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ABSTRACT 1 

Croplands play an important role in the carbon budget of many regions. However, the 2 

estimation of their carbon balance remains difficult due to diversity and complexity of the 3 

processes involved. We report the coupling of a one-dimensional soil water, heat, and CO2 4 

flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth 5 

module (SUCROS) to predict the net ecosystem exchange (NEE) of carbon. The coupled 6 

model, further referred to as AgroC, was extended with routines for managed grassland as 7 

well as for root exudation and root decay. In a first step, the coupled model was applied to 8 

two winter wheat sites and one upland grassland site in Germany. The model was calibrated 9 

based on soil water content, soil temperature, biometric, and soil respiration measurements for 10 

each site, and validated in terms of hourly NEE measured with the eddy covariance technique. 11 

The overall model performance of AgroC was sufficient with a model efficiency above 0.78 12 

and a correlation coefficient above 0.91 for NEE. In a second step, AgroC was optimized with 13 

eddy covariance NEE measurements to examine the effect of different objective functions, 14 

constraints, and data-transformations on estimated NEE. It was found that NEE showed a 15 

distinct sensitivity to the choice of objective function and the inclusion of soil respiration data 16 

in the optimization process. In particular, both positive and negative day- and nighttime fluxes 17 

were found to be sensitive to the selected optimization strategy. Additional consideration of 18 

soil respiration measurements improved the simulation of small positive fluxes remarkably. 19 

Even though the model performance of the selected optimization strategies did not diverge 20 

substantially, the resulting cumulative NEE over simulation time period differed substantially. 21 

Therefore, it is concluded that data-transformations, definitions of objective functions, and 22 

data sources have to be considered cautiously when a terrestrial ecosystem model is used to 23 

determine NEE by means of eddy covariance measurements. 24 

 25 
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1. Introduction 1 

Terrestrial ecosystems play an important role in the global carbon cycle. Photosynthesis by 2 

vegetation and respiration from autotrophic and heterotrophic organisms represent the two 3 

major carbon fluxes between atmosphere and terrestrial biosphere. Terrestrial ecosystems 4 

store large amounts of carbon, and especially soils contain about twice as much carbon as the 5 

atmosphere (Rustad et al., 2000). Over 37% of the world’s landmass is agricultural land (FAO 6 

Statistical Yearbook, 2014). Thus, carbon fluxes in agroecosystems constitute a significant 7 

part of the global carbon cycle. The quantification and prediction of terrestrial carbon sinks 8 

and sources and their dynamics, variabilities, and controls are of major importance with 9 

regards to climate change research and to optimization of management strategies affecting the 10 

ecosystem’s carbon budget (e.g., Baldocchi, 2003; Kuzyakov, 2006; Subke et al., 2006). The 11 

net ecosystem exchange (NEE) of carbon dioxide and its two components, gross primary 12 

production (GPP) and terrestrial ecosystem respiration (TER), are of particular interest 13 

(Suleau et al., 2011; Sus et al., 2010). The total CO2 efflux from soils, one of the major 14 

compartments of TER (Moureaux et al., 2008; Suleau et al., 2011), derives from 15 

decomposition of soil organic matter and dead plant material by microorganisms, from direct 16 

root respiration, and from microbial respiration of root exudates and rhizodepositions 17 

(Kuzyakov, 2006; Kuzyakov and Domanski, 2000). In this study, we consider the last two 18 

CO2 sources as one sum, and refer to it as “rhizosphere respiration”. 19 

NEE is increasingly being monitored using the eddy covariance (EC) technique, which 20 

provides information on net carbon fluxes for a relatively large area with a high temporal 21 

resolution (Baldocchi, 2003). This allows to investigate the relation between CO2 efflux and 22 

weather conditions or crop development stages (Sus et al., 2010). Due to methodological and 23 

technical constraints, significant gaps occur in high-quality EC data, which prohibits direct 24 

computation of annual NEE. Gap-filling methods (e.g., Reichstein et al., 2005) and their 25 
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application with meteorological and EC data overcome this limitation, but e.g., they cannot be 1 

used for predictive modeling of carbon balances addressing climate change effects. 2 

Alternatively, terrestrial ecosystem models with a physical description of processes in the 3 

agroecosystem can be used to assess annual NEE sums. An additional advantage of such 4 

models is that they allow to quantify interrelations and feedbacks in biogeochemical processes 5 

and fluxes of agricultural systems. Mechanistic models like ORCHIDEE-STICS (de 6 

Noblet-Ducoudré et al., 2004), DNDC (Li et al., 2005), or SPAc (Sus et al., 2010) were 7 

developed for this purpose and have been successfully applied in a number of studies (e.g., 8 

Sus et al., 2010; Wattenbach et al., 2010; Wu et al., 2009; Yuan et al., 2012). In most of these 9 

studies, the carbon assimilation by plants was captured well by the models, but a significant 10 

bias in the simulation of the respiratory fluxes was observed. This inevitably causes 11 

systematic errors in the estimation of the overall carbon balance. An improved representation 12 

of processes linked to respiration may help to decrease systematic errors and in combination 13 

with soil respiration (Rsoil) measurements, it may help to reduce the uncertainty in the 14 

estimation of annual NEE. For this purpose, we coupled a one-dimensional soil water, heat, 15 

and CO2 flux model (SOILCO2; Šimůnek and Suarez, 1993), a pool concept of soil carbon 16 

turnover (RothC; Coleman and Jenkinson, 2008), and a crop growth module (SUCROS; 17 

Spitters et al., 1989). In addition, the coupled model, further referred to as AgroC, was 18 

extended with routines for root exudation, root decay, as well as for a managed grassland 19 

system. The main motivation for the coupling was a more detailed representation of sources 20 

and locations of CO2 production, the gas transport in the soil, and the fluxes in the ecosystem. 21 

Various sources of measured data are available for validation, calibration, evaluation, and 22 

structural improvement of terrestrial ecosystem models. In the last decade, substantial 23 

progress has been made in implementing model-data fusion techniques to make optimal use 24 

of available measurements (e.g., Richardson et al., 2010; Sus et al., 2010; Trudinger et al., 25 
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2007; Wu et al., 2009; Yuan et al., 2012). Such model-data fusion techniques, including 1 

calibration techniques, require the formulation and minimization of an objective function that 2 

quantifies the mismatch between model predictions and observations (Evans, 2003; Herbst et 3 

al., 2008; Wang et al., 2009). Detailed measurements of biotic and abiotic processes and 4 

fluxes allow to improve process models on various spatiotemporal scales, and to verify model 5 

assumptions, parameters, and performance (Richardson et al., 2010; Williams et al., 2009; 6 

Yuan et al., 2012). However, the use of multiple objective functions or constraints in model 7 

calibration may be challenging because of the need to combine measurements with variable 8 

spatial scale, temporal scale, magnitude, and uncertainty. For example, optimizing the 9 

simulation regarding one data source (e.g., NEE) can lead to a low model performance (trade-10 

off) regarding another data source (e.g., heterotrophic soil respiration) (Richardson et al., 11 

2010). Other important decisions to be made before model calibration include the selection 12 

and appropriate weighting of observations, the choice of an optimization algorithm (Trudinger 13 

et al., 2007), and the selection of model parameters being altered during calibration (Wu et al., 14 

2009). These decisions differ between model studies, which will influence the results of NEE 15 

predictions (Evans, 2003; Trudinger et al., 2007). 16 

The main goal of this study is to present the mechanistic model AgroC and to evaluate its 17 

model performance simulating biophysical processes and interactions in agroecosystems. In a 18 

first step, AgroC was calibrated with soil moisture, soil temperature, biometric, and soil CO2 19 

flux measurements of three test sites in Germany cropped with winter wheat, barley, or grass. 20 

After calibration, it was evaluated how well AgroC simulates the hourly NEE through 21 

comparison with EC measurements. In the next step, we optimized the AgroC model using 22 

EC measurements by estimating plant and Rsoil parameters. In addition, we evaluated how 23 

joint use of EC and Rsoil measurements in the calibration affected the estimated cumulative 24 
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NEE and model performance. Finally, we evaluated the effect of data-transformation (e.g., 1 

log-transformation) on the model results with a focus on estimated NEE. 2 

 3 

2. Materials and Methods 4 

2.1. The AgroC Model 5 

AgroC is a coupled model developed from the SOILCO2/RothC model (Herbst et al., 2008) 6 

and the SUCROS model for crop growth (Spitters et al., 1989). The SOILCO2/RothC model 7 

simulates vertical water, heat, and CO2 fluxes in a soil column, and the source term of 8 

heterotrophic respiration over soil depth and time, which is given by the turnover of depth-9 

specific carbon pools (Coleman and Jenkinson, 2008; Šimůnek and Suarez, 1993; Šimůnek et 10 

al., 1996). The carbon turnover rates depend on the soil water content and temperature. The 11 

SOILCO2/RothC model was validated in several laboratory and field studies (Bauer et al., 12 

2008, 2012; Herbst et al., 2008; Palosuo et al., 2012; Weihermüller et al., 2009). The 13 

extension with SUCROS is expected to allow for an improved simulation of the soil 14 

autotrophic respiration source term, since temporal development of root growth and related 15 

growth and maintenance respiration is simulated by SUCROS in a mechanistic way. In 16 

addition, AgroC was extended with routines for root exudation and root decay. Furthermore, 17 

this coupled model allows closing the one-dimensional carbon balance and to estimate NEE, 18 

since carbon assimilation as well as organ-specific growth and maintenance respiration are 19 

now included. Figure 1 provides a summary of the carbon cycling in AgroC. Moreover, 20 

routines for the simulation of managed grassland were implemented in AgroC following the 21 

sink/source approach suggested by Schapendonk et al. (1998) for the grassland productivity 22 

model LINGRA. 23 

AgroC was adapted to work with an hourly time step. The coupled SOILCO2/RothC model 24 

allows the use of user-specified length and time units, whereas the SUCROS module uses 25 
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fixed units. For the coupled AgroC model, we preserved the flexibility in terms of length ([L]) 1 

and time units ([T]), but we kept the fixed mass and area units (kg, ha) of the original 2 

SUCROS code. Further information about the coupling and the modifications to the original 3 

models regarding the hourly time step, the water fluxes, the carbon fluxes, and the grassland 4 

routines are given in the Appendix A.  5 
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 1 
 2 

Fig. 1: 3 

Carbon fluxes and partitioning in AgroC. Gross primary production (GPP) is partitioned to 4 

the different plant organs, leaves (subscript lv), stems (st), storage organs (so), and roots (rt).  5 

CO2 is lost due to growth (Rgr) and maintenance respiration (Rm). The sum of these 6 

autotrophic CO2 source terms by the shoot organs account for the above-ground respiration 7 

(RABG). Carbon and CO2 is added to the soil profile by autotrophic root respiration, root 8 

exudates, and dead roots. The latter two are transferred to the decomposable and resistant 9 

plant material pool (DPM, RPM) of the RothC model and decomposed. The heterotrophic 10 

CO2 source term consists of microbial decomposition of those and further soil organic matter 11 

pools (humified organic matter HUM, microbial biomass BIO). The root respiration and the 12 

heterotrophic components are part of the below-ground respiration (RBG).  13 
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2.2. Study Sites and Data Availability 1 

AgroC was applied to three experimental sites in the western part of Germany: Selhausen and 2 

Merzenhausen, both located in the southern part of the Lower Rhine Embayment (Schmidt et 3 

al., 2012; Stadler et al., 2015), and Rollesbroich, located in the low mountain range Eifel 4 

(Gebler et al., 2015). The dominant land use at the first two test sites is cropland. Rollesbroich 5 

is a managed grassland site, which is mown three times per year (Borchard et al., 2015). All 6 

three study sites are included in the Terrestrial Environmental Observatories (TERENO) 7 

network of highly instrumented field sites (Zacharias et al., 2011). An overview of soil 8 

properties, meteorological conditions, and crop management is given in Tables 1 and A.1 for 9 

all three sites. 10 

At the two cropland sites, EC and ancillary environmental measurements were conducted in 11 

the center of the agricultural fields. Measurements of NEE, latent heat, wind components, 12 

global radiation, air temperature, soil (surface) temperature at a depth of -1 cm, precipitation, 13 

and relative humidity were collected. A detailed description of the sites, measurement setup, 14 

EC post-processing, and footprint modelling is given by Schmidt et al. (2012), Graf et al. 15 

(2013), Post et al. (2015), Mauder et al. (2013) and Kormann and Meixner (2001). Soil water 16 

content and soil temperature were measured in various depths at several soil profiles per site. 17 

Biometric measurements were carried out bi-weekly to monitor crop development, and Rsoil 18 

data were obtained with closed-chamber measurements during summer (Prolingheuer et al., 19 

2014; Schmidt et al., 2012; Stadler et al., 2015). Prolingheuer et al. (2014) also measured the 20 

heterotrophic contribution to the CO2 flux by root exclusion experiments at 61 sample points 21 

at the Selhausen test site. 22 

In Rollesbroich, the EC tower was placed between two neighboring grasslands (A and B) with 23 

different management in terms of mowing dates. Thus, measured fluxes were dominated by 24 

one of the two grasslands depending on the wind direction and the resulting flux footprint 25 
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distribution. Data processing was similar to the two agricultural fields. Borchard et al. (2015) 1 

conducted detailed surveys of the Rollesbroich site. At 21 sample points in grassland A, soil 2 

samples were taken, and total LAI and harvested dry matter were also determined during the 3 

growing season. Eleven of the sampling points were mown following the management of 4 

grassland A, and the remaining 10 points were sampled following the management of 5 

grassland B. Rsoil was again determined from closed-chamber measurements during summer. 6 

Soil moisture, soil temperature, and CO2 concentration in several depths were observed at 7 

three profiles near the EC tower.  8 
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Tab. 1: 1 

Site-specific characteristics, meteorological conditions, and crop management (WW: Winter 2 

wheat; WB: winter barley; GL: grassland) (Borchard et al., 2015; Gebler et al., 2015; 3 

Prolingheuer et al., 2014; Schmidt et al., 2012; Séquaris et al., 2013; Stadler et al., 2015). 4 

 5 

 Selhausen Merzenhausen Rollesbroich 

    

Site characteristics    

coordinates 50°52’14’’N, 

6°26’59’’E 

50°55’47’’N, 

6°17’49’’E 

50°37’19’’N, 

6°18’15’’E 

elevation (m a.s.l.) 103 93 515 

soil type* Luvisol Luvisol Cambisol 

soil texture silt loam silt loam silty clay 

    

Climate conditions    

mean annual temperature (°C) 9.9 9.9 7.7 

annual precipitation (mm) 698 698 1033 

    

Simulation period Oct 2008 - Dec 2009 Oct 2011 - Dec 2014 Jan 2013 - Dec 2013 

    

Land management    

crop sequence WW WW - WW - WB GL 

 tilled every autumn tilled every autumn mowed 3x annually 
    

*according to soil taxonomy of the FAO (I.U.S.S. Working Group WRB, 2006) 

  6 
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2.3. Model Setup and Initialization 1 

AgroC requires gap-filled meteorological data (air temperature, soil surface temperature, 2 

precipitation, solar radiation, and potential grass reference evapotranspiration), plant-specific 3 

parameters, and soil characteristics. Potential grass reference evapotranspiration was 4 

estimated with the Penman-Monteith approach according to the FAO guidelines (Allen et al., 5 

1998). Plant-specific parameters for cereals and grass were mainly taken from literature (e.g., 6 

Boons-Prins et al., 1993; Gonzales et al., 1989; Goudriaan et al., 1997; Kuzyakov and 7 

Domanski, 2000; Parsons, 1988; Parsons and Robson, 1981; Prud’homme et al., 1992; 8 

Schapendonk et al., 1998; Spitters et al., 1989; Swinnen et al., 1995; Vanclooster et al., 1995; 9 

van Keulen et al., 1997). These plant parameters have been extensively used in other 10 

simulation studies with the models SUCROS and LINGRA. Root biomass measurements 11 

were not available, thus the proportion of the root system (root/shoot ratio) was also derived 12 

from literature (e.g., Bolinder et al., 1997, 2002; López et al., 2013). 13 

In AgroC appropriate boundary conditions have to be specified for CO2, water, and heat flow 14 

at the top and bottom of the simulation domain. The upper boundary condition for CO2 flow 15 

was the atmospheric concentration of 0.038%. Meteorological measurements were used to 16 

describe the upper boundary for water and heat flux. Soil profile characteristics were available 17 

from Séquaris et al. (2013), Herbst et al. (2005), and Borchard et al. (2015) for Selhausen, 18 

Merzenhausen, and Rollesbroich, respectively (Tab. A.1). The simulated profile depths varied 19 

from 1.0 to 1.2 m. A no-flow boundary was used at the bottom of the soil profile for heat and 20 

CO2. For water, a prescribed pressure head following a sine wave over the course of the year 21 

with a minimum in autumn was used as a Dirichlet boundary condition at the bottom of the 22 

simulation domain (Bauer et al., 2008; Scharnagl et al., 2011). 23 

Initial carbon pool sizes were derived from measured soil organic carbon contents for each 24 

soil horizon. In Selhausen and Rollesbroich, measured soil carbon fractions were available 25 
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from previous studies (Bauer et al., 2012; Séquaris et al., 2013; Nils Borchard and Henning 1 

Schiedung, personal communication). For these two sites, initial pool sizes were calculated 2 

following Falloon et al. (1998), Skjemstad et al. (2004), and Zimmermann et al. (2007). For 3 

Merzenhausen, initial pool sizes were determined with pedotransfer functions according to 4 

Weihermüller et al. (2013), assuming a state of equilibrium. The reference temperature 5 

required for the estimation of the soil heterotrophic CO2 source term was set to the mean 6 

annual temperature at each site. 7 

 8 

2.4. Model Calibration 9 

In a first step, AgroC was calibrated with the downhill Nelder-Mead Simplex algorithm 10 

(Nelder and Mead, 1965), since only a small number of parameters were considered. The root 11 

mean square error (RMSE) between measurements and simulations was minimized. In 12 

addition, the Pearson product-moment correlation coefficient (r) and the model efficiency 13 

(ME) (Nash and Sutcliffe, 1970) were calculated as model quality criteria. A ME close to 1 14 

indicates that the simulation describes the observations well without systematic bias. If ME is 15 

lower than 0, the mean of the observations is a better predictor than the simulations. 16 

First, the soil hydraulic parameters were calibrated. Then, plant development and growth were 17 

adjusted. Here, mainly the plant development rate depending on temperature, the 18 

effectiveness of CO2 assimilation, the partitioning factors of assimilates between the different 19 

plant organs, especially between shoot and root system, and the specific leaf area (conversion 20 

factor between plant dry matter and LAI) were modified (Tab. A.2). 21 

CO2 production in the soil profile was estimated in dependence of several physical processes 22 

and conditions. For soil temperature, we used the default reduction function of the SOILCO2 23 

model, which is a modified form of the Arrhenius relationship (Šimůnek and Suarez, 1993; 24 

Šimůnek et al., 1996). To describe the soil moisture dependency of respiration, we applied a 25 
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bell-shaped curve as suggested by Bauer et al. (2012), Moyano et al. (2012), and Skopp et al. 1 

(1990). The simulation of Rsoil was improved by calibrating the reference temperature used in 2 

the temperature scaling function, the turnover rate of the RPM pool, and the parameters of the 3 

water reduction function. For Rollesbroich, soil CO2 concentration measurements in different 4 

depths were available, so the gaseous diffusion through the soil matrix could also be adjusted. 5 

Here, we implemented the gas diffusivity and transport model of Kristensen et al. (2010), 6 

which accounts for preferential diffusion through fractures and macropores in the soil matrix. 7 

Appendant parameters, the fracture porosity, the fracture porosity factor, and the matrix 8 

tortuosity factor, were adjusted. 9 

After soil water, soil heat, and CO2 flux, as well as plant development were calibrated, we 10 

compared the NEE estimates with the EC measurements at each test site. NEE measurements 11 

were handled according to the quality assessment strategy suggested by Mauder et al. (2013), 12 

and only data with high quality was used for validation purposes (28% of data in Selhausen; 13 

55% of data in Merzenhausen; 33% of data in Rollesbroich). 14 

In a second step, several model runs were conducted where simulated NEE was optimized 15 

with EC measurements by estimating plant parameters (regarding the light use efficiency, the 16 

potential CO2 assimilation rate, their dependence on crop DVS and air temperature, and the 17 

biomass partitioning factors between shoot and root), and model parameters affecting Rsoil (as 18 

above: reference temperature, turnover rate of RPM, and parameters of the water reduction 19 

function). Here, parameter calibration was conducted with the Shuffled Complex Evolution 20 

(SCE) algorithm (Duan et al., 1993), which is a global optimization strategy that was shown 21 

to be effective for a wide range of non-linear optimization problems. Two different objective 22 

functions were considered: (i) the RMSE and (ii) the sum of the RMSE and the Bias. The 23 

former was calculated on the basis of various data expressions (instantaneous data, 24 

cumulative data, or instantaneous log-transformed data). Additional calibrations were 25 
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conducted that not only considered NEE data for the optimization, but also measurements of 1 

Rsoil. Therefore, we considered a total of eight different calibration strategies (see Tab. 2). 2 

Because of the different magnitude of NEE and Rsoil (and resulting misfits), the error was 3 

transformed by division with the respective observed mean flux (with the exception of NEEBSc 4 

approach). For each test site, these eight calibrations were conducted to examine the 5 

sensitivity of estimated cumulative NEE to the different objective functions and to the 6 

inclusion of Rsoil measurements. Estimated cumulative NEE based on each optimization 7 

strategy was compared to the well-established gap-filling method by Reichstein et al. (2005), 8 

which is based on linear regressions between EC measurements and physical drivers.  9 
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Tab. 2: 1 

Applied optimization strategies and their objective functions, used data streams and data 2 

transformation (obs_N: NEE observation; sim_N: NEE simulation; obs_R: Rsoil observation; 3 

sim_R: Rsoil simulation). 4 

 5 

label objective function 
data 

streams 

data trans-

formation 
obs or sim 

      

NEEinst 

RMSE 

𝐸 = √
1

𝑛
∑(𝑜𝑏𝑠_𝑁𝑖 − 𝑠𝑖𝑚_𝑁𝑖)

2

𝑛

𝑖=1

 NEE 

instan- 

taneous 

with 
𝑥𝑖 

NEECum cumulative 𝑥𝑖 = ∑𝑥𝑗

𝑖

𝑗=1

 

NEELog 
log-trans-

formed 
𝑥𝑖 = 

ln(𝑥𝑖 + |𝑚𝑖𝑛|+ 1) 

NEEinst + Rsoil 

𝐸 = 

√1
𝑛
∑ (𝑜𝑏𝑠_𝑁𝑖 − 𝑠𝑖𝑚_𝑁𝑖)

2𝑛
𝑖=1

1
𝑛
 ∑ 𝑜𝑏𝑠_𝑁𝑖

𝑛
𝑖=1

+ 

√1
𝑚
∑ (𝑜𝑏𝑠_𝑅𝑗 − 𝑠𝑖𝑚_𝑅𝑗)

2𝑚
𝑗=1

1
𝑚
 ∑ 𝑜𝑏𝑠_𝑅𝑗

𝑚
𝑗=1

 
NEE 

and Rsoil 

instan- 

taneous 
𝑥𝑖 

NEECum + Rsoil cumulative 

𝑥𝑖

= ∑𝑥𝑗

𝑖

𝑗=1

 
*
 

NEELog + Rsoil 
log-trans-

formed 
𝑥𝑖 = 

ln(𝑥𝑖 + |𝑚𝑖𝑛|+ 1) 

NEEBSc 

RMSE 

+ Bias 

𝐸 =  √
1

𝑛
∑(𝑜𝑏𝑠_𝑁𝑖 − 𝑠𝑖𝑚_𝑁𝑖)

2

𝑛

𝑖=1

+ |
1

𝑛
 ∑(𝑜𝑏𝑠_𝑁𝑖 − 𝑠𝑖𝑚_𝑁𝑖)

𝑛

𝑖=1

| NEE 
instan- 

taneous 𝑥𝑖 

NEEBSc + Rsoil 𝐸 =  √
1

𝑛
∑(𝑜𝑏𝑠_𝑁𝑖 − 𝑠𝑖𝑚_𝑁𝑖)

2

𝑛

𝑖=1

+ |
1

𝑛
 ∑(𝑜𝑏𝑠_𝑁𝑖 − 𝑠𝑖𝑚_𝑁𝑖)

𝑛

𝑖=1

| + √
1

𝑚
∑(𝑜𝑏𝑠_𝑅𝑗 − 𝑠𝑖𝑚_𝑅𝑗)

2
𝑚

𝑗=1

  
NEE 

and Rsoil 

instan-

taneous 𝑥𝑖 

      

* only applied to NEE data, Rsoil data was used instantaneous.    

  6 
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3. Results and Discussion 1 

3.1. Calibration and Validation of AgroC 2 

Soil Temperature and Water Content 3 

All simulations described measured soil temperature very well using the default settings. The 4 

RMSE was below 1.0°C and the ME larger than 0.93 when measurements for all depths and 5 

sites were considered (see Fig. 2). 6 

After calibration, the soil moisture dynamics were reproduced well by the AgroC model 7 

(Fig. 3). Estimated soil hydraulic parameters are summarized in Table A.1. The RMSE was 8 

below 0.020 cm cm-3, the ME above 0.74 and the r above 0.86 for all sites and profile depths. 9 

For Merzenhausen, the model was calibrated for 2012 and the following two years were used 10 

for validation. The performance of the model decreased for the validation period, but overall 11 

dynamics were still reproduced well (Fig. 3). Some near-surface peaks in soil moisture were 12 

not captured by the model, which is probably related to inaccuracies in the meteorological 13 

data used for the upper boundary condition. Furthermore, static hydraulic properties were 14 

assumed for the AgroC simulations, which is a simplification because the hydraulic properties 15 

of managed topsoils are typically variable due to ploughing, seedbed preparation, and 16 

subsequent re-compaction. For the Rollesbroich site, soil moisture simulations at -5 cm 17 

differed from the observations during winter. This is partly related to the presence of a snow 18 

cover, which results in delayed infiltration not represented in the model, and frozen soil, 19 

which affects soil water content measurements with the dielectric sensors used in this study.  20 
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 1 

Fig. 2: 2 

Observed (dots; orange area: standard deviation) and simulated (lines) soil temperature (Tsoil) 3 

in several depths in Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). Root 4 

mean square error (RMSE) and model efficiency (ME) (in this order) are given for each soil 5 

depth and location.  6 
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 1 

Fig. 3: 2 

Observed (dots; orange area: standard deviation) and simulated (lines) soil water content (θ) 3 

at various depths in Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). Root 4 

mean square error (RMSE) and model efficiency (ME) (in this order) are given for each soil 5 

depth and location. In Merzenhausen, RMSE and ME are given for the calibration (until end 6 

of 2012) and the validation period.  7 
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Crop Development and Growth 1 

Without calibration, simulated crop development and dry matter accumulation over time were 2 

already close to the observations (not shown). For further improvement, plant-specific 3 

parameters were manually adjusted (Fig. 4, 5). In general, the assimilation rate, the fraction of 4 

the root biomass, and the specific leaf area were increased for all crops at all test sites. In 5 

Table A.2 in the appendix, the most relevant plant parameters are summarized. For total LAI, 6 

the lowest ME was 0.63, RMSE was lower than 0.82 ha ha-1, and r was larger than 0.93 for all 7 

sites. Site-specific errors for green and brown LAI are provided in Figure 4. As can be seen, 8 

green LAI was well reproduced over the growing season, while the course of brown LAI was 9 

simulated less well. As indicated by the ME in Figure 5, the simulation of dry matter was 10 

adequate too, especially for winter wheat in Selhausen. However, the simulations 11 

progressively diverged from the measurements towards crop maturity. For cereals, this might 12 

be due to the fact that reallocation of assimilates from leaves and stem to storage organs was 13 

not implemented in AgroC (Spitters et al., 1989). 14 

In Merzenhausen, LAI and biomass measurements were only conducted at harvest in 2012 15 

and during the entire growing season in 2013 (both winter wheat). For model calibration over 16 

the complete simulation period, measurements of plant height were therefore considered. A 17 

relation between LAI and plant height was determined for 2013. Plant height showed distinct 18 

differences between 2012 and 2013. In 2013, a smaller height and consequently a lower LAI 19 

and dry matter allocation were observed. This could not be reproduced by the model only 20 

based on differences in meteorological conditions in these two years. Winter wheat varieties 21 

and management differed between the two cultivation periods, and according to Spitters et al. 22 

(1989), plant parameters can vary substantially between species. In addition, it needs to be 23 

considered that in spring of 2013 pronounced dry conditions came to pass. Even though water 24 

stress was explicitly accounted for in AgroC, irreversible damages (e.g., by heat stress) of 25 
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plant tissue might have caused a reduced growth beyond the water stress period. Furthermore, 1 

the root system may have preferably been expanded relative to the shoots due to the water 2 

deficit. These effects were not directly considered in AgroC, and could only be captured by 3 

different parameterizations. Therefore, we ran AgroC with crop parameter sets for winter 4 

wheat that differed between the two cultivation periods. 5 

The Rollesbroich grassland site was covered by snow until the beginning of April 2013, thus 6 

plant growth was delayed. The model was fitted to the plant development and growth on 7 

parcel A. For the simulation of parcel B, only the dates of mowing were adjusted. This 8 

resulted in an adequate simulation for LAI and dry matter allocation of both grassland parcels 9 

(Fig. 4, 5). 10 

At the day of harvest, the simulations for Selhausen and Merzenhausen resulted in mean 11 

root/shoot dry matter ratios of 0.08 and 0.16, respectively. Bolinder et al. (1997, 2002) 12 

determined root/shoot ratios between 0.13 and 0.20 for winter wheat. Compared to this, the 13 

simulated root/shoot ratio for Selhausen was rather low. However, observations of 14 

rhizospheric respiration at this test site (Fig. 6) confirmed the estimated partitioning of 15 

assimilates between shoot and roots. For the Rollesbroich grassland site, the mean root/shoot 16 

ratio was 0.58. This corresponds well with López et al. (2013), who reported a root/shoot ratio 17 

of 0.56 for Lolium perenne.  18 
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 1 

Fig. 4: 2 

Observed (dots; error bars: standard deviation) and simulated (lines) leaf area index (LAI) in 3 

Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). For the two cropped fields 4 

green and brown LAI were measured and simulated. Root mean square error (RMSE) and 5 

model efficiency (ME) (in this order) are given for each quantity and location. 6 

 7 

 8 

Fig. 5: 9 

Observed (dots; error bars: standard deviation) and simulated (lines) dry matter (DM) in 10 

Selhausen (left), Merzenhausen (middle), and Rollesbroich (right; AGB: above-ground 11 

biomass). Root mean square error (RMSE) and model efficiency (ME) (in this order) are 12 

given for each quantity and location.  13 
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Soil Respiration 1 

Magnitude and dynamics of soil CO2 efflux were captured adequately by AgroC, as shown by 2 

ME values larger than 0.58, RMSE values lower than 45.4 mol ha-1 h-1, and an r larger than 3 

0.77 across all sites. For the Selhausen site, observations of efflux due to heterotrophic 4 

respiration were available separately (Prolingheuer et al., 2014). Therefore, Figure 6 shows 5 

not only modeled total respiration, but also the simulated partitioning in root and rhizosphere 6 

respiration and heterotrophic respiration. Since this partitioning is available only for the 7 

production terms but not for efflux at the surface, the errors reported in Figure 6 differ slightly 8 

from those presented above. Parameters of the reduction functions for heterotrophic CO2 9 

production in the soil profile were estimated inversely. The start parameter for the reference 10 

temperature was set to the annual mean temperature at each site as suggested by Coleman and 11 

Jenkinson (2008). In the optimization process, all reference temperatures were decreased, thus 12 

CO2 production was increased at any temperature. As reported by Bauer et al. (2012) and 13 

Moyano et al. (2012), the approach after Skopp et al. (1990) provided the best results for the 14 

response of CO2 production to soil moisture. Therefore, the two control parameters of this 15 

response function were calibrated. The estimated optimal water content (maximum of 16 

reduction function curve) was 0.41, 0.29, and 0.28 cm3 cm-3 in Selhausen, Merzenhausen, and 17 

Rollesbroich, respectively. The optimum water contents were very close to the mean soil 18 

water content of each simulation (0.38, 0.29, and 0.32 cm3 cm-3, respectively). 19 

As shown in Figure 6, CO2 production at the grassland site was higher than at the cropped 20 

sites, which is attributed to the higher soil organic carbon content (Tab. A.1) and an extensive 21 

perennial root system. However, the magnitude of the simulated rhizospheric respiration 22 

turned out to be quite similar for all sites, even though the grassland accumulates root biomass 23 

over the years. The root/shoot ratios reported above showed that the below-ground 24 

translocation of assimilated carbon was much higher for grassland than for cereal crops. 25 
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Hence, the relative fraction of assimilates partitioned to the root system is larger in grasslands 1 

(Kuzyakov and Domanski, 2000). Considering the same growth period, the absolute 2 

translocation of carbon is the same for both ecosystems; whilst cereals have a higher 3 

productivity per unit area and time, their carbon assimilation is restricted to a shorter growth 4 

period compared to grasslands. Further, grasslands are not ploughed, so they are potentially a 5 

larger sink for atmospheric carbon (Kuzyakov and Domanski, 2000). 6 

An extensive peak of soil CO2 emission was simulated right after harvest of the cereals, 7 

because a large amount of fresh plant material was added to the carbon pools of the soil. 8 

Unfortunately, no chamber-based Rsoil observations were available for those critical time 9 

periods to validate these model predictions. 10 

The estimated mean annual ratio between rhizospheric respiration and total Rsoil was 0.12 for 11 

Selhausen, 0.21 for Merzenhausen, and 0.34 for Rollesbroich. Wang and Fang (2009) 12 

analyzed 36 grassland sites and reported a corresponding average ratio of 0.36, which agrees 13 

well with results for our grassland site in Rollesbroich. For winter wheat, Moureaux et al. 14 

(2008) obtained a ratio between below-ground respiration by autotrophs and total Rsoil of 0.56 15 

for the vegetation period only. Suleau et al. (2011) found ratios between 0.40 and 0.48 using 16 

root exclusion experiments. The simulated ratios for the vegetation period were 0.18 for 17 

Selhausen and between 0.33 and 0.38 for Merzenhausen. It seems that the simulated fraction 18 

of rhizospheric respiration in Selhausen is too low compared to previous studies. However, 19 

these values were confirmed by measurements from root exclusion experiments at this site 20 

(Prolingheuer et al., 2014). Subke et al. (2006) compared numerous respiration ratios derived 21 

by various methods from several studies, and report that the heterotrophic source term may be 22 

overestimated by root exclusion, because of increased dead root biomass (for experiments 23 

conducted within perennial vegetation), a change of irradiation, and a decreased water uptake 24 

by roots. In our study, those error sources were mostly excluded, due to installation of the 25 
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exclusion rings before cereal growth, a small ring size that enables representative growth and 1 

shading around/above the measurement points, and the correction for the soil moisture effects 2 

(Prolingheuer et al., 2014). 3 

For Rollesbroich, measurements of soil CO2 concentration in different depths were available, 4 

which allowed calibration of the CO2 flux through the soil. The approach after Kristensen et 5 

al. (2010), which additionally accounts for diffusion through fractures and macropores, 6 

provided the best results with a ME of 0.44 (Fig. 7).  7 
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 1 

Fig. 6: 2 

Observed (dots; error bars: standard deviation) CO2 efflux at soil surface and simulated 3 

stacked CO2 production in soil profile (areas) for several source terms (green: growth and 4 

maintenance respiration by roots (Rgr,rt, Rm,rt); orange: respiration in rhizosphere (Rrhizo) due to 5 

root exudates and root decay; yellow: respiration by heterotrophs (Rh)) in Selhausen (left), 6 

Merzenhausen (middle), and Rollesbroich (parcel A, right). Root mean square error (RMSE) 7 

and model efficiency (ME) (in this order) are given for each location. 8 

 9 

 10 

Fig. 7: 11 

Observed (dots; orange area: standard 12 

deviation) and simulated (lines) soil 13 

CO2 concentration at various depths in 14 

Rollesbroich. Root mean square error 15 

(RMSE) and model efficiency (ME) 16 

(in this order) are given for each soil 17 

depth.  18 
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Net Ecosystem Exchange 1 

After calibrating soil water flux, plant development, and CO2 flux, we compared the NEE 2 

simulations to the EC measurements at each test site. At this point, NEE measurements were 3 

not used to calibrate the model. Figure 8 and 9 show the AgroC estimates in comparison to 4 

the NEE flux measurements. With a RMSE between 113 and 128 mol ha-1 h-1, a ME between 5 

0.78 and 0.83, and an r between 0.91 and 0.96, AgroC performed reasonably well at all three 6 

test sites. However, some discrepancies could also be observed. As already discussed for Rsoil, 7 

the estimated peaks of Rsoil and corresponding NEE after harvest were also not observed in 8 

the EC measurements (Fig. 8). Fluxes from adjacent and cropped fields could have distorted 9 

the measurements of the area of interest (e.g., Massman and Lee, 2002). In Merzenhausen in 10 

autumn 2012, negative CO2 fluxes were measured even though the crop was harvested. This 11 

was not captured by the AgroC model, because it was assumed that the field was bare fallow. 12 

In reality, weeds and wheat emerged again during this post-harvest period and assimilated 13 

CO2 until ploughing (cf., Sus et al., 2010). 14 

At the Rollesbroich site, the EC tower was located at the border between two differently 15 

managed grassland parcels, so that the contribution of CO2 fluxes originating from each of the 16 

two parcels varied according to the flux footprint (Kormann and Meixner, 2001; Mauder et 17 

al., 2013; Post et al., 2015). For the validation, two AgroC model runs were made for 18 

grassland parcels A and B. The two NEE estimates were weighted according to the relative 19 

fraction of the footprint within each parcel, and subsequently compared to the observations. 20 

Consequently, simulated fluxes could only be attained for time steps at which measurements 21 

and thus information about the footprint distribution were available. The consideration of the 22 

footprint distribution improved the performance of the NEE simulations significantly 23 

compared to a single model run. This was especially true for time periods between two 24 

mowing events, since parcel B was always mown a few days later than parcel A. Generally, 25 
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AgroC reproduced the dynamics of the grassland NEE including the effect of mowing and 1 

regrowth. At the time of mowing, leaf area was reduced substantially, canopy photosynthesis 2 

decreased, and the site temporarily turned from a CO2 sink to a CO2 source. From the first to 3 

the third mowing, peak assimilation declined consistently. This has previously also been 4 

reported for other grassland sites (Schmitt et al., 2010; Wohlfahrt et al., 2008). 5 

The ratios between the annual sum of TER and GPP were 0.79 for Selhausen, between 0.67 6 

and 0.75 for Merzenhausen, and 1.06 for Rollesbroich. The ratios for the growing period only 7 

were 0.64 for Selhausen and between 0.52 and 0.62 for Merzenhausen. The value higher than 8 

1 for Rollesbroich indicates that this site was a CO2 source in 2013. The annual ratios 9 

between respiration by heterotrophs and TER varied between 0.51 and 0.58 (ratios for 10 

growing period: 0.35 - 0.48). Moureaux et al. (2008) and Suleau et al. (2011) report TER/GPP 11 

ratios between 0.49 and 0.66 for cereals, and Rh/TER ratios between 0.2 and 0.24, again only 12 

considering the plant growth phase. Our simulations generally agree well with these values, 13 

although the heterotrophic component appears to be larger in this study. Again, this reflects 14 

the lower contribution of rhizospheric respiration as already discussed above. 15 

The 1:1 plots between observed and simulated NEE (Fig. 9) show that on average AgroC 16 

overestimated the CO2 fluxes by less than 20%, since the regression lines fall within the grey 17 

area. Turbulence fluxes can be systematically underestimated by EC measurements, and 18 

energy balance closure gaps of this magnitude have previously been reported (Eder et al., 19 

2015; Schmidt et al., 2012; Twine et al., 2000). Therefore, underestimation of CO2 fluxes can 20 

be expected (Ingwersen et al., 2015; Massman and Lee, 2002; Mauder et al., 2013). This 21 

inability to close the surface energy balance, the various approaches to correct for the balance 22 

gaps, uncertainties due to instrumentation, and differing data-processing strategies complicate 23 

cross-site and long-term comparisons of NEE (Massman and Lee, 2002; Mauder et al., 2013; 24 

Schmidt et al., 2012; Twine et al., 2000). 25 
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Wattenbach et al. (2010) compared the efficiency of four models to simulate NEE, and 1 

reported ME values between -0.15 and 0.87. The ME values for AgroC for the three sites 2 

compare favorably with this wide range (0.78 - 0.83). Wattenbach et al. (2010) also reported 3 

more substantial discrepancies between observations and simulations for positive NEE fluxes. 4 

Such an underestimation of positive NEE fluxes was also observed in this study, but to a 5 

much smaller extent, which is very likely a result of our more advanced approach towards the 6 

simulation of CO2 fluxes and the calibration of Rsoil with chamber measurements.  7 
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 1 

Fig. 8: 2 

Observed (dots) and simulated (lines) net ecosystem exchange (NEE) in Selhausen (left; EC: 3 

eddy covariance), Merzenhausen (middle), and Rollesbroich (right). In Rollesbroich NEE was 4 

simulated for each grassland (parcel A and B) and then allocated with the relative fraction of 5 

the footprint on each grassland. Arrows indicate dates of harvest or mowing (black: parcel A; 6 

grey: parcel B), respectively. Root mean square error (RMSE) and model efficiency (ME) (in 7 

this order) are given for each location. 8 

 9 

 10 

Fig. 9: 11 

Observed and simulated net ecosystem exchange (NEE) with regression line (black) in 12 

Selhausen (left), Merzenhausen (middle), and Rollesbroich (right). In Rollesbroich NEE was 13 

simulated for each grassland (parcel A and B) and then weighted according to the relative 14 

fraction of the footprint. A potential NEE gap of up to 20% in the measurements is indicated 15 

by the grey area. Coefficient of determination (R2) is given for each location.  16 



 32 

3.2. Calibration with NEE Data 1 

Due to calibration the RMSE of instantaneous NEE was reduced by up to 43%, and Bias was 2 

severely decreased (Fig. 10). Depending on the optimization strategy, the cumulative NEE 3 

over the simulation period differed strongly (Fig. 10, B.3). The calibration based on the 4 

instantaneous NEE data (NEEinst) yielded the best results in terms of RMSE, ME, and r at all 5 

sites, because the reduction of the squared residual error in NEE was the only criterion. Bias 6 

was the lowest in the NEEBSc approach with and without inclusion of Rsoil data because the 7 

Bias was now part of the objective function. Apart from that, model performance and NEE 8 

prediction by the NEEBSc (+ Rsoil) approach were very similar to NEEinst (+ Rsoil). The NEECum 9 

and NEELog + Rsoil approaches resulted in the poorest model performances at each study site. 10 

In almost all cases, model performance for NEE slightly deteriorated when Rsoil 11 

measurements were included in the optimization process due to trade-offs between fitting 12 

multiple objective functions, with the exception of the approach that considered 13 

NEECum + Rsoil (Fig. 10). 14 

Figure 11 shows reduced major axis regression (Webster, 1997) for measured and simulated 15 

day- and nighttime (nighttime hours with global radiation < 20 W m-2 after Reichstein et al., 16 

2005) NEE fluxes for the test site Selhausen. The corresponding figures for Merzenhausen 17 

and Rollesbroich are given in the appendix (Fig. B.1, B.2). Compared to the NEE runs 18 

obtained without calibration (Fig. 9), the calibrated daytime fluxes were generally closer to 19 

the 1:1 line and tended to only slightly underestimate daytime NEE fluxes as indicated by 20 

regression slopes slightly lower than 1. In general, nighttime NEE fluxes (dominated by 21 

respiratory fluxes) were better captured by the approaches that used an objective function 22 

including Rsoil data, irrespective of the error weighting in the objective function or the 23 

transformation of the raw NEE data. Including Rsoil data in the calibration clearly improved 24 

the simulation of diurnal and annual dynamics of the measured Rsoil. The approaches only 25 
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considering NEE measurements did not reproduce those dynamics (not shown). Even with the 1 

inclusion of Rsoil data, nighttime NEE was still underestimated as indicated by regression 2 

slopes between 0.75 and 0.85. 3 

In Figure 10 (bottom right panel) and in the appendix (Fig. B.3), cumulative NEE over the 4 

corresponding simulation period (further on, only referred to as “cumulative NEE”) is shown 5 

for all optimization strategies, for the simulations without calibration, and for the gap-filling 6 

method by Reichstein et al. (2005). For this comparison, cumulative NEE estimated with 7 

AgroC was also calculated in a “gap-filling mode”, keeping the EC measurements and only 8 

filling the gaps with AgroC results. The cumulative NEE varied between -462 9 

and -243 g C m-2 in Selhausen, -1429 and -1180 g C m-2 in Merzenhausen, and -541 10 

and -5 g C m-2 in Rollesbroich. Cumulative NEE was mostly lower for the calibrated model 11 

runs than for the uncalibrated simulation. For all sites, the NEECum or NEELog approach with 12 

and without Rsoil measurements resulted in the lowest cumulative NEE. The NEEinst + Rsoil 13 

approach resulted in the highest NEE, except for the Rollesbroich site. Generally, cumulative 14 

NEE of approaches including Rsoil data in the objective function showed better agreement 15 

with the gap-filling method after Reichstein et al. (2005) than the approaches that did not 16 

consider Rsoil measurements (Fig. 10). 17 

Neglecting carbon removal due to harvest, the simulations suggest that all sites are CO2 sinks, 18 

except for the simulation without calibration to NEE in Rollesbroich, which showed a very 19 

small positive annual NEE. Pastures are usually considered to be sinks for atmospheric CO2 20 

(Kuzyakov and Domanski, 2000). Soussana et al. (2007) estimated an average annual carbon 21 

budget of -247 ± 67 g C m-2 and a net biome productivity (= NEE minus carbon loss due to 22 

disturbances, such as harvest) of -104 ± 73 g C m-2 for nine grasslands in Europe. Wohlfahrt 23 

et al. (2008) reported alternating positive and negative annual NEE for one grassland (gap-24 

filled EC measurements), varying between -42 g C m-2 a-1 and 69 g C m-2 a-1, and concluded 25 



 34 

that meteorological variations or differing biotic responses could easily lead to a positive 1 

carbon balance in some years. Also, the large amount of carbon stored in grassland soils 2 

(Tab. A.1) can easily cause large respiratory fluxes that exceed plant carbon uptake. For 3 

Selhausen, estimated NEE matches cumulative values reported by Schmidt et al. (2012) and 4 

Wattenbach et al. (2010). Anthoni et al. (2004) found annual NEE in a range from -185 5 

to -245 g C m-2 for a winter wheat field in Germany in 2001, which is in good agreement with 6 

our findings. 7 

Since the true cumulative NEE is unknown due to measurement gaps, modelling can provide 8 

valuable information about the carbon balance. Although the best calibration approach that 9 

provides the ‘true’ cumulative NEE cannot be determined at this point. Our results suggest 10 

that the cumulative NEE obtained from the calibrated model runs is more realistic than the 11 

cumulative NEE obtained with a model run not calibrated to NEE. The well-established gap-12 

filling method after Reichstein et al. (2005) and AgroC produced somewhat different carbon 13 

balances, although NEE was derived from the same weather data. Especially after harvest or 14 

mowing, AgroC provided more reasonable predictions because it considers the changes in 15 

crop characteristics that directly influence GPP. Nevertheless, a better representation of 16 

respiration processes is still required, because even after calibration with EC and chamber 17 

measurements the respiration by heterotrophs and autotrophs was still underestimated. This 18 

bias in respiration may indicate a wrong process representation in the model, errors in model 19 

parameterization, or may also be related to a disparity in the measurement footprint between 20 

chamber and EC measurements (Richardson et al., 2010). Obviously, an underestimation of 21 

respiratory fluxes will shift NEE to more negative values, as observed for the simulation 22 

results in Figure 10. 23 

The cumulative NEE obtained after calibration with EC measurements was sensitive to the 24 

definition of the objective function and the data-transformation. As expected, explicit 25 
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consideration of Bias in the objective function reduced the Bias substantially (Fig. 10), with 1 

the NEEBSc approach being most effective. The NEECum approach often led to overestimation 2 

of negative and underestimation of positive fluxes (Fig. 10, 11, B.1, B.2). The use of 3 

cumulative data is known to enhance systematic errors and reduce noise (Hess and Schmidt, 4 

1995; Mandel, 1957), and might not provide statistically valid information about associated 5 

errors and results if non-random auto-correlated residuals prevail. Compared to using the Bias 6 

as a criterion, it gives more weight to early observations that affect all succeeding cumulative 7 

values in the simulation period.  8 

High-quality (hourly) EC measurements obtained after data processing usually consist of a 9 

large number of large negative fluxes during daytime and a smaller number of small positive 10 

nighttime fluxes, the latter being underrepresented. During calibration, the negative fluxes 11 

will on average have a higher weight, since they are more frequent and larger than positive 12 

fluxes. Therefore, a log-transformation of the NEE data could partly compensate for this, and 13 

provide more equal weighting. However, our results suggest the effect of this transformation 14 

on the performance of the calibration was weak. The slope of the regression between observed 15 

and simulated positive NEE was just slightly closer to 1 for the NEELog (+ Rsoil) approach 16 

(Fig. 11, B.1, B.2). 17 

The model performance for small positive fluxes improved strongly when considering Rsoil 18 

measurements as an additional data source (Fig. 11, B.1, B.2). Similar findings were reported 19 

by Richardson et al. (2010), Wang et al. (2009), and Yuan et al. (2012). Williams et al. (2009) 20 

stated that usage of multiple data streams in an inverse estimation lessens the criticalness of 21 

biases and internal inconsistencies in each data stream. Including Rsoil measurements in the 22 

optimization process notably reduced the bias observed in the simulation of nighttime NEE 23 

more than any of the modifications of the objective function or the use of data-transformation. 24 
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The NEEinst + Rsoil approach provided the best results regarding both day- and nighttime 1 

fluxes at all three test sites. On average, model bias was one of the lowest for this 2 

optimization strategy at all sites. Even though overall model performance of the eight 3 

calibration approaches differed only marginally, resulting cumulative NEE diverged strongly. 4 

Considering additional data sources such as biomass measurements should help to further 5 

decrease the uncertainty of the cumulative NEE estimation (Richardson et al., 2010).  6 
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 1 

Fig. 10: 2 

Root mean square error (RMSE), model efficiency (ME), Pearson product-moment 3 

correlation coefficient (r), Bias, and cumulated net ecosystem exchange (cum NEE) over 4 

simulation time period, calculated in “gap-filling mode”, for each optimization strategy, for 5 

the simulation without calibration to NEE (‘original’), and for the gap-filling method after 6 

Reichstein et al. (2005) (gap-filling method) at all three study sites (S: Selhausen; M: 7 

Merzenhausen; R: Rollesbroich). For description of optimization strategies see text.  8 
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Fig. 11: 1 

Correlations between observed and simulated net ecosystem exchange (NEE) for all 2 

optimization strategies at test site Selhausen. Reduced major axis regression was derived for 3 

each strategy distinguished between day- (d) and nighttime (n) CO2 fluxes, whereat nighttime 4 

was designated to a measured global radiation lower than 20 W m-2. For description of 5 

optimization strategies see text.  6 
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4. Conclusions 1 

The present study demonstrates that a crop growth module coupled to a model of soil CO2 2 

production, soil water and heat flux can be used to simulate hourly NEE in agricultural 3 

systems. After calibrating the model for soil moisture, crop development, and Rsoil, the 4 

simulation of hourly NEE agreed well to EC measurements. For further validation, the 5 

application of AgroC to cropping systems in different European climate regions would be 6 

interesting. 7 

An additional calibration based on EC measurements further improved the model in terms of 8 

the performance criteria. Even more importantly, systematic errors between EC data and 9 

model were reduced. However, the various calibration approaches reveal that particularly the 10 

cumulative NEE over the entire simulation period is rather strongly affected by the choice of 11 

the objective criterion. Based on the evaluation of different optimization strategies, we 12 

recommend the use of the RMSE and non-transformed instantaneous EC-derived fluxes in 13 

combination with Rsoil measurements (if available) by equally weighted errors. Our results 14 

indicate that inversely estimated and gap-filled cumulative NEE is associated with 15 

considerable uncertainty, which can be decreased when Rsoil measurements are included in the 16 

optimization process. At the same time, inclusion of Rsoil also provided a substantial reduction 17 

of bias in the simulation of the respiratory fluxes. 18 
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APPENDIX 1 

 2 

Appendix A: The AgroC Model 3 

Hourly Time Step 4 

The SOILCO2/RothC model has a flexible time stepping scheme, however the original 5 

SUCROS model explicitly runs at a daily time step. Since NEE typically shows distinct 6 

diurnal variations, the SUCROS code was adapted to work with an hourly time step. Only the 7 

calculation of development stage DVS (-) still relies on the original approach based on the 8 

effective temperature sum. In the SUCROS model, daily total gross assimilation is obtained 9 

by three-point Gauss integration of the instantaneous assimilation rates per unit leaf area over 10 

the daylight period. This integration was omitted in the AgroC model with an hourly time 11 

step. Hourly gross assimilation is computed from the hourly average inputs of global radiation 12 

and mean temperature using the same approach that was used for the instantaneous 13 

assimilation rate in the original code. Major changes were required for the estimation of the 14 

photosynthetic active radiation (PAR) flux at the top of the canopy. In SUCROS, 15 

instantaneous PAR (J [L]-2 [T]-1) is estimated from the sine of solar inclination sinB (-) and 16 

the daily integral of sinB including a correction of lower atmospheric transmittance at lower 17 

solar elevation dsinBE (s d-1). The integral daily value dsinBE is approximated and sinB is 18 

estimated for the day of the year in dependence of the geographic position. In AgroC, the 19 

hourly integral of the sine of solar inclination dsinB (s h-1) is now calculated using the 20 

trapezoidal rule according to: 21 

 22 

𝑑𝑠𝑖𝑛𝐵 = 0.5 (𝑠𝑖𝑛𝐵𝑡−1 + (sin(𝛿) sin(𝜑) + cos(𝛿) cos(𝜔) cos(𝜑))) 𝑡𝑠 (A.1) 23 

 24 



 55 

where instantaneous sinBt-1 (= sin(δ) sin(φ) + cos(δ) cos(ω) cos(φ)) is the sine of solar 1 

elevation of the previous hour, δ (°) is the sun declination angle, φ (°) is the geographic 2 

latitude, ω (°) is the hour angle, and ts (s) is the number of seconds with astronomically 3 

possible solar radiation within one hour (3600 during day, 0 during night, and a value in 4 

between for the two hours that include sunrise and sunset). The value of dsinBE is then 5 

estimated as: 6 

 7 

𝑑𝑠𝑖𝑛𝐵𝐸 = sin (arcsin(0.5 (𝑠𝑖𝑛𝐵𝑡−1 + 𝑠𝑖𝑛𝐵)) + 0.4 (0.5 (𝑠𝑖𝑛𝐵𝑡−1 + 𝑠𝑖𝑛𝐵))) 𝑡𝑠   (A.2) 8 

 9 

where 0.4 is the regression coefficient between transmission and solar angle (Supit et al., 10 

1994). 11 

 12 

Water Fluxes 13 

The coupling between SOILCO2 and SUCROS involves two hydrological processes: rainfall 14 

interception and root water uptake. Interception loss is estimated according to the single-big-15 

leaf concept (Rutter et al., 1971). The canopy interception storage capacity Si ([L]) was 16 

assumed to be proportional to the total leaf area index LAI ([L2 L-2]). Water is removed from 17 

the interception storage by evaporation Ei ([L T-1]): 18 

 19 

𝐸𝑖 = (𝐸𝑇𝑝,𝑐𝑟𝑜𝑝 − 𝐸𝑝)
𝐶𝑖

𝑆𝑖
        (A.3) 20 

 21 

where Ci ([L]) represents the interception storage at a certain time step, ETp,crop ([L T-1]) is the 22 

potential crop evapotranspiration, and Ep ([L T-1]) is the potential soil evaporation. The 23 

amount of interception Ni ([L T-1]) is then estimated according to: 24 

 25 
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𝑁𝑖 = {

0  𝑁0 = 0          
 𝑆𝑖 − 𝐶𝑖           for 𝑆𝑖 − 𝐶𝑖 < 𝑁0
𝑁0  𝑆𝑖 − 𝐶𝑖 > 𝑁0

      (A.4) 1 

 2 

where N0 ([L T-1]) represents precipitation. The amount of precipitation entering the soil Np 3 

([L T-1]) is calculated as the difference between N0 and Ni. 4 

In SUCROS, ETp,crop is computed by scaling the potential grass reference evapotranspiration 5 

(Penman-Monteith approach; Allen et al., 1998) with the dimensionless crop conversion 6 

factor Kc. On the basis of Beer’s law, ETp,crop is split into potential soil evaporation Ep 7 

([L T-1]) and potential transpiration Tp ([L T-1]) in dependence of the LAI: 8 

 9 

𝐸𝑝 = 𝐸𝑇𝑝,𝑐𝑟𝑜𝑝 exp (−0.6 ∙ 𝐿𝐴𝐼)       (A.5) 10 

𝑇𝑝 = 𝐸𝑇𝑝,𝑐𝑟𝑜𝑝 − 𝐸𝑝 − 𝐸𝑖        (A.6) 11 

 12 

The potential soil evaporation is passed to SOILCO2, where it is used to prescribe the 13 

potential upward water flux as upper boundary condition. Potential transpiration is distributed 14 

over soil depth according to the relative root density distribution to provide the potential sink 15 

term for root water uptake. The depth-specific actual root water uptake is computed by scaling 16 

the potential root water uptake with reduction factor α (-) in dependence of soil pressure head 17 

h ([L]) following the approach of Feddes et al. (1978): 18 

 19 

𝛼(ℎ) =  

{
 

 

 

ℎ0−ℎ

ℎ0−ℎ1
 ℎ0 ≤ ℎ ≤ ℎ1

1           for ℎ1 ≤ ℎ ≤ ℎ2

10
ℎ2−ℎ

ℎ3  ℎ2 ≤ ℎ ≤ ℎ3

     (A.7) 20 

 21 

where h0, h1, h2, and h3 ([L]) are prescribed threshold pressure heads (Vanclooster et al., 22 

1995), which are plant dependent (Tab. A.2). Integration of the actual root water uptake over 23 
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depth provides the actual transpiration Ta ([L T-1]). The reduction of stomatal conductance 1 

due to water stress was assumed to correspond to the ratio between actual and potential 2 

transpiration Ta/Tp. 3 

 4 

Carbon Fluxes 5 

In this study, carbon fluxes from the atmosphere to the ecosystem (downward) are defined as 6 

negative fluxes, and upward fluxes are defined as positive. The water stress ratio (Ta/Tp) is 7 

used to scale gross carbon assimilation and to account for the effect of limited soil water 8 

availability on crop activity in terms of gross primary productivity GPP (mol CO2 [L]-2 [T]-1): 9 

 10 

𝐺𝑃𝑃 = −
𝐺𝑝ℎ𝑜𝑡

𝑀𝑜𝑙𝐶𝐻2𝑂
 ∙  

𝑇𝑎

𝑇𝑝
         (A.8) 11 

 12 

where Gphot (kg CH2O [L]-2 [T]-1) is the glucose equivalent of the total gross assimilation per 13 

time step (Spitters et al., 1989), and MolCH2O is the molar mass of CH2O (= 0.030 kg mol-1). 14 

The net primary productivity NPP (mol CO2 [L]-2 [T]-1) is defined as: 15 

 16 

𝑁𝑃𝑃 = 𝐺𝑃𝑃 + 𝑅𝑔𝑟 + 𝑅𝑚        (A.9) 17 

 18 

where Rgr (mol CO2 [L]-2 [T]-1) is the total growth respiration, and Rm (mol CO2 [L]-2 [T]-1) is 19 

the maintenance respiration. Net ecosystem exchange NEE (mol CO2 [L]-2 [T]-1) is computed 20 

as: 21 

 22 

𝑁𝐸𝐸 = 𝑁𝑃𝑃 + 𝑅ℎ         (A.10) 23 

 24 
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where Rh (mol CO2 [L]-2 [T]-1) is the depth-integral of the heterotrophic CO2 source term 1 

provided by the RothC module. 2 

 3 

Maintenance and Growth Respiration 4 

In a first step, the total maintenance respiration demand at 25°C Rm,r (kg CH2O [L]-2 [T]-1) is 5 

computed as a glucose equivalent according to: 6 

 7 

𝑅𝑚,𝑟 =∑ 𝑓𝑚,𝑜
4

𝑜=1
𝑊𝑜 𝑓𝑡        (A.11) 8 

 9 

where fm,o (kg CH2O kg-1 DM [T]-1) is the maintenance coefficient with index o looping over 10 

the four plant organs leaves, stems, roots, and storage organs with coefficients of 0.03, 0.015, 11 

0.015, and 0.01, respectively (Spitters et al., 1989), Wo (kg DM [L]-2) is the respective organ 12 

dry weight, and ft (-) is a time conversion factor accounting for the use of an hourly or daily 13 

time step. In a second step, Rm,r is corrected for temperature to estimate total maintenance 14 

respiration Rm,c (kg CH2O [L]-2 [T]-1) as described by Spitters et al. (1989) and converted to 15 

CO2 equivalent maintenance respiration Rm (mol CO2 [L]-2 [T]-1) by dividing with MolCH2O. 16 

Total growth respiration Rgtot (kg CH2O [L]-2 [T]-1) in glucose equivalents is estimated as: 17 

 18 

𝑅𝑔𝑡𝑜𝑡 = (𝐺𝑝ℎ𝑜𝑡 ∙  
𝑇𝑎

𝑇𝑝
 − 𝑅𝑚,𝑐) − 𝛥𝑊 ∙ 𝐶𝑐𝑜𝑛𝑡 ∙

𝑀𝑜𝑙𝐶𝐻2𝑂

𝑀𝑜𝑙𝐶
    (A.12) 19 

 20 

where ΔW (kg DM [L]-2 [T]-1) is the overall dry matter growth rate, Ccont (g C g-1 DM) is the 21 

conversion factor between carbon and biomass dry matter weight, and MolC is the molar mass 22 

of C (= 0.012 kg mol-1). Growth respiration for each plant organ Rgr,o (mol CO2 [L]-2 [T]-1) is 23 

computed from Rgtot according to: 24 

 25 
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𝑅𝑔𝑟,𝑜 =
𝑅𝑔𝑡𝑜𝑡 ∙ 𝑓𝑜

𝑀𝑜𝑙𝐶𝐻2𝑂
         (A.13) 1 

 2 

where index o loops over the four plant organs, and fo (-) is the organ-specific partitioning 3 

factor. Total growth respiration Rgr (mol CO2 [L]-2 [T]-1) is finally computed as the sum of all 4 

Rgr,o. The sum of maintenance and growth respiration of the roots represents the autotrophic 5 

source term of soil CO2 and is distributed over the soil profile according to the time-variable 6 

relative root density distribution. 7 

 8 

Root Exudation and Root Decay 9 

In SUCROS, the daily or hourly glucose assimilation rate Gphot (kg CH2O [L]-2 [T]-1) is 10 

partitioned in dependence of the DVS into the fraction for the shoot and for the root system to 11 

build up biomass. According to labelling experiments performed by Swinnen et al. (1995) for 12 

winter wheat, 18.2% of net assimilation is transferred to the roots, 7.1% are used to build up 13 

root biomass, and 5.3% are released as young photosynthetate rhizodeposition. This translates 14 

into fractions of 0.39 and 0.29 for root biomass build-up and exudates, respectively, relative 15 

to net assimilation transferred to the roots. The remaining fraction consists of root respiration 16 

and root decay. The relative root exudation factor fexu (-) thus equals 0.43 17 

(= 0.29 / (0.39 + 0.29)). In AgroC, the root exudation rate Rtexu (kg C [L]-2 [T]-1) is computed 18 

according to this partitioning factor from the dry matter root growth rate ΔWrt 19 

(kg DM [L]-2 [T]-1): 20 

 21 

𝑅𝑡𝑒𝑥𝑢 = Δ𝑊𝑟𝑡 ∙ 𝑓𝑟𝑡 ∙ 𝑓𝑒𝑥𝑢 ∙ 0.467       (A.14) 22 

 23 

where frt is the dimensionless partitioning factor for roots, and 0.467 kg C kg-1 DM is the root-24 

specific dry matter carbon content (Goudriaan et al., 1997). Using this approach, the 25 
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simulated root exudation shows diurnal variations due to the dependence on the assimilation 1 

rate, as suggested by Hopkins et al. (2013) and Kuzyakov (2006) amongst others. 2 

Swinnen et al. (1995) reported that 3.1% of the net assimilation ends up as dead roots. In 3 

relation to the 18.2% transferred to the roots, this equals a relative fraction of 0.17. In order to 4 

account for this, a root death factor fdea (-) was introduced. It was assumed that fdea is lower 5 

during the crop juvenile stages than at flowering: 6 

 7 

𝑓𝑑𝑒𝑎 = { 

0  𝐷𝑉𝑆 < 0.2              
𝑓𝑑𝑒𝑎𝑚𝑎𝑥(𝐷𝑉𝑆−0.2)

0.5−0.2
          for 0.2 ≤ 𝐷𝑉𝑆 ≤ 0.5

𝑓𝑑𝑒𝑎𝑚𝑎𝑥  𝐷𝑉𝑆 > 0.5             

    (A.15) 8 

 9 

where fdea is the root death factor in relation to the total amount of roots, and fdeamax (-) is the 10 

maximum value of the root death factor. For winter wheat, a fdeamax of 0.43 was used, which 11 

approximately reproduced the cumulative fraction of dead roots of 0.17 of net assimilation 12 

determined by Swinnen et al. (1995). The rate of root death in terms of carbon release Rtdea 13 

(kg C [L]-2 [T]-1) is computed as: 14 

 15 

𝑅𝑡𝑑𝑒𝑎 = Δ𝑊𝑟𝑡 ∙ 𝑓𝑟𝑡 ∙ 𝑓𝑑𝑒𝑎 ∙ 0.467       (A.16) 16 

 17 

ΔWrt is reduced according to the loss of root exudates and dead roots. The total amount of root 18 

exudates and dead roots is again distributed over depth according to the relative root density 19 

profile. The carbon equivalent of the root exudates is transferred to the depth-specific 20 

decomposable plant material pool (DPM) of the RothC subroutine because of the expected 21 

rapid decomposition of these labile substances by rhizosphere microorganisms. The carbon 22 

equivalent of the dead roots is split into the DPM and the resistant plant material (RPM) pool 23 
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according to the original RothC partitioning factor for incoming plant material of 0.59 and 1 

0.41 (Coleman and Jenkinson, 2008), respectively. 2 

For winter wheat and barley, harvest residues are also considered. At the time of harvest, root 3 

biomass and 25% of stem biomass is added to the DPM and RPM pool up to a user-specified 4 

soil depth (i.e. ploughing depth). Figure 1 provides a summary of the carbon cycling in 5 

AgroC. 6 

 7 

Grassland 8 

The original SUCROS code is not capable of simulating managed grassland, which are 9 

characterized by multiple mowing events over the season. Mowing is associated with the 10 

transfer of glucose from roots and stubble to the leaves, which allows for a faster 11 

compensation of defoliation. The routines implemented in AgroC for the simulation of the 12 

above-mentioned processes follow the sink/source approach suggested by Schapendonk et al. 13 

(1998) for the grassland productivity model LINGRA. 14 

At prescribed mowing dates, the current green leaf area index LAIg is set to a fixed post-15 

mowing leaf area index LAIpost (in this study we set LAIpost = 0.35 based on LAI 16 

measurements). The ratio between pre-mowing LAI and post-mowing LAIpost is used to 17 

compute the respective loss of dry matter biomass: 18 

 19 

𝑓𝑙𝑎𝑖 = 
𝐿𝐴𝐼𝑔

𝐿𝐴𝐼𝑝𝑜𝑠𝑡
          (A.17) 20 

𝑤𝑝𝑜𝑠𝑡,𝑖 = 
𝑤𝑝𝑟𝑒,𝑖

𝑓𝑙𝑎𝑖
         (A.18) 21 

 22 

where flai (-) is the pre-/post-mowing LAI ratio, wpre (kg DM [L]-2) is the biomass prior to 23 

mowing, and wpost (kg DM [L]-2) is the respective biomass after mowing. The index i loops 24 

over leaves, stems, and storage organs/inflorescence. At each mowing event, DVS is also 25 
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reset to a prescribed value of DVSreset = 0.5. In order to simulate the transfer of glucose after 1 

defoliation, we implemented a glucose storage that is filled between a DVSlo of 0.6 and a 2 

DVShi of 1.0. The rate of glucose storage increase λs+ (kg CH2O [L]-2 [T]-1) is computed as a 3 

fraction fstor (-) of global net glucose production: 4 

 5 

𝜆𝑠+ = (𝐺𝑝ℎ𝑜𝑡  ∙  
𝑇𝑎

𝑇𝑝
 − 𝑅𝑚,𝑐) ∙ 𝑓𝑠𝑡𝑜𝑟       (A.19) 6 

 7 

The part of global net glucose production (= Gphot  Ta/Tp – Rm,c) available for biomass growth 8 

and respiration is reduced accordingly by λs+. The storage fraction is computed in dependence 9 

of DVS: 10 

 11 

𝑓𝑠𝑡𝑜𝑟 = { 

0  𝐷𝑉𝑆 ≤ 𝐷𝑉𝑆𝑙𝑜                 
𝑓𝑠𝑡𝑜𝑟𝑚𝑎𝑥(𝐷𝑉𝑆−𝐷𝑉𝑆𝑙𝑜)

(𝐷𝑉𝑆ℎ𝑖−𝐷𝑉𝑆𝑙𝑜)
          for 𝐷𝑉𝑆𝑙𝑜 < 𝐷𝑉𝑆 < 𝐷𝑉𝑆ℎ𝑖

𝑓𝑠𝑡𝑜𝑟𝑚𝑎𝑥  𝐷𝑉𝑆 ≥ 𝐷𝑉𝑆ℎ𝑖                 

  (A.20) 12 

 13 

where fstormax (-) is the user-specified maximum storage fraction. Thus, the glucose storage 14 

Sstor,t (kg CH2O [L]-2) increases by λs+ until a user-defined maximum value of Sstormax 15 

(kg CH2O [L]-2) is reached. After that, Sstor,t remains constant. After mowing, the dry matter 16 

transfer rate λs- ([T
-1]) from Sstor,t to the shoot is estimated as: 17 

 18 

𝜆𝑠− = 
log (100)

𝑡𝑠𝑡𝑜𝑟
          (A.21) 19 

 20 

where tstor ([T]) is a user-specified time required to reach a value of 1% of the storage at the 21 

time of mowing. According to Gonzales et al. (1989) and Prud’homme et al. (1992), the 22 

mobilization of carbohydrates in ryegrass is highest during the first 6 days after defoliation 23 
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and levels out in a second phase that lasts until 29 days after defoliation. In this study, tstor was 1 

set to 15 days, which results in a λs- of 0.31 d-1. Correspondingly, Sstor,t is reduced down to a 2 

limiting value of zero according to: 3 

 4 

𝑆𝑠𝑡𝑜𝑟,𝑡+1 = 𝑆𝑠𝑡𝑜𝑟,𝑡 (1 − 𝜆𝑠−)        (A.22) 5 

 6 

The additional dry matter growth rate ΔWstor (kg DM [L]-2 [T]-1) resulting from the declining 7 

Sstor,t is added to the dry matter growth rate of the shoot ΔWsh, (kg DM [L]-2 [T]-1), which is the 8 

outcome of the photosynthetic activity of the plant. The additional shoot growth rate ΔWstor is 9 

computed as: 10 

 11 

Δ𝑊𝑠𝑡𝑜𝑟 =
𝑆𝑠𝑡𝑜𝑟,𝑡  𝜆𝑠−

𝑓𝑠ℎ (1.46 𝑓𝑙𝑣 + 1.51 𝑓𝑠𝑡)
       (A.23) 12 

 13 

where fsh, flv, and fst are the dimensionless partitioning factors for shoot, leaves, and stems, 14 

respectively. The assimilate requirement coefficients of 1.46 and 1.51 in Equation A.23 have 15 

a unit of kg CH2O kg-1 DM (Spitters et al., 1989). 16 

As suggested by Schapendonk et al. (1998), a mechanism was implemented by which the 17 

specific leaf area (ha leaf kg-1 DM) varies over the season as a function of DVS. Furthermore, 18 

a mechanism to distinguish between vegetative and reproductive development of grass was 19 

introduced as suggested by Barrett et al. (2004). These two stages of development differ in the 20 

productivity of grass and in several major physiological processes that alter the response of 21 

the plant to environmental drivers (e.g., Anslow and Green, 1967; Leafe et al., 1974; Parsons, 22 

1988; Robson et al., 1988).  23 
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Tab. A.1: 1 

Site-specific soil properties (Corg: organic carbon content) and inversely estimated hydraulic 2 

parameters (θr: residual water content; θs: saturated water content; α: inverse of the bubbling 3 

pressure; n: shape parameter; Ks: saturated hydraulic conductivity; van Genuchten, 1980). 4 

 5 

 
soil profile 

horizons 

sand 

(%) 

silt 

(%) 

clay 

(%) 

Corg 

(%) 

 

θr 

(cm3 cm-3) 

θs 

(cm3 cm-3) 

α 

(cm-1) 

n 

(-) 

Ks 

(cm h-1) 

       
     

S
el

h
a

u
se

n
 

0-15 cm 15.4 67.5 17.1 1.03 
 

0.069 0.504 0.0056 1.68 0.01 

15-33 cm 15.6 67.7 16.6 0.96 
 

0.109 0.504 0.0059 1.92 0.05 

33-57 cm 16.2 63.1 23.1 0.34 
 

0.000 0.463 0.0061 1.28 0.35 

57-120 cm 12.3 64.0 23.7 0.24 
 

0.044 0.441 0.0013 1.69 0.05 
      

     

 

      
     

M
er

ze
n

h
a

u
se

n
 

0-12 cm 6.4 78.2 15.4 1.0 
 

0.001 0.462 0.0031 1.69 0.30 

12-40 cm 6.4 78.2 15.4 1.0 
 

0.001 0.571 0.0039 1.63 0.41 

40-60 cm 1.0 77.1 21.9 0.4 
 

0.057 0.418 0.0034 1.21 0.64 

60-110 cm 0.5 73.4 26.1 0.3 
 

0.103 0.367 0.0017 1.88 0.13 

 

      
     

 

      
     

R
o

ll
es

b
ro

ic
h

 

0-5 cm 22.0 60.8 17.2 4.82 
 

0.034 0.443 0.0082 2.83 2.16 

5-14 cm 22.0 60.8 17.2 4.82 
 

0.056 0.380 0.0077 2.84 2.04 

14-34 cm 23.1 59.1 17.8 2.49 
 

0.039 0.379 0.0109 1.68 1.75 

34-60 cm 23.2 59.3 17.5 0.81 
 

0.038 0.340 0.0160 1.33 0.84 

60-100 cm 23.2 59.3 17.5 0.0 
 

0.037 0.375 0.0131 1.06 0.71 
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Tab. A.2: 1 

Selection of most important fitted plant parameters for the calibration of the plant growth 2 

module of AgroC. (WW: winter wheat; WB: winter barley; GL: grassland; DVS: 3 

development stage; DM: dry matter). 4 

 5 

  Selhausen  Merzenhausen  Rollesbroich 

  WW 2009  WW 2012 WW 2013 WB 2014  GL 2013 
         

prescribed threshold pressure 

heads h0, h1, h2, and h3 for scaling 

the root water uptake (cm) 

 

-10, 

-100, 

-300, 

-800 

 

-100, 

-400, 

-1000, 

-10000 

-100, 

-400, 

-1000, 

-10000 

-100, 

-400, 

-1000, 

-10000 

 

-5, 

-70, 

-150, 

-800 

specific leaf area of new leaves 

(ha leaf  kg-1 DM) 

 

0.0024 
 

0.0024 0.0023 0.0033 
 

0.003 

potential CO2 assimilation rate of a 

unit leaf area for light saturation 

(kg CO2  ha-1 leaf  h-1) 

 

47.0 
 

60.0 53.0 48.0 
 

75.0 

initial light use efficiency 

((kg CO2  ha-1 leaf  h-1)(J  m-2  s-1)-1) 

 

0.5 
 

0.5 0.5 0.45 
 

0.36 

DVS against reduction factor of 

the maximal light assimilation rate 

 

0.0 1.0 
 

0.0 1.0 0.0 1.0 0.0 1.0  0.0 1.0 
 

1.0 1.0 
 

1.0 1.0 1.0 1.0 1.0 1.0  0.4 1.0 
 

2.0 0.4 
 

2.0 0.5 2.0 0.4 2.0 0.3  1.0 0.9 
 

  
 

       1.2 0.9 
 

  
 

       1.5 0.9 
 

  
 

       1.8 0.9 

daily average daytime temperature 

against reduction factor of the 

maximal light assimilation rate 

 

0.0 0.05 
 

0.0 0.01 0.0 0.05 0.0 0.6  0.0 0.4 
 

4.0 0.3 
 

6.0 0.3 6.0 0.1 5.0 0.7  5.0 0.6 
 

10.0 0.6 
 

10.0 0.7 10.0 0.5 15.0 0.9  10.0 1.0 
 

15.0 0.8 
 

17.0 1.0 20.0 1.0 18.0 1.0  15.0 1.0 
 

20.0 1.0 
 

25.0 0.5 25.0 0.7 25.0 0.6  20.0 0.8 
 

30.0 0.0 
 

35.0 0.4 35.0 0.6 40.0 0.3  35.0 0.2 

DVS against fraction of dry matter 

allocated to the shoot 

 

0.0 0.33 
 

0.0 0.24 0.0 0.24 0.0 0.34  0.0 0.62 
 

0.1 0.33 
 

0.1 0.24 0.1 0.24 0.51 0.44  0.2 0.52 
 

0.2 0.42 
 

0.2 0.33 0.2 0.33 0.72 0.84  0.4 0.49 
 

0.4 0.67 
 

0.4 0.58 0.4 0.58 1.7 0.99  0.7 0.57 
 

0.5 0.78 
 

0.5 0.64 0.5 0.64 2.0 1.00  1.0 0.64 
 

0.7 0.85 
 

0.7 0.72 0.7 0.72    1.3 0.47 
 

0.9 0.92 
 

0.9 0.80 0.9 0.80    2.0 0.55 
 

1.2 1.0 
 

1.5 0.91 1.5 0.91      
 

2.0 1.0 
 

2.0 1.0 2.0 1.0      
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Appendix B: Results and Discussions Supporting Figures 1 

  2 



 67 

 1 

Fig. B.1: 2 

Correlations between observed and simulated net ecosystem exchange (NEE) for all 3 

optimization strategies at test site Merzenhausen. Reduced major axis regression was derived 4 

for each strategy distinguished between day- (d) and nighttime (n) CO2 fluxes, whereat 5 

nighttime was designated to a measured global radiation lower than 20 W m-2. For description 6 

of optimization strategies see text.  7 
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Fig. B.2: 1 

Correlations between observed and simulated net ecosystem exchange (NEE) for all 2 

optimization strategies at test site Rollesbroich. Reduced major axis regression was derived 3 

for each strategy distinguished between day- (d) and nighttime (n) CO2 fluxes, whereat 4 

nighttime was designated to a measured global radiation lower than 20 W m-2. For description 5 

of optimization strategies see text.  6 
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Fig. B.3: 1 

Cumulated net ecosystem exchange (cum NEE) over simulation time period, calculated in 2 

“gap-filling mode”, for each optimization strategy, for the simulation without calibration to 3 

NEE (‘original’), and for the gap-filling method after Reichstein et al. (2005) (gap-filling 4 

method) in Selhausen (top), Merzenhausen (middle), and Rollesbroich (bottom). For 5 

description of optimization strategies see text. 6 


