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SUPPLEMENTARY FILE 

SUPPLEMENTARY FILE 1. Detailed technical appendix  
 
Microsimulation framework 
 

The UK Health Forum (UKHF) simulation consists of two modules. The first module 

calculates the predictions of risk factor trends over time based on data from rolling cross-

sectional studies. The second module performs the microsimulation of a virtual population, 

generated with demographic characteristics matching those of the observed data. The health 

trajectory of each individual from the population is simulated over time allowing them to 

contract, survive or die from a set of diseases or injuries related to the analysed risk factors. 

The detailed description of the two modules is presented below. 

 

Module one: Predictions of smoking over time 
 

Table 1 presents the categories used for modelling smoking over time. Other risk factors can 

be modelled using the UKHF model, however only smoking is presented here. 
 

Table 1 Description of the categories used to model smoking 

Risk factor (RF) Number of categories 

(N) 

Categories 

Smoking 3 1 Never Smoker 

2 Ex-smoker 

3 Smoker 

 

For each RF, let N be the number of categories for a given risk factor, e.g. N = 3 for smoking. 

Let 𝑘 = 1, 2, …, N number these categories and 𝑝𝑘(𝑡) denote the prevalence of individuals 

with RF values that correspond to the category 𝑘 at time t. We estimate 𝑝𝑘(𝑡) using 

multinomial logistic regression model with prevalence of RF category 𝑘 as the outcome, and 

time t as a single explanatory variable. For 𝑘 < 𝑁, we have 
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The prevalence of the first category is obtained by using the normalisation constraint 

∑ 𝑝
𝑘
(𝑡)𝑁

𝑘=1 = 1. Solving equation (1.1) for 𝑝𝑘(𝑡), we obtain 
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which respects all constraints on the prevalence values, i.e. normalisation and [0, 1] bounds. 
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Multinomial logistic regression 

 

Measured data consist of sets of probabilities, with their variances, at specific time values 

(typically the year of the survey). For any particular time the sum of these probabilities is 

unity. Typically such data might be the probabilities of never smoker, ex-smoker and smoker 

as they are extracted from the survey data set. Each data point is treated as a normally 

distributed1 random variable; together they are a set of N groups (number of years) of K 

probabilities {{ti, ki, ki |k[0,K-1]} | i[0,N-1]}. For each year the set of K probabilities 

form a distribution – their sum is equal to unity. 

 

The regression consists of fitting a set of logistic functions {pk(a, b, t)|k[0,K-1]} to these 

data – one function for each k-value. At each time value the sum of these functions is unity. 

Thus, for example, when measuring smoking in the three states already mentioned, the k = 0 

regression function represents the probability of being a never smoker over time, k = 1 the 

probability of being an ex-smoker and k = 2 the probability of being a smoker. 

 

The regression equations are most easily derived from a familiar least square minimization. 

In the following equation set the weighted difference between the measured and predicted 

probabilities is written as S; the logistic regression functions pk(a,b;t) are chosen to be ratios 

of sums of exponentials (This is equivalent to modelling the log probability ratios, pk/p0, as 

linear functions of time.) 
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The parameters A0, a0 and b0 are all zero and are used merely to preserve the symmetry of the 

expressions and their manipulation. For a K-dimensional set of probabilities there will be 

2(K-1) regression parameters to be determined.    

                                                 
1 Depending on the circumstances this assumption will be more or less accurate and more or less necessary. In 
general, it is both extremely useful and accurate. For simple surveys the individual Bayesian prior and posterior 
probabilities are Beta distributions – the likelihood being binomial. For reasonably large samples, the 
approximation of the beta distributions by normal distributions is both legitimate and a practical necessity. For 
complex, multi-PSU, stratified surveys, it is again assumed that these base probabilities are approximately 
normally distributed and, again, it is an assumption that makes the analysis tractable. 
 
Depending on the nature of the raw data set it may be possible to use non-parametric statistical methods for 
this analysis. This is possible for the HSE and GHS data sets of this study but when this has been done the 
authors can report no discernible difference in the results.       
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For a given dimension K there are K-1 independent functions pk – the remaining function 

being determined from the requirement that complete set of K form a distribution and sum to 

unity. 

 

Note that the parameterization ensures that the necessary requirement that each pk be 

interpretable as a probability – a real number lying between 0 and 1. 

The minimum of the function S is determined from the equations  
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noting the relations 
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The values of the vectors a, b that satisfy these equations are denoted b,a ˆˆ . They provide the 

trend lines,  tpk ;ˆˆ b,a , for the separate probabilities. The confidence intervals for the trend 

lines are derived most easily from the underlying Bayesian analysis of the problem. 

 

Bayesian interpretation 

 

The 2K-2 regression parameters {a,b} are regarded as random variables whose posterior 

distribution is proportional to the function exp(-S(a,b)). The maximum likelihood estimate of 

this probability distribution function, the minimum of the function S, is obtained at the values 

b,a ˆˆ . Other properties of the (2K-2)-dimensional probability distribution function are obtained 

by first approximating it as a (2K-2)-dimensional normal distribution whose mean is the 

maximum likelihood estimate. This amounts to expanding the function S(a,b) in a Taylor 

series as far as terms quadratic in the differences    bb,aa ˆˆ   about the maximum 

likelihood estimate  b,aS ˆˆˆ S . Hence 
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The (2K-2)-dimensional covariance matrix P is the inverse of the appropriate expansion 

coefficients. This matrix is central to the construction of the confidence limits for the trend 

lines.   

 

Estimation of the confidence intervals 

 

The logistic regression functions pk(t) can be approximated as a normally distributed time-

varying random variable     ttpN kk
2,ˆ   by expanding pk about its maximum likelihood 

estimate (the trend line)    tptpk ,ˆ,ˆˆ ba  
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Denoting mean values by angled brackets, the variance of pk is thereby approximated as 
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When K=3 this equation can be written as the 4-dimensional inner product  
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where   jjiicdij ddccP ˆˆ  . The 95% confidence interval for pk(t) is centred given as 

        ttttp kkk  96.1p ,96.1ˆ
k  . 

 

Module two: Microsimulation 
 

Microsimulation initialisation: birth, disease and death models 

 

Simulated people are generated with the correct demographic statistics in the simulation’s 

start-year. In this year women are stochastically allocated the number and years of birth of 

their children – these are generated from known fertility and mother’s age at birth statistics 
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(valid in the start-year). If a woman has children then those children are generated as 

members of the simulation in the appropriate birth year. 

 

The microsimulation is provided with a list of relevant diseases. These diseases used the best 

available incidence, mortality, survival, relative risk and prevalence statistics (by age and 

gender). At initialisation, the prevalence statistics are used to generate stochastically a 

simulated person’s initial disease state in the simulation start-year. The population of people, 

so initialised, will stochastically reproduce the national prevalence statistics for each disease. 

It is assumed that at initialisation the diseases are independent random variables. In the 

course of their lives, simulated people can die from one of the diseases caused by smoking 

that they might have acquired or from some other cause. The probability that a person of a 

given age and gender dies from a cause other than the disease are calculated in terms of 

known death and disease statistics valid in the start-year. It is constant over the course of the 

simulation. The survival rates from smoking-related diseases will change as a consequence of 

the changing distribution of smoking prevalence in the population.  

 

The microsimulation incorporates a sophisticated economic module. The module employs 

Markov-type simulation of long-term health benefits, health care costs and cost-effectiveness 

of specified interventions.  

 

Non-health costs were incorporated into the model based on a toolkit in development by 

analysts in the Department of Health to which we were given early access by Gavin Roberts 

gavin.roberts@york.ac.uk.  

 

 

This section provides an overview of the initialisation of the microsimulation model and will 

be expanded upon in the next sections.  

 

Population models 
 

Populations are implemented as instances of the TPopulation C++ class. The TPopulation 

class is created from a population (*.ppl) file. Usually a simulation will use only one 

population but it can simultaneously process multiple populations (for example, different 

ethnicities within a national population). 

 

Population Editor 

 

The Population Editor Allows editing and testing of TPopulation objects.  

 

The population is created in the start-year and propagated forwards in time by allowing 

females to give birth. The population in each year follows the population predictions 

produced by ONS (Office for National Statistics 2012). The ONS population projections for  

 

England have been used as an approximation for the UK. People within the model can die 

from specific diseases or from other causes. The <deaths by year by sex by age> file is a 

necessary input to the model – valid in the start year and usually referred to as the deaths 

from all causes file. 

mailto:gavin.roberts@york.ac.uk
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Distributions 

 

Distribution name symbol note 

MalesByAgeByYear 𝑝𝑚(𝑎) Input in year0 – probability of a male having age a 

FemalesByAgeByYear 𝑝𝑓(𝑎) Input in year0 – probability of a female having age a 

BirthsByAgeofMother 𝑝𝑏(𝑎) Input in year0 – conditional probability of a birth at age 

a| the mother gives birth. 

NumberOfBirths 𝑝(𝑛) TFR, Poisson distribution, probability of giving birth 

to n children 

MaleDeathByAge 𝑝𝑚(𝑎) Input in year0, probability of a male dying at age a 

FemaleDeathByAge 𝑝𝑓(𝑎) Input in year0, probability of a female dying at age a  

 

Birth model 

 

Any female in the child bearing years {AgeAtChild.lo, AgeAtChild.hi} is deemed capable of 

giving birth. The number of children, n, that she has in her life is dictated by the Poisson 

distribution 𝑝(𝑛) where the mean of the Poisson distribution is the Total Fertility Rate 

(TFR) parameter2.  

 

The probability that a mother (who does give birth) gives birth to a child at age a is 

determined from the BirthsByAgeOfMother distribution as 𝑝𝑏(𝑎). For any particular mother 

the births of multiple children are treated as independent events, so that the probability that a 

mother who produces N children produces n of them at age a is given as the Binomially 

distributed variable, 
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The probability that the mother gives birth to n children at age a is 
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Performing the summation in this equation gives the simplifying result that the probability 

pb(n at a) is itself Poisson distributed with mean parameter 𝜆𝑝𝑏(𝑎), 
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Thus, on average, a mother at age 𝑎 will produce 𝜆𝑝𝑏(𝑎) children in that year. 

The gender of the children3 is determined by the probability pmale=1-pfemale. In the baseline 

model this is taken to be the probability Nm/(Nm+Nf).  

 

                                                 
2 This could be made to be time dependent; in the baseline model it is constant. 
3 The probability of child gender can be made time dependent.  
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The Population editor’ menu item Population Editor\Tools\Births\show random birthList 

creates an instance of the TPopulation class and uses it to generate and list a (selectable) 

sample of mothers and the years in which they give birth. 

 

Time dependent birth rates  

 

The TFR parameter for future years can be input from file if known – or otherwise modelled. 

In this project the TFR parameter is kept constant overtime (Office for National Statistics 

2012). In each year of their simulated life (y at age a), mothers of child bearing age can use 

the appropriate Poisson parameter 𝜆(𝑎)𝑝𝑏(𝑎) to generate the number of children in that year. 

Each child is recorded in the mother’s Life Event list and processed as part of the current 

family at the end of the mother’s life.  

 

Population dynamics 

 

In some year, Y, the population will consist of Nm males and Nf females with their respective 

age distributions. In the next year, Y’, the numbers will have been depleted by deaths and 

augmented by the Nnewborn births. The new, primed, population is determined from the old by 

the following equation set 
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The Population editor’ menu item Population Editor\View\Population dynamics\male 

implements these equations and draws projected populations year by year. 

 

Deaths from modelled diseases 

 

The simulation models any number of specified diseases some of which may be fatal. In the 

start year the simulation’s death model uses the diseases’ own mortality statistics to adjust the 
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probabilities of death by age and gender. In the start year the net effect is to maintain the 

same probability of death by age and gender as before; in subsequent years, however, the 

rates at which people die from modelled diseases will change as modelled risk factors 

change. The population dynamics sketched above will be only an approximation to the 

simulated population’s dynamics. The latter will be known only on completion of the 

simulation. 

 

Immigration and emigration 

 

The population module used in this method accounts for time dependent immigration and 

emigration of individuals. The immigration and emigration rates are based on the differences 

between the current and predicted populations. The immigrant population are generated 

sequentially as part of the national population. 

 

Multiple population processing 
 

Multiple populations can be used in a simulation provided they are non-overlapping (people 

cannot belong to both). 

 

In a simulation, Monte Carlo trials are allocated between current different populations in 

proportion to their total person count (malesCount+femalesCount). The idea being to provide 

a representative sample of the combined population.  

In a simulation, a population (pop) is current if the simulated year Y satisfies   

 

 pop startYear Y pop stopYear      (1.22) 

 

Open populations 
 

This model is an open population model which allows people to enter and to depart from the 

population (departure probability p(t)). 

 

Open population, births and deaths 

 

In the year y the number of males and females in the population are denoted as {Nm(a,y), 

Nf(a,y)}, 

 

And we suppose that they have departure probabilities {pm(a,y), pf(a,y)}. The number of 

new arrivals into each age in the year Y are denoted {NmArr(a,y), NfArr(a,y)}.  

 

The following analysis applies equally to males and females and we drop the gender suffix. 

The male and female populations grow according to the recursion relations 

 

              Ω1, 1 , 1 1 , ,      1ArrN a y N a y p a p a y N a y a         (1.23) 

              Ω1, 1 1 0 1 0, 0,      0Newborn ArrN y N y p p y N y a        (1.24) 
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The longitudinal modelling of populations having known cross sectional data 

 

Given a set of X-sectional population projections {Km(a,y), Kf(a,y)|0<=a<=100; Y0<=y<=Y1} 

(the K- population) the question arises of how to model the lives of individuals within the 

population (the N-population). In the absence of precise arrival (immigration) and departure 

(emigration) statistics, many solutions exist. The population is constructed iteratively: given 

the population in year Y the next year’ population is calculated from the known birth and 

death rates; the departure probabilities and arrival numbers are found by matching with the 

projected K-population.  

 

Minimum arrival and departure model 

 

The minimum arrival and departure model fixes the modelled N-population in the start year 

and compensates in subsequent years either by having non-zero departure statistics (if N>K) 

or by importing new people (K>N).        

From equation (1.23): 
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           Ω, 1, 1 , 1      1ArrN a y K a y N a y p a a        

⇒ 

           Ω1, 1 , 1   , 1, 1ArrN a y N a y p a N a y K a y          (1.26) 

 

The implementation of this model can be arranged using multiple populations – one 

population for each year of the simulation. The first population consists of the base line 

model that matches the N and K populations in the start year; subsequent populations contain 

the corrections (the arrivals, if any in that year). When arrivals enter the simulated population 

they have a start year corresponding to this population’s start year. They usually will have 

been modelled from birth in the appropriate risk and disease environment. Arrivals are 

ordinary members of the modelled population – they simply enter the population at times 

after the simulation-start time. Arrivals carry with them a population identifier.  

 

The numbers of males and females and their ages are known for all populations. Within the 

micro simulation multiple populations are sampled at a rate proportional to their population 

size. 
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Risk factors 
 

Risk factor model 

 

The distribution of risk factors (RF) in the population is estimated using regression analysis 

stratified by both sex S = {male, female} and age group A = {0-9, 10-19, ..., 70-79, 80+}. The 

fitted trends are extrapolated to forecast the distribution of each RF category in the future. For 

each sex-and-age-group stratum, the set of cross-sectional, time-dependent, discrete 

distributions 𝐷 = {𝑝𝑘(𝑡)|𝑘 = 1, … 𝑁;  𝑡 > 0}, is used to manufacture RF trends for individual 

members of the population.  

 

We model different risk factors, some of which are continuous (such as BMI) and some are 

categorical (smoking). Only smoking is described here.  

 

Categorical risk factors 

 

Smoking is the categorical risk factor. Each individual in the population may belong to one of 

the three possible smoking categories {never smoked, ex-smoker, smoker} with their 

probabilities {p0, p1, p2}. These states are updated on receipt of the information that the 

person is either a smoker or a non-smoker. They will be a never-smoker or an ex-smoker 

depending on their original state (an ex-smoker can never become a never-smoker). 

The complete set of longitudinal smoking trajectories and the probabilities of their happening 

is generated for the simulation years by allowing all possible transitions between smoking 

categories: 

 

{never smoked}   {never smoked, smoker }   

{ex-smoker}  {ex-smoker, smoker}   

{smoker}  {ex-smoker, smoker}    

 

When the probability of being a smoker is p the allowed transitions are summarised in the 

state update equation 

 

'

0 0

'

1 1

'

2 2

1 0 0

0 1 1

p p p

p p p p

p p p p p

     
            
         

  (1.27) 

 

After the final simulation year the smoking trajectories are completed until the person’s 

maximum possible age of 110 by supposing that their smoking state stays fixed. The life 

expectancy calculation will consists in summing over the probability of being alive in each 

possible year of life. 

 

In the initial year of the simulation, a person may be in one of the three smoking categories; 

after N updates there will be 3  2N possible trajectories. These trajectories will each have a 

calculated probability of occurring; the sum of these probabilities is 1. 

In each year the probability of being a smoker or a non-smoker will depend on the forecast 

smoking scenario which provides exactly that information. Note that these states are two 

dimensional and cross-sectional {non-smoking, smoking}, and they are turned into three 

dimensional states {never smoked, ex-smoker, smoker} as described above. The time 
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evolution of the three dimensional states are the smoking trajectories necessary for the 

computation of disease table disease and death probabilities. 

 

Input Data 
 

Population assumptions 

 

Figure 2.1 Population pyramid in 2015 in the UK. 

 
Figure 2.1 Population pyramid in 2015 in the UK 

 

 

Smoking prevalence 

 

The microsimulation framework applied to smoking enables us to measure the future health 

impact of changes in smoking prevalence. It includes the impact of giving up and not taking 

up smoking for the following diseases (chronic obstructive pulmonary disease, coronary heart 

disease and stroke) and cancers (acute myeloid leukaemia, chronic myeloid leukaemia, 

bladder, bowel, cervix, liver, lung, kidney, larynx, oesophagus, oral and pharynx, ovary, 

pancreas, stomach). The model is populated with economic data enabling analysis of future 

impact on healthcare costs.  

 

In the simulation each person is categorised into one of the three smoking groups: smokers, 

ex-smokers and people who have never smoked. Projections for these three smoking groups 

have been created from the 2000 to 2012 General Lifestyle Survey datasets. The most recent 

dataset is shown in  

Table 2. The initial distribution of smokers in the model is based on projected proportions of 

smokers, ex-smokers and never smokers in the start year of the simulation. 
 

Table 2 Proportions of people who have never smoked, ex-smokers and smokers from the 2012 General 

Lifestyle Survey dataset 

 Male Female 

Age 
group 

Proportion 
never 
smokers 

Proportion of 
ex-smokers 

Proportion of 
smokers 

Proportion 
never 
smokers 

Proportion of 
ex-smokers 

Proportion of 
smokers 

0-4 0.0 0.0 0.0 0.0 0.0 0.0 

5-9 0.0 0.0 0.0 0.0 0.0 0.0 

10-14 0.0 0.0 0.0 0.0 0.0 0.0 
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15-19 0.80669 0.0223 0.171 0.77255 0.01961 0.20784 

20-24 0.59302 0.07752 0.32946 0.57713 0.09043 0.33245 

25-29 0.53276 0.1339 0.33333 0.59319 0.12425 0.28257 

30-34 0.53511 0.13801 0.32688 0.58681 0.17188 0.24132 

35-39 0.5426 0.19955 0.25785 0.60304 0.16047 0.23649 

40-44 0.53157 0.1833 0.28513 0.59304 0.17913 0.22783 

45-49 0.54409 0.22326 0.23265 0.61191 0.14982 0.23827 

50-54 0.51454 0.22595 0.25951 0.587 0.19503 0.21797 

55-59 0.46042 0.30833 0.23125 0.55028 0.26376 0.18596 

60-64 0.41586 0.38685 0.19729 0.60204 0.2466 0.15136 

65-69 0.40319 0.4511 0.14571 0.51705 0.30303 0.17992 

70-74 0.40642 0.47326 0.12032 0.62697 0.24944 0.1236 

80+ 0.42834 0.50082 0.07084 0.6629 0.25792 0.07919 

 

During the simulation a person may change smoking states and their relative risk will change 

accordingly. Relative risks associated with smokers and people who have never smoked have 

been collected from published data. The relative risks associated with ex-smokers (RRex-

smoker) are related to the relative risk of smokers (RRsmoker). The ex-smoker relative risks are 

assumed to decrease over time with the number of years since smoking cessation (Tcessation). 

These relative risks are computed in the model using equations  (1.28) and (1.29)(1), 

 

 

 ex-smoker cessation smoker cessation( , , ) 1 ( ( , ) 1)exp( ( ) )RR A S T RR A S A T      (1.28) 

 0( ) exp( )A A      (1.29) 

 

where γ is the regression coefficient of time dependency. The constants γ0 and η are intercept 

and regression coefficient of age dependency, respectively, which are related to the specified 

disease ( 

Table 3). 
 

Table 3 Parameter estimates for γ0 and η related to each disease (Hoogenveen et al. 2008). 
Disease γ0 η 

AMI (CHD) 0.24228 0.05822 

Stroke 0.31947 0.01648 

COPD 0.20333 0.03087 

Lung cancer 0.15637 0.02065 

Oesophagus cancer 0.0537424 0 

Larynx cancer 0.0279918 0 

Kidney cancer 0.0385957 0 

Pancreas cancer 0.09279 0 

Stomach cancer 0.0264112 0 

Bladder cancer 0.05417 0 

Oral cavity cancer 0.0493028 0 



13 
 

 

There are a number of smoking related diseases that will be modelled in this project that were 

not analysed in the above study (Hoogenveen et al. 2008). For consistency the ex-smoker 

RR’s of the following diseases AML, CML, bowel, cervical, liver and ovarian cancer have 

been modelled in the same way by using the lung cancer coefficients (γ0 and η) as a proxy. 

 

Modelling diseases 
 

Disease modelling relies heavily on the sets of incidence, mortality, survival, relative risk and 

prevalence statistics. The microsimulation uses risk dependent incidence statistics and these 

are inferred from the relative risk statistics and the distribution of the risk factor within the 

population. In the simulation, individuals are assigned a risk factor trajectory giving their 

personal risk factor history for each year of their lives. Their probability of getting a 

particular risk factor related disease in a particular year will depend on their risk factor state 

in that year. The necessary equations are given below.  

 

Once a person has a fatal disease (or diseases) their probability of survival will be controlled 

by a combination of the disease-survival statistics and the probabilities of dying from other 

causes. Disease survival statistics are modelled as age and gender dependent exponential 

distributions.        

 

Relative risks 
 

Smoking is treated separately and in an identical fashion. The reported incidence risks for any 

disease do not make reference to any underlying risk factor. The microsimulation requires 

this dependence to be made manifest.  

 

The risk factor dependence of disease incidence has to be inferred from the distribution of the 

risk factor in the population (here denoted as ); it is a disaggregation process: 

 

Suppose that  is a risk factor state of some risk factor  and denote by pA(d|,a,s) the 

incidence  probability for the disease d given the risk state, , the person’s age, a, and gender, 

s. The relative risk A is defined by equation (1.30). 

 

 
     

 

| 0

| 0

, , , , ,

, 1

d

d

p d a s a s p d a s

a s

   

 

  






  (1.30) 

 

Where 0 is the zero risk state (for example, the moderate state for alcohol consumption). 

The incidence probabilities, as reported, can be expressed in terms of the equation, 

 

 

     

     0 |

, , , ,

, , , ,

A

A d A

p d a s p d a s a s

p d a s a s a s





  

    












  (1.31) 

 

Combining these equations allows the conditional incidence probabilities to be written in 

terms of known quantities 
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    
 

   |

|

,
, , ,

| , ,
Ad

Ad A

p d a s
p d a s a s

a s a s


  
   




  (1.32) 

 

Previous to any series of Monte Carlo trials the microsimulation program pre-processes the 

set of diseases and stores the calibrated incidence statistics pA(d|0, a, s).  

 

Acquiring survival and mortality data predictions for a particular disease (d) 
 

Published disease statistics are frequently incomplete and occasionally inconsistent. The 

microsimulation program makes use of a number of supporting methods to check and, as 

necessary, to supply missing disease statistics.  

 

Approximating survival data from mortality and prevalence 

 

An example is provided here with a standard life-table analysis for a disease d.     

Consider the 4 following states: 

 

state Description 
0 alive without disease d 
1 alive with disease d 
2 dead from disease d 
3 dead from another disease 

 

pik  is the probability of disease d incidence, aged k 

pk  is the probability of dying from the disease d, aged k 

𝑝𝜔̅𝑘 is the probability of dying other than from disease d, aged k 

 

The state transition matrix is constructed as follows 

 

 

 

 

 

     

     

 

 

 

 

0 0

1 1

2 2

3 3

1 1 1 1 0 0

1 1 1 1 0 0

1 0 1 0

1 0 1

k ik k k k

k ik k k k

k

k k

p k p kp p p p p

p k p kp p p p p

p k p kp

p k p kp p

   

   



 

       
    

        
    
    

     

  (1.33) 

 

It is worth noting that the separate columns correctly sum to unity. 

The disease mortality equation is that for state-2, 

 

      2 1 21 kp k p p k p k     (1.34) 

 

The probability of dying from the disease in the age interval [k, k+1] is  kpp k 1  - this is 

otherwise the (cross-sectional) disease mortality, pmor(k). p1(k) is otherwise known as the 

disease prevalence, ppre(k). Hence the relation 

 
 
 

mor

k

pre

p k
p

p k
    (1.35) 
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For exponential survival probabilities the probability of dying from the disease in the age-

interval [k, k+1] is denoted pk and is given by the formula 

 

  1 ln 1kR

k k kp e R p 


        (1.36) 

 

When, as is the case for most cancers, these survival probabilities are known the 

microsimulation will use them, when they are not known or are too old to be any longer of 

any use, the microsimulation uses survival statistics inferred from the prevalence and 

mortality statistics (equation (1.35)).  

An alternative derivation equation (1.35) is as follows. Let Nk be the number of people in the 

population aged k and let nk be the number of people in the population aged k with the 

disease. Then, the number of deaths from the disease of people aged k can be given in two 

ways: as pknk and, equivalently, as pmor(k)Nk . Observing that the disease prevalence is nk/Nk 

leads to the equation 

 

 

 

 

 
 

k k mor k

k
pre

k

mor

k

pre

p n p k N

n
p k

N

p k
p

p k













  (1.37) 

 

Approximating survival data from mortality, incidence and remission data 

 

We begin with the standard 1 year update equation and by defining some probabilities:  

 ,ip a Y   the incidence probability of the disease at age a 

 ,rp a Y  the remission probability of the disease at age a 

 ,p a Y
  the probability of dying from the disease at age a, in year Y 

 ,p a Y
  the probability of dying from other causes at age a, in year Y 

 

And the probabilities of being in a set of states: 

 

S0  ,
d

p a Y   the probability of being alive without the disease at age a, in year Y 

S1  ,dp a Y   the probability of being alive with the disease at age a, in year Y  

S2  ,p a Y
  the probability of being dead as a result of the disease at age a, in 

year Y 

S3  ,p a Y


  the probability of being dead from other causes at age a, in year Y 

 

The update equation is (the dependence on the year Y is suppressed)  

 

 

 

 

 

     

     

 

 

 

 

1 1 1 1 0 0

1 1 1 1 0 0

1 0 1 0

1 0 1

i rd d

d di r

p a p ap p p p p

p a p ap p p p p

p a p ap

p a p ap p

  

  



 

 

 

       
    

        
    
            

  (1.38) 
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Survival 

At some age, 0a , the person is alive and gets the disease – at this age the state vector is, 

 0 1 0 0 . 

 

If we assume the remission probability is zero the person’s subsequent life is governed by the 

equation 
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 

 

 

 

 

1 1 0 0

1 1 0

1 0 1

d dp a p p p a

p a p p a

p a p p a

 





 

 

      
    

     
         

   (1.39) 

 

At age 0a a N    it has the solution 

       0

1

1
k N

d k k

k

p a N p a p a 





      (1.40) 

 

Disease survival probabilities 

 

Disease survival statistics are gathered from those people who do not die from other causes. 

The probability of surviving N years, given that there is no remission, and that there is no 

probability of death from other causes is simply  

 

     0

1

1
k N

d k

k

p a N p a





     (1.41) 

 

These are longitudinal statistics that, ideally, are gathered by following the life courses of 

many people who have the disease. 

 

In equation  (1.41) it is understood that the disease is contracted at age 0a  and that the death 

probabilities are the successive probabilities of dying from the disease in the first year - 

 0 1p a  , the second year -  0 2p a  , and so on. These are disease survival statistics, 

closely connected to but not the same as disease mortality statistics.  

 

Mortality statistics 
 

In any year, in some population, in a sample of N people who have the disease a subset N  

will die from the disease. 

Mortality statistics record the cross sectional probabilities of death as a result of the disease – 

possibly stratifying by age  

  

 
N

p
N


    (1.42) 
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Within some such subset N of people that die in that year from the disease, the distribution 

by year-of-disease is not usually recorded. This distribution would be most useful. Consider 

two important idealised, special cases 

 

Suppose the true probabilities of dying in the years after some age 0a  are  

 0 1 2 3 4, , , ,p p p p p    
  

 

The probability of being alive after N years is simply that you don’t die in each year  

 

        0 0 1 2 11 1 1 .. 1survive Np a N p p p p            (1.43) 

 

Different survival models 

 

There are three in use (they are easily extended if the data merit): 
 

Survival model 0: a single probability of dying  0p
 

0p  is valid for all years 

 

Survival model 1: two different probabilities of dying  0 1,p p 
 

0p  is valid for the first year; 1p thereafter. 

 

Survival model 2: three different probabilities of dying  0 1 5, ,p p p  
 

0p  is valid for the first year; 1p for the second to the fifth year; 5p thereafter 

 

Remember that different probabilities will apply to different age and gender groups. 

Typically the data might be divided into 10 year age groups. 

 

Calculating survival from incidence and mortality 

 

When a person (of a given gender) dies from a disease they must have contracted it at some 

earlier age. For Survival model 2, this is expressed  
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  (1.44) 

 

The three probabilities 0 1 5, ,p p p  
 are estimated by minimising  
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    

2

2

ˆ
mortality mortality

a AgeGroup

p a p a
S




     (1.45) 

 

When the longitudinal probability of the disease incidence at age a satisfies the recursion 

relation 

 

    (1 (0))(1 (1))..(1 ( 1))inc i i i ip a p p p a p a       (1.46) 

 

Survival Statistics CRUK 2010/11 

 

If unavailable, survival data has been approximated from incidence and mortality data. The 

calculated survival data has been validated by using this data to estimate the mortality data. 

Figure 2-5 are plots which show the rates of incidence and mortality disease data (collected) 

along with the rates of mortality calculated from survival (predicted) for increasing age. The 

figures demonstrate the similarity between the two different mortality datasets for CHD and 

oral and pharynx cancer. These graphs were used to visually assess how close the fit was 

between the predicted and collected mortality data.    

 
Figure 2 Graph showing the incidence, mortality and predicted mortality (mor[survival]) rates of oral 

and pharynx cancer for males at different ages 
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Figure 3 Graph showing the incidence, mortality and predicted mortality (mor[survival]) rates of oral 

and pharynx cancer for females at different ages 

 
Figure 4 Graph showing the incidence, mortality and predicted mortality (mor[survival]) rates of CHD 

for males at different ages 
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Figure 5 Graph showing the incidence, mortality and predicted mortality (mor[survival]) rates of CHD 

for females at different ages 

 

The probabilities of being alive after 1, 5 and 10 years are  
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  (1.47) 

 

 

 

Rates 

 

It is common practice to describe survival in terms of a survival rate R, supposing an 

exponential death-distribution.  In this formulation the probability of surviving t years from 

some time t0 is given as 

   1

survival

0

1

t

Ru Rtp t R due e       (1.48) 

For a time period of 1 year   

 

 

    

1

ln 1 ln 1

R

survival

survival

p e

R p p





    

  (1.49) 

For a time period of, for example, 4 years, 

    
4

41 4

survival

0

4 1 1Ru Rp t R due e p

          (1.50) 

In short, the Rate is minus the natural log of the 1-year survival probability. 
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Survival models 0, 1 and 2 

 

For any potentially terminal disease the model can use any of three survival models, 

numbered {0, 1, 2}. The parameters describing these models are given below. In this study if 

the survival rates were unavailable the survival rates were calculated with survival model 2. 

 

Survival model 0 

 

Given the 1-year survival probability  1survivalp  

The model uses 1 parameter {R} 

 

   ln 1survivalR p    (1.51) 

 

Survival model 1 

 

The model uses two parameters {p1, R} 

Given the 1-year survival probability  1survivalp and the 5-year survival probability 

 5survivalp  

 

 

 

 

1 1 1

51
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4 1

survival

survival

survival

p p

p
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p

 

 
   

 
  (1.52) 

Survival model 2 

 

The model uses three parameters {p1, R, R>5} 

Given the 1-year survival probability  1survivalp and the 5-year survival probability 

 5survivalp  

 

 

 
 
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  (1.53) 
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Modelling costs 
  

Direct costs  

The cost model used in the simulation is part of the economics module and, here, simply 

scales the aggregated individual disease costs according to the relative disease prevalence in 

years after the start year for which the costs are known.   

 

In any year, the total healthcare cost for the disease D is denoted CD(year). If the prevalence 

of the disease is denoted PD(year) we assume a simple relationship between the two of the 

form 

    D DC year P year   (1.54) 

for some constant . 

For each of the trial years, the microsimulation records the prevalence of each disease call it 

PD(year|trial) and the trial population size for that year, Npop(year|trial). Further assume that 

the prevalence in the whole population Npop(year) is a simple scaling of the trial prevalence, 

then  

    
  ( | )

( | )

pop D

D D

pop

N year P year trial
C year P year

N year trial
     (1.55) 

for some constant . 

By comparing any trial year to some initial year, year0, the total disease cost in any year is 

given as 

 
 
 

 

 

( 0 | ) ( | )

0 0 ( | ) ( 0 | )

pop popD D

D pop pop D

N year N year trialC year P year trial

C year N year N year trial P year trial
   (1.56) 

The same method is applied for total NHS social care costs if they are available for a specific 

disease. 

 

Non-health costs 

Non-health costs were based on a human-capital approach. Two parts, ‘mort costs’ and ‘morb 

costs’, form the basis of non-health cost estimations: 

 

Non-health cost = ‘mort cost’ + ‘morb cost’ 

 

Approach to modelling mortality costs: 

 

Mort cost’ = summation of gross annual income, from age of death to 65 years old 

 

‘Mort cost’ is a function of: 

 Age 

 Sex  

 Year of death 

‘Mort cost’ is independent of the cause of death 
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Data source 

Gross income: ONS (2013) Distribution of income, by age and sex 

 

Assumptions 

 Individuals are economically active between 16-65 

 Social value of paid work is equal (on average) to the total cost of employment 

 Data are average figures (i.e. top-down costing approach) 

 

Approach to modelling morbidity costs: 

Morbcost represents the potential net income that an individual would have earned had the 

individual not taken time off of work (sickness absence) due to morbidity. The morbcost of 

an individual is conservatively estimated by multiplying the net annual income by the 

productivity rate and the on-cost, which represents overheads associated with employment 

(constant variable at 30% for the UK). 

 

‘Morb cost’ = full health gross annual income x (1- productivity) x on-costs 

Tax; net income 

 

‘Morb cost’ is a function of: 

 Age 

 Sex 

 QoL 

 Year of disease onset 

 

Data source 

Productivity figures: Understanding Society Survey Gross income: Annual Survey of Hours 

and Earnings On-costs: Eurostat 2012 

 

Paid production is estimated by 

 

 Estimating the productivity of the patient – the amount of possible working time they 

actually spend working – given their age and QoL, using a model based on data from 

the Understanding Society dataset  

 Multiplying this by their gross wages if in work, which is estimated using the Annual 

Survey of Hours and Employment 

 Applying an uplift (“on costs”) to reflect the overhead costs of their employment 

 

Limitations of the non-health cost method within the microsimulation  

 Discounting 

The costs are currently not discounted since discounting for mortcost is difficult to calculate 

since future earnings will need to be discounted prior to summing all the future year earnings. 

Future work should incorporate this into the model.  

  

 Multi-morbidities 



24 
 

If an individual has multiple diseases it is assumed their quality of life is calculated from the 

product of the quality of life of each disease estimating the individual’s productivity level 

(‘maximum limit approach’). For example, if an individual has CHD (utility weight value of 

0.7) and kidney cancer (utility weight value of 0.6), the product of these utility weights are 

used to estimate the productivity, which in turn is used to calculate the morbcost.  
 

When an individual in the microsimulation has more than one disease, the utility weight of 

the more debilitating disease is selected for estimating the individual’s productivity level 

(‘maximum limit approach’) e.g. if an individual has CHD (utility weight value of 0.7) and 

kidney cancer (utility weight value of 0.6), 0.6 is taken as the overriding utility weight value 

to estimate the productivity, which in turn is used to calculate the morbcost.  

 

 Productivity impact curve 

At this stage, we have included only the productivity impact curve of the full societal costing 

method, without inclusion of consumption costs. This is because a comprehensive list of the 

average number of sickness days that patients with various ailments take off in a given year 

was not available to us. Further, because we modelled many diseases (mostly rare cancers), it 

was beyond the scope of this study to conduct expert witness studies with 

specialists/clinicians in order to gain a better idea of the impact that being sick from a 

particular illness has on absenteeism.  Instead, the average utility weight that is associated 

with a particular disease was used to read off the productivity difference that occurs between 

a healthy person and that of a person with the illness.   

 

Acknowledgement: Non-health costs were incorporated into the model based on a toolkit in 

development by analysts in the Department of Health to which we were given early access by 

Gavin Roberts (2)
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SUPPLEMENTARY MATERIAL 2. ICD codes by disease 
Diseases Incidence  Prevalence  Mortality Survival  

CHD I21-I22 I21-I22 I20-I25 Computed from UKHF model 

COPD Computed from UKHF model   J40-J44 J40-J44 J40-J44 

Stroke I60-I69 N/A I60-I69 Computed from UKHF model 

AML 

C92.0, C92.4. C92.5, C93.0, C94.0, 

C94.2 

N/A 

C92.0, C92.4. C92.5, C93.0, C94.0, 

C94.2 

Computed from UKHF model 

Bladder cancer C67 N/A C67 C67 

Bowel cancer C18-20, C21.8 N/A C18-20, C21.8 Computed from UKHF model 

Cervical cancer C53 N/A C53 C53 

CML C92.1 N/A C92.1 Computed from UKHF model 

Kidney cancer C64-C66, C68 N/A C64-C66, C68 C64 - C66, C68 

Larynx cancer C32 N/A C32 C32 

Liver cancer C22 N/A C22 C22 

Lung cancer C33-C34 N/A C33-C34 C33, C34 

Oesophagus cancer C15 N/A C15 C15 

Oral cancer C00-C06, C09, C10, C120-C14 N/A C00-C06, C09, C10, C120-C14 Computed from UKHF model 

Ovarian cancer C56-C57 N/A C56-C57 C56, C57.0 - C57.7 

Pancreatic cancer C25 N/A C25 C25 

Stomach cancer C16 N/A C16 C16 
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SUPPLEMENTARY MATERIAL 3. Data input reference table 

Diseases 

Incidence Prevalence Survival Mortality Costs Utility weights Relative risk: 

smoking 

CHD BHF, 2010  (with BMJ 

correction) 

BHF, 2006 Computed from prevalence and mortality BHF, 2010 (with BMJ 

correction) 

NHS England NICE DYNAMO-HIA, 

2014(3) 

COPD  PHE Wildman et al, 2009 ONS, 2010 NHS England Sullivan et al, 2011 DYNAMO-HIA, 

2014(3) 

Stroke BHF, 2009 N/A Computed from prevalence and mortality BHF, 2010 NHS England NICE DYNAMO-HIA, 

2014(3) 

AML CRUK, 2011 N/A Computed from UKHF model CRUK, 2012 NHS England Sullivan et al, 2011 Fircanis et al, 

2014(4) 

Bladder cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 DYNAMO-HIA, 

2014(3) 

Bowel cancer CRUK, 2011 N/A computed from UKHF model CRUK, 2012 NHS England Sullivan et al, 2011 Botteri et al, 

2008(5) 

Cervical cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 ICESCC, 2006(6) 

CML CRUK, 2011 N/A computed from UKHF model CRUK, 2012 NHS England Sullivan et al, 2011 Musselman et al, 

2013(7) 

Kidney cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 Hunt et al, 2005(8) 

Larynx cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 DYNAMO-HIA, 

2014(3) 

Liver cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 Lee et al, 2009(9) 

Lung cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 DYNAMO-HIA, 

2014(3) 

Oesophagus cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 DYNAMO-HIA, 

2014(3) 

Oral cancer 

 

CRUK, 2011 N/A computed from UKHF model CRUK, 2012 NHS England Sullivan et al, 2011 DYNAMO-HIA, 

2014(3) 

Ovarian cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Sullivan et al, 2011 Whiteman et al, 
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2006(10) 

Pancreatic cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012 NHS England Romanus et al, 

2012 

DYNAMO-HIA, 

2014(3) 

Stomach cancer CRUK, 2011 N/A ONS, 2012 CRUK, 2012  NHS England Sullivan et al, 2011 Ladeiras-Lopes et 

al, 2008(11) 
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SUPPLEMENTARY FILE 4. Data inputs 
 

  
Table 1.1 Incidence rates 
Table 1.2 Mortality rates 
Table 1.3 Survival rates 
Table 1.4 Smoking relative risks 
Table 1.5 Smoking direct costs 
Table 1.6 Smoking utility weights 
Table 1.7 UK income distribution 
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Table 1.1 Incidence rate per 100,000 
population 

                 

                    AML 
                   Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

 males 1.06 0.67 0.63 0.72 0.94 0.84 1.05 1.45 1.78 2.27 3.86 5.17 8.01 12.99 19.69 25.97 33.97 35.75 
 females 1.06 0.43 0.65 0.65 1.05 0.99 1.14 1.07 1.79 2.06 3.03 4.2 5.39 8.27 11.47 15.72 19.25 22.83 
 

                    Bladder cancer 
                   Age group 0-4 5-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

   males 0.2 0 0.1 0.2 0.5 0.9 1.7 4.6 9.5 19.9 37.3 70.5 108.8 153.5 211.3 264.3 
   females 0.1 0 0 0.2 0.2 0.6 1 1.7 3.3 7 11.3 18.8 31 44.4 59.7 76.3 
   

                    Cervical cancer 
                   Age group 0-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

   males 0 0.1 2.9 19.1 19.7 19.1 15.7 12.1 10.3 10.4 9.1 8.6 9.9 11.8 12.5 12.4 
   females 0 0.1 2.9 19.1 19.7 19.1 15.7 12.1 10.3 10.4 9.1 8.6 9.9 11.8 12.5 12.4 
   

                    COPD 
                   Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 >80 

  males 1.2 2.6 2.1 0 1.8 3.4 7.9 25 52 106 205.2 298 491.9 437.5 334.8 263.4 0 
  females 0 3.4 1.6 0 1.3 3.4 9.8 28.2 60.4 121.2 174.5 235.4 326.9 216.8 228 0 0 
  

                    CML 
                   Age group 0-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

  males 0 0.1 0.2 0.5 0.5 0.8 0.9 1 1.4 1.4 1.7 2.1 2.9 3.6 4.3 5.2 8.3 
  females 0 0.1 0.3 0.3 0.5 0.3 0.6 0.8 0.6 1.1 1.2 1.3 1.4 2 2.5 3.4 4.3 
  

                    Colorectal cancer 

                   Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 
 males 0 0 0.3 0.5 1 2.5 4.7 5.6 11.3 23.1 46.8 85.2 166 252.9 328.3 416.3 491.4 518.6 
 females 0 0.1 0.3 0.7 1.3 2.6 3.9 5.1 11.2 20.3 36.4 57.9 99.8 147.8 194 257.8 315.1 334.3 
 

                    CHD 
                   Age group 0-29 30-54 55-64 65-74 75-75 76-84 >84 

            males 0 88.1 317 533 533 1017 1987 
            females 0 21.2 90.3 237 597 597 1395 
                                

Kidney cancer 
                   Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

 males 1.8 0.3 0.1 0.2 0.3 0.5 1.4 3.8 7.4 11.5 20.4 30.4 46.1 57.1 79.7 95.1 106.2 104.3 
 females 1.9 0.3 0.1 0.1 0.3 0.5 1.1 2 3.9 5.7 11.2 16.7 23.8 29 41.3 50.7 51.5 51.2 
 

                    Larynx cancer 
                   Age group 0-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

      males 0 0 0.5 1.3 3.1 6.8 13.6 17.6 23.1 26.2 25.2 24 23.5 
      females 0 0.1 0.2 0.4 0.8 1.6 2.4 3.2 4.5 4.7 4.2 4.4 3.2 
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Table 1.1 (continued)                    

Liver cancer                    

Age group 0-4 5-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84    

males 0.5 0.1 0.1 0.3 0.5 0.8 1.7 3.8 7.4 13.8 17.4 27.3 37.7 48 55.5 57.8 
   females 0.5 0.1 0.2 0.2 0.4 0.5 0.9 1.4 3 4.6 7.4 10.1 17.3 23.4 28.9 33.4 
                     

  Lung cancer                    

Age group 0-4 5-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84   

males 0 0 0.2 0.3 0.6 1.1 2.7 6.8 15.6 37.8 87.3 148.2 251.5 369.4 463.5 565.2 582.3 
  females 0.1 0 0.3 0.3 0.5 1 2.2 6 15.9 35.7 70.8 117.5 182.1 239.3 282.2 323.3 274.6 
  

                    Oesophageal cancer 
                   Age group 0-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

     males 0 0.2 0.3 1.1 3.1 6.8 15.8 28 44.1 59.1 75.5 88.9 110.3 116.8 
     females 0 0 0.1 0.3 0.8 2 4.6 9.1 13.5 19.8 28.8 39.3 53.7 65.6 
     

                    Oropharyngeal cancer 
                  Age group 0-4 5-9 10-14 15-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

  males 0.1 0.1 0.1 0.2 0.8 1.1 2.8 6.7 15 27 39.5 42.5 41.5 39 36.1 34.4 31.7 
  females 0.1 0 0.1 0.2 0.5 0.9 1.5 3.2 5.3 10.3 14.4 16.4 17.8 20 20.3 21.5 23.6 
  

                    Ovarian cancer 
                   Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

 males 0.1 0.2 0.6 1.4 3.1 4.3 5.6 7.9 12.5 18.5 26.9 35.3 46.8 57.9 67.5 69 72.6 70.3 
 females 0.1 0.2 0.6 1.4 3.1 4.3 5.6 7.9 12.5 18.5 26.9 35.3 46.8 57.9 67.5 69 72.6 70.3 
                     

Pancreatic cancer 
                   Age group 0-14 15-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

    males 0 0.1 0.1 0.3 0.9 2.2 5 9.2 18.5 28.6 43.2 58.9 78.4 94.9 109.4 
    females 0 0.1 0.2 0.3 0.7 1.9 3.3 7.3 12.5 21.6 34.1 49.7 64 82.2 92.6 
    

                    Stomach cancer 
                   Age group 0-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

   males 0 0.1 0.1 0.2 0.7 1.3 3.1 5.2 9 15.8 23.4 41.7 69.2 97.5 125.4 136.8 
   females 0 0.1 0.2 0.4 0.8 0.7 1.9 3.1 4.3 6.1 9.2 14.4 27 40 53.1 61.6 
   

                    Stroke 
                   Age group 0-44 45-64 65-74 >74 

               males 7 114 393 794 
               females 6 69 275 879 
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Table 1.2 Mortality rate per 100,000 
population 

                 

                     

AML 
                    Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

  males 0.2 0.1 0.1 0.4 0.3 0.4 0.4 0.7 0.6 1 1.8 3.3 6.6 11.8 19.7 27 35.6 38.6 
  females 0.3 0.2 0.1 0.2 0.3 0.2 0.4 0.5 0.6 1.2 1.5 2.7 3.9 6.8 11.9 16.4 20 23.8 
  

                     Bladder cancer 
                    Age group 0-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

       males 0 0.1 0.1 0.3 1 2.2 5.5 10.7 21.3 36.9 66 114.5 210.8 
       females 0 0.1 0.2 0.5 0.7 1.2 2.4 3.8 7.5 13.6 20.9 37.8 66.3 
       

                     Cervical cancer 
                    Age group 0-19 20-24 25-29 30-34 35-39 40-44 45-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

      males 0 0.3 1.3 1.7 2.5 2.9 3.6 3.7 4.1 5 6.5 8.1 9.3 11.9 
      females 0 0.3 1.3 1.7 2.5 2.9 3.6 3.7 4.1 5 6.5 8.1 9.3 11.9 
      

                     COPD 
                    Age group 0 1-4 5-14 15-24 25-34 35-44 45-54 55-64 65-74 75-84 >84 

         males 0 0 0.1 0 0 0.7 4.5 32.9 121.7 365.2 829.4 
         females 0.3 0 0 0 0.1 0.5 4 26.4 90.3 257.3 423.1 
         

                     CML 
                    Age group 0-24 25-29 30-34 35-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

       males 0 0.1 0 0.1 0.1 0.2 0.2 0.5 0.8 1.4 1.6 4.2 6.3 
       females 0 0 0 0 0.1 0.1 0.2 0.4 0.3 0.7 1 2.3 4.2 
       

                     Colorectal 
cancer 

                    

Age group 0-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84      

males 0 0.2 0.4 1.1 1.6 2.9 6.7 12.8 26.1 43.3 68.1 110.5 163.6 233.2 345      

females 0 0.2 0.6 1.1 1.2 2.7 5.3 9.9 16 25.1 39.2 61.2 95.3 147.5 233.6      

                     

CHD                     

Age group 0-29 30-54 55-64 65-74 75-84 >84               

males 0 12.3 57.8 137 347 848               

females 0 2.7 14.9 54.6 190 574               

                     Kidney cancer                     

Age group 0-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84    

males 0.1 0 0 0 0 0.2 0.5 1.6 3.2 5.4 10.2 15.6 21.4 32.8 42.6 62.8 80.4    

females 0.1 0 0.1 0 0.1 0.1 0.3 0.6 1.3 2.3 4.5 7.5 9.6 16.2 23 29.7 40.6    

 

                    

Larynx cancer 
                    Age group 0-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

         males 0 0.2 0.5 1.3 3 4.5 6.9 8.6 9.8 10.3 17.7 
         females 0 0.1 0.1 0.3 0.7 0.9 1.4 1.7 2 2.6 3.3 
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Table 1.2 
(continued) 

                    

Liver cancer                     

Age group 0-4 5-14 15-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84     

males 0.1 0 0 0.2 0.4 0.6 1.1 2.4 5.2 10.3 14.2 22.8 34.8 45.9 58.1 58     

females 0.1 0 0.1 0.1 0.2 0.3 0.7 1.3 2.3 5 7.3 10.6 18.3 25.6 31.9 38.2     

 

                    

Lung cancer                     

Age group 0-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 
     males 0 0.1 0.1 0.5 1.7 4.5 10.7 27.3 62.3 113.7 188.1 292.5 383.9 479.1 559.4 
     females 0 0 0.1 0.5 1.3 3.4 9.6 23.7 51.4 84.6 134.5 189.7 230.9 287.5 271 
     

                     Oesophageal 
cancer 

                    

Age group 0-24 25-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84        

males 0 0.2 0.6 2.4 5.2 12.4 21.7 36.1 50.4 66.8 86.1 115.5 134.5        

females 0 0.1 0.2 0.5 1.2 3.3 5.7 9.7 14.2 23.4 35.4 53.3 71.6        

 

                    

Oropharyngeal cancer 
                   Age group 0-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

      males 0 0.1 0.1 0.4 0.8 2.6 6 9.7 13.4 14.6 15.5 15.6 15 20.3 
      females 0 0 0.1 0.2 0.5 0.9 2.2 3.6 4 4.7 5.9 8 9.6 14.3 
      

                     Ovarian cancer 
                    Age group 0-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

    males 0 0.1 0.2 0.3 0.7 1.2 2.3 5.3 9.7 15.6 26 38.4 45.9 58.8 63.8 67 
    females 0 0.1 0.2 0.3 0.7 1.2 2.3 5.3 9.7 15.6 26 38.4 45.9 58.8 63.8 67 
    Table 1.2 

(continued)                     

                     Pancreatic 
cancer 

                    

Age group 0-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84       

males 0 0 0.2 0.6 1.7 3.9 7.8 15.6 25.9 39.4 57.2 75.1 93.8 114.8       

females 0 0.1 0.1 0.5 1.2 2.5 5.9 10.3 19.9 30.2 46.1 60 80.5 97       

 

                    

Stomach cancer 
                    Age group 0-14 15-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >84 

     males 0 0 0.2 0.4 0.8 1.5 2.4 4.2 7.4 11.8 21.1 41.1 63.1 91.8 119.8 
     females 0 0.1 0.3 0.5 0.4 1.1 1.7 2.2 3.5 5 7.9 16.6 26.2 39.7 55 
     

                     Stroke                     

Age group 0 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 >89 

males 1.44 0 0 0.07 0.42 0.55 0.6 2.18 3.45 6.02 8.76 13.72 24.62 35.63 56.42 127.24 257.84 541.58 1009.9 1925.1 

females 1.82 0.3 0.06 0.14 0.44 0.34 0.87 1.35 1.9 4.18 6.95 10.91 17.34 23.34 40.99 92.88 221.69 486.07 1024.7 2198.1 
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Table 1.3 Survival rate (%)           

           

AML 
          Age group 15-39 40-49 50-59 60-69 70-79 >79 

    male (1 yr survival) 0.84 0.86 0.84 0.76 0.63 0.47 
    female (1 yr survival) 0.85 0.83 0.82 0.75 0.61 0.44 
    male (5 yr survival) 0.69 0.74 0.69 0.56 0.43 0.28 
    female (5 yr survival) 0.7 0.7 0.68 0.56 0.43 0.23 
    

           Bladder cancer 
          Age group 15-49 50-59 60-69 70-79 >79 

     male (1 yr survival) 0.86 0.86 0.84 0.78 0.65 
     female (1 yr survival) 0.67 0.77 0.75 0.67 0.5 
     male (5 yr survival) 0.73 0.69 0.67 0.58 0.42 
     female (5 yr survival) 0.48 0.57 0.56 0.48 0.3 
     

           Cervical cancer 
          Age group 15-39 40-49 50-59 60-69 70-79 >79 

    male (1 yr survival) 0 0 0 0 0 0 
    female (1 yr survival) 0.97 0.92 0.87 0.77 0.67 0.5 
    male (5 yr survival) 0 0 0 0 0 0 
    female (5 yr survival) 0.9 0.79 0.68 0.54 0.42 0.27 
    

           Colorectal cancer           

Age group 15-39 40-49 50-59 60-69 70-79 >79     

male (1 yr survival) 0.85 0.85 0.84 0.85 0.77 0.62     

female (1 yr survival) 0.88 0.87 0.86 0.84 0.76 0.57     

male (5 yr survival) 0.67 0.63 0.62 0.68 0.58 0.44     

female (5 yr survival) 0.7 0.65 0.65 0.68 0.59 0.42     

           

COPD 
          Age group 0-19 20-39 40-59 60-79 >79 

     male (1 yr survival) 0.9844 0.9922 0.9961 1 1 
     female (1 yr survival) 1 0.9922 1 1 1 
     male (5 yr survival) 0.9653 0.9653 0.9922 1 1 
     female (5 yr survival) 1 0.9807 1 1 1 
     male (10 yr survival) 0.9653 0.9653 0.899 0.874 0.8398 
     female (10 yr survival) 1 0.9764 0.9242 0.8919 0.884 
                

CML 
          Age group 15-39 40-49 50-59 60-69 70-79 >79 

    male (1 yr survival) 0.84 0.86 0.84 0.76 0.63 0.47 
    female (1 yr survival) 0.85 0.83 0.82 0.75 0.61 0.44 
    male (5 yr survival) 0.69 0.74 0.69 0.56 0.43 0.28 
    female (5 yr survival) 0.7 0.7 0.68 0.56 0.43 0.23 
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Table 1.3 (continued)           
CHD           

Age group 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 >89 

male (1 yr survival) 1 1 1 0.9375 0.9766 0.9375 0.9727 0.8904 0.8125 0.875 

female (1 yr survival) 1 1 1 0.9375 0.9687 0.9375 0.9141 0.9062 0.8437 0.875 

male (5 yr survival) 1 1 1 0.8515 0.8882 0.8526 0.9726 0.8904 0.8125 0.632 

female (5 yr survival) 1 1 1 0.8655 0.9241 0.8642 0.914 0.9062 0.8437 0.5902 

male (10 yr survival) 1 1 1 0.8514 0.8739 0.8054 0.8044 0.7176 0.5402 0.5621 

female (10 yr survival) 1 1 1 0.8655 0.8986 0.8156 0.7436 0.6245 0.4919 0.5612 

           

Kidney cancer           

Age group 15-49 50-59 60-69 70-79 >79      

male (1 yr survival) 0.85 0.8 0.78 0.7 0.54      

female (1 yr survival) 0.87 0.83 0.78 0.7 0.49      

male (5 yr survival) 0.74 0.64 0.59 0.51 0.37      

female (5 yr survival) 0.79 0.69 0.62 0.53 0.31      

           

Larynx cancer 
          Age group 15-49 50-59 60-69 70-79 >79 

     male (1 yr survival) 0.9 0.89 0.87 0.83 0.76 
     female (1 yr survival) 0.9 0.89 0.87 0.83 0.76 
     male (5 yr survival) 0.74 0.72 0.66 0.63 0.63 
     female (5 yr survival) 0.74 0.72 0.66 0.63 0.63 
     

           Liver cancer           

Age group 15-39 40-49 50-59 60-69 70-79 >79     

male (1 yr survival) 0.41 0.42 0.42 0.35 0.3 0.18     

female (1 yr survival) 0.59 0.45 0.4 0.35 0.25 0.13     

male (5 yr survival) 0.26 0.21 0.2 0.14 0.07 0.06     

female (5 yr survival) 0.32 0.2 0.15 0.13 0.07 0.02     

           

Lung cancer 
          Age group 15-39 40-49 50-59 60-69 70-79 >79 

    male (1 yr survival) 0.59 0.4 0.37 0.35 0.3 0.21 
    female (1 yr survival) 0.68 0.48 0.45 0.42 0.34 0.23 
    male (5 yr survival) 0.4 0.16 0.13 0.12 0.09 0.06 
    female (5 yr survival) 0.45 0.21 0.18 0.17 0.12 0.07 
    

           Oesophageal cancer           

Age group 15-49 50-59 60-69 70-79 >79      

male (1 yr survival) 0.52 0.51 0.5 0.43 0.27      

female (1 yr survival) 0.56 0.56 0.52 0.41 0.24      

male (5 yr survival) 0.17 0.19 0.18 0.15 0.05      

female (5 yr survival) 0.27 0.28 0.23 0.15 0.05      
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Table 1.3 (continued)           

Oropharynx cancer 
          Age group 0-19 20-39 40-59 60-79 >79 

     male (1 yr survival) 1 0.9453 0.9238 0.9531 0.9687 
     female (1 yr survival) 1 0.9687 0.9375 0.9453 0.9687 
     male (5 yr survival) 1 0.9453 0.7136 0.7611 0.7995 
     female (5 yr survival) 1 0.8532 0.7371 0.8192 0.8193 
     male (10 yr survival) 1 0.8244 0.7136 0.7189 0.7449 
     female (10 yr survival) 1 0.8521 0.7208 0.7647 0.7386 
     

           Ovarian cancer 
          Age group 15-39 40-49 50-59 60-69 70-79 >79 

    male (1 yr survival) 0 0 0 0 0 0 
    female (1 yr survival) 0.95 0.91 0.86 0.78 0.64 0.36 
    male (5 yr survival) 0 0 0 0 0 0 
    female (5 yr survival) 0.87 0.72 0.58 0.42 0.34 0.17 
               

Pancreatic cancer           

Age group 15-49 50-59 60-69 70-79 >79      

male (1 yr survival) 0.39 0.29 0.24 0.17 0.08      

female (1 yr survival) 0.47 0.34 0.26 0.18 0.09      

male (10 yr survival) 0.0602 0.0208 0.0106 0.0066 0.0088      

female (10 yr survival) 0.0941 0.0217 0.0096 0.0061 0.0031      

           

Stomach cancer 
          Age group 15-39 40-49 50-59 60-69 70-79 >79 

    male (1 yr survival) 0.54 0.55 0.56 0.52 0.44 0.29 
    female (1 yr survival) 0.57 0.55 0.54 0.53 0.42 0.27 
    male (5 yr survival) 0.34 0.25 0.26 0.23 0.2 0.08 
    female (5 yr survival) 0.36 0.3 0.28 0.25 0.2 0.09 
    

           Stroke           

Age group 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 >89 

male (1 yr survival) 1 1 0.9983 0.5 0.9844 0.9824 0.9648 0.9687 1 1 

female (1 yr survival) 0.9844 0.998 0.9873 0.5 0.9883 0.95 0.9687 0.918 1 1 

male (5 yr survival) 1 1 0.9895 0.0312 0.9824 0.9294 0.9648 0.9687 0.836 1 

female (5 yr survival) 0.9798 0.998 0.9758 0.0312 0.982 0.9034 0.9687 0.918 0.844 1 

male (10 yr survival) 1 0.9799 0.9709 0.0312 0 0.8509 0.8427 0.6185 0.0561 0.2151 

female (10 yr survival) 0.9798 0.9721 0.9546 0.0312 0 0.8259 0.8226 0.5657 0.1125 0.1935 
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Table 1.4 Smoking relative risks (males) 

       

         CHD male Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  3.25 4.71 5.85 3.69 2.71 2.39 1.91 

Bowel cancer male Age [0-100] 
      

 
Smoker  1.18 

      COPD male Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  1 1 1 8.13 9.8 13.21 18.93 

Larynx cancer male Age [0-100] 
      

 
Smoker  14.6 

      Liver cancer male Age [0-100] 
      

 
Smoker  1.61 

      Oesophageal cancer male Age [0-100] 
      

 
Smoker  6.76 

      Oropharyngeal cancer male Age [0-100] 
      

 
Smoker  10.89 

      Stroke male Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  1 1.05 3.75 6.08 3.96 2.55 2.69 

Bladder cancer male Age [0-100] 
      

 
Smoker  3.27 

      Cervical cancer male Age [0-100] 
      

 
Smoker  1 

      AML male Age [0-100] 
      

 
Smoker  1.4 

      CML male Age [0-100] 
      

 
Smoker  1.31 

      Stomach cancer male Age [0-100] 
      

 
Smoker  1.62 

      Ovarian cancer male Age [0-100] 
      

 
Smoker  1 

      Kidney cancer male Age [0-100] 
      

 
Smoker  2.12 

      Lung cancer male Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  1.3 1 5.78 24.97 34.02 31.47 28.4 

Pancreatic cancer male Age [0-100] 
      

 
Smoker  2.31 
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Table 1. 4 Smoking relative risks (females) 

       

         CHD female Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  1.44 2.25 7.71 5.69 1.19 2.56 2.48 

Bowel cancer female Age [0-100] 
      

 
Smoker  1.2 

      COPD female Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  1 1 1 12.92 9.47 11.19 14.72 

Larynx cancer female Age [0-100] 
      

 
Smoker  13.02 

      Liver cancer female Age [0-100] 
      

 
Smoker  1.86 

      Oesophageal cancer female Age [0-100] 
      

 
Smoker  7.75 

      Oropharyngeal cancer female Age [0-100] 
      

 
Smoker  5.08 

      Stroke female Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  2 5.67 8.22 4.58 5.77 2.76 2.58 

Bladder cancer female Age [0-100] 
      

 
Smoker  2.22 

      Cervical cancer female Age [0-100] 
      

 
Smoker  1.6 

      AML female Age [0-100] 
      

 
Smoker  1.4 

      CML female Age [0-100] 
      

 
Smoker  1.31 

      Stomach cancer female Age [0-100] 

      

 
Smoker  1.2 

      Ovarian cancer female Age [0-100] 
      

 
Smoker  2.4 

      Kidney cancer female Age [0-100] 
      

 
Smoker  1.44 

      Lung cancer female Age [35-40] Age [40-45] Age [45-50] Age [50-55] Age [55-60] Age [60-65] Age [>65] 

 
Smoker  2 1 18.08 11.14 17.87 13.32 17.49 

Pancreatic cancer female Age [0-100] 
      

 
Smoker  2.55 
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Table 1.5 Smoking direct costs 
  Disease £ bn Year 

CHD 1.464 2013 

Bowel cancer 0.317 2013 

COPD 0.800 2013 

Larynx cancer 0.022 2013 

Liver cancer 0.029 2013 

Oesophageal cancer 0.057 2013 

Oropharyngeal cancer 0.069 2013 

Stroke 0.819 2013 

Bladder cancer 0.029 2013 

Cervical cancer 0.028 2013 

AML 0.314 2013 

CML 0.008 2013 

Stomach cancer 0.044 2013 

Ovarian cancer 0.055 2013 

Kidney cancer 0.031 2012 

Lung cancer 0.163 2013 

Pancreatic cancer 0.058 2013 
 
 

Table 1.6 Smoking utility weights 
  Disease Male Female 

CHD 0.61 0.61 

Bowel cancer 0.68 0.68 

COPD 0.47 0.47 

Larynx cancer 0.85 0.85 

Liver cancer 0.62 0.62 

Oesophageal cancer 0.90 0.90 

Oropharyngeal cancer 0.69 0.69 

stroke 0.63 0.63 

Bladder cancer 0.71 0.71 

Cervical cancer N/A 0.69 

AML 0.65 0.65 

CML 0.65 0.65 

Stomach cancer 0.71 0.71 

Ovarian cancer N/A 0.85 

Kidney cancer 0.66 0.66 

Lung cancer 0.56 0.56 

Pancreatic cancer 0.79 0.79 
 
 

Table 1.7 Distribution of mean income and tax, by age and sex, 2012-2013 

Age 

Males 

Mean income before tax (£) Mean tax (£) Mean income after tax (£) 

16-20 13,200 1,010 12,190 

20-24 17,400 1,920 15,480 

25-29 24,000 3,470 20,530 

30-34 31,500 5,580 25,920 

35-39 38,300 7,830 30,470 

40-44 42,400 9,270 33,130 

45-49 44,200 9,910 34,290 

50-54 43,500 9,560 33,940 

55-59 40,200 8,370 31,830 

60-64 33,300 6,220 27,080 

    

Age 

Females 

Mean income before tax (£) Mean tax (£) Mean income after tax (£) 

16-20 12,000 768 11,232 

20-24 15,100 1,390 13,710 

25-29 21,200 2,650 18,550 

30-34 25,400 3,690 21,710 

35-39 27,300 4,260 23,040 

40-44 26,900 4,220 22,680 

45-49 27,200 4,290 22,910 

50-54 26,400 4,030 22,370 

55-59 25,000 3,580 21,420 

60-64 21,800 2,890 18,910 
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SUPPLEMENTARY MATERIAL 5: Tobacco duty escalator assumptions 
 

The price of cigarettes was determined from a 2013 overall average retail price of a 

20-pack of cigarettes weighted by sales, being £7.13 (12). A typical 25-gram pack of H-RT 

was priced at £7.89 in 2013 (13). Differences in market share between cigarette smokers and 

H-RT smokers were incorporated in the simulation (14, 15). Consistent with previous 

research (16) estimating the prevalence elasticity of tobacco products between 50-75%, the 

prevalence elasticity for tobacco products in the UK was estimated at 63% of their price 

elasticity of demand (16). Assuming a price elasticity of -0.5  for cigarettes, and -1.17 for 

HR-T (17), this results in a prevalence elasticity of -0.315 and -0.74 respectively, where a 

10% increase in the price of cigarettes would lead to a 3.15% or 7.4% long-term decline in 

the prevalence of smokers. The proportion of cigarette smokers versus HR-T smokers were 

calculated from the GHS dataset and assumed constant over time. 

The prices of the two tobacco products were further defined by the rate of consumer 

price inflation, level of taxation, the ‘pass-on’ rate, and illicit trade. Based on the existing UK 

tobacco taxation, it was assumed that from 2015 through to 2035: VAT and ad valorem duty 

would continue to apply at 20% and 16.5% respectively; and specific duty would increase in 

the duty escalator from the published rate of £176.20 per 1,000 cigarettes in 2013 (13). All 

other factors were assumed to be captured by the Consumer Price Index inflation rate, kept 

constant at 2% per annum. As a result, changes from the 2013 weighted average cigarette 

price were only affected by the specific duty component of the escalator. 

A ‘pass-on’ rate of tax from the producer to consumer was set at 100%, consistent 

with evidence from competitive markets (25) and similar previous modelling research (18). 

Consistent with the most recent available information and existence of activities to contain 

the illicit market at the time of data collection (19), the illicit tobacco market was estimated to 
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remain stable at 10% of the total market. The illicit price of tobacco in the UK is estimated to 

be 50% of the legal price (18), so the illicit price of both cigarettes and H-RT was modelled 

as such.  

  



41 
 

SUPPLEMENTARY MATERIAL 6: Sensitivity analysis  
 

Introduction 
 

We carried out a sensitivity analysis on the price elasticity to explore the impact of a higher 

and lower price elasticity (PE) used to calculate the tobacco duty escalator (TDE) scenario on 

both smoking prevalence and disease outcomes.  

Method 
 

We ran four scenarios as described in Table 4. Table. A PE of -0.5 was chosen in this study 

since it takes into account the effect of a price increase in all tobacco products without the 

need for cross-price elasticity figures (because substitution effects are already taken into 

account). Further, this figure is used by Action on Smoking and Health4 and based on the 

literature. We tested the impact of an upper and lower bound PE for cigarettes. The upper 

bound being a PE of -1.05 derived by HMRC5, the lower bound being a PE of -0.3. The price 

elasticity for hand rolled tobacco (H-RT) was held constant. Smoking prevalence from 2015 

to 2035 was projected for each of the scenarios, and 20 million individuals were simulated to 

test the health impacts of each scenario.  

 
Table 4. Table 1. Summary table of scenarios and their definitions 

Scenario Definition 

Scenario 0: Baseline No change in smoking prevalence 

Scenario 1: TDE (PE -0.5) Tobacco duty escalator scenario using a PE of -0.5 for cigarettes 

Scenario 2: TDE (PE -0.3) Tobacco duty escalator with a lower PE of -0.3 for cigarettes 

Scenario 3: TDE (PE -

1.05) 

Tobacco duty escalator with a higher PE of -1.05 for cigarettes 

 

Results 
 

Table 5 shows the impact of the different price elasticities on smoking prevalence by 2035. It 

was predicted that a PE of -0.3 would result in a change in smoker prevalence from 2015 to 

2035 of 33%, and a PE of -1.05 would result in a change in smoker prevalence of 57.8% 

compared to a change of 39.6% for a PE of -0.5.  More than doubling the PE as with the 

upper bound test decreases the predicted smoking prevalence by around 2% compared with 

the -0.5 PE by 2035.  

                                                 
4ASH reference: http://ash.org.uk/information-and-resources/taxation-illicit-trade/taxation/the-effects-of-
increasing-tobacco-taxation/ 
5 HMRC reference: 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/331580/cig-consumption-
uk.pdf 

http://ash.org.uk/information-and-resources/taxation-illicit-trade/taxation/the-effects-of-increasing-tobacco-taxation/
http://ash.org.uk/information-and-resources/taxation-illicit-trade/taxation/the-effects-of-increasing-tobacco-taxation/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/331580/cig-consumption-uk.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/331580/cig-consumption-uk.pdf
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Table 5. Change in smoker prevalence over time and total smoker prevalence in 2035 by PE scenario 

Price elasticity Change in smoker prevalence by 2035 

relative to 2015 (holding H-RT PE 

constant) (%) 

Predicted smoker prevalence by 

2035 (%) 

Scenario 1: TDE (PE -0.5) 39.6 6 

Scenario 2: TDE (PE -0.3) 33.0 7 

Scenario 3: TDE (PE -

1.05) 

57.8 4 

 

Table 6 shows the cumulative incidence cases per 100,000 for each scenario by disease in 

2015 and 2035. Compared to a PE of -0.5, there are slightly more disease cases when the PE 

is set to -0.3 and slightly fewer disease cases when the PE is set to -1.05 by 2035. The largest 

impacts are observed for COPD, stroke, and lung cancer. For many cancers there is no 

difference across the scenarios. Figure 6 illustrates the differences between each TDE 

scenario in 2035 by disease.  
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Table 6. Cumulative incidence cases per 100,000 by scenario and year 

  Year CHD ColerectalC COPD LarynxC LiverC OesC OralC Stroke BladderC CervicalC AML CML StomachC OvarianC KidneyC LungC PancreaticC 

Scenario 0: Baseline 2015 151 71 125 6 8 27 17 162 26 5 5 1 14 13 19 135 19 

 
2035 2838 1388 2165 101 154 394 280 2662 419 101 99 23 254 255 356 2067 318 

Scenario 1: TDE (PE -0.5) 2015 151 71 124 6 8 27 17 162 26 5 5 1 13 13 19 135 19 

  2035 2831 1387 2136 100 153 389 276 2634 416 101 98 23 253 254 357 2045 316 

Scenario 2: TDE (PE -0.3) 2015 151 71 124 6 8 27 17 162 26 5 5 1 13 13 19 135 19 

 
2035 2832 1388 2141 100 153 390 276 2640 417 101 98 23 253 254 357 2048 316 

Scenario 3: TDE (PE -1.05) 2015 151 71 124 6 8 27 18 162 26 5 5 1 13 13 19 135 19 

  2035 2828 1387 2126 100 153 387 273 2617 414 100 98 23 253 253 356 2033 316 
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Figure 6. Cumulatve incidence cases per 100,000 for each TDE scenario by disease in 2035 
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Discussion  
 

Doubling the PE almost halves the smoking prevalence predicted by 2035. Only small differences are 

observed in the subsequent disease outcomes by 2035. This is possibly because an ex-smoker’s relative risk 

for many of the diseases, particularly cancers, takes almost two decades to return to that of a never smoker’s. 

Larger differences may be observed if the simulation was run further into the future. The ex-smoker relative 

risks were computed using a method developed by Hoogenveen and colleagues (20), and as part of the EU-

funded DYNAMO project.  
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SUPPLEMENTARY MATERIAL 7: Projected baseline future trends of smoking prevalence by 
income quintile in the UK in 2035 
 

 

As demonstrated in Table 7, the baseline indicates that a socioeconomic gradient in smoking 

prevalence will remain. In 2035, adult smoking prevalence is estimated to be 14.3% among females and 

15.7% among males in income quintile 1 (poorest), compared to 2.6% and 2.4% respectively in income 

quintile 5.  

 

 

 

Table 7.  Projected baseline future trends of smoking prevalence by income quintile in the 

UK in 2035 

Baseline (quintile 1 most deprived, 

quintile 5 least) 

Female 

prevalence (%) 

Male 

prevalence (%) 

Income quintile 1 14.3 15.7 

Income quintile 2 11.0 11.7 

Income quintile 3 7.8 6.8 

Income quintile 4 3.9 4.7 

Income quintile 5 2.6 2.4 
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SUPPLEMENTARY MATERIAL 8. Incidence and cumulative incidence disease outputs by scenario and year 
 

Table 1. Incidence cases in the UK population by scenario and year 

Baseline year   CHD Colerecta
lC 

COP
D 

Larynx
C 

Liver
C 

OesC OralC Stroke Bladder
C 

Cervical
C 

AML CML Stomach
C 

Ovarian
C 

Kidney
C 

LungC Pancreatic
C 

Tobacco-
related 
cancers 

 

2015 Inc  
98056 46106 81172 3896 5195 

1753
3 

1168
9 

10584
8 16884 3247 3247 649 9091 8442 12338 87666 12338 238321 

 

 95% CI 
649 649 649 0 0 0 0 649 0 0 0 0 0 0 0 649 0 918 

  
2020 Inc  

91962 44974 77195 3356 5370 
1409
6 

1006
9 89949 14768 3356 3356 671 8055 8726 12083 74510 10740 214131 

  
  95% CI 

649 649 649 0 0 0 0 649 0 0 0 0 0 0 0 649 0 918 

 

2025 Inc  
94092 46354 72645 3459 5535 

1314
5 8994 86482 13837 3459 3459 692 8302 8302 11762 67802 10378 205481 

 

 95% CI 
671 671 671 0 0 0 0 671 0 0 0 0 0 0 0 671 0 949 

  
2030 Inc  

97321 47595 68196 2841 4973 
1207
6 8524 85955 13497 3552 3552 710 8524 8524 12076 63223 10656 200326 

  
  95% CI 

710 710 710 0 0 0 0 710 0 0 0 0 0 0 0 710 0 1005 

 

2035 Inc  
99552 49413 65399 2907 5087 

1090
0 7993 85745 13080 3633 3633 727 8720 8720 11627 58859 10900 196197 

 

 95% CI 
727 727 727 0 0 0 0 727 0 0 0 0 0 0 0 727 0 1028 

Scenario 1 
(TDE) 

year   CHD Colerecta
lC 

COP
D 

Larynx
C 

Liver
C 

OesC OralC Stroke Bladder
C 

Cervical
C 

AML CML Stomach
C 

Ovarian
C 

Kidney
C 

LungC Pancreatic
C 

Tobacco-
related 
cancers 

 

2015 Inc  
98056 46106 81172 3896 5195 

1753
3 

1168
9 

10519
9 

16884 3247 3247 649 9091 8442 12338 88315 12338 238970 

 

 95% CI 649 649 649 0 0 0 0 649 0 0 0 0 0 0 0 649 0 1299 

  
2020 Inc  

91962 44974 77195 4028 5370 
1409

6 
1006

9 
89949 14768 3356 3356 671 8055 8726 12083 73838 10740 214131 

  
  95% CI 671 671 671 0 0 0 0 671 0 0 0 0 0 0 0 671 0 671 

 

2025 Inc  
94092 46354 71953 3459 4843 

1245
3 

8994 85790 13837 3459 3459 692 8302 8302 11762 67110 10378 203405 

 

 95% CI 692 692 692 0 0 0 0 692 0 0 0 0 0 0 0 692 0 692 

  
2030 Inc  

96611 47595 66775 2841 4973 
1136

6 
8524 83824 

13497.11
74 

3551.873 
3551.

873 
710 8524 8524 12076 61803 10656 198195 

  
  95% CI 710 710 710 0 0 0 0 710 0 0 0 0 0 0 0 710 0 710 

 

2035 Inc  
99552 49413 63219 2907 5087 

1090
0 

7993 83566 13080 3633 3633 727 8720 8720 11627 56679 10173 193291 

  
  95% CI 727 727 727 0 0 0 0 727 0 0 0 0 0 0 0 727 0 727 
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Table 2. Cumulative incidence cases in the UK population by scenario and year 

scenario 0 year  CHD Colerect
alC 

COPD Larynx
C 

LiverC OesC OralC Stroke Bladde
rC 

Cervic
alC 

AML CML Stoma
chC 

Ovarian
C 

Kidney
C 

LungC Pancreati
cC 

Tobacco-
related 
cancers 

 
2015 

Cumu. 
Inc. 98056 46106 81172 3896 5195 17533 11689 105848 16884 3247 3247 649 9091 8442 12338 87666 12338 238321 

  
95% CI 649 649 649 0 0 0 0 649 0 0 0 0 0 0 0 649 0 918 

 
2020 

Cumu. 
Inc. 566620 272083 472183 23114 31039 93116 65379 579168 93116 20472 19812 4623 50851 51511 72644 479448 68021 1345227 

  
95% CI 649 649 649 0 0 0 0 649 0 0 0 0 0 0 0 649 0 918 

 
2025 

Cumu. 
Inc. 1024633 495206 836750 40261 56365 159030 112059 1009871 161043 36906 35564 8052 92599 93270 130847 822659 119440 2363300 

  
95% CI 1321 660 1321 0 0 660 660 1321 660 0 0 0 660 660 660 1321 660 2288 

 
2030 

Cumu. 
Inc. 1489470 723963 1174822 55847 81046 217938 154600 1426131 226111 53122 51760 

1225
9 133487 135530 189334 1136683 170264 3341942 

  
95% CI 2043 1362 2043 681 681 681 681 2043 681 681 681 0 681 681 681 2043 681 3336 

 
2035 

Cumu. 
Inc. 1961426 956894 1494025 69730 106322 272708 194002 1837844 289968 69730 67659 

1587
9 176052 176742 246473 1427056 220928 4290145 

  
95% CI 2071 1381 2071 690 690 690 690 2071 690 690 690 0 690 690 690 2071 690 3382 

scenario 1 
(TDE) 

year  CHD Colerect
alC 

COPD Larynx
C 

LiverC OesC OralC Stroke Bladde
rC 

Cervic
alC 

AML CML Stoma
chC 

Ovarian
C 

Kidney
C 

LungC Pancreati
cC 

Tobacco-
related 
cancers 

 
2015 

Cumu. 
Inc. 

98056 46106 81172 3896 5195 17533 11689 105199 16884 3247 3247 649 9091 8442 12338 88315 12338 238970 

  
95% CI 649 649 649 0 0 0 0 649 0 0 0 0 0 0 0 649 0 918 

 
2020 

Cumu. 
Inc. 

566620 272083 471523 23114 31039 93116 65379 578507 93116 20472 19812 4623 50851 51511 72644 478787 68021 1344567 

  
95% CI 1321 660 1321 0 0 660 660 1321 660 0 0 0 660 660 660 1321 660 2288 

 
2025 

Cumu. 
Inc. 

1023962 495206 833395 40261 55694 158359 112059 1005845 161043 36906 35564 8052 91928 93270 130847 819975 119440 2358603 

  
95% CI 2013 1342 1342 0 671 671 671 1342 671 0 0 0 671 671 671 1342 671 2684 

 
2030 

Cumu. 
Inc. 

1487427 723282 1164606 55166 81046 215895 153238 1416597 225430 53122 51760 
1225

9 
133487 134849 188653 1129191 169583 3326959 

  
95% CI 2043 1362 2043 681 681 681 681 2043 681 681 681 0 681 681 681 2043 681 3336 

 
2035 

Cumu. 
Inc. 

1957284 956204 1474004 69040 105631 269256 190550 1817823 288587 69730 67659 
1587

9 
175362 175362 245782 1410487 219547 4259077 

  
95% CI 2071 1381 2071 690 690 690 690 2071 690 690 690 0 690 690 690 2071 690 3382 
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