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a b s t r a c t

White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain
magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is
unknown how WMH form, although white matter degeneration is characterized pathologically by
demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-
appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet
been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a
large group of community-dwelling older people of similar age using biomarkers derived from magnetic
resonance imaging that collectively reflect white matter integrity, myelination, and brain water content.
Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas
mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than
NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver
operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM
and WMH, identifying 94.6% of the lesions using a threshold of 0.747 � 10�9 m2s�1 (area under curve,
0.982; 95% CI, 0.975e0.989). Furthermore, the level of deterioration of NAWM was strongly associated
with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with
increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These
multimodal imaging data indicate that WMH have reduced structural integrity compared with
surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within
the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in
tissue microstructure as WMH become more severe.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

White matter hyperintensities (WMH) of presumed vascular
origin are a common finding in brain magnetic resonance imaging
(MRI) scans of healthy elderly individuals and are important
features associated with impaired cognitive function in later life
(Deary et al., 2003). These lesions appear as hyperintensities in the
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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whitematter on T2-weighted or fluid attenuated inversion recovery
(FLAIR) MRI and have been described as white matter degeneration
characterized by neuronal loss, demyelination, and gliosis on
neuropathologic examination (Fazekas et al., 1993). Increasing age
is one of the most important risk factors for WMH (Grueter and
Schulz, 2012), although their underlying etiology is still unclear.
They have been related to vascular risk factors (VRF; Grueter and
Schulz, 2012) and linked to cerebral hypoperfusion or compro-
mised blood-brain barrier integrity (Wardlaw et al., 2009) not only
within visible lesions but also in the surrounding normal-appearing
white matter (NAWM; O’Sullivan et al., 2002; Topakian et al., 2010;
Uh et al., 2010). Additionally, it has been suggested that WMH
severity, as seen on MRI, is an indirect marker of NAWM integrity
(Maillard et al., 2011; Schmidt et al., 2010). However, it is unknown
whether earlier compromised integrity of NAWM predates the
appearance of WMH or the underlying pathology responsible for
the lesions produces subtle changes in the surrounding NAWM
which are invisible on conventional MRI. Structural changes in
NAWM in people with WMH versus those without have been re-
ported using a variety of imaging modalities, including structural,
vascular, and metabolic MRI (Firbank et al., 2003; Maillard et al.,
2011; Uh et al., 2010), although these changes are still to be fully
characterized.

Structural changes in the integrity of the brain’s white matter
are commonly observed using diffusion tensor MRI (DT-MRI).
Parameters obtained from the water diffusion tensor, such as
fractional anisotropy (FA) and mean diffusivity (MD), can
demonstrate alterations in axonal microstructure, with several
studies showing that MD increases and FA decreases in areas of
visible white matter degeneration such as that commonly
observed in WMH (Bastin et al., 2009). Further potential MRI
biomarkers of white matter damage are the magnetization
transfer ratio (MTR) obtained from magnetization transfer MRI
(MT-MRI) and the longitudinal relaxation time (T1). MTR can show
pathologic alterations in white matter structure that involve
macromolecules in the cell membrane, such as inflammation or
demyelination, with decreased MTR being observed in WMH of
presumed vascular origin (Fazekas et al., 2005). T1 provides
quantitative information on brain water content and is therefore a
potential marker for edematous brain tissue (Bastin et al., 2002).
Differences in these imaging biomarkers can help identify the
pathophysiological changes within NAWM andWMH in vivo; MTR
and FA generally decline, andMD and T1 gradually increase during
normal aging (Hsu et al., 2008, 2010; Silver et al., 1997). Because
age is also strongly associated with the appearance of WMH, it
could potentially confound the differences in WMH and NAWM
integrity reported in previous studies, which typically include
heterogeneous age groups. Changes observed in NAWM integrity
relative to WMH load could also be a consequence of the older age
of those subjects with more WMH, that is, a co-association be-
tween two features both associated with advancing age, rather
than an effect of the lesions themselves or direct consequence of
the same pathologic process.

In the present study, we used the previously mentioned im-
aging biomarkers to investigate microstructural differences be-
tween WMH and NAWM, as well as changes occurring in NAWM
relative to WMH load, in a large cohort of community-dwelling
older people, all born within the same year thereby minimizing
the potential confounding effect of age. We hypothesized that the
integrity of NAWM is influenced by the presence of WMH, inde-
pendently of age or gender, because it is likely that white matter is
diffusely affected by the processes that causes WMH even if the
WMH only manifest themselves as visibly abnormal in discrete
areas.
2. Methods

2.1. Participants

The Lothian Birth Cohort 1936 (LBC1936) comprises a group of
subjects all born in 1936 and who are surviving participants of the
Scottish Mental Survey of 1947. At recruitment in older age, the
LBC1936 participants were predominantly community-dwelling
individuals who agreed to follow-up cognitive and other medical
and psycho-social assessments at approximately 70 years of age
(Deary et al., 2007). During a secondwave of this longitudinal study,
at approximately 73 years of age, the LBC1936 participants also
underwent comprehensive MRI to assess changes in brain structure
(Wardlaw et al., 2011). Written informed consent was obtained
from all participants under protocols approved by the National
Health Service Ethics Committees.

2.2. Magnetic resonance imaging

All MRI data were acquired using a GE Signa Horizon HDxt 1.5 T
clinical scanner (General Electric, Milwaukee, WI, USA) using a
self-shielding gradient set with maximum gradient of 33 mT/m
and an 8-channel phased-array head coil. The full details of the
imaging protocol can be found inWardlaw et al. (2011). Briefly, the
MRI examination comprised whole-brain T1-weighted (T1W), T2-
weighted (T2W), T2*-weighted (T2*W) and FLAIR-weighted
structural scans, DT-MRI, MT-MRI, and T1 relaxation time map-
ping protocols. The DT-MRI protocol consisted of seven T2W (b ¼
0 s mm�2) and sets of diffusion-weighted (b ¼ 1000 s mm�2)
single-shot, spin-echo, echo-planar (EP) volumes acquired with
diffusion gradients applied in 64 noncollinear directions (Jones
et al., 2002). Two standard spin-echo sequences acquired with
and without amagnetization transfer pulse applied 1 kHz from the
water resonance frequency were collected for MT-MRI, whereas
quantitative T1-mapping used twoT1W fast-spoiled gradient echo
sequences acquired with 2� and 12o flip angles (Armitage et al.,
2007). All sequences were acquired in the axial plane with a
field-of-view of 256 � 256 mm, contiguous slice locations, and
image matrices and slice thicknesses designed to give 2 mm
isotropic voxels for DT-MRI and 1 � 1 � 2 mm (1 � 1 � 4 mm for
FLAIR) voxel dimensions for the structural, MT-MRI, and T1-
mapping protocols.

2.3. Visual scoring of white matter hyperintensities

A qualitative assessment of WMH load was performed by an
expert neuroradiologist and cross-checked with a second consul-
tant neuroradiologist, who scored hyperintensities in the FLAIR and
T2W volumes using the Fazekas scale (Fazekas et al., 1987); a total
score ranging from 0 to 6 was obtained by summing the periven-
tricular and deep WMH Fazekas scores. To ensure observer reli-
ability, one consultant neuroradiologist performed all the ratings
after training on a standard data set. Another consultant neurora-
diologist cross-checked a random sample of 20% of ratings, all scans
with stroke lesions, and any scans where the first rater was un-
certain. WMH were rated using the Fazekas scale as it is one of the
most widely used visual rating scales and has been in use for over
two decades. Fazekas scores are also closely correlated with quan-
titative measures of WMH volumes (Valdés Hernández et al., 2012).

2.4. Image analysis

All structural MRI volumes were registered to the corresponding
T2W volume using linear registration (FMRIB’s Linear Image



Table 1
Description of the study population by total Fazekas score for WMH

Total Fazekas score N N male (%) Mean age (SD)

0 9 6 (67) 72.7 (0.4)
1 100 57 (57) 72.5 (0.7)
2 311 161 (52) 72.7 (0.8)
3 143 86 (60) 72.6 (0.7)
4 72 32 (44) 72.9 (0.6)
5 28 13 (46) 72.7 (0.6)
6 13 3 (23) 72.7 (0.6)

Periventricular (0e3) and deep (0e3) WMH scores were summed.
Key: SD, standard deviation; WMH, white matter hyperintensity.

Fig. 1. Multimodal MRI from a typical subject with WMH. T2*W (A) and FLAIR (B) structural scans are combined in red-green color space (C) to facilitate the extraction of WMH
voxels (D). T1W (E) and T2W (F) structural scans are combined in red-green color space (G) to facilitate the extraction of NAWM (H) and CSF (I) voxels; the latter is subtracted from
the WMH and NAWM masks to avoid CSF partial volume averaging within the measurement masks. The last row shows reconstructed parametric images of MRI biomarkers: FA (J),
MD (K), MTR (L) and T1 relaxation time (M). Abbreviations: CSF, cerebrospinal fluid; FA, fractional anisotropy; FLAIR, fluid attenuated inversion recovery; MD, mean diffusivity; MRI,
magnetic resonance imaging; MTR, magnetization transfer ratio; NAWM, normal-appearing white matter; WMH, white matter hyperintensity. (For interpretation of the references
to color in this Figure, the reader is referred to the web version of this article.)
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Registration Tool; Jenkinson and Smith, 2001). Extracranial tissue
was then excluded from each volume using brain binary masks
obtained as described previously (Valdés Hernández et al., 2010).

As shown in Fig.1, NAWMandWMH tissuemasks were obtained
using the multispectral coloring modulation and variance identifi-
cation (MCMxxxVI) method (Valdés Hernández et al., 2010). In
brief, after registration of the T1W to the T2W volume from each
data set, these volumes were mapped into red-green color space
and fused; the minimum variance quantization clustering tech-
niquewas then used in the resulting image to reduce the number of
color levels, thereby allowing NAWM and cerebrospinal fluid (CSF)
to be separated from other tissues in a reproducible and semi
automatic manner. The same method was used to extract theWMH
tissue mask from the T2*W and FLAIR volumes. Any stroke lesions
(cortical, cerebellar, lacunes, and large subcortical) were identified
by a neuroradiologist and excluded from the masks by hand by a
trained image analyst.

DT-MRI volumes were preprocessed using FSL (http://www.
fmrib.ox.ac.uk/fsl) to extract brain (Smith, 2002), remove bulk
motion, and eddy current induced distortions by registering all
subsequent volumes to the first T2W EP volume (Jenkinson and
Smith, 2001) estimate the water diffusion tensor and calculate
parametric maps of FA and MD from its eigenvalues using DTIFIT.
Maps of MTR and T1 relaxation time were generated as described
previously (Armitage et al., 2007; Silver et al., 1997).

For each data set, linear registration (Jenkinson and Smith, 2001)
was used to ensure accurate correspondence between the para-
metric maps and the space of the tissue masks (T2W). FMRIB’s
Linear Image Registration Tool was applied with 6 degrees of
freedom to the MTR and T1 maps to correct for bulk motion and 12
degrees of freedom (affine) between the structural and diffusion
T2W volumes to obtain the transformation of the tissue masks into
diffusion space. To avoid small partial volume averaging with CSF
because of registration inaccuracies, the CSF mask was dilated by 1
voxel in each direction and then subtracted from the NAWM and
WMHmasks. After registration, the binaryWMH and NAWMmasks
were used to obtain averaged FA, MD, MTR, and T1 values for these
tissues in each participant.

2.5. Spatial relationship between WMH and NAWM

We assessed how the proximity of theWMH affected the NAWM
integrity using a region-of-interest (ROI) analysis with regions
drawn at a range of distances from theWMH. To create these ROI for
each participant we dilated the WMH masks by increments of
2 mm up to 10 mm, then subtracted from each dilated ROI the
previous one, that is, theWMHmaskwas subtracted from the 2mm
ROI, the 2 mmROI subtracted from the 4 mmROI, and so on, so only
the surrounding contours remained (the distances quoted are
approximate as they are limited by finite voxel size). These ROIs
were also created in diffusion space. To avoid running into tissues
other than NAWM, we kept only those voxels in each ROI which
intersected with the NAWM mask. An example is shown in
Supplementary Fig. 2. For each subject we measured the averaged
parameters within each of the new ROI, as well as within the
remaining NAWM and plotted these data (corrected by age in days
and gender) for each distance to assess the spatial relationship with
WMH. To demonstrate that the anatomic location of theWMH does
not affect the biomarkers measured in NAWM, we also performed

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


Fig. 2. Example of NAWM (green) andWMH (magenta) masks overlaid onto the MRI parametric maps for a typical subject, and the corresponding box plots for the average values of
each parameter measured in both tissue types across the cohort: (A) and (E) for FA, (B) and (F) for MD, (C) and (G) for MTR and (D) and (H) for T1 relaxation time. Abbreviations: FA,
fractional anisotropy; MD, mean diffusivity; MRI, magnetic resonance imaging; MTR, magnetization transfer ratio; NAWM, normal-appearing white matter; WMH, white matter
hyperintensity. (For interpretation of the references to color in this Figure, the reader is referred to the web version of this article.)

S.M. Maniega et al. / Neurobiology of Aging 36 (2015) 909e918912



Table 2
Results of t tests comparing the averaged imaging parameters measured within
areas of NAWM and WMH

Mean values NAWM WMH p Cohen d

FA 0.338 � 0.024 0.299 � 0.042 <0.0001 1.13
MD (10�9m2s�1) 0.692 � 0.034 0.833 � 0.061 <0.0001 �2.85
MTR (%) 56.80 � 0.99 54.37 � 1.51 <0.0001 1.91
T1 (s) 1.002 � 0.092 1.086 � 0.117 <0.0001 �0.80

Effect sizes are shown as Cohen d.
Key: FA, fractional anisotropy; MD, mean diffusivity; MTR, magnetization transfer
ratio; NAWM, normal-appearing white matter; WMH, white matter hyperintensity.
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an analysis using small ROI placed in exactly the same locations in
all participants (Supplementary Material).

2.6. Statistical analysis

Significant differences between averaged FA, MD, MTR, and T1
values in WMH and NAWM were tested using paired t tests, with
effect sizes assessed using Cohen d. Logistic regression and receiver
operating characteristic (ROC) curve analysis was performed to
assess which parameter independently discriminated best between
WMH and surrounding NAWM and its prediction value, using the
masks obtained with the semiautomatic method as ground truth.
Averaged FA, MD, MTR, and T1 values in NAWM were compared
across the seven categories of total Fazekas score (0e6) using
analysis of covariance (ANCOVA) with gender and age in days at the
time of scanning as covariates. Images from outliers in the data
were inspected visually and discarded from the analysis if the
outlying value was caused by the image acquisition or processing
problems, such as motion or failed registration.

All analyses were performed using the R software environment
for statistical computing (R Development Core Team, 2012; Tabelow
et al., 2011), along with the “pROC,” “car,” “effects,” and “ggplot2”
packages (Fox, 2003; Fox and Weisberg, 2011; Robin et al., 2011;
Wickham, 2009).
Fig. 3. ROC curves showing the ability to discriminate between NAWM and WMH for
the four imaging biomarkers. AUC values are shown on the legend. Abbreviations: AUC,
area under the curve; NAWM, normal-appearing white matter; ROC, receiver operating
characteristic; WMH, white matter hyperintensity. (For interpretation of the references
to color in this Figure, the reader is referred to the web version of this article.)
2.7. Vascular risk factors

The analysis for NAWMwas repeated using self-reported history
of smoking (current, ex-, and non-smoker), hypertension, hyper-
cholesterolemia, diabetes, cardiovascular disease, and stroke
(either self-reported or evident on MRI) as covariates in the
ANCOVA to adjust for potential effects of VRF in the measured
imaging parameters or their association with Fazekas score.
Attenuation of any statistical difference in the measured imaging
parameters between the Fazekas score groups could suggest con-
founding by these factors or mediation. To test the relevance of VRF
in the extendedmodel, the nestedmodels were compared with and
without including the VRF using the F-test.

3. Results

Among the 700 participants who underwent MRI, 24 were
excluded because of incomplete imaging data leaving a total of 676
subjects (358 men and 318 women); the mean age at time of
scanning was 72.7 � 0.7 years (range, 71.0e74.2 years). Gender and
age details for each total Fazekas score group are reported in Table 1.

3.1. White matter hyperintensities versus normal-appearing white
matter

Fig. 1 shows multimodal MRI from a typical participant pre-
senting with WMH. Values of FA and MTR were significantly lower
whereas MD and T1 were significantly higher in WMH than NAWM
(p< 0.0001), with MD providing the largest difference between the
two tissue classes (Fig. 2 and Table 2); all effect sizes were large. In
all box plots, the boxes represent the lower and upper quartiles and
the median measurement (thick line) for each group. Whiskers
indicate the sample minimum and maximum, whereas the repre-
sented outliers (dots) differ from the lower and upper quartiles by
more than 1.5 times the interquartile range.

Logistic regression on each individual parameter confirmed that
MD differentiated best between NAWM and WMH. ROC analysis
produced an optimal threshold of 0.747 � 10�9 m2s�1 for MD, with
0.95 specificity and 0.94 sensitivity, to discriminate 94.6% of the
lesions. The effect of varying this threshold is shown in the ROC
curve (Fig. 3), with an area under the curve of 0.982 for MD (95% CI:
0.975e0.989), which is significantly higher than the area under the
curve obtained with FA, MTR, or T1.

3.2. Normal-appearing white matter integrity changes with Fazekas
score

There were significant differences in NAWM imaging bio-
markers across the total Fazekas score groups as indicated by
ANCOVA (Fig. 4 and Table 3). There were significant decreases in FA
and MTR and significant increases in MD and T1 with increasing
total Fazekas score (Table 3). The total Fazekas score, together with
age and gender as covariates, explained 16% and 13% of the variance
in FA and MD, respectively, and 9% of the variance in MTR and T1 in
NAWM.

As shown in Table 1, the group of subjects with a Fazekas of zero
was small (N ¼ 9), and this can potentially affect the accuracy of
average biomarkers in this group (as it is reflected by the larger SD
shown in Table 3).

3.3. Vascular risk factors

The ANCOVAwas repeated with self-reported VRF as covariates.
The reported incidence of each of the factors, as well as the in-
cidences in male and female, is reported in Table 4. The incidence of



Fig. 4. Brains were classified according to their WMH load; periventricular (0e3) and deep (0e3) WMH scores were summed, with total Fazekas scores ranging from 0 (no visible
WMH) to 6 (widespread WMH). (A) Examples of brains within the range of total Fazekas scores (score shown in left top corner of each axial image). Box plots of the averaged FA,
MD, MTR, and T1 relaxation time measured for each total WMH load score in NAWM (B) and WMH (C). Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; MRI,
magnetic resonance imaging; MTR, magnetization transfer ratio; NAWM, normal-appearing white matter; WMH, white matter hyperintensity.

Table 3
Mean (SD) values of FA, MD, MTR, and T1 relaxation time measured in NAWM for
each total Fazekas score WMH group

Total Fazekas score FA MD 10�9m2s�1 MTR % T1 s

0 0.336 (0.037) 0.675 (0.042) 56.9 (1.0) 1.02 (0.12)
1 0.343 (0.020) 0.681 (0.031) 56.7 (1.1) 1.00 (0.10)
2 0.342 (0.023) 0.688 (0.033) 56.8 (0.9) 0.99 (0.09)
3 0.335 (0.022) 0.698 (0.035) 57.0 (0.9) 1.00 (0.09)
4 0.328 (0.023) 0.709 (0.034) 56.5 (1.0) 1.01 (0.09)
5 0.314 (0.026) 0.712 (0.028) 56.8 (1.0) 1.07 (0.07)
6 0.299 (0.025) 0.720 (0.029) 56.5 (1.1) 1.09 (0.11)
Gender þ age
F 16.2 8.9 2.3 6.0
p <0.0001 <0.0001 0.03 <0.0001
R2 0.16 0.13 0.09 0.09

Gender þ age þ VRFa

F 14.5 8.6 2.4 5.7
p <0.0001 <0.0001 0.02 <0.0001
R2 0.25 0.22 0.17 0.17

Last rows present the F, p, and R2 values from ANCOVA, using only gender and age as
covariates and including also VRF.
Key: ANCOVA, analysis of covariance; FA, fractional anisotropy; MD, mean diffu-
sivity; MTR, magnetization transfer ratio; NAWM, normal-appearing white matter;
WMH, white matter hyperintensities; VRF, vascular risk factors.

a Self-reported smoking, hypertension, diabetes, hypercholesterolemia, cardio-
vascular disease, and stroke.
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ex-smoking, diabetes, and cardiovascular disease was significantly
different between genders (p < 0.01). Including VRF increased the
variance explained by the model in all four biomarkers as expected
(see Table 3, last row). The significant associations between imaging
biomarkers and the total Fazekas score were not attenuated by the
addition of these potential confounding variables in the model.
However, to test the relevance of VRF, the nested models were
compared with and without including them. There were significant
differences in the models with and without VRF for FA and MD
Table 4
Incidence of self-reported VRF

Vascular risk factor N Total (%) Male (%) Female (%) p

Current smoker 56 8.1 7.8 8.5 0.75
Ex-smoker 314 45.4 50.8 38.7 <0.01
Hypertension 339 49.1 50.8 46.9 0.30
Diabetes 75 10.9 13.1 6.6 <0.01
Hypercholesterolemia 287 41.5 42.5 40.9 0.68
Cardiovascular disease 188 27.2 33.2 19.8 <0.01
Stroke 123 17.8 18.2 15.6 0.85

Significant differences betweenmale and female incidence of VRF are determined by
Pearson c2 test.
Italic indicates statistical significance p < 0.05.



Fig. 5. Box plots of NAWMmeasured in ROI contouring the WMH for all subjects at different (approximate) distances between 2 mm and 10 mm, as well and the remaining NAWM.
The data for WMH are included for reference. Abbreviations: NAWM, normal-appearing white matter; ROI, region of interest; WMH, white matter hyperintensity.
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(F ¼ 1.5; p ¼ 0.02 in both) and a trend for T1 (F ¼ 1.3; p ¼ 0.09) but
no significant difference for MTR (F ¼ 1.2; p ¼ 0.22).

3.4. Spatial relationship between WMH and NAWM

Fig. 5 shows the box plots of the imaging biomarkers measured
in NAWM at a range of distances from theWMH for all participants.
Data for the WMH are included for reference. Both MD and T1
decrease with distance from the WMH, whereas MTR increases. FA
shows a slight increase when moving from 2 mm to 4 mm;
however, it decreases thereafter. Fig. 6 shows the same data divided
by total Fazekas scores; the changes with distance are the same as
in Fig. 5 for all Fazekas scores. The pattern of changes of NAWM
biomarkers with lesion load also does not vary with distance, as the
pattern shown in Fig. 4B remains consistent for the ROI surrounding
the WMH, as shown in Fig. 6. The analysis of the small ROI that
sampled the same small points in NAWM of each participant
confirmed that change in NAWMwith Fazekas score was not simply
because of variation in underlying FA by location of remaining
NAWM (Supplementary Material).

4. Discussion

Results from the four imaging biomarkers used in the present
study indicate that WMH have reduced white matter integrity
compared with NAWM, with the integrity of NAWM, in turn,
affected by the severity of these lesions even after accounting for
age, gender, and self-reported VRF. The effect of lesion severity in



Fig. 6. Box plots of NAWM measured in ROI contouring WMH at (approximate) distances between 2 mm and 10 mm, as well and the remaining NAWM, with data divided by
Fazekas score as indicated by different color boxes. The data for WMH are included for reference. Abbreviations: NAWM, normal-appearing white matter; ROI, region of interest;
WMH, white matter hyperintensity. (For interpretation of the references to color in this Figure, the reader is referred to the web version of this article.)
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NAWM was also independent of proximity to WMH. The differ-
ence in microstructure is reflected, in particular, by MD which
provides the best discriminator between WMH and NAWM,
correctly identifying 94.6% of the lesions. The significant increase
in MD observed within WMH is also accompanied by an increase
in T1, although the narrow range of values that this latter
parameter takes limits its value in discriminating between NAWM
and WMH. FA and MTR also provide less discrimination between
the two tissue classes than MD, although they are still significantly
reduced in WMH compared with NAWM. These results agree with
previous reports of compromised NAWM in the presence of WMH
using different quantitative imaging techniques (Firbank et al.,
2003; Taylor et al., 2007; Topakian et al., 2010; Uh et al., 2010;
Vernooij et al., 2008), although most studies used small cohorts,
included subjects with a wide age range, and did not measure the
variety of imaging biomarkers acquired here. The present study’s
observations indicate that brain tissue pathology spreads beyond
the area of visible WMH. Furthermore, the spatial analysis shows
that changes to NAWM are locally dependent on distance from the
WMH in agreement with previous reports (Maillard et al., 2011). In
our analysis however, FA decreases slightly with distance rather
than increasing as it would be expected. A likely explanation for
this is the location of the WMH; they generally appear in, or close
to, areas of the brain with long association and commissural white
matter tracts (see Supplementary Fig. 1), and hence, the ROI
surrounding themwill have FA higher than that averaged over the
whole NAWM. This location “effect” also explains why the
remaining NAWM tissue (Figs. 5 and 6) shows slightly decreased
FA and MTR, and increased MD and T1, when compared with ROI
immediately surrounding the lesions.

To test further the observation that changes in NAWM with
Fazekas score were not simply the effect of WMH location, we
further corroborated these results using small ROI measured in
exactly the same locations for all participants. This analysis
demonstrated that these findings were not simply a function of
differential whitematter integrity between regions affected and not
affected by WMH (see Supplementary Material), something not
considered in previous studies. We repeated the ANCOVA after
adjustment for common VRF, nested models with and without risk
factors, which did not alter the overall results and demonstrated the
robustness of our approach measuring biomarkers averaged over
the whole NAWM.

The precise sequence of pathologic processes underpinning the
microstructural changes in white matter integrity within and
around WMH are yet to be fully described. Pathology reports have
emphasized the rarefaction, demyelination, and axonal loss in
tissue corresponding to WMH, but of necessity, this is often in
late-stage disease. These changes have been attributed to
ischemia, which can lead to the rarefied appearance of white
matter (Wardlaw et al., 2013b) and could cause the observed
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increases in MD and T1, and the decreases in FA and MTR seen in
established WMH. However, the increase in MD in NAWM even
with the mildest Fazekas score suggests that altered water
mobility in the interstitial space may be an early feature of white
matter pathology in the aging brain. A chronically although subtly
compromised blood-brain barrier, as occurs with advancing age
(Farrall and Wardlaw, 2009), leading to increased fluid in the
extracellular space and perivascular tissue damage (Lammie et al.,
1998) could also produce the observed changes in these imaging
biomarkers (Wardlaw et al., 2013b). WMH load was also an in-
dependent predictor of increased blood-brain barrier permeability
in NAWM in previous studies, consistent with leakage preceding
the development of WMH and thus playing a causal role (Farrall
and Wardlaw, 2009; Topakian et al., 2010; Wardlaw et al., 2009).
Further work relating these imaging biomarkers to histopatho-
logic findings especially at early stages in disease is required to
understand fully the pathologic processes, which are responsible
for white matter damage within and around WMH.

In addition to the narrow age range of our subjects, which
minimizes the confounding effects of age-related change in MD,
FA, MTR, and T1, further strengths of the study include the large
sample size, the use of imaging, and analysis methods which
conform to STRIVE standards (Wardlaw et al., 2013a) and
recruitment from a single centre which removes multicentre ef-
fects. We also measured the integrity of whole-brain NAWM,
removing bias which could result from the use of predefined ROI
and has proven to be a robust method regarding potential effects
of WMH location, something not considered in previous reports. A
weakness of this study is potential partial averaging of CSF within
the measurement masks, particularly as linear registration was
used to align the T2W and the DT-MRI volumes. However, this
problem was mitigated by dilating the CSF masks by 1 voxel in all
directions at the processing stage and by rejecting any outlying
data caused by registration before statistical analysis. Excluding 1
voxel around the CSF mask should be sufficient to reduce signifi-
cantly the CSF contamination from themeasurement masks as this
would only affect those voxels that fall right at the ventricle and
sulcus boundary. Finally, the threshold values for discriminating
WMH from NAWM derived from the ROC analysis in this cohort
need to be confirmed in further studies of normal aging, ideally in
populations with narrow age range.

In summary, the present study indicates that WMH have
reduced structural integrity compared with surrounding NAWM,
with the integrity of NAWM, in turn, reflecting the severity of
WMH. These multiparameter in vivo observations suggest that
changes in white matter microstructure are reflected most
strongly by MD which provides the best discriminator; in NAWM,
this biomarker shows changes evenwithin themild range of WMH
severity, whereas the other 3 biomarkers only start reflecting
changes as WMH become more severe. The exceptional discrimi-
nant value of 94.6% of the lesions that was obtained with MD has
not been reported previously and could reflect the near-
homogeneous ages of the participants of this study, or the fact
that MD is more sensitivity to age-related changes in tissue
microstructure than the other three biomarkers (Maclullich et al.,
2009). The cohort used in the study are currently undergoing a
second wave of MRI thus providing an opportunity to investigate
the roles that current and prior levels of MRI-derived NAWM
integrity and risk factors play in the progression of white matter
damage and its consequences for healthy aging.
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