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ABSTRACT
In this article, I explore a Bayesian approach to avalanche decision-
making. I motivate this perspective by highlighting a version of the
base-rate fallacy and show that a similar pattern applies to decision-
making in avalanche-terrain. I then draw out three theoretical lessons
from adopting a Bayesian approach and discuss these lessons critically.
Lastly, I highlight a number of challenges for avalanche educators when
incorporating the Bayesian perspective in their curriculum.
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1. Introduction

In recent years, there has been extensive discussion of the human factor in avalanche decision-
making. Avalanche educators have pointed to various well-known biases and heuristic traps that
may lead outdoor enthusiasts to misjudge the risks when making decisions in avalanche terrain
(McCammon, 2004; Furman, Shooter, & Schumann, 2010; Leiter, 2011; Marengo, Monaci, & Miceli,
2017; and others). While much emphasis has been placed on a number of heuristic traps high-
lighted in McCammon (2004), such as the ‘expert halo’, the ‘role of familiarity’ or the ‘herd instinct’,
little attention has been paid to a well-known cognitive bias concerning reasoning and thinking
about risk called the ‘base-rate fallacy’ or sometimes labelled ‘base-rate neglect’. When committing
this fallacy, intuitive thinking involving probabilities will be systematically off-target and can lead to
serious misjudgements about the risk of certain events. Furthermore, this kind of neglect seems
wide-ranging: it is a phenomenon widely studied in psychology, philosophy, and neuroscience,
with applications in legal theory, medical sciences, and economics, affecting subjects with different
educational backgrounds (e.g. Kahneman & Tversky, 1973, Bar-Hillel, 1980, Barbey & Sloan, 2007,
Pennycook & Thompson, 2017. See Birnbaum, 2004 and Gigerenzer & Hoffrage, 1995 for more
critical discussions.) The aim here is not, however, to investigate whether backcountry skiers in
particular are more or less prone to this particular fallacy, rather the article is more theoretical in
nature: using the base-rate fallacy, I wish to motivate a broadly Bayesian perspective on avalanche
decision-making and outline some of the more theoretical consequences of adopting Bayes'
theorem—the theorem that underlies the Base rate fallacy—more seriously in an avalanche
decision-making context.

The article is structured as follows: first, I will offer a brief outline of the base-rate fallacy and
Bayesian reasoning more generally and then show how this approach can be made relevant in the
context of avalanche decision-making. Based on these considerations, I offer three general lessons
for avalanche decision-making from a Bayesian perspective. I will then assess three challenges to
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this perspective, and, in the last section, initiate a discussion about the value and difficulties of the
Bayesian approach for avalanche education more generally.

2. Bayesian reasoning and the base-rate fallacy: a quick introduction

The base rate fallacy became prominent through the work of Kahneman and Tversky (1973). It
occurs when a subject does not take the so-called base rate information seriously and reasons in a
way that goes against a theorem of probability called Bayes' theorem. Let us briefly outline one of
the classic examples, inspired by Eddy (1982) as discussed in Gigerenzer and Hoffrage (1995) which
is referred to as the Mammography problem:

The probability of breast cancer is 1% for a woman at age 40 who participates in routine screening. If a woman
has breast cancer, the probability is 80% that she will get a positive mammography (hit rate). If a woman does
not have breast cancer, the probability is 9.6% (false positive) that she will also get a positive mammography. A
woman in this age group had a positive mammography in a routine screening. What is the probability that she
actually has breast cancer?

According to Eddy’s (1982) informal sample 95 out of 100 physicians misinterpreted the statement
about the accuracy and estimated the probability of breast cancer, given a positive diagnostic test,
to be somewhere between 70% and 80%. Since then many more formal studies have been
conducted using different contexts and the results are (broadly speaking) similar (Casscells,
Schoenberger, & Grayboys (1978), for more variation in the results, see Gigerenzer & Hoffrage
(1995)). The correct answer in the above case is merely 8% and thus much lower than the intuitive
estimates. To see how to arrive at this result, we can either draw on Bayes’ theorem explicitly (for
details, see appendix A) or, more simply, we can use the following frequency reasoning: consider
1000 women of whom 10 will have breast cancer (1% base rate). Given that the hit rate is 80% the
test will come back positive for 8 out of 10 women with breast cancer. However, given the false-
positive rate is 9.6%, roughly 95 of 990 women without breast cancer will get a (false) positive
result. Hence the chance to actually have breast cancer given a positive result is 8 out of a total of
103 (95 + 8) women, so just under 8%.

The fallacy arises when subjects neglect to give the base rate information-that only 1% of
woman at the age of 40 have breast cancer-its proper weight and end up overestimating the
implications of a positive test result.1 As a result, (Eddy, 1982) notes that ‘physicians do not manage
uncertainty very well, that many physicians make major errors in probabilistic reasoning, and that
these errors threaten the quality of medical care’ (Eddy, 1982, p. 249). The issue I want to raise is
whether there is a similar potential for ‘major errors’ when decision-makers use stability tests in
avalanche terrain. After all, avalanches are fairly rare events (Pfeifer, 2009, p. 428) and slope stability
tests are known to be not perfectly accurate (Tremper, 2008).

In order to motivate Bayesian reasoning in an avalanche decision-making context, we first
require the base rate information. For simplicity, let’s say that a slope is not-safe if and only if a
skier would trigger a decent sized avalanche greater than size 1 on that slope (for sizing of
avalanches see McClung & Schaerer 1993). So the required base rate will be the probability that
a slope is not-safe, prior to having applied slope specific diagnostic tests. This type of data is difficult
if not impossible to acquire without knowing more about the number of people engaged in the
activity, the time spent in avalanche terrain, and most importantly the competencies of the skiers
involved (Techel, Zweifel, & Winkler, 2015; Winkler, Fischer, & Techel, 2016). Nonetheless, some
relevant information is available, which is sufficient to show how Bayesian reasoning can have a
great potential in avalanche decision-making.

According to Zweifel et al. (2006)—as presented in Jamieson et al. (2009)—the avalanche fatality
rate per day is roughly 1:70,000 in an area around Davos, Switzerland. More recently, Winkler et al.
(2016) suggest a slightly lower fatality rate of just below 1:100,000 for ski touring in Switzerland.
Using a fatality rate of roughly 1 in 10 people who are caught in an avalanche of decent size
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(Schweizer & Lutschg 2001; Brugger et al. 2007; Jamieson et al. 2009, highlighting variation), we
arrive at a rate of triggering avalanche of around 1:7,000 (0.014%) to 1:10,000 (0.01%) per day per
skier in that area. In contrast, Grímsdóttir and McClung (2006) offer more worrying statistics. They
recorded 345 avalanches for over 200,000 ski runs in a certain are of Canada (roughly 17 per 1000
runs). This data gives us roughly a 1.7% chance of triggering a decent sized avalanche per run.
Unfortunately, in all this data little is known about the competences of people involved and to
what extent skiers actually employed any slope specific stability tests. Given this variability, let’s
assume for our purposes a risk that is at the higher end, such as a 1 in 100 chance that on a given
run an avalanche will occur prior to applying any stability test. We will deal more specifically with
the inherent uncertainty and, importantly, the variability of our chosen base-rate information in
Sections 4.2 and 4.3.

Second, we also require information about the accuracy of diagnostic tests for slope stability, in
particular, we require the ‘hit rate’ and the ‘false-positive rate'. Again, it is very difficult to acquire
reliable data (Simenhois & Birkeland, 2009; Birkeland & Chabot, 2006). But what is clear is that there
is no fool-proof diagnostic test to decide whether a given slope is safe or that it is not-safe
(Tremper, 2008). Moreover, any given test which is currently used is subject to much interpretation
and errors can be introduced simply through human fallibility or non-representative sampling
(Hendrikx & Birkeland, 2008; Hendrikx, Birkeland, & Clarke, 2009). Studies suggest hit rates for
different tests to be between 56% and 94% and false-positive rates to be between 0% and 18%
(Simenhois & Birkeland, 2009; Gauthier & Jamieson, 2008). Let’s assume for simplicity (complica-
tions will be discussed in Section 4.2) that for a broadly competent decision-maker the relevant
diagnostic tests have a 80% hit rate (so 8 out of 10 not-safe slopes will be identified as not-safe)
and that there is roughly a 10% false-positive rate (1 out of 10 safe slopes are identified as not-
safe).

Using these ballpark figures, we can now put together a similar template, which we label the
Avalanche Problem:

The probability of a skier triggering a decent sized avalanche on any given skiable slope in the area is 1%. If a
slope is not-safe, a stability test will have 80% of indicating that it is not-safe (hit rate). If a slope is safe, the
probability that the stability test indicates it is not-safe is 10% (false-positive). A stability test is applied to a
skiable slope with the result indicating that it is not-safe. What is the probability that the slope is not-safe?

And, unsurprisingly, the probability that a slope is not-safe, provided the test indicates it is not-safe,
is 8%. As a result, in only 1 in 13 cases when the stability test indicates that a slope is not-safe, will
there be an avalanche (given the above guesstimates for base rate and accuracy of a test). In what
follows, we will discuss how this thought experiment may be of value for avalanche decision-makers
and in avalanche education.

3. Three lessons of Bayesian approach to avalanche decision-making

Our intention here is not to test explicitly whether those navigating through avalanche terrain are
more or less susceptible to this kind of base rate neglect. Given the wide-ranging studies that have
been conducted by many different researchers in various different fields, using different kinds of
questions and set-ups, it would be surprising if it were not the case that a sizeable proportion of
this group of subjects are susceptible to a similar fallacy.2 Rather, the above considerations are
used to highlight how Bayesian thinking could be implemented in avalanche decision-making more
generally by drawing out three lessons for avalanche decision-making.

One natural way to incorporate the Bayesian approach to avalanche decision-making is to
regard the general avalanche guidance issued by local authorities as an indication of the relevant
base rate.3 Avalanche forecast authorities worldwide provide guidance using a standardized five
point scale: level 1. is described as low risk; level 2. is moderate risk; level 3. amounts to a
considerable risk; level 4 constitutes a high risk; level 5. stands for extreme risk. Recent research
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confirms that such general guidance does indeed track the underlying risk of triggering an
avalanche (Techel et al., 2015). The proportionality between guidance and risk increase is hard to
quantify: a one level increase in the general avalanche guidance increases the risk of triggering an
avalanche by a factor somewhere between 2 and 10. Pfeifer (2009) and Munter (2003) suggest a
factor close to 2, Techel et al. (2015) suggest factor 2.6–2.7, Jamieson et al. (2009) suggest factor 10.
It might well be that the increase is non-linear.

If, for the moment, we assume that an assessment level of considerable reflects the above used
base rate of 1 in 100 and we adopt a factor of 4 for an increase or decrease of one level of the
general avalanche warning, then an avalanche warning of high would correspond to 1 in 25, while
a moderate danger amounts to 1 in 400 chance of triggering a decent sized avalanche prior to
applying any stability tests. With these base rates in place, we can highlight an important aspect of
how variations in base rate information may change the ‘meaning’ of our stability tests.4 Consider a
moderate warning scenario where the base rate is 1 in 400. A lower base rate lowers the probability
of a slope being not-safe, given a stability test result that indicates that it is not-safe, to less than
2%. So, if the base rate is very low–as can be assumed on moderate avalanche warning days–the
test’s so-called positive predictive value is low and only 1 in 50 slopes that are tested not-safe, will
indeed be not-safe! Crucially, the converse is true as well: in higher avalanche danger, e.g. if the
base rate is 4% (i.e. 1 in 25), then the probability that a slope is not-safe given that the diagnostic
test predicts it is not-safe is 20%, i.e. 1 in 5 slopes that test not-safe are indeed not-safe. So, in
higher avalanche danger, the predictive value of the test is substantially higher and stability tests
are more likely to be correctly predicting a slope’s instability.

This consideration constitutes the first important lessons of the Bayesian approach to avalanche
decision-making:

First lesson of the Bayesian approach: The role of base rates
Localised diagnostic test will be more informative the higher the general avalanche warning.

Of course the flipside is that diagnostic tests become less informative in moderate and low
avalanche terrain. Yet, again we think this insight is important and contains another important
lesson for avalanche decision-makers with regards to feedback and updating which is generally
under-appreciated. To highlight the issue consider the following scenario:

Imagine a competent decision-maker, call her Christelle, skiing during moderate avalanche danger. Assume,
she is subject to the above base rate neglect. Having taken an avalanche course she thinks that the diagnostic
tests are not merely fairly reliable but also that they are highly informative (i.e. she thinks that the probability
that a slope is not-safe given the test predicts it is not-safe, is very high). Moreover, imagine that Christelle is a
responsible decision-maker and adheres to the result of her tests and so never skis the relevant terrain that
tests not-safe. Unfortunately, however, and as many skiers will have experienced, she skis in an area that is
home to numerous much more risk-seeking skiers. The likely feedback that Christelle will receive on moderate
avalanche danger days is that most often, ‘reckless’ skiers who ski a slope that previously tested not-safe
actually turns out to be safe. Thus the feedback she receives seems to undermine her test results. A very natural
response to that sort of feedback would be for Christelle to question the value of her diagnostic test and treat
it as inaccurate, unreliable, or simply not fit for purpose. Coupled with the assumption that Christelle is
unaware of our first lesson, such a response may be disastrous and could, in high avalanche danger, make it
very likely for her to trigger an avalanche.

What this consideration highlights is that an understanding of how diagnostic tests work, the base
rate neglect, and more broadly the Bayesian way of thinking, will offer educators the tools to
forewarn students not to draw the wrong ‘lessons’ from ‘wrong’ tests. Hence:

Second lesson of the Bayesian approach: The problem of misleading feedback

Avalanche terrain is a ‘wicked’ learning environment and does not reliably behave as predicted (in particular if
the stability test predicts not-safe). Hence, do not ‘blame’ the stability tests for false positive results: they are to
be expected when the avalanche danger is low. In fact, their existence is a consequence of the basic fact that
low-probability events are difficult to detect reliably.5
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Lastly, it is important not only to look at scenarios when a test returns a not-safe verdict but also
when they return a safe verdict. This will help to emphasise the role of diagnostic test as a method
for risk reduction, and not as a method to settle with any high degree of confidence the status of a
slope. Remember that, in a moderate environment given our assumptions, a non-safe test means
that a slope only has a 2% chance of being not-safe (i.e. 98% chance of being safe). A 1 in 50
chance of triggering an avalanche of decent size is, however, very risky. Yet, if we think of tests
more generally as risk reduction tools, we need to put the 1 in 50 risk into a wider context: after all,
what if a different slope actually does test safe? Assuming for simplicity, the same hit rate and false-
positive rate as above, the probability that a slope is safe, given the test predicts it is safe, is
99.97%. Hence we arrive at our last insight:

Third lesson of the Bayesian approach: The method of risk reduction6

In avalanche decision-making, there is no certainty, all we can do is to apply tests to reduce the risk of a bad
outcome, yet there will always be a residual risk.

In what follows, we will consider a number of challenges and clarifications to the Bayesian
approach to avalanche decision-making and assess to what extent the main lessons are dependent
on various guesstimates we adopted in this theoretical exercise.

4. Discussion and challenges

4.1. The problem of oversimplification

One way to challenge this theoretical exercise is to highlight that avalanche decision making is
much more complex than we make it seem. Competent decision-makers continually look for ‘red
flags’, they make assessments throughout the day and make general observations while approach-
ing their intended slope. So, in combination with a carefully chosen snow pit, a decision maker may
then perform a range of different stability tests (compression test, shear test, extended column test,
etc.) to come to an informed decision based on a whole range of observations. Hence, our
characterisation seriously oversimplifies the way competent decision-makers tend to make judge-
ments in avalanche terrain.

Of course, there is no denying that this description is a much a more realistic characterisation of
how competent decision-makers arrive at their judgements. However, these simplifications need
not affect the considerations that were offered in Section 3. After all, only in so far our simplifica-
tions lead to a serious underestimation of the accuracy of the diagnostic test or tests, does this
challenge have the potential to threaten some of our suggestions. We simplified by assuming that
the stability test adopted will have a hit rate of 80% and a false-positive rate of 10%. However,
whether we consider all tests together or consider for simplicity just one test makes no difference
to the calculation so long as the former tests taken together or the latter individually have the
same overall accuracy. Hence, in so far as the problem of oversimplification raises issues with the
presumed accuracy of the diagnostic test, it will be better to consider this type of concern under
the label of the next challenge: the problem of guesstimates.

4.2. The problem of guesstimates

Before tackling the problem of using guesstimates and ballpark numbers directly, it is worth
considering the resulting risks in a wider context. Using the guesstimates adopted earlier, and
assuming that you are a competent decision-maker, and that you only ski slopes that test ‘safe’ on
a moderate avalanche warning day, there will be a 0.03% probability that you trigger a decent-
sized avalanche on a given run. Let us assume that a skier skis three different (independent) runs a
day so that a competent decision-maker faces roughly a 0.1% chance of triggering an avalanche
per day ski touring on a moderate avalanche level. That is, she has a 1 in 1000 chance that day to
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trigger an avalanche, and given the assumed fatality rate of 1 in 10, she faces a 1 in 10,000 chance,
or 100 in 1 million chance of dying in an avalanche per ski day (on a moderate warning day). Risk
analysts often use the concept of a micromort to characterise the dangerousness involved in a
given activity (Howard, 1980; see also Spiegelhalder & Blastland, 2014 which contains a chapter on
extreme sports). One micromort is defined as a 1 in 1,000,000 chances of dying. So adopting our
guesstimates and the micromort scale, a ski tourer who is a competent decision-maker ‘uses’ 100
micromort per day when engaging in this activity on a moderate avalanche rating.7

Is this realistic? Well, let us compare this risk with other activities: so, for example, skiing within a
ski resort involves roughly 1 micromort (https://www.nsaa.org/media/68045/NSAA-Facts-About-
Skiing-Snowboarding-Safety-10-1-12.pdf), skydiving involves roughly 10 Micromort (http://www.
bpa.org.uk/staysafe/how-safe/), while doing a competitive marathon race incurs 7 micromort
(Kipps, Sharma, & Pedoe, 2011). Base jumping, usually perceived as a very dangerous activity,
requires when performed at the Kjerag massif in Norway roughly 432 micromort (Soreide, Ellingsen,
& Knutson, 2007). It is difficult to tell, but maybe the fatality risk (by triggering an avalanche only) of
a skier and competent decision-maker in avalanche terrain on a moderate avalanche level warning,
is a little high given this wider context.8 If so, this suggests that we might have overestimated the
base rate information or underestimated the accuracy of our tests. Let’s briefly consider these
options in turn and see how this affects our three lessons.

If we lower our base rate for a moderate danger day, our three lessons for avalanche decision-
making from a Bayesian perspective remain relevant. The first lesson will remain correct so long as
an increase in avalanche rating corresponds to an increase in the base rate: a lower base rate will
lead to a reduction of the informativeness of our tests. Moreover, lowering the base rate will also
lower the probability of skiing a not-safe slope given a test predicting it is not-safe. Hence, lowering
the base rate will make the problem of feedback alluded to in lesson two even more relevant.
Lastly, lesson three remains applicable as well. While a lower base rate further decreases the
residual risk, there will always be a residual risk. Hence, lowering the base rate for each avalanche
warning does not significantly affect (and in part even increases) the relevance of our three
lessons.9

Alternatively, and as alluded to in Section 4.1 our guesstimates about the accuracy of our test
may be off-target. What if we underestimated both the hit rate as well as the false-positive rate of
the various tests taken together? According to (Simenhois & Birkeland, 2009) certain types of test
have a hit rate as high as 94%. To see how this affects our discussion let us increase the rate from
80% to 95% and reduce the false-positive rate from 10% to 5%. This affects the relevant risks
(Table 1; Figure 1) as follows:

Assessing the three lessons above in light of these results, we easily see that lesson one is still
supported: the higher the avalanche rating the greater the informativeness of the test. Moreover,
we can see that an increase in accuracy of the tests, results in an increase of informativeness (all
else equal). So lesson 1 remains correct when we increase the accuracy of our tests.

Lesson two contains a warning about feedback and highlights that given a low base rate, it will
be more likely than not that a slope is safe, even if the test results indicate that the slop is not-safe.
Again, this observation is borne out even with a more accurate test. On a moderate and

Table 1. The effect of increasing accuracy of tests on the posterior risks: the left column contains the base rate which is by
assumption fixed by the general avalanche warning. The other two columns present the probability that a slope is not-safe
given a not-safe test result. Middle columns use a lower accuracy (80% hit rate; 10% false-positive rate), while the right-hand
column shows the results using a more accurate test (95% hit rate; 5% false-positive rate).

Avalanche rating (Scale; Base Rate) [80–10 accuracy] [95–5 accuracy]

Low; 1/1600 (0.063%) ,5/1000 (0.5%) ,12/1000 (1.2%)
Moderate; 1/400 (0.25%) ,2/100 (1.9%) ,5/100 (4.5%)
Considerable; 1/100 (1%) ,7/100 (7.5%) ,16/100 (16.1%)
High; 1/25 (4%) 25/100 (25.0%) ,44/100 (44.2%)
Extreme 1/6 (16%) ,62/100 (61.5%) ,79/100 (79.2%)
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considerable rating using the more accurate test, the probability that a slope is not-safe given a
not-safe test is roughly 4.5% and 16.1%, respectively. Hence, there is still a danger to misinterpret
the most likely outcome (no avalanche) as evidence that the test is unreliable, which is what lesson
two warns against.

Lesson three also remains intact and the variation of the accuracy of the test nicely high-
lights how effective avalanche training can be to reduce the risk. Only if our test is maximally
accurate will there be no residual risk–a scenario which is extremely (to say the least) unlikely.10

Let me make one last observation about the effects of increasing the accuracy of the relevant
test. If we assume that the higher the competency of an avalanche decision-maker, the greater the
accuracy of their stability tests (these tests are subject to interpretation and thus their accuracy
depend on a subject’s skill and experience), and we assume a skier with no competence to have a 1
in 100 chance of getting in an avalanche on a moderate warning per day, what given our
assumptions would the relevant probability be for a competent decision-maker? That is, what is
the probability that she skis a not-safe slope, given that she avoids all slopes that test not-safe?
Assuming that a test with the lower accuracy rate represents a subject with some degree of
competence, such subject reduces the risk from 100 in 10,000 (1%) to 22 in 10,000 (0.22%), i.e
competence reduces the risk by factor 4.5. Assuming the more accurate test represents an even
more competent decision-maker, such a decision-maker will reduce the risk to 5 in 10,000 (0.05%).
Hence, competence would reduce her risk by factor 20, assuming, of course, all else remains equal,
in particular a subject’s risk attitude.11

4.3. The problem of variability

Appreciating the great variability of the risk of triggering an avalanchemight give rise to one last concern.
To put it simply: risk-averse skiers, who ski in an area that they know incredibly well on gentle slopes, will
incur a very different risk than risk-seeking skiers, who ski new terrain on steeper slopes even if the
general avalanche level that day is the same. So what’s the point of making such general calculations?

Of course, we have to acknowledge that given these many factors there is a limit as to how
specific we can be about an individual’s risk. However, this is a general problem that affects
statistical information in general.12 Moreover, the greater the variability of the risk, the lower
the relevance of the mean average when considering an individual’s risks. And so, while we
need to be very careful when applying the above risk statements to a specific case, there is

Figure 1. The effects of increasing accuracy of tests on the posterior risk. Purple line represents lower accuracy (80% hit rate;
10% false-positive), while green line represents higher accuracy (95% hit rate; 5% false-positive). Grey area represents
variability of posterior given variation in accuracy and base rate.
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still value in considering the above scenarios as a theoretical exercise since the three lessons
will not be affected by this variability.

Nonetheless, to alleviate aspects of this concern, we can go one step further and deal with
the variability directly and explicitly model it quite simply like this: assume that we say that a
moderate day has a base rate of anywhere between 1/400 to 1/100 chance of triggering an
avalanche and that the accuracy of the person applying the test is anywhere between 80–10 to
95–5, then we can say that the risk of triggering an avalanche on a slope that is identified as
not-safe is in the interval from 1.9% to 16.1%. In effect, we can use Figure 1 to highlight just
that variability: the grey area represents the relevant variability given changes in accuracy
(purple-green line) and base rate (x-axis). Of course, we could go further and model that
variability in better ways by assigning much more informative priors to the prior distribution
of the accuracy rate instead of using, as I did here, a uniform distribution between the low and
higher accuracy rate.13 Importantly, however, making the variability more explicit or even
modelling it in more sophisticated ways does not undermine the spirit of the main three
lessons of a Bayesian approach to avalanche decision-making.

5. Conclusion: the challenge for avalanche educations

The theoretical exercise of using Bayesian reasoning contains a number of lessons about reasoning
in avalanche terrain that are not widely acknowledged—the exception being the more technical
discussion in McClung (2011). I argued that they are relevant despite the variability and uncertainty
of the data. Given that Bayesian reasoning is, currently, one of the best tools we have to reason
with uncertainties and probabilities, and given that avalanche decision-making is, in effect, deci-
sion-making under uncertainty with high stakes, it seems prudent to take Bayesian reasoning
seriously in this context.

Nonetheless, the above considerations also represent a huge challenge to avalanche educators:
Bayesian reasoning is not very intuitive (hence the fallacy alluded to above) and it is easily
misunderstood. So even if the three lessons presented are broadly correct, we have to face the
more practical or rather pedagogical question whether they should be part of an avalanche
education curriculum. Let me finish by highlighting a number of challenges for avalanche educa-
tors willing to take the Bayesian perspective seriously.

There is a genuine danger that some students will draw the wrong consequences from lessons
one and two when the avalanche danger is low or moderate: they might consider stability tests as
irrelevant in that context. So they might think that a test indicating a not-safe slope is not
informative enough and so they might be tempted to ignore the test results.

This kind of thinking will have to be countered effectively and to do so educators will likely
need to present the lessons in the wider context of approaching avalanche education as an
efficient way to reduce the risk more generally. As alluded to above, while a 2% probability of
triggering an avalanche (i.e. skiing a slope that tested not-safe on a moderate day) might not
seem high to some, it will likely seem much more unacceptable if that risk can easily be
reduced to 0.3% by skiing a different slope. To strengthen this observation, educators may also
want to highlight the cumulative aspect of risk: taking higher risks on a regular basis will make
it much more likely in the long run to get caught in an avalanche than always choosing the
lower risk (Ebert & Photopoulou, 2013).

Alternatively, to further foreclose the above misinterpretation, educators may heed the
lessons from our discussion in Section 4.3 and remind their students not to read too much
into the specific numbers, since personal and geographical circumstances are often ignored
in such general considerations. Additionally, in the context of regarding stability tests as tools
for risk reduction, it will be important for educators to highlight that different kinds of tests
at different locations will help increase the hit rate and so further reduce the chances of
triggering an avalanche.
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Lastly, educators may decide to introduce the Bayesian perspective and its three lessons in more
advanced avalanche education courses only - courses that are usually taken by aspiring avalanche
forecasters or mountain guides. Given that most introductory courses to avalanche decision-
making focus more on avalanche awareness rather than the use of various stability tests,
Bayesian reasoning will become much more relevant at a more advanced level of avalanche
decision-making. When doing so, it will be prudent to take note of Gigerenzer and Hoffrage
(1995), who showed how different information formats and presentations of the problem can
help to induce better Bayesian reasoning even without detailed training.

Ultimately, avalanche educators have to decide whether the theoretical benefits of the Bayesian
approach will outweigh the potential disadvantages of misinterpreting them. Needless to say, it is
beyond this discussion to make that decision for avalanche educators. However, given Eddy’s
(Eddy, 1982) call to train medical experts of the potential pitfalls of ignoring base-rate information
so to avoid ‘major errors’ when advising their patients, maybe mountain guides and advanced
avalanche decision-makers could benefit from learning more about similar pitfalls that potentially
affect their decision-making in avalanche terrain.

Notes

1. Moreover, subjects are easily confused about conditional probability: instead of considering the probability
that a women has breast cancer given a positive test result (8%), subjects often tend to consider the
probability that you have a positive test result given that you have breast cancer (80%) or at least a probability
somewhat close to it (Bar-Hillel, 1980; Eddy, 1982). In the legal literature on the Base rate fallacy a similar
confusion about conditional probabilities is referred to as the prosecutor’s fallacy (Thompson & Shumann
1987). There are now a number of theories as to the mechanism that underwrite wrong answers. See in
particular Pennycook and Thompson (2017) for a survey of the different theories.

2. Compare Bar-Hillel (1980, p. 215) ‘the genuineness, the robustness, and the generality of the base-rate fallacy
are matters of established fact’.

3. This is broadly in line with, for example (Munter, 2003) 3 × 3 method, and the now widely adopted approach
that encourages backcountry skiers to start with general information and to update continuously throughout
the day on more and more specific information relating to the indented slope that is to be skied (Tremper,
2008).

4. This consideration is very much inspired by Eddy (1982), who makes a very similar point in the context of
medical diagnostic tests.

5. The notion of a ‘wicked’ learning environment is due to Hogarth (2001). The general issue of drawing the
wrong conclusion from misleading feedback in avalanche terrain is also highlighted in Zweifel and Haegeli
(2014) and Ebert (2015).

6. Compare here Munter (2003), who introduced the idea of avalanche decision-making as a risk reduction
method. As such this lessons is not new but the way we arrive at it, by considering Base rate information and
applying Bayes' theorem, offers a new way to strengthen this important observation.

7. Note that strictly speaking the risk is more than 100 micromort since we are only looking at fatalities from
avalanches and not accidents more generally.

8. Further discussion can be found in Tremper (2013), who suggests that not using any risk reduction measures
on a moderate avalanche level incurs roughly 20 micromort (assuming 10 slope crossings) and on a
considerable warning roughly 300 micromort (assuming 10 slope crossing), while risk reduction methods
can reduce it to 2–4 micromort (when ski touring in Austria) irrespective of the warning. So compared with
this informal survey our estimates make ski touring much more dangerous than usually thought. Also note
that Winkler (2016) suggests that the risk of skitouring per day is roughly 9 micromort in Switzerland. For
difficulties interpreting general risk assessments involving mountain sports, see also (Ebert & Roberson 2013)
and the discussion below.

9. It’s worth highlighting that if we lower the risk factor (currently 4) that is associated with a single increase of
the general avalanche warning (say from low to moderate), then this might reduce the effect alluded to in
lesson 1 but it does not cancel it out so long as the factor is greater than 1.

10. Also, remember that a test might be perfectly accurate yet we might still make mistakes interpreting the test,
e.g. we might chose the wrong location for a test, subjects can be affected by confirmation bias, etc.

11. There is always the danger that perceived competence in reducing the risks, will lead to an increase in a
subject’s willingness to take risk. Llewellyn et al. (2008) showed this in the case of rock climbing. It is
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tentatively suggested for ski-touring in Zweifel (2012). Additional problems arise when the perceived compe-
tence of a avalanche decision-maker is not grounded in genuine competence (Ebert, 2015).

12. This issue is a version of a more general phenomenon called the reference class problem in the philosophy of
science and statistics literature, compare (Hájek, 2007).

13. Yet one further step would be appeal to second-order probabilities to capture the idea that there is a degree
of epistemic uncertainty or risk about our first-order probabilities (see Gärdenfors and Sahlin 1982; Sahlin,
1983). While this might be a very promising and highly relevant approach, especially in the context of
behavioural avalanche decision-making, I will leave further discussion to another occasion.
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Appendix A. Bayes' theorem

Bayes’ theorem is often stated in this form (assuming that PðDÞ > 0):

PðHjDÞ ¼ PðDjHÞPðHÞ
PðDÞ

PðDÞ can be reformulated as such:

PðDÞ ¼ PðD HÞPðHÞ þ PðDj j:HÞð1� PðHÞÞ

Giving us the following version of Bayes' theorem:

PðHjDÞ ¼ PðDjHÞPðHÞ
PðD HÞPðHÞ þ PðDj j:HÞð1� PðHÞÞ

Now consider again the avalanche problem:

The probability of a skier triggering a decent sized avalanche on any given skiable slope in the area is 1%. If a
slope is not-safe, a stability test will have 80% of indicating that it is not-safe (hit rate). If a slope is safe, the
probability that the stability test indicates it is not-safe is 10% (false-positive). A stability test is applied to a
skiable slope with the result indicating that it is not-safe. What is the probability that the slope is not-safe?

With the following abbreviations:
H= the slope is not-safe.
D= test result indicating not-safe slope.
PðDjHÞ= probability of test result indicating not-safe, given the slope is not-safe.
PðDj:HÞ= probability of a test result indicating not-safe, given the slope is safe.

We can translate the above information thus:
PðHÞ ¼ 0:01 (base rate)
PðDjHÞ ¼ 0:8 (hit rate)
PðDj � HÞ ¼ 0:1 (false-positive rate)

And then calculate the result:

PðHjDÞ ¼ 0:8� 0:01
0:8� 0:01þ 0:1� ð1� 0:01Þ ¼ ,0:075 ¼ 7:5%
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