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Abstract 53	

Motion artifacts are often a significant component of the measured signal in functional near-54	

infrared spectroscopy (fNIRS) experiments. A variety of methods have been proposed to address 55	

this issue, including principal component analyses (PCA), correlation-based signal improvement 56	

(CBSI), wavelet filtering, and spline interpolation. The efficacy of these techniques has been 57	

compared using simulated data; however, our understanding of how these techniques fare when 58	

dealing with task-based cognitive data is limited. Brigadoi et al. (2014) compared motion 59	

correction techniques in a sample of adult data measured during a simple cognitive task. Wavelet 60	

filtering showed the most promise as an optimal technique for motion correction. Given that 61	

fNIRS is often used with infants and young children, it is critical to evaluate the effectiveness of 62	

motion correction techniques directly with data from these age groups. This study addresses that 63	

problem by evaluating motion correction algorithms implemented in HomER2. The efficacy of 64	

each technique was compared quantitatively using objective metrics related to the physiological 65	

properties of the hemodynamic response. Results showed that targeted PCA (tPCA), Spline, and 66	

CBSI retained a higher number of trials. These techniques also performed well in direct head-to-67	

head comparisons with the other approaches using quantitative metrics. The CBSI method 68	

corrected many of the artifacts present in our data; however, this approach produced sometimes 69	

unstable HRFs. The targeted PCA and Spline methods proved to be the most robust, performing 70	

well across all comparison metrics. When compared head-to-head, tPCA consistently 71	

outperformed Spline. We conclude, therefore, that tPCA is an effective technique for correcting 72	

motion artifacts in fNIRS data from young children. 73	

Keywords: functional near-infrared spectroscopy, motion artifact, child brain imaging, 74	

motion correction  75	
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Evaluating Motion Processing Algorithms for Use with fNIRS Data from Young Children 76	

Functional near-infrared spectroscopy (fNIRS) measures the absorption and scattering of 77	

photons as near-infrared light passes through brain tissue, allowing measurement of changes in 78	

localized hemodynamic responses in the cortex. It specifically monitors changes in intensity as 79	

near-infrared light is passed through tissue from a source to a detector. fNIRS has been widely 80	

used to investigate the neural processes that underlie multiple cognitive abilities across 81	

development and is becoming a tool of choice when studying challenging populations including 82	

infants, young children, and clinical patients who cannot be easily studied with fMRI 1-11. 83	

Despite recent advances in methodological and analytical tools for use with fNIRS data, 84	

questions remain regarding the optimal method for removing motion artifacts from the measured 85	

signal.  86	

Motion artifacts are often a significant component of the measured fNIRS signal. This is 87	

due to the fact that movement can cause transient displacements of the source/detector optodes 88	

on the scalp that are reflected in the time-series. The speed and strength of movement as well as 89	

the tolerance of the probes to this motion play a role in how these artifacts are reflected in the 90	

signal.  Motion artifacts are highly variable and often complex. They can be generally classified 91	

as spikes, baseline shifts, and low-frequency variations12 . They take many forms that can appear 92	

as isolated, high amplitude events (spikes) or pervasive low-frequency events that are temporally 93	

correlated with the measured hemodynamic response and therefore hard to detect and correct for. 94	

To estimate the true response, however, it is crucial that motion artifacts are detected and 95	

removed.  96	

A variety of methods have been proposed to address this issue. Some include the addition 97	

of complementary measurements such as short-separation channels13, 14 or an accelerometer15, 16, 98	
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17. These methods provide a direct measure of the artifacts making it possible to regress these 99	

artifacts from the measured signal of interest. Alternative approaches include detecting optode 100	

fluctuations prior to data collection to prevent unstable and weak connections that would result in 101	

motion artifacts18. Other approaches take into consideration spatial and/or temporal features of 102	

the measured signal and serve as post-processing techniques. Among these approaches are 103	

principal component analyses (PCA)19, Kalman filtering20, correlation-based signal improvement 104	

(CBSI)21, wavelet filtering22, spline interpolation23, autoregressive algorithms24, and more 105	

recently, a kurtosis-based wavelet algorithm27, empirical mode decomposition (EMD)25 and an 106	

optical model on the influence of optode fluctuation on the fNIRS signal26.  107	

Several papers have explored the efficacy of different motion correction techniques for 108	

fNIRS data12, 17, 25-33. The majority of these reports have investigated this problem by adding a 109	

simulated hemodynamic response to resting state data. Recently, Chiarelli et al. (2015)27 110	

introduced a kurtosis-based wavelet algorithm that proved to be more efficient in removing 111	

motion artifacts when compared to other techniques in a resting state dataset. Additionally, Gu 112	

and colleagues25 introduced the empirical mode decomposition (EMD) approach which is 113	

adaptive and data-driven. This approach performed well when compared to Spline, Wavelet and 114	

kurtosis-based wavelet in a resting state dataset by increasing the signal-to-noise ratio and 115	

decreasing the mean squared error.  116	

Only two studies have used real, task-based data12, 30. Comparison of the techniques has 117	

shown that the most effective methods for motion correction are wavelet filtering12, 28, spline 118	

interpolation28, and targeted PCA (tPCA)32. Critically, the complexity of motion artifacts makes 119	

it likely that the efficacy of motion correction techniques is data-dependent12. Consistent with 120	

this, several recent studies have found that wavelet filtering is a promising technique for motion 121	
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correction; however, the specific type of wavelet filtering that is optimal differs across cohorts 122	

and data types. Brigadoi et al. (2014)12 quantitatively compared 6 motion correction techniques 123	

in a sample of adult data measured during a simple cognitive task. They concluded that wavelet 124	

filtering showed the most promise as an optimal technique for motion correction. Hu et al. 125	

(2015)30 reported that a combination of wavelet and a moving average yielded the best results in 126	

a study of 9- to 12-year-old children.  127	

In the present study, we compared the performance of multiple motion correction 128	

techniques as implemented in the HomER2 analysis package38 using fNIRS data from a cognitive 129	

task with young children. The study was unique in two ways. First, our understanding of how 130	

motion correction techniques fare when dealing with task-based cognitive data is limited. In the 131	

present study, we examined fNIRS data from a study of visual working memory where children 132	

had to explicitly compare multiple items from a sample and test array. Second, no previous 133	

studies have compared motion correction techniques with fNIRS data from young children. 134	

Young children are much more likely to move during data collection, resulting in far noisier data 135	

than data from adult participants with motion artifacts distributed throughout the time series.  136	

They also routinely engage in jerky movements that can result in more motion epochs and yield 137	

artifacts that are faster and of greater amplitude relative to adults. Furthermore, because fNIRS is 138	

often used with infants and young children, it is critical to evaluate the effectiveness of motion 139	

correction techniques directly with data from these age groups. Thus, we investigated whether 140	

the conclusions reached by Brigadoi et al. (2014)12 extend to data from young children. To 141	

address this question, we compared Spline interpolation, PCA, tPCA, Wavelet filtering, and 142	

CBSI on data acquired during a working memory paradigm with 3- and 4-year-old children. 143	
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Note that some adult populations, such as adults with epilepsy, might also produce many 144	

motion artifacts. Thus, the issues explored here may be relevant to some adult populations as 145	

well. In this context, we note that Selb and colleagues 33 reported that the best approach to 146	

minimize the effects of motion artifacts on oscillation fNIRS data from healthy subjects and 147	

stroke patients is to correct motion artifacts using a spline interpolation, apply band-pass 148	

filtering, and then discard the epochs that were originally identified as containing motion 149	

artifacts. We did not evaluate this approach here because data collection with infants, children, 150	

and clinical populations often results in quite limited data; consequently, discarding segments of 151	

data is not an optimal approach to denoise the optical signal. 152	

153	

Methods 154	

Participants 155	

11 3.5-year-olds (M= 3.5 y, SD=0.06) and 14 4.5-year-olds (M= 4.51 y, SD=0.08) 156	

participated in the study, after parents provided informed consent. Children were recruited from 157	

a participant registry maintained by the Department of Psychology at a Midwestern university in 158	

the United States. Parents were sent a letter inviting them to participate and then received a 159	

follow-up phone call. All children had normal or corrected-to-normal vision. The study was 160	

approved by the university’s institutional review board (IRB). 161	

162	

Materials and Procedure 163	

Each participant was seated in front of a 46-inch LCD television that was connected to a 164	

PC running E-Prime (Psychology Software Tools, Pittsburgh, PA). The paradigm consisted of a 165	

change detection task34 (figure 1). In this task, participants are presented with a sample array of 1 166	
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to 3 colored squares, after which there is a 1s delay, and then a test array appears in which either 167	

all the objects match the memory array, or the feature (i.e., color) of one object is changed to a 168	

new value. The test display remained on the screen until children provided a verbal response 169	

(i.e., ‘same’ or ‘different’) that the experimenter entered using a keyboard.  After each trial, there 170	

was a random inter-trial interval. These intervals consisted of a blank 1 s (50% of trials), 2 s 171	

(25% of trials), or 4 s (25% of trials) delay followed by the appearance of a fixation dot. The 172	

next trial began once the experimenter pushed a button indicating that the participant was 173	

attending to the fixation dot. On average, the total duration of the interval between trials was 174	

12.3 s (SD =8.23 s; range varied from 2.23 to 53.32 s). 175	

There were six conditions in the experimental design: children were asked to remember 176	

1, 2, or 3 items (set sizes, SS, 1-3) and the trials either contained a change or did not (same, 177	

different).  Participants came in for two sessions and completed 24 trials per condition. 178	

 179	

fNIRS data 180	

fNIRS data were collected at 50Hz using a TechEn CW6 system with 690nm and 830nm 181	

wavelengths. Near-infrared light was delivered via 12 fiber optic cables (sources) to the 182	

participant’s scalp and detected by 20 fiber optic cables (detectors) spaced into four arrays 183	

embedded in a cap. Each array contained three sources and five detectors placed over the frontal, 184	

temporal, and parietal cortex bilaterally to tap target regions of interest. Figure 2 shows views of 185	

the probe geometry (see Wijeakumar et al., 201535 for details). There were a total of 36 channels 186	

which formed part of an optimized probe geometry using regions of interest (ROIs) from the 187	

fMRI VWM literature 30.  ROIs included included right Superior Intraparietal Sulcus (sIPS), 188	

bilateral Intraparietal Sulcus (IPS), bilateral Anterior Intraparietal Sulcus (aIPS), bilateral Ventral 189	
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Occipital Cortex (VOC), bilateral Dorso-lateral Prefrontal Cortex (DLPFC), left Superior Frontal 190	

Gyrus (SFG), bilateral Inferior Frontal Gyrus (IFG), Frontal Eye Fields (FEF), bilateral Middle 191	

Frontal Gyrus (MFG), bilateral Occipital (OCC) and bilateral Temporo-parietal Junction (TPJ).  192	

To account for variations in head size across participants, source-detector distances were 193	

scaled relative to the head circumference using the 10-20 system; thus, the source-detector 194	

distance ranged from 25 to 27 mm35.  195	

At the beginning of each session, each participants’ head circumference was measured 196	

and the appropriate fNIRS cap was selected. Prior to the experimental task, children were fitted 197	

with a custom EEG cap that contained grommets to secure the fiber optics to the scalp. 198	

Experimenters then cleared out hair that could obstruct the optical signal. Sources and detectors 199	

were then fitted into grommets onto the child’s head, and secured using an elastic band to limit 200	

optode fluctuation as a result of participant movement. The source and detector gains were 201	

adjusted to optimize signal quality prior to starting the experimental procedures. Optode 202	

positions were recorded in 3-dimensions using a Polhemus Patriot system before the task. 203	

The data acquired during this experiment contained a variety of motion artifacts. Figure 3 204	

shows an example of the artifacts present in one representative subject’s data. Artifacts were 205	

generated by the participants’ mouth and jaw movements when they gave verbal responses or 206	

talked spontaneously as well as by a variety of head and body movements. Figure 4 shows an 207	

excerpt of the session video that illustrates some of the movements participants routinely 208	

engaged on while completing the task. In particular, the images show how the participant moves 209	

his head while changing his line of focus from the display to the experimenter. Note that this 210	

period likely included talking with the experimenter. Similarly, the figure also shows how the 211	

participant moves back-and-forth while the trial is on. Not all participants had artifacts of the 212	
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same type and magnitude, likely because they engaged in slightly different behaviors and had 213	

different physical characteristics. However, moving back and forth, changing focus from the 214	

display to the experimenter and talking were behaviors that are likely present across all 215	

participants. The shape and duration of the artifacts were also variable, although many were fast, 216	

high amplitude artifacts. Such individual differences are unavoidable with young children and 217	

pose a great challenge when trying to detect and remove motion artifacts using the same method 218	

across participants.  219	

Motion correction techniques 220	

Spline interpolation. This method is a channel-by-channel approach based on 221	

Scholkmann et al. (2010)23. As it is implemented on HomER238, this algorithm acts on motion 222	

artifacts that have been previously detected; therefore, it is dependent upon having a good 223	

motion detection algorithm. Artifacts are modeled using cubic spline interpolation, which is then 224	

subtracted from the original time-series to correct for motion artifacts. The time-series is then 225	

reconstructed and normalized by shifting the corrected segments by a value given by the 226	

combination of the mean value of the segment and the mean value of the previous segment to 227	

ensure a continuous signal. For a more detailed description see Scholkmann et al. (2010)23. The 228	

interpolation depends on a parameter, which determines the degree of the spline function. In this 229	

study, the parameter was set to 0.99 to be consistent with previous studies12, 23, 28. 230	

Principal Component Analysis (PCA). This method applies an orthogonal transformation 231	

to decompose the original signal into uncorrelated components based on the amount of variance 232	

accounted for by each component. The first components account for the largest proportion of 233	

variance and are assumed to represent the motion artifacts as these epochs are characterized by 234	
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large changes in amplitude and a high degree of variability. Therefore, removing the first 235	

components should correct for motion artifacts19.  236	

The performance of this technique is highly dependent on both the number of 237	

measurements available and the number of components removed. Cooper et al. (2012)28 238	

suggested that PCA performs optimally when removing 97% of the total variance; thus, we used 239	

this value. Following the suggestion of Brigadoi et al. (2014)12 that 97% was too high, we also 240	

performed the correction using 80%. Results for both parameters were very similar; thus, we 241	

only include the results for 97% in this report. We also employed a targeted Principal 242	

Component Analysis (tPCA)32 which applies a similar PCA filter but only on segments 243	

previously identified as motion artifact. Thus, similar to the Spline interpolation method 244	

described above, this technique relies on a motion detection algorithm. The corrected motion 245	

epochs are then reintroduced to the time series by shifting the corrected segments by a value 246	

given by the combination of the mean value of the segment and the mean value of the previous 247	

segment to ensure a continuous signal, identical to the procedure employed in the Spline 248	

interpolation correction method. This procedure was repeated five times to identify and correct 249	

any residual artifacts.  250	

Wavelet filtering. This method is a channel-by-channel approach that follows the one 251	

proposed by Molavi and Dumont (2012)22.  It relies on the differences in amplitude and duration 252	

between motion artifacts and the measured signal of interest22. As a first step, the signal is 253	

expanded using a discrete wavelet transform after which motion artifacts appear as isolated large 254	

coefficients. The goal is to remove those coefficients that are not likely to be an outcome of the 255	

distribution of wavelet coefficients.  256	
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The measured signal is assumed to be a sum of the physiological signal of interest and an 257	

interference term. The distribution of wavelet coefficients is a mixture of Gaussians36, 37. Within 258	

this method, the wavelet distribution is assumed to have a single Gaussian probability 259	

distribution. Since the hemodynamic signal and motion artifacts differ in timing and amplitude, 260	

with the first being a slow and smooth signal, most wavelet coefficients of the signal of interest 261	

center around zero while motion artifacts behave like outliers. Therefore, for any given 262	

coefficient, if the coefficient exceeds iqr times the interquartile range, that coefficient is assumed 263	

to not belong in the original signal and must be a reflection of artifacts that should be removed. 264	

Iqr was set to 1.0 in this experiment. Outlier terms were removed by setting them to zero 265	

preceding the reconstruction of the artifact-free signal by using the inverse discrete wavelet 266	

transform. 267	

Correlation-based signal improvement (CBSI). This method is a channel-by-channel 268	

approach developed by Cui et al. (2010)21. It reduces motion artifacts caused by head 269	

movements. The main assumption is that HbO and HbR should be strongly negatively correlated 270	

during functional activation and become more positively correlated during motion. Furthermore, 271	

the ratio between HbO and HbR is assumed to be the same with and without the presence of 272	

motion artifacts. Within this method, the measured signal is assumed to have three components: 273	

the true signal of interest, motion-induced noise, and other white noise21. Since the white noise 274	

component can be easily removed with filters, the purpose then is to compute the true HbO and 275	

HbR signal. To do so, two assumptions must be met: first, the correlation between HbO and HbR 276	

should be close to -1 and the correlation between the motion artifact and HbO should be close to 277	

0.  Solving the following equations should then produce the true signal of interest:  278	

x0 = (x - α * y)/2 279	
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y0 = - (1/ α ) * x0 280	

with  281	

α = std(x)/ std(y) 282	

where std(x) is the standard deviation of x.  283	

 284	

Data Processing 285	

The NIRS data were processed using HomER238 based in MATLAB (Mathworks, MA 286	

USA). Raw optical signals were first converted to optical density. Channels with very low 287	

optical density (<80dB; dB=20*LOG10(y), where y is the intensity level measured by the CW6 288	

system) were discarded from the analysis. Incorrect trials were also discarded from further 289	

analysis. The mean number of trials included for each participant in each condition was 17.3 (SD 290	

= 4.8). The mean number of trials per participant and condition was quite high, giving us 291	

confidence in the ability to detect differences between the motion processing algorithms. 292	

Selection of motion detection parameters   293	

fNIRS data from young children often has far more motion epochs than data collected 294	

from typical adults. Moreover, young children can only perform a handful of trials, making each 295	

trial crucially important. Therefore, it is important to employ a set of parameters and a correction 296	

technique that recovers as many trials as possible while still decontaminating the data. However, 297	

the process of selecting the “right” parameters for a given data set is an ambiguous one. There 298	

are no well-defined metrics for setting parameters other than exploring the properties of each 299	

data set or using values that other groups have used and exploring how those parameter values 300	

affect the data.  301	
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Before comparing the motion correction techniques, we explored two different set of 302	

motion detection parameters (Table 1). We used the parameters from Brigadoi et al. (2014)12 as a 303	

starting point because this allows for a direct comparison to this previous study. Specifically, 304	

motion artifacts were identified in the optical density (OD) time-series using the motion 305	

detection algorithm, hmrMotionArtifact. Signal changes with amplitude (AmpThresh) greater 306	

than 0.4au and exceeding a threshold of 50 in change of standard deviation (StDevThresh) within 307	

1s were identified as motion artifacts (tMotion). Artifacts were masked for an additional 1s 308	

before and after the motion epochs (tMask). Trials were rejected if an artifact appeared 10s after 309	

the stimulus onset (enStimRejection: 0-10s). Periods masked as motion artifacts on a given 310	

channel were identified on all channels. Note that a channel specific approach, 311	

hmrMotionArtifactByChannel, was used for the spline interpolation technique. This algorithm 312	

works the same way but on a channel-by-channel basis.  313	

Table 1 | Motion detection parameters  314	

 Original Parameters Relaxed Parameters 
tMotion 1 0.3 
tMask 1 1 

StDevThresh 50 100 
AmpThresh 0.4 0.4 

 315	

This parameter set did a good job identifying a variety of artifacts (fig. 4). However, it 316	

resulted in a limited number of trials remaining after motion correction for some motion 317	

correction approaches. This might accurately reflect our data: it is possible that there was too 318	

much motion in our data set and the excluded trials really should be excluded. Examination of 319	

the data set suggested, instead, that the motion detection parameters were too conservative in 320	

some cases. For instance, in the lower panel of Figure 4, the first motion artifact is relatively 321	

minor, while the second and third artifacts are large.  322	
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Thus, we took a second look through the data, identifying motion detection parameters 323	

that would still do a good job of identifying large motion artifacts in the data, but would let more 324	

minor motion artifacts pass through. Note that, although this allows some noise to pass through 325	

to the final analysis, this noise trades off with the increase in the number of trials we are 326	

averaging over per participant. We relaxed the motion detection parameters (see Table 1) such 327	

that signal changes with amplitude greater than 0.4au and exceeding a threshold of 100 in change 328	

of standard deviation within 0.3s were identified as motion artifacts. Artifacts were masked for 329	

an additional 1s before and after the motion epochs. Thus, in this stage, we are in effect capturing 330	

fast, high-amplitude artifacts. The segments identified in yellow in Figure 4 reflect motion 331	

detection using the second ‘relaxed’ set of parameters. As is evident, the second set is most 332	

sensitive to fast changes in amplitude. Note, however, that both set of parameters do a good job 333	

detecting clear epochs of motion present in the data. 334	

Five processing approaches (PCA, Wavelet, tPCA, Spline, CBSI) were applied to the 335	

data after noisy channels were removed.  Figure 5 shows the processing stream for all 336	

techniques. Four of these techniques (PCA, Wavelet, tPCA, Spline) applied the correction on the 337	

OD data. Two of these techniques – tPCA and Spline – did correction based on a first round of 338	

motion artifact detection. Here we used the more conservative parameters borrowed from 339	

Brigadoi et al.12 in order to detect – and possibly correct – as much motion as possible. After 340	

each correction technique had been applied to the data, motion artifact was detected (assuming 341	

motion across all channels) using the ‘relaxed’ parameters. Trials with motion artifact at this step 342	

were rejected. Data were then band-pass filtered (0.016-0.5 Hz) and the concentrations of 343	

oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) 344	
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were computed using the modified Beer-Lambert Law39, 40. A differential path length (DPF) 345	

factor of 6.0 was used for both wavelengths 41. 346	

The fifth correction technique, CBSI, applies the motion correction on concentration 347	

changes (see Figure 5). Therefore, the OD data were band-pass filtered and then converted to 348	

concentration changes. The correction method was then applied, motion artifact was detected 349	

using the ‘relaxed’ parameters, and trials with motion artifact were rejected. As a final step, the 350	

data from the five motion correction techniques were block-averaged to recover the mean 351	

hemodynamic response by condition. This yielded six mean measured hemodynamic responses 352	

for HbO and HbR for each channel and participant. The performance of these techniques was 353	

compared to each other and to uncorrected data. 354	

Quantitative comparison of the approaches 355	

The first step in the quantitative analysis was to identify channels with task-relevant 356	

hemodynamic response. The goal was to reduce the number of comparisons and to evaluate the 357	

motion correction approaches only on those channels with task-relevant signals. Thus, we 358	

compared the concentration of HbO and HbR and included all channels showing a significant 359	

difference (p<0.05) between these signals within the task-relevant window (0-10 s; see Buss et 360	

al., 20142). 34 channels passed this criterion. Next, a block average time series for HbO and HbR 361	

was created by averaging data from all six experimental conditions. The central dataset analyzed 362	

was from 34 channels and 25 participants contributing two values (HbO and HbR) for each of 363	

the metrics described below.  364	

Following Brigadoi et al (2014)12, we quantitatively compared the efficacy of each 365	

correction technique using five metrics. The metrics were defined to provide estimates of how 366	

physiologically plausible the recovered mean hemodynamic responses are. The first, the area-367	
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under-the-curve (AUC0-2), encompasses the first two seconds after the onset of the first stimulus 368	

array and it is assumed to be composed of artifacts.  Therefore, smaller values for this index 369	

indicate better performance. The second metric is the AUC2-6 that captures the rise and peak of 370	

the hemodynamic response specific to our task. Buss et al. (2014)2 found task-related functional 371	

activity between 4-6s after the onset of the first stimulus array in the working memory paradigm 372	

used here. Thus, higher values in this time window indicate better performance. Third, we 373	

computed the ratio between AUC2-6 and AUC0-2. Larger ratio values indicate better performance 374	

with low levels of initial noise (AUC0-2) and a strong rise of task-related functional activity 375	

(AUC2-6). Fourth, we computed the mean standard deviation of each trial-specific hemodynamic 376	

response included in the block average by condition and then averaged across conditions so we 377	

end up with one value for this metric for each channel (SubSD). This captures the variability 378	

present within subjects. This variability is assumed to be affected by motion artifacts, so higher 379	

variability indicates poorer motion correction performance. Finally, we computed the number of 380	

trials included after motion correction for each subject and condition. All motion correction 381	

techniques were compared to each other quantitatively using ANOVA.  382	

Results 383	

Figure 6 shows the percent of trials recovered after correction by each technique using 384	

these parameters. PCA did not recover a substantial number of trials after processing and thus 385	

was removed from this stage of the analysis. Figure 7 shows representative examples of a time 386	

series pre- and post-correction. The top panel shows the uncorrected OD data while panels B, C, 387	

D, and E show the OD data after applying the tPCA, Spline, CBSI and Wavelet techniques, 388	

respectively. The figure shows data for three channels (for both wavelengths) with motion 389	

epochs color coded by channel. All correction techniques influenced the data by either reducing 390	
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the amplitude of the artifacts or completely correcting them. The figure also shows that the 391	

epochs that remain flagged as artifacts, after correction, are clear motion epochs. Figure 8 shows 392	

a representative example of the recovered hemodynamic response. The figure depicts 393	

concentration changes across working memory loads (SS1 and SS3) for both HbO and HbR for 394	

all motion correction techniques. Overall, all correction techniques effectively remove the 395	

motion-induced noise present in the SS1 hemodynamic response. Note that the No Correction 396	

plot (top left), shows an increase in both HbO and HbR at SS1 which is inconsistent with 397	

functional hemodynamics and could be attributed to motion epochs. Indeed, the figure shows 398	

that after motion correction this pattern is no longer present. Note that SS3 evoked a canonical 399	

hemodynamic response, with increasing HbO and a decreasing HbR response. Note that CBSI, 400	

despite fabricating the hemodynamic response, reduced the HbR response. Similarly, the wavelet 401	

algorithm dampened the hemodynamic response.  402	

We conducted a mixed factor ANOVA with Technique (CBSI, Wavelet, Spline, tPCA) 403	

and Hb (HbO, HbR) as within-subject factors and Age as a between-subject factor on a channel-404	

by-channel basis for the different metrics. For each analysis that showed an effect of Technique 405	

(Technique main effect, Technique x Age interaction, or Technique x Hb interaction), we 406	

conducted post-hoc comparisons to determine which technique performed quantitatively better 407	

along that metric. The number of instances where each technique performed better than its 408	

counterparts was tallied. Results are shown in Table 2. Overall, CBSI outperformed the other 409	

techniques, with 69 instances where this technique outperformed one of the other techniques. 410	

Two other techniques also performed well, namely Spline and tPCA. Note that most of the 411	

significant Technique effects were seen on the AUC0-2 and SubSD metrics, while the techniques 412	

performed similarly on AUC2-6 and Ratio. Particularly, CBSI outperformed all techniques in the 413	



EVALUATING	MOTION	PROCESSING	ALGORITHMS		 19	
	

Corresponding Author: John P. Spencer, PhD 

AUC0-2 metric while Spline and tPCA outperformed the other techniques on the SubSD metric. 414	

This latter effect is important, showing that Spline and tPCA are effectively reducing the subject-415	

specific variability which is likely influenced by motion artifacts.    416	

 417	
Table 2 | Quantitative analysis summary. Table shows the number of times a technique 418	
outperformed its counterparts in channels where there was a significant effect of Technique, 419	
Technique by Hb or Technique by Age interaction on each metric 420	

  Metrics  
Total 

  AUC02  AUC26  Ratio  SubSD  
CBSI  24  3  3  39  69 

WAVELET  6  2  0  13  21 
SPLINE  0  4  1  45  50 

tPCA  10  1  0  42  53 
 421	

Figure 9 shows the quantitative metrics across comparisons relative to the data with no 422	

motion correction. The top panel of figure 9 shows the mean subject SD for CBSI, Spline, tPCA, 423	

and Wavelet relative to No Correction. The techniques performed similarly along this metric and 424	

all reduced subject SD relative to No Correction. The bottom panels of Figure 9 show scatter 425	

plots of the AUC0-2 and AUC2-6 values that were computed from the recovered mean 426	

hemodynamic response for no motion correction (x axes) and all other techniques (y axes). 427	

Results were consistent for both HbO and HbR; thus, results are plotted together. Note that the 428	

spread of the data is narrower for the corrected data (y axes), resulting in a cleaner signal for the 429	

corrected data.  430	

To ensure all techniques outperformed the data without motion correction, we conducted 431	

a mixed factor ANOVA with Technique (No Correction, Correction) and Hb (HbO and HbR) as 432	

within-subject factors and Age as a between-subject factor on a channel-by-channel basis for 433	

each Technique separately for the different metrics. For each analysis that showed an effect of 434	
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Technique, we conducted post-hoc comparisons to determine which technique performed 435	

quantitatively better along that metric. Results are shown in Table 3. Consistent with 436	

expectations, all the techniques showed a quantitative improvement in the NIRS signal relative to 437	

No Correction, although Wavelet showed the weakest performance on this front. As in the 438	

previous ANOVA, most significant effects resulted from comparisons of the AUC0-2 and the 439	

SubSD metrics. For the AUC0-2 metric, tPCA substantially outperformed No Correction relative 440	

to its counterparts. Similarly, for the SubSD metric, tPCA and Spline outperformed No 441	

Correction relative to the other techniques. Note that No Correction outperformed all techniques 442	

on the AUC2-6 metric. Recall that this metric captures the rise and peak of the hemodynamic 443	

response. This suggests that the motion correction techniques are reducing the amplitude of the 444	

hemodynamic response as a result of correcting artifacts. Importantly, however, the ratio metric, 445	

which is a normalized index of the amplitude relative to the signal at the start of the 446	

hemodynamic response window, reveals that tPCA outperformed No Correction in more 447	

instances than the other techniques.  448	

Table 3 | Technique versus no correction. Table shows a summary of the number of times a 449	
technique outperformed the no correction method in channels where there was a significant 450	
effect of Technique, Technique by Age interaction or technique by Hb interaction on each metric. 451	
Numbers in parenthesis indicate the number of times the no correction method outperformed a 452	
technique. 453	

Metrics 
 Techniques (no correction) 
 CBSI  WAVELET  SPLINE  tPCA 

AUC02  20 (0)  24 (0)  27 (5)  44 (0) 
AUC26  5 (14)  7 (17)  3 (5)  7 (19) 
Ratio  1 (2)  6 (7)  0 (2)  9 (6) 

SubSD  57 (0)  39 (26)  87 (0)  90 (0) 
Total  83 (16)  76 (50)  117 (12)  150 (25) 

 454	
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Considered together, our results show that CBSI does a good job along some metrics 455	

quantitatively, but we note that this technique sometimes yields inconsistent corrected 456	

hemodynamic responses. tPCA and Spline, on the other hand, do a good job quantitatively across 457	

the board and yield robust measured hemodynamic responses. Thus, as a last analysis step, we 458	

explored how these two approaches fared against each other.  459	

A mixed factor ANOVA with technique (Spline, tPCA) and Hb (HbO and HbR) as 460	

within-subject factors and Age as a between-subject factor was computed on a channel-by-461	

channel basis for each of the metrics. The number of instances where each technique performed 462	

better than its counterpart in channels with a significant effect of Technique were tallied. Overall, 463	

tPCA outperformed Spline in 35 versus 13 cases across all metrics. Thus, tPCA appears to be the 464	

most effective motion correction method for our data set. 465	

Note that an additional set of analyses following the procedure from Buss et al. (2014)2 466	

was implemented to explore whether removing outliers would influence how these techniques 467	

perform. Outlier trials were removed that contained amplitudes that were more than 3.5 standard 468	

deviations above or below a participant's mean in each condition for 18 consecutive time-469	

samples. A technique X outlier removal ANOVA was computed for all the metrics. Given that 470	

some of these techniques rely on the variability present in the time series, we hypothesized that 471	

removing outlier observations from the data would improve how the techniques performed. This 472	

was not the case; removing outliers did not have a significant effect on the performance of the 473	

techniques for any of the quantitative metrics (p>.05). 474	

Discussion 475	

Given the prevalence of motion artifacts, several recent papers have evaluated the 476	

efficacy of different motion correction techniques for fNIRS data. These comparisons have 477	
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mostly relied on simulated data; less is known about how these techniques work on empirical 478	

data from cognitive tasks. Brigadoi et al. (2014)12 showed that Wavelet outperformed the other 479	

motion techniques in a data set from adult participants, while Hu et al. (2015)30 showed that a 480	

combination of wavelet filtering and a moving average outperformed other techniques on a data 481	

set from older children (mean age = 9.9 years). In the present study, we used a comparable 482	

approach to examine which techniques are most effective with data from young children. This is 483	

an important contribution given that data from young children often has more, and potentially 484	

different, motion artifacts. Moreover, discarding trials due to motion is less viable given that 485	

participants can only complete a handful of trials. Note that the present investigation may also 486	

provide useful information for researchers using fNIRS to study brain activity in aging adults or 487	

patient populations (i.e., epileptic or Alzheimer’s patients). Like young children, these 488	

participants may generate a higher quantity of motion artifacts and may also generate different 489	

kinds of motion artifacts. Selb at al.33 reported that the best way to limit the effect of motion 490	

artifacts in oscillation data from stroke patients is to discard the contaminated epochs. This 491	

approach, is not optimal given how frequent these artifacts can be present in these population. 492	

Thus, continuous development of correction techniques and the investigating its effects with 493	

real-task based data, remains an important topic of study.  494	

In their report, Hu et al.30 classified motion artifacts info four different types. Those types 495	

include fast spikes (within 1s), peaks with a standard deviation of 100 from the mean with a 496	

duration of 1 to 5s, gentle slopes between 5 and 30s that deviated 300 from the mean, and a slow 497	

baseline shift longer than 30s. In the present study, motion artifacts consisted primarily of type 1 498	

from Hu et al., that is, fast spikes (0.3-1s). 499	
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Our results suggest that CBSI was effective at correcting for motion artifacts for some 500	

metrics, although a qualitative look at how CBSI affected the resultant hemodynamic response 501	

across conditions raised concerns that this approach might be producing unstable hemodynamic 502	

responses. tPCA and Spline performed more robustly, outperforming the other motion correction 503	

techniques both in the number of trials recovered and across multiple quantitative metrics of 504	

interest. Note that both of these techniques rely on a first pass of motion artifact detection and we 505	

used conservative detection parameters from Brigadoi et al.12 for this initial pass through the 506	

data. This has the advantage of detecting multiple types of motion epochs and attempting to 507	

correct them. Then, we used relaxed motion detection parameters in the second pass to exclude 508	

primarily fast spikes and allow more data to pass through to the block average for each 509	

participant. This approach seemed quite effective. Although both approaches fared well, in a 510	

head-to-head comparison, tPCA performed quantitatively better. Thus, we conclude that tPCA is 511	

the most effective motion correction technique with our data. 512	

 Another advantage of tPCA is that it targets specific epochs where the artifacts are 513	

present32. Given that motion artifacts are often distributed throughout a data collection session, 514	

this means that fewer trials are likely to be lost due to motion. This is particularly important in 515	

cases where there is a high quantity of artifacts and a small number of trials. Consistent with this, 516	

the PCA algorithm – which does not target motion epochs, but rather requires that an artifact be 517	

presented in multiple channels to be identified as a principal component – eliminated too many 518	

trials to make it viable for our dataset.  519	

The Spline technique performed well in the quantitative analysis but interestingly, it did 520	

not fully correct as many artifacts as other techniques (see figure 7), even though it does reduce 521	

the amplitude of these epochs. This could explain why it performed similarly to the No 522	
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Correction method on the Ratio metric.  Previous studies have reported that Spline can yield 523	

inconsistent results across studies 12, 23, 28, 30, 42. This technique works by generating a cubic spline 524	

function based on previously detected artifacts and then removing this function from the signal. 525	

The inconsistency might arise because artifacts can be highly variable; thus, using umbrella 526	

parameters (i.e., the same parameters across participants) could result in the interpolation 527	

function fitting some artifacts but not others.  528	

One concern with the motion correction approaches is that they appear to be dampening 529	

the resultant amplitude of the hemodynamic response. For instance, after correction, the signal 530	

amplitude in Figure 9 is narrow, particularly for Wavelet. Recall that in this manuscript we 531	

calculated an average measured hemodynamic response across conditions to reduce the number 532	

of comparisons. This could be having a dampening effect in the measured response. However, 533	

this effect could also suggest that when many artifacts are present, there is a risk of over-534	

correcting, that is, removing important variance from the hemodynamic response of interest. This 535	

is particularly plausible in data from young children where artifacts are distributed throughout 536	

the time series, including within the response of interest. In the present report, the amplitudes of 537	

the resultant hemodynamic response when plotted by condition were around 0.2 µM. 538	

hemodynamic response amplitudes from our previous study2 were in the same range (0.2 - 0.5 539	

µM). Thus, it appears that overcorrection is not a major concern here. That said, it is important to 540	

tailor the motion correction parameters to the properties of each data set to ensure that 541	

overcorrection does not occur.  542	

Our results also provide insights into why some techniques perform better than others 543	

with data from young children. For instance, techniques that do not rely on any motion detection 544	

algorithm and assume that an artifact should be present on multiple channels, such as PCA, 545	
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performed poorly because this assumption was not met in our data; consequently, these 546	

approaches eliminated too many trials. On the contrary, techniques relying on motion detection 547	

performed better because, after detection and then correction, more trials are kept, thus 548	

increasing the signal to noise ratio of the data. Furthermore, our data suggest that tPCA 549	

performed better than Spline because Spline removes the signal when an artifact is identified. If 550	

many motion artifacts are identified, as in our dataset, this method removes potentially useful 551	

signal. By contrast, tPCA removes only some of the variance, potentially retaining a portion of 552	

the signal of interest even if many artifacts are identified. These results highlight the importance 553	

of not only selecting the right parameters when processing fNIRS data but also sheds light on 554	

why some techniques outperform others with highly contaminated data.  555	

Great strides have been made in finding reliable motion correction techniques for fNIRS 556	

data. Our study has contributed to this body of work by evaluating different techniques head-to-557	

head with data from young children from a cognitive task, and considering multiple motion 558	

detection parameter settings. Of course, new motion processing approaches are always in 559	

development; thus, future work will be needed to continually re-evaluate new approaches such as 560	

a recent kurtosis-based wavelet filtering approach27, empirical mode decomposition (EMD) 25, an 561	

optical model on the influence of optode fluctuation on the fNIRS signal26 as well as the 562	

autoregressive algorithm developed by Barker et al. (2013)24. We note that the autoregressive 563	

algorithm was not included in our analysis because this approach uses deconvolution techniques 564	

rather than the block average approach evaluated here.  565	

Note that Umeyama’s approach to detect optode fluctuations prior to starting data 566	

collection provides a great advancement in our understanding of how some artifacts are 567	

generated18, and could potentially help reduce the quantity of artifacts. We suspect, however, that 568	



EVALUATING	MOTION	PROCESSING	ALGORITHMS		 26	
	

Corresponding Author: John P. Spencer, PhD 

this approach may have limited application with young children given that it adds an extra step to 569	

data collection which might result in the participant not completing the task. Future work should 570	

investigate Yamada’s optical model26 to correct for these placement faults in data from children.  571	

Although our results provide evidence that tPCA is a promising choice for correcting 572	

motion artifacts in fNIRS data, it is necessary to consider some details about our design. In this 573	

experiment, we used a variable inter-trial-interval (mean 12.3s, min 2.3s), mostly driven by the 574	

child being ready and paying attention to continue on to the next trial. This, of course, means that 575	

the hemodynamic response of interest, recovered by block average, is different for short ITI vs 576	

long ITI trials. However, this added between-trials variability is present for all techniques; thus, 577	

we do not think this concern undermines our conclusions. Furthermore, the differential path 578	

length factor used in the study was the default parameter in HomER2, 6.0 for both wavelenghts, 579	

and was not corrected for age. Note that recent work by Li et al.43, used the same parameter (6.0) 580	

in a comparable sample (3-5 year-olds). Previous work suggests that a DPF of 4.8-5.13, 581	

depending on the wavelength, should be used when estimating concentration changes in frontal-582	

frontotemporal data from children44. However, anatomical differences across individuals may 583	

also play a role in regard to this calculation44. While we acknowledge this parameter is important 584	

to accurately model concentration changes, we used a parameter previously used in the 585	

literature43 and kept it consistent across techniques thus we do not think this undermines out 586	

conclusions. Future work should explore if this has an effect in our ability to investigate the 587	

efficacy of motion correction techniques. 588	

Conclusion 589	

Correcting motion artifacts that contaminate the signal of interest is a critical step when 590	

processing fNIRS data. To estimate the true hemodynamic response, it is crucial that these 591	
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artifacts are detected and removed. Our results showed that tPCA, Spline, Wavelet and CBSI 592	

outperformed PCA in terms of retaining a higher number of trials. CBSI, Spline and tPCA also 593	

performed well in direct head-to-head comparisons with the other approaches using a set of 594	

quantitative metrics. The CBSI method corrected many of the artifacts present in our data; 595	

however, this approach produced sometimes unstable corrected hemodynamic responses. The 596	

targeted PCA and Spline methods, on the other hand, proved to be the most robust, performing 597	

well across all comparison metrics. When compared head-to-head, tPCA consistently 598	

outperformed Spline. This is consistent with what Yücel et al. (2014)32 reported when comparing 599	

tPCA, Spline, and Wavelet in a data set where a synthetic hemodynamic response was 600	

introduced to a raw NIRS signal. Thus, we conclude that tPCA is a promising choice for 601	

correcting motion artifacts in fNIRS data from young children as well as data sets with a high 602	

number of motion artifacts. 603	

 604	

  605	
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Figure Captions 808	
Figure 1 | Change detection task. Sequence of events during a trial. Each trial began with an 809	
auditory prompt saying, “Let's look for color changes!” along with a fixation circle on the left or 810	
right side of the screen that preceded where the target stimuli appeared. The experimenter 811	
initiated the trial when the child was ready. The sample array then appeared on the screen for 2 s, 812	
followed by a blank interval of 1 s. The test array was then presented until the child verbally 813	
responded “same” or “different”. The experimenter entered the child's response on a keyboard.  814	
 815	

Figure 2 | Probe geometry.  Panel A shows two views of the probe geometry. Red circles depict 816	
sources and blue circles depict detectors while yellow lines represent the channels. Figure was 817	
created using AtlasviewerGUI (HOMER2, Massachusetts General Hospital/Harvard Medical 818	
School, MA, U.S.A.). Panel B shows a schematic of the left side view of the probe. 819	
 820	
Figure 3 | Motion Artifacts. Example motion artifacts (highlighted in pink) present during a 821	
segment of the time series for one channel for one participant. The red line shows the 690 nm 822	
wavelength while the 830 nm wavelength is shown in blue. Vertical lines depict the onset of a 823	
trial (i.e., timepoint 0). The figure shows the raw time series, before any motion correction is 824	
applied and before band pass filtering.  825	
 826	
Figure 4 | Examples of motion artifacts (highlighted in pink for the parameters used in stage 1 827	
and yellow for the revised parameters) present during a segment of the time series for one 828	
channel for one participant. The red line shows the 690 nm wavelength while the 830 nm 829	
wavelength is shown in blue. Vertical lines depict the onset of a trial (i.e., time point 0). The 830	
bottom panel shows an excerpt of this participant’s behavior while completing the task. 831	
 832	
 Figure 5 | Processing stream for all techniques. Processing steps for all techniques are 833	
represented by a colored arrow: green for CBSI, blue for PCA, purple for Wavelet, red for tPCA, 834	
orange for Spline and gray for no correction. Note that tPCA and Spline require motion to be 835	
detected before applying the correction. 836	

 837	
Figure 6 | Figure shows the percent of trials recovered using each motion processing technique. 838	
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 839	
Figure 7 | Pre- and post-motion correction. The figure depicts example channel before and 840	
after each motion processing technique is applied. The time series plotted is optical density data. 841	
The solid line shows the 690 nm wavelength while the 830 nm wavelength is depicted by the 842	
dotted lines. The shaded areas reflect motion artifacts, color coded to reflect each channel. 843	
Vertical lines depict the onset of a trial (i.e., time point 0).    844	
 845	

Figure 8 | Hemodynamic responses examples. Figure shows an example of the recovered 846	
hemodynamic response as the working memory load increases for a channel in the left frontal 847	
cortex for each of the motion correction technique. Solid lines represent HbO2 and dotted lines 848	
represent HbR. 849	
 850	

Figure 9 | Results for the comparison analysis. Top Panel shows the mean standard deviation 851	
averaged across subjects. Error bars depict the standard error of the mean. The bottom panel 852	
shows the scatter plots for the AUC0-2 and AUC2-6 metric for both HbO (shown in red circles) 853	
and HbR (shown in blue triangles), no motion correction on the X axes vs CBSI, Spline, tPCA 854	
and Wavelet on the Y axes. 855	
	856	

 857	
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