This is the peer reviewed version of the following article: Abernethy K, Bush ER, Forget P, Mendoza I & Morellato LPC Current issues in tropical phenology: a synthesis, Biotropica, 50, pp. 477-482, which has been published in final form at https://doi.org/10.1111/btp.12558. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

2	
3	
4	Current Issues in Tropical Phenology: a synthesis
5	
6	Katharine Abernethy*, Biological and Environmental Sciences, University of Stirling, UK and
7	Institut de Recherches en Ecologie Tropicale, CENAREST, Libreville, Gabon.
8	Emma R. Bush, Biological and Environmental Sciences, University of Stirling, UK
9	Pierre-Michel Forget, Museum National d'Histoire Naturelle, Département Adaptations du
10	Vivant, UMR MECADEV 7179 CNRS-MNHN, Brunoy, France
11	Irene Mendoza, Universidade Estadual Paulista UNESP, Instituto de Biociências, Departamento
12	de Botânica, Laboratório de Fenologia, Rio Claro, São Paulo, Brasil
13	Leonor Patricia C. Morellato, Universidade Estadual Paulista UNESP, Instituto de Biociências,
14	Departamento de Botânica, Laboratório de Fenologia, Rio Claro, São Paulo, Brasil
15	
16	*corresponding author, <u>k.a.abernethy@stir.ac.uk</u>
17	
1/	

18 Received_____; revision accepted_____.

[Type here] Current issues in tropical phenology

20	PHENOLOGY, OR THE TIMING OF RECURRENT BIOLOGICAL EVENTS and the causes of their
21	occurrence (Lieth 1974), is such as obvious part of the way in which ecosystems function around
22	us that it was barely considered as a scientific discipline until the beginning of the past century
23	(Fig. 1). People inherently knew (to a degree of accuracy they deemed sufficient) when grass
24	would rise or harvests should be gathered. Only exceptionally, and rather as a pastime, did
25	anyone empirically monitor these recurrent cycles, or suspect them not to be regular and reliable
26	(Aono & Kazui 2008, Sparks & Carey 1995). However, phenology has gained significance for
27	the global research community this century as we endeavor to provide explanations for, and to
28	understand the consequences of, the ecosystem changes taking place in response to a changing
29	climate (e.g. Butt et al. 2015, Harrington et al. 1999, IPCC 2015, Rosenzweig et al. 2007).

30 Our recent awareness of global change has not only inspired ecologists to quantify shifts 31 over time in ecosystem processes, but has also led climate scientists to investigate the ways by 32 which the natural environment mechanistically effects climate, developing an Earth System 33 approach (Steffen et al. 2004). Vegetation changes that alter surface albedo or canopy roughness 34 affect local weather (Makarieva et al. 2014) providing feedback to the rate and spatial pattern of 35 climate changes (Richardson *et al.* 2013). Modifications in atmospheric CO₂ arise through 36 variations in the carbon cycle, in which biomes with large carbon stocks per unit area over large 37 areas, such as the tropical forests, are highly significant (Fisher et al., 2013, Lewis 2006, Mao et 38 al. 2015, Pan et al. 2011). Recurrent phenological events that modify the properties of whole 39 biomes, such as the leaf exchange patterns defining the growth season, have of course attracted 40 attention, as both indicators of climate change and causal processes (Peñuelas et al. 2009). The 41 Intergovernmental Panel on Climate Change (IPCC) noted in its fourth Assessment Report that 42 phenology "is perhaps the simplest process in which to track changes in the ecology of species in

[Type here] Current issues in tropical phenology

response to climate change" (Rosenzweig *et al.* 2007). In this synthesis we review the
development of tropical phenology, collate significant recent advances in the discipline and
comment on perspectives for the future.

46 The climate-change line of enquiry in phenology concentrated first on long-term species-47 level studies (Fitter et al. 1995, Menzel et al. 2006), but now focusses on landscape-level proxies 48 for leaf phenology, derived from satellite remote sensing (e.g. Myneni et al. 2007, Yu et al. 2015). Research in this arena recognizes large-scale processes as both drivers of and responses to 49 50 climate change, asking how the phenology of large areas of vegetation influences local weather, 51 carbon cycling, and water cycles (Makarieva et al. 2014, Richardson et al. 2013), as well as how 52 reproduction or leafing responds to local climate (Krishnaswamy et al. 2014, Myneni et al. 2007, 53 Streher et al. 2017, Zhou et al. 2014). New remote-sensing and digital technologies allow for 54 large-scale results which bear more effectively on our most pressing questions of ecosystem 55 change. They enable us to monitor more sites, more remote places, larger areas, and to improve 56 standardization between sites (Alberton et al. 2017, Richardson et al. 2013). New data are now 57 coming from studies designed to understand biome-level responses to climate change, rather than 58 the responses of individual plants (Adole et al. 2016, Alberton et al. 2014, Moore et al. 2017, 59 Streher et al. 2017, Wu et al. 2016). In 2013, Pereira and colleagues included remotely-sensed 60 land-surface leaf phenology as one of the six Essential Biodiversity Variables recommended to 61 monitor global change (Pereira et al. 2013).

Tropical environments were considered nearly aseasonal for a long time, and thus
phenology studies were few. In contrast to temperate regions, tropical phenology data are very
rare before 1950 (Fig. 1). Some herbaria hold records of tropical phenological observations
(Couralet *et al.* 2013), but few hold such extensive collections that patterns can be derived from

66	them (ter Steege & Persaud 1991; http://junglerhythms.org). Widespread tropical phenology field
67	research began only around 70 years ago, and was often driven by ecologists studying foods
68	available for primates or birds (Borchert 1983) or the descriptive studies of early naturalists
69	(Morellato et al. 2013 and references therein). This has resulted, pan-tropically, in an empirical
70	databank in which many of the oldest and longest studies are biased towards the observation of
71	flowers or zoochorous fruits, rather than a representative sample of plants, recording all their
72	phenophases. The early scholarly record in the tropics contains many anecdotal or non-
73	systematic studies, and, contrary to today, least information on leaf phenology, perhaps because
74	it is not an easily observed cyclical phenophase in semi-evergreen or evergreen forests (Alberton
75	et al. 2017) or is of less importance to large wildlife, the foci of early studies.
76	Directly observed phenology studies proliferated in the tropics through the 1990's
77	(Chambers et al. 2013, Morellato et al. 2013) and by then it was becoming clear that climate
78	change was effecting rapid and considerable shifts in phenology in temperate ecosystems (Fitter
79	et al. 1995, Harrington et al. 1999, Sparks & Carey 1995, Schwartz 1998). This encouraged
80	ecologists to look for indicators of change in the tropics, but to measure change long term studies
81	are required. Given the relative lack of resources allocated to scientific endeavor in many
82	tropical countries there is considerable difficulty in sustaining scientific programs. There are also
83	challenges in correctly identifying species, successfully marking individuals and preserving
84	records for the long term. Thus, robust empirical datasets spanning more than a decade or
85	reaching back beyond the 1980's are rare (see Chambers et al. 2013, Mendoza et al. 2017, for a
86	summary). The longest datasets in the tropics are often those originally conceived for the study
87	of the abundance of food resources (Fig.1) but in our race to grasp the consequences of climate
88	change, the use of these data to investigate vegetation responses to climate is tempting. A few

[Type here] Current issues in tropical phenology

89	long term tropical phenology datasets, originally collected for other research questions, have
90	since been analyzed to search for effects of climatic drivers or climate change (Chapman et al.
91	2005, Dunham et al. 2018, this issue, Polansky & Boesch 2013, Tutin & Fernandez 1993,
92	Zimmerman et al. 2007). This has been done in temperate regions too (Menzel et al. 2006) and
93	of course, presents many challenges for data analysis (Kelly, 2010; Morellato et al., 2010).
94	However, the period of time documented is of such enormous value in the data-poor tropics, that
95	in this phase of potentially rapid shifts in climatic cues and plant responses, the analytical
96	innovations required seem worthwhile (Bush et al. 2017, Hudson & Keatley 2010, Polansky &
97	Robbins 2013).
98	Although leaf phenology is a prime choice for future study of climate change effects at
99	the ecosystem or biome level, nevertheless, fruit and flower phenologies remain key to
100	understanding the range of individual responses and the potential for climate changes to initiate
101	cascading trophic changes within ecosystems (Butt et al., 2015; Mendoza et al., 2017; Morellato
102	et al., 2016; Polansky & Boesch, 2013; Ting et al., 2008). Detecting change in any phenophase
103	requires first establishing a mean behavior, from which deviations can be quantified, demanding
104	datasets covering several cycles. The three-decade community-level dataset from Barro Colorado
105	Island, Panama has been successfully analyzed to show climatic drivers of flowering phenology
106	for some species (Wright 1991, Wright et al. 1999, Wright & Calderón 2018). Yet in a 30-year
107	flowering dataset from individual trees in Lopé, Gabon, although Bush et al. (2017) could detect
108	regular cycles for 93% of the species they studied, they still failed to find any regular cyclical
109	behavior in 40% of the 856 individuals monitored for >20 years. This demonstrates huge intra-
110	specific as well as inter-annual variation in behavior. Long-term datasets on individual tree
111	phenology are critical to understanding how the trees' recurrent cycles vary within a population

[Type here] Current issues in tropical phenology

112	and change through a tree's lifetime. The emerging analyses of individual performance through
113	time will greatly improve explanatory models of tree behavior based on direct observations
114	(Babweteera & Plumptre 2018, Ouédraogo et al. 2018).

115 Many available tropical phenology studies did not set out to understand or sample the 116 environmental context or physiology of the plant, key issues for disentangling drivers of 117 phenology. The lack of contextual data considerably hampers our efforts to understand the 118 drivers of responses – and we can never go back in time to collect that precious information. We 119 can however improve research design for the future and expand our analytical approaches. 120 Figure 2 shows the tropical sites with published long-term phenological records from ground, 121 direct observation or litter trap phenology data. Although still scant compared to temperate 122 regions (the German national phenology network has 474 sites with >50 years data; Kaspar et al. 123 2015), more empirical information on tropical phenology is available for each continent than has 124 vet been analyzed. Comparing these diverse datasets is a significant challenge and harnessing the 125 latent information will require considerable analytical skill and innovation (Morellato et al. 2010, 126 Schaber et al. 2010). In the Neotropics, Asia and Australia such innovative analytical approaches 127 are beginning to yield continental patterns for fruiting and flowering (Chambers et al. 2013, 128 Mendoza et al. 2017, Mo et al. 2017, Moore et al. 2016, Morellato et al. 2013) in analyses which 129 also extend beyond the forest biome (Camargo et al. 2018, Moore et al. 2017). Across Africa, 130 however, differences in field methods and particularly the dire paucity of site-specific weather 131 data have so far prevented any clear continental patterns being brought to light (Adamescu et al. 132 2018, Plumptre *et al.* 2012). Nonetheless, some site-specific links to climate now emerging 133 (Chapman et al. 2018, Dunham et al. 2018) and the next few years are likely to bring significant 134 advances.

[Type here] Current issues in tropical phenology

135	The poor quality or inexistence of data such as temperature, rainfall or insolation, let
136	alone more technically demanding measures, such as nutrient concentrations, pollutant presence
137	or genotype, render detailed and robust analyses of phenophase triggers very difficult. For the
138	future, multidisciplinary research teams and better integration between all plant science
139	disciplines is essential for the identification and measurement of key drivers of change and
140	uptake of phenology data for conservation planning (Morellato et al. 2016, Pau et al. 2011).
141	Field ecologists may advise which taxa could make good indicators for a particular biome or
142	vegetation type and which sampling methods may be best adapted to monitoring them (Bush et
143	al. 2018, Morellato et al. 2010). Climate scientists can best advise which locations could be most
144	informative for different questions; which are likely to be under the most predictable, directional
145	climate change, or the most unpredictable (Wang et al. 2014, Maidment et al. 2015, IPCC 2013).
146	Collaboration with modelers on research design and analytical tools will permit the inclusion of
147	new explanatory parameters in phenology research, such as the 'phenospecies' concept (Proença
148	et al. 2012) or indicator species for the behavior of larger groups (Siddig et al. 2016).
149	Much higher priority must be given to data collection on the environment surrounding the

studied plants and improving standardization of sampling protocols to resolve the challenges of inter-site, continental and global comparisons. The research agenda should encourage the standardization of the best methods for each research question and must seek to identify and mitigate sources of noisy data in these inherently complex systems (Bush *et al.* 2018). The inclusion of better biometric expertise in research teams will allow the field to progress in dealing with the imperfect empirical datasets common in large, long term endeavors (Bush *et al.* 2017, Hudson & Keatley 2010, Mendoza *et al.* 2018).

157

Governmental agencies as well as international and regional organizations have invested

158	considerable resources in monitoring climate and land cover change over time using satellites
159	with sophisticated technologies (e.g. Bustamante et al. 2016). Yet, far less has been invested in
160	monitoring ecosystems on the ground, particularly across tropical Africa, leaving us sometimes
161	trusting in models to predict the future without sufficient raw data from the field (Abernethy et
162	al. 2016, Maidment et al. 2015). Although Brazil and Mexico have made impressive advances in
163	ecosystem monitoring, in many tropical countries the data we have describing change over time
164	in ecosystem processes are still the result of local initiative and the perseverance of local
165	scientists, rather than strategic investment from the State. Assessing the health of the biomes via
166	direct observation of their reproductive phenophases (Morellato et al. 2016) and remote sensing
167	of their leaf production (Pereira et al. 2013) should become integral to national environmental
168	monitoring programs in the tropics, including citizen science - as they now are in temperate
169	zones (see Fig.1).

170 Tropical phenology encompasses two broad areas of research: the study of plant resource 171 production and related trophic interactions within ecosystems, and the study of climatic effects 172 on vegetation phenophases and their feedback loops to climate from the state of the vegetation 173 cover of the earth. These two research areas are parts of the same system, are complementary, 174 and should strive to share insights and data wherever possible, even though research designs and 175 field methodologies may often need to differ. Bringing tropical phenology closer to the top of the 176 international research agenda will surely help society in its quest to understand and survive 177 global environmental change.

178 ACKNOWLEDGMENTS

179 We thank the ATBC for the opportunity to hold a symposium in 2016 that stimulated this Special

[Type here] Current issues in tropical phenology

Abernethy et al.

- 180 Section. We also thank the Biotropica Editors and editorial office for their guidance, support and
- 181 suggestions. LPCM's attendance at the ATBC 2016 meeting and research on plant phenology is
- supported by the São Paulo Research Foundation grant FAPESP-Microsoft Research
- 183 #2013/50155-0; LPCM holds a research productivity fellowship from CNPq (Brazil National
- 184 Council for Scientific and Technological Development); IM received a post-doctoral fellowship
- 185 from FAPESP (grant #2012/21601-0). ERB holds an Impact studentship from the University of
- 186 Stirling and the Gabon National Parks Agency. KA received additional support to write this
- 187 paper from the Institute for Tropical Ecology Research in Gabon.

188 **BIBLIOGRAPHY**

- ABERNETHY, K., F. MAISELS and L. J. T. WHITE. 2016. Environmental Issues in Central Africa.
 Ann. Rev. Env. Res. 41: 1–33.
- ADAMESCU, G. S. ET AL. 2018. Annual cycles dominate reproductive phenology of African
 tropical trees. Biotropica. this issue
- ADOLE, T., J. DASH, and P. M. ATKINSON. 2016. A systematic review of vegetation phenology in
 Africa. Ecol. Inform. 34: 117–128.
- ALBERTON, B., J. ALMEIDA, R. HELM, S. R. DA TORRES, A. MENZEL, and L. P. C. MORELLATO.
 2014. Using phenological cameras to track the green-up in a cerrado savanna and its on the-ground validation. Ecol. Inform. 19: 62–70.
- ALBERTON, B., R. DA S. TORRES, L. F. CANCIAN, B. D. BORGES, J. ALMEIDA, G. C. MARIANO, J.
 DOS SANTOS, and L. P. C. MORELLATO. 2017. Introducing digital cameras to monitor
 plant phenology in the tropics: applications for conservation. Persp. Ecol. Cons.15: 82–
 90.
- AONO, Y., and K. KAZUI. 2008. Phenological data series of cherry tree flowering in Kyoto,
 Japan, and its application to reconstruction of springtime temperatures since the 9th
 century. Int. J. Climat. 28: 905–914.
- BABWETEERA, F., and A. PLUMPTRE. 2018. The ecology of tree reproduction in a medium
 altitude rainforest. Biotropica. this issue.
- BORCHERT, R. 1983. Phenology and Control of Flowering in Tropical Trees. Biotropica 15: 81–
 89.

209	BUSH, E. R., K. A. ABERNETHY, K. JEFFERY, C. TUTIN, L. WHITE, E. DIMOTO, J. T.
210	DIKANGADISSI, A. S. JUMP, and N. BUNNEFELD. 2017. Fourier analysis to detect
211	phenological cycles using tropical field data and simulations. Meth. Ecol. Evol. 8: 530–
212	540.
213	BUSH, E. R., N. BUNNEFELD, E. DIMOTO, JT. DIKANGADISSI, K. J. JEFFERY, C. TUTIN, L. J. T.
214	WHITE, and K. A. ABERNETHY. 2018. Towards effective monitoring of tropical
215	phenologyical change: Maximising returns and reducing uncertainty in long-term studies.
216	Biotropica. this issue.
217 218 219	BUSTAMANTE, M. M. C. ET AL. 2016. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Chan. Biol. 22: 92–109.
220	BUTT, N., L. SEABROOK, M. MARON, B. LAW, T. DAWSON, J. SKYTUS, and C. MCALPINE. 2015.
221	Cascading effects of climate extremes on vertebrate fauna through changes to low-
222	latitude tree flowering and fruiting phenology. Glob. Chan. Biol. 21: 3267–3277
223	CAMARGO, G., B. ALBERTON, G. H. DE CARVALHO, P. A. N. PAYS MAGALHÃES, and L. P. C.
224	MORELLATO. this issue. 2018. Leafing patterns and leaf exchange strategies of a cerrado
225	savanna community. Biotropica. this issue
226 227 228 229 230	 CHAMBERS, L. E., R. ALTWEGG, C. BARBRAUD, P. BARNARD, L. J. BEAUMONT, R. J. M. CRAWFORD, J. M. DURANT, L. HUGHES, M. R. KEATLEY, M. LOW, P. C. MORELLATO, E. S. POLOCZANSKA, V. RUOPPOLO, R. E. T. VANSTREELS, E. J. WOEHLER, and A. C. WOLFAARDT. 2013. Phenological Changes in the Southern Hemisphere B. Hérault (Ed.). PLoS ONE 8: e75514.
231 232 233	CHAPMAN, C. A., L. J. CHAPMAN, T. T. STRUHSAKER, A. E. ZANNE, C. J. CLARK, and J. R. POULSEN. 2005. A long-term evaluation of fruiting phenology: importance of climate change. J. Trop. Ecol. 21: 31–45.
234 235 236	CHAPMAN, C., K. VALENTA, T. M. BONNELL, K. BROWN, and L. J. CHAPMAN. 2018. Solar radiation and ENSO predict fruiting phenology patterns in a 16-year record from Kibale National Park, Uganda. Biotropica. this issue.
237	COURALET, C., J. VAN DEN BULCKE, L. NGOMA, J. VAN ACKER, and H. BEECKMAN. 2013.
238	Phenology in functional groups of central African rainforest trees. J. Trop. For. Sci. 25:
239	361–374.
240	DUNHAM, A. E., O. H. RAZAFINDRATSIMA, P. RAKOTONIRINA, and P. C. WRIGHT. 2018. ENSO
241	and rainfall variability impact fruiting phenology in a Madagascar rainforest. Biotropica.
242	this issue.
243	FISHER, J. B., M. SIKKA, S. SITCH, P. CIAIS, B. POULTER, D. GALBRAITH, JE. LEE, C.
244	HUNTINGFORD, N. VIOVY, N. ZENG, A. AHLSTROM, M. R. LOMAS, P. E. LEVY, C.
245	FRANKENBERG, S. SAATCHI, and Y. MALHI. 2013. African tropical rainforest net carbon
243	FISHER, J. B., M. SIKKA, S. SITCH, P. CIAIS, B. POULTER, D. GALBRAITH, JE. LEE, C.
244	HUNTINGFORD, N. VIOVY, N. ZENG, A. AHLSTROM, M. R. LOMAS, P. E. LEVY, C.
245	FRANKENBERG, S. SAATCHI, and Y. MALHI. 2013. African tropical rainforest net carbon

246 247	dioxide fluxes in the twentieth century. Phil. Trans. Roy. Soc. B: 368: 20120376–20120376.
248	FITTER, A. H., R. S. R. FITTER, I. T. B. HARRIS, and M. H. WILLIAMSON. 1995. Relationships
249	Between First Flowering Date and Temperature in the Flora of a Locality in Central
250	England. Func. Ecol. 9: 55–60.
251	HARRINGTON, R., I. WOIWOOD, and T. H. SPARKS. 1999. Climate change and trophic interactions.
252	Tr. Ecol. Evol. 14: 146–150.
253	HUDSON, I. L., and M. R. KEATLEY (Eds). 2010. Phenological Research: methods for
254	environmental and climate change analysis. Springer Netherlands, Dordrecht. Available
255	at: http://link.springer.com/10.1007/978-90-481-3335-2
256	IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group
257	I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In
258	T. Stocker, D. Qin, GK. Plattner, M. Tignor, S. Allen, J. Boshung, A. Nauels, Y. Xia, V.
259	Bex, and P. Midgeley (Eds.) Cambridge University Press, Cambridge, UK.
260	IPCC. 2015. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and
261	III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In
262	R. Pachauri and L. Meyer (Eds.). IPCC, Geneva, Switzerland.
263 264 265	KASPAR, F., K. ZIMMERMANN and C. POLTE-RUDOLF. 2015. An overview of the phenological observation network and the phenological database of Germany's national meteorological service (Deutscher Wetterdienst). Adv. Sci. Res. 11: 93–99.
266	 KELLY, N. 2010. Accounting for Correlated Error Structure Within Phenological Data: a Case
267	Study of Trend Analysis of Snowdrop Flowering. In I. L. Hudson and M. R. Keatley
268	(Eds.) Phenological Research: Methods for Environmental and Climate Change. pp. 271–
269	298, Springer, Dordrecht, The Netherlands.
270 271	KRISHNASWAMY, J., R. JOHN, and S. JOSEPH. 2014. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Chan. Biol. 20: 203–215.
272 273	LEWIS, S. L. 2006. Tropical Forests and the Changing Earth System. Phil. Trans. Roy. Soc. B: 361: 195–210.
274	LIETH, H. 1974. Phenology and Seasonality Modeling. Springer-Verlag, Berlin, Germany.
275 276	MAIDMENT, R. I., R. P. ALLAN and E. BLACK. 2015. Recent observed and simulated changes in precipitation over Africa. Geoph. Res. Lett. 42: 8155–8164.
277	MAIDMENT, R. I., D. GRIMES, E. BLACK, E. TARNAVSKY, M. YOUNG, H. GREATREX, R. P.
278	ALLAN, T. STEIN, E. NKONDE, S. SENKUNDA and E. M. U. ALCÁNTARA. 2017. A new,
279	long-term daily satellite-based rainfall dataset for operational monitoring in Africa.
280	Scientific Data 4: 170063.

281	MAKARIEVA, A. M., V. G. GORSHKOV, D. SHEIL, A. D. NOBRE, P. BUNYARD and B-L. LI. 2014.
282	Why Does Air Passage over Forest Yield More Rain? Examining the Coupling between
283	Rainfall, Pressure, and Atmospheric Moisture Content. J. Hydromet. 15: 411–426.
284 285	MAO, J. ET AL. 2015. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Env. Res. Lett. 10: 094008.
286	MENDOZA, I., R. CONDIT, S. J. WRIGHT, A. CAUBERE, P. CHÂTELET I. HARDY and P-M. FORGET.
287	2018. Inter-annual variability of fruit timing and quantity in Nouragues (French Guiana):
288	insights from hierarchical Bayesian analyses. Biotropica. this issue.
289	MENDOZA, I., C. A. PERES, and L. P. C. MORELLATO. 2017. Continental-scale patterns and
290	climatic drivers of fruiting phenology: A quantitative Neotropical review. Glob. Planet.
291	Chan. 148: 227–241.
292 293	MENZEL, A. ET AL. 2006. European phenological response to climate change matches the warming pattern. Glob. Chan. Biol. 12: 1969–1976.
294	Mo, F., J. ZHANG, J. WANG, ZG. CHENG, GJ. SUN, HX. REN, XZ. ZHAO, W. K. CHERUIYOT,
295	L. KAVAGI, JY. WANG and YC. XIONG. 2017. Phenological evidence from China to
296	address rapid shifts in global flowering times with recent climate change. Agric. For.
297	Meteo. 246: 22–30.
298	MOORE, C. E., J. BERINGER, B. EVANS, L. B. HUTLEY and N. J. TAPPER. 2017. Tree–grass
299	phenology information improves light use efficiency modelling of gross primary
300	productivity for an Australian tropical savanna. Biogeosci. 14: 111–129.
301 302 303 304 305	 MOORE, C. E., T. BROWN, T. F. KEENAN, R. A. DUURSMA, A. I. J. M. VAN DIJK, J. BERINGER, D. CULVENOR, B. EVANS, A. HUETE, L. B. HUTLEY, S. MAIER, N. RESTREPO-COUPE, O. SONNENTAG, A. SPECHT, J. R. TAYLOR, E. VAN GORSEL, and M. J. LIDDELL. 2016. Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography. Biogeosci. 13: 5085–5102.
306	MORELLATO, L. P. C., L. F. ALBERTI and I. L. HUDSON. 2010. Applications of Circular Statistics
307	in Plant Phenology: a Case Studies Approach. In I. L. Hudson and M. R. Keatley (Eds.)
308	Phenological Research: Methods for Environmental and Climate Change. pp. 339–360,
309	Springer, Dordrecht, The Netherlands.
310 311 312 313 314	 MORELLATO, L. P. C., B. ALBERTON, S. T. ALVARADO, B. BORGES, E. BUISSON, M. G. G. CAMARGO, L. F. CANCIAN, D. W. CARSTENSEN, D. F. E. ESCOBAR, P. T. P. LEITE, I. MENDOZA, N. M. W. B. ROCHA, N. C. SOARES, T. S. F. SILVA, V. G. STAGGEMEIER, A. S. STREHER, B. C. VARGAS and C. A. PERES. 2016. Linking plant phenology to conservation biology. Biol. Cons. 195: 60–72.
315	MORELLATO, L. P. C., M. G. G. CAMARGO, F. F. D'EÇA NEVES, B. G. LUIZE, A. MANTOVANI and
316	I. HUDSON. 2010. The Influence of Sampling Method, Sample Size, and Frequency of
317	Observations on Plant Phenological Patterns and Interpretation in Tropical Forest Trees.

318 319	In I. Hudson and M. R. Keatley (Eds.) Phenological Research: Methods for Environmental and Climate Change. Springer, Dordrecht, The Netherlands.
320 321 322	MORELLATO, L. P. C., M. G. G. CAMARGO and E. GRESSLER. 2013. A Review of Plant Phenology in South and Central America. In M. D. Schwartz (Ed.) Phenology: An Integrative Environmental Science. pp. 91–113, Springer, Dordrecht, The Netherlands.
323 324	MYNENI, R. B. ET AL. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proc. Nat. Acad. Sci. 104: 4820–4823.
325 326 327	OUÉDRAOGO, DY., JL. DOUCET, K. DAÏNOU, F. BAYA, A. BIWOLÉ, N. BOURLAND, F. FÉTÉKÉ, JF. GILLET, L. KOUADIO, and A. FAYOLLE. 2018. The size at reproduction of canopy tree species in central Africa. Biotropica. this issue.
328 329 330 331	PAN, Y., R. A. BIRDSEY, J. FANG, R. HOUGHTON, P. E. KAUPPI, W. A. KURZ, O. L. PHILLIPS, A. SHVIDENKO, S. L. LEWIS, J. G. CANADELL, P. CIAIS, R. B. JACKSON, S. W. PACALA, A. D. MCGUIRE, S. PIAO, A. RAUTIAINEN, S. SITCH, and D. HAYES. 2011. A Large and Persistent Carbon Sink in the World's Forests. Science 333: 988–993.
332 333 334	PAU, S., E. M. WOLKOVICH, B. I. COOK, T. J. DAVIES, N. J. B. KRAFT, K. BOLMGREN, J. L. BETANCOURT and E. E. CLELAND. 2011. Predicting phenology by integrating ecology, evolution and climate science. Glob. Chan. Biol. 17: 3622–3643.
335 336	PEÑUELAS, J., T. RUTISHAUSER, and I. FILELLA. 2009. Phenology Feedbacks on Climate Change. Science 324: 887–888.
337	PEREIRA, H. M. ET AL. 2013. Essential Biodiversity Variables. Science 339: 277–278.
338 339	PLUMPTRE, A. J. ET AL. 2012. Changes in Tree Phenology across Africa : A comparison across 17 sites. Wildlife Conservation Society, New York, USA.
340 341	POLANSKY, L. and C. BOESCH. 2013. Long-term Changes in Fruit Phenology in a West African Lowland Tropical Rain Forest are Not Explained by Rainfall. Biotropica 45: 434–440.
342 343 344	POLANSKY, L. and M. M. ROBBINS. 2013. Generalized additive mixed models for disentangling long-term trends, local anomalies, and seasonality in fruit tree phenology. Ecol. Evol. 3: 3141–3151.
345 346 347	PROENÇA, C. E. B., D. L. FILER, E. LENZA, J. S. SILVA and S. A. HARRIS. 2012. Phenological Predictability Index in BRAHMS: a tool for herbarium-based phenological studies. Ecography 35: 289–293.
348 349 350	RICHARDSON, A. D., T. F. KEENAN, M. MIGLIAVACCA, Y. RYU, O. SONNENTAG and M. TOOMEY. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agri. For. Meteo. 169: 156–173.
351 352	ROSENZWEIG, C., G. CASSASSA, D. J. KAROLY, A. IMESON, C. C. LIU, A. MENZEL, S. RAWLINS, T. L. ROOT, B. SEQUIN, and P. TRYIANOWSKI. 2007. Assessment of observed changes and

353 354 355 356 357	responses in natural and managed systems. In M. L. Parry, O Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hansen (Eds.) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 79–131, Cambridge University Press, Cambridge, UK.
358	SAKAI, S. 2001. Phenological diversity in tropical forests. Pop. Ecol. 43: 77–86.
359 360 361 362	SCHABER, J., F. BADECK, D. DOKTOR and W. VON BLOH. 2010. Combining Messy Phenological Time Series. In I. L. Hudson and M. R. Keatley (Eds.) Phenological Research: Methods for Environmental and Climate Change. pp. 147–158, Springer, Dordrecht, The Netherlands.
363	SCHWARTZ, M. D. 1998. Green-wave phenology. Nature 394: 839-840.
364 365 366	SIDDIG, A. A. H., A. M. ELLISON, A. OCHS, C. VILLAR-LEEMAN and M. K. LAU. 2016. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Ind. 60: 223–230.
367 368	SPARKS, T. H., and P. CAREY. 1995. The Responses of Species to Climate over Two centuries: An analysis of the Marsham Phenological Record, 1736-1947. J. Ecol. 83: 321–329.
369 370	TER STEEGE, H. and C. A. PERSAUD. 1991. The Phenology of Guyanese Timber Species: A Compilation of a Century of Observations. Vegetatio 95: 177–198.
371 372 373	STEFFEN, W., A. SANDERSON, J. JÄGER, P. D. TYSON, B. MOORE III, P. A. MATSON, K. RICHARDSON, F. OLDFIELD, HJ. SCHELLNHUBER and R. J. WASSN. 2004. Global change and the Earth system: a planet under pressure. Springer-Verlag, Heidelberg, Germany.
374 375 376	STREHER, A. S., J. F. F. SOBREIRO, L. P. C. MORELLATO and T. S. F. SILVA. 2017. Land Surface Phenology in the Tropics: The Role of Climate and Topography in a Snow-Free Mountain. Ecosystems 20: 1436–1453.
377 378	TING, S., S. HARTLEY and K. C. BURNS. 2008. Global patterns in fruiting seasons. Glob. Ecol. Biog. 17: 648–657.
379 380	TUTIN, C. E. G. and M. FERNANDEZ. 1993. Relationships between minimum temperature and fruit production in some tropical forest trees in Gabon. J. Trop. Ecol. 9: 241–248.
381 382 383	WANG, X., S. PIAO, P. CIAIS, P. FRIEDLINGSTEIN, R. B. MYNENI, P. COX, M. HEIMANN, J. MILLER, S. PENG, T. WANG, H. YANG and A. CHEN. 2014. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506: 212–215.
384 385	WRIGHT, S. J. 1991. Seasonal drought and the phenology of understorey shrubs in a tropical moist forest. Ecology 72: 1643–1657.
386 387	WRIGHT, S. J. and O. CALDERÓN. 2018. Solar irradiance as the proximate cue for flowering in a tropical moist forest. Biotropica. this issue.

388 389 390	WRIGHT, S. J., C. CARRASCO, O. CALDERÓN and S. PATON. 1999. The EL Nino Southern Oscillation, variable fruit production and famine in a tropical forest. Ecology 80: 1632– 1647.
391 392	WU, J. ET AL. 2016. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351: 972–976.
393 394 395	YU, L., T. LIU, K. BU, F. YAN, J. YANG, L. CHANG and S. ZHANG. 2015. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Sci. Rep. 7: 14770.
396 397 398	ZHOU, L., Y. TIAN, R. B. MYNENI, P. CIAIS, S. SAATCHI, Y. Y. LIU, S. PIAO, H. CHEN, E. F. VERMOTE, C. SONG and T. HWANG. 2014. Widespread decline of Congo rainforest greenness in the past decade. Nature 509: 86-90.
399 400 401	ZIMMERMAN, J. K., S. J. WRIGHT, O. CALDERÓN, M. A. PAGAN and S. PATON. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J. Trop. Ecol. 23: 231-251.
402	
403	
404	
405	FIGURE LEGENDS.
406	FIGURE 1. Timeline of the development of tropical and temperate phenology research over the
407	past 200 years.
408	FIGURE 2. Sites from which long-term directly-observed tropical phenology data have been
409	published (blue dots) and the long-term observation sites included in this special section (red
410	dots). Sources of site locations and minimum available dataset lengths: Adamescu et al. 2018,
411	Babweteera & Plumptre 2018, Brearley et al. 2007, Chen et al. 2017, Chang-Yang et al. 2016,
412	Dunham et al. 2018, Kurten et al. 2017, Mendoza et al. 2017, Plumptre et al. 2012, Sakai et al.
413	2006.

414			
415			
416			
417			
418			
419			
420			
421			