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Abstract. Brain Computer Interfaces provide a very challenging classi-
fication task due to small numbers of instances, large numbers of features,
non-stationary problems, and low signal-to-noise ratios. Feature selec-
tion (FS) is a promising solution to help mitigate these effects. Wrapper
FS methods are typically found to outperform filter FS methods, but
reliance on cross-validation accuracies can be misleading due to over-
fitting. This paper proposes a filter-wrapper hybrid based on Iterated
Local Search and Mutual Information, and shows that it can provide
more reliable solutions, where the solutions are more able to generalise
to unseen data. This study further contributes comparisons over multiple
datasets, something that has been uncommon in the literature.
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1 Introduction

Brain Computer Interfaces (BCI) allow neurological signals to be decoded to
enable the control of external devices. The most common mode of recording
signals for use in such devices is electroencephalography (EEG). This involves
the placement of electrodes on the scalp of a user, to record the electrical activity
within the underlying brain region. With these signals, practitioners can analyse
the working state of the patient’s brain to detect seizure triggers, sleep patterns,
or even allow the control of external devices — a life-altering application for
people in need of prosthetic limbs, or with muscle-degenerative disorders.

EEG-based devices are safer, more accessible, and more cost-effective than
invasive techniques, but they do come with substantial caveats: enough energy
must be produced by the brain region to pass through three centimetres of bone
and soft tissue. This requires at least 6cm2 of neural material to be active, greatly
reducing the spatial resolution of the signal. The problem is further compounded
by multiple sources of noise: eye movements, muscle contractions, and cardiac



rhythms. Pre-processing the data by band pass filtering, and using a technique
known as Feature Extraction can help emphasize characteristics in the data that
are useful for constructing effective, predictive BCI models. However, as BCI
datasets typically consist of a large number of variables, with few instances, it
is prudent to reduce the feature set to avoid overfitting, decrease training times,
and remove noisy or redundant features.

Filter methods rank features according to a statistical measure, which cre-
ates generalised models, but fail to exploit the nature of the machine learning
algorithm intended for use. Wrapper methods use the classifier as a ‘black-box’
evaluation of feature subsets, achieving high classification accuracies, but are
prone to over-fitting on training sets. We propose a hybrid of both categories of
feature selection algorithms: filters and wrappers. This hybridisation is defined
here as Minimal Redundancy Maximal Relevance Iterated Local Search (MRMR-
ILS); a metaheuristic known as Iterated Local Search that utilises a mutual
information measure to guide the perturbation operator, while allowing a nor-
mal wrapper-based local search heuristic.

The aim of this study is to provide a new hybrid-heuristic that is capable of
finding small feature subsets that generalise more effectively than typical wrap-
per approaches, and are more accurate than those found by filter approaches.
Specifically, the contributions of this study are:

1. A new filter-wrapper hybrid combining Iterated Local Search with the Min-
imum Redundancy Maximal Relevance mutual information measure.

2. Results based on three different datasets, originating from three different
motor-imagery based problems.

3. Analysis of interactive effects between mutual information measures, error
rates obtained from training sets, and the predictive accuracy on unseen
data.

This paper is structured in the following manner: a general background to
BCI based feature selection is given in Section 2, with interest to mutual infor-
mation, wrapper methods, and their hybrids. This is followed by our proposed
algorithm in Section 3 and the methodology used to evaluate it in Section 4. We
then present our results and discussion in Section 5, and conclusion in Section
6.

2 Background

Extra-cranial BCI recordings are notoriously noisy; while we are only interested
in the energy generated from the neurons that correspond to the task at hand,
the signals also contain unrelated neural processes, muscle movements, and other
sources of information that can negatively impact the performance of our classi-
fiers. This can render data recorded from some frequencies, or even entire chan-
nels, redundant to our needs. Selecting the data to retain, and what to disregard,
is a non-trivial task. However, obtaining near optimal feature subsets reduces the



dimensionality of the data, decreases the training and prediction time costs, cre-
ates simpler models, and increases the predictive accuracy [1]. Feature Selection
algorithms can be divided into three groups: Filter, Embedded, and Wrapper
methods.

2.1 Filters

Filter based methods rank variables according to a criterion, independently of
the classifier. Examples of these performance measures include the Pearson corre-
lation coefficient [2], Fisher score [3], and measures based in Information Theory
[4]. The advantages of such techniques tend to be that they are typically less
computationally expensive, simpler to implement, and resulting feature subsets
are more generalisable as they are not tied to a specific classifier [5]. That be-
ing said, they lack the ability to exploit specific characteristics of the machine
learning algorithms intended for use, and therefore rarely obtain the highest
classification accuracies.

The following concept definitions explain the mutual information aspects of
the algorithm presented by this paper.

Entropy is an integral concept within Information Theory, defining the uncer-
tainty of a variable. A key measurement of this is Shannon’s entropy [6]:

H(X) = −
∑
x

p(x) log p(x) . (1)

Entropy is calculated by the summation of all the probability distributions (p(x))
of values (x ) of the set X, multiplied by the natural log of those probability
distributions.

Mutual Information is the unique information shared between two variables.
Using entropy, it is possible to quantify the conveyable information from a vari-
able, however, what is often of interest, is how much variables ‘overlap’ in what
they have recorded. This is especially useful when we want to consider how ef-
fective one variable is at predicting another; higher shared information suggests
that they are measuring a similar source of information:

I(X : Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ) . (2)

To do this, we consider how much information is conveyed by each variable as
individuals, in comparison with how much information is conveyed when they
are paired.

Maximum Relevance Minimal Redundancy Mutual Information can de-
tect even non-linear interactions between variables, but it is limited due to it
being a univariate approach. This is a source of weakness in applications such



as feature selection, as we frequently find multivariate interactions between
variables and their labels. To solve this, Peng, Long and Ding [7] proposed
the minimal-redundancy-maximal-relevance approach. It seeks to address two
conditions; maximisation of selected features Relevance, and minimisation of
theirRedundancy :

maxD(S, c), D =
1

|S|
∑
xi∈S

I(xi; c) . (3)

where I(xi; c) is the mutual information between each selected feature (xi) in
the subset (S) and the class (c).

minR(S), D =
1

|S|2
∑

xi,xj∈S

I(xi;xj) . (4)

where I(xi;xj) is the mutual information between each pair of selected features
within the selected subset (S).

maxΦ(D,R), Phi = D −R . (5)

MRMR seeks to maximise the distance between the Relevance (D) and Redun-
dancy (R).

2.2 Wrappers

Wrapper methods select feature subsets by utilising the classifier as a ‘black
box’ fitness function. By iteratively evaluating feature subsets using the ma-
chine learning algorithm to make predictions on the training set, models created
from the selected subset can be tested on their validity. The simplest, and one
of the most common forms of this in feature selection is Sequential Forward Se-
lection (SFS). Every feature is used to train a model, and then used to make
predictions on the available instances. The one with the highest predictive accu-
racy is selected as the first feature in the subset. Each following feature is found
by appending the existing subset, and evaluating it as before [8]. Simple heuris-
tics such as SFS are successful, but rarely provide state-of-the-art results due to
their inability to detect feature interactions; when a feature is added, no consid-
eration is given to previously selected features and their counter-dependencies.
More complex heuristics such as Genetic Algorithms [9], Particle Swarm Op-
timisation [10], and Ant Colony Optimisation have been widely used in Brain
Computer Interface feature selection with great success [11].

2.3 Hybrid Approaches

A relatively uncommon approach in BCI is the combination of filters and wrap-
pers in hybrid methods. A common form of this is a two-stage approach: a filter
method is first applied to remove the most redundant features, before a wrap-
per is applied to the remaining features. A variation of this is seen in Gan [12],
where Sequential Forward Floating Search (SFFS) was combined with MRMR



by using the mutual information approach to select a set of candidate features
for addition and removal at each phase. This reduced the computational train-
ing cost of utilising the classifier across all the candidate features. Ant Colony
Optimisation was combined with Differential Evolution in Khushaba et al [13].
This technique used a mutual information evaluation function as the Selection
Measure in ACO, and evaluated each of the ants using a Linear Discriminate
classifier.

In other feature selection fields, hybridised approaches involving mutual in-
formation are somewhat more prevalent. Mutual information was used to reduce
the search space in advance of running a Genetic Algorithm in Tan, Fu, Zhang,
and Bourgeois [14] and Particle Swarm Optimisation in Ali and Shahzad [15].
It has also been successfully used within memetic algorithms as a local search
method to refine the solutions found by PSO in Particle Swarm Optimisation
Backwards Elimination (PSOBE) [16] and in Genetic Algorithms [17]. A com-
mon observation however, is that mutual information is almost always used as
a local search operator in these cases, and to our knowledge, has not been used
in the explorative phase of a metaheuristic prior to this paper.

3 Proposed Method

Here we introduce the existing Iterated Local Search (ILS) algorithm, followed
by our contribution, the MRMR-ILS.

3.1 Iterated Local Search

Iterated Local Search is an iterative search based algorithm that has demon-
strated interesting results across a variety of domains [18], but with almost no
application to the BCI domain. The ILS used in this paper consists of a layered
search; a local search, in the form of a hillclimber, and a diversification mech-
anism, in the form of a strong mutation, known as a perturbation. A solution
is either randomly generated or provided to the algorithm. A hillclimber is then
used to search the local space; a candidate solution is created by performing
a single point mutation on the current solution. This is achieved by randomly
choosing one of the selected features in the current solution, and replacing it
with an unselected feature. This is then evaluated by performing 10-fold cross-
validation using the training set and obtaining the average prediction error rates
on each of the folds.

Cross-validation is a technique used to assess algorithm performance when
using limited quantities of data. K-Fold cross-validation is commonly used within
the machine learning community to evaluate the performance of models. To do
this, training data is subdivided intoK sets.K -1 sets are used to train a classifier,
and is then used to predict the labels of the ‘left out’ set and its error rate is
measured. This is then performed on all K sets, and the average error rate
returned.



3.2 Minimal Redundancy Maximal Relevance-Iterated Local Search

In the Mutual Information-based Iterated Local Search (MRMR-ILS ) algorithm
proposed by this paper, the stochastic perturbation stage of the ILS is replaced
by an information-measure based selection process. Instead of randomly select-
ing features for replacement, features are selected for retention based on the
information they share with each other, and the label. The mRMR score for
each feature is calculated and those that score most highly, that is, those that
have the highest relevance with the label, and lowest information overlap with
other features within the selected solution, are retained. The remaining features
are randomly replaced with unselected features.

4 Methodology

The experimental methodology is presented in the following order; dataset de-
scriptions, feature extraction method, solution size, classification algorithms used,
fitness function, search algorithm parametres, and benchmark methods for com-
parison.

4.1 Datasets

The datasets provided by the Berlin Brain Computer Interface Competitions
have been some of the most prevalent in literature over the past few years. Two
of these datasets were used in this paper; Berlin BCI competition II, datasets
III and IV1. Both of these datasets have proven popular in literature due to
their challenging, but well-defined, nature. The third dataset was acquired by
the RIKEN Centre of Advanced Intelligence Project2. It does not appear as
frequently in literature as the BCI competitions, but was chosen as diversity
is essential to foster amongst the state-of-the-art benchmarks. The following
section will describe the paradigms used in each dataset, the conditions of
their recording, and any pre-processing steps required before feature extraction.

Dataset A - Berlin BCI competition II Datasets III
Over a set of 280 9-second trails, a participant was asked to imagine left

and right hand movements to control an on-screen cursor. Three electrodes
were placed on the participants scalp, and a blank screen displayed. The first
two seconds were a resting phase, followed by an auditory signal and cross
being displayed in the centre of the screen to focus the participant’s atten-
tion. On the fourth second, the cross became an arrow, signifying the motor-
imagery (left or right hand movements) that the participant was required to
imagine. Three electrodes placed at C3, C4, and Cz, and sampled at 128Hz.
The signal was then bandpass filtered between 0.5 and 30Hz. The first 140 in-
stances were assigned as ‘training data’, and the remaining 140 as ‘testing data’.

1 http://www.bbci.de/competition/ii/#datasets
2 http://www.bsp.brain.riken.jp/~qibin/homepage/Datasets.html



Dataset B - Berlin BCI competition II Datasets IV
A set of 28 EEG electrodes were used to record a single subject during a

self-paced finger movement task. The participant was asked to sit at a com-
puter with their hands in a typical position at the keyboard. The participant
was then allowed to press keys at a rate of one per second, in a self-determined
order. In total, 416 instances were collected; 316 of which were designated as
training, and 100 were provided, unlabelled, as testing data. This results in
416 instances of 500 ms, stopping 130 ms before the key-press, each labelled
with either ‘right’ or ‘left’ hand. The sampling was performed at 1000 Hz,
band-pass filtered between 0.05 and 200 Hz, before being down sampled to 100
Hz. The electrodes were arranged according to the international 10/20-system.

Dataset C - Riken - Subject A Sessions one and two from Subject A were
taken from the RIKEN EEG Datasets homepage. A subject was asked to sit in
a chair and pay attention to a blank screen. After 2 seconds, an arrow pointing
left or right appeared and, for the following three seconds, the user imagined the
corresponding left or right hand movements. The recording was obtained via six
channels, sampled at a rate of 256Hz, which was then band-pass filtered between
2 and 30Hz. In total, 264 instances were recorded: session one was selected as
the training dataset with 130 trials, with the remaining 134 trials from session
two serving as the testing data.

4.2 Features

Power Spectral Densities were selected in the following experiments as they
preserve spatial and frequency dimensionality, and by epoching the data, some
temporal resolution is preserved. This type of feature can provide practical in-
sight into the problem: allowing understanding as to where the key regions of
interest are in terms of which electrodes and frequencies provides the richest
information.

4.3 Solution Size

As noted by Chandrashekar and Sahin [19], there are no ideal methods to choose
the size of the subset for selection. For this reason, we selected a solution size for
the Iterated Local Search (ILS) and Minimal Reduncancy Maximal Relevance-
Iterated Local Search (MRMR-ILS) for Berlin BCI Competition II Dataset III
based on Rejer [9]. As there is no background literature that utilises Power Spec-
tral Densities in this way, to the authors’ knowledge, for Berlin BCI Competition
II Dataset IV, and RIKEN Subject A, preliminary exploration was required.

4.4 Classifiers

The key aim of BCI paradigms is simply to produce an effective model to classify
some aspect of neural recordings. The creation of such a model relies heavily on



which machine learning algorithm that was chosen. In this paper, we evaluate
two such algorithms:

- K-Nearest-Neighbours (KNN), while commonly used in other fields, have
been largely neglected within the BCI literature due to their known sensitivity
to the ‘Curse of Dimensionality’ [20]. They were selected for use in this paper
for exploration, and to support our deliberate selection of small feature subsets.

- Support Vector Machines (SVM) are commonly used in BCI literature, and
often obtain the best accuracies. This is thought to be due to their ability to
handle larger feature sets, and their resistance to overfitting [21].

Fitness Function The fitness of a proposed feature subset was evaluated using
k-fold cross-validation of the training data. K = 10 was selected due to pre-
liminary experimentation revealing a noisy fitness function, originating mainly
from the randomly chosen splits in cross-validation. While 10-folds creates an
expensive fitness function, it is required in such datasets where we find high-
dimensionality, with low number of samples and poor signal-to-noise ratios [22].

Search Algorithm Parametres Each algorithm was run 25 times, with 100,000
evaluations of the classifier set as the termination criteria. In each run, there
were 100 perturbation ‘kicks’, and local searches were limited to 1000 evaluation
first-improvement hillclimbers.

Benchmark Methods

Filters - Two mutual information filter methods were evaluated using a greedy
forward-search to select the feature subset size, as used in Lan et al [23]. Mu-
tual Information Feature Selection (MIFS ), relies on selecting features that in-
crease the selected subsets mutual information with the class label. MRMR seeks
to maximise the selected subsets mutual information with the class label (rele-
vance), while minimising the mutual information between features (redundancy).

Wrappers - Two wrapper approaches were selected for comparison: Sequential
Forward Search, a greedy algorithm that selects the next best feature as eval-
uated by the classifier; and Iterated Local Search, a two layer search involving
perturbations and local searches. SFS is a very popular technique, and is often
used as an exploratory measure in feature selection. ILS has been used in a wide
variety of different search areas, but is almost unheard of within BCI.

Embedded - Least Absolute Shrinkage and Selection Operator (LASSO) (or L1
regularisation) performs feature selection by reducing the sum of the absolute
values of the model parametres below an upper bound. It does this by shrinking
the coefficients of the features, often to zero, effectively deselecting them. It
can provide two feature subsets: Sparse, and Mean Squared Error (MSE). This
method provides relatively poor cross-validation error rates on the training set,
but tend to be reasonably more generalisable.



5 Results and Discussion

Table 1: Results of each feature selection algorithm while using the KNN Clas-
sifier. Number of selected features, cross-validation error rates, and accuracy is
shown for Datasets A, B and C. Figures in bold denote the highest performing
algorithm for each measure.

Dataset Algorithm Selected f CVE Accuracy

A MIFS 20 0.410476 0.6
MRMR 43 0.329524 0.728571

LASSO (Sparse) 8 0.2186 0.7143
LASSO (MSE) 29 0.1993 0.7143

SFS 14 0.1357 0.7357
ILS 6 0.1110 0.7918

MRMR ILS 6 0.1057 0.7896

B MIFS 10 0.483861 0.56
MRMR 34 0.475422 0.52

LASSO (Sparse) 11 0.4269 0.5500
LASSO (MSE) 13 0.4222 0.5500

SFS 15 0.2816 0.6200
ILS 6 0.2716 0.6164

MRMR ILS 6 0.2707 0.6464

C MIFS 6 0.517179 0.619403
MRMR 30 0.477179 0.522388

LASSO (Sparse) 4 0.2408 0.6045
LASSO (MSE) 15 0.2615 0.5672

SFS 14 0.1385 0.5896
ILS 4 0.1539 0.5997

MRMR ILS 4 0.1492 0.6085

Table 1 and 2 present results obtained using the KNN and SVM classifiers
respectively. The list of measures are: the number of features selected by each
algorithm (Selected f); the average final solutions’ fitnesses (cross-validation error
rate on training data; CVE ); and their accuracy on the unseen, testing data. The
datasets were labeled: A - Berlin BCI Competition II Dataset III; B - Berlin BCI
Competition II Dataset IV; C - Subject A from the Riken dataset.

When using a KNN classifier, we see in Table 1 that the MRMR-ILS finds
solutions with the lowest cross-validation error rates on two datasets: A (10.56%)
and B (27.07%). On dataset C, it achieved the second lowest (14.92%), falling
only just behind the SFS (13.85%). In all three cases, the MRMR ILS out-
performed the unguided ILS. These cross validation error rates reflected the



algorithms’ performance on unseen data by achieving the highest accuracy on
datasets B (64.64%) and C (60.85%), with the second highest accuracy on dataset
A (78.96%).

Table 2: Results of each feature selection algorithm while using the SVM Clas-
sifier. Number of selected features, cross-validation error rates, and accuracy is
shown for Datasets A, B and C. Figures in bold denote the highest performing
algorithm for each measure.

Dataset Algorithm Selected f CVE Accuracy

A MIFS 20 0.374048 0.607143
MRMR 43 0.258095 0.792857

LASSO (Sparse) 8 0.1493 0.7929
LASSO (MSE) 29 0.1757 0.7929

SFS 8 0.0857 0.8071
ILS 6 0.0846 0.8423

MRMR ILS 6 0.0843 0.8269

B MIFS 10 0.415295 0.52
MRMR 34 0.399684 0.58

LASSO (Sparse) 11 0.3095 0.6700
LASSO (MSE) 13 0.3168 0.6200

SFS 9 0.2532 0.6200
ILS 12 0.2422 0.6836

MRMR ILS 12 0.2439 0.6948

C MIFS 6 0.407692 0.537313
MRMR 30 0.28 0.567164

LASSO (Sparse) 4 0.2377 0.6045
LASSO (MSE) 15 0.1508 0.6567

SFS 17 0.1000 0.5970
ILS 15 0.0735 0.6197

MRMR ILS 15 0.0772 0.6391

In Table 2, the SVM classifer produces results with a similar pattern as using
the KNN, with the MRMR ILS achieving the lowest cross-validation error rates
in dataset A and C (8.843% and 7.72% respectively), and falling behind the ILS
by just 0.17% on dataset B. Classification accuracies on unseen datasets in this
case are slightly more nuanced; the MRMR-ILS achieved the highest accuracy
on dataset B (69.48%). In datasets A and C, it achieved the second highest
accuracies (84.23% and 65.67%) to ILS and the MSE LASSO solutions (84.23%
and 65.67%) respectively.

The graphs in Figures 1a, 2a, and 3a show the average incumbent solution
fitness based on the cross-validation error rates over each iteration of the ILS and



MRMR-ILS algorithms. In a post-hoc analysis, we extracted these incumbent
solutions and evaluated their predictive accuracy on the testing data, plotted
in 1b, 2b, and 3c. We can see that the relationship between the MRMR-ILS
fitness function, and the performance on unseen data is much stronger than
that observed in the ILS. In order to find a real-world feature subset for BCI
applications, it is imperative that the estimated accuracy provided by the fitness
function in our algorithms correlates as closely as possible to accuracy rates
obtained from new, unseen data. We further explore this in Table 3, in which
the Pearson’s correlation coefficient is calculated for the cross-validation error
rates and accuracies of the incumbent solutions. In five of the six test cases,
there is a substantially higher correlation between the predicted accuracy (CVE
rate) and the accuracy on the unseen data in the MRMR ILS than that of the
ILS. The most notable examples of this is the use of KNN in dataset A, and
the use of SVM in dataset C, where the correlations seen within the solutions of
the ILS have weak negative correlations (-0.1464 and -0.3787), which is heavily
contrasted against the strong negative correlations in those of the MRMR ILS
(-0.8954 and -0.7203).

Table 3: Correlations between Cross Validation Error Rates and Accuracy of
Solution during ILS and MRMR-ILS Search. Figures in bold denote the highest
performing algorithm for each measure.

Classifier Dataset Algorithm

ILS MRMR ILS
KNN A -0.1464 -0.8954

B -0.7598 -0.8871
C -0.9224 -0.9686

SVM A -0.9370 -0.9100
B -0.8348 -0.8619
C -0.3787 -0.7203
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Fig. 1: Comparison between ILS and MRMR-ILS over each iteration of the al-
gorithms for the KNN classifier on dataset A - BCI Competition II dataset III
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Fig. 2: Comparison between ILS and MRMR-ILS over each iteration of the al-
gorithms for the SVM classifier on dataset A - BCI Competition II dataset III
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Fig. 3: Comparison between ILS and MRMR-ILS over each iteration of the al-
gorithms for the KNN classifier on dataset B - BCI Competition II dataset IV
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Fig. 4: Comparison between ILS and MRMR-ILS over each iteration of the al-
gorithms for the SVM classifier on dataset B - BCI Competition II dataset IV
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Fig. 5: Comparison between ILS and MRMR-ILS over each iteration of the al-
gorithms for the KNN classifier on dataset C - RIKEN Subject A

0 10 20 30 40 50 60 70 80 90 100

Algorithm Run-Time

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

E
rr

or
 o

n 
T

ra
in

in
g 

D
at

a 
(%

)

Comparing SVM Cross-Validation Error Progress
from Training dataset - RIKEN Subject A (15 Features)

ILS
MRMR ILS

(a) Cross-Validation Error Rates

0 10 20 30 40 50 60 70 80 90 100

Algorithm Run-Time

0.6

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

0.645

A
cc

ur
ac

y 
on

 T
es

tin
g 

D
at

a 
(%

)

Comparing SVM Accuracy Results
from Testing dataset - RIKEN Subject A (15 Features)

ILS
MRMR ILS

(b) Accuracy on unseen data

Fig. 6: Comparison between ILS and MRMR-ILS over each iteration of the al-
gorithms for the SVM classifier on C - RIKEN Subject A



6 Conclusion

This paper proposed MRMR-ILS; a hybrid Filter-Wrapper method involving
mutual information for feature selection. Evaluations over three datasets us-
ing KNN and SVM classifiers demonstrated that feature subsets found by our
method were typically of higher quality, with lower error rates on training sets
and higher accuracy on testing data, than those found by the compared tradi-
tional methods. What is of additional interest, is the quality of the solutions
found during the search process of the MRMR-ILS in comparison to those of the
ILS. Relying solely on the cross-validation error rates allowed feature subsets
to be discovered that were highly effective for creating models that represent
the training data but, when tested on unseen data, their performance was un-
predictable. When MRMR was incorporated into the algorithm, the search was
partially constrained to areas in the search space rich in mutual information.
This resulted in models that generalised to unseen data in a much more consis-
tent manner. Further experimentation should seek to compare the MRMR-ILS
with other mutual information based hybrid methods from the wider feature se-
lection literature, and investigate the relationship between mutual information,
cross-validation error rates, and predictive accuracy on unseen data.
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