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Visual Attention-based Image Watermarking
Deepayan Bhowmik, Matthew Oakes and Charith Abhayaratne

Abstract—Imperceptibility and robustness are two comple-
mentary but fundamental requirements of any watermarking
algorithm. Low strength watermarking yields high impercepti-
bility but exhibits poor robustness. High strength watermarking
schemes achieve good robustness but often infuse distortions
resulting in poor visual quality in host media. If distortion due to
high strength watermarking can avoid visually attentive regions,
such distortions are unlikely to be noticeable to any viewer. In
this paper, we exploit this concept and propose a novel visual
attention-based highly robust image watermarking methodology
by embedding lower and higher strength watermarks in visually
salient and non-salient regions, respectively. A new low com-
plexity wavelet domain visual attention model is proposed that
allows us to design new robust watermarking algorithms. The
proposed new saliency model outperforms the state-of-the-art
method in joint saliency detection and low computational com-
plexity performances. In evaluating watermarking performances,
the proposed blind and non-blind algorithms exhibit increased
robustness to various natural image processing and filtering
attacks with minimal or no effect on image quality, as verified
by both subjective and objective visual quality evaluation. Up to
25% and 40% improvement against JPEG2000 compression and
common filtering attacks, respectively, are reported against the
existing algorithms that do not use a visual attention model.

Index Terms—Visual saliency, wavelet, watermarking, robust-
ness, subjective test.

I. INTRODUCTION

As digital technologies have shown a rapid growth within

the last decade, content protection now plays a major role

within content management systems. Of the current systems,

digital watermarking provides a robust and maintainable so-

lution to enhance media security. Evidence of popularity of

watermarking is clearly visible as watermarking research has

resulted in 11,833 image watermarking papers published in

last 20 years and 1385 (11.7%) alone in 2014-151. The visual

quality of host media (often known as imperceptibility) and

robustness are widely considered as the two main properties

vital for a good digital watermarking system. They are compli-

mentary to each other and hence challenging to attain the right

balance between them. This paper proposes a new approach to

achieve high robustness in watermarking while not affecting

the perceived visual quality of the host media by exploiting

the concepts of visual attention.

The Human Visual System (HVS) is sensitive to many

salient features that lead to attention being drawn towards
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specific regions in a scene and it is a well studied topic in

psychology and biology [1], [2]. Visual Attention (VA) is

an important concept in a complex ecological system: for

example, identifying potential danger, e.g., prey, and predators

quickly in a cluttered visual world [3] as attention to one target

leaves other targets less available [4]. Recently a considerable

amount of work has been reported in the literature in modelling

visual attention [5]–[7] that has applications in many related

domains including media quality evaluation [8] and computer

vision [9]–[11]. Visual attention modelling characterises the

scene (image) to segment regions of visual interest and hence

a suitable concept for assessing the relevance of a region in

an image for embedding watermark data without affecting the

perceived visual quality. This paper proposes a new framework

for highly robust and imperceptible watermarking that exploits

this concept.

By employing VA concepts within the digital watermark-

ing, an increased overall robustness against various adver-

sary attacks can be achieved, while subjectively limiting any

perceived visual distortions by the human eye. Our method

proposes a new frequency domain Visual Attention Model

(VAM) to find inattentive areas in an image, so that the

watermarking strength in those areas can be made higher to

make it more robust at the expense of the visual quality in

such areas as shown in the example in Fig. 1. Fig. 1a) shows

an example of a low strength watermarking that has highest

imperceptibility but a very low robustness while Fig. 1c)

shows an example of high strength watermarking resulting in

high level of visual distortion. Fig. 1b) shows an example

of the proposed concept where VAM-based watermarking

is used for embedding the high strength watermarking in

visually inattentive areas (mainly in the background) leading

to negligible distortion.

Related work includes defining a Region of Interest

(ROI) [12]–[19] and increasing the watermark strength in the

ROI to address cropping attacks. However, in these works,

the ROI extraction were only based on foreground-background

models rather than VAM. There are major drawbacks of such

solutions: a) increasing the watermark strength within eye

catching frame regions is perceptually unpleasant as human

attention will naturally be drawn towards any additional em-

bedding artefacts, and b) scenes exhibiting sparse salience will

potentially contain extensively fragile or no watermark data.

Moreover, Sur et al. [20] proposed a pixel domain algorithm

to improve embedding distortion using an existing visual

saliency model described in [3]. However, the algorithm only

discusses its limited observation on perceptual quality without

considering any robustness. A zero watermark embedding

scheme is proposed in [21] that also used the saliency model

proposed by Itti et al. [3]. However, a zero watermarking

algorithm is often considered as an image signature and does
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(a) Low strength watermarking: Highest im-
perceptibility but lowest robustness.

(b) VAM-based watermarking: High imper-
ceptibility and high robustness.

(c) High strength watermarking: Highest ro-
bustness but lowest imperceptibility.

Fig. 1: Example scenario of visual attention model based watermarking.

not qualify for a comparison with traditional watermarking

schemes as it does not embed any watermark data.

In this paper, we propose a novel visual attention-based

approach for highly robust image watermarking, while retain-

ing the high perceived visual quality as verified by subjective

testing. Firstly, we propose a bottom-up saliency model that es-

timates salience directly within the wavelet domain to enhance

compatibility with watermarking algorithms that are based on

the same wavelet decomposition schemes. Secondly, the water-

mark is embedded in the wavelet domain with the watermark

strength controlled according to the estimated saliency level in

image pixels (in wavelet domain) leading to highly robust im-

age watermarking without degrading the media quality. Both

non-blind and blind watermarking algorithms are proposed

to demonstrate the capability and the effectiveness of this

proposed approach. Performance of the saliency model and its

application to watermarking are evaluated by comparing with

existing schemes. Subjective tests for media quality assessment

recommended by the International Telecommunication Union

(ITU-T) [22], which are largely missing in the watermarking

literature for visual quality evaluation, are also conducted to

complement the objective measurements. The main contribu-

tions of this work are as follows:

• A wavelet-based visual attention model that is compatible

for wavelet-based image watermarking applications.

• New blind and non-blind watermarking algorithms that

result in highly imperceptible watermarking that is robust

to common filtering and compression attacks.

• Watermark embedding distortion evaluation based on

subjective testing that follows ITU-T recommendations.

The saliency model and the watermarking algorithms are eval-

uated using existing image datasets described in § V-B. The

initial concept and the results were reported earlier in the form

of a conference publication [23] while this paper discusses

the proposed scheme in detail with exhaustive performance

evaluation.

II. BACKGROUND AND RELATED WORK

A. Visual attention models

Our eyes receive vast streams of visual information every

second (108-109 bits) [24]. This input data requires sig-

nificant processing, combined with various intelligent and

logical mechanisms to distinguish between any relevant and

insignificant redundant information. This section summarises

many of the available computational methodologies to estimate

the VA of an image or static scene.

Human vision behavioural studies [25] and feature integra-

tion theory [26] have prioritised the combination of three visu-

ally stimulating low level features: intensity, colour and orien-

tation which comprise the concrete foundations for numerous

image domain saliency models [3], [5], [27]–[29]. Salient

objects are not size specific therefore Multi-Resolution Anal-

ysis (MRA) is adopted within many models [3], [28], [30],

[31]. Classical low level bottom-up computational saliency

model framework was proposed by Itti et al. [28] and com-

monly know as Itti model. In Itti model, the image is down

sampled into various scales. Colour features were extracted

using Gaussian Pyramids while the orientation features were

extracted by Gabor pyramids. This is followed by combining

features across scales using a center-surround difference and

normalisation approach to determine contrasting regions of

differing intensity, colour and orientation. A winner-takes-all

system fuses together each of the feature maps into an output

saliency estimation.

Itti model has provided the framework for various recent

works [3], [32], [33]. For example, Erdem [32] adopts classical

architecture, as used within the Itti model [28], to segment

intensity, colour and orientation contrasts. However, a non-

linear feature map combination is implemented. Firstly, the

input image is decomposed into numerous non-overlapping

frame regions and the visual saliency of each area is computed

by examining the surrounding regions. Any regions portraying

a high visual saliency exhibit high dissimilarity to their neigh-

bouring regions in terms of their covariance representations

based on intensity, colour and orientation.

The Ngau model [33] estimates visual salience by locating

coefficients which diverge greatly from the local mean within

the low frequency approximation wavelet subband. On con-

trary, in this work we propose a novel wavelet-based visual

saliency framework designed to perform across both Luma

and Chroma channels to provide an improved estimation of

visual salience by combining colour, orientation and intensity

contrasts.

Similar to Itti model, Li model [30] first down samples the
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image into various scales. Then instead of Gabor pyramids,

it uses a 1-level wavelet decomposition to extract orientation

maps. To generate a specific orientation map, it replaces all

the wavelet coefficients apart from those in the subband of

the particular orientation with zeros and the inverse wavelet

transform is performed. Three orientation maps for horizontal,

vertical and diagonal subbabands are generated, followed by

generating 3 saliency maps for each orientation and simply

adding the directional saliency maps to generate the final

saliency map. This separable treatment of orientation maps

for finding the final saliency map is a major weak point of Li

model.

Some studies incorporate high level features within the

low level saliency design, such as, face detection [34], text

detection [35] and skin detection [36]. A major advantage of

these high and low level feature models is the simplicity to

incorporate additional features, within the existing framework,

combined with a linear feature weighting, depending on the

application. These top-down models [34], [36] are dependent

upon prior scene knowledge upon distinguishable features.

The main drawback in all saliency bottom-up models lies

within the computational complexity as the MRA approach

generates many processable feature maps for combination.

Various other proposed techniques can detect attentive scene

regions by histogram analysis [37], locating inconsistencies

within neighbouring pixels [38], object patch detection [31],

graph analysis [39], log-spectrum analysis [40] and symmetry

[41]. In another example, the Rare model [42] combines both

colour and orientation features, deduced from multi-resolution

Gabor filtering. A rarity mechanism is implemented to estimate

how likely a region is to be salient, by histogram analysis.

Our proposed saliency model (presented in details in § III)

uses a multi-level wavelet decomposition for multi-resolution

representation, so that the same framework can be used in

wavelet-domain watermarking. It does not use down sampled

images as in [3] or [30]. Moreover, it does not use Gabor

pyramids as in [3] or 1-level wavelet selected subband re-

construction as in [30]. Instead, it uses all detail coefficients

across all wavelet scales for center-surround differencing and

normalisation. Finally it treats 3 orientation features in a non-

separable manner to fuse them and obtain the saliency map.

B. Wavelet-based watermarking

Frequency-based watermarking, more precisely wavelet do-

main watermarking, methodologies are highly favoured in the

current research era. The wavelet domain is also compliant

within many image coding, e.g., JPEG2000 [43] and video

coding, e.g., Motion JPEG2000, Motion-Compensated Embed-

ded Zeroblock Coding (MC-EZBC) [44], schemes, leading

to smooth adaptability within modern frameworks. Due to

the multi-resolution decomposition and the property to retain

spatial synchronisation, which are not provided by other trans-

forms (the Discrete Cosine Transform (DCT) for example), the

Discrete Wavelet Transform (DWT) provides an ideal choice

for robust watermarking [45]–[61].

When designing a watermarking scheme there are numerous

features to consider, including the wavelet kernel, embedding

coefficients and wavelet subband selection. Each of these par-

ticular features can sufficiently impact the overall watermark

characteristics [62] and is largely dependant upon the target

application requirements.

a) Wavelet Kernel Selection: An appropriate choice of wavelet

kernel must be determined within the watermarking frame-

work. There have been previous studies to show that the

performance of watermark robustness and imperceptibility

is dependant on the wavelet kernels [47], [49], [63]. The

orthogonal Daubechie wavelets are a favourable choice with

many early watermarking schemes [52]–[57], although the

later introduction of bi-orthogonal wavelets within the field

of digital watermarking has increased their usage [58]–[61].

b) Host Coefficient Selection: Various approaches exist to

choose suitable transform coefficients for embedding a water-

mark. In current methods, coefficient selection is determined

by the threshold values based upon the coefficient magnitude

[59] or a pixel masking approach based upon HVS [55] or the

median of 3 coefficients in a 3×1 overlapping window [54]

or simply by selecting all the coefficients [52], [53], [56].

c) Wavelet Subband Selection: The choice of subband bears

a large importance when determining the balance between

robustness of the watermark and imperceptibility. Embed-

ding within the high frequency domain subbands [52], [53],

[55], [56], [64] can often provide great imperceptibility but

with limited watermark robustness capabilities. Contradictory

schemes embed data only within the low frequency subbands

[54], [57], [61] aimed towards providing a high robustness.

Spread spectrum domain embedding [59], [65]–[67] modifies

data across all frequency subbands, ensuring a balance of

both low and high frequency watermarking characteristics. The

number of decomposition levels is also an important factor.

Previous studies have researched watermarking schemes using

two [52], [53], [64], three [60], [61], [68] and four or more

[55]–[57] wavelet decomposition levels.

With the motivation to propose a highly imperceptible as

well as robust watermarking algorithm, our proposed approach

requires an efficient wavelet-based saliency model for directly

integrating within the wavelet-based watermarking framework.

Previous wavelet domain saliency models, either provide in-

sufficient model performance as they are based on coefficient

average variance [33] or require multiple frame resizing prior

to saliency estimation [30] resulting in spawning multiple

instances of wavelet transforms. Estimating salience directly

from within the wavelet domain enhances compatibility with

the wavelet-based watermarking framework as described in

§ IV.

III. THE VISUAL ATTENTION MODEL

In this section, a novel model to detect saliency regions

within an image is proposed. The proposed model, as shown

in Fig. 2, employs the multi-level 2D wavelet decomposition

combined with HVS modelling to capture the orientation

features on luminance and chrominance channels leading to

overall saliency information. Physiological and psychophysical

evidence demonstrate that visually stimulating regions occur at

different scales within the visual content [69]. Consequently,
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Fig. 2: Overview of the proposed saliency model.

the model proposed in this work exploits the multi-resolution

property of the wavelet transform. The image saliency model is

presented in the following subsections. Firstly, § III-A analyses

the spatial scale implemented within the design and § III-B

describes the saliency algorithm. Finally, § V-B shows the

model performance.

A. Scale Feature Map Generation

As the starting point in generating the saliency map from

a colour image, RGB colour space is converted to YUV

colour spectral space as the latter exhibits prominent intensity

variations through its luminance channel Y. Firstly, the 2D

forward DWT (FDWT) is applied on each Y, U and V channel

to decompose them L levels. The wavelet kernel used is the

same as that used for watermarking. At this juncture, we

define wavelet related acronyms used later in describing the

proposed model. The 2D FDWT decomposes an image in

frequency domain expressing coarse grain approximation of

the original signal along with three fine grain orientated edge

information at multiple resolutions. As shown in Fig. 3, LHi,

HLi and HHi subbands in the decomposition level i ∈ N1

emphasise horizontal, vertical and diagonal contrasts within

an image, respectively, portraying prominent edges in various

orientations. These notations are used herein to refer respective

subbands. The absolute magnitude of wavelet coefficients is

considered in the subsequent analysis in order to prevent

negative salient regions as contrasting signs can potentially

nullify salient regions when combined. The absolute values of

the coefficients are then normalised within the range [0, R],
where R is the upper limit of the normalised range. This nor-

malises the overall saliency contributions from each subband

and prevents biassing towards the finer scale subbands.

To provide full resolution output maps, each of the high

frequency subbands is consequently interpolated up to full

frame resolution. Eq. (1) depicts this process showing how

the absolute full resolution subband feature maps lhi, hli and

hhi are generated from the LHi, HLi and HHi subbands in

the wavelet decomposition level, i, in a given channel in the

colour space, respectively:

lhi = (|LHi|
↑2i),

hli = (|HLi|
↑2i),

hhi = (|HHi|
↑2i), (1)

where ↑ 2i is the bilinear up-sampling operation by a factor

2i for the wavelet decomposition level i. Fusion of lhi, hli
and hhi for all wavelet decomposition levels, L, provides a

feature map for each subband in the given colour channel.

The total number of wavelet decomposition levels used in

the proposed VAM depends on the resolution of the image.

Due to dyadic nature of the multi-resolution wavelet transform,

the image resolutions are decreased after each wavelet decom-

position level. This is useful in capturing both small and large

structural information at different scales. However, too many

levels of decomposition may distort the spatial synchronisation

of objects within the image, limiting the useful contribution

of coefficients towards the overall saliency map at very coarse

resolutions. An example of such distortion is shown in Fig. 4

visualising the successive coefficient magnitude of each of

the subbands, lhi for the luminance channel of an image

(of resolution 414 x 288). In this example, after five levels

of decomposition, the threshold to retain coefficient spatial

synchronisation has been surpassed. Consequently, a highly

distorted profile is obtained for the interpolated higher suc-

cessive decompositions containing limited meaningful infor-

mation available for saliency computation.

B. Saliency Map Generation

The interpolated subband feature maps, lhi, hli and hhi,

for all L levels are combined by a weighted linear summation

as illustrated in Eq. (2):

lh1···LX
=

L
∑

i=1

lhi ∗ τi,

hl1···LX
=

L
∑

i=1

hli ∗ τi,

hh1···LX
=

L
∑

i=1

hhi ∗ τi, (2)

where τi is the subband weighting parameter and lh1···LX
,

hl1···LX
and hh1···LX

are the subband feature maps for a given

spectral channel X , where X ∈ {Y, U, V }.

Coarse scale subbands mainly portray edges and other tiny

contrasts which can be hard to see. The finely decomposed

subband levels only illustrate large objects, neglecting any

smaller conspicuous regions. For most scenarios, the middle

scale feature maps can express a high saliency correlation

although this is largely dependable upon the resolution of

the prominent scene objects. To fine tune the algorithm, it is

logical to apply a slight bias towards the middle scale subband

maps, i.e., making (τ1, τL) < (τ2, τL−1) < (τ3, τL−2) <
· · · < τc, where c is the centre scale. However, in practice

this provides a minimal algorithm performance improvement

over an equal subband weighting ratio due to the fact that

salience is not specific towards a definite resolution [70].

Research suggests promoting feature maps which exhibit

a low quantity of strong activity peaks [28], while sup-

pressing maps flaunting an abundance of peaks possessing

similar amplitude. Similar neighbouring features inhibit visual

attentive selectivity, whereas, a single peak surrounded by
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(a) DWT illustration (b) LL1 (c) LH1 (d) HL1 (e) HH1

Fig. 3: An example of multiresolution wavelet decomposition. (a) Illustration of 2-level DWT. (b)-(e) One level 2-D

decomposition of an example image. (b), (c), (d) and (e) represent approximation (LL1), vertical (LH1), horizontal (HL1) and

diagonal (HH1) subbands, respectively. Wavelet coefficients only with absolute values above the 0.9 quantile (largest 10%)

are shown (as inverted image) for high frequency subbands ((c)-(e)) highlighting directional sensitivity.

(a) Original Frame (b) 1 level (c) 2 levels (d) 3 levels

(e) 4 levels (f) 5 levels (g) 6 levels (h) 7 levels

Fig. 4: An example of interpolated LH subbands from 7-level decomposition for each successive wavelet decomposition level.

boundless low activity facilitates visual stimuli. If m is the

average of local maxima present within the feature map and

M is the global maximum, the promotion and suppression

normalisation is achieved by Eq. (3):

lhX = lh1···LX
∗ (M −m)2,

hlX = hl1···LX
∗ (M −m)2,

hhX = hh1···LX
∗ (M −m)2, (3)

where lhX , hlX and hhX are the normalised set of subband

feature maps.

Finally, the overall saliency map, S, is generated by

S =
∑

∀X∈{Y,U,V }

wX ∗ SX , (4)

where wX is the weight given to each spectral component and

SX is the saliency map for each spectral channel (Y, U, V ),

which is computed as follows:

SX = lhX + hlX + hhX . (5)

An overview of the proposed saliency map SX generation for

a colour channel is shown in Fig. 2. If U or V channels portray

sparse meaningful saliency information, only a minimal effect

will occur from incorporating these features within the final

map, as the structural details are captured in the luminance

saliency map, SY . However, SU and SV are useful for

capturing saliency due to change in colour.

IV. VISUAL ATTENTION-BASED WATERMARKING

A visual attention-based ROI dictates the visually most

important pixels within an image. Therefore, any distortion

in such a region will be highly noticeable to any viewer. In

this section, a novel image watermarking scheme is presented

using the VAM, where the visual saliency map is computed

within the wavelet domain as described in § III. By embedding

greater watermark strength (leading to higher distortions and

robustness) within the less visually appealing regions, in the

host media, a highly robust scheme is attained without compro-

mising the visual quality of the data. A low watermark strength

is chosen for the highly visually attentive areas, leading to

less distortion. Thus, the perception of watermark embedding

distortion can be greatly reduced if any artefacts occur within

inattentive regions. By incorporating VA-based characteristics

within the watermarking framework, algorithms can retain the

perceived visual quality while increasing the overall watermark

robustness, compared with non-VA methodologies. Since the

VAM proposed in this work in § III-A provides an efficient

wavelet domain saliency map generation for images, this

can be easily incorporated into wavelet-based watermarking

schemes.
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Fig. 5: Visual Attention-based Watermarking Scheme.

This section proposes VA-based watermarking for both

blind and non-blind watermarking scenarios. The overview

of the VA-based watermarking can be seen in Fig. 5. In

both scenarios, a content dependent saliency map is generated

which is used to calculate the region adaptive watermarking

strength parameter alpha, α ∈ [0, 1]. A lower and higher value

of α in salient regions and non-salient regions, respectively,

ensures higher imperceptibility of the watermarked image

distortions while keeping greater robustness.

A. The watermarking schemes

At this point, we describe the classical wavelet-based

watermarking schemes without considering the VAM and

subsequently propose the new approach that incorporates the

saliency model described in § III. The FDWT is applied on

the host image before watermark data is embedded within the

selected subband coefficients. The Inverse Discrete Wavelet

Transform (IDWT) reconstructs the watermarked image. The

extraction operation is performed after the FDWT. The ex-

tracted watermark data is compared to the original embedded

data sequence before an authentication decision verifies the

watermark presence. A wide variety of potential adversary

attacks, including compression and filtering, can occur in an

attempt to distort or remove any embedded watermark data.

1) Non-blind Watermarking: Magnitude-based multiplica-

tive watermarking [23], [53], [55], [59], [71], [72] is a popular

choice when using a non-blind watermarking system, due

to its simplicity. Wavelet coefficients are modified based on

the watermark strength parameter, α, the magnitude of the

original coefficient, C(m,n) and the watermark information,

W (m,n). The watermarked coefficients, C ′(m,n), are ob-

tained as follows:

C ′(m,n) = C(m,n) + αW (m,n)C(m,n). (6)

W (m,n) is derived from a pseudo-random binary sequence, b,
using weighting parameters, W1 and W2 (where W2 > W1),

which are assigned as follows:

W (m,n) =

{

W2 if b = 1
W1 if b = 0.

(7)

Fig. 6: Blind quantisation-based coefficient embedding.

To obtain the extracted watermark, W ′(m,n), Eq. (6) is

rearranged as:

W ′(m,n) =
C ′(m,n)− C(m,n)

αC(m,n)
. (8)

Since the non-watermarked coefficients, C(m,n), are needed

for comparison, this results in non-blind extraction. A thresh-

old limit of Tw =
W1 +W2

2
is used to determine the extracted

binary watermark b′ as follows:

b′ =

{

1 if W ′(m,n) ≥ Tw

0 if W ′(m,n) < Tw.
(9)

2) Blind Watermarking: Quantization-based watermarking

[54], [64], [73]–[76] is a blind scheme which relies on

modifying various coefficients towards a specific quantization

step. As proposed in [54], the algorithm is based on modifying

the median coefficient towards the step size, δ, by using a

running non-overlapping 3×1 window. The altered coefficient

must retain the median value of the three coefficients within

the window, after the modification. The equation calculating

δ is described as follows:

δ = α
(Cmin) + (Cmax)

2
, (10)

where Cmin and Cmax are the minimum and maximum

coefficients, respectively. The median coefficient, Cmed, is

quantised towards the nearest step, depending on the binary

watermark, b. Quantisation-based watermark embedding is

shown in Fig. 6. The extracted watermark, b′, for a given

window position, is extracted by

b′ =

[

Cmax − Cmed

δ

]

%2, (11)
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where % denotes the modulo operator to detect an odd or even

number and Cmed is the median coefficient value within the

3×1 window.

3) Authentication of extracted watermarks: Authentication

is performed by comparison of the extracted watermark with

the original watermark information and computing closeness

between the two in a vector space. Common authentication

methods are defined by calculating the similarity correlation

or Hamming distance, H , between the original embedded and

extracted watermark as follows:

H(b, b′) =
1

N

∑

b⊕ b′, (12)

where N represents the length of the watermark sequence and

⊕ is the XOR logical operation between the respective bits.

B. Saliency map segmentation with thresholds

This subsection presents the threshold-based saliency map

segmentation which is used for adapting the watermarking

algorithms described in § IV-A in order to change the wa-

termark strength according to the underlying visual attention

properties. Fig. 7(a) and Fig. 7(b) show an original host image

and its corresponding saliency map, respectively, generated

from the proposed methodology in § III. In Fig. 7(b), the

light and dark regions, within the saliency map, represent the

visually attentive and non-attentive areas, respectively. At this

point, we employ thresholding to quantise the saliency map

into coarse saliency levels as fine granular saliency levels are

not important in the proposed application. In addition, that

may also lead to reducing errors in saliency map regeneration

during watermark extraction as follows. Recalling blind and

non-blind watermarking schemes, in § IV-A, the host media

source is only available within non-blind algorithms. However

in blind algorithms, identical saliency reconstruction might not

be possible within the watermark extraction process due to the

coefficient values changed by watermark embedding as well

as potential attacks. Thus, the saliency map is quantised using

thresholds leading to regions of similar visual attentiveness.

The employment of a threshold reduces saliency map recon-

struction errors, which may occur as a result of any watermark

embedding distortion, as justified further in § IV-D.

The thresholding strategy relies upon a histogram analysis

approach. Histogram analysis depicts automatic segmentation

of the saliency map into two independent levels by employing

the saliency threshold, Ts, where s ∈ S represents the saliency

values in the saliency map, S. In order to segment highly

conspicuous locations within a scene, firstly, the cumulative

frequency function, f , of the ordered saliency values, s, (from

0 to the maximum saliency value, smax) is considered. Then,

Ts is chosen as

Ts = f−1(p ∗ fmax), (13)

where p corresponds to the percentage of the pixels that can

be set as the least attentive pixels and fmax = f(smax)
corresponds to the cumulative frequency corresponding to the

maximum saliency value, smax. An example of a cumulative

frequency plot of a saliency map and finding Ts for p = 0.75
is shown in Fig. 7(c).

Saliency-based thresholding enables determining the coeffi-

cients’ eligibility for a low or high strength watermarking.

To ensure VA-based embedding, the watermark weighting

parameter strength, α, in Eq. (6) and Eq. (10) is made variable

α(j, k), dependant upon Ts, as follows:

α(j, k) =

{

αmax if s(j, k) < Ts,

αmin if s(j, k) ≥ Ts,
(14)

where α(j, k) is the adaptive watermark strength map giving

the α value for a the corresponding saliency at a given pixel

coordinate (j, k). The watermark weighting parameters, αmin

and αmax correspond to the high and low strength, values

respectively and their typical values are determined from the

analysis within § IV-C. As shown in Fig. 7(d), the most and the

least salient regions are given watermark weighting parameters

of αmin and αmax, respectively. An example of the final VA-

based alpha watermarking strength map is shown in Fig. 7(e),

where a brighter intensity represents an increase in α. Further

test images, with corresponding alpha maps are shown in

Fig. 8.

C. Watermark Embedding Strength Calculation

The watermark weighting parameter strengths, αmax and

αmin can be calculated from the visible artifact PSNR limita-

tions within the image. Visual distortion becomes noticeable as

the overall Peak Signal to Noise Ratio (PSNR) drops below

40dB [77], so minimum and maximum PSNR requirements

are set to approximate 35dB and 40dB, respectively, for both

the blind and non-blind watermarking schemes. These PSNR

limits ensure maximum amount of data can be embedded into

any host image to enhance watermark robustness without sub-

stantially distorting the media quality. Therefore it is sensible

to incorporate PSNR in determining the watermark strength

parameter α.

Recalling PSNR, which measures the error between two

images with dimensions X × Y is expressed on pixel domain

as follows:

PSNR(I, I ′) = 10 log











M2

1

XY

X
∑

j=1

Y
∑

k=1

(I ′(j, k)− I(j, k))2











,

(15)

where M is the maximum coefficient value of the data, I(j, k)
and I ′(j, k) is the original and watermarked image pixel

values at (j, k) indices, respectively. Considering the use of

orthogonal wavelet kernels and the Parseval’s theorem, the

mean square error in the wavelet domain, due to watermarking,

is equal to the mean square error in the spatial domain [47].

Therefore, Eq. (15) can be redefined on transform domain

for non-blind magnitude based multiplicative watermarking,

shown in Eq. (6), as follows:

PSNR(I, I ′) = 10 log









M2

1

XY

X
∑

m=1

Y
∑

n=1
(αW (m,n)C(m,n))2









.

(16)
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(a) (b) (c) (d) (e)

Fig. 7: (a) Host image (b) VAM saliency map (saliency is proportional to the grey scale) (c) Cumulative saliency histogram

(d) α step graph (e) α strength map (dark corresponds to low strength).

Fig. 8: α strength map examples: Row 1: Original Image & Row 2: Corresponding α strength map.

By rearranging for α, an expression determining the water-

mark weighting parameter, depending on the desired PSNR

value is derived for non-blind watermarking in Eq. (17) as

follows:

α =
M

√

10(PSNR(I,I′)/10)

XY

X
∑

m=1

Y
∑

n=1
(W (m,n)C(m,n))2

. (17)

Similarly for the blind watermarking scheme described in

§ IV-A2, PSNR in transform domain can be estimated by

substituting the median and modified median coefficients,

C(med) and C ′
(med), respectively, in Eq. (15). Then subsequent

rearranging results in an expression for the total error in

median values, in terms of the desired PSNR as follows:

X
∑

m=1

Y
∑

n=1

(C ′
(med) − C(med))

2 = XY
M2

10(PSNR/10)
. (18)

Eq. (18) determines the total coefficient modification for a

given PSNR requirement, hence is used to α in Eq. (10).

D. Saliency Map Reconstruction

For non-blind watermarking, the host data is available

during watermark extraction so an identical saliency map

can be generated. However, a blind watermarking scheme

requires the saliency map to be reconstructed based upon

the watermarked media, which may have got pixel values

slightly different to the original host media. Thresholding the

saliency map into 2 levels, as described in § IV-B, ensures

high accuracy within the saliency model reconstruction for

blind watermarking. Fig. 9 demonstrates the saliency map

reconstruction after blind watermark embedding compared

with the original. A watermark strength of αmax = 0.2 is

embedded within the LL subband after 3 successive levels

of wavelet decomposition, giving a PSNR of 34.97dB, using

the blind watermarking scheme described in § IV-A2. Fig. 9

shows how applying thresholds to the saliency map can limit

any potential reconstruction errors due to embedding artifacts

distorting the VAM. The left and right columns show the

thresholded original frame and watermarked frame, respec-

tively. By visual inspection Fig. 9(c) and Fig. 9(d) appear

indistinguishable, although objective analysis determines only

55.6% of coefficients are identical, leading to difference in

computed saliency values. In Fig. 9(e) and Fig. 9(f) 99.4%

of saliency coefficients match, hence reconstruction errors are

greatly reduced due to thresholding.

V. PERFORMANCE EVALUATION

The performance of the proposed visual attention based

watermarking is reported and discussed in this section. The

aim of the proposed work is to exploit the visual saliency

concepts to embed high strength watermarking leading to

high robustness without affecting the perceived visual quality

due to embedding distortion. Therefore, the proposed method

is evaluated for both visual quality (in § V-C1) as well as

robustness (in § V-C2). The visual quality is evaluated using

subjective evaluation methods (in § V-A2) as well as traditional

objective metrics (in § V-A1). As an intermediate evaluation

step, the suitability of the proposed visual attention model also

evaluated and compared with the state-of-the-art algorithms in

terms of accuracy of estimation and computational complexity

in § V-B.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Saliency map reconstruction - (a) Original host image,

(b) Watermarked image embedded using a constant αmax,

(c) Host image saliency map, (d) Saliency map of water-

marked image, (e) Original thresholded saliency map and (f)

Reconstructed saliency map thresholded after blind watermark

embedding.

A. Visual Quality Evaluation Tools

Visual quality due to embedding distortion in watermarking

work is often evaluated using the objective metrics, like PSNR,

in the watermarking literature. While objective quality metrics

are based on mathematical models, they do not represent the

accurate perceived quality. Although, some objective metrics

are designed using the HVS model concepts and easy to

compute, subjective evaluation allows the accurate measure-

ment of viewers’ Quality of Experience (QoE). The subjective

evaluations are vital in this work in order to measure the

effectiveness of the proposed saliency model for maintaining

the imperceptibility in the proposed VA-based watermarking.

1) Objective Evaluation Tools: Objective metrics define a

precise value, dependant upon mathematical modelling, to de-

termine visual quality. Such metrics include PSNR, Structural

Similarity Index Measure (SSIM) [78] and Just Noticeable

Difference (JND) [79]. One of the most commonly used

metric, PSNR, stated in Eq. (15), calculates the average error

between two images. SSIM focuses on quality assessment

based on the degradation of structural information. It assumes

that the HVS is highly adapted for extracting structural infor-

mation from a scene. By using local luminance and contrast

rather than average luminance and contrast, the structural

information in the scene is calculated.

2) Subjective Evaluation Techniques: Subjective evaluation

measures the visual quality by recording the opinion of human

(a) (b)

Fig. 10: Subjective testing visual quality measurement scales

(a) DCR continuous measurement scale (b) ACR ITU 5-point

discrete quality scale.

subjects on the perceived visual quality. In this work, the

testing standard specification, defined within the International

Telecommunication Union (ITU-T) [22] was followed. This

work employs two subjective evaluation metrics, that are

computed based on the subjective viewing scores, as follows:

DSCQT: Double Stimulus Continuous Quality Test (DSCQT)

subjectively evaluates any media distortion by using a con-

tinuous scale. The original and watermarked media is shown

to the viewer in a randomised order, who must provide a

rating for the media quality of the original and watermarked

images individually using a continuous scaling, as shown in

Fig. 10(a). Then the Degradation Category Rating (DCR) value

is calculated by the absolute difference between the subjective

rating for the two test images.

DSIST: Double Stimulus Impairment Scale Test (DSIST) de-

termines the perceived visual degradation between two media

sources, A and B, by implementing a discrete scale. A viewer

must compare the quality of B with respect to A, on a 5-point

discrete Absolute Category Rating (ACR) scale, as shown in

Fig. 10(b).

In a subjective evaluation session, firstly, training images are

shown to acclimatize viewers to both ACR and DCR scoring

systems. In either of the two subjective tests, a higher value

in DCR or ACR scales represents a greater perceived visual

quality. Fig. 11 illustrates an overall timing diagram for each

subjective testing procedure, showing the sequence of tests

image display for scoring by the viewers. Note that the media

display time, t1, and blank screen time, t2, before the change

of images, should satisfy the following condition: t1 > t2.

B. Saliency Model Evaluation

For saliency model evaluation, the Microsoft Research Asia

(MSRA) saliency dataset (by Liu et al. [80]), popularly used

in state-of-the art visual saliency estimation research is used

in this work. MSRA saliency datadase provides thousands of

publicly available images, from which 1000 are selected to

form the MSRA-1000. Subsequent ground truth ROI frames,
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(a) (b)

Fig. 11: Stimulus timing diagram for (a) DCR method (b)

ACR method.

governed by the outcome of subjective testing, have been

manually created as part of the same database. The data test

set has been manually labelled by 3 users. The dataset has

been narrowed down to 5,000 frames by selecting the most

consistent data. Salient portions within each of the 5,000

frames are labelled by 9 users into a binary ground truth map,

segmenting the ROI, and the most consistent 1,000 frames

make up the MSRA-1000 database, which was used in eval-

uating the proposed saliency model against the state-of-the-

art methodologies. Four state-of-the-art methods representing

different approaches are selected in these evaluations. The

orthogonal Daubechies-4 (D4) wavelet with 5-level decom-

position was chosen for the proposed model’s experimental

set up.

Fig. 12 shows the saliency model performance, compar-

ing the proposed method against four differing state-of-the-

art techniques. Four exemplar original images are shown in

column 1. Column 2 demonstrates the performance of the

Itti model [28], which portrays moderate saliency estimation,

when subjectively compared to the ground truth frames in

column 8. A drawback to this model is the added com-

putational cost, persisting approximately twice the proposed

algorithm. The Rare algorithm [42] is a highly computationally

exhaustive procedure to cover both high and low level saliency

features by searching for patterns within a frame. A good

approximation can be seen from column 3, but processing large

batches of data would be irrational due to the iterative nature

of the algorithm, taking 45 times the proposed model com-

putation time. The Ngau wavelet-based model [33] is shown

in column 4, but delivers a poor approximation highlighting

attentive regions. This model is highly dependant on a plain

background with salient regions to remain the same colour or

intensity. For images containing a wide variety of intensities

and colour, the model breaks down as shown in row 2, in

Fig. 12, where the white portion within the sea is visually

misclassified as an interesting region. Column 5 and column 6

show the generated saliency maps from the Erdem model [32]

and Li model [30], respectively. The proposed model is shown

in column 7 and identifies any salient activity within in each

of the four frames, by locating the presence of intensity and

colour contrasts. For example, the proposed method clearly

highlights the orange, bird, strawberries and players.

Visual inspection of the saliency model alone does not pro-

vide an adequate algorithm evaluation. The Receiver operating

TABLE I: AUC and Computational time comparing state-of-

the-art image domain saliency models.

Algorithm ⇒ Itti Rare Ngau Erdem Li Proposed
[28] [42] [33] [32] [30]

ROC AUC for
1000 images 0.875 0.906 0.856 0.878 0.708 0.887

Mean computing
time / image (s) 0.281 6.374 0.092 16.540 0.257 0.142

characteristics (ROC) considering various threshold values for

segmenting the saliency maps are computed for the MSRA-

1000 database with respected to the ground truth maps. The

ROC plots for the proposed method and the state-of-the-art

methods are shown in Fig. 13. The Area Under Curves (AUC)

represent the efficient performance of the models. Higher AUC

corresponds to better performance. TABLE I row 1 reports

the AUC values for the corresponding ROC plots in Fig. 13.

The mean computational time for MSRA-1000 data set images

for each of the methods is shown in row 2 of TABLE I.

For a fair comparison of the computational complexity, all

algorithms were implemented in MATLAB by the authors and

the experiments were performed on the same computer.

The comparison with the state-of-the-art methods, in terms

of the AUC of ROC plots and computational time is shown

in Fig. 14. According to the figure, the proposed method is

in the top left quadrant of the scatter plot showing the best

joint AUC and computational time performance. The proposed

saliency models shows superior performance compared with

the algorithms proposed by Itti, Ngau, Erdem and Li having

an ROC AUC values 1.4%, 3.6%, 1.03% and 25.3% higher

than these models, respectively. The Rare model has an ROC

AUC 2.1% higher than the proposed, but this is acceptable

considering the computational complexity of the context aware

algorithm (a 45× speed up in run time is achieved in the

proposed model). In fact other than Ngau method, the pro-

posed method achieves significant speed up: 1.98× against

Itti method, 116.48× against Erdem method and 1.94× against

Li. Additionally, these algorithms are often proposed as stand

alone model while the proposed one is regarded as saliency

model that is incorporated into a watermarking framework,

thus the low computational complexity in the saliency model

is very essential.

C. VA-based Watermarking Evaluation

The proposed VA-based watermarking is agnostic to the

watermark embedding methodology. Thus, it can be used on

any existing watermarking algorithm. In our experiments, we

use the non-blind embedding proposed by Xia et al. [53] and

the blind algorithm proposed by Xie and Arce [54] as our

reference algorithms.

The experimental set up for evaluating the proposed water-

marking scheme as follows: The MSRA-1000 database used in

evaluating the saliency model contains small size images with

maximum dimension of 400×400 and is often limited to one

close-up salient object. This is not a suitable choice to evaluate

any watermarking algorithm. Therefore, the Kodak image test
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Fig. 12: Image Saliency model state-of-the-art comparison: Column 1: Original image from MSRA database, Column 2: Itti

model [28], Column 3: Rare model [42], Column 4: Ngau model [33], Column 5: Erdem model [32], Column 6: Li model [30],

Column 7: Proposed Method and Column 8: Ground Truth.
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Fig. 13: ROC curve comparing the proposed model with

state-of-the-art image domain saliency algorithms: Itti [28],

Ngau [33], Rare [42], Erdem [32] and Li [30].

set2 containing 24 colour scenes is used for watermarking

evaluation in this work.

For the evaluations, we choose all coefficients in a subband

and embed the watermarking bit by tuning the strength param-

eter based on the proposed visual attention model. Therefore

our aim is to extract the same bit and hence we use hamming

distance metric to evaluate the robustness. For all experimental

simulations, common test set parameters for watermark em-

bedding include orthogonal Daubechies-4 (D4) wavelet kernel,

embedding at all four subbands at 3rd decomposition level, a

binary watermark sequence and p = 0.75 as the cumulative

frequency threshold for segmenting the saliency maps.

The saliency adaptive strength parameters, αmin and αmax,

are computed using minimum and maximum PSNR values

of 35dB and 40dB, respectively as proposed in Eq. (17) and

2Available from http://r0k.us/graphics/kodak/
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Fig. 14: AUC and Computational time comparing state-of-

the-art image domain saliency models: Itti [28], Ngau [33],

Rare [42] and Erdem [32].

Eq. (18) in § IV-C for non-blind and blind watermarking,

respectively.

Throughout this section, four different scenarios are evalu-

ated, with α varying in each instance. The four watermarking

scenarios consist of:

1) a uniform αmin for the entire image (Low strength);

2) the proposed watermarking scheme which implements an

adaptive VA-based α (VAM);

3) a uniform average watermark strength, αave, chosen as

αave = (αmin + αmin)/2 for the entire image (Average

strength); and

4) a uniform αmax for the entire image (High strength).

The experimental evaluation results are consequently shown

in the following two sections: embedding distortion (visual

quality) and robustness. The imperceptibility of the water-

marking schemes are determined by measuring any embedding

distortion due to embedding using subjective evaluation as
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well as objective metrics. The former involved 30 human

subjects marking their opinions in subjective evaluation test as

described in § V-A2. Robustness is evaluated against natural

image processing and filtering attacks as implemented by

Checkmark [81], and scalable content adaptation by Water-

marking Evaluation Bench for Content Adaptation Modes

(WEBCAM) [82].

1) Embedding Distortion: Two images accommodating in-

distinguishable objective metrics, such as, PSNR and SSIM,

do not necessarily radiate identical perceived visual quality. To

provide a realistic visual quality eavluation, subjective testing

is used to analyze the impact of the proposed watermarking

scheme on the overall perceived human viewing experience.

Subjective evaluation performed in this work comprises of

DSCQT and DSIST and the results are shown in Fig. 15,

for both blind and non-blind watermarking schemes. The top

and bottom rows in Fig. 15 show subjective evaluation results

for the blind and non-blind watermarking cases, respectively,

whereas the left and right columns in Fig. 15 show the results

using DSCQT and DSIST evaluation tools. Consistent results

are portrayed for both the blind and non-blind scenarios.

For the DSCQT, the lower the DCR, the better the visual

quality, i.e., less embedding distortions. In the shown results,

when comparing the proposed and low strength embedding

methodologies, the DCR value only deviate by approximately

1 unit in the rating scale suggesting a subjectively simi-

lar visual quality. The high strength watermarking scheme

shows a high DCR value indicating significantly higher sub-

jective visual quality degradation compared with the VA-

based methodology. Similar outcomes are evident from the

DSIST plots, where the higher mean opinion score (MOS) on

ACR corresponds to better visual quality, i.e., less embedding

visual distortions. DSIST plots for low-strength and VA-based

schemes show a similar ACR MOS in the range 3-4, whereas

the high strength watermark yields an ACR of less than 1.

Compared with an average watermark strength, the proposed

watermarking scheme shows an improved subjective image

quality in all 4 graphs by around 0.5-1 units. As more data

is embedded within the visually salient regions, the subjec-

tive visual quality of constant average strength watermarked

images is worse than the proposed methodology.

For visual inspection, an example of watermark embedding

distortion is shown in Fig. 16. The original, the low strength

watermarked, VAM-based watermarked and the high strength

watermarked images are shown in Fig. 16(a), Fig. 16(b),

Fig. 16(c) and Fig. 16(d), respectively, where the distortions

around the aircraft propeller and the wing are distinctively

visible in high strength watermarking (Fig. 16(d)).

For completion, the objective metrics for embedding distor-

tion evaluation are shown in TABLE II, which display PSNR

and SSIM measures for both non-blind and blind watermark-

ing cases, respectively. In both metrics, higher values signify

better imperceptibility. From the tables, PSNR improvements

of approximately 2dB are achieved when comparing the pro-

posed and constant high strength models. The SSIM measures

remain consistent for each scenario, with decrease of 1%

for the high strength watermarking model in most cases.

The proposed VA-based method successfully exploits visu-
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Fig. 15: Subjective Image Watermarking Imperceptibility Test-

ing for the 4 scenarios: uniform Low, Average and High

watermarking strengths and the proposed VAM-based adaptive

strengths (VAM) for non-blind watermarking Xia et al. [53]

(top row) blind watermarking Xie and Arce [54] (bottom row).

ally uninteresting areas to mask extra embedded watermark

information, in comparison to the other schemes. From both

objective and subject analysis, the proposed VA-based based

watermarking has visual quality comparable to low-strength

watermarking as only minimal added visual distortion is

perceived with respect to that low-strength watermarking. The

following section reports the robustness against attacks for the

same schemes.

2) Robustness: The ability of the watermark to withstand

intentional and non-intentional adversary attacks are tested and

(a) (b)

(c) (d)

Fig. 16: HL subband watermarking - (a) original image,

(b) uniform low strength watermarked image, (c) VAM-

based adaptive strength watermarked image, (d) uniform high

strength watermarked image.
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TABLE II: PSNR and SSIM values - non-blind and blind watermarking.

Non-blind Watermarking - Xia et al. [53] Blind Watermarking - Xie and Arce [54]

Low Proposed Average High Low Proposed Average High
Strength VAM-based Strength Strength Strength VAM-based Strength Strength

Embedding in LL Subband

PSNR 39.91± 0.06 36.07± 0.24 37.37± 0.07 34.92± 0.04 39.93± 0.08 37.17± 0.26 37.44± 0.08 34.94± 0.06

SSIM 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00

Embedding in HL Subband

PSNR 39.92± 0.07 36.42± 0.26 37.28± 0.08 34.95± 0.06 39.92± 0.08 37.21± 0.29 37.38± 0.09 34.96± 0.08

SSIM 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00

Embedding in LH Subband

PSNR 39.90± 0.05 36.18± 0.28 37.39± 0.09 34.94± 0.05 39.95± 0.07 36.98± 0.29 37.35± 0.08 34.96± 0.08

SSIM 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.98± 0.00

Embedding in HH Subband

PSNR 39.94± 0.06 36.42± 0.29 37.45± 0.08 34.97± 0.06 39.96± 0.08 37.08± 0.31 37.46± 0.09 34.96± 0.08

SSIM 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00
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Fig. 17: Robustness to JPEG2000 Compression for the 4

scenarios: uniform Low, Average and High watermarking

strengths and the proposed VAM-based adaptive strengths

(VAM) for non-blind watermarking Xia et al. [53] embedding

in LL, LH, HL and HH subbands.

reported here. Robustness against JPEG2000 compression is

shown in Fig. 17 and Fig. 18 for the non-blind and blind

watermarking schemes, respectively, by plotting Hamming

distance (Eq. (12)) of the recovered watermark against the

JPEG2000 compression ratio. A smaller value of Hamming

distance represents greater robustness. For embedding within

each of the LL, HL, LH and HH subbands, up to a 25%

improvement in Hamming distance is attainable by implemen-

tation of the proposed VA-based watermarking scheme, when

compared with the low strength watermark.

Adversary filtering attacks, for each of the three scenar-

ios, are simulated by convoluting the watermarked images

with a filtering kernel, to distort any embedded information.

TABLE III shows the watermark robustness against various
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Fig. 18: Robustness to JPEG2000 Compression for the 4

scenarios: uniform Low, Average and High watermarking

strengths and the proposed VAM-based adaptive strengths

(VAM) for blind watermarking Xie and Arce [54] embedding

in LL, LH, HL and HH subbands.

low pass kernel types, namely: a 3×3 and a 5×5 mean

filter, a 3×3 and a 5×5 median filter and a 5×5 Gaussian

kernel. An increase in watermark robustness, ranging between

10% and 40%, is evident for the proposed method compared

to the low strength watermarking, for the various types of

kernel. For both filtering attacks and JPEG2000 compression,

a maintained or an improvement within watermark robustness

is seen in Fig. 17, Fig. 18 and TABLE III for the proposed VA-

based technique when compared using an average watermark

strength.

As can be seen from the results, the high strength watermark

embedding results in high robustness at the expense of low

visual quality. However, the proposed VA-based watermark
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TABLE III: Watermarking robustness against image filtering .

Non-blind Watermarking - Xia et al. [53] Blind Watermarking - Xie and Arce [54]

Filtering ⇓ Low Proposed Average High Low Proposed Average High
Attacks Strength VAM-based Strength Strength Strength VAM-based Strength Strength

Embedding in LL Subband

Gaussian 0.17± 0.03 0.13 ± 0.02 0.13 ± 0.02 0.06 ± 0.01 0.21 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.15 ± 0.01

3x3 median 0.12± 0.03 0.09 ± 0.03 0.09 ± 0.02 0.06 ± 0.02 0.16 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.09 ± 0.01
5x5 median 0.22± 0.02 0.16 ± 0.02 0.17 ± 0.02 0.07 ± 0.02 0.25 ± 0.04 0.18 ± 0.04 0.19 ± 0.03 0.11 ± 0.03

3x3 mean 0.06± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.03 ± 0.00 0.10 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.04 ± 0.00
5x5 mean 0.18± 0.02 0.13 ± 0.02 0.14 ± 0.02 0.06 ± 0.01 0.23 ± 0.02 0.19 ± 0.02 0.19 ± 0.02 0.17 ± 0.01

Embedding in HL Subband

Gaussian 0.28 ± 0.03 0.24 ± 0.02 0.24 ± 0.02 0.19 ± 0.01 0.28 ± 0.03 0.24 ± 0.02 0.24 ± 0.03 0.19 ± 0.01

3x3 median 0.24 ± 0.02 0.19 ± 0.02 0.20 ± 0.02 0.15 ± 0.01 0.24 ± 0.02 0.19 ± 0.02 0.20 ± 0.02 0.15 ± 0.01
5x5 median 0.29 ± 0.02 0.21 ± 0.02 0.23 ± 0.03 0.17 ± 0.02 0.29 ± 0.02 0.21 ± 0.02 0.21 ± 0.02 0.17 ± 0.02

3x3 mean 0.21 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.14 ± 0.01 0.21 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.14 ± 0.01
5x5 mean 0.27 ± 0.02 0.22 ± 0.02 0.21 ± 0.02 0.18 ± 0.02 0.27 ± 0.02 0.22 ± 0.02 0.23 ± 0.03 0.18 ± 0.02

Embedding in LH Subband

Gaussian 0.29 ± 0.02 0.23 ± 0.02 0.23 ± 0.03 0.19 ± 0.01 0.40 ± 0.02 0.35 ± 0.03 0.36 ± 0.02 0.31 ± 0.02

3x3 median 0.24 ± 0.02 0.20 ± 0.02 0.20 ± 0.02 0.14 ± 0.01 0.34 ± 0.01 0.29 ± 0.02 0.30 ± 0.03 0.24 ± 0.01
5x5 median 0.28 ± 0.02 0.21 ± 0.02 0.22 ± 0.02 0.17 ± 0.01 0.38 ± 0.02 0.33 ± 0.03 0.33 ± 0.02 0.29 ± 0.02

3x3 mean 0.22 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.14 ± 0.01 0.34 ± 0.01 0.29 ± 0.01 0.29 ± 0.01 0.23 ± 0.01
5x5 mean 0.28 ± 0.02 0.22 ± 0.02 0.23 ± 0.03 0.18 ± 0.02 0.39 ± 0.02 0.36 ± 0.02 0.36 ± 0.02 0.31 ± 0.02

Embedding in HH Subband

Gaussian 0.38 ± 0.03 0.35 ± 0.03 0.35 ± 0.02 0.32 ± 0.02 0.43 ± 0.02 0.40 ± 0.02 0.40 ± 0.02 0.38 ± 0.01

3x3 median 0.23 ± 0.02 0.22 ± 0.03 0.22 ± 0.01 0.20 ± 0.02 0.28 ± 0.02 0.27 ± 0.03 0.27 ± 0.02 0.25 ± 0.02
5x5 median 0.36 ± 0.03 0.34 ± 0.03 0.34 ± 0.02 0.33 ± 0.02 0.41 ± 0.03 0.39 ± 0.02 0.40 ± 0.02 0.38 ± 0.02

3x3 mean 0.23 ± 0.02 0.21 ± 0.03 0.22 ± 0.01 0.20 ± 0.01 0.30 ± 0.02 0.28 ± 0.03 0.28 ± 0.02 0.26 ± 0.01
5x5 mean 0.38 ± 0.02 0.35 ± 0.04 0.36 ± 0.02 0.34 ± 0.02 0.42 ± 0.03 0.40 ± 0.03 0.40 ± 0.03 0.39 ± 0.02

embedding results in a robustness close to the high strength

watermarking scheme, while showing low distortions, as in the

low strength watermarking approach. The incurred increase

in robustness coupled with high imperceptibility, verified by

subjective and objective metrics in § V-C1 and § V-C2, deem

the VA-based methodology highly suitable towards providing

an efficient watermarking scheme.

VI. CONCLUSIONS

In this paper, we have presented a novel wavelet domain vi-

sual attention-based framework for robust image watermarking

that has minimal or no effect on visual quality due to water-

marking. In the proposed scheme, a two-level watermarking

weighting parameter map is generated from the VAM saliency

map using the proposed saliency model and data is embedded

into the host image according to the visual attentiveness

of each region. By avoiding higher strength watermarking

in visually attentive region, the resulted watermarked image

achieved high perceived visual quality while preserving high

robustness.

The proposed VAM outperforms all but one existing VA

estimation methods by up to 3.6% ROC AUC. However, in

terms of run time the proposed model achieved a 45× speed-

up compared to the method with the best ROC AUC, thus

confirming the suitability for using in the proposed water-

marking framework. The proposed low complexity saliency

model was extended to propose both blind and non-blind

watermarking schemes. ITU-T recommended subjective eval-

uation was employed to verify the superiority of the pro-

posed VA-based watermarking with respect to high or average

strength watermarking and comparability with the low-strength

watermarking. For the same embedding distortion, e.g., by

fixing PSNR in a narrow window, the proposed VA-based

watermarking achieved up to 25% and 40% improvement

against JPEG2000 compression and common filtering attacks,

respectively, against the existing methodology that does not

use the visual attention model. Finally, the proposed VA-based

watermarking has resulted in visual quality similar to that of

low-strength watermarking and robustness similar to those of

high-strength watermarking.
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