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Abstract
The search landscape is a common metaphor to describe the structure of computa-
tional search spaces. Different landscape metrics can be computed and used to pre-
dict search difficulty. Yet, the metaphor falls short in visualisation terms because it is 
hard to represent complex landscapes, both in terms of size and dimensionality. This 
paper combines local optima networks, as a compact representation of the global 
structure of a search space, and dimensionality reduction, using the t-distributed 
stochastic neighbour embedding algorithm, in order to both bring the metaphor to 
life and convey new insight into the search process. As a case study, two bench-
mark programs, under a genetic improvement bug-fixing scenario, are analysed and 
visualised using the proposed method. Local optima networks for both iterated local 
search and a hybrid genetic algorithm, across different neighbourhoods, are com-
pared, highlighting the differences in how the landscape is explored.

Keywords  Fitness landscape · Local optima network · Genetic improvement · 
Visualisation

1  Introduction

Fitness landscapes have their roots in theoretical biology, and are nowadays widely 
used to describe the dynamics of both evolutionary and local search algorithms 
(where they are referred to as search landscapes). Key to this concept are an arrange-
ment of possible solutions (or genotypes) in an abstract space that describes how 
solutions can be reached from one another, and a fitness or objective function 
assigning a quality value (height) to all solutions, forming a surface. The intuitive 
notion of ruggedness is related to the difficulty of optimising on a given landscape. 
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It depends on both the fitness function and the geometry of the search space, which 
is induced by the search operators. Additionally, studies of molecular evolution [24] 
have shown that neutrality, that is, the occurrence of adjacent configurations with 
the same fitness, can also play a dominating role in evolutionary dynamics.

The goal of fitness landscape analysis is to provide a detailed understanding of the 
geometric features of landscapes and how they relate to search dynamics. However, 
mountain ranges, valleys, basins, peaks, plains and ridges in multi-dimensional com-
binatorial objects may look quite different from our 3D experience [32]. A wealth of 
metrics and techniques have been proposed to characterise fitness landscapes [22], 
but most of them study the local structure of search spaces. Local Optima Networks 
(LONs) [25, 41], help us to study instead their global structure. This graph-based 
model provides fundamental new insight into the structural organisation and the 
connectivity pattern of a search space with given move operators. Most importantly, 
it allows us to visualise realistic search spaces in ways not previously possible and 
brings a whole new set of network metrics for characterising them.

Genetic improvement (GI) uses automated search to find improved versions of 
existing software [29]. The goal is to automatically improve the behaviour of a soft-
ware system with respect to some desired criteria using heuristic search. The criteria 
for improvement can be either non-functional properties of the system, such as exe-
cution time or power consumption; or functional properties such as repairing defects 
(also called Automatic Program Repair [45]). Despite being a recent topic, GI has 
received awards and notoriety within both Software Engineering and Evolutionary 
Computation [29]. Several challenges can be identified when trying to automatically 
improve software [17], among them is to understand the structure of program search 
spaces. Within GI, a program is mutated in an attempt to improve some desired 
property. For example, in a bug-fixing scenario, the fitness of a program is measured 
by the number of failed test cases from a given test suite. Neutrality is relevant as it 
is related to the proportion and distribution of test-equivalent mutants. Traditionally, 
the space of program mutants has been thought to be disjoint and fragile, with few 
good programs. However, recent work [18, 19, 30, 46] suggests that many changes 
do not impact the fitness of the mutants. This may indicate that either the programs 
are quite robust, or the test suite does not provide enough coverage.

Visualisation has been recognised as an important tool for understanding evolution-
ary algorithms. Insightful reviews of existing techniques can be found in [10, 21]; most 
approaches visualise either search trajectories (evolutionary histories), the structure of 
individuals, the ancestry of individuals, or the composition of populations. Concerning 
the visualisation of fitness landscapes, the recent work by Volke et al. [42, 43] collects 
data from steepest descent walks and computes a set of distance measures, which are 
thereafter visualised as a set of scatter plots, bar charts, and 2D projection maps. The 
mapping is done using a spring force model such that the Euclidean distances between 
the points in the plane approximate the distances within the search landscape. Another 
direction of research uses the notion of barrier trees or disconnectivity graphs [44] 
from theoretical biology for visualising the search landscape. These studies mostly deal 
with small examples. Flamm et al. [8] extended barrier trees so that they can be con-
structed for highly degenerate problems (i.e., landscapes with neutrality). They present 
empirical results for binary strings of up to length 10. Hallam and Prügel-Bennett [9] 
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constructed barrier trees for MAX-SAT problems with up to 40 variables using branch-
and-bound to find only the best local optima in the space.

It is not the intention of this paper to propose a fully fledged standalone solution 
for visualising search landscapes and networks. Rather, its purpose is to highlight that 
existing visualisation techniques can be added to the researcher’s or the practitioner’s 
toolkit when analysing and communicating results of a local optima network analysis. 
Furthermore, applying those techniques to a number of genetic improvement scenarios 
demonstrates the applicability of the techniques to a broader range of problems beyond 
traditional combinatorial optimisation benchmark problems such as the Travelling 
Salesman Problem.

In this paper, we propose using the t-distributed stochastic neighbour embedding, 
or t-SNE algorithm [36], as the dimensionality reduction technique to generate layouts 
of large local optima networks datasets. The t-SNE algorithm, while very popular in 
machine learning, has received very little attention in an optimisation context. It has pre-
viously been used to visualise the search dynamics in Particle Swarm Optimisation on 
continuous functions [6] where it is briefly compared to Principle Components Analysis. 
Other dimensionality reduction techniques such as Sammon mapping [7, 13] and iso-
metric mapping [15] have been proposed for visualising evolutionary algorithm runs.

This article extends our recent work on modelling genetic improvement landscapes 
as local optima networks [38] and explicitly focuses on the visualisation aspects. The 
main contributions are:

1.	 Combining local optima networks and dimensionality reduction through the 
t-SNE algorithm to visualise the global structure of search landscapes.

2.	 An investigation of the biases of the visualisation in terms of (1) how different 
samples compare visually to each other and (2) how different sampling intensity 
can bias the proposed visualisation by comparing the visualisation of a large set 
of solutions with the visualisations of a number of its subsets.

3.	 An analysis illustrating how the visualisations can be used to compare different 
landscape samples generated by two different algorithms (an ILS and a GA).

The paper is structured as follows. Section  2 describes fitness landscapes and local 
optima networks. Section 3 presents the programs used in our case study and which of 
their features are mapped onto the landscape. Section 4 describes the algorithm used 
for genetic improvement in this paper and, specifically, the Iterated Local Search and 
hybrid genetic algorithm used. Section 5 discusses some considerations when visualis-
ing large graphs and local optima networks in particular. Section 6 presents the visuali-
sation results and Sect. 7 is the conclusion.

2 � Search landscapes

In practice, the two or three-dimensional visual interpretation of the land-
scape metaphor is not directly possible for high-dimensional search spaces and 
some dimensionality reduction is required. Indeed, while the search space of a 
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four-dimensional binary problem (only 16 solutions) under the bit flip neighbour-
hood can be represented by a tesseract or hypercube (Fig. 1), conveying the addi-
tional fitness dimension of the landscape is non-trivial if one wants to maintain 
the intuitiveness of the metaphor. Naturally, colour or some other property may 
be used to illustrate fitness. Nevertheless, there are formal mathematical objects 
that can be associated to the landscape metaphor to allow for its analysis and 
manipulation. The rest of this section describes fitness landscapes and local 
optima networks in more detail.

2.1 � Fitness landscapes

Fitness landscapes are a commonly-used metaphor to describe the dynamics of 
evolutionary and local search heuristics. The search space can be regarded as a 
spatial structure with height representing fitness, forming a surface that can vary 
from smooth to rugged, and that can contains ridges and plateaus. Formally [32], 
a landscape is a triplet (S, N, f) where

–	 S is a set of potential solutions, i.e. a search space,
–	 N ∶ S ⟶ ℘(S) , the neighbourhood structure, is a function that assigns to 

every s ∈ S a set of neighbours N(s) ( ℘(S) is the power set of S), and
–	 f ∶ S ⟶ ℝ is a fitness function that can be pictured as the height of the cor-

responding solutions.

Within the landscape structure, different topological features such as local 
optima, basins of attraction and plateaus may appear. These are known to have an 
impact on the search process.

Definition 1  (Local optimum) A local optimum is a solution s∗ ∈ S such that 
∀s ∈ N(s∗) , f (s∗) ≤ f (s) . Notice that the inequality is not strict, in order to allow the 
treatment of the neutral landscape case. The definition provided here is for a local 
minimum, without loss of generality.

Fig. 1   Search space of bit 
strings of length 4.
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Definition 2  (Basin of attraction) The basin of attraction of a local optimum 
s∗
i
∈ S , for some hillclimbing operator h, is the set bi = {s ∈ S|h(s) = s∗

i
}.

Definition 3  (Plateau) A plateau is a set of connected solutions with the same fit-
ness value. Two vertices in a plateau are connected if they are neighbours with the 
same fitness.

2.2 � Local optima networks

Local optima are important features of fitness landscapes as they can be seen as 
obstacles to the progress of heuristic search. Local optima networks (LONs)  [25] 
model the global structure of landscapes as graphs where nodes are local optima 
and edges represent possible transitions among them with a given search operator. 
In order to model GI fitness landscapes with local optima networks, we adapted the 
model with escape edges [40]. To construct these networks, we need to define their 
nodes and edges. The definitions are related to the search operators used, specifi-
cally, the local search (hill-climbing) heuristic to determine the local optima and 
escape operator to transit among them. In our study, the hill-climbing heuristic is a 
best-improvement approach based on the 1-move operator, and the escape operator 
is also given by a single application of 1-move. This is possible as, given the prob-
lem encoding, a single 1-move provides enough variability to escape from a local 
optimum basin of attraction.

Definition 4  (Nodes) Nodes in a LON are local optima. In genetic improvement 
landscapes, a local optimum is a minimum when considering the number of failed 
test cases. The set of local optima, which corresponds to the set of nodes in the net-
work model, is denoted by L.

Since the whole set of local optima cannot be determined in realistic search spaces, 
such as those considered here, a process of sampling is required to estimate L.

Definition 5  (Edges) Edges are directed and based on some operator(s) that allow 
for the transition between two local optima. The type of edge will differ based on the 
type algorithm that is considered. The set of escape edges is denoted by E.

The type of edge is dependent on the algorithm used to sample the landscape. 
While escape edges are natural edges for ILS algorithms, other edge types may be 
used such as crossover and mutation edges in the case of an evolutionary algorithm, 
as done by [39].

In this paper, we consider escape and crossover edges. There is an escape edge 
from local optimum x to local optimum  y, if y can be obtained after applying a 
1-move random mutation to y followed by a best-improvement hill-climb across the 
1-move neighbourhood. There is a pair of crossover edges from local optima x1 and 
x2 to local optimum y, if applying a uniform crossover on x1 and x2 , followed by a 
best-improvement hill-climb across the 1-move neighbourhood produces y.
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Definition 6  (Local optima network (LON)) This is the LON = (L,E) graph where 
nodes are the local optima L, and edges E are the escape edges.

3 � Program search space test bench

To study the landscape of program search spaces, we start from known bug-free 
programs and introduce random mutations. Starting from these mutants, we try to 
recover the original bug-free programs or any version that passes all the test cases in 
the test suite.

We assume that programmers usually create close-to-being-correct programs, 
i.e., they make minor mistakes such as typos or small logic errors but not major mis-
takes where the program logic is completely flawed. This is known as the competent 
programmer hypothesis [4].

We examine two C programs, described in Sect.  3.1. For the sake of sim-
plicity, in this paper we first consider mutations on comparison operators 
( <, <=, ==, ! =, >=, > ), as done by [16], and then add mutations of Boolean 
operators with two operands (&&, ||) to compare and contrast landscapes across 
different neighbourhood structures.

To bypass the generation of new code requiring the recompilation of each new 
mutant, we use a super-mutant program that contains all the possible mutations 
under consideration [34]. These mutations can then be turned on and off as desired. 
In our implementation, each operator is transformed into a function call with four 
arguments: an operator id, its two operands, and a cosmetic final argument string 
that describes the original operator. This is mostly useful for a fast evaluation of the 
fitness function. An example of the transformation is shown in Fig. 2.

The transformation is performed using the LibTooling library of Clang–LLVM to 
parse the programs, build the abstract syntax trees, and rewrite the required nodes. 
Some additional manual steps are required to build our test harness, as described in 
Sect. 3.1.

In the programs we examine, no two operators are ever part of the same expres-
sion when only the comparison operators are considered. When both comparison 
and Boolean operators are considered, then operator precedence is enforced and left 
associativity is used for operators of similar precedence when the super-mutant is 
generated.

In our study, a potential solution is encoded as a vector of integers of length 
l, where l = c + b corresponds to the number of comparison operators (c) and 
Boolean operators (b) in the program under consideration (Table  1). There are 
6 possible comparison operators and 2 Boolean operators. Therefore, the size of 
the search space is |S| = 6c × 2b . The neighbourhood structure, N, is given by the 
simplest possible move operator in this landscape, namely, the value of a single 
position in a solution is changed: to one of the 5 alternatives if it is a compari-
son operator, or the opposite Boolean operator. Let us call this operator 1-move. 
The size of the neighbourhood induced by 1-move on the given representation is 
5 × c + b . The fitness function f is given by the number of test cases failed by the 
program, which is to be minimised.
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3.1 � Benchmark programs

We use two C programs: the triangle program and the TCAS program. Their charac-
teristics are summarised in Table 1.

triangle.c: The triangle program is a small program that takes the lengths 
of the three sides of a triangle and determines if it is scalene, isosceles, equilateral, 
or not a triangle. We use a simplified version [16], which has been translated into C 
from the original Fortran version by DeMillo et al. [4].

tcas.c: The TCAS, or Traffic Collision Avoidance System, program controls 
the altitude of an aircraft depending on a number of input parameters. We use version 

(a) (b)

(c)

Fig. 2   Code snippets showing an example of super-mutant transformation where the two equality opera-
tors are the fourth and fifth operators in the code. a Original code snippet, b super-mutant code snippet, c 
SM function definition

Table 1   Characteristics of 
benchmark programs

Program triangle.c tcas.c

Lines of code 40 135
No. comparison operators 17 14
No. Boolean operators 7 16
No. input parameters 3 12
No. output values 1 1
No. test cases used (original) 14 (14) 1578 (1608)
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2.0 from the SIR repository [5].1 For the sake of simplicity, we do not consider the 
test cases that do not have all 12 input parameters. This effectively reduces the num-
ber of test cases from 1608 to 1578. Array indices are not checked in the original pro-
gram. We introduce a check to accept valid indices and generate an arbitrary output 
value for invalid indices. This prevents the program from crashing and improves the 
efficiency of the sampling process, which is described in the next subsection.

4 � Genetic improvement sampling procedures

A full enumeration of the search space, or even of the local optima, for the two 
programs is unmanageable. Therefore a sample of high-quality local optima in the 
search space is generated. Since we only consider mutations of comparison and 
Boolean operators, a simple representation for a solution is a vector of integers. 
Consequently, any metaheuristic could be used to explore the search space—pro-
vided that it also generates local optima for the LONs. Here we consider Iterated 
Local Search and a genetic algorithm hybridised with local search.

4.1 � Iterated local search

Iterated Local Search, or ILS (Algorithm  1), starts from a locally-optimal solu-
tion and then alternates between a random mutation and a best-improvement hill-
climber. The termination criterion is a fixed number of iterations. At each step, only 
non-worsening local minima are accepted. The fitness, or objective value, of a solu-
tion is the number of test cases that it fails. Both the hill-climber and the mutation 
consider the first degree or 1-move neighbourhood, i.e., neighbouring solutions only 
differ by a single element. To build the networks, the ILS is run 1000 times and the 
stopping criterion for each run is 10000 iterations.

1  http://sir.unl.edu/conte​nt/sir.php.

http://sir.unl.edu/content/sir.php
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4.2 � Genetic algorithm with local search

The genetic algorithm with local search, or Hybrid GA (Algorithm 2), is simple. It 
applies uniform crossover to 2 parents in order to produce 2 offspring. This is imme-
diately followed by a best improvement hillclimb on the 1-move neighbourhood to 
obtain a local optimum. The Hybrid GA does not employ mutation. Binary tourna-
ment selection is used. The crossover is applied with a probability of 0.5. Genera-
tional replacement is employed. The algorithm uses a population of 400 solutions 
for 50 generations. The networks are built by running the Hybrid GA 1000 times.

Since crossover is applied only half the time, there should potentially be about 
200 new solutions created per generation, or 10000 solutions across 50 generations. 
This is meant to roughly match the computational effort for the same number of 
iterations in the ILS.

5 � Visualising local optima networks

Since they are network objects, it is natural to wish to visualise LONs, as one would 
for social networks or protein interaction networks. In particular, while it is easy 
to compute network metrics that describe certain properties, visual presentation, 
exploration and analysis  [12] can allow for the communication of a richer set of 
information and reveal patterns or incongruities. In the case of LONs, this may be 
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how solutions of similar fitness are grouped together or what are the connectivity 
patterns of suboptimal solutions to global optima or to other local optima, thus fill-
ing some of the analytic gaps  [1] of a purely metric-driven approach. These may 
indicate how well—or not—the search space is being explored by some algorithm or 
how two algorithms explore the space differently.

Local optima networks can be visualised as graphs in two or three dimensions. 
Although they are a compressed representation of fitness landscapes, they are still 
usually too large for allowing a clear representation of non-trivial landscapes due 
to computational limitations and an overload of data, for instance when the graph 
becomes a complex hairball.

Nodes and edges in a network can be formatted in different ways in order to high-
light different properties. Usually this is achieved by changing their colour, their 
width (edges), or size (nodes). Moreover, different techniques can be applied in 
order to highlight topological properties of a large network. This can be done, for 
instance, by limiting the amount of information, or objects, displayed. Another way 
is to choose appropriate layout techniques. These issues are discussed further in this 
section.

5.1 � Handling large networks

Since our objective is to visualise the global structure of fitness landscapes, we want 
to be able to display a large number of local optima and the connections between 
them. Large, here, means at least of the order of a thousand but usually of the order 
of tens of thousands, which can still be represented relatively clearly both on screen 
and on paper. The sampling algorithms do not exhibit such limitations and it is com-
putationally feasible to generate many more local optima—in the order of millions 
and above—from a complex landscape. Different techniques can be used for such 
large datasets.

Given a large dataset of local optima, selecting a representative subset can effec-
tively reduce the number of points. For example, a threshold on the nodes’ fitness 
can be used in order to only observe the part of the network that is closer to the 
global optimum, which is arguably one of the most interesting portions. As we will 
see, the landscapes considered here exhibit neutrality and usually contain a large 
number of global optima. Using a threshold on fitness in this context is therefore not 
ideal since the resulting visualisation will display few large flat plateaus, and fail to 
display the general connectivity patterns. Having a threshold on fitness, however, 
might still be useful when investigating the connectivity within plateaus of very 
good fitness, or for non-neutral landscapes in other contexts.

Another way of selecting a representative subset of local optima is according to 
the exploration parameters of the algorithm generating the local optima dataset. This 
is the approach we follow here. We restrict the nodes and edges displayed to those 
produced by a portion of the runs and iterations or generations per run of the data 
collecting algorithm. This is especially adequate in the context of this article, as for 
the selected instances, there are always a number of runs that converge early to a 
global optimum.
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We also want to avoid occlusion of adjacent nodes and overlapping edges. This 
can be achieved with appropriate layout algorithms (Sect. 5.2) or by only rendering 
a subset of the elements. Since, by construction, there are no or few isolated nodes 
in our networks we can dispense from displaying the nodes and choose to display 
only the edges thus focusing on the connectivity patterns. This works especially well 
in 3D. Alternatively, edges can be hidden and only nodes displayed to avoid edge 
hairball scenarios (in 2D).

5.2 � Layout algorithms

Layout algorithms generate coordinates for each node of the network. In this paper, 
we consider 2D layouts, which can be seen as providing a bird’s eye view of the 
landscape. These 2D layouts can be augmented by fitness as a third dimension. The 
associated 3D representation can then be interpreted in an intuitive manner as it 
evokes to some extent the mental picture of the landscape metaphor.

Our previous work has exclusively focused on force-directed layouts to visualise 
LONs. A contribution of this paper is to use dimensionality reduction as a layout 
technique to plot the nodes, such that their distribution conserves the similarity of 
optima in genotypic space. Both approaches are briefly described hereafter.

5.3 � Force‑directed layouts

Force-directed layout algorithms [14], also known as spring embedders, rely on the 
structure of the graph to compute its layout and do not consider domain-specific 
knowledge. Such layouts tend to be aesthetically pleasing: exhibiting symmetry and 
minimising edge crossing for planar graphs.

Vertex attraction and edge repulsion forces are assigned to the set of vertices 
and edges. These can be based on spring-like attraction forces between nodes, for 
instance based on Hooke’s Law, while simultaneously modelling repulsive forces to 
separate pairs of nodes, like the force between electrically charged particles based 
on Coulomb’s law.

In this paper we consider the Dr.L algorithm  [23]. This is a multilevel force-
directed algorithm based on simulated annealing. At each level, the layout is clus-
tered to produce a coarsened graph with fewer nodes. The smallest graph generated 
is used as a basis for drawing the original graph by refining the series of coarsened 
graphs that were produced. In this manner, Dr.L is able to efficiently handle large-
scale graphs.

5.4 � Dimensionality reduction

Force-directed layouts are based solely on the connectivity of the graph and do not 
consider any property of nodes. This naturally influences the attributes of the visu-
alised landscape, with connectivity between vertices influencing how close the ver-
tices are together.
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In order to visualise some aspect of similarity between solutions, additional prob-
lem-specific information is required. Furthermore, the solutions are originally in a 
high-dimensional space and need to be represented in two or three dimensions by 
using dimensionality reduction techniques. The aim of dimensionality reduction is 
to preserve as much of the significant structure of the high-dimensional data as pos-
sible in the low-dimensional map. A number of different methods have been pro-
posed and they differ in terms of the types of structures they preserve. In this paper 
we mainly consider the t-SNE [36] technique because it is one of the few non-linear 
techniques which are scalable enough to efficiently compute layouts for tens of thou-
sands of points. t-SNE stands for t-distributed stochastic neighbour embedding and 
has become fairly popular, especially for machine learning datasets. It generally has 
the nice property of reflecting both the local and global structure of the data.

We also briefly consider Principal Components Analysis (PCA) since it is widely 
used for dimensionality reduction and can also scale well. PCA is a linear technique 
that aims at keeping low-dimensional representations of dissimilar points far away. 
Its downside is that it cannot be used on categorical data—types of comparison and 
Boolean operators in our context. The counterpart to PCA for such data is Multiple 
Correspondence Analysis (MCA). It can be viewed as applying PCA to the complete 
disjunctive table, i.e., the binary table where columns are the variable-category pairs 
of the original data.

Figure 3 compares an MCA layout and a t-SNE layout for the same original data. 
While MCA is able to show some structure in the data—especially showing solu-
tions at the same fitness level being in the vicinity to each other—t-SNE is able 
to extract and display additional structure—for instance revealing that very similar 
solutions form worm-like artefacts, that are in fact subsections of the search trajec-
tories, or allocating space to very similar solutions to highlight local structures (at 
fitness level 0 for example). t-SNE is described in some further detail next.

Many non-linear dimensionality reduction techniques have been proposed and 
several of them are reviewed by Lee and Verleysen  [20]. These non-linear tech-
niques aim to preserve the local structure of the data but have not been very success-
ful in preserving both the local and global structure of the data in a single map.

t-SNE minimises the divergence between the distribution that measures pairwise 
similarities of high-dimensional points and the distribution that measures pairwise 
similarities of the corresponding low-dimensional points. The latter distribution is 
computed as a normalised Student-t kernel with a single degree of freedom which 
explains the name of the algorithm. Since the normalised Student-t kernel has heavy 
tails, this allows for dissimilar points to be modelled by low-dimensional counter-
parts that are also far apart. This creates more space to accurately model small pair-
wise distances, or local structure, in the low dimensional space. The Kullback-Lei-
bler divergence between the two distributions is minimised. The objective function 
is non-convex and is minimised by gradient descent. Therefore, images generated 
from the same set of points but not using the same random seed may be different. In 
practice, in our context of tens of thousands of points, the major visible differences 
are mirroring and rotation of the points. Indeed, as discussed and shown in Sect. 6.3, 
even different sets of points produce very similar images, as long as they have been 
sampled in the same way.
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The computational complexity of the Barnes-Hut version of t-SNE [35] is only 
(n log n) , whereas most other methods are usually at least quadratic in their com-
plexity [37]. It can thus handle a large number of data points.

6 � Visualisations

This section starts by looking at some technical implementation choices and then 
discusses the results and visualisations.

6.1 � Implementation choices

The implementation is not a stand-alone program but a set of scripts, mainly written 
in the R programming language but also in Python, in order to be easily integrated 
within current workflows for local optima network analysis. The implementation 
choices allow for programmatically generating and manipulating large networks and 
their static visualisations at the expense of more interactive approaches, for instance 
based on GUI network visualisation solutions such as Cytoscape [31] or Gephi [2].

The networks are built with the igraph library [3] in R. All the layouts are gen-
erated in two dimensions using either the Dr.L force-directed layout algorithm, as 
implemented in igraph, or the t-SNE algorithm, as implemented in the scikit-learn 
package in Python (and with the default parameters). This choice was made because 
scikit-learn provides the ability to easily change the dissimilarity metric used in the 
algorithm: the Hamming distance in our case instead of the Euclidean distance. The 
3D networks are created by adding fitness as a third dimension, or height, to the 2D 
layouts. Rendering the images is carried out in R using the ggplot2 package to cre-
ate the scatterplots and the rgl package to create OpenGL 3D output.

Fig. 3   Comparison of MCA and t-SNE layouts for local optima sampled through ILS. Solutions are col-
oured according to their fitness. The MCA layout reveals some structure but the t-SNE layout highlights 
more patterns in the data. a MCA layout, b t-SNE layout (Color figure online)
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6.2 � Discussion

The following encompasses a number of different aspects of our results. We first 
look at the characteristics of the visualisations (Sect. 6.2.1) and then discuss how 
they relate to the network objects when considering the ILS samples (Sect. 6.2.2). 
This is followed by examining the influence of different subsamples on the visu-
alisations (Sect.  6.3) and a comparison between the ILS and Hybrid GA samples 
(Sect. 6.4).

Figures 4 (triangle program with comparison operators only), 5 (triangle program 
with comparison and Boolean operators), 6 (tcas program with comparison opera-
tors only), 7 (tcas program with comparison and Boolean operators) show visualisa-
tions of the LONs. The figures show a subsample of the first 100 runs of the original 
sample and the first 1000 iterations of each of these. The scatter plots are the layouts 
generated by the t-SNE algorithm. Nodes in the 3D images are not displayed to min-
imise occlusion. However, the edges by themselves provide insight into the nature 
of the landscapes. Edges between global optima are painted red and edges between 
local optima of equal fitness are painted grey. Edges between local optima with dif-
ferent fitness are painted black.   

6.2.1 � Characteristics of the visualisations

The force-directed layouts (subfigures (a) and (b) in Figs. 4, 5, 6, 7) display fairly 
symmetric layouts which are characteristic of the force-directed algorithms. Since 
no information about the solutions is taken into account when computing the layout, 
the different plateaus usually appear more-or-less on top of each other. Furthermore, 
edges linking different plateaus are generally vertical. This may influence the viewer 
into thinking, wrongly, that solutions at each end of those edges are always geno-
typically close.

On the other hand, the t-SNE algorithm uses the similarity between the solutions 
to infer meaningful coordinates (subfigure (c) in Figs. 4, 5, 6, 7). In each of the scat-
ter plots, clear local and global structures emerge. Locally, there are a number of 
worm-like artefacts which are composed of series of consecutive and very similar 
points generated by the sampling process. This happens because the sampling pro-
cess generates monotonic sequences of solutions and accepts non-worsening moves 
(solutions of same fitness). In addition, the first degree—or 1-move—neighbour-
hood is considered for both mutation and hillclimbing, producing generally small 
local steps in which two consecutive solutions are very similar to each other. Since 
the t-SNE algorithm relies on the similarity between points to determine their posi-
tion relative to each other—and the measured Hamming distance similarity corre-
sponds to as many 1-moves—this translates into these worm-like structures.

More globally, solutions with the same fitness seem to cluster together, indicating 
plateaus of solutions that occupy different areas of the search space.

When fitness is added as a third dimension to the t-SNE layouts (subfigures (d) 
and (e) in Figs. 4, 5, 6, 7), we can observe a more accurate picture of the sampled 
search space than when the force-directed layout was used. In particular, it is vis-
ible that moving from one plateau to another often involves moving to an altogether 
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Fig. 4   Triangle program, comparison operators only (success rate: 87.1%)—subsampled LON of 100 
runs of 1000 iterations. In the networks, there are multiple paths that lead to global optima (red). The 
t-SNE scatterplot shows that solutions of similar fitness are grouped together and global optima occupy 
only a small section of the sampled search space. a 3D view of force-directed layout, b profile view of 
force-directed layout, c t-SNE layout, d 3D view of t-SNE layout, e profile view of t-SNE layout (Color 
figure online)
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Fig. 5   Triangle program, comparison and Boolean operators (success rate: 31.2%)—subsampled LON of 
100 runs of 1000 iterations. In the networks, there are multiple paths between the fitness levels that are 
not the best but few that lead to global optima (red). The t-SNE scatterplot shows that solutions of simi-
lar fitness are grouped together and global optima occupy only a comparatively small section of the sam-
pled search space. a 3D view of force-directed layout, b profile view of force-directed layout, c t-SNE 
layout, d 3D view of t-SNE layout, e profile view of t-SNE layout (Color figure online)
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Fig. 6   Tcas program, comparison operators only (success rate: 94.4%)—subsampled LON of 100 runs 
of 1000 iterations. In the networks, there are multiple paths that lead to global optima (red) and these 
paths traverse the different fitness levels fairly directly, save for two fitness levels (at the top and the mid-
dle) were multiple trajectories wander across meta-plateaus. The t-SNE scatterplot shows global optima 
occupy a comparatively large portion of the sampled search space. These global optima are well con-
nected together in the networks. a 3D view of force-directed layout, b profile view of force-directed lay-
out, c t-SNE layout, d 3D view of t-SNE layout, e profile view of t-SNE layout (Color figure online)
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Fig. 7   Tcas program, comparison and Boolean operators (success rate: 98.4%)—subsampled LON of 
100 runs of 1000 iterations. In the networks, there are multiple paths that lead to global optima (red). 
These paths are fairly direct but exhibit some “staircase” patterns where the trajectories travel along the 
same fitness for a short while. The t-SNE scatterplot shows that solutions of similar fitness are grouped 
together and global optima occupy a subset of the sampled search space. a 3D view of force-directed lay-
out, b profile view of force-directed layout, c t-SNE layout, d 3D view of t-SNE layout, f profile view of 
t-SNE layout (Color figure online)
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different part of the landscape. This naturally creates a large number of crossing 
edges which may be considered less aesthetic but which convey more information. 
There would, however, be a point, as the number of displayed edges increases, where 
the visualisation would become an uninformative hairball. One way around this, but 
which is beyond the scope of this paper, may be edge bundling [11], where related 
edges are routed along similar paths, thus minimising edge clutter.

6.2.2 � Relating the visualisations to the network objects

Table 2 reports the main characteristics of the LON graphs extracted from the bench-
mark problems described in Sect. 3.1. The sampling procedure yielded, in all cases, 
graph sizes in the order of one million edges, which are non-deteriorating transitions 
between local minima. The actual number of distinct local minima visited during the 
search, that is, the number of nodes in the graph, is also in the order of one million 
for triangle.c, and one order of magnitude less in the case of tcas.c. In par-
ticular, allowing mutations to both comparisons operators and Boolean operators, 
increases the size of the search space and the number of local minima.

In all benchmarks, LONs are rather sparse but present patterns of local connec-
tivity. In fact, the clustering coefficient, that is, the average proportion of transitive 
closures among the neighbours of a vertex, is always around four orders of magni-
tude higher than the overall network density. That is, connections between nodes 
that already share a neighbour, are orders of magnitude more frequent than connec-
tions in general, which could be explained by the fact that the LON graph displays 
the traces of iterated local search trajectories.

However, the great majority of these local connections happen on the plateaus 
that are clearly visible in Figs. 4, 5, 6, 7. Indeed, considering the sampled non-dete-
riorating moves, more than 99% of the times a transition out of a local minimum 
leads to another local minimum with the same fitness value. That applies to both 
problems and both mutation operators subsets.

These plateaus at the LON level are also known as meta-plateaus. Let us note 
that, in general, meta-plateaus do not necessarily indicate plateaus at the solution 
level. This is because the standard fitness landscape model considers a single neigh-
bourhood relation N while the LON model considers at least two neighbourhoods: 
one for the definition of local optima (N) and another for the edge transitions. It 
follows that two connected solutions of same fitness in a LON may not be part of 
the same plateau in the underlying landscape defined by N. However, in the present 
study, the same neighbourhood is used for both the hillclimber and mutation, there-
fore blurring the difference between a plateau at the landscape level and a meta-
plateau at the LON level.

The triangle program LONs are made up of 6 (fitness 0–5) large plateaus rela-
tively well-connected between each other—and there is a tiny fitness 6, easily escap-
able, plateau when both comparison and Boolean operators are considered (Fig. 5). 
When mutations on Boolean operators are introduced, more ILS runs get stuck at fit-
ness 2 and are not able to progress to the global optima level. The ILS success rate, 
i.e., the proportion of runs that reach a global optimum, is measurably lower (87 vs. 
31%).
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For the tcas program, the maximum observed fitness in the networks is 264. For 
both programs, we thus have plateaus that are well below the maximum fitness of 
14 and 1578. Since random, not locally-optimal solutions, are often close to those 
maximum values, this indicates that it is fairly easy to improve the solution fitness 
with a simple hill-climber, at least initially.

The tcas program LONs display more difference between them. Perhaps surpris-
ingly, the variant that only considers comparison operators shows fairly well-defined 
plateaus—the three main ones have fitness 0, 144 and 264. This may be an artefact 
of some interaction between mutations. The study of these interactions is beyond 
the scope of this paper but seems to be an interesting area for future research. The 
variant with both comparison and Boolean operators shows more “steps” along the 
different runs and, therefore, less well-defined plateau structures. This potentially 
means that finding improving solutions, and ultimately a global optimum, is eas-
ier. Whilst the ILS success rate for both variants is quite high, there is a marked 
improvement for the second variant (from 94 to 98%).

Let us observe that there is a high number of global optima, i.e., solutions that are 
test-equivalent to the original programs. This may mean that the programs are quite 
robust—we have not tested this hypothesis—or that the test suite does not provide 
enough coverage.

In terms of global connectivity, we can observe that a path between any pair of 
nodes is not always present, even if we disregard the direction of the edges. That is, 
the networks break down into a number of weakly-disconnected components, espe-
cially when the larger search space of comparison and Boolean operators is con-
sidered. Nonetheless, more than 92% of the local minima we observed belong to a 
single, largest connected component (Table 2). Moreover, a similar high fraction of 
all local minima lie on paths that could eventually descend to a global optimum.

By following the steepest descent directions on the LON, we can also detect the 
presence of multiple attractors with no non-deteriorating transitions around them, 

Table 2   Network characteristics and ILS performance

The variant that considers only comparison operators is denoted by c, while the variant that considers 
both comparison and Boolean operators is denoted by c + b

Program triangle.c tcas.c

Variant c c + b c c + b

No. of nodes 2,432,263 4,063,871 85,621 504,866
No. of edges 2,758,358 4,670,188 641,034 1,436,281
No. of global optima 9216 53,897 22,824 114,412
Network density 4.7 × 10−7 2.8 × 10−7 8.7 × 10−5 5.6 × 10−6

Clustering coefficient 2.4 × 10−3 2.4 × 10−3 4.4 × 10−2 1.6 × 10−2

Neutral degree 99.8% 99.9% 99.6% 99.6%
No. of connected components 3 3 2 12
Relative size of largest conn. comp. 92.6% 99.8% 97.3% 94.9%
Nodes with path to global optimum 92.5% 99.4% 94.8% 96.4%
ILS success rate 87.1% 31.2% 94.4% 98.4%
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i.e., dead-ends for the search. Their number is indicative of the multi-funnel global 
structure of the landscapes [26, 28], and may directly relate to the empirical prob-
lem hardness from the point of view of an Iterated Local Search [27]. Among the 
four benchmark instances, the one with the lowest success rate also has multiple 
sub-optimal attractors. Indeed, almost all its local minima have access or belong to 
the funnel containing the global optima, but we hypothesise that, given the ILS stop-
ping criterion, the actual success rate might depend on how easy it is for the search 
to find exits across plateaus and gain access to better (lower) fitness levels within 
the budget of function evaluations. As it can be visually appreciated on Fig. 5, the 
“hardest” instance is also, notably, the one with fewer such connections across the 
lowest fitness levels.

More generally, the notion of difficulty we consider is based on how easy it is 
for the algorithm to reach a global optimum. This is influenced—for both the math-
ematical object that is the LON and its visualisation—by the number of paths that 
lead to global optimum. Another factor associated to difficulty is whether an algo-
rithm will remain stuck in a local optimum and whether there are regions of the 
landscape that tend to concentrate those deceptive solutions. A quick visual assess-
ment for difficulty can therefore be to observe the connectivity patterns, or absence 
thereof, leading to the global optima or to local optima that cannot be escaped. The 
link between different network metrics and search difficulty has been quantified in 
other contexts, for instance in [27, 33]. The visualisations presented here provide an 
immediate translation of the network objects, revealing different connectivity pat-
terns. In the future, it would be interesting to assess how researchers and practition-
ers in the field of local search search and metaheuristics interpret these visualisa-
tions and whether that relates to their intuitions on search difficulty and the objective 
metrics that can be computed on a landscape.

6.3 � Influence of subsamples on visualisations

In general, search landscapes, or even local optima networks, for non-trivial prob-
lem instances cannot be enumerated. Sampling is therefore required. Furthermore, 
the amount of information that can be visually represented in a coherent manner 
is also limited. In addition, the larger the number of points, the more it becomes 
computationally expensive to generate a layout. In our experience, we can usually 
sample networks at a much finer granularity than what can be represented visually 
on print medium or via non-interactive representations on screen that are discussed 
here. This means that one or more subsamples from the initial sample are examined. 
We look into some of the issues of subsampling here.

The networks that were considered in the previous subsection are based on spe-
cific subsamples. In the current subsection, we assess how subsampling at the same 
level and at a higher level influences the visualisations.

Figures 8, 9 and 10 present subsamples of the triangle program where only muta-
tions of comparison operators are considered. Each subsample consists of a different 
set of 100 runs of 1000 iterations each. The figures show, in order, the t-SNE 2D 
layouts, force-directed 3D layouts and t-SNE 3D layouts of the subsamples. These 
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are visually very similar. The t-SNE 2D layouts (four of them are shown in Fig. 8) 
exhibit similar local and global structures across the subsamples (modulo rotation 
and reflection symmetry). The force-directed 3D layouts (two of them are shown 
in Fig.  9) are almost indistinguishable at first glance, however the t-SNE 3D lay-
outs (two of them are shown in Fig. 10) appear more different. This is due to differ-
ent viewing directions—they are based on the t-SNE 2D layouts which are similar. 
These observations point to the relative robustness of the visualisations for this sub-
sampling level. Similar observations can be made for the other networks but are not 
visualised here due to space constraints.

Fig. 8   t-SNE layouts for four subsamples of the large sampled LON for the triangle program with com-
parison operators only. The four sets of points exhibit similar structural patterns and differ from each 
other mostly in terms of mirroring or rotation. a Triangle—subsample 1—runs 1–100, b triangle—sub-
sample 2—runs 101–200, c triangle—subsample 3—runs 201–300, d triangle—subsample 4—runs 301–
400 (Color figure online)
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Figure 11 considers larger subsamples of 1000 runs of 1000 iterations for each 
of the four benchmarks and presents them as 2D t-SNE scatterplots. The number 
of solutions is indicated in the figure’s captions. Our current R implementation is 
unable to scale to generate 3D plots of such large networks. The scatterplot visuali-
sations for these larger subsamples are naturally denser than for smaller subsamples 
because of the larger number of points displayed. There are some notable differences 
between the larger subsamples and their smaller counterparts. This is especially true 
for the triangle program where only comparison operators are mutated  (Fig. 11a). 
In this case, the two visualisations are completely different and this highlights 

Fig. 9   3D view of the force-directed layouts for two subsamples of the large sampled LON for the trian-
gle program with comparison operators only. The two networks are very similar. a Triangle—subsample 
1—runs 1–100, b triangle—subsample 2—runs 101–200 (Color figure online)

Fig. 10   3D view of t-SNE layouts for two subsamples of the large sampled LON for the triangle program 
with comparison operators only. The two networks appear to be quite different despite using very similar 
layouts (Fig. 8a, b). This is mainly because of different viewing angles. a Triangle—subsample 1—runs 
1–100, b triangle—subsample 2—runs 101–200 (Color figure online)
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that any interpretation of the landscape structure visualisations needs to be care-
fully considered. One of the reasons for the marked contrast is the difference in the 
distribution of fitness across both subsamples: notably, the proportion of globally 
optimal solutions (red) in the smaller subsample is much higher than in the larger 
subsample (4275/64876 vs. 9211/599340 or 6.6 vs. 1.5  %). This difference stems 
from the fact that the search algorithm is meant to find good solutions, and global 
optima in particular, and that there is a fixed number of relatively easily discover-
able global optima. It is therefore likely for multiple runs to end up discovering the 
same very good solutions. However, the solutions discovered during the initial part 

Fig. 11   t-SNE layouts for larger subsamples (1000 runs of 1000 iterations) for the four program-operator 
combinations. The plots exhibit a number of differences with the ones generated using a smaller subset in 
Figs. 4, 5, 6, 7, in part because of the higher point density, but also because the ratio of solutions across 
fitness levels is different. a Triangle—comparison operators—599,340 solutions, b triangle—comparison 
and Boolean ops—562,272 solutions, c tcas—comparison operators—84,967 solutions, d tcas—compar-
ison and Boolean ops—322,638 solutions (Color figure online)
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of the search process will almost surely be different for each run as each starts from 
a totally random solution. When the subsampling size increases, it is much more 
likely that more poorer quality solutions will be discovered than new global optima, 
thus explaining the different ratios.

The difference is less notable for the other benchmarks. For the triangle pro-
gram with mutations of both comparison and Boolean operators, the more local 
structures are lost because of the higher point density but there is still a similar 
segregation of points based on fitness. It is interesting to observe that for the two 
tcas variants, the structures are visually largely similar, especially for lower fit-
ness levels. This is partly due to the lower number of points generated in the tcas 
samples which reduces the blurring effect that large numbers of points produce 
when plotted in a restricted area.

6.4 � Comparing search techniques

The sampling algorithm naturally biases the networks that are generated. It is there-
fore interesting and useful to compare and contrast samples generated by different 
algorithms, and their visualisations. We consider here the networks generated by the 
Hybrid GA detailed in Sect. 4.2 and Table 3 presents some of their key metrics.

The samples for the Hybrid GA aggregate 1000 runs of 50 generations with 
a fixed population size of 400, a crossover probability of 0.5 and no mutation. 
This crossover probability means that roughly 200 new solutions may be cre-
ated per generation, and thus 10000 per run. The samples for the ILS considered 
previously aggregated 1000 runs of 10000 iterations each. Naturally, these two 
sampling techniques produce samples with different characteristics. Notably, the 
number of nodes and edges generated is higher for the Hybrid GA, especially for 
tcas with mutations across both comparison and Boolean operators. This differ-
ence also translates in terms of number of global optima found—or programs that 

Table 3   Network characteristics and Hybrid GA performance

The variant that considers only comparison operators is denoted by c, while the variant that considers 
both comparison and Boolean operators is denoted by c + b

Program triangle.c tcas.c

Variant c c + b c c + b

No. of nodes 4,926,235 6,403,728 351,506 6,247,216
No. of edges 14,880,835 19,702,854 7,461,101 12,286,374
No. of global optima 9216 1,142,194 22,824 5,826,627
Network density 6.1 × 10−7 4.8 × 10−7 6.0 × 10−5 3.1 × 10−7

Clustering coefficient 1.7 × 10−1 2.9 × 10−3 9.1 × 10−2 1.4 × 10−3

Neutral degree 84.9% 88.6% 95.0% 97.1%
No. of connected components 6527 6532 4179 5387
Relative size of largest conn. comp. 99.4% 99.6% 94.7% 99.6%
Nodes with path to global optimum 36.6% 26.1% 37.2% 35.2%
Hybrid GA success rate 74.2% 76.5% 100% 100%
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pass all test cases—except for the triangle program with mutations only on com-
parison operators where the numbers are the same. In fact, in this scenario both 
algorithms generated the same set of global optima. Because of the computational 
complexity we are not able to assess if this is the complete set of globally opti-
mal solutions but it is a possibility. Network density and clustering coefficients 
are mostly similar across the two sampling techniques. The Hybrid GA samples 
exhibit lower neutrality, as measured by the neutral degree, which is expected 
because the ILS has the tendency to explore several solutions in a plateau before 
being able to escape, which is generally not the case for crossover. A marked dif-
ference is in the number of connected components which is drastically higher for 

Fig. 12   Comparison of subsampled solutions for the hybrid algorithm and the ILS triangle landscapes. 
Clustering of solutions with similar fitness is observed in both ILS and hybrid GA samples. However, the 
worm-like structures only appear for the ILS because they are artefacts of the search procedure. a ILS—
comparison operators—64,876 solutions (100 runs), b Hybrid GA—comparison operators—70,406 solu-
tions (12 runs), c ILS—comparison and Boolean ops—56,837 solutions (100 runs), d Hybrid GA—com-
parison and Boolean—58,198 solutions (6 runs) (Color figure online)
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the Hybrid GA because it is not a trajectory based method and it employs selec-
tion in the parent population. Nevertheless, the relative size of the largest con-
nected component is always well above 90% of all the local optima encountered. 
Another major difference with the ILS samples is the percentage of nodes with a 
path to the global optimum which is much lower for the Hybrid GA. The Hybrid 
GA samples also exhibit a significant difference in terms of success rate, although 
both variants of the triangle program remain harder to solve across both algo-
rithms. This suggests that the hybrid approach may be better than ILS for genetic 
improvement.

Fig. 13   Comparison of subsampled solutions for the hybrid algorithm and the ILS tcas landscapes. Solu-
tions with similar fitness are mostly clustered together. When both comparison and Boolean operators are 
considered, the hybrid GA is able to traverse the search space more efficiently and finds a proportionally 
large number of global optima. a ILS—comparison operators— 25,533 solutions (100 runs), b Hybrid 
GA—comparison operators—27,537 solutions (100 runs), c ILS—comparison and Boolean ops—34,201 
solutions (100 runs), d Hybrid GA—comparison and Boolean—30,400 solutions (12 runs) (Color figure 
online)
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Figures 12 and 13 highlight the differences in terms of t-SNE scatterplot visu-
alisations for the triangle and tcas programs respectively. The ILS visualisations 
reuse the same 100 run subsample as seen previously while the number of runs 
per subsample of the Hybrid GA, indicated in the caption of each figure, is cho-
sen to roughly match the number of solutions of the ILS subsample. This is in 
order to stay within a reasonable and comparable number of points.

Since t-SNE takes the dissimilarity between points into account when assign-
ing their coordinates, it is reasonable to compare each sample type side-by-side. 
If both sampling methods returned roughly the same set of solutions or sets of 
solutions with very similar characteristics, one would expect the dissimilarities to 
be roughly equivalent and thus translate to similar visualisations. Here we can see 
that the two methods yield relatively similar visualisations for the benchmarks 
that only consider comparison operators. Globally optimal solutions, in particu-
lar, exhibit the same clustering patterns and solutions of equivalent fitness are 
grouped together indicating that they occupy specific areas of the search space. 
One major difference are the worm-like structures in the ILS sample—artefacts 
of this single point trajectory sampling methodology—which do not appear in the 
Hybrid GA samples.

In comparison, the variants that explore the mutations of both comparison and 
Boolean operators are markedly different, although there is still a differentiation 
in the areas occupied by various fitness levels. One key difference is the number 
of globally optimal solutions which is much greater for the Hybrid GA and which 
therefore influences the layouts produced. One possible explanation for this differ-
ence is that there may be disjoint plateaus of globally optimal solutions—or pla-
teaus that are extremely large—of which the ILS is able to explore a smaller subset 

Fig. 14   Combination of subsampled LONs for the hybrid algorithm and the ILS for the triangle program 
landscape considering comparison operators only. The points in black in the scatter plot and the edges in 
blue in 3D view belong to the sample of the hybrid algorithm. a t-SNE layout, b 3D view of t-SNE lay-
out (Color figure online)
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that the Hybrid GA. In addition, we observed that the Hybrid GA converged very 
quickly to the globally optima solutions, usually within 10 generations or fewer, 
strongly suggesting that the landscapes should be quite different.

We do not show any 3D visualisations for the Hybrid GA because the number of 
crossing edges tends to create massive hairballs that do not provide significant use-
ful information. One potential way to deal with this issue in the future would be to 
use edge bundling [11] which routes related edges along similar paths.

In addition to side-by-side comparisons, the t-SNE layouts can be used to over-
lay two sets of points to highlight similarities and differences. In this scenario, both 
sets of points are merged and a single layout is computed. Figure 14 shows such an 
overlay, with 100 runs of the ILS in the background and 2 runs of the Hybrid GA on 
top. We only show a smaller subset of the Hybrid GA points because otherwise they 
would cover the ILS points. This serves to highlight the fact that similar areas of the 
search space are explored by both algorithm. In an interactive context, the overlay 
could be manipulated dynamically to reveal different levels of information. The 3D 
view is less informative because of the large number of crossing edges.

7 � Conclusion

Understanding the structure of search landscapes is essential in order to develop 
efficient algorithms to solve hard combinatorial optimisation problems, and genetic 
improvement problems in particular. While different approaches of visualising 
search trajectories and landscapes have been proposed, there have been few attempts 
to consider the global structure of the landscapes. Local Optima Networks allow us 
to fill this gap by coarsening the representation of the landscape to local optima. In 
this paper we have proposed using the t-SNE algorithm to generate layouts for those 
networks, thereby teasing out different structures at different levels. These plots 
bring the landscape metaphor to life in, what we believe is, an intuitive and almost 
tangible way.

We found that the visualisations, together with network metrics, could describe 
different features and properties of the landscape, for instance, neutrality and the 
existence of multiple pathways throughout the networks to reach globally optimal 
solutions. One striking observation was the large number of solutions that pass all 
the test cases of the benchmark problems. This raises many additional questions in 
terms of the suitability and coverage of the test suite and on the semantics of the 
test-equivalent mutants. This will need to be addressed in future work.

In this paper, we have also attempted to assess the quality and robustness of the 
visualisations when considering various subsamples. Our results show that care 
needs to be taken when interpreting the visualisations. Subsamples of the same 
landscape, generated with the same parameters, and representing sets of points of 
roughly the same size were very similar but exhibited some mirroring or rotation of 
the patterns appearing within the visualisations. When subsamples of very differ-
ent sizes were considered, quite similar visualisations were produced in some cases 
and quite different ones in other cases. This highlights the importance of consider-
ing samples or subsamples with different characteristics in order to obtain a broader 
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picture of the search landscape. The visualisations also allow for the comparison of 
the different search methods, as we have shown.

Genetic improvement approaches rarely make use of Iterated Local Search or of 
hybrid GAs, yet, we have shown that these techniques are able to find programs that 
pass all test cases. This observation should be an encouragement to further explore 
these algorithms in the context of GI.

Our tools rely on metaheuristics which can be instrumented in order to sample a 
fitness landscape. They can be used in multiple contexts and across a diverse set of 
problems. The visualisations are created with off-the-shelf software in the form of 
R and Python scripts and additional free libraries. However, these currently have 
rendering limits which will need to be overcome in future work. As we mentioned 
earlier, edge bundling could be a valuable addition to the visualisations in order to 
reduce edge clutter. From a technical standpoint, the rendering engine that drives the 
rgl package in R is fairly limited in terms of features and performance. One alterna-
tive, while still keeping the possibility of programmatically manipulating the net-
work objects, could be to use a dedicated 3D rendering package such as Blender 
which provides a Python interface.

In addition, this paper has not considered interactive visualisations which could 
prove very useful to end users. One instance of this could be allowing certain paths 
within the network to be isolated and observed as standalone objects. Another aspect 
could be allowing for the comparison of test-equivalent mutants: contextual infor-
mation about the differences in the source code of the mutants could be displayed, 
as well as highlighting which solutions are within some predetermined edit distance 
from the solution currently being observed.
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