
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2018) 19:317–349
https://doi.org/10.1007/s10710-018-9328-1

1 3

Visualising the global structure of search landscapes:
genetic improvement as a case study

Nadarajen Veerapen1  · Gabriela Ochoa1 

Received: 7 February 2018 / Revised: 6 July 2018 / Published online: 6 August 2018
© The Author(s) 2018

Abstract
The search landscape is a common metaphor to describe the structure of computa-
tional search spaces. Different landscape metrics can be computed and used to pre-
dict search difficulty. Yet, the metaphor falls short in visualisation terms because it is
hard to represent complex landscapes, both in terms of size and dimensionality. This
paper combines local optima networks, as a compact representation of the global
structure of a search space, and dimensionality reduction, using the t-distributed
stochastic neighbour embedding algorithm, in order to both bring the metaphor to
life and convey new insight into the search process. As a case study, two bench-
mark programs, under a genetic improvement bug-fixing scenario, are analysed and
visualised using the proposed method. Local optima networks for both iterated local
search and a hybrid genetic algorithm, across different neighbourhoods, are com-
pared, highlighting the differences in how the landscape is explored.

Keywords  Fitness landscape · Local optima network · Genetic improvement ·
Visualisation

1  Introduction

Fitness landscapes have their roots in theoretical biology, and are nowadays widely
used to describe the dynamics of both evolutionary and local search algorithms
(where they are referred to as search landscapes). Key to this concept are an arrange-
ment of possible solutions (or genotypes) in an abstract space that describes how
solutions can be reached from one another, and a fitness or objective function
assigning a quality value (height) to all solutions, forming a surface. The intuitive
notion of ruggedness is related to the difficulty of optimising on a given landscape.

 *	 Nadarajen Veerapen
	 nve@cs.stir.ac.uk

	 Gabriela Ochoa
	 goc@cs.stir.ac.uk

1	 Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

http://orcid.org/0000-0003-3699-1080
http://orcid.org/0000-0001-7649-5669
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-018-9328-1&domain=pdf

318	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

It depends on both the fitness function and the geometry of the search space, which
is induced by the search operators. Additionally, studies of molecular evolution [24]
have shown that neutrality, that is, the occurrence of adjacent configurations with
the same fitness, can also play a dominating role in evolutionary dynamics.

The goal of fitness landscape analysis is to provide a detailed understanding of the
geometric features of landscapes and how they relate to search dynamics. However,
mountain ranges, valleys, basins, peaks, plains and ridges in multi-dimensional com-
binatorial objects may look quite different from our 3D experience [32]. A wealth of
metrics and techniques have been proposed to characterise fitness landscapes [22],
but most of them study the local structure of search spaces. Local Optima Networks
(LONs) [25, 41], help us to study instead their global structure. This graph-based
model provides fundamental new insight into the structural organisation and the
connectivity pattern of a search space with given move operators. Most importantly,
it allows us to visualise realistic search spaces in ways not previously possible and
brings a whole new set of network metrics for characterising them.

Genetic improvement (GI) uses automated search to find improved versions of
existing software [29]. The goal is to automatically improve the behaviour of a soft-
ware system with respect to some desired criteria using heuristic search. The criteria
for improvement can be either non-functional properties of the system, such as exe-
cution time or power consumption; or functional properties such as repairing defects
(also called Automatic Program Repair [45]). Despite being a recent topic, GI has
received awards and notoriety within both Software Engineering and Evolutionary
Computation [29]. Several challenges can be identified when trying to automatically
improve software [17], among them is to understand the structure of program search
spaces. Within GI, a program is mutated in an attempt to improve some desired
property. For example, in a bug-fixing scenario, the fitness of a program is measured
by the number of failed test cases from a given test suite. Neutrality is relevant as it
is related to the proportion and distribution of test-equivalent mutants. Traditionally,
the space of program mutants has been thought to be disjoint and fragile, with few
good programs. However, recent work [18, 19, 30, 46] suggests that many changes
do not impact the fitness of the mutants. This may indicate that either the programs
are quite robust, or the test suite does not provide enough coverage.

Visualisation has been recognised as an important tool for understanding evolution-
ary algorithms. Insightful reviews of existing techniques can be found in [10, 21]; most
approaches visualise either search trajectories (evolutionary histories), the structure of
individuals, the ancestry of individuals, or the composition of populations. Concerning
the visualisation of fitness landscapes, the recent work by Volke et al. [42, 43] collects
data from steepest descent walks and computes a set of distance measures, which are
thereafter visualised as a set of scatter plots, bar charts, and 2D projection maps. The
mapping is done using a spring force model such that the Euclidean distances between
the points in the plane approximate the distances within the search landscape. Another
direction of research uses the notion of barrier trees or disconnectivity graphs [44]
from theoretical biology for visualising the search landscape. These studies mostly deal
with small examples. Flamm et al. [8] extended barrier trees so that they can be con-
structed for highly degenerate problems (i.e., landscapes with neutrality). They present
empirical results for binary strings of up to length 10. Hallam and Prügel-Bennett [9]

319

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

constructed barrier trees for MAX-SAT problems with up to 40 variables using branch-
and-bound to find only the best local optima in the space.

It is not the intention of this paper to propose a fully fledged standalone solution
for visualising search landscapes and networks. Rather, its purpose is to highlight that
existing visualisation techniques can be added to the researcher’s or the practitioner’s
toolkit when analysing and communicating results of a local optima network analysis.
Furthermore, applying those techniques to a number of genetic improvement scenarios
demonstrates the applicability of the techniques to a broader range of problems beyond
traditional combinatorial optimisation benchmark problems such as the Travelling
Salesman Problem.

In this paper, we propose using the t-distributed stochastic neighbour embedding,
or t-SNE algorithm [36], as the dimensionality reduction technique to generate layouts
of large local optima networks datasets. The t-SNE algorithm, while very popular in
machine learning, has received very little attention in an optimisation context. It has pre-
viously been used to visualise the search dynamics in Particle Swarm Optimisation on
continuous functions [6] where it is briefly compared to Principle Components Analysis.
Other dimensionality reduction techniques such as Sammon mapping [7, 13] and iso-
metric mapping [15] have been proposed for visualising evolutionary algorithm runs.

This article extends our recent work on modelling genetic improvement landscapes
as local optima networks [38] and explicitly focuses on the visualisation aspects. The
main contributions are:

1.	 Combining local optima networks and dimensionality reduction through the
t-SNE algorithm to visualise the global structure of search landscapes.

2.	 An investigation of the biases of the visualisation in terms of (1) how different
samples compare visually to each other and (2) how different sampling intensity
can bias the proposed visualisation by comparing the visualisation of a large set
of solutions with the visualisations of a number of its subsets.

3.	 An analysis illustrating how the visualisations can be used to compare different
landscape samples generated by two different algorithms (an ILS and a GA).

The paper is structured as follows. Section 2 describes fitness landscapes and local
optima networks. Section 3 presents the programs used in our case study and which of
their features are mapped onto the landscape. Section 4 describes the algorithm used
for genetic improvement in this paper and, specifically, the Iterated Local Search and
hybrid genetic algorithm used. Section 5 discusses some considerations when visualis-
ing large graphs and local optima networks in particular. Section 6 presents the visuali-
sation results and Sect. 7 is the conclusion.

2 � Search landscapes

In practice, the two or three-dimensional visual interpretation of the land-
scape metaphor is not directly possible for high-dimensional search spaces and
some dimensionality reduction is required. Indeed, while the search space of a

320	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

four-dimensional binary problem (only 16 solutions) under the bit flip neighbour-
hood can be represented by a tesseract or hypercube (Fig. 1), conveying the addi-
tional fitness dimension of the landscape is non-trivial if one wants to maintain
the intuitiveness of the metaphor. Naturally, colour or some other property may
be used to illustrate fitness. Nevertheless, there are formal mathematical objects
that can be associated to the landscape metaphor to allow for its analysis and
manipulation. The rest of this section describes fitness landscapes and local
optima networks in more detail.

2.1 � Fitness landscapes

Fitness landscapes are a commonly-used metaphor to describe the dynamics of
evolutionary and local search heuristics. The search space can be regarded as a
spatial structure with height representing fitness, forming a surface that can vary
from smooth to rugged, and that can contains ridges and plateaus. Formally [32],
a landscape is a triplet (S, N, f) where

–	 S is a set of potential solutions, i.e. a search space,
–	 N ∶ S ⟶ ℘(S) , the neighbourhood structure, is a function that assigns to

every s ∈ S a set of neighbours N(s) ( ℘(S) is the power set of S), and
–	 f ∶ S ⟶ ℝ is a fitness function that can be pictured as the height of the cor-

responding solutions.

Within the landscape structure, different topological features such as local
optima, basins of attraction and plateaus may appear. These are known to have an
impact on the search process.

Definition 1  (Local optimum) A local optimum is a solution s∗ ∈ S such that
∀s ∈ N(s∗) , f (s∗) ≤ f (s) . Notice that the inequality is not strict, in order to allow the
treatment of the neutral landscape case. The definition provided here is for a local
minimum, without loss of generality.

Fig. 1   Search space of bit
strings of length 4.

321

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

Definition 2  (Basin of attraction) The basin of attraction of a local optimum
s∗
i
∈ S , for some hillclimbing operator h, is the set bi = {s ∈ S|h(s) = s∗

i
}.

Definition 3  (Plateau) A plateau is a set of connected solutions with the same fit-
ness value. Two vertices in a plateau are connected if they are neighbours with the
same fitness.

2.2 � Local optima networks

Local optima are important features of fitness landscapes as they can be seen as
obstacles to the progress of heuristic search. Local optima networks (LONs) [25]
model the global structure of landscapes as graphs where nodes are local optima
and edges represent possible transitions among them with a given search operator.
In order to model GI fitness landscapes with local optima networks, we adapted the
model with escape edges [40]. To construct these networks, we need to define their
nodes and edges. The definitions are related to the search operators used, specifi-
cally, the local search (hill-climbing) heuristic to determine the local optima and
escape operator to transit among them. In our study, the hill-climbing heuristic is a
best-improvement approach based on the 1-move operator, and the escape operator
is also given by a single application of 1-move. This is possible as, given the prob-
lem encoding, a single 1-move provides enough variability to escape from a local
optimum basin of attraction.

Definition 4  (Nodes) Nodes in a LON are local optima. In genetic improvement
landscapes, a local optimum is a minimum when considering the number of failed
test cases. The set of local optima, which corresponds to the set of nodes in the net-
work model, is denoted by L.

Since the whole set of local optima cannot be determined in realistic search spaces,
such as those considered here, a process of sampling is required to estimate L.

Definition 5  (Edges) Edges are directed and based on some operator(s) that allow
for the transition between two local optima. The type of edge will differ based on the
type algorithm that is considered. The set of escape edges is denoted by E.

The type of edge is dependent on the algorithm used to sample the landscape.
While escape edges are natural edges for ILS algorithms, other edge types may be
used such as crossover and mutation edges in the case of an evolutionary algorithm,
as done by [39].

In this paper, we consider escape and crossover edges. There is an escape edge
from local optimum x to local optimum y, if y can be obtained after applying a
1-move random mutation to y followed by a best-improvement hill-climb across the
1-move neighbourhood. There is a pair of crossover edges from local optima x1 and
x2 to local optimum y, if applying a uniform crossover on x1 and x2 , followed by a
best-improvement hill-climb across the 1-move neighbourhood produces y.

322	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

Definition 6  (Local optima network (LON)) This is the LON = (L,E) graph where
nodes are the local optima L, and edges E are the escape edges.

3 � Program search space test bench

To study the landscape of program search spaces, we start from known bug-free
programs and introduce random mutations. Starting from these mutants, we try to
recover the original bug-free programs or any version that passes all the test cases in
the test suite.

We assume that programmers usually create close-to-being-correct programs,
i.e., they make minor mistakes such as typos or small logic errors but not major mis-
takes where the program logic is completely flawed. This is known as the competent
programmer hypothesis [4].

We examine two C programs, described in Sect. 3.1. For the sake of sim-
plicity, in this paper we first consider mutations on comparison operators
( <, <=, ==, ! =, >=, > ), as done by [16], and then add mutations of Boolean
operators with two operands (&&, ||) to compare and contrast landscapes across
different neighbourhood structures.

To bypass the generation of new code requiring the recompilation of each new
mutant, we use a super-mutant program that contains all the possible mutations
under consideration [34]. These mutations can then be turned on and off as desired.
In our implementation, each operator is transformed into a function call with four
arguments: an operator id, its two operands, and a cosmetic final argument string
that describes the original operator. This is mostly useful for a fast evaluation of the
fitness function. An example of the transformation is shown in Fig. 2.

The transformation is performed using the LibTooling library of Clang–LLVM to
parse the programs, build the abstract syntax trees, and rewrite the required nodes.
Some additional manual steps are required to build our test harness, as described in
Sect. 3.1.

In the programs we examine, no two operators are ever part of the same expres-
sion when only the comparison operators are considered. When both comparison
and Boolean operators are considered, then operator precedence is enforced and left
associativity is used for operators of similar precedence when the super-mutant is
generated.

In our study, a potential solution is encoded as a vector of integers of length
l, where l = c + b corresponds to the number of comparison operators (c) and
Boolean operators (b) in the program under consideration (Table 1). There are
6 possible comparison operators and 2 Boolean operators. Therefore, the size of
the search space is |S| = 6c × 2b . The neighbourhood structure, N, is given by the
simplest possible move operator in this landscape, namely, the value of a single
position in a solution is changed: to one of the 5 alternatives if it is a compari-
son operator, or the opposite Boolean operator. Let us call this operator 1-move.
The size of the neighbourhood induced by 1-move on the given representation is
5 × c + b . The fitness function f is given by the number of test cases failed by the
program, which is to be minimised.

323

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

3.1 � Benchmark programs

We use two C programs: the triangle program and the TCAS program. Their charac-
teristics are summarised in Table 1.

triangle.c: The triangle program is a small program that takes the lengths
of the three sides of a triangle and determines if it is scalene, isosceles, equilateral,
or not a triangle. We use a simplified version [16], which has been translated into C
from the original Fortran version by DeMillo et al. [4].

tcas.c: The TCAS, or Traffic Collision Avoidance System, program controls
the altitude of an aircraft depending on a number of input parameters. We use version

(a) (b)

(c)

Fig. 2   Code snippets showing an example of super-mutant transformation where the two equality opera-
tors are the fourth and fifth operators in the code. a Original code snippet, b super-mutant code snippet, c
SM function definition

Table 1   Characteristics of
benchmark programs

Program triangle.c tcas.c

Lines of code 40 135
No. comparison operators 17 14
No. Boolean operators 7 16
No. input parameters 3 12
No. output values 1 1
No. test cases used (original) 14 (14) 1578 (1608)

324	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

2.0 from the SIR repository [5].1 For the sake of simplicity, we do not consider the
test cases that do not have all 12 input parameters. This effectively reduces the num-
ber of test cases from 1608 to 1578. Array indices are not checked in the original pro-
gram. We introduce a check to accept valid indices and generate an arbitrary output
value for invalid indices. This prevents the program from crashing and improves the
efficiency of the sampling process, which is described in the next subsection.

4 � Genetic improvement sampling procedures

A full enumeration of the search space, or even of the local optima, for the two
programs is unmanageable. Therefore a sample of high-quality local optima in the
search space is generated. Since we only consider mutations of comparison and
Boolean operators, a simple representation for a solution is a vector of integers.
Consequently, any metaheuristic could be used to explore the search space—pro-
vided that it also generates local optima for the LONs. Here we consider Iterated
Local Search and a genetic algorithm hybridised with local search.

4.1 � Iterated local search

Iterated Local Search, or ILS (Algorithm 1), starts from a locally-optimal solu-
tion and then alternates between a random mutation and a best-improvement hill-
climber. The termination criterion is a fixed number of iterations. At each step, only
non-worsening local minima are accepted. The fitness, or objective value, of a solu-
tion is the number of test cases that it fails. Both the hill-climber and the mutation
consider the first degree or 1-move neighbourhood, i.e., neighbouring solutions only
differ by a single element. To build the networks, the ILS is run 1000 times and the
stopping criterion for each run is 10000 iterations.

1  http://sir.unl.edu/conte​nt/sir.php.

http://sir.unl.edu/content/sir.php

325

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

4.2 � Genetic algorithm with local search

The genetic algorithm with local search, or Hybrid GA (Algorithm 2), is simple. It
applies uniform crossover to 2 parents in order to produce 2 offspring. This is imme-
diately followed by a best improvement hillclimb on the 1-move neighbourhood to
obtain a local optimum. The Hybrid GA does not employ mutation. Binary tourna-
ment selection is used. The crossover is applied with a probability of 0.5. Genera-
tional replacement is employed. The algorithm uses a population of 400 solutions
for 50 generations. The networks are built by running the Hybrid GA 1000 times.

Since crossover is applied only half the time, there should potentially be about
200 new solutions created per generation, or 10000 solutions across 50 generations.
This is meant to roughly match the computational effort for the same number of
iterations in the ILS.

5 � Visualising local optima networks

Since they are network objects, it is natural to wish to visualise LONs, as one would
for social networks or protein interaction networks. In particular, while it is easy
to compute network metrics that describe certain properties, visual presentation,
exploration and analysis [12] can allow for the communication of a richer set of
information and reveal patterns or incongruities. In the case of LONs, this may be

326	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

how solutions of similar fitness are grouped together or what are the connectivity
patterns of suboptimal solutions to global optima or to other local optima, thus fill-
ing some of the analytic gaps [1] of a purely metric-driven approach. These may
indicate how well—or not—the search space is being explored by some algorithm or
how two algorithms explore the space differently.

Local optima networks can be visualised as graphs in two or three dimensions.
Although they are a compressed representation of fitness landscapes, they are still
usually too large for allowing a clear representation of non-trivial landscapes due
to computational limitations and an overload of data, for instance when the graph
becomes a complex hairball.

Nodes and edges in a network can be formatted in different ways in order to high-
light different properties. Usually this is achieved by changing their colour, their
width (edges), or size (nodes). Moreover, different techniques can be applied in
order to highlight topological properties of a large network. This can be done, for
instance, by limiting the amount of information, or objects, displayed. Another way
is to choose appropriate layout techniques. These issues are discussed further in this
section.

5.1 � Handling large networks

Since our objective is to visualise the global structure of fitness landscapes, we want
to be able to display a large number of local optima and the connections between
them. Large, here, means at least of the order of a thousand but usually of the order
of tens of thousands, which can still be represented relatively clearly both on screen
and on paper. The sampling algorithms do not exhibit such limitations and it is com-
putationally feasible to generate many more local optima—in the order of millions
and above—from a complex landscape. Different techniques can be used for such
large datasets.

Given a large dataset of local optima, selecting a representative subset can effec-
tively reduce the number of points. For example, a threshold on the nodes’ fitness
can be used in order to only observe the part of the network that is closer to the
global optimum, which is arguably one of the most interesting portions. As we will
see, the landscapes considered here exhibit neutrality and usually contain a large
number of global optima. Using a threshold on fitness in this context is therefore not
ideal since the resulting visualisation will display few large flat plateaus, and fail to
display the general connectivity patterns. Having a threshold on fitness, however,
might still be useful when investigating the connectivity within plateaus of very
good fitness, or for non-neutral landscapes in other contexts.

Another way of selecting a representative subset of local optima is according to
the exploration parameters of the algorithm generating the local optima dataset. This
is the approach we follow here. We restrict the nodes and edges displayed to those
produced by a portion of the runs and iterations or generations per run of the data
collecting algorithm. This is especially adequate in the context of this article, as for
the selected instances, there are always a number of runs that converge early to a
global optimum.

327

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

We also want to avoid occlusion of adjacent nodes and overlapping edges. This
can be achieved with appropriate layout algorithms (Sect. 5.2) or by only rendering
a subset of the elements. Since, by construction, there are no or few isolated nodes
in our networks we can dispense from displaying the nodes and choose to display
only the edges thus focusing on the connectivity patterns. This works especially well
in 3D. Alternatively, edges can be hidden and only nodes displayed to avoid edge
hairball scenarios (in 2D).

5.2 � Layout algorithms

Layout algorithms generate coordinates for each node of the network. In this paper,
we consider 2D layouts, which can be seen as providing a bird’s eye view of the
landscape. These 2D layouts can be augmented by fitness as a third dimension. The
associated 3D representation can then be interpreted in an intuitive manner as it
evokes to some extent the mental picture of the landscape metaphor.

Our previous work has exclusively focused on force-directed layouts to visualise
LONs. A contribution of this paper is to use dimensionality reduction as a layout
technique to plot the nodes, such that their distribution conserves the similarity of
optima in genotypic space. Both approaches are briefly described hereafter.

5.3 � Force‑directed layouts

Force-directed layout algorithms [14], also known as spring embedders, rely on the
structure of the graph to compute its layout and do not consider domain-specific
knowledge. Such layouts tend to be aesthetically pleasing: exhibiting symmetry and
minimising edge crossing for planar graphs.

Vertex attraction and edge repulsion forces are assigned to the set of vertices
and edges. These can be based on spring-like attraction forces between nodes, for
instance based on Hooke’s Law, while simultaneously modelling repulsive forces to
separate pairs of nodes, like the force between electrically charged particles based
on Coulomb’s law.

In this paper we consider the Dr.L algorithm [23]. This is a multilevel force-
directed algorithm based on simulated annealing. At each level, the layout is clus-
tered to produce a coarsened graph with fewer nodes. The smallest graph generated
is used as a basis for drawing the original graph by refining the series of coarsened
graphs that were produced. In this manner, Dr.L is able to efficiently handle large-
scale graphs.

5.4 � Dimensionality reduction

Force-directed layouts are based solely on the connectivity of the graph and do not
consider any property of nodes. This naturally influences the attributes of the visu-
alised landscape, with connectivity between vertices influencing how close the ver-
tices are together.

328	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

In order to visualise some aspect of similarity between solutions, additional prob-
lem-specific information is required. Furthermore, the solutions are originally in a
high-dimensional space and need to be represented in two or three dimensions by
using dimensionality reduction techniques. The aim of dimensionality reduction is
to preserve as much of the significant structure of the high-dimensional data as pos-
sible in the low-dimensional map. A number of different methods have been pro-
posed and they differ in terms of the types of structures they preserve. In this paper
we mainly consider the t-SNE [36] technique because it is one of the few non-linear
techniques which are scalable enough to efficiently compute layouts for tens of thou-
sands of points. t-SNE stands for t-distributed stochastic neighbour embedding and
has become fairly popular, especially for machine learning datasets. It generally has
the nice property of reflecting both the local and global structure of the data.

We also briefly consider Principal Components Analysis (PCA) since it is widely
used for dimensionality reduction and can also scale well. PCA is a linear technique
that aims at keeping low-dimensional representations of dissimilar points far away.
Its downside is that it cannot be used on categorical data—types of comparison and
Boolean operators in our context. The counterpart to PCA for such data is Multiple
Correspondence Analysis (MCA). It can be viewed as applying PCA to the complete
disjunctive table, i.e., the binary table where columns are the variable-category pairs
of the original data.

Figure 3 compares an MCA layout and a t-SNE layout for the same original data.
While MCA is able to show some structure in the data—especially showing solu-
tions at the same fitness level being in the vicinity to each other—t-SNE is able
to extract and display additional structure—for instance revealing that very similar
solutions form worm-like artefacts, that are in fact subsections of the search trajec-
tories, or allocating space to very similar solutions to highlight local structures (at
fitness level 0 for example). t-SNE is described in some further detail next.

Many non-linear dimensionality reduction techniques have been proposed and
several of them are reviewed by Lee and Verleysen [20]. These non-linear tech-
niques aim to preserve the local structure of the data but have not been very success-
ful in preserving both the local and global structure of the data in a single map.

t-SNE minimises the divergence between the distribution that measures pairwise
similarities of high-dimensional points and the distribution that measures pairwise
similarities of the corresponding low-dimensional points. The latter distribution is
computed as a normalised Student-t kernel with a single degree of freedom which
explains the name of the algorithm. Since the normalised Student-t kernel has heavy
tails, this allows for dissimilar points to be modelled by low-dimensional counter-
parts that are also far apart. This creates more space to accurately model small pair-
wise distances, or local structure, in the low dimensional space. The Kullback-Lei-
bler divergence between the two distributions is minimised. The objective function
is non-convex and is minimised by gradient descent. Therefore, images generated
from the same set of points but not using the same random seed may be different. In
practice, in our context of tens of thousands of points, the major visible differences
are mirroring and rotation of the points. Indeed, as discussed and shown in Sect. 6.3,
even different sets of points produce very similar images, as long as they have been
sampled in the same way.

329

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

The computational complexity of the Barnes-Hut version of t-SNE [35] is only
(n log n) , whereas most other methods are usually at least quadratic in their com-
plexity [37]. It can thus handle a large number of data points.

6 � Visualisations

This section starts by looking at some technical implementation choices and then
discusses the results and visualisations.

6.1 � Implementation choices

The implementation is not a stand-alone program but a set of scripts, mainly written
in the R programming language but also in Python, in order to be easily integrated
within current workflows for local optima network analysis. The implementation
choices allow for programmatically generating and manipulating large networks and
their static visualisations at the expense of more interactive approaches, for instance
based on GUI network visualisation solutions such as Cytoscape [31] or Gephi [2].

The networks are built with the igraph library [3] in R. All the layouts are gen-
erated in two dimensions using either the Dr.L force-directed layout algorithm, as
implemented in igraph, or the t-SNE algorithm, as implemented in the scikit-learn
package in Python (and with the default parameters). This choice was made because
scikit-learn provides the ability to easily change the dissimilarity metric used in the
algorithm: the Hamming distance in our case instead of the Euclidean distance. The
3D networks are created by adding fitness as a third dimension, or height, to the 2D
layouts. Rendering the images is carried out in R using the ggplot2 package to cre-
ate the scatterplots and the rgl package to create OpenGL 3D output.

Fig. 3   Comparison of MCA and t-SNE layouts for local optima sampled through ILS. Solutions are col-
oured according to their fitness. The MCA layout reveals some structure but the t-SNE layout highlights
more patterns in the data. a MCA layout, b t-SNE layout (Color figure online)

330	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

6.2 � Discussion

The following encompasses a number of different aspects of our results. We first
look at the characteristics of the visualisations (Sect. 6.2.1) and then discuss how
they relate to the network objects when considering the ILS samples (Sect. 6.2.2).
This is followed by examining the influence of different subsamples on the visu-
alisations (Sect. 6.3) and a comparison between the ILS and Hybrid GA samples
(Sect. 6.4).

Figures 4 (triangle program with comparison operators only), 5 (triangle program
with comparison and Boolean operators), 6 (tcas program with comparison opera-
tors only), 7 (tcas program with comparison and Boolean operators) show visualisa-
tions of the LONs. The figures show a subsample of the first 100 runs of the original
sample and the first 1000 iterations of each of these. The scatter plots are the layouts
generated by the t-SNE algorithm. Nodes in the 3D images are not displayed to min-
imise occlusion. However, the edges by themselves provide insight into the nature
of the landscapes. Edges between global optima are painted red and edges between
local optima of equal fitness are painted grey. Edges between local optima with dif-
ferent fitness are painted black.

6.2.1 � Characteristics of the visualisations

The force-directed layouts (subfigures (a) and (b) in Figs. 4, 5, 6, 7) display fairly
symmetric layouts which are characteristic of the force-directed algorithms. Since
no information about the solutions is taken into account when computing the layout,
the different plateaus usually appear more-or-less on top of each other. Furthermore,
edges linking different plateaus are generally vertical. This may influence the viewer
into thinking, wrongly, that solutions at each end of those edges are always geno-
typically close.

On the other hand, the t-SNE algorithm uses the similarity between the solutions
to infer meaningful coordinates (subfigure (c) in Figs. 4, 5, 6, 7). In each of the scat-
ter plots, clear local and global structures emerge. Locally, there are a number of
worm-like artefacts which are composed of series of consecutive and very similar
points generated by the sampling process. This happens because the sampling pro-
cess generates monotonic sequences of solutions and accepts non-worsening moves
(solutions of same fitness). In addition, the first degree—or 1-move—neighbour-
hood is considered for both mutation and hillclimbing, producing generally small
local steps in which two consecutive solutions are very similar to each other. Since
the t-SNE algorithm relies on the similarity between points to determine their posi-
tion relative to each other—and the measured Hamming distance similarity corre-
sponds to as many 1-moves—this translates into these worm-like structures.

More globally, solutions with the same fitness seem to cluster together, indicating
plateaus of solutions that occupy different areas of the search space.

When fitness is added as a third dimension to the t-SNE layouts (subfigures (d)
and (e) in Figs. 4, 5, 6, 7), we can observe a more accurate picture of the sampled
search space than when the force-directed layout was used. In particular, it is vis-
ible that moving from one plateau to another often involves moving to an altogether

331

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

Fig. 4   Triangle program, comparison operators only (success rate: 87.1%)—subsampled LON of 100
runs of 1000 iterations. In the networks, there are multiple paths that lead to global optima (red). The
t-SNE scatterplot shows that solutions of similar fitness are grouped together and global optima occupy
only a small section of the sampled search space. a 3D view of force-directed layout, b profile view of
force-directed layout, c t-SNE layout, d 3D view of t-SNE layout, e profile view of t-SNE layout (Color
figure online)

332	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

Fig. 5   Triangle program, comparison and Boolean operators (success rate: 31.2%)—subsampled LON of
100 runs of 1000 iterations. In the networks, there are multiple paths between the fitness levels that are
not the best but few that lead to global optima (red). The t-SNE scatterplot shows that solutions of simi-
lar fitness are grouped together and global optima occupy only a comparatively small section of the sam-
pled search space. a 3D view of force-directed layout, b profile view of force-directed layout, c t-SNE
layout, d 3D view of t-SNE layout, e profile view of t-SNE layout (Color figure online)

333

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

Fig. 6   Tcas program, comparison operators only (success rate: 94.4%)—subsampled LON of 100 runs
of 1000 iterations. In the networks, there are multiple paths that lead to global optima (red) and these
paths traverse the different fitness levels fairly directly, save for two fitness levels (at the top and the mid-
dle) were multiple trajectories wander across meta-plateaus. The t-SNE scatterplot shows global optima
occupy a comparatively large portion of the sampled search space. These global optima are well con-
nected together in the networks. a 3D view of force-directed layout, b profile view of force-directed lay-
out, c t-SNE layout, d 3D view of t-SNE layout, e profile view of t-SNE layout (Color figure online)

334	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

Fig. 7   Tcas program, comparison and Boolean operators (success rate: 98.4%)—subsampled LON of
100 runs of 1000 iterations. In the networks, there are multiple paths that lead to global optima (red).
These paths are fairly direct but exhibit some “staircase” patterns where the trajectories travel along the
same fitness for a short while. The t-SNE scatterplot shows that solutions of similar fitness are grouped
together and global optima occupy a subset of the sampled search space. a 3D view of force-directed lay-
out, b profile view of force-directed layout, c t-SNE layout, d 3D view of t-SNE layout, f profile view of
t-SNE layout (Color figure online)

335

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

different part of the landscape. This naturally creates a large number of crossing
edges which may be considered less aesthetic but which convey more information.
There would, however, be a point, as the number of displayed edges increases, where
the visualisation would become an uninformative hairball. One way around this, but
which is beyond the scope of this paper, may be edge bundling [11], where related
edges are routed along similar paths, thus minimising edge clutter.

6.2.2 � Relating the visualisations to the network objects

Table 2 reports the main characteristics of the LON graphs extracted from the bench-
mark problems described in Sect. 3.1. The sampling procedure yielded, in all cases,
graph sizes in the order of one million edges, which are non-deteriorating transitions
between local minima. The actual number of distinct local minima visited during the
search, that is, the number of nodes in the graph, is also in the order of one million
for triangle.c, and one order of magnitude less in the case of tcas.c. In par-
ticular, allowing mutations to both comparisons operators and Boolean operators,
increases the size of the search space and the number of local minima.

In all benchmarks, LONs are rather sparse but present patterns of local connec-
tivity. In fact, the clustering coefficient, that is, the average proportion of transitive
closures among the neighbours of a vertex, is always around four orders of magni-
tude higher than the overall network density. That is, connections between nodes
that already share a neighbour, are orders of magnitude more frequent than connec-
tions in general, which could be explained by the fact that the LON graph displays
the traces of iterated local search trajectories.

However, the great majority of these local connections happen on the plateaus
that are clearly visible in Figs. 4, 5, 6, 7. Indeed, considering the sampled non-dete-
riorating moves, more than 99% of the times a transition out of a local minimum
leads to another local minimum with the same fitness value. That applies to both
problems and both mutation operators subsets.

These plateaus at the LON level are also known as meta-plateaus. Let us note
that, in general, meta-plateaus do not necessarily indicate plateaus at the solution
level. This is because the standard fitness landscape model considers a single neigh-
bourhood relation N while the LON model considers at least two neighbourhoods:
one for the definition of local optima (N) and another for the edge transitions. It
follows that two connected solutions of same fitness in a LON may not be part of
the same plateau in the underlying landscape defined by N. However, in the present
study, the same neighbourhood is used for both the hillclimber and mutation, there-
fore blurring the difference between a plateau at the landscape level and a meta-
plateau at the LON level.

The triangle program LONs are made up of 6 (fitness 0–5) large plateaus rela-
tively well-connected between each other—and there is a tiny fitness 6, easily escap-
able, plateau when both comparison and Boolean operators are considered (Fig. 5).
When mutations on Boolean operators are introduced, more ILS runs get stuck at fit-
ness 2 and are not able to progress to the global optima level. The ILS success rate,
i.e., the proportion of runs that reach a global optimum, is measurably lower (87 vs.
31%).

336	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

For the tcas program, the maximum observed fitness in the networks is 264. For
both programs, we thus have plateaus that are well below the maximum fitness of
14 and 1578. Since random, not locally-optimal solutions, are often close to those
maximum values, this indicates that it is fairly easy to improve the solution fitness
with a simple hill-climber, at least initially.

The tcas program LONs display more difference between them. Perhaps surpris-
ingly, the variant that only considers comparison operators shows fairly well-defined
plateaus—the three main ones have fitness 0, 144 and 264. This may be an artefact
of some interaction between mutations. The study of these interactions is beyond
the scope of this paper but seems to be an interesting area for future research. The
variant with both comparison and Boolean operators shows more “steps” along the
different runs and, therefore, less well-defined plateau structures. This potentially
means that finding improving solutions, and ultimately a global optimum, is eas-
ier. Whilst the ILS success rate for both variants is quite high, there is a marked
improvement for the second variant (from 94 to 98%).

Let us observe that there is a high number of global optima, i.e., solutions that are
test-equivalent to the original programs. This may mean that the programs are quite
robust—we have not tested this hypothesis—or that the test suite does not provide
enough coverage.

In terms of global connectivity, we can observe that a path between any pair of
nodes is not always present, even if we disregard the direction of the edges. That is,
the networks break down into a number of weakly-disconnected components, espe-
cially when the larger search space of comparison and Boolean operators is con-
sidered. Nonetheless, more than 92% of the local minima we observed belong to a
single, largest connected component (Table 2). Moreover, a similar high fraction of
all local minima lie on paths that could eventually descend to a global optimum.

By following the steepest descent directions on the LON, we can also detect the
presence of multiple attractors with no non-deteriorating transitions around them,

Table 2   Network characteristics and ILS performance

The variant that considers only comparison operators is denoted by c, while the variant that considers
both comparison and Boolean operators is denoted by c + b

Program triangle.c tcas.c

Variant c c + b c c + b

No. of nodes 2,432,263 4,063,871 85,621 504,866
No. of edges 2,758,358 4,670,188 641,034 1,436,281
No. of global optima 9216 53,897 22,824 114,412
Network density 4.7 × 10−7 2.8 × 10−7 8.7 × 10−5 5.6 × 10−6

Clustering coefficient 2.4 × 10−3 2.4 × 10−3 4.4 × 10−2 1.6 × 10−2

Neutral degree 99.8% 99.9% 99.6% 99.6%
No. of connected components 3 3 2 12
Relative size of largest conn. comp. 92.6% 99.8% 97.3% 94.9%
Nodes with path to global optimum 92.5% 99.4% 94.8% 96.4%
ILS success rate 87.1% 31.2% 94.4% 98.4%

337

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

i.e., dead-ends for the search. Their number is indicative of the multi-funnel global
structure of the landscapes [26, 28], and may directly relate to the empirical prob-
lem hardness from the point of view of an Iterated Local Search [27]. Among the
four benchmark instances, the one with the lowest success rate also has multiple
sub-optimal attractors. Indeed, almost all its local minima have access or belong to
the funnel containing the global optima, but we hypothesise that, given the ILS stop-
ping criterion, the actual success rate might depend on how easy it is for the search
to find exits across plateaus and gain access to better (lower) fitness levels within
the budget of function evaluations. As it can be visually appreciated on Fig. 5, the
“hardest” instance is also, notably, the one with fewer such connections across the
lowest fitness levels.

More generally, the notion of difficulty we consider is based on how easy it is
for the algorithm to reach a global optimum. This is influenced—for both the math-
ematical object that is the LON and its visualisation—by the number of paths that
lead to global optimum. Another factor associated to difficulty is whether an algo-
rithm will remain stuck in a local optimum and whether there are regions of the
landscape that tend to concentrate those deceptive solutions. A quick visual assess-
ment for difficulty can therefore be to observe the connectivity patterns, or absence
thereof, leading to the global optima or to local optima that cannot be escaped. The
link between different network metrics and search difficulty has been quantified in
other contexts, for instance in [27, 33]. The visualisations presented here provide an
immediate translation of the network objects, revealing different connectivity pat-
terns. In the future, it would be interesting to assess how researchers and practition-
ers in the field of local search search and metaheuristics interpret these visualisa-
tions and whether that relates to their intuitions on search difficulty and the objective
metrics that can be computed on a landscape.

6.3 � Influence of subsamples on visualisations

In general, search landscapes, or even local optima networks, for non-trivial prob-
lem instances cannot be enumerated. Sampling is therefore required. Furthermore,
the amount of information that can be visually represented in a coherent manner
is also limited. In addition, the larger the number of points, the more it becomes
computationally expensive to generate a layout. In our experience, we can usually
sample networks at a much finer granularity than what can be represented visually
on print medium or via non-interactive representations on screen that are discussed
here. This means that one or more subsamples from the initial sample are examined.
We look into some of the issues of subsampling here.

The networks that were considered in the previous subsection are based on spe-
cific subsamples. In the current subsection, we assess how subsampling at the same
level and at a higher level influences the visualisations.

Figures 8, 9 and 10 present subsamples of the triangle program where only muta-
tions of comparison operators are considered. Each subsample consists of a different
set of 100 runs of 1000 iterations each. The figures show, in order, the t-SNE 2D
layouts, force-directed 3D layouts and t-SNE 3D layouts of the subsamples. These

338	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

are visually very similar. The t-SNE 2D layouts (four of them are shown in Fig. 8)
exhibit similar local and global structures across the subsamples (modulo rotation
and reflection symmetry). The force-directed 3D layouts (two of them are shown
in Fig. 9) are almost indistinguishable at first glance, however the t-SNE 3D lay-
outs (two of them are shown in Fig. 10) appear more different. This is due to differ-
ent viewing directions—they are based on the t-SNE 2D layouts which are similar.
These observations point to the relative robustness of the visualisations for this sub-
sampling level. Similar observations can be made for the other networks but are not
visualised here due to space constraints.

Fig. 8   t-SNE layouts for four subsamples of the large sampled LON for the triangle program with com-
parison operators only. The four sets of points exhibit similar structural patterns and differ from each
other mostly in terms of mirroring or rotation. a Triangle—subsample 1—runs 1–100, b triangle—sub-
sample 2—runs 101–200, c triangle—subsample 3—runs 201–300, d triangle—subsample 4—runs 301–
400 (Color figure online)

339

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

Figure 11 considers larger subsamples of 1000 runs of 1000 iterations for each
of the four benchmarks and presents them as 2D t-SNE scatterplots. The number
of solutions is indicated in the figure’s captions. Our current R implementation is
unable to scale to generate 3D plots of such large networks. The scatterplot visuali-
sations for these larger subsamples are naturally denser than for smaller subsamples
because of the larger number of points displayed. There are some notable differences
between the larger subsamples and their smaller counterparts. This is especially true
for the triangle program where only comparison operators are mutated (Fig. 11a).
In this case, the two visualisations are completely different and this highlights

Fig. 9   3D view of the force-directed layouts for two subsamples of the large sampled LON for the trian-
gle program with comparison operators only. The two networks are very similar. a Triangle—subsample
1—runs 1–100, b triangle—subsample 2—runs 101–200 (Color figure online)

Fig. 10   3D view of t-SNE layouts for two subsamples of the large sampled LON for the triangle program
with comparison operators only. The two networks appear to be quite different despite using very similar
layouts (Fig. 8a, b). This is mainly because of different viewing angles. a Triangle—subsample 1—runs
1–100, b triangle—subsample 2—runs 101–200 (Color figure online)

340	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

that any interpretation of the landscape structure visualisations needs to be care-
fully considered. One of the reasons for the marked contrast is the difference in the
distribution of fitness across both subsamples: notably, the proportion of globally
optimal solutions (red) in the smaller subsample is much higher than in the larger
subsample (4275/64876 vs. 9211/599340 or 6.6 vs. 1.5 %). This difference stems
from the fact that the search algorithm is meant to find good solutions, and global
optima in particular, and that there is a fixed number of relatively easily discover-
able global optima. It is therefore likely for multiple runs to end up discovering the
same very good solutions. However, the solutions discovered during the initial part

Fig. 11   t-SNE layouts for larger subsamples (1000 runs of 1000 iterations) for the four program-operator
combinations. The plots exhibit a number of differences with the ones generated using a smaller subset in
Figs. 4, 5, 6, 7, in part because of the higher point density, but also because the ratio of solutions across
fitness levels is different. a Triangle—comparison operators—599,340 solutions, b triangle—comparison
and Boolean ops—562,272 solutions, c tcas—comparison operators—84,967 solutions, d tcas—compar-
ison and Boolean ops—322,638 solutions (Color figure online)

341

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

of the search process will almost surely be different for each run as each starts from
a totally random solution. When the subsampling size increases, it is much more
likely that more poorer quality solutions will be discovered than new global optima,
thus explaining the different ratios.

The difference is less notable for the other benchmarks. For the triangle pro-
gram with mutations of both comparison and Boolean operators, the more local
structures are lost because of the higher point density but there is still a similar
segregation of points based on fitness. It is interesting to observe that for the two
tcas variants, the structures are visually largely similar, especially for lower fit-
ness levels. This is partly due to the lower number of points generated in the tcas
samples which reduces the blurring effect that large numbers of points produce
when plotted in a restricted area.

6.4 � Comparing search techniques

The sampling algorithm naturally biases the networks that are generated. It is there-
fore interesting and useful to compare and contrast samples generated by different
algorithms, and their visualisations. We consider here the networks generated by the
Hybrid GA detailed in Sect. 4.2 and Table 3 presents some of their key metrics.

The samples for the Hybrid GA aggregate 1000 runs of 50 generations with
a fixed population size of 400, a crossover probability of 0.5 and no mutation.
This crossover probability means that roughly 200 new solutions may be cre-
ated per generation, and thus 10000 per run. The samples for the ILS considered
previously aggregated 1000 runs of 10000 iterations each. Naturally, these two
sampling techniques produce samples with different characteristics. Notably, the
number of nodes and edges generated is higher for the Hybrid GA, especially for
tcas with mutations across both comparison and Boolean operators. This differ-
ence also translates in terms of number of global optima found—or programs that

Table 3   Network characteristics and Hybrid GA performance

The variant that considers only comparison operators is denoted by c, while the variant that considers
both comparison and Boolean operators is denoted by c + b

Program triangle.c tcas.c

Variant c c + b c c + b

No. of nodes 4,926,235 6,403,728 351,506 6,247,216
No. of edges 14,880,835 19,702,854 7,461,101 12,286,374
No. of global optima 9216 1,142,194 22,824 5,826,627
Network density 6.1 × 10−7 4.8 × 10−7 6.0 × 10−5 3.1 × 10−7

Clustering coefficient 1.7 × 10−1 2.9 × 10−3 9.1 × 10−2 1.4 × 10−3

Neutral degree 84.9% 88.6% 95.0% 97.1%
No. of connected components 6527 6532 4179 5387
Relative size of largest conn. comp. 99.4% 99.6% 94.7% 99.6%
Nodes with path to global optimum 36.6% 26.1% 37.2% 35.2%
Hybrid GA success rate 74.2% 76.5% 100% 100%

342	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

pass all test cases—except for the triangle program with mutations only on com-
parison operators where the numbers are the same. In fact, in this scenario both
algorithms generated the same set of global optima. Because of the computational
complexity we are not able to assess if this is the complete set of globally opti-
mal solutions but it is a possibility. Network density and clustering coefficients
are mostly similar across the two sampling techniques. The Hybrid GA samples
exhibit lower neutrality, as measured by the neutral degree, which is expected
because the ILS has the tendency to explore several solutions in a plateau before
being able to escape, which is generally not the case for crossover. A marked dif-
ference is in the number of connected components which is drastically higher for

Fig. 12   Comparison of subsampled solutions for the hybrid algorithm and the ILS triangle landscapes.
Clustering of solutions with similar fitness is observed in both ILS and hybrid GA samples. However, the
worm-like structures only appear for the ILS because they are artefacts of the search procedure. a ILS—
comparison operators—64,876 solutions (100 runs), b Hybrid GA—comparison operators—70,406 solu-
tions (12 runs), c ILS—comparison and Boolean ops—56,837 solutions (100 runs), d Hybrid GA—com-
parison and Boolean—58,198 solutions (6 runs) (Color figure online)

343

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

the Hybrid GA because it is not a trajectory based method and it employs selec-
tion in the parent population. Nevertheless, the relative size of the largest con-
nected component is always well above 90% of all the local optima encountered.
Another major difference with the ILS samples is the percentage of nodes with a
path to the global optimum which is much lower for the Hybrid GA. The Hybrid
GA samples also exhibit a significant difference in terms of success rate, although
both variants of the triangle program remain harder to solve across both algo-
rithms. This suggests that the hybrid approach may be better than ILS for genetic
improvement.

Fig. 13   Comparison of subsampled solutions for the hybrid algorithm and the ILS tcas landscapes. Solu-
tions with similar fitness are mostly clustered together. When both comparison and Boolean operators are
considered, the hybrid GA is able to traverse the search space more efficiently and finds a proportionally
large number of global optima. a ILS—comparison operators— 25,533 solutions (100 runs), b Hybrid
GA—comparison operators—27,537 solutions (100 runs), c ILS—comparison and Boolean ops—34,201
solutions (100 runs), d Hybrid GA—comparison and Boolean—30,400 solutions (12 runs) (Color figure
online)

344	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

Figures 12 and 13 highlight the differences in terms of t-SNE scatterplot visu-
alisations for the triangle and tcas programs respectively. The ILS visualisations
reuse the same 100 run subsample as seen previously while the number of runs
per subsample of the Hybrid GA, indicated in the caption of each figure, is cho-
sen to roughly match the number of solutions of the ILS subsample. This is in
order to stay within a reasonable and comparable number of points.

Since t-SNE takes the dissimilarity between points into account when assign-
ing their coordinates, it is reasonable to compare each sample type side-by-side.
If both sampling methods returned roughly the same set of solutions or sets of
solutions with very similar characteristics, one would expect the dissimilarities to
be roughly equivalent and thus translate to similar visualisations. Here we can see
that the two methods yield relatively similar visualisations for the benchmarks
that only consider comparison operators. Globally optimal solutions, in particu-
lar, exhibit the same clustering patterns and solutions of equivalent fitness are
grouped together indicating that they occupy specific areas of the search space.
One major difference are the worm-like structures in the ILS sample—artefacts
of this single point trajectory sampling methodology—which do not appear in the
Hybrid GA samples.

In comparison, the variants that explore the mutations of both comparison and
Boolean operators are markedly different, although there is still a differentiation
in the areas occupied by various fitness levels. One key difference is the number
of globally optimal solutions which is much greater for the Hybrid GA and which
therefore influences the layouts produced. One possible explanation for this differ-
ence is that there may be disjoint plateaus of globally optimal solutions—or pla-
teaus that are extremely large—of which the ILS is able to explore a smaller subset

Fig. 14   Combination of subsampled LONs for the hybrid algorithm and the ILS for the triangle program
landscape considering comparison operators only. The points in black in the scatter plot and the edges in
blue in 3D view belong to the sample of the hybrid algorithm. a t-SNE layout, b 3D view of t-SNE lay-
out (Color figure online)

345

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

that the Hybrid GA. In addition, we observed that the Hybrid GA converged very
quickly to the globally optima solutions, usually within 10 generations or fewer,
strongly suggesting that the landscapes should be quite different.

We do not show any 3D visualisations for the Hybrid GA because the number of
crossing edges tends to create massive hairballs that do not provide significant use-
ful information. One potential way to deal with this issue in the future would be to
use edge bundling [11] which routes related edges along similar paths.

In addition to side-by-side comparisons, the t-SNE layouts can be used to over-
lay two sets of points to highlight similarities and differences. In this scenario, both
sets of points are merged and a single layout is computed. Figure 14 shows such an
overlay, with 100 runs of the ILS in the background and 2 runs of the Hybrid GA on
top. We only show a smaller subset of the Hybrid GA points because otherwise they
would cover the ILS points. This serves to highlight the fact that similar areas of the
search space are explored by both algorithm. In an interactive context, the overlay
could be manipulated dynamically to reveal different levels of information. The 3D
view is less informative because of the large number of crossing edges.

7 � Conclusion

Understanding the structure of search landscapes is essential in order to develop
efficient algorithms to solve hard combinatorial optimisation problems, and genetic
improvement problems in particular. While different approaches of visualising
search trajectories and landscapes have been proposed, there have been few attempts
to consider the global structure of the landscapes. Local Optima Networks allow us
to fill this gap by coarsening the representation of the landscape to local optima. In
this paper we have proposed using the t-SNE algorithm to generate layouts for those
networks, thereby teasing out different structures at different levels. These plots
bring the landscape metaphor to life in, what we believe is, an intuitive and almost
tangible way.

We found that the visualisations, together with network metrics, could describe
different features and properties of the landscape, for instance, neutrality and the
existence of multiple pathways throughout the networks to reach globally optimal
solutions. One striking observation was the large number of solutions that pass all
the test cases of the benchmark problems. This raises many additional questions in
terms of the suitability and coverage of the test suite and on the semantics of the
test-equivalent mutants. This will need to be addressed in future work.

In this paper, we have also attempted to assess the quality and robustness of the
visualisations when considering various subsamples. Our results show that care
needs to be taken when interpreting the visualisations. Subsamples of the same
landscape, generated with the same parameters, and representing sets of points of
roughly the same size were very similar but exhibited some mirroring or rotation of
the patterns appearing within the visualisations. When subsamples of very differ-
ent sizes were considered, quite similar visualisations were produced in some cases
and quite different ones in other cases. This highlights the importance of consider-
ing samples or subsamples with different characteristics in order to obtain a broader

346	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

picture of the search landscape. The visualisations also allow for the comparison of
the different search methods, as we have shown.

Genetic improvement approaches rarely make use of Iterated Local Search or of
hybrid GAs, yet, we have shown that these techniques are able to find programs that
pass all test cases. This observation should be an encouragement to further explore
these algorithms in the context of GI.

Our tools rely on metaheuristics which can be instrumented in order to sample a
fitness landscape. They can be used in multiple contexts and across a diverse set of
problems. The visualisations are created with off-the-shelf software in the form of
R and Python scripts and additional free libraries. However, these currently have
rendering limits which will need to be overcome in future work. As we mentioned
earlier, edge bundling could be a valuable addition to the visualisations in order to
reduce edge clutter. From a technical standpoint, the rendering engine that drives the
rgl package in R is fairly limited in terms of features and performance. One alterna-
tive, while still keeping the possibility of programmatically manipulating the net-
work objects, could be to use a dedicated 3D rendering package such as Blender
which provides a Python interface.

In addition, this paper has not considered interactive visualisations which could
prove very useful to end users. One instance of this could be allowing certain paths
within the network to be isolated and observed as standalone objects. Another aspect
could be allowing for the comparison of test-equivalent mutants: contextual infor-
mation about the differences in the source code of the mutants could be displayed,
as well as highlighting which solutions are within some predetermined edit distance
from the solution currently being observed.

Acknowledgements  This work was supported by the Leverhulme Trust [Award Number RPG-2015-395]
and by the UK’s Engineering and Physical Sciences Research Council [Grant Number EP/J017515/1].

Data Access Statement  Data and figures from this paper are available from the Stirling Online Repository
for Research Data (http://hdl.handl​e.net/11667​/120).

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

	 1.	 R. Amar, J. Stasko, A knowledge task-based framework for design and evaluation of information
visualizations, in IEEE Symposium on Information Visualization, pp. 143–150 (2004). https​://doi.
org/10.1109/INFVI​S.2004.10

	 2.	 M. Bastian, S. Heymann, M. Jacomy, Gephi : an open source software for exploring and manipu-
lating networks, in International AAAI Conference on Web and Social Media. Association for the
Advancement of Artificial (2009). https​://www.aaai.org/ocs/index​.php/ICWSM​/09/paper​/view/154

	 3.	 G. Csardi, T. Nepusz, The igraph software package for complex network research. InterJ. Complex
Syst. 1695 (2006). http://igrap​h.org

	 4.	 R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test data selection: help for the practicing pro-
grammer. Computer 11(4), 34–41 (1978). https​://doi.org/10.1109/C-M.1978.21813​6

http://hdl.handle.net/11667/120
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/INFVIS.2004.10
https://doi.org/10.1109/INFVIS.2004.10
https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://igraph.org
https://doi.org/10.1109/C-M.1978.218136

347

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

	 5.	 H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing techniques:
an infrastructure and its potential impact. Empir. Softw. Eng. 10(4), 405–435 (2005). https​://doi.
org/10.1007/s1066​4-005-3861-2

	 6.	 Q. Duan, C. Shao, X. Li, Y. Shi, Visualizing the search dynamics in a high-dimensional space for
a particle swarm optimizer. In: Simulated Evolution and Learning, Lecture Notes in Computer Sci-
ence, pp. 994–1002. Springer, Cham (2017). https​://doi.org/10.1007/978-3-319-68759​-9_82

	 7.	 R. Dybowski, T.D. Collins, P.R. Weller, Visualization of Binary String Convergence by Sammon
Mapping (Loughborough University, Loughborough, 1996)

	 8.	 C. Flamm, I.L. Hofacker, P.F. Stadler, M.T. Wolfinger, Barrier trees of degenerate landscapes. Phys.
Chem. 216, 155–173 (2002)

	 9.	 J. Hallam, A. Prugel-Bennett, Large barrier trees for studying search. IEEE Trans. Evolut. Comput.
9(4), 385–397 (2005)

	10.	 E. Hart, P. Ross, GAVEL—a new tool for genetic algorithm visualization. IEEE Trans. Evolut.
Comput. 5(4), 335–348 (2001). https​://doi.org/10.1109/4235.94252​8

	11.	 D. Holten, J.J. Van Wijk, Force-directed edge bundling for graph visualization. Comput. Graph.
Forum 28(3), 983–990 (2009). https​://doi.org/10.1111/j.1467-8659.2009.01450​.x

	12.	 D.A. Keim, F. Mansmann, J. Schneidewind, H. Ziegler, Challenges in visual data analysis, in
Tenth International Conference on Information Visualisation (IV’06), pp. 9–16 (2006). https​://doi.
org/10.1109/IV.2006.31

	13.	 Y.H. Kim, B.R. Moon, New usage of Sammon’s mapping for genetic visualization, in Genetic and
Evolutionary Computation—GECCO 2003, Lecture Notes in Computer Science, pp. 1136–1147.
Springer, Berlin, Heidelberg (2003). https​://doi.org/10.1007/3-540-45105​-6_122

	14.	 S.G. Kobourov, Force-directed drawing algorithms, in Handbook of Graph Drawing and Visualiza-
tion, 1st edn., ed. by R. Tamassia (CRC Press, Boca Raton, 2013), pp. 349–381

	15.	 O. Kramer, D. Luckehe, Visualization of evolutionary runs with isometric mapping, in 2015 IEEE
Congress on Evolutionary Computation (CEC), pp. 1359–1363 (2015). https​://doi.org/10.1109/
CEC.2015.72570​46

	16.	 W.B. Langdon, M. Harman, Y. Jia, Efficient multi-objective higher order mutation testing with
genetic programming. J. Syst. Softw. 83(12), 2416–2430 (2010). https​://doi.org/10.1016/j.
jss.2010.07.027

	17.	 W.B. Langdon, G. Ochoa, Genetic improvement: a key challenge for evolutionary computation,
in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3068–3075 (2016). https​://doi.
org/10.1109/CEC.2016.77441​77

	18.	 W.B. Langdon, J. Petke, Software is not fragile, in First Complex Systems Digital Campus World
E-Conference 2015, pp. 203–211. Springer, Cham (2017). https​://doi.org/10.1007/978-3-319-45901​
-1_24

	19.	 W.B. Langdon, N. Veerapen, G. Ochoa, Visualising the search landscape of the triangle program,
in Genetic Programming, vol. 10196, Lecture Notes in Computer Science, ed. by J. McDermott, M.
Castelli, L. Sekanina, E. Haasdijk, P. Garcia-Sànchez (Springer, Cham, 2017), pp. 96–113. https​://
doi.org/10.1007/978-3-319-55696​-3_7

	20.	 J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, 1st edn. (Springer, Berlin, 2007)
	21.	 E. Lutton, J. Foucquier, N. Perrot, J. Louchet, J.D. Fekete, Visual Analysis of Population Scatter-

plots, in Artificial Evolution, no. 7401 in Lecture Notes in Computer Science, ed. by J.K. Hao, P.
Legrand, P. Collet, N. Monmarché, E. Lutton, M. Schoenauer (Springer, Berlin, 2011), pp. 61–72

	22.	 K.M. Malan, A.P. Engelbrecht, A survey of techniques for characterising fitness landscapes and
some possible ways forward. Inf. Sci. 241, 148–163 (2013)

	23.	 S. Martin, W.M. Brown, B.N. Wylie, Dr.L: Distributed Recursive (Graph) Layout. Tech. Rep. dRl;
002182MLTPL00, Sandia National Laboratories (2007). https​://www.osti.gov/scite​ch/bibli​o/12310​
60

	24.	 M.E.J. Newman, R. Engelhardt, Effect of neutral selection on the evolution of molecular species.
Proc. R. Soc. Lond. B 265, 1333–1338 (1998)

	25.	 G. Ochoa, M. Tomassini, S. Vérel, C. Darabos, A study of NK landscapes’ basins and local optima
networks, in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’08, pp. 555–562. ACM, New York, NY, USA (2008). https​://doi.org/10.1145/13890​
95.13892​04

	26.	 G. Ochoa, N. Veerapen, Mapping the global structure of TSP fitness landscapes. J. Heuristics 24(3),
265–294 (2018). https​://doi.org/10.1007/s1073​2-017-9334-0

https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1007/978-3-319-68759-9_82
https://doi.org/10.1109/4235.942528
https://doi.org/10.1111/j.1467-8659.2009.01450.x
https://doi.org/10.1109/IV.2006.31
https://doi.org/10.1109/IV.2006.31
https://doi.org/10.1007/3-540-45105-6_122
https://doi.org/10.1109/CEC.2015.7257046
https://doi.org/10.1109/CEC.2015.7257046
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1109/CEC.2016.7744177
https://doi.org/10.1109/CEC.2016.7744177
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1007/978-3-319-55696-3_7
https://doi.org/10.1007/978-3-319-55696-3_7
https://www.osti.gov/scitech/biblio/1231060
https://www.osti.gov/scitech/biblio/1231060
https://doi.org/10.1145/1389095.1389204
https://doi.org/10.1145/1389095.1389204
https://doi.org/10.1007/s10732-017-9334-0

348	 Genetic Programming and Evolvable Machines (2018) 19:317–349

1 3

	27.	 G. Ochoa, N. Veerapen, F. Daolio, M. Tomassini, Understanding phase transitions with local optima
networks: number partitioning as a case study, in Evolutionary Computation in Combinatorial Opti-
mization, vol. 10197, Lecture Notes in Computer Science, ed. by B. Hu, M. López-Ibáñez (Springer,
Cham, 2017), pp. 233–248. https​://doi.org/10.1007/978-3-319-55453​-2_16

	28.	 G. Ochoa, N. Veerapen, D. Whitley, E.K. Burke, The multi-funnel structure of TSP fitness land-
scapes: a visual exploration, in Artificial Evolution, vol. 9554, Lecture Notes in Computer Science,
ed. by S. Bonnevay, P. Legrand, N. Monmarché, E. Lutton, M. Schoenauer (Springer, Berlin, 2015),
pp. 1–13. https​://doi.org/10.1007/978-3-319-31471​-6_1

	29.	 J. Petke, S.O. Haraldsson, M. Harman, W.B. Langdon, D.R. White, J.R. Woodward, Genetic
improvement of software: a comprehensive survey. IEEE Trans. Evolut. Comput. 22(3), 415–
432 (2018). https​://doi.org/10.1109/TEVC.2017.26932​19

	30.	 E. Schulte, Z.P. Fry, E. Fast, W. Weimer, S. Forrest, Software mutational robustness. Genet. Pro-
gram. Evolvable Mach. 15(3), 281–312 (2014). https​://doi.org/10.1007/s1071​0-013-9195-8

	31.	 P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski,
T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction net-
works. Genome Res. 13(11), 2498–2504 (2003). https​://doi.org/10.1101/gr.12393​03

	32.	 P.F. Stadler, Appl. Math. Comput. 117, 187–207 (2002)
	33.	 S.L. Thomson, F. Daolio, G. Ochoa, Comparing communities of optima with funnels in combi-

natorial fitness landscapes, in Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO ’17, pp. 377–384. ACM, New York, NY, USA (2017). https​://doi.org/10.1145/30711​
78.30712​11

	34.	 R.H. Untch, A.J. Offutt, M.J. Harrold, Mutation analysis using mutant schemata, in Proceedings of
the 1993 ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’93, pp.
139–148. ACM, New York, NY, USA (1993). https​://doi.org/10.1145/15418​3.15426​5

	35.	 L. Van Der Maaten, Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15(1),
3221–3245 (2014)

	36.	 L. Van Der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–
2605 (2008)

	37.	 L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a comparative review.
Technical Report 2009-005, Tilburg University, Tilburg, The Netherlands (2009)

	38.	 N. Veerapen, F. Daolio, G. Ochoa, Modelling genetic improvement landscapes with local optima
networks, in Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’17, pp. 1543–1548. ACM, New York, NY, USA (2017). https​://doi.org/10.1145/30676​
95.30825​18

	39.	 N. Veerapen, G. Ochoa, R. Tinós, D. Whitley, Tunnelling crossover networks for the asymmetric
TSP, in Parallel Problem Solving from Nature—PPSN XIV, vol. 9921, Lecture Notes in Computer
Science, ed. by J. Handl, E. Hart, P.R. Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (Springer,
Berlin, 2016), pp. 994–1003. https​://doi.org/10.1007/978-3-319-45823​-6_93

	40.	 S. Verel, F. Daolio, G. Ochoa, M. Tomassini, Local optima networks with escape edges, in Artificial
Evolution, EA 2011, vol. 7401, Lecture Notes in Computer Science, ed. by J.K. Hao, P. Legrand, P.
Collet, N. Monmarché, E. Lutton, M. Schoenauer (Springer, Berlin, 2012), pp. 49–60. https​://doi.
org/10.1007/978-3-642-35533​-2_5

	41.	 S. Vérel, G. Ochoa, M. Tomassini, Local optima networks of NK landscapes with neutrality. IEEE
Trans. Evolut. Comput. 15(6), 783–797 (2011). https​://doi.org/10.1109/TEVC.2010.20461​75

	42.	 S. Volke, D. Zeckzer, M. Middendorf, G. Scheuermann, Visualizing topological properties of the
search landscape of combinatorial optimization problems. In: Topological Methods in Data Analy-
sis and Visualization IV, Mathematics and Visualization, pp. 69–85. Springer, Cham (2015). https​://
doi.org/10.1007/978-3-319-44684​-4_4

	43.	 S. Volke, D. Zeckzer, G. Scheuermann, M. Middendorf, A Visual method for analysis and com-
parison of search landscapes, in Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation, GECCO ’15, pp. 497–504. ACM, New York, NY, USA (2015). https​://doi.
org/10.1145/27394​80.27547​33

	44.	 D.J. Wales, Ma. Miller, Walsh T.R, Archetypal energy landscapes. Nature 394(August), 758–760
(1998)

	45.	 W. Weimer, S. Forrest, Automatic program repair with evolutionary computation. Commun. ACM
53, 109–116 (2010)

	46.	 X. Yao, M. Harman, Y. Jia, A study of equivalent and stubborn mutation operators using
human analysis of equivalence, in Proceedings of the 36th International Conference on

https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-3-319-31471-6_1
https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/s10710-013-9195-8
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1145/3071178.3071211
https://doi.org/10.1145/3071178.3071211
https://doi.org/10.1145/154183.154265
https://doi.org/10.1145/3067695.3082518
https://doi.org/10.1145/3067695.3082518
https://doi.org/10.1007/978-3-319-45823-6_93
https://doi.org/10.1007/978-3-642-35533-2_5
https://doi.org/10.1007/978-3-642-35533-2_5
https://doi.org/10.1109/TEVC.2010.2046175
https://doi.org/10.1007/978-3-319-44684-4_4
https://doi.org/10.1007/978-3-319-44684-4_4
https://doi.org/10.1145/2739480.2754733
https://doi.org/10.1145/2739480.2754733

349

1 3

Genetic Programming and Evolvable Machines (2018) 19:317–349	

Software Engineering, ICSE 2014, pp. 919–930. ACM, New York, NY, USA (2014). https​://doi.
org/10.1145/25682​25.25682​65

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1145/2568225.2568265
https://doi.org/10.1145/2568225.2568265

	Visualising the global structure of search landscapes: genetic improvement as a case study
	Abstract
	1 Introduction
	2 Search landscapes
	2.1 Fitness landscapes
	2.2 Local optima networks

	3 Program search space test bench
	3.1 Benchmark programs

	4 Genetic improvement sampling procedures
	4.1 Iterated local search
	4.2 Genetic algorithm with local search

	5 Visualising local optima networks
	5.1 Handling large networks
	5.2 Layout algorithms
	5.3 Force-directed layouts
	5.4 Dimensionality reduction

	6 Visualisations
	6.1 Implementation choices
	6.2 Discussion
	6.2.1 Characteristics of the visualisations
	6.2.2 Relating the visualisations to the network objects

	6.3 Influence of subsamples on visualisations
	6.4 Comparing search techniques

	7 Conclusion
	Acknowledgements
	References

