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Abstract. We quantify a recent five-category CT histogram based classifi-
cation of ground glass opacities using a dynamic mathematical model for the

spatial-temporal evolution of malignant nodules. Our mathematical model

takes the form of a spatially structured partial differential equation with a
logistic crowding term. We present the results of extensive simulations and

validate our model using patient data obtained from clinical CT images from

patients with benign and malignant lesions.

Introduction. Non-small-cell lung carcinomas (NSCLC) are the most common4

epithelial lung cancers. The development of thin slice CT (computed tomography)5

scans, coupled with new recommendations for lung cancer screening in high risk6

patients, has led to increased detection of subtle pulmonary subsolid or nonsolid7

nodules in the lungs [12]. CT scan x-rays measure these nodules, also known as8

ground glass opacities (GGOs), as the partial filling of air spaces in the lungs by9

exuded fluids. Published recommendations [4], [20], [21], [23] for how to follow10

GGOs over time depends only on nodule size and the presence or absence of a solid11

component. Recent work has demonstrated the utility of volumetric CT (vCT) for12

diagnosis of cancer in solid nodules by measuring growth rate over time. For these13

cancers, which include adenocarcinoma, a growth rate given by a volume doubling14

time (DT) less than 400 days is predictive of malignancy [13]. However, GGOs15

often grow slowly in size, thus giving a high false negative rate when using nodule16

volume as the imaging parameter. Additionally, GGOs can be difficult to segment17

on CT, making assessment of growth using vCT problematic. In this work, we1
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investigate the potential to assess GGO growth based on a quantitative change2

in its 3-D density histogram, irrespective of the nodule size or presence of a solid3

component.4

A recent report correlated five categories of CT histogram with histopathologi-5

cal characteristics and recurrence-free survival times [15]. Our objective is to model6

these five qualitative GGO measurement histogram categories, and their interpreta-7

tions of tumor progression, to a quantitative dynamic mathematical model of tumor8

growth, which also allows estimation of tumor DT.9

The mathematical model we use for the spatial-temporal evolution of a GGO is10

a diffusive logistic partial differential equation. We assume cell mass grows almost11

exponentially in an early time phase from an initial condition consisting of a small12

nodule, but ultimately slows in growth as time advances. CT scans are quantified in13

Hounsfield units (HU), which measure radio-density. Since HU reflect tissue density14

as the partial filling of air spaces in the lungs by exuded fluids, it is possible for the15

tumor to increase in density without increasing in physical size on CT, by tumor16

cells gradually filling in available lung air space (see Figure 1). Therefore, visually17

observed CT scans may show boundaries of the tumor that do not change for a18

considerable amount of time, but which may increase in density. This change is19

reflected in the CT histogram; hence, it may be possible to quantify tumor growth20

based on subtle changes in the CT histogram.21

We identify the five histogram categories formulated in [15], which are based on22

qualitative HU histogram signatures, with the outputs of our mathematical model,23

which is based on the time dependent spatial density u(t,x) of tumor cells in a24

spatial region Ω of the lung. The identification at a given time t is based on the25

fraction of values of CT scan histogram output and model output u(t,x) in specified26

subintervals of [0, 1]. The growth and diffusion parameters in the model equation27

are used to identify the connection over a time series of the two outputs. The28

model output is then used to identify the DT values for the time series of CT scan29

histograms. We illustrate the usability of the model for diagnosis of lung cancer30

with its comparison to CT lung scan data through four clinical patient case studies.31

The Tennessee Valley Healthcare System VA Hospital Institutional Review Board32

approved the analysis of the anonymized CT scan data used in this paper and waived33

the need for informed consent.34

Materials and Methods.35

Mathematical model. It has been recently documented that spatial intra-tumor36

heterogeneity plays an important role in lung cancer development at both the micro-37

molecular and at the macro-visible level [4],[20]. At the microscopic level and at38

the early stages of pulmonary adenocarcinoma in situ (previously bronchioloalveolar39

cell carcinoma), cancer cells align along alveolar walls in a so-called lepidic pattern.40

As the tumor invades the air spaces, it becomes more dense on CT.41

Mathematical models of tumor growth in spatial regions have been developed by42

many researchers, including [1],[3],[10],[11],[17],[18],[24],[25]. Many mathematical43

models have been designed specifically to connect to CT scan imaging, including44

[2],[5],[8],[9],[16],[26],[27]. Our goal is to develop a mathematical model that aids45

lung CT scan analysis, and therefore our model captures tumor spatial growth46

dynamics at the macro-visible level. Our model has the following form of a diffusion47

partial differential equation with a growth-limiting logistic term:1
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∂u

∂t
(t,x) =∇ (b∇u(t,x)) + a u(t,x)

(
1− u(t,x) + ub(x)

um

)
, t > 0, x ∈ Ω; (1)

u(t,x)|∂Ω =0, t ≥ 0; u(0,x) = u0(x), x ∈ Ω. (2)

In the model above u(t,x) stands for the density of tumor cells at time t and spatial2

position x ∈ Ω, where Ω ⊂ R2 is the observed physical area of the lung (typically3

a rectangular or disc-like area). We focus here on the 2-dimensional case, which4

exhibits the essential features of the underlying dynamics of lung tumor growth,5

and is also comparable to the clinical appearance of CT scan patient data. The6

2-dimensional region Ω ⊂ R2 can be viewed as representative thin slice of the7

tumor nodule. In future work we will consider a domain Ω ⊂ R3, which is more8

realistic, but with numerical simulations much more time consuming. Note that9

for simplicity we imposed Dirichlet boundary condition in our model (1)-(2). This10

is because we are interested in the short term behaviour of solutions, with initial11

tumor cell distributions supported at (or near) the center of the domain.12

The parameter a is the logistic growth rate. The parameter b is the diffusion13

coefficient, which determines the speed of spatial tumor propagation. In the ex-14

amples the parameters a and b were qualitatively determined to match the CT15

histograms and the model outputs for each patient. In future work we will use16

formal optimization methods to specify these parameters. The initial conditions17

u0(x) were determined by random choice of clusters of Gaussians and then chosen18

for compatibility with the CT data. In future work we will develop formal methods19

for assigning these initial conditions specifically to patient data.20

The maximum of u(t,x) at any x ∈ Ω is um − ub(x). The units of u(t,x) are21

density units of tumor mass per unit area, which we scale to allow comparison with22

CT scan GGO) HU values. We take the carrying capacity parameter um = 110023

as the maximum cell density at any location. We convert u(t,x) units into CT24

scan HU by subtracting 1000. Most body soft tissue has HU values somewhere25

between water (HU=0) and blood (HU 50) due to the high iron content in blood;26

hence the upper limit of our histogram scale of +100 (or 1100 on the u(t,x) scale).27

Thus, u(t,x) values range between 0 and 1100, corresponding to HU values between28

−1000 and 100.29

In the subsequent section when we present our simulation results, the cell den-30

sity u(t,x) will be compared to histograms represented in HU, which are volume31

averaged values of mixtures of air and water, HUair = −1000, HUwater = 0 [14].32

Normal lung histograms are centered around HU=-750, reflecting about 75% air.33

As a tumor grows, more tissue density (water) displaces the air and typically shifts34

the histogram to the right. Note that Hounsfield units are integer valued.35

The spatial growth of the tumor in model (1)-(2) is limited by the normal back-36

ground lung cell distribution, denoted by the time-independent background density37

function ub(x). Tumor growth concentrates in micro-environmental regions of lung38

tissue vascularization [4], where the background density ub(x) is higher.The initial39

values and parameters are qualitatively fitted to each patient CT scan histogram40

data. In future work, formal optimization procedures will be developed for quanti-41

tative fittings based on large numbers of patient data.42

The proof of existence of unique solutions of model (1)-(2) is provided in the43

Appendix. Note that, here we are mainly interested in the early transient behaviour44

of solutions of the model, and not the long-term asymptotic behaviour.1



4 GLENN F. WEBB

CT scan histogram categories. The five CT scan histogram categories presented2

in [15] are summarised in Table 1 below. The classification of these categories is3

qualitative and subject to interpretation. The classifications of patient examples4

in [15] were each constructed by visual assessment of two expert observers, using a5

decision tree algorithm, with disagreements resolved by consensus. The histograms6

in the study in [15] were given in terms of continuous smoothed-out renderings of7

the histogram bar graphs, which allowed easier determination of category type. In8

our study we use actual histogram bar graphs, which preserve more information.9

In general, the classification of category for a given patient data set is necessarily10

subjective, and in fact, some patient data in our database do not readily fit any11

of the classifications. Our main goal is to construct a model that fits patient CT12

scan histogram data, rather than a model that fits the interpretation of these data13

according to the classification scheme in Kawata et al. We believe that our model14

simulations will aid in the designation of these categories for individual patients.15

Table 1. The five CT scan histogram categories.

Type Description
α high peak at low HU values and no peak at high HU values
β medium peak at low HU values and no peak at high HU values
γ low peak at low HU values and lower peak at high HU values
δ low peak at low HU values and higher peak at high HU values
ε low peak at low HU values and very high peak at high HU values

To compare model output to patient data for a time series of CT scan histograms16

for a given patient, we will use a quantitative determination of the fractions of both17

CT scan histogram outputs and model (1)-(2) outputs. The CT scan fractional18

histogram outputs are the fractions of histogram bar heights in a given range of19

HU. The fractional model outputs are the integrals of the density function u(t,x)20

over a given range of values, divided by the integral of all values of the density21

function u(t,x), with both integrals over all of Ω. We assign three output ranges as22

presented in Table 2 below (other choices are also possible).23

Table 2. The three output fractions.

fraction CT scan histogram output at time t model output u(t,x)
f1 < −600 HU < 500
f2 between −600 HU and −100 HU between 500 and 1000
f3 > −100 HU > 1000

We use the output fractions f1, f2, f3 to compare a time series of CT scan his-24

tograms for a given patient with the model (1)-(2) by specifying a time-independent25

background density ub(x), an initial condition u0(x) (corresponding to the baseline26

histogram), the logistic parameter a, and the diffusion parameter b. We then cal-27

culate the doubling time DT of the tumor from the model output.1
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Results. We provide here the results of simulations for four case studies, all com-2

pared to patient data. Our patient data and model simulation codes (developed in3

MATHEMATICA) are available upon request to the authors. All histograms, for4

both CT scan data and model simulations are constructed with binning 10HU/bin.5

We note that for each simulation the initial density u0(x) is formulated as a 2-6

dimensional Gaussian, and the background density ub(x) as an array of 2-dimensional7

Gaussians, which are parameterized so that the histogram of u0(x) + ub(x) corre-8

sponds approximately to the baseline CT histogram in each simulation. These9

inputs are viewed as representative of the tumor at the macro-level. In future work10

these inputs will be formulated at the micro-level as in Figure 1, which requires11

much greater detail and much more extensive computing resources for running the12

simulations.13

Patient 1. Patient 1 is an example of a biopsy proven benign GGO. In Figure 214

we show CT scan images for Patient 1 at five time points. Patient 1 data consists15

of CT scan histograms in a series of five time points over approximately two years.16

These five histograms, with their category type and fractional values f1, f2, f3, are17

given in Figure 3. For the model simulation of Patient 1, we have taken the time18

points (in days) as t0 = 0, t1 = 87, t2 = 228, t3 = 643, and t4 = 692, corresponding19

to the dates in Figure 3. In Figure 4 we graph the initial tumor spatial density20

plus background density u0(x)+ub(x), in alignment with the CT scan histogram at21

baseline t = 0, shown in Figure 3, and the tumor spatial density u(t,x) at t = 692.22

In Figure 5 we graph the histogram plots (with bin width 10) of the model23

simulation of Patient 1 at the five time points as in Figure 3, where the values of24

u(t,x) are shifted by −1000 to correspond to HU. The category type and fractional25

values f1, f2, f3 at each time point are given in the Figure 5 legend. The histograms26

in Figure 3 and Figure 5 show relatively good alignment, all with type β. The27

histogram fractions for the CT scan data and the model simulations are compared28

in Figure 6. From these histogram plots we see that the tumor does not progress in29

category type. The parameters for Patient 1 and the doubling time obtained from30

the simulation are shown in Table 3.31

Patient 2. Patient 2 is an example of a benign GGO nodule. In Figure 7 we show32

CT scan images for Patient 2 at six time points. Patient 2 CT scan histograms33

at six time points, their category type, and fractional values f1, f2, f3, are given34

in Figure 8. For the model simulation of Patient 2, we have taken the six time35

points (in days) as t0 = 0, t1 = 107, t2 = 198, t3 = 386, t4 = 568, and t5 = 93236

corresponding to the dates in Figure 8. In Figure 9 we graph the initial tumor37

spatial density plus background density u0(x) + ub(x), in alignment with the CT38

scan histogram at baseline t = 0, shown in Figure 8, and the tumor spatial density39

u(t,x) at t = 932.40

In Figure 10 we show the histogram plots (with bin width 10) of the model41

simulation of Patient 2 at the six time points as in Figure 8, where the values of42

u(t,x) are shifted again by −1000 so that they correspond to HU. The category type43

and fractional values f1, f2, f3 at each time point are given in the Figure 10 legend.44

The histograms in Figure 8 and Figure 10 show relatively good alignment, all with45

type β. The histogram fractions for the CT scan data and the model simulations46

are compared in Figure 11. From these histogram plots we see that the tumor does47

not progress in category type. The parameters for Patient 2 and the doubling times48
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obtained from the simulation are shown in Table 3. The doubling time obtained1

from the simulation is in the range of a benign nodule.2

Patient 3. Patient 3 is an example of atypical cells highly suspicious for adeno-3

carcinoma by biopsy. In Figure 12 we show CT scan images for Patient 3 at four4

time points. Patient 3 CT scan histograms (with bin width 10 HU) at the four5

time points, with their category type and fractional values f1, f2, f3 are shown in6

Figure 13. For the model simulation of Patient 3, we have taken the time points7

(in days) as t0 = 0, t1 = 574, t2 = 826, t3 = 917 (corresponding to the dates in8

Figure 13), and two additional time points beyond the data times as t4 = 1, 217 and9

t5 = 1, 517. In Figure 14 we graph the initial tumor spatial density plus background10

density u0(x) + ub(x), in alignment with the CT scan histogram at baseline t = 0,11

shown in Figure 13, and the tumor spatial density u(t,x) at t = 917.12

In Figure 15 we show the histogram plots of the model simulation for Patient 313

at the six time points as shown in Figure 13, where the values of u(t,x) are shifted14

by −1000 to correspond to HU. The category type and fractional values f1, f2, f315

at each time point are given in the Figure 15 legend. The first four histograms16

in Figure 13 and Figure 15 show relatively good alignment, with type progression17

from β to γ. Through the two additional time points in the simulation we see the18

progression of the tumor through type γ. The histogram fractions for the CT scan19

data and the model simulations are compared in Figure 16. The parameters for20

Patient 3 and the doubling time obtained from the simulation are shown in Table21

3. The doubling time obtained from the simulation is in the range of non-small cell22

lung cancer.23

Patient 4. Patient 4 is an example of a proven adenocarcinoma that started as a24

GGO that increased in density on CT over time. In Figure 17 we show CT scan25

images for Patient 4 at four time points. Patient 4 CT scan histograms (with bin26

width 10 HU) at four time points, with their category type and fractional values27

f1, f2, f3 are shown in Figure 18. For the model simulation of Patient 4, we have28

taken the time points (in days) as t0 = 0, t1 = 239, t2 = 423, t3 = 471, and two29

additional time points beyond the data times as t4 = 600 and t5 = 750. In Figure30

19 we show the graph of the initial spatial density u0(x), the background spatial31

density ub(x), and their sum, in alignment with the CT scan histogram at baseline32

t = 0 shown in Figure 18.33

In Figure 20 we show the histogram plots of the model simulation for Patient 434

at the four time points as shown in Figure 18, where the values of u(t,x) are shifted35

by −1000 to correspond to HU. The category type and fractional values f1, f2, f336

at each time point are given in the Figure 20 legend. The first four histograms in37

Figure 17 and Figure 20 show relatively good alignment, with type progression from38

β to γ. The histogram fractions for the CT scan data and the model simulations39

are compared in Figure 21. Through the two additional time points we see the40

progression of the tumor through type δ to type ε. The parameters for Patient 441

and the doubling time obtained from the simulation are shown in Table 3. The42

doubling time obtained from the simulation is in the range of non-small cell lung43

cancer.44

In Figure 22 we graph the total tumor mass from the model simulations for45

each patient over time, where mass is scaled to 1.0 at time 0. Patients 1 and 246

have smaller growth than Patients 3 and 4, corresponding to their smaller growth47

parameter a. The model simulations allow calculation of the tumor doubling times,48
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Table 3. Model parameters and simulation doubling times. Units
of a are 1/ time units and units of b are area units2/time units.

Patient a b Doubling time from baseline
1 0.003 0.02 353 days
2 0.002 0.006 687 days
3 0.004 0.001 380 days
4 0.012 0.001 115 days

as well as tracking of the tumor growth over the span of CT scan time series. The49

model simulations also allow growth projections for additional times beyond the1

CT scan data, as demonstrated for Patients 3 and 4 (see also Figure 22).2

Discussion. In the recent paper [15] a qualitative five-category classification method3

for analysing NSCLC was proposed, and its utility justified using statistical tools.4

The results indicated a satisfactory inter-observer agreement simply through visual5

assessment of CT histograms. Our goal here has been to quantify the five categories6

in [15] in terms of a dynamic spatial model of tumor growth; and to connect the7

temporal dynamics of the categories to tumor DT. We have compared CT scan8

data and model outputs for four patient studies. For each patient, we see good9

agreement between these data and model outputs, in terms histogram categories10

and HU fractional ranges.11

In the current work we hypothesized that the five categories identified in [15]12

actually correspond to temporal tumor progression. Indeed, Kawata [15] already13

speculated that change from type α to β and from β to γ may indicate tumor14

progression.15

Our results show that model (1)-(2) supports the five category classification in16

adenocarcinoma in situ. Further, these five categories can be viewed as a hypoth-17

esized 5-step lung cancer progression theory. Moreover, since it takes into account18

the spatial heterogeneity of the tumor, which is particularly important for irreg-19

ular nodules investigated here, the model gives us a tool to estimate tumor mass20

doubling times using CT histogram data only.21

Major challenges for application of the model (1)-(2)are the identifications of22

the initial tumor nodule characteristics, the background non-tumor bias parameter23

ub(x), the carrying capacity parameter um, the spatial diffusion parameter b, and24

tumor growth parameter a. Our goal here has been to demonstrate that model (1)-25

(2) does correlate well with tumor growth data given by CT scan data represented26

with GGO histograms. Formal procedures to quantify these identifications of initial27

data and parameters for general patient data will be carried out in future work.28

Outlook. Our model already shows very good agreement with patient data, and29

the 5-category classification of GGOs. Future improvements of the mathematical30

model may involve:31

• Full 3-dimensional simulations.32

• Systematically analyze the simulation outcomes as functions of the model33

parameters and initial condition (transient vs asymptotic behavior, is there a34

globally stable steady state?).35
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• Inclusion of nonlinear diffusion to account for a more realistic description of36

tumor spatial growth (in particular to model competition effects).37

• To include different type of placement processes for the tumor cells (other1

than diffusion) to account for the complex spatial structure of the lung.2

Estimation of tumor doubling time in GGOs has not been described. This work3

offers a method to compute growth rate of GGOs as a predictive biomarker of4

malignancy, similar to that used for solid nodules using volumetric CT. Further5

work is needed to investigate the impact of different reconstruction algorithms and6

reconstructed image quality on the estimate of GGO growth rate.7

Supporting Information.8

S1 Appendix. Global behaviour of solutions. The basic mathematical theory9

of general classes of nonlinear reaction diffusion equations of the type (1)-(2) is10

well understood. However, for completeness, here we provide a concise proof of the11

global existence and positivity of solutions of our model in the biologically relevant12

state space of Lebesgue integrable functions L1(Ω) =: X . In particular, to establish13

the global existence of mild solutions we implement a framework as in [22] for a14

structured population model, see also [19].15

We set K := L1
+(Ω) (the positive cone of L1, which is closed) and we recast16

model (1)-(2) in the form of a semilinear abstract Cauchy problem as follows.17

du

dt
= Au+ F (u), u(0) = u0 ∈ K, (3)

where

Au = ∇ (b∇u) + au

(
1− ub

um

)
, (4)

D(A) =
{
v ∈W 2,1(Ω) | v(x) = 0 x ∈ ∂Ω

}
, (5)

F (u) = −a u
2

um
. (6)

We say that the abstract semilinear problem (3) satisfies the sub-tangential condi-18

tion (see e.g. [22]) with respect to K, if19

lim
h→0+

d (K, T (h)u+ hF (u))

h
= 0, (7)

where T is the linear semigroup generated byA, and d is the usual distance function.
We also recall the notation (·, ·)− introduced for a semi-inner product on X . Below
X ∗ denotes the dual of the Banach space X , and (·, ·) the natural pairing between
elements of X and X ∗.

(u, v)− := min
v∗∈X∗

{
(u, v∗) | ||v∗|| = ||v||, (v, v∗) = ||v||2

}
.

We recall the following result from [22], see also [19].20

Theorem 0.1. Let X ,K,A and F as defined above, and assume that F is locally21

Lipschitz and bounded. Further assume that the sub-tangential condition (7) holds,22

and that there exist ω, κ ∈ R such that (Au, u)− ≤ ω|u|2, for all u ∈ D(A); and23

(F (u), u)− ≤ κ|u|2, for all u ∈ K. Then, for each u0 ∈ K, there exists a unique24

mild solution u(t) to (3) for all t > 0.25

We now apply Theorem 0.1 to our model (1)-(2).26
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Theorem 0.2. Assume that ub ∈ C1(Ω), and a, b > 0. Then, for any initial27

condition u0 ∈ K, model (1)-(2) admits a mild (semigroup) solution u(t) ∈ K, for1

all times t > 0.2

Proof. It follows from the assumptions that the densely defined operator A3

defined in (4)-(5) generates a positive strongly continuous semigroup T (t) on L1(Ω).4

Note that the nonlinear operator F cannot be defined on the whole state space X ,5

but F is locally Lipschitz and maps bounded sets B ⊂ K into bounded sets F (B).6

To establish the global existence of solutions, note that in our situation since T7

leaves K invariant, the sub-tangential condition (7) simplifies as follows (see also8

Lemma C in [22]).9

lim
h→0+

d (K,u+ hF (u))

h
= 0, (8)

which is easily seen to hold true, as for all u ∈ K we have F (u) < 0.10

Next note that in our setting we have11

(F (u), u)− = min
u∗∈L∞(Ω)

{
− a

um

∫
Ω

u2 u∗

∣∣∣∣∣ ||u||1 = ||u∗||∞,
∫

Ω

uu∗ =

(∫
Ω

|u|
)2
}
.

(9)
Hence for every u ∈ K we may take u∗ ≡ ||u||1 =

∫
Ω
u (constant function), which12

shows that (F (u), u)− ≤ 0 holds. Finally, note that (Au, u)− ≤ ω|u|2, for all13

u ∈ D(A) holds with ω := s(A) <∞, the spectral bound of A. �14

Our model (1)-(2) always admits the trivial steady state u∗ ≡ 0. For a large
enough, the existence of a strictly positive steady state can be established using
the general framework developed in [6]. In particular, we can define a parametrised
family of linear operators as follows:

Φv u = ∇ (b∇u) + au

(
1− ub

um

)
− a u

um
v, (10)

D(Φv) =
{
u ∈W 2,1(Ω) |u(x) = 0 x ∈ ∂Ω

}
, ∀ v ∈ K. (11)

(12)

It is then shown that for a large enough, s(Φ0) > 0 holds, and that the function15

defined as f : α → s (Φαv) is monotone decreasing for every v ∈ K. This then16

allows one to define a fixed point map on the level set S := {v ∈ K | s(Φv) = 0},17

which yields the existence of a positive steady state of (1)-(2), see [6] for more18

details.19

We also note that applying earlier results by Cantrell and Cosner from [7] (see in20

particular Theorem 3.1 in [7]) would also allow us to obtain sufficient conditions for21

the existence of a globally stable unique positive steady state for a large enough.22
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Figure 1. Photomicrograph showing a small lung area at the mi-
croscopic level. Lighter pink areas are representing the thickened
alveolar walls and the darker purple ones are cancer cells lining up
along the walls. As the tumor grows further, it will fill the white
air spaces between the alveolar walls, thereby shifting the density
histogram closer to water.

Figure 2. Patient 1: Five serial CT images spanning 826 days (as
detailed in the text) for a biopsy proven benign GGO (arrow).
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A: CT scan histogram at 9/21/12
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B: CT scan histogram at 12/17/12
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C: CT scan histogram at 5/7/13
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D: CT scan histogram at 6/26/14

-
10
24

-
99
4

-
96
4

-
93
4

-
90
4

-
87
4

-
84
4

-
81
4

-
78
4

-
75
4

-
72
4

-
69
4

-
66
4

-
63
4

-
60
4

-
57
4

-
54
4

-
51
4

-
48
4

-
45
4

-
42
4

-
39
4

-
36
4

-
33
4

-
30
4

-
27
4

-
24
4

-
21
4

-
18
4

-
15
4

-
12
4

-
94

-
64

-
34 -
4 26

0.00

0.02

0.04

0.06

E: CT scan histogram at 8/14/14
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F: CT scan histogram at 10/20/15

Figure 3. CT scan histograms of Patient 1. A: 9/21/12, type β,
f1 = 0.94, f2 = 0.06, f3 = 0.0. B: 12/17/12, type β, f1 = 0.92,
f2 = 0.08, f3 = 0.0. C: 5/7/13, type β, f1 = 0.94, f2 = 0.06,
f3 = 0.0. D: 6/26/14, type β, f1 = 0.92, f2 = 0.08, f3 = 0.0. E:
8/14/14, type β, f1 = 0.95, f2 = 0.05, f3 = 0.0.

Figure 4. Patient 1 model simulation. A: the initial tumor spatial
density u(0, x, y). B: the initial spatial density of the tumor plus
the background spatial density u(0, x, y) + ub(x, y). C: the tumor
spatial density u(692, x, y) at time t = 692 days.
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A: model histogram at 19/21/12
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B: model histogram at 12/17/12
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C: model histogram at 5/17/12
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D: model histogram at 6/26/14
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E: model histogram at 8/14/14
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F: model histogram at 10/20/15

Figure 5. Model simulation histograms of Patient 1. A: 9/21/12,
type β, f1 = 0.97, f2 = 0.03, f3 = 0.0. B: 12/17/12, type β,
f1 = 0.98, f2 = 0.02, f3 = 0.0. C: 5/7/13, type β, f1 = 0.98,
f2 = 0.02, f3 = 0.0. D: 6/26/14, type β, f1 = 0.95, f2 = 0.05,
f3 = 0.0. E: 8/14/14, type β, f1 = 0.94, f2 = 0.06, f3 = 0.0.
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Figure 6. Histogram fractions f1, f2, f3 of Patient 1 for CT scan
data and model output.
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Figure 7. Patient 2: Six serial CT images over a span of 932 days
for a stable GGO (arrow), clinically considered benign due to lack
of change in size or density.
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A: CT scan histogram at 5/22/12
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B: CT scan histogram at 9/6/12
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C: CT scan histogram at 12/6/12
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D: CT scan histogram at 6/12/13
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E: CT scan histogram at 12/11/13
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F: CT scan histogram at 12/10/14

Figure 8. CT scan histograms of Patient 2. A: 5/22/12, type β,
f1 = 0.94, f2 = 0.06, f3 = 0.0. B: 9/6/12, type β, f1 = 0.91,
f2 = 0.09, f3 = 0.0. C: 12/6/12, type β, f1 = 0.93, f2 = 0.07,
f3 = 0.0. D: 6/12/13, type β, f1 = 0.92, f2 = 0.08, f3 = 0.0. E:
12/11/13, type β, f1 = 0.89, f2 = 0.11, f3 = 0.0. F: 12/10/14,
type β, f1 = 0.90, f2 = 0.10, f3 = 0.0.
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Figure 9. Patient 2 model simulation: A: The initial spatial den-
sity of the tumor plus the background spatial density u(0, x, y) +
ub(x, y). B: The initial tumor spatial density u(0, x, y). C: The
tumor spatial density u(932, x, y) at time t = 932 days.
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A: model histogram at 5/22/12
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B: model histogram at 9/6/12
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C: model histogram at 12//6/12
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D: model histogram at 6/12/13
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E: model histogram at 12/11/13
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F: model histogram at 12/10/14

Figure 10. Model simulation histograms of Patient 2. A: 5/22/12,
type β, f1 = 0.92, f2 = 0.08, f3 = 0.0. B: 9/6/12, type β, f1 =
0.91, f2 = 0.09, f3 = 0.0. C: 12/6/12, type β, f1 = 0.91, f2 = 0.09,
f3 = 0.0. D: 6/12/13, type β, f1 = 0.89, f2 = 0.11, f3 = 0.0. E:
12/11/13, type β, f1 = 0.87, f2 = 0.13, f3 = 0.0. F: 12/10/14,
type β, f1 = 0.84, f2 = 0.16, f3 = 0.0.
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Figure 11. Histogram fractions f1, f2, f3 of Patient 2 for CT scan
data and model output.

Figure 12. Patient 3: Four serial CT images spanning 917 days
for atypical cells (arrow) highly suspicious for adenocarcinoma by
biopsy.
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A: CT scan histogram at 10/20/10
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B: CT scan histogram at 5/16/12
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C: CT scan histogram at 1/23/13
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D: CT scan histogram at 4/24/13

Figure 13. CT scan histograms of Patient 3. A: 10/20/10, type
β, f1 = 0.74, f2 = 0.23, f3 = 0.03. B: 5/16/11, type β, f1 = 0.69,
f2 = 0.24, f3 = 0.07. C: 1/23/13, type γ, f1 = 0.69, f2 = 0.22,
f3 = 0.09. D: 4/24/13, type γ, f1 = 0.63, f2 = 0.24, f3 = 0.13.

Figure 14. Patient 3 model simulation: A: The initial spatial
density of the tumor plus the background spatial density u(0, x, y)+
ub(x, y). B: The initial tumor spatial density u(0, x, y). C: The
tumor spatial density u(917, x, y) at time t = 917 days.
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A: model histogram at 10/20/10

-
10
24

-
99
4

-
96
4

-
93
4

-
90
4

-
87
4

-
84
4

-
81
4

-
78
4

-
75
4

-
72
4

-
69
4

-
66
4

-
63
4

-
60
4

-
57
4

-
54
4

-
51
4

-
48
4

-
45
4

-
42
4

-
39
4

-
36
4

-
33
4

-
30
4

-
27
4

-
24
4

-
21
4

-
18
4

-
15
4

-
12
4

-
94

-
64

-
34 -
4

0.005

0.010

0.015

0.020

0.025

0.030

0.035
B: model histogram at 5/16/12
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C: model histogram at 1/23/13
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D: model histogram at 4/24/13
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E: model histogram at 4/24/13 + 300 days
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F: model histogram at 4/24/13 + 600 days

Figure 15. Model simulation histograms of Patient 3. A:
10/20/10, type β, f1 = 0.78, f2 = 0.22, f3 = 0.0. B: 5/16/12, type
β, f1 = 0.62, f2 = 0.38, f3 = 0.0. C: 1/23/13, type γ, f1 = 0.55,
f2 = 0.42, f3 = 0.03. D: 4/24/13, type γ, f1 = 0.52, f2 = 0.43,
f3 = 0.05. E: 4/24/13 + 300 days, type δ, f1 = 0.44, f2 = 0.43,
f3 = 0.13. F: 4/24/13 + 600 days, type δ, f1 = 0.37, f2 = 0.40,
f3 = 0.23.
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Figure 16. Histogram fractions f1, f2, f3 of Patient 3 for CT scan
data and model output.
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Figure 17. Patient 4: Four CT image recordings of a suspicious
nodule spanning 471 days (arrow).
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A: CT scan histogram at 10/2/13
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B: CT scan histogram at 5/28/14
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C: CT scan histogram at 11/28/14
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D: CT scan histogram at 1/15/15

Figure 18. CT scan histograms of Patient 4. A: 10/2/13, type
β, f1 = 0.72, f2 = 0.24, f3 = 0.04. B: 5/28/14, type γ, f1 = 0.54,
f2 = 0.35, f3 = 0.11. C: 11/28/14, type γ, f1 = 0.56, f2 = 0.33,
f3 = 0.11. D:1/15/15, type γ, f1 = 0.46, f2 = 0.36, f3 = 0.18.
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Figure 19. Patient 4 model simulation: A: The initial spatial
density of the tumor plus the background spatial density u(0, x, y)+
ub(x, y). B: The initial tumor spatial density u(0, x, y). C: The
tumor spatial density u(471, x, y) at time t = 471 days.
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A: model histogram at 10/2/13
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B: model histogram at 5/28/14
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C: model histogram at 11/28/14
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D: model histogram at 1/15/15
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E: model histogram at t=600 days
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F: model histogram at t=750 days

Figure 20. Model simulation histograms of Patient 4. A: 9/21/12,
type β, f1 = .90, f2 = 0.10, f3 = 0.0. B: 12/17/12, type γ,
f1 = 0.66, f2 = 0.34, f3 = 0.0. C: 5/7/13, type γ, f1 = 0.47,
f2 = 0.40, f3 = 0.13. D: 6/26/14, type γ, f1 = 0.43, f2 = 0.39,
f3 = 0.17. E: 8/14/14, type δ, f1 = 0.33, f2 = 0.37, f3 = 0.30. F:
10/20/15, type ε, f1 = 0.23, f2 = 0.33, f3 = 0.44.
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Figure 21. Histogram fractions f1, f2, f3 of Patient 4 for CT scan
data and model output.
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Figure 22. Total tumor mass growth curves from model simula-
tions. Black dots are time points corresponding to CT scan data
for patients 1,2,3,4. Red dots are for two additional time points for
Patients 3 and 4. The values are scaled to 1.0 at time 0.
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