as a matter of degree (Fig 

6.2). NEFCLASS-J allows users to select types of fuzzy sets and strategies for the rule 

base generation during the learning processes.  
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Figure 6.2. Examples of different membership functions, triangular, trapezoidal,  bell 
shape, were defined by four parameters a, b, c, and d respectively, modified from Nauck et 
al. (1997) 
 

There are three kinds of functions that are commonly used; triangular, trapezoidal and 

bell-shaped functions. Examples of different membership functions, trapezoidal, 

triangular and bell shape were defined by four parameters a, b, c, and d respectively, as 

shown in equations 1 to 3. 

 

 

 

 

 

 

 

(x:a,b,c) =  

0    x<a  

  (x-a)/(b-a)     if x  [a,b] 

(c-x)/(c-b) )  if x  [b,c] 

0   x>c 

(Triangular, equation 2) 

 0                    x<a 
 
(x-a)/(b-a)       a≤x<b 
 
1                     b ≤x <c            (Trapezoidal, equation 1) 
 
(d-x)/(d-c)       c ≤x <d 
 
0                     x ≥d 

(x:a,b,c,d) = 
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NEFCLASS-J allows users to select the type and initial number of fuzzy sets, as well as 

specifying the maximum number of rule nodes that may be created in the hidden layers 

and strategies for the rule based generation during the learning processes. The learning 

process can be visualized in Fig 6.3. and was explained by Nauck et al. (1997), who 

noted that the  purpose of the learning algorithm is to create a rule base first and then to 

refine it by modifying the initially given membership functions. The rule base will be 

created by finding, for each pattern in the training set, a rule that best classifies it. After 

all patterns are processed once the rule base is completed. The learning algorithm of the 

membership functions uses the output error, which indicates whether the degree of rule 

fulfillment should be higher or lower, to shift the membership function of the fuzzy sets 

used and to increase or decrease their support. In a third step, using NEFCLASS-J the 

rule base may be reduced, if required, by removing rules and variables based on a 

simple algorithm using several heuristics methods.  

 

(x:a,b,c) =    b

a
cx 2

1

1


(Bell, equation 3) 



179 
 

 

Figure 6.3 The learning process: the rules are selected from a grid structure in feature 

space that is given by the fuzzy sets of the individual variables (A), the membership 

functions changes after the learning algorithm process  (B) ,  and the adaption process of 

the membership function parameters, (C)  modified  from Nauck et al. (1997).   

 

6.4 Methods. 

 
Two data series were selected as classifier training samples for use in this study. The 

environmental vulnerability categories were manually classified training sites with 

mostly different hydrodynamic characteristics selected using stratified random sampling 

in different geographical areas of the study area using the GIS.  The training samples 

were exported as *.txt  files and the data were manually inspected and classified.  

From the GIS raster data layers a total of 42 training sites were sampled in four 

categories based on expert opinions from focus group meetings and interviews. A total 

of 6 experts, with more than 15 years research and academic experience in 

environmental management of salmonid culture and 2 years aquaculture industry 

experience, were used. The parameters used  included mean current speed, quiescence 

time of water currents, stratification index, sediment granulometry, estimated maximum 
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distance of deposition of solid fish cages wastes and the Oxygen Depletion Index, (Page 

et al., 2005). Descriptive statistics are shown in Table 6.1 and linear correlations among 

parameters are shown in Table 6.2. The second training data set used was the 

multivariate Iris Flowers data set of Fisher (1936), a classic data set used in statistical 

studies.   

The performance of the classifiers was evaluated using recognition rate R (Abe 2001) 

given by: 

(%)
100

M
M

R c  (Equation 4) 

where Mc is the number of correctly classified data and M is the number of classified 

data. A 10-fold cross validation was used. 

The accuracy of the classifiers in defining classification was assessed using Kappa 

analysis (Congalton and Mead, 1983), a discrete multivariate analysis technique. The 

Kappa Coefficient of Agreement is given by: 
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where K is the number of rows (classes) in a matrix, 
ii

x  is the number of observations 

in row ‘i’ and column ‘i’, and 
i

x


are the marginal totals for row ‘i’ and column ‘i’, 

respectively, and N is the total number of observation. Landis and Koch (1977) suggest 

that a value of K = 0.8 (80%) represents a strong agreement or accuracy, K = 0.4 to 0.8 

represents moderate agreement, and K < 0.4 represents poor agreement.  
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The inter class separability indices, described by Kavzoglu and Mather (2002); 

Divergence (D), transformed Divergence (TD), the Bhattacharyya distance (By) and the 

Jeffries-Matusita distance (JMy) were also calculated. Given two feature classes ( i and 

j) the separability indices were calculated according to the following formulae: 

        T

jijijiijjiij MMMMVVtrVVVVtrD   1111

2
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2
1    (Equation 6) 
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 ijB

ij eJM  12   (Equation 9) 

where the tr[  ] indicates the trace of a matrix (the sum of its diagonal elements), Vi and 

Vj are the variance–covariance matrices for class i and j, and Mi and Mj are the 

corresponding sample mean vectors and c is a constant that define the range of 

transformed divergence values is chosen as 2000 following Jensen (1996).The 

separability index was calculated using a Mat Lab M-file (Dr T Kavzoglu pers comm.).   

The training data sets were analyzed using a Henze-Zirkler test (Henze and Zirkler, 

1990) to assess the multivariate normality. The test was calculated using a Mat Lab M-

file (source: http://www.mathworks.co.jp/matlabcentral/fileexchange/authors/7089).  

6.5 Results. 

 
Descriptive statistics for variables of the data set of environmental vulnerability are 

displayed in Table 6.1. Table 6.2 shows a high level of correlation between variables 

except for Variable 1 (depth). The correlation is not significant at the level 0.01 between 

variable combinations of 1&4 ( R= -0.300; p=0.054) and 1&7 ( R= -0.13; p=0.422). 
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Table 6.1.  Descriptive statistics of variables for the data set of environmental 

vulnerability. 

___________________________________________________ 
Variable                        mean   std. deviation   minimum   maximum    
 
1  Depth (m)                  17.11        7.44              9.03          37.64           
2  Mean velocity (m/s)   0.13         0.15              0.01           0.52           
3  Quiescent  (%)           23.64        22.02            0.00          96.00           
4  Bottom type (mm)     619.57      472.37          87.00    1854.00    
5  Stratification              3.97          1.46              1.39           6.46           
6  ODI                            4.36          4.84              0.45          16.86           
7  Dispersion (m)           8.43          7.81              0.71          36.55           
___________________________________________________ 
 
 
Table 6.2. Pearson correlation table among environmental vulnerability variables.  
 
Var      1       2        3        4        5         6       7        
 
   1 |          -0.39   0.39  -0.30   0.58  -0.40  -0.13    
   2 |                    -0.66   0.95   -0.91   1.00   0.91    
   3 |                               -0.66   0.84  -0.66  -0.60    
   4 |                                          -0.86   0.95   0.90   
   5 |                                                    -0.91  -0.77    
   6 |                                                                0.90   
 
The correlation is not significant at the level 0.01 between variables combination of 1-4 and 1-7. 
 

The training data sets did not follow the assumptions of multivariate normality as the 

Henze-Zirkler test was not significant for both data sets. For the environmental 

vulnerability data sets T = 1.6305, p <0 .001 and for the iris data set, T = 2.3332, p <0 

.001. Therefore it was impossible to assess the degree of discrimination between classes 

present in the data set through multivariate statistical tests (see Kavzoglu and Mather, 

2002). The inter-class separability indices are summarized in Tables 3 and 4. 

Considering environmental vulnerability (Table 6.3) the lowest divergence values were 

for the combination of variables; 3&4, 1&2 and 2&3 in Bhattacharyya and Jeffries-

Matusita indexes, while the highest value was for the combination of variables 1&4. 

The index for transversal divergence showed a constant value of 2000 for all variable 
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combinations. The separability indexes for the iris dataset (Table 6.4) showed the 

lowest values for the combination of variables 2&3.  

Table 6.3. Separability indexes among  environmental vulnerability classes  

 
Classes     Divergence   Tran. Div.     Bhattacharyya     Jeffries-Matusita   
 
 1-2           272.029         2000           3.380               1389.939 
 1-3         5079.020         2000           4.856               1408.698 
 1-4       12543.546         2000           7.123               1413.643 
 2-3           983.485         2000           3.104               1382.125 
 2-4         1062.440         2000           6.756               1413.390 
 3-4           181.633         2000           3.949               1400.522 
 
Average   3353.692         2000            4.861               1401.386 
 
 
 
Table 6.4. Separability indexes among classes in the iris data set. 

 
Classes     Divergence    Tran. Div.    Bhattacharyya   Jeffries-Matusita   
 
  
 1-2            221.068          2000.000          13.341                1414.212  

 1-3            454.305          2000.000          25.056                1414.214 

 2-3             17.923           1787.157           1.964                 1311.296 

 
 
Average     231.099           1929.052         13.454                1379.907 
   
 

A classification was performed using the training data set. Statistical analysis through a 

confusions matrix (Table 6.5) for the test data included 42 examples in total and 11 

cases for the classes 1,2,3 and 9 for class 4. The overall accuracy, given in Table 5, was 

R=85.71%, (where 36 classes were correctly classified and 6 misclassified, and 

estimated error value of ±16%  from a 10-fold cross validation  ) with Kappa coefficient 

of agreement of K = 81%. It was also noticed that a considerable number of cases were 

misclassified in class 2 and class 3, 3 and 2 respectively (Table 6.5). As can be seen in 

Table 6.6, each class showed accuracy values between 77 % and 100%. Users’ accuracy 
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ranged between 77% and 100%, while the producers’ accuracy ranged between 79% 

and 100%. The lowest value, 77%, was in class 4 classified by the users. 

 
Table 6.5. Confusion matrix environmental vulnerability.  
 
Predicted Class 
     |        1        2        3         4        sum   
-----------------------------------------------------------------  
   1 |        9        2         0         0        11   
   2 |        0       11        0         0        11  
   3 |        0        1         9         1        11  
   4 |        0        0         2         7         9   
-----------------------------------------------------------------  
   sum      9        14       11         8       42  
  
 
Correct: 36 (85.71%), Misclassified: 6 (14.29%). Kappa Index of Agrement: 81 %  

Aggregation function, maximum; Number of fuzzy sets, 4; interpretation of classification results, winner takes 

all; No prior knowledge used; Size of the rule base, automatically determined; Rule learning procedure, best 

per class;  Learning rate, 0.1: Stop controls maximum of epochs, 800; minimum number of epochs, 0; Number 

of epochs after optimum, 10: admissible classification errors 0.  

 

 
Table 6.6. Classification accuracies for classes.  
 
 
 
Training data                           class accuracy             overall accuracy (%) 
 
Users’ accuracy                1         2            3        4 
                                       82%   100%      82%   77%             85.71% 
 
Producers’ accuracy         1         2            3         4 
                                      100%   79%       81%    87%   
 
 

In the confusion matrix (Table 6.7) for the iris data set, which included 150 examples 

consisting of 50 cases in 3 classes, the overall accuracy was R=96% (where 144 

examples were correctly classified and 6 misclassified). The Kappa coefficient of 

agreement for this data was K = 94 %. The confusion matrix for both data sets showed 
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that the misclassified training examples were for the combination of variables with 

lowest separability index values. 

 

Table 6.7. Confusion matrix iris data set. 
 
Predicted Class 
 
     |        1        2          3          sum   
------------------------------------------  
   1 |       50       0          0           50   
   2 |        0       48         2           50  
   3 |        0        4        46           50  
-------------------------------------------  
   sum      50      52      48         150 
  
 
Correct: 144 (R = 96%), Misclassified: 6 (4 %). Kappa Index of Agreement: K = 94 %  

Aggregation function, maximum; Number of fuzzy sets, 4; interpretation of classification results, winner takes 

all; No prior knowledge used; Size of the rule base, automatically determined; Rule learning procedure, best 

per class;  Learning rate, 0.1: Stop controls maximum of epochs, 800; minimum number of epochs, 0; Number 

of epochs after optimum, 10: admissible classification errors 0.  

6.6 Discussion. 

 
Openshaw and Openshaw (1997)  identified several types of GIS problem where 

adopting a fuzzy approach may be necessary or beneficial, for example in spatial 

models for which there is little or no training data to use in classification but there is 

sufficient knowledge to specify a linguistic model that is to be used to make predictions 

in this study were classified and predicted the environmetal vulnerability of coastal 

areas. The imprecision of characterized classes of environmental vulnerability in coastal 

areas are tied to linguistic factors (high, low, medium). Therefore boundaries between 

geography and between classes are difficult to characterize as they do not have sharply 

defined threshold values. Malczewski (1999) suggested that in such cases the views of a 

number of expert decision makers can be used to classify the training data cells. 
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The conventional probabilistic classifiers used in GIS are not always appropriate. These 

classifiers are based on a range of  untenable assumptions about the data, for example 

that each class is assumed to have normally distributed data (Foody, 1995).  Henper et 

al. (1990) and Schalkoff (1992) considered the use of an alternative approach to develop 

computational intelligence based classifiers, such as applying artificial neural networks, 

which are useful for their independence of assumptions on data distribution and their 

ability to use small training sets. Computational intelligence based classifiers have been 

shown to classify data more accurately than conventional classifiers when a small 

training set is available, (Foody, 1995).  

The nature of an ideal training for neuro-fuzzy systems is dependent on the aim of the 

training stages,  (Foody et al., 2006) and the accuracy which is largely dependent upon 

the training data provided (Kavzoglu, 2009). Several authors suggest the use of a 

minimum of 10 to 30p cases per class for training, where p is the number of variables 

used in remote sensing wavebands (Foody, 2006; Mather, 2004; Piper, 1992; Van niel, 

2005).  In the present study, training sites for environmental vulnerability were 

manually classified using expert opinion, into four vulnerability categories, based on a 

minimal sized training dataset. Although this approach may limit the applicability of 

conventional statistical classifiers, the use of 9 to 11 cases per class for the classification 

performed well in this study, illustrating the effectiveness of training neuro-fuzzy 

systems with small training sets. 

  Nauck and Kruse (1999) suggested that the  same guidelines for selection and 

preprocessing of training data which enhances the accuracy for neural networks can be 

applied to neuro fuzzy systems. The learning algorithm NEFCLASS can provide good 

results for classification problems and Nauck and Kruse (1999) compared NEFCLASS  

results with those from other classification techniques, statistical and computational 
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intelligence methods (e.g discriminant analysis, artificial networks and decision tree) 

obtaining  similar results. Ghosh et al. (2009) used a neuro- fuzzy technique to classify a 

remote sensing image and noted that the ability of learning with a small percentage of 

training samples could be made applicable to problems with large number of classes and 

features. Dixon (2004) applied a neuro fuzzy classification scheme to assess the 

vulnerability of nitrite contamination of soils with GIS. In this study Neuro-fuzzy 

classifiers have demonstrated an ability to derive classification of coastal areas using 

minimal training sets, using the same methodology of Dixon (2004). This is the first 

study of this kind and the approach may provide better scientific understanding and 

open a new route for management under uncertainties and data scarcity, a common 

situation in environmental spatial models.   

The multivariate technique used in accuracy assessment, the Kappa Index of 

Agreement, has been used previously by Ghosh (2009) for testing neuro-fuzzy 

classification. The overall value for the calculated Kappa index of agreement for the 

present study was high at 81%, suggesting strong agreement (Landis and Koch, 1977). 

The overall accuracy, indicated by the recognition rate R = 85.71%, also represents a 

good agreement within the classification.  The accuracy among classes classified from 

the users and producers information varied from R = 77 % to 100%. The producer’s 

accuracy shows the the classification performance for the GIS cell of a particular class, 

the user’s gives the probability that the cell actually belongs to that class. Lowest user 

accuracy was found for class 4 with only 77% of the cells of correctly classified. This 

was probably due to the low number of samples allowing one error to modify the 

percentage considerably. The considerable number of cells misclassified  in class 2 and 

class 3, was probably due to the experts finding these more difficult to classify whereas 

the  extreme classes were more easily differentiated. 
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The estimation of separability was performed to assess the difficulties of class 

separation problems and the inter-class values for the Separability Indices confirm that 

examples selected for classes are numerically close, indicating that whilst some classes 

are quite distinct from each other, others are extremely close and there is difficulty in 

discriminating between them.  The two training data sets used did not follow the 

assumptions of multivariate normality, for this reason the Bhattacharyya and Jeffries-

Matusita Distance indices were used. Both estimate the probability of correct 

classification (Kavzoglu and Mather, 2002), and are more appropriate when the 

probability distribution of the classes is broad (Kailath, 1967). As far as we are aware, 

this study is the first to use these inter-class separability indices to test neuro fuzzy 

classification. These indices were used to estimate the degree of closeness of the 

training data classes before the classification system was selected. The inter-class 

separability indices can be used as indicators for possible confusion in order to avoid or 

select data set to included in a training set,  however they do not give any clear 

indication of individual class accuracies as a consequence of the classifier (Kavzoglu, 

2009).  

6.7 Conclusions.  

 
This study has shown that Neuro-fuzzy classifiers can provide a supervised, hard 

classification of the coastal environmental vulnerability using minimal training sets, 

defined by environmental experts through meetings and interviews. The use of training 

data sets in coastal environmental problems is an innovative approach that could 

provide a better scientific understanding and open a new route for management under 

uncertainties and data scarcity. The inter-class separability indices, performed on the 

two training data sets to assess the difficulty of the class separation problems, accurately 
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estimated the degree of closeness and potential confusion between particular classes, 

prior to selection of the classification system. Further evaluation and analysis of the 

quality of the classification achieved showed the high overall accuracy (Recognition 

Coefficient), and moderately high agreement (Kappa Coefficient of Agreement).   
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Chapter 7  General discussion. 

 
The aim of this study was to develop a predictive neuro-fuzzy classification technique 

to classify coastal environmental vulnerability for salmon cage aquaculture. This was 

accomplished by using a new approach to derive fuzzy classification rules from a set of 

labeled data (training sites).  A 3D hydrodynamic model coupled to a particle-tracking 

model is applied to study the circulation patterns, dispersion processes and flushing and 

residence time in Mulroy Bay, an Irish fjord. These models provided spatial and 

temporal information and helped to determine the influence of winds on circulation 

patterns. The final products, environmental vulnerability maps are achieved by 

combining predicted and real relevant environmental parameters in marine fin fish 

aquaculture. The output will be an environmental spatial model for application in 

coastal areas intended to facilitate policy decision, taking into account the intrinsic 

characteristics of the target area. 

Regions of restricted exchange  are traditionally preferred sites for human settlement 

and aquaculture and their ecosystems and consequent human use may be at 

environmental risk (Tett et al., 2003). Fjordic environments that hold the majority of the 

world salmon production  are, in general, vulnerable ecosystems which readly become 

subjected to environmental strains because the residence time of anthropogenic 

derivatives is significantly higher than in the open ocean. For this  reason this study has 

improved our understanding and modelling of physical processes relevant to 

determining assimilative capacity of aquaculture in the study area.  

Mulroy Bay is an extremely sheltered, narrow inlet situated on the north coast of Co. 

Donegal. The surrounding lands are preferred sites for housing, while the waters are 

used for fisheries, aquaculture, navigation and recreation. All these activities increase 
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the nutrient and pathogen loading and may increase the risk of eutrophication and 

environmental problems, which may be intensified by poor water exchange. The area 

was selected for several reasons, primarily aquaculture is intensively practiced within 

the bay, with up to 16 operators currently licensed for mussel, oyster, clams, scallop, 

abalone and atlantic salmon productions, secondly  several aspects of water quality and 

hydrology were measured throughout Mulroy Bay since the Institute of Aquaculture 

(University of Stirling) began its annual monitoring surveys in 1986 and finally the 

varieties of  environments provide a range of different areas to classified the 

environmental vulnerability.  

The study followed the recommendations of The Assimilative Capacity Working 

Group, (ACWG, 2004) that recommended to improve our understanding and modelling 

of physical processes, in order to simplify and parameterise them for inclusion in 

biological and biochemical impact models at scales relevant to determining assimilative 

capacity of aquaculture. Tett et al. (2007) and Black et al. (2008) suggested the 

necessity to improve the existing models for assimilative capacity and benthic impact in 

aquaculture. Additional use of these water-based resources to expand existing or 

develop new aquaculture production will increase this risk further if not properly 

managed. Monitoring of the environment for this risk will only allow post hoc 

management after impact has occurred, enviromental models that can simulate "what if" 

scenarios are still needed.  

The use of 3D hydrodynamic models and particle tracking models embedded in a GIS 

could partially fill these gaps. This study has demonstrated that this approach could be 

an effective predictive and management tool to model potential impacts and thus 

identify risks of aquaculture development or to locate or relocate activities in order to 

minimise these impacts and to adopt best practice for development and regulation. The 
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study assessed the main hydrographic characteristics of the vulnerability areas to be 

polluted by aquaculture activities and the results from the hydrodynamic model have 

been incorporated into GIS to provide an easy-to-use graphical user interface for 

interrogation of results in 2D (maps), 3D and temporal animations. The first animation 

of an eddy that affected several aquaculture areas has been simulated and recorded. The 

sensitivity to waste of the water or sea bed at particular farm site, depends on 

ecohydrodynamics conditions at and around that site.   

The spatial scale on which aquaculture can impact depend on a combination of nature of 

the pressure, the dispersion and the response time for the impact (Tett, 2008). Tett noted 

the importance of the spatial and temporal components and that the intrinsic 

characteristics of the area play an important role in the environmental problems in 

aquaculture. The combination of GIS with the hydrodynamic models integrated these 

two main components providing enhanced tools for the enviromental management of 

aquaculture. 

Environmental vulnerability is concerned with the risk of damage to the natural 

environment and the susceptibility of water resources to pollution by various activities 

and contaminants. The suitability is considered a key factor if success is to be achieved 

and a sustainable aquaculture industry is vitally important as it has influence in the 

economic viability, running costs, production and mortality factors (Perez,  2003).  

The term ‘sustainability’ is generally used to indicate the limits placed on the use of 

ecosystems by man.  In this study a new approach to "sustainability" was introduced 

with a strong consideration of the spatial and temporal components in aquaculture.  The  

simultaneous consideration of both suitability and the environmental vulnerability 

developed in this study can define sustainability in the spatial conceptual sense that a 
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sustainable or an optimised marine system  includes maximum coastal suitability and 

minimum coastal vulnerability (Fig 7.1).  

 

 
Figure 7.1. General scheme of the coastal use and management sustainability through the 

simultaneous prediction of coastal suitability and coastal vulnerability as can be 

considered in the coastal evaluation process. 

 
This study appropriately classified coastal areas with high spatial resolution into areas 

of different levels of environmental vulnerability to a range of activities and is therefore 

a useful tool in identifying locations where such activities have a higher risk of 

contaminating the marine environment and assessing the suitability in an acceptable 

form. There is scope for further work on the use of the Oxygen Depletion Index  and the 

simple waste dispersion distances in the future. 

Most of the aquaculture environmental problems have obvious spatial and temporal 

dimensions. Environmental modelling for aquaculture can be addressed by spatially 

distributed models that describe environmental phenomena in one to three dimension 

and the phenomena modelled can change in time. The Scottish Environment Protection 

Agency, SEPA, suggest that a 15 days or longer data set is the most useful and this time 

period was selected for parametirisation of models (SEPA, 2005). It would be possible 

to extend this time period, although the data files created would be massive and become 
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difficult to manage, store and manipulate.  The 15 day period provided a good 

approximation of water circulation, although for the tidal residual current, for flushing 

time and residence time the period was extended over 20 days.    

Three scales for impacts due to nutrient discharges have been proposed (Fig 7.2) by the 

UK Comprehensive Studies Task Team (CSTT, 1994). Zone A is where the water 

volume and sediment area immediately influence by a fish farms, Zone B represents a 

region of restricted exchange and Zone C represents the boundary conditions. Most 

studies of environmental problems and impact focus on Zone A, and this study tried to 

fill this gap. 

 

                                                      

 

Figure 7.2. The scales for impacts due to nutrient discharges  proposed by the UK 

Comprehensive studies task team (CSTT) modified by the author. 
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 Using the scales from CSTT (1994) (fig 7.2a), a series of indicative models have been 

developed at  a high spatial resolution (50 x 50 meters) and with five vertical layers. 

This study represents a new innovative use of model capabilities, and is the first study 

using hydrodynamic and particle tracking models simultaneously. The particle tracking 

model determined the time-scales of critical physical processes such as the flushing and 

residence time (Fig 7.2.b). The boxes determined the exchange and interaction among 

waters volumes in the surrounding and whole study area. Using the time-scales of 

critical biochemical processes in relation to the residence time, accumulation of 

nutrients and chemical discharge can be traced within the boxes and the final water 

exchange with the ocean can be better understand. 

This study is the first of its kind demonstrating the interchange of water volume 

between salmon cages (Fig 7.2b). It is clearly important to consider the inter-

relationship among them and to be able to identify such areas and modeling scenarios 

for environmental management because nutrient, waste dispersion and potential disease 

transfers from the cages may affect adjacent sites.  

3D hydrodynamic modelling provided extractable 3D spatial and time series 

information in every cell in the grid (Fig 7.2c) on the key variables governing the 

dynamics of marine coastal areas and the transport and fate of pollutants in the near and 

far field and offshore cage marine environment. The general flow circulation was 

characterized by several residual tidal eddies, with a clearly wind-driven scenario. This 

study demonstrated the strong influences of wind forcing on circulation patterns and 

flushing characteristics of this restricted region. 

Henderson et al. (2001) noted the potential for, and recommended the use of modeling 

in aquaculture activities. However, any modeling process may give false or inaccurate 

predictions, and complex environmental processes can be oversimplified and thus there 
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are risks in applying modeling approaches to any environmental decision making 

process. A rigorous statistical testing of the sensitivity, calibration and validation of the 

model was also performed with the data available, although the numerical modelling 

was challenging due to scarcity of information for 3D model parameterization. 

Creation of a  3D hydrodynamic model can be an expensive task,  requiring costly 

computers and software, fieldwork and instrumentation for acquisition of data over a 

considerable time, as well as considerable expertise (Andrefoutet et al., 2006). 

However, the future possibilities to link with other kind of models and the benefits 

accruing from an aquaculture spatial decision support tool are also high.  In order to 

reduce costs in this study open source scientific software and previously acquired  data 

sets have been used.  MOHID and NEFCLASS are freely available to the scientific 

community and several important aspects of water quality and hydrographic surveys 

were measured previously by the Institute of Aquaculture.  

GIS applications in coastal and aquatic environments and Integrated Coastal Zone 

Management (ICZM) are still in their development (Kapetsky and Aguilar-Manjarrez, 

2007; Dempsterand Sanchez-Jerez, 2008). Geographic Information Systems, GIS, 

defined as computer systems for entering, storing, manipulating, analysing and 

displaying geo-referenced data,  are a powerful tool for modelling in aquaculture. GIS 

can be applied by combining data layers and exploring the relationship between them 

and constructing complex models, making the environmental management process more 

efficient and less time consuming. Perez (2003) suggest that GIS is only as good as the 

data sources and conceptual models on which they are based. Using GIS added the 

advantage of integrating a wide range of data and information in different compatible 

formats and in this study data was available in the form of nautical charts, paper maps, 

tables and field surveys. Most of the primary data came from reliable sources, such as 
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national institutions with reliable quality standards and were integrated directly in to 

GIS database.  

GIS has often been used as a tool only for map creation and simple database query 

rather than for modelling (Perez, 2003), although modelling capabilities are becoming 

more widely expolited. Nath et al. (2000) and  Kapetsky and Aguilar-Manjarrez (2007) 

also noted that their use for environmental spatial decision support in aquaculture 

continued to be very slow and concentrated in terms of species, environment and 

country represented; as an example there are only two application of GIS for coastal 

salmon aquaculture in this case for site selection similar in spatial scale to the present 

study (Ross et al., 1993; Krieger and Mulsow, 1990) .  

This study developed a new step forward and complementary to the approach 

successfully developed by the GISAP group at Stirling, who have been researching the 

role of GIS for aquaculture support for some years, mainly in suitability studies in 

relatively large areas. Kapetsky and Aguilar-Manjarrez (2007) noted that the present 

studies in GIS in aquaculture mainly cover relatively large areas  (countries, island, etc) 

and considered that the  main difficulty was in funding and generating data appropriate 

to the GIS task for this reason the spatial gaps in data still continue to be an issue.  

In order to assess environmental vulnerability it was absolutely necessary to use other 

models integrated within a GIS. Li et al . (2000) suggest that the integration of GIS and 

environmental modelling has now been accepted as desirable, if not essential, for 

coastal management. Clearly, the integration into GIS of other sources of spatial and 

temporal data information from modelling, static and dynamic remote sensing and 

hydro acoustical remote sensing for assessing and monitoring environmental conditions 

still require improvements. 
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Real world computer applications to provide solutions require human expertise 

(Lukasheh, 2001). In aquaculture and decision making processes the trend  is to 

integrate the various task of a problem. Depending on the type of problem it may be 

necessary to integrate the knowledge and processing required including data and 

geodatabases systems, visualisation tools and the decision–making models. Solutions 

can be derived using human expertise, expert and local knowledge and GIS model 

frameworks offer this possibility, Scientific knowledge has been integrated in this study, 

primarily through the expert classification of the training sites (supervised 

classification) and subsequent use of the classifiers to classified all GIS cells without the 

necessity of using boundaries among environmental vulnerability classes. Burgess 

(2001) found that the survey response rates to be around 20% in self administered 

questionnaires delivered by email attachments, post or web sites for interactive 

completion and inorder to avoid this, expert opion was gathered using structured 

interviews.  

The basis of classification within GIS is the process of assigning cells to classes but this 

task is sometimes not easily achieved. Many types of ecological and environmental  

data use discrete categories and are complicated to integrate into classification schemes 

(Silvert ,1997) such as GIS classification with the final goal to produce a numerical 

index of ecological quality. The imprecision of characterization of classes of 

environmental vulnerability in coastal areas are tied to linguistic factors in which the 

classification boundaries and threshold limits are difficult to define, or which  for 

various reasons can not have, or do not have, sharply defined boundaries. Threshold 

values between classes still a concern. Perez (2003) noted that in the case of suitability 

scores the threshold values provided by experts with knowledge of the task are better 

than by using mathematical approaches.  
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Fuzzy selection procedures should be included in environmetal models if for no other 

reason than because they are much less sensitive to errors or missing values in the data 

than the use of crisp discrete selection, (Morris and Jankowski, 2009). The 

disadvantages are the psychological and cultural prejudice that many people hold in 

favour of crisp systems or mathematically precise models and the issue of 

dimensionality which inevitably restricts fuzzy models to systems that can be 

characterised by few variables. This study used a neuro-fuzzy classifier with 

asupervised classification method. This had several advantages, the principal one being  

the use of "vague" knowledge about environmental class boundaries. However the 

principal problem is the classifier sensitivity, and sensitivity analysis showed a 

considerable level of variation in the final classification scene. Malczewski (1999) 

suggested that in a multiple decision maker situation, in this case using several experts 

to classify the training data cells, the relative importance of criteria varies among 

people, and the required structured interview process can be a very time consuming 

task. For this reason a minimum training data set was considered. The soft computing 

classifiers have been shown to classify data more accurately than conventional 

classifiers when only a small training set is available (Foody, 1995). In this study we 

used small training sets and this may limit the applicability of conventional statistical 

classifiers.   

The environmental vulnerability scores vary from 1 to 4, with 4 being the most 

vulnerable and 1 the least. Other studies using suitability scores have used 1 to 16, 1 to 

8 and 1 to 4 (Aguilar-Manjarrez, 1996; Krieger and Mulsow, 1990; Perez, 2003; Ross et 

al.,,1993; Salam, 2000). Scoring systems with few choices are  easier and more intuitive 

to use, whereas with scoring systems with many classes, such as 1 to 8, the uncertainties 
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may increase considerably and the expert may not be able to properly differentiate 8 

levels of environmental vulnerability. 

This study is the first of its kind to include a statistical comparison between 

vulnerability scores and a significant product of aquaculture waste (nitrogen 

concentrations in sediment under the salmon cages) showing that the final model gave a 

good correlation between predicted environmental vulnerability and sediment nitrogen 

levels.  

Meaden (2004) noticed that further progress is required in developing 3-D and 4-D GIS 

along with appropriate data storage and modeling structures. There is scope for further 

work in this area, incorporating more marine water column and sea bed data and the  

assessment of environmental and management parameters in 3-D to 5-D in GIS as well 

as making such data available  via  Internet Map Servers (IMS). These capabilities offer 

the possibility of combining spatial data with layers of spatial information from other 

sources and models as well as  the possibility of integrating the results with other data 

sources such as marine water quality, aquaculture bio-economic models, social and 

economic aspects and communications and security of the study area to develop in the 

future an integrated ecological approach to aquaculture activities. Overall, using neuro- 

fuzzy methodologies embedded in 3D Hydrodynamic and particle tracking model and 

GIS is an innovative approach that could provide a better scientific understanding and 

open a new route for management under uncertainties and data scarcity. 
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Apendix 1. Questionnaire used with experts for classification of zones.  
 

Depth (m) Average (m/s) Quiescent % Bottom type Stratification Oxygen DI Dispellet (m) 
High 
Vulnerability 

Medium/High 
Vulnerability  

Medium/Low 
Vulnerability 

Low 
Vulnerability  

28.43 0.01 72                   fine sand HIGH YES 2.75         
11.35 0.09 07            medium sand HIGH  NO 4.53         
9.06 0.03 93                   fine sand HIGH NO 0.71         

10.31 0.02 42            medium sand HIGH YES 1.66         
24.69 0.03 41            medium sand HIGH YES 4.36         
30.35 0.02 48            medium sand HIGH YES 4.72         
37.64 0.02 58            medium sand HIGH YES 5.14         
19.86 0.13 07              coarse sand HIGH  NO 10.41         
16.17 0.07 18            medium sand HIGH  NO 4.62         
11.12 0.41 02      very coarse sand NO  NO 18.17         
15.46 0.10 10            medium sand YES  NO 6.51         
19.22 0.07 12            medium sand HIGH  NO 5.82         
27.93 0.08 20              coarse sand HIGH  NO 9.98         
10.00 0.02 56                   fine sand HIGH YES 1.30         
12.08 0.10 06            medium sand YES  NO 5.10         
17.77 0.49 02      very coarse sand YES  NO 36.55         
17.12 0.26 02      very coarse sand YES  NO 21.02         
9.52 0.11 06            medium sand YES  NO 4.40         

10.07 0.16 02              coarse sand YES  NO 6.85         
10.08 0.15 04              coarse sand YES  NO 6.61         
15.44 0.13 06            medium sand YES  NO 8.22         
13.01 0.37 01      very coarse sand NO  NO 22.21         
19.88 0.09 17              coarse sand YES  NO 7.22         
12.08 0.07 16            medium sand YES  NO 3.83         
10.18 0.37 02      very coarse sand NO  NO 14.35         
9.03 0.44 01      very coarse sand NO  NO 15.66         

29.26 0.02 50            medium sand HIGH YES 4.98         
9.03 0.45 02      very coarse sand NO  NO 16.17         

12.86 0.52 01      very coarse sand YES  NO 30.08         
30.00 0.01 55            medium sand HIGH YES 4.13         
15.24 0.29 00      very coarse sand NO NO 19.67         
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Appendix 2. Animations refered to in the text. 

Thes anmations are provided as *.gif files on an accompanying DVD. To reproduce the 

GIF animation, open it with Microsoft Internet Explorer. 

 

Animation 1. 3DMOHID allows several options for the horizontal and vertical 

discretization. To illustrate the Sigma coordinates the animation shows a slice3D of 5 

vertical layers. In this application a 3D model forced with tide and wind was 

implemented at the open boundary. 

 

Animation 2. A modelling scenario showing several slices (x,y) coordinate in 3D was 

used which defined water current from areas within the bay.  

 

Animation 3. A modelling scenario showing a slice (x,z) coordinate in 3D.   

 

Animation 4.  A modelling scenario in 2D was used which defined water movement 

from areas within the vicinity of fish farms within the bay. The model used real wind 

data and the arrows show the direction and the speed of the current 

 
Animation 5. A Lagrangian method was used to study the transport and flushing 

processes. Instantaneous massive releases of 15000 particles were colour coded based 

on their initial positions from key boxes are modelled to analyse of the ocean- fjord 

exchange characteristic. 

 

Animation 6. To illustrate the mixing of the volume of water from the cages, the 

particles in different cages positions were colour coded based on their initial positions. 

A particle tracking model simulates the instantaneous massive release of 4000 particles 

representing discharge from fin-fish cages.  

 


