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Abstract: A large brain is a defining feature of modern humans, yet there is no consensus 22 

regarding the patterns, rates, and processes involved in hominin brain size evolution. We use a 23 

reliable proxy for brain size in fossils, endocranial volume (ECV), to better understand how brain 24 

size evolved at both clade- and lineage-level scales. For the hominin clade overall, the dominant 25 

signal is consistent with a gradual increase in brain size. This gradual trend appears to have been 26 

generated primarily by processes operating within hypothesized lineages – 64% or 88% 27 

depending on whether one uses a more or less speciose taxonomy, respectively. These processes 28 

were supplemented by the appearance in the fossil record of larger-brained Homo species and the 29 

subsequent disappearance of smaller-brained Australopithecus and Paranthropus taxa. When the 30 

estimated rate of within-lineage ECV increase is compared to an exponential model that 31 

operationalizes generation-scale evolutionary processes, it suggests that the observed data were 32 
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the result of episodes of directional selection interspersed with periods of stasis and/or drift; all 33 

of this occurs on too fine a time scale to be resolved by the current human fossil record, thus 34 

producing apparent gradual trends within lineages. Our findings provide a quantitative basis for 35 

developing and testing scale-explicit hypotheses about the factors that led brain size to increase 36 

during hominin evolution. 37 

Keywords: hominin evolution, endocranial volume, phenotypic evolution, evolutionary mode, 38 

microevolution, macroevolution  39 

 40 

1. Introduction 41 

 The large brain of Homo sapiens is a defining hallmark of humankind. The brains of 42 

ancient hominins do not fossilize, but the estimated volume of a fossil cranium (i.e., endocranial 43 

volume or ECV) is a reliable proxy for brain size [1–3]. From studying fossil ECV trends 44 

through time, we know that brain size in the hominin clade increased more than threefold from 45 

Australopithecus – the earliest unambiguous hominin taxon – to our own species. Nevertheless, 46 

researchers currently disagree about the manner by which hominin brain size increased. They 47 

either claim ECV increased gradually through time [4–7] or via brief episodes of rapid increase 48 

separated by extended periods of stasis (i.e., the punctuated equilibrium model) [8–11]. Based on 49 

these inferred patterns, researchers then attempt to draw conclusions about what drove hominin 50 

ECV increase (e.g., episodes of climate change drove the rapid ECV increase in the punctuated 51 

equilibrium model [12,13]).  52 

Caution must be exercised, however, when developing and evaluating these cause-and-53 

effect hypotheses. For one, such hypotheses need to specify the taxonomic level at which the 54 

effect is observed because evolutionary patterns are scale-dependent. Evolution is hierarchical, 55 
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and trends at lower taxonomic levels can look very different when combined at higher taxonomic 56 

levels (i.e., Simpson’s paradox; figure 1a) [14–17]. Furthermore, different taxonomic levels 57 

imply different evolutionary mechanisms [14,16,17]. Patterns within lineages (i.e., hypothesized 58 

ancestor-descendant sequences) are determined by microevolutionary, population-level processes 59 

(i.e., anagenesis). The most popular hypotheses related to hominin ECV increase – which include 60 

links to the appearance and development of uniquely human traits such as socio-cultural 61 

complexity, symbolic behavior, and language [2,12,13,18] – are in this category. Patterns 62 

observed at the clade-level, on the other hand, are the result of processes operating across 63 

multiple lineages and therefore can also be shaped by macroevolutionary processes (i.e., 64 

origination by lineage-splitting and extinction) in addition to microevolutionary ones. For 65 

example, from one time period to the next, the mean ECV of a clade can increase because (1) 66 

existing lineages evolve larger brains anagenetically, (2) a new lineage originates with a brain 67 

size greater than the pre-existing clade mean, or (3) a lineage with a brain size smaller than the 68 

clade mean goes extinct (figure 1b). We must first understand how hominin brain size has 69 

increased across taxonomic scales in order to properly infer the evolutionary processes and 70 

potential drivers involved.   71 

Existing research seldom specifies taxonomic scale when examining whether hominin 72 

ECV data more closely match a pattern of gradualism or one of punctuated equilibrium. Some 73 

studies have analyzed changes in hominin brain size within a lineage [5,7,9–11], while others 74 

have done so at the level of the entire hominin clade [4,6,18–20]. It is perhaps not surprising then 75 

that both models (i.e., gradualism and punctuated equilibrium) have found support from various 76 

analyses with no consensus being reached. Other researchers have argued that the data better 77 

support a model that combines elements of both gradualism and punctuated equilibrium 78 
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[18,21,22], or they claim that the two models cannot be distinguished [23,24]. The thesis of our 79 

investigation is that taxonomic scale must be made explicit when describing patterns of hominin 80 

ECV evolution and attempting to infer the processes that generated them. 81 

Here, we address the issue of taxonomic scale dependence by examining patterns of 82 

hominin ECV change at each of three successively lower taxonomic levels. We first estimate the 83 

evolutionary mode of hominin ECV change at the clade level. We then partition clade-level ECV 84 

change into anagenetic (microevolution) and origination and extinction (macroevolution) 85 

components. Finally, because hypotheses for hominin ECV increase are presently dominated by 86 

microevolutionary explanations, we compare the rate of within-lineage ECV change to that 87 

expected from an extrapolated microevolutionary model to assess whether observed increases 88 

can be solely accounted for by population-level, directional selection. By understanding how 89 

hominin ECV patterns change across different taxonomic levels, we can gain a more nuanced 90 

understanding of hominin brain size evolution. This work specifically addresses when and at 91 

what scale ECV change most likely occurred, and lays a foundation for future research to orient 92 

hypothesized evolutionary mechanisms with scale-specific phenotypic patterns.   93 

 94 

2. Materials and Methods  95 

Our dataset is composed of published absolute ECVs for specimens whose geological age 96 

ranges encompass dates anywhere between 3.2 and 0.5 Ma (i.e., beginning with the earliest 97 

uncontroversial hominin taxon, Australopithecus, and ending when the ECVs of fossil crania 98 

begin to overlap with the range of modern humans) (figure 2 & table S1). ECV measurements 99 

were log10-transformed prior to all analyses because our methods assume linear changes in ECV, 100 

and we were interested in proportional differences (e.g., a doubling from 400 to 800 cm
3
 was 101 
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considered more biologically meaningful than an equivalent 400 cm
3
 increase from 1000 to 1400 102 

cm
3
) [25]. We analyzed absolute and not relative brain size because the use of relative brain size, 103 

which requires estimation of fossil hominin body masses, introduces additional error into 104 

analyses [18].  105 

Clade-level ECV increase was analyzed using the “paleoTS” R package [26] to fit six 106 

statistical models of evolutionary modes to the observed ECV data (i.e., random walk, 107 

gradualism, stasis, stasis-stasis [i.e., clade-level “punctuated equilibrium”], stasis-random walk, 108 

and stasis-gradualism) (figure S1) [27–30]. Random walk and gradualism were modeled as 109 

having bin-to-bin ECV transitions drawn from a normal distribution, where the mean equals zero 110 

in the random walk model (i.e., increases and decreases are equiprobable) and a non-zero value 111 

in the gradualism model (i.e., biased towards increases or decreases) [27,29]. Stasis was modeled 112 

as normally distributed variation around an optimal ECV mean, both of which stay constant 113 

through time [27,29,31]. The remaining complex models were modeled as permutations of the 114 

three simpler models separated by an estimated age point where the transition occurs [30]. To 115 

operationalize these models, we grouped all ECV data into 0.2 Ma bins (to maximize the number 116 

of binned samples within the time series), fit the models to the data by maximizing likelihood, 117 

and assessed relative model fit using the bias-corrected Akaike information criterion (AICc) 118 

transformed into weights (which sum to one across all models, with higher weights representing 119 

more model support) [32]. We resampled age estimates to examine the possible influences of 120 

dating error on our model selection results (figures S2 & S3), and we also explicitly incorporated 121 

inter-observer error in estimating ECV for individual fossils into our model (figures S2 & S3 & 122 

table S2). We conducted sensitivity analyses to evaluate potential effects of bin location and/or 123 

bin size on the apparent clade-level pattern (see Appendix S1). 124 
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 To investigate how clade-level ECV patterns were driven by mechanisms operating at 125 

lower taxonomic levels, we divided the ECV data into 0.3 Ma time bins – the smallest bin size 126 

that yielded no temporal gaps within lineages – and then additively partitioned between-bin, 127 

clade-level ECV changes into their anagenetic, origination, and extinction components [33; see 128 

Appendix S1]. If lineages survive from one time bin to the next, clade-level change attributed to 129 

anagenesis is defined as the difference in mean ECV of surviving lineages between adjacent time 130 

bins. Clade-level change due to origination is calculated as the mean of all ECVs (including non-131 

surviving lineages) in the later time bin minus the mean of ECVs from surviving lineages in the 132 

same bin, and extinction is the mean ECV of surviving lineages in the earlier time bin minus all 133 

ECVs in the same bin. Clade-level changes between time bins with no surviving lineages cannot 134 

be partitioned into separate origination/extinction components. Instead of determining which 135 

evolutionary mode best characterizes each lineage, this method quantifies the relative importance 136 

of microevolution (anagenesis) and macroevolution (origination and extinction) in driving the 137 

broader clade-level pattern during a specific time period. We should emphasize that origination 138 

and extinction in this case refer, respectively, to observed first and last appearances of species’ 139 

cranial specimens (from which ECV could be estimated) and not the observed appearances of 140 

the species as a whole nor their true, unknown ages of origination and extinction [34]. We refer 141 

to ‘first appearances’ and ‘last appearances’ when describing these phenomena. Because our 142 

partitioning method required assigning specimens to anagenetic lineages, we conducted these 143 

analyses using taxonomies that recognized smaller and larger numbers of lineages (‘less’ and 144 

‘more’ speciose, respectively) to determine if taxonomic philosophy had any influence on our 145 

results (figure S4). Similar to our clade-level analyses, we also resampled age and ECV estimates 146 

to examine the effect of dating and inter-observer measurement error on our results (figure S3), 147 
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and conducted sensitivity analyses to evaluate the effects of bin location and size (see Appendix 148 

S1). 149 

 Finally, we examined the rate of ECV change within lineages. Increases in ECV are 150 

usually hypothesized as being caused only by natural selection at the population level. However, 151 

these hypotheses are difficult to test given the large time scale discrepancy between 152 

microevolutionary processes (i.e., generational time scales of 10
1
 years in extant great apes [35]) 153 

and the time scales of hominin fossil assemblages (i.e., typical temporal resolution of 10
5
 years). 154 

Furthermore, as mentioned previously, macroevolutionary processes (i.e., origination and 155 

extinction) can independently influence ECV, which confounds attempts to estimate how ECV 156 

changes at the population level. To address this issue, we used the results from our partitioning 157 

analyses to isolate the component of ECV evolution attributable only to within-lineage change 158 

(i.e., anagenesis). We then used a simple exponential growth model to investigate whether 159 

published estimates of the magnitude and rate of natural selection on generational time scales can 160 

be extrapolated to predict observed within-lineage ECV change on geological time scales. 161 

Proportional change over multiple generations in some trait for a given population can be 162 

calculated with the equation: �1 + e����
�
, where �� is selection strength (mean-standardized 163 

selection gradient [36]), e� is a measure of evolutionary potential quantifying the expected trait 164 

response to selection (mean-standardized evolvability) [37], and t is the number of generations 165 

[37]. Using a database of morphological traits, Hereford and colleagues found median �� is 0.28 166 

for multi-trait studies that take into account trait covariance [36]. This is an appropriate 167 

assumption here since hominin brain and body size are known to be highly correlated [38], so 168 

selection strength acting on brain size will likely be diminished due to selection on other 169 

correlated traits (including, but not limited to, body size) acting in different directions. As a 170 
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result, univariate selection gradients are spuriously too high and are not appropriate for 171 

predicting actual evolutionary change for traits that are correlated with others [36]. Hominin 172 

brain size has an e� of 0.006%, as estimated from modern human phenotypic data [38; M. 173 

Grabowski, pers. comm.]. The bin size in our additive partitioning analyses is 0.3 Ma, which 174 

translates to 11,110 generations, assuming a hominin generation time of 27 years [35]. If ECV 175 

change from the extrapolated exponential model matches observed anagenetic change in the 176 

fossil record, this would parsimoniously suggest that hypothesized drivers of natural selection 177 

(e.g., socio-cultural complexity, symbolic behavior, and complex language) were operating 178 

consistently, rather than episodically, to increase ECV within hominin populations.  179 

Some fossil cranial specimens are particularly incomplete, distorted, or crushed. The 180 

inclusion of such specimens (i.e., Australopithecus garhi [BOU-VP-12/130], Paranthropus 181 

aethiopicus [Omo L.338y-6], Paranthropus boisei [Omo 323-1976-896], and Homo erectus s.l. 182 

[KNM-OL 45500, Lantian, OH 12, Sangiran 3, Sangiran 31, Yunxian, and Zhoukoudian VI]) 183 

could potentially bias ECV estimates and thus affect our results and inferences. To address this 184 

potential shortcoming and further evaluate the robustness of our results, we repeated our clade-185 

level model selection and lower-level additive partitioning analyses with these ten specimens 186 

removed from the dataset. 187 

 All analyses were done in R 3.0.3 [39]. See the electronic supplementary material for 188 

more details on how we collected and analyzed the data, as well as the R script for executing 189 

analyses. 190 

 191 

3. Results 192 
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 Results from fitting evolutionary models at the clade level show gradualism is by far the 193 

best fit for describing hominin ECV change over time (figure 3a & table S3). All mean ECV 194 

estimates of the observed time series fall within the 95% probability envelope predicted by the 195 

gradualism model (figures 3b & S1), and model R
2
 is 0.676 (table S4). Multiple sensitivity 196 

analyses demonstrate that support for the gradualism model is robust to bin size or location 197 

(figure S5). 198 

The second set of analyses shows that clade-level changes between bins – which are the 199 

sum of their anagenetic and first and last appearances components – are always positive (figure 200 

4), thus corroborating the gradualism result described above. When we decompose clade-level 201 

changes using the less speciose taxonomy, the gradualism pattern is mainly driven by brain size 202 

increase within lineages, accounting for 88% of total clade-level change (figures 4 & S6). Before 203 

2.6 Ma, however, the extent to which anagenetic change outpaces macroevolutionary change is 204 

obscured by dating uncertainty in both the less and more speciose taxonomies (figure 4). Despite 205 

the dominance of anagenetic (microevolutionary) processes in the less speciose taxonomy, there 206 

are still times when macroevolutionary processes are important. The nontrivial influence of first 207 

appearances between 2.3 and 2 Ma and last appearances between 2 and 1.7 Ma (figures 4 & S6) 208 

is driven by the appearance of Homo and disappearance of southern African Australopithecus-209 

Paranthropus, respectively, at c.2 Ma (figure S7). The disappearance of eastern African 210 

Paranthropus at c.1.4 Ma (figure S7) appears to drive the clade-level pattern between 1.4 and 1.1 211 

Ma (figures 4 & S6).  212 

Using the more speciose taxonomy, anagenesis is still the principal driver of clade-level 213 

ECV increase (64% of clade-level change). However, because more lineages are included, 214 

macroevolutionary processes inevitably take on a greater role relative to that observed in the less 215 
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speciose taxonomy (figures 4 & S6). Examples include the first appearances of Paranthropus 216 

robustus, early Homo, and Homo ergaster c.2 Ma for the time period between 2.3 and 2 Ma; the 217 

disappearances of Australopithecus africanus and P. robustus c.2 Ma and the first appearance of 218 

Homo erectus sensu stricto c.1.7 Ma for the time period between 2 and 1.7 Ma; the 219 

disappearances of eastern African Paranthropus and early Homo c.1.4 Ma for the time period 220 

between 1.4 and 1.1 Ma; and the disappearance of H. ergaster c.0.8 Ma for the time period 221 

between 0.8 and 0.5 Ma (figures 4, S6, & S7).  222 

To summarize the results from both hypothesized taxonomies, within-lineage ECV 223 

increase is the primary driver of clade-level change at 1.7-1.4, 1.1-0.8, and 0.5-0.2 Ma.   224 

Macroevolutionary processes are important at 2-1.7 Ma (though anagenesis also contributes here 225 

in the less speciose taxonomy) and at 1.4-1.1 Ma (qualitatively similar to the results of ref. [18]). 226 

These patterns are robust to taxonomic philosophy, dating error, inter-observer ECV 227 

measurement error, bin location, and bin size (figures 4, S6, S8, & S9).  228 

For the final set of analyses, we find hominin ECV within lineages is expected to increase 229 

via directional selection by 0.08 log10cm
3
, or a factor of 1.2, over the course of 0.3 Ma (the bin 230 

size of our additive partitioning analyses). When comparing this expectation (black, horizontal 231 

line in figure 4) to observed within-lineage increases in fossil hominin ECV, we see the observed 232 

increases are always below the expected increase derived from the exponential model (except for 233 

the 1.7-1.4 Ma time period; figures 4 & S6). These findings are consistent with previous research 234 

showing that evolutionary rates in fossil lineages are slower than those in modern 235 

microevolutionary studies, even when fossil lineages show evidence of directional trends [40].  236 

Our results are unaffected by the removal of especially incomplete or damaged specimens 237 

(figure S10 & table S5). 238 
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 239 

4. Discussion 240 

Our results show that fossil hominin ECV data at the clade level are most consistent with 241 

a gradual pattern of ECV increase through time. Understanding how this pattern emerged from 242 

processes that operate at lower taxonomic levels is more complicated. Our analyses are 243 

consistent with microevolutionary mechanisms as the dominant driver of clade-level change (64 244 

or 88% of change using a more or less speciose taxonomy, respectively), alternating with 245 

secondary macroevolutionary mechanisms. This implies changing selective pressures and shifts 246 

in the relative importance of different evolutionary processes through time.  247 

To date, most explanations for hominin brain size increase have focused on 248 

microevolutionary mechanisms. These hypotheses can explain anagenetic patterns but may not 249 

be relevant for patterns caused by origination and extinction [14,41]. For example, some 250 

researchers argue extinction is an emergent phenomenon because species do not go extinct for 251 

the same reasons individual organisms die [41]. ECV increase via anagenesis and lineage 252 

splitting are likely different enough processes that it makes sense to understand how each 253 

independently influenced ECV increase. Our results emphasize that origination and extinction 254 

were also important in shaping ECV patterns at the clade level, and both micro- and 255 

macroevolutionary change influenced hominin brain size to different extents at different times 256 

(figures 4 & S6). Therefore, we must construct new, comprehensive theories to explain potential 257 

influences on hominin brain size evolution.  258 

Periods when macroevolutionary processes drove clade-level ECV increase were, by 259 

definition, characterized by a combination of factors promoting origination and extinction. These 260 

factors may have included large-scale climate and environmental change [12,42], habitat 261 
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fragmentation and vicariance [43], interspecific interactions [44], etc. It is worth repeating here 262 

that inferred periods of macroevolutionary importance were estimated using observed first and 263 

last appearance dates of lineages’ cranial specimens, and these dates are very likely to shift as 264 

new fossil specimens are discovered (specifically, first appearances would become older, and last 265 

appearances would become younger) [34].  266 

It is noteworthy that almost all the first and last appearances are associated with an 267 

increase in average clade-level brain size, and the importance of each is staggered in time (i.e., 268 

appearance of large-brained species mostly from c.2.3 to 1.7 Ma and disappearance of smaller-269 

brained species from c.1.7 to 0.5 Ma) (figures 4 & S6). The connection between first 270 

appearances and larger brain size is an example of directional speciation [14], where there is a 271 

consistent, biased shift in the phenotypes of daughter lineages relative to that of their ancestral 272 

lineages. Directional speciation may be caused by developmental or evolutionary constraints that 273 

bias phenotypic change towards larger ECV, or selection for larger brains in peripatric 274 

populations [14,16,17]. The association between last appearances and smaller-brained species 275 

may signal some kind of extinction selectivity, either directly or indirectly related to ECV (e.g., 276 

extinction rates may be correlated with geographic range size which in turn is correlated with 277 

body and brain size). This result is corroborated by smaller-brained species having shorter 278 

lineage durations (mean species’ ECV vs. mean species’ duration: Spearman’s rho = 0.41), and 279 

therefore higher mean extinction rates [25] (this also suggests greater persistence of larger-280 

brained species).  281 

If species with larger ECVs are found to have higher diversification rates (origination 282 

minus extinction rates), this may suggest that species sorting also caused clade-level ECV to 283 

increase [45,46]. Just as natural selection operates via differential birth/death of individuals 284 
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associated with a given trait, species sorting operates via differential origination/extinction of 285 

species, in this case, associated (directly or indirectly) with brain size. Species sorting is implied 286 

by the increased variation in brain size between 2.0-1.5 Ma (figure 2), generated by the addition 287 

of larger-brained lineages via directional speciation; this increased variation was later culled by 288 

selective extinction of smaller-brained lineages (figures 4 & S6). If species sorting is borne out, 289 

it would suggest that all three mechanisms known to influence phenotypic evolution within a 290 

clade (i.e., anagenesis, directional speciation, and species sorting) were acting in concert at 291 

multiple taxonomic scales to produce the directional ECV trend observed at the hominin clade 292 

level (as proposed elsewhere for hominin body mass and stature [47]). Moreover, the potential 293 

influence of species sorting requires a reorientation of how we think about hominin brain size 294 

evolution, since oft-proposed microevolutionary mechanisms are not necessary and may not be 295 

sufficient to generate higher-level sorting.  296 

Inferring the potential drivers for periods of anagenetic change is more difficult. Within-297 

lineage trends are typically explained as being caused by only directional selection. However, the 298 

observed rate of within-lineage ECV increase is too slow to be consistent with uniform 299 

directional selection, given our knowledge from empirical microevolutionary studies [48] and 300 

theoretical models (like the exponential model above) about the rate at which natural selection 301 

operates. In fact, to ‘force’ the model prediction downwards to match the observed data (i.e., 302 

mean anagenetic increase in the less speciose taxonomy; figure 4), one would need to decrease 303 

the mean-standardized selection gradient by 50% from 0.28 to 0.14 (if evolvability is held 304 

constant). In their compilation of mean-standardized selection gradients, Hereford and colleagues 305 

found that such low estimates are so small as to not be significantly different from zero (see 306 

figure 3 in ref. [36]). Our finding is consistent with those from other researchers who have shown 307 
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that rates of hominin phenotypic evolution are consistent with, or even slower than, random 308 

genetic drift alone [49–51]. The potential prevalence of genetic drift should perhaps not be 309 

surprising given the rarity of hominins in the fossil record [52], which implies small population 310 

sizes, but drift is difficult to reconcile with the strongly directional ECV pattern we find within 311 

hominin lineages.  312 

We hypothesize that the seemingly too slow within-lineage evolutionary rate is caused by 313 

the dynamics of the selective pressures themselves (i.e., the adaptive landscape) over 314 

evolutionary time [40,53,54]. Microevolutionary studies have shown that populations can 315 

respond rapidly to selection pressures on generational time scales (i.e., populations rapidly climb 316 

the adaptive peak and stay at the summit). Such high rates, however, need not characterize the 317 

tempo at which the adaptive peak itself moves over geological time [40]. Therefore, selection 318 

was for larger ECV on average but must have fluctuated and included episodes of stasis and/or 319 

drift. All of this occurs on too fine a time scale to be resolved by the current hominin ECV fossil 320 

record, resulting in emergent directional trends within lineages. If this is the case, the 321 

microevolutionary question of interest shifts to what caused ECV selection pressures to fluctuate 322 

but still ultimately select for larger ECVs on average at a geologically gradual pace [40]? 323 

 324 

5. Conclusion 325 

 Traditionally, a gradual trend has been interpreted as the result of consistent directional 326 

selection at the population level for larger brains. However, when taxonomic scale is accounted 327 

for, we find the gradual, clade-level trend was generated primarily by within-lineage mechanisms 328 

that likely involved both directional selection and stasis and/or drift. In addition to these within-329 

lineage processes, directional speciation producing larger-brained lineages, higher extinction 330 
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rates of smaller-brained lineages, and potentially higher-level species sorting all worked together 331 

to generate the strongly trended, emergent clade-level pattern. Our findings illustrate the 332 

complicated, multi-causal nature of hominin ECV evolution and the need for future hypotheses 333 

and models to recognize and incorporate this hierarchical complexity. There is no one canonical 334 

scale at which to conduct evolutionary research, and different questions can and should be asked 335 

when studying ECV increase at different scales. The analytical framework we suggest can be 336 

used to generate more precise hypotheses pinpointing when and at what taxonomic level ECV 337 

increase occurred, thus enabling stronger tests of proposed explanations. For example, 338 

predictions of the rate and magnitude of ECV increase from models invoking microevolutionary 339 

processes (e.g., stone tool innovation, major dietary shifts) can be benchmarked against the 340 

anagenetic partitions in figures 4 & S6.  341 

Within just the past few years, it has been made clear through fossil discoveries, or 342 

through comprehensive analyses permitted by those discoveries, that many of the so-called 343 

‘defining’ characteristics of modern humans emerged through evolutionary processes that were 344 

significantly more complicated than had previously been appreciated. For example, we now have 345 

direct fossil evidence of a widely diverse set of adaptations for bipedalism in Pliocene hominins 346 

[55] and direct archaeological evidence that stone tool technologies were potentially 347 

manufactured and used by hominins well before the emergence of the ‘handy man,’ Homo 348 

habilis [56,57]. This trend of falsifying and then refining hypotheses after the emergence of new 349 

fossil data is inevitable in palaeobiology. However, it has proved easier to accumulate, but more 350 

difficult to reject, hypotheses for why ECV increased in the hominin clade. Certain hypotheses 351 

may actually prove unfalsifiable if they explain evolutionary patterns in ways that are too 352 

imprecise and overly general [58]. Palaeoanthropologists, as with other practitioners of historical 353 
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science, cannot conduct experiments with their data, so they must rely on theory to develop 354 

precise, falsifiable predictions to elucidate the mechanisms underlying observed patterns [58–355 

60]. Informed by micro- and macroevolutionary theory, our taxonomically scale-explicit 356 

analyses provide a revised, quantitatively rigorous framework for both developing and testing 357 

hypotheses and models related to the evolution of hominin brain size. This moves us closer to 358 

identifying and understanding what ultimately drove the evolution of large brains in the human 359 

clade.  360 
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 494 

Figure captions 495 

Figure 1. Theoretical plots demonstrating (A) how patterns within lineages may not necessarily 496 

hold when combined and examined at the level of the entire clade and (B) how clade-level brain 497 

size can increase via anagenesis, origination, or extinction. (A) On the left, lineages exhibit 498 

gradual trends, but the clade-level pattern shows a punctuated equilibrium pattern. This is 499 

because the direction and magnitude of change within each group of co-occurring lineages 500 

cancel each other out so that, on average, an emergent stasis pattern is generated. On the right, 501 

each lineage experiences stasis, but because origination events produce more and larger ECV 502 

increases than decreases on average, a gradual clade-level trend is produced. (B) The vertical 503 

dashed line represents a bin edge separating two bins. In all three cases, clade-level brain size is 504 

increasing, and the increase is attributed solely to the process being illustrated. In “Anagenesis,” 505 
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we see two lineages survive from the earlier time bin into the later time bin, and both lineages 506 

exhibit an increase in ECV over time. In “Origination,” a lineage-splitting event creates a 507 

daughter species with a larger ECV in the later time bin, leading to an increase in overall clade-508 

level ECV. In “Extinction,” the smaller-brained lineage goes extinct in the earlier time bin, 509 

causing clade-level ECV to increase in the subsequent time bin.  510 

Figure 2. Time series of hominin ECV included in our analyses. Points represent ECV and age 511 

midpoints, and bars represent ranges of error on the estimate (or mean ± 3 SD for dates with 512 

normally distributed error [see Appendix S1]). Points are coded by hominin grade [58]. 513 

Specifically, archaic species include Australopithecus afarensis, Australopithecus africanus, and 514 

Australopithecus sediba; hyper-megadont and megadont species include Australopithecus garhi, 515 

Paranthropus aethiopicus, Paranthropus boisei, and Paranthropus robustus; transitional species 516 

include Homo habilis sensu stricto and Homo rudolfensis; and pre-modern Homo species include 517 

Homo erectus sensu stricto, Homo ergaster, Homo georgicus, and Homo heidelbergensis. The 518 

left y-axis is on a logarithmic scale, while the right y-axis’ tick labels are log10-transformed 519 

values. 520 

Figure 3. (A) Model selection results of the clade-level analysis testing six evolutionary modes. 521 

Bias-corrected Akaike information criterion (AICc) weights sum to one across all models, with 522 

higher weights representing more model support. Bars represent AICc weight medians, and error 523 

bars represent 1
st
 and 3

rd
 quartiles from resampling age estimates (see Appendix S1). (B) 524 

Gradualism model fit for the clade-level ECV time series using 0.2 Ma bins. Binning here was 525 

done using observed (not resampled) age midpoints for plotting purposes only (see Appendix 526 

S1). Points are mean ECV estimates, and error bars are ± 1 SE. Dotted line represents the 527 
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expected evolutionary trajectory of the fitted gradualism model surrounded by the 95% 528 

probability envelope in gray. Y-axes as in figure 2.  529 

Figure 4. Additive partitioning of clade-level ECV transitions into their anagenetic and observed 530 

first and last appearances components. Ages separated by hyphens indicate over which two age 531 

bins (represented by their midpoints) the ECV transition is measured. “First/last appearances” 532 

represents macroevolutionary change that cannot be partitioned into separate first or last 533 

appearances components (see “Methods”). The sum of all partition means within a given time 534 

period equals the mean clade-level change, which in this case are all positive. Error bars are ± 1 535 

SE calculated by randomly resampling age estimates (see Appendix S1). The horizontal black 536 

line represents the expected amount of within-lineage ECV increase over 0.3 Ma given our 537 

knowledge of how quickly natural selection operates from microevolutionary studies. Insets 538 

depict the cumulative effect of each component’s mean (excluding “First/last appearances”) on 539 

the net clade-level trend (black line). Vertical dotted lines in the inset correspond to the vertical 540 

dotted lines in the main figure. The top graph uses a taxonomy that recognizes fewer taxa, while 541 

the bottom graph uses a taxonomy that recognizes a larger number of taxa. 542 
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