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Abstract  

Blooms of cyanobacteria are a current threat to global water security that is expected to 

increase in the future because of increasing nutrient enrichment, increasing temperature and 

extreme precipitation in combination with prolonged drought.  However, the responses to 

multiple stressors, such as those above, are often complex and there is contradictory evidence 

as to how they may interact.  Here we used broad scale data from 494 lakes in central and 

northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature 

and water retention time in different types of lakes.  Eight lake types were examined based on 

factorial combinations of major factors that determine phytoplankton composition and 

sensitivity to nutrients: alkalinity (low and medium-high), colour (clear and humic) and 

mixing intensity (polymictic and stratified).  In line with expectations, cyanobacteria 

increased with temperature and retention time in five of the eight lake types.  Temperature 

effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently 

not at risk could be affected by warming in the future.  However, the sensitivity of 

cyanobacteria to temperature, retention time and phosphorus varied among lake types 

highlighting the complex responses of lakes to multiple stressors.  For example, in 

polymictic, medium-high alkalinity, humic lakes cyanobacteria biovolume was positively 
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explained by retention time and a synergy between TP and temperature while in polymictic, 

medium-high alkalinity, clear lakes only retention time was identified as an explanatory 

variable.  These results show that, although climate change will need to be accounted for 

when managing the risk of cyanobacteria in lakes, a ‘one-size fits-all’ approach is not 

appropriate.  When forecasting the response of cyanobacteria to future environmental change, 

including changes caused by climate and local management, it will be important to take this 

differential sensitivity of lakes into account. 

 

Introduction 

Blooms of cyanobacteria are becoming an increasing threat to global water security.  Through 

anthropogenic activities we are not only enhancing but also combining some of the optimal 

conditions for the dominance of cyanobacteria.  At the local scale, and despite remediation 

efforts, nutrient enrichment is hardly abating (Nürnberg, 2009, Oliver et al., 2017).  At a 

global scale, and at the forefront of this paper, is the issue of climate change.  In part, the 

recent rise in cyanobacteria has been attributed to climate warming (Kosten et al., 2012, Paerl 

&  Huisman, 2008).  Increases in water temperature (O'Reilly et al., 2015) alongside 

increases in the duration and strength of thermal stratification (Wagner &  Adrian, 2009) 

create optimal conditions for the physiological and functional traits of many cyanobacteria 

taxa such as higher temperature growth optima and the ability to regulate buoyancy (Carey et 

al., 2012).  In combination with high nutrient concentrations, it is feared that warming will 

result in the accelerated deterioration of water quality (Jeppesen et al., 2009, Moss et al., 

2011, Paerl & Huisman, 2008).  This synergism is widely discussed as an important risk 

factor, however the evidence so far suggests that this will not be a generalisable response; 

others have found that the effect of temperature is dependent on other environmental factors 
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such as trophic setting (Rigosi et al., 2014) or by the mixing state of the lake (Taranu et al., 

2012).   

Climate change also affects rainfall patterns (Milly et al., 2005).  Extreme rainfall 

events followed by prolonged periods of drought are expected to favour cyanobacteria 

because of the combined effects of elevated nutrients and stable physical conditions (Paerl & 

Huisman, 2008).  Although, the benefits to cyanobacteria may depend on the frequency, 

duration, seasonal timing and intensity of rainfall events as well as other factors such as 

catchment land use and the ratio of catchment area to lake surface area (James et al., 2008, 

Padisák et al., 1988, Reichwaldt & Ghadouani, 2012).  Studies exploring the effect of 

changes in hydrologic flow on the abundance of cyanobacteria in combination with other 

anthropogenic stressors are limited, yet flow dynamics as a driver of the abundance, 

composition and succession of phytoplankton communities is well documented (e.g. Søballe 

& Kimmel, 1987; Tolotti et al., 2010).  In order to understand fully the effects of climate 

change on water quality in lakes, climate change effects other than that of incremental 

changes in temperature need to be incorporated.  Although more challenging, the effects of 

extreme rainfall events, heatwave events and prolonged periods of drought need to be 

understood and quantified in combination with anthropogenic nutrient enrichment (Michalak, 

2016).  

The evidence so far indicates that the response of cyanobacteria to multiple 

anthropogenic stress may not be generalisable i.e. that a “one-size fits-all” approach is not 

appropriate across all lakes (e.g. Taranu et al., 2012).  This is not surprising given that  

phytoplankton have varying sensitivities and tolerances to their physical and chemical 

environment (Reynolds et al., 2002) and so many other factors, aside from temperature, 

nutrients and flushing rates, are involved in shaping phytoplankton biomass and community 

structure.  Previous analyses have examined the effect of lake type variables on the sensitivity 
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of cyanobacteria to nutrients and temperature in combination, focusing on the effect of 

trophic type (Rigosi et al., 2014), mixing type (Taranu et al., 2012) and depth x artificial vs 

natural lakes (Beaulieu et al., 2013).  While they all highlight the importance of 

environmental context, they exclude other key environmental factors that shape community 

composition; e.g. alkalinity (Carvalho et al., 2011, Maileht et al., 2013, Ptacnik et al., 2008), 

pH (Beaulieu et al., 2013, Kosten et al., 2012) and colour (Maileht et al., 2013, Ptacnik et al., 

2008).  Furthermore most of these studies exclude the potential for the interactive effect of 

multiple ‘type’ factors.  For the response of phytoplankton to nutrients, the relationships can 

be improved by grouping the response by ‘lake types’ defined by multiple environmental 

factors such as depth and alkalinity (Phillips et al., 2008) and colour and alkalinity (Ptacnik et 

al., 2008).  A similar ‘lake type’ approach should be taken to explore the response of 

cyanobacteria to multiple stressors, testing the effect of key environmental stressors in 

different lake environments.  Identifying the environments in which cyanobacteria will be 

most problematic under future climate and nutrient scenarios is needed to provide robust 

information for the effective management of lakes. 

Here, we took advantage of existing broad scale data from 494 natural European lakes 

to test whether eutrophication (phosphorus), temperature, and prolonged periods of drought 

(retention time) interact to exacerbate the problem of cyanobacteria.  We modelled the 

response of chlorophyll-a concentration, as a proxy for total phytoplankton biomass, and 

cyanobacteria biovolume in eight different lake types which were defined by combinations of 

alkalinity (low and medium-high alkalinity), colour (clear and humic) and mixing types 

(polymictic and stratified).  These types broadly match the common lake typologies which 

have been agreed across >25 European countries as part of the European Water Framework 

Directive (WFD, http://ec.europa.eu/environment/water/water-framework/) in recognition of 

the differential sensitivity of lakes of different types to environmental stressors.  We 
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hypothesised that elevated temperatures and increased retention time would have a greater 

positive effect on cyanobacteria than on total phytoplankton, and that their effect would be in 

synergy with phosphorus.  We further hypothesised that the sensitivity of these response 

variables to the interactions between multiple stressors would vary among lake types. 

 

Materials and Methods 

Data 

i. Biological and chemical data 

Data on cyanobacteria biovolume (mm
3 

L
-1

), chlorophyll-a concentration (μg L
-1

), total 

phosphorus concentration (μg L
-1

) and lake type variables - altitude, depth, surface area, 

mixing status, humic content and alkalinity - were extracted from the WISER database (Moe 

et al., 2013) and supplemented by additional datasets.  Total phosphorus was used as measure 

of nutrient enrichment as it is a robust indicator of eutrophication in freshwater systems 

(Howarth & Marino, 2006) and was also available for all lakes (whereas total nitrogen was 

not).  Chlorophyll-a was used as a proxy for total phytoplankton abundance as this is the 

most widespread global measure of ecosystem quality used in lake management (OECD, 

1982); chlorophyll-a and total phytoplankton biovolume were positively correlated (R
2
 = 

0.64, p <0.001).  Biological and phosphorus data were summarised as monthly means for 

July, August and September; a period when biological sampling is most intense, thereby 

maximising data availability and when in many systems cyanobacterial blooms occur 

(Reynolds, 2006).   Data were selected between 2000 and 2009 as sampling methods from 

this period were most standardised.  Each lake contributed a variable number of observations; 

on average six monthly observations from different combinations of years (2000 – 2009) and 

months (July-September). Table S1 summarises the number of lake months for each year, 
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month combination.  The hierarchical structure of the statistical models accounts for 

differences in the number of observation per lakes, through the random effect error term.    

 

ii. Catchment data  

Catchment data – delineations and percent (%) CORINE (coordination of information on the 

environment) land cover were extracted from the MARS geodatabase (Globevnik et al., 

2017). 

iii. Climate data 

Historical air temperature and effective rainfall data were downloaded from the Agri4Cast 

Data portal (Toreti, 2014) of the Joint Research Centre (JRC) which contains daily 

meteorological parameters from weather stations interpolated on a 25 x 25 km grid.  Each 

lake was matched to the JRC square which contained the coordinates of the lake’s sampling 

point.  Mean monthly air temperature (°C) was used as a proxy for water temperature.  For a 

subset of 299 lakes which had measurements of epilimnion temperature a significant linear 

relationship was found between mean monthly air and mean monthly water temperature with 

a slope of 0.89 ± 0.02 (R
2
 = 0.59, p <0.001).  Monthly effective rainfall was summed over the 

area of the catchment (catchment effective rainfall), correcting for the effect of different land 

cover types on evapotranspiration rates using correction coefficients adapted from Mircea-

Mărgărit (2015).  Catchment effective rainfall was then used as an estimate of the volume of 

water flowing into and out of the lake.  To validate this estimate of outflow, measured 

outflow from a subset of 46 lakes from Norway and the UK were compared to the outflow 

estimated from effective rainfall.  These countries were used as they had national datasets of 

flow gauge data for lake outflows.  A significant positive linear relationship was found 

between measured and estimated outflow with a slope of 0.69 ± 0.02 (R
2
 = 0.56, p <0.001) 

and this was used to adjust the outflow, estimated from the catchment effective rainfall.  Lake 
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volume was estimated by multiplying the mean depth by the area of the lake.  The monthly 

flushing rate of the lake was estimated by dividing the adjusted outflow by the volume of the 

lake.  The retention time, in days, was calculated from the monthly flushing rate divided by 

30 days in all cases.  Retention time, rather than flushing rate, was used because the expected 

response of cyanobacteria to all explanatory variables were then in the same direction and 

because intuitively it is a better representation of prolonged periods of drought. 

iv. Defining lake types  

The lake types defined in this study are based on common European typology schemes, used 

across all European countries in the European Water Framework Directive (WFD) (EC-JRC, 

2014; Lyche Solheim et al., 2015).  These lake types are based on geology, humic substances, 

mixing type/depth, altitude, size and region (Mediterranean).  Modification to these types 

were made as some of the factors which define these types – altitude, depth and surface area 

– co-varied with the stressors (TP, temperature and retention time) and so their influence was 

retained through these variables (Fig. S1).  Alkalinity also positively co-varied with TP (Fig. 

S1) but was retained as a type factor because further analysis indicated that the relationship 

was non-linear (supplementary analysis, Fig. S2 and S3).  Specifically, in low alkalinity lakes 

there was no relationship between alkalinity and TP yet cyanobacteria and alkalinity still 

positively co-varied (R
2 

= 0.17, p <0.001) indicating that alkalinity is an ecologically relevant 

type variable to include.  Others (e.g. Carvalho et al., 2011) have also found alkalinity to be 

an important predictor of cyanobacteria.   

Lake types were defined by combining the broad European type levels for alkalinity, 

humic substances and mixing to give 18 lake types.  These lake characteristics are central to 

the European typology schemes, and have been shown by others (Maileht et al., 2013, 

Ptacnik et al., 2008) to reflect ecologically meaningful characteristics that explain the 
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distribution of phytoplankton and their response to eutrophication.  Gower distance clustering 

(using the daisy function from the cluster package for R statistical software (Maechler et al., 

2012)) confirmed that these lake types sufficiently explained variation in cyanobacteria (Fig. 

S4 and Fig. S5).   

Although a large number of lakes were included in the dataset, imbalances in the data 

meant that 18 types could not be adequately modelled, therefore we further modified these 

types by combining ecologically similar levels of alkalinity and humic type.  For alkalinity 

we retained ‘low alkalinity’ (<0.2 mEq L
-1

) as a distinct level, and medium and high 

alkalinity (>0.2 mEq L
-1

) were combined into a new level – ‘medium-high alkalinity’.  For 

humic type we retained ‘low humic’ as a distinct level (colour <30 mg Pt L
-1

), renaming the 

level as ‘clear’, and medium and high humic (colour > 30 mg Pt L
-1

) were combined into a 

new level – ‘humic’.  For a smaller subset of lakes for which dissolved organic carbon (DOC) 

concentrations were available, the concentration ranged from 0.4 to 44.6 and 2.9 to 37.1 mg 

L
-1

 in clear and humic lakes respectively. This merging of levels is consistent with the finding 

that bloom-forming cyanobacteria have a preference for neutral-alkaline lakes (Carvalho et 

al., 2011, Maileht et al., 2013, Shapiro, 1984), and that cyanobacteria dominate more often in 

clear lakes than in humic lakes (Ptacnik et al., 2008).  Furthermore, clusters formed from the 

Gower distance analysis also show a tendency for these levels to be grouped together (Fig. 

S6).   

The biovolume of cyanobacteria differed statistically significantly between levels of 

each lake type variable (Fig. S7): alkalinity (low vs med-high alkalinity, t = -22.5, df = 1574, 

p <0.001); humic (clear vs humic, t = 7.78, df = 1579.8, p <0.001); and mixing type (stratified 

vs polymictic, t = -7.03, df = 600.97, p <0.001).  All combinations of these new levels gave 

eight types; Fig. 1a shows the spatial distribution of the 494 lakes by type.  A plot of the 

Silhouette width (Fig. S4), used to determine the number of clusters, indicates that most of 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

the differences between clusters are captured within 10 clusters and so reducing the clusters 

from 17 to 8 can be supported.  Variation in cyanobacteria biovolume was explained by the 

lake types (Table S3), although differences between polymictic and stratified lakes were less 

clear when humic type and alkalinity type were taken into account (Fig. 1b, see also 

supporting information).  The clearest difference in cyanobacteria biovolume was seen 

between levels of alkalinity, both as a single lake type variable but also in combination with 

other lake type variables (Fig. 1b and Fig. S7). 

 

 

 

Statistical analysis 

i. Relationships between variables 

Prior to the analysis, relationships between variables were investigated using pairwise 

scatterplots, inspecting for co-variation between explanatory variables and also for potentially 

non – linear responses using LOESS regression (Cleveland & Devlin, 1988).  Experimental 

studies have shown that interactions can change along the stressor gradient when the response 

to single stressors are non-linear (Piggott et al., 2015), therefore we chose to restrict the 

regression to the range of each stressor where the data were linearly related.  This was only 

relevant for the response to TP in which no relationship was found at high concentrations.  

Piecewise regression analysis (Muggeo, 2008) of the data (n = 2900) identified a break point 

of 4.1 natural log TP, or 60 μg L
-1

 (standard error = 0.16, R
2
 = 0.29).  However, to avoid 

potential biases of the dataset and to limit the number of lakes removed from the analysis, we 

restricted regression to data where TP ≤ 100 μg L
-1

, which is also a more typical turning point 

identified in the literature for the widely reported asymptotic behaviours of chlorophyll-a  
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and cyanobacteria to TP (Carvalho et al., 2013; McCauley et al., 1989; Phillips et al., 2008; 

Watson et al., 1992). 

We found that TP and retention time negatively co-varied (Fig. S1).  This relationship 

was influenced by lakes with very long retention times i.e. greater than a year.  To minimise 

potential issues with this co-variation confounding the response, as well as the potential of 

outliers skewing the response, we limited the data to lakes with monthly retention times of 

≤365 days (1 year).  This selection reduced the co-variation between retention time and TP 

(Fig. S9) while still representing 90% of the data. 

 

ii. Lake type models 

Linear mixed effects models were fitted using the lme4 package for R statistical software 

(Bates et al., 2015) R, Version 3.4.1 (R Core Team, 2017). To make distributions more 

symmetric, and assumptions of normality and homoscedasticity for error terms appropriate, 

cyanobacterial biovolume (mm
3 

L
-1

), chlorophyll-a (μg L
-1

), retention time (days) and TP (μg 

L
-1

) were ln-transformed.  All stressor variables were then standardised (mean centred and 

divided by the standard deviation) so that the size effect of single stressor effects (when no 

interaction terms were present) could be compared within models.   The potential interactive 

effects of TP, temperature and retention time on the biovolume of cyanobacteria and the 

concentration of chlorophyll-a were modelled in each lake type separately (seven models for 

cyanobacteria and seven models for chlorophyll-a).   For each lake type the following model 

was fitted:  
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Lake type model e.g. polymictic, medium-high alkalinity, clear lakes 

                                                                            

                                                   

                   
          

   

 

where γ is the log response of interest (cyanobacteria biovolume, mm
3 

L
-1

 and chlorophyll-a, 

μg L
-1

), β0 is the intercept term, β1, β2, and β3 are model parameters for the TP term, 

temperature term and retention time term, respectively.  The model parameters for the 

interactions are β4 (TP and temperature), β5 (TP and retention time), β6 (temperature and 

retention time) and β7 (TP, temperature and retention time).  δ is the random effect term for 

lake ID which allows the response to vary on the intercept for individual lakes and ɛ is the 

overall error term, both with a mean of zero and unknown variance.  Initially, year and month 

were also incorporated into the model as random terms to account for sampling within lakes 

over multiple months and years but this did not explain additional variance so were removed 

from the final models for parsimony.  This model was then simplified by removing higher 

order interaction terms in turn, comparing simplified and more complex models using AIC 

and BIC and favouring simpler models when retaining more complex terms did not improve 

the model.  Degrees of freedom and p values were approximated using the lmerTest package 

(Kuznetsova et al., 2015).  The variance explained by the model is reported as marginal R
2
 

which describes the proportion of variance explained by the fixed factor(s) alone and 

conditional R
2
 which describes the proportion of variance explained by both the fixed and 

random factors (Nakagawa & Schielzeth, 2013).   
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Results  

Exploratory analysis  

Of the 572 lakes initially identified as being suitable for analysis i.e. lakes with 

complementary biological, climatic and typology data, 78 had mean monthly TP 

concentrations which exceeded 100 μg L
-1

 and therefore were omitted from the multiple 

stressor analysis, as at high concentrations, TP explained little additional variation in the 

biovolume of cyanobacteria (Fig. S10).  The biovolume of cyanobacteria in these lakes was 

on average higher (mean 9.3 mm
3
 L

-1
) than in lakes with TP concentrations below 100 μg L

-1
 

(mean 1.9 mm
3
 L

-1
; t = -4.1, df = 277.9, p <0.001).  

In the 494 lakes analysed for the interactive effects of phosphorus, temperature and 

retention time, the mean monthly biovolume of cyanobacteria ranged from 0 to 225 mm
3
 L

-1
, 

while chlorophyll-a ranged from 0.2 to 1025 μg L
-1

.  Of these lakes, 23% had an average 

cyanobacteria biovolume that exceed the WHO low risk threshold of 2 mm
3
 L

-1 
(Chorus & 

Bartram, 1999).  These lakes were predominantly located in central Europe while lakes with 

lower cyanobacteria biovolume were located in northern regions (Fig. S11).  This spatial 

distribution of cyanobacterial abundance followed a pattern of decreasing temperature and 

decreasing TP concentrations with increasing latitude (R
2
 = 0.20, p <0.001 and R

2
 = 0.28, p 

<0.001 respectively).  Latitudinal patterns in TP concentrations also corresponded to a 

decrease in percentage arable land in the catchment with increasing latitude (Fig. S12). 

Multiple nutrient and climate effects on the abundance of cyanobacteria and phytoplankton   

Climate and phosphorus relationships varied across the different lake types and the response 

of cyanobacteria and chlorophyll-a differed (Table 2, Fig. 2).  
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We found that temperature and retention time had a stronger effect for cyanobacteria than for 

chlorophyll-a (Table 2, Fig. 2), being always positive for cyanobacteria, while we found 

negative retention time effects for chlorophyll-a in two of the lake types: polymictic, 

medium-high alkalinity, clear lakes and stratified, medium-high alkalinity, clear lakes (Fig. 

S13).  Total phosphorus was a significant predictor of chlorophyll-a in all lake types, while 

this was not the case for cyanobacteria: in some lake types retention time and temperature 

were identified as better explanatory variables. Statistically significant effects of temperature 

showed a spatial pattern, with most temperature effects (independent effects and synergistic 

interactions with phosphorus) in lakes at Northern latitudes (> 55º N).  The temperature 

gradient above this latitude ranged from 5.3 – 20.4 ºC (mean 14.8 ºC) while the gradient 

below this latitude ranged from 11.5 – 24 ºC (mean of 17.7 ºC). 

 There were synergistic interactions between temperature and TP in some lake types.  

However, unexpectedly, this interaction was not restricted to the response of cyanobacteria: 

in polymictic humic lakes, warming exacerbated the effect of TP on both the biovolume of 

cyanobacteria and chlorophyll-a concentration (Table 2, models 2 a, b and models 4 a, b; Fig. 

S14).  A statistically significant positive interaction was also found in stratified, medium-high 

alkalinity, humic lakes but this was only significant for the response of chlorophyll-a  and 

much smaller in size effect than the interactions found in polymictic, humic lakes (Table 2, 

model 8b).  We did not find statistically significant evidence of interactive effects between 

retention time and phosphorus, nor between retention time and temperature, in any of the lake 

types for either response 

The fixed effects of the regression models for chlorophyll-a concentration explained more 

variance than regression models for cyanobacteria biovolume (marginal R
2
, i.e. the 

proportion of variance explained by the fixed factor(s) alone, Table 2, Fig. 3a).  The 

percentage of cyanobacteria biovolume explained by TP concentration and climate effects 
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(temperature and retention time) was less than 7% in all lake types, with the exception of 

polymictic, medium-high alkalinity, humic lakes in which 16% of the variance was 

explained.  The variance of chlorophyll-a explained by stressors ranged between 9 – 43%, 

with most models explaining over 20% of the variance (Fig. 3a).  

Although significant stressor relationships were detected, the natural variability between 

lakes was much larger.  As an example, Fig. 4b shows that despite the interaction between TP 

and temperature being the same in all polymictic, low alkalinity humic lakes for any given TP 

– temperature combination, the average biovolume of cyanobacteria varied among individual 

lakes.  The variance in the random intercept for each lake within each type is shown in Fig. 

S15.   

 

Discussion  

 

The sensitivity of cyanobacteria to multiple stressors varies with lake type 

We found that the sensitivity of cyanobacteria to temperature, retention time and phosphorus 

varied among lake types.  This indicates that the interactive effects of multiple lake type 

factors are important in shaping the response of cyanobacteria to multiple stressors and that a 

lake type analytical approach could help better predict responses to future environmental 

change.  Differences in the response among lake types is not surprising as the biovolume of 

cyanobacteria is not just affected by factors that affect the amount of phytoplankton such as 

phosphorus, temperature and retention time but also by factors that shape community 

composition such as alkalinity, colour and mixing depth (Lenard & Ejankowski, 2017, 

Maileht et al., 2013, Ptacnik et al., 2008).  Our results corroborate other studies that show the 

importance of allowing for interactions between multiple lake type factors; for example, 
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interactions between mixing regime and colour (Havens & Nürnberg, 2004), alkalinity and 

colour (Ptacnik et al., 2008), depth and alkalinity (Phillips et al., 2008) have been shown to 

shape phytoplankton nutrient relationships.  A comparison of the sensitivity of chlorophyll-a 

and cyanobacteria to the effects of phosphorus, temperature and retention time among lake 

types suggests that chlorophyll-a may be less influenced by type (the response was similar 

between some lake types).  This is consistent with Phillips et al. (2008) who found that 

nutrient chlorophyll-a relationships could be grouped into fewer groups than the 18 WFD 

types that they tested, reducing the number of types to three.  Our results suggest that more 

detailed groupings of lake types may be required to capture sensitivities of a community 

structure response, whereas chlorophyll-a, as a proxy for total biomass, appears to be less 

influenced by these finer details.  

Colour as an additional lake type factor is an important inclusion, not only because 

changes in colour can strongly alter phytoplankton biomass and community structure (e.g. 

Lenard & Ejankowski, 2017) but also because humic substances have increased in lakes in 

past decades (Monteith et al., 2007).  It is interesting that synergistic effects of temperature 

and phosphorus were only detected in humic lakes (polymictic, humic types for 

cyanobacteria and chlorophyll-a as well as stratified, medium-high alkalinity and humic type 

for chlorophyll-a).  The abundance of cyanobacteria is most often associated with clear lakes 

(data presented here, and e.g. Carvalho et al., 2011 and Ptacnik et al., 2008); consequently 

humic lakes are currently the least at risk (do not exceed WHO thresholds, Fig. S11). 

However, the synergistic interaction between temperature and phosphorus indicates that the 

deterioration of water quality may be accelerated in these lake types.  This synergism could 

be caused by enhanced heat absorption in the lake surface caused by humic substances, a 

process that also increases thermal stratification (Kirillin & Shatwell, 2016).  Since there is 

evidence of a non-linear relationship between colour and total phytoplankton biomass 
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(Seekell et al., 2015) and community composition (Carvalho et al., 2011, Rasconi et al., 

2015, Urrutia-Cordero et al., 2016), the definition of the colour category boundaries might 

influence the response to multiple stressors, adding further complexity.  Nevertheless, our 

results show the importance of colour as a lake type factor and emphasises that other 

environmental factors may alter our expectations of multiple stressor interactions.  

There is a risk that co-variation between environmental factors may lead to incorrect 

attribution of the processes behind a relationship.  In particular, the striking spatial pattern of 

statistically significant temperature effects on cyanobacteria and chlorophyll-a in lakes at 

more northern latitudes coincides with the distribution of polymictic humic lakes (in which 

interactive temperature effects were found for both cyanobacteria and chlorophyll-a).  

Biological responses to changes in temperature have been shown to be greatest at lower 

latitudes because of larger shifts in metabolic rate which increases exponentially with 

temperature (Dillon et al., 2010, Kraemer et al., 2017).  However, our results show a different 

picture with the greatest temperature effects, particularly for cyanobacteria biovolume, at 

higher latitudes.  This suggests that this is a sensitive part of the temperature gradient for 

cyanobacteria, or that other latitudinal effects such as longer summer photoperiod at higher 

latitudes (Nicklisch et al., 2008) or the effect of lake type may enhance the temperature 

effect.  Another potential issue is the co-variation between alkalinity and TP.  This occurs 

because many medium-high alkalinity lakes are located in central regions where TP 

concentrations and percentage arable land in the catchment are high.  At higher latitudes, in 

contrast, there were a larger number of humic, low alkalinity lakes in the dataset, reflecting 

the tendency for acidic, humic and forested catchments in Fenno-Scandian areas (Maileht et 

al., 2013), in which TP concentrations were lower.  Nevertheless, although average 

differences in the abundance of cyanobacteria among types may be attributed to average 

differences in TP (Fig. 1b and Fig. S16), most lakes types were modelled over similar TP 
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gradients, and so differences between lake type models are likely caused by other factors.  

The use of alkalinity as a type factor is supported both in the literature (e.g. Carvalho et al., 

2011; Phillips et al., 2008 and Ptacnik et al., 2008) and also by an exploratory analysis of the 

relationships between alkalinity, cyanobacteria and TP in low vs medium-high alkalinity 

lakes (supplementary analyses: Fig. S2 and S3, Table S2). 

 Although we found statistically significant stressor relationships within lake types, in 

many cases the variation these explained was low and the natural variability among lakes 

within a lake type was much larger than the variance explained by the stressor effects.  

Phosphorus, temperature and retention time are important drivers, but they are not the only 

factors which influence phytoplankton biomass.  Potential sources of variability can occur 

because of measurement error or missing covariate information e.g. other limiting nutrients 

(e.g. TN, (Dolman et al., 2012, Downing et al., 2001)), grazer densities (Jeppesen et al., 

2000), competition with macrophytes (Phillips, 2005), light climate (Mischke, 2003) and past 

events such as remediation and associated hysteresis (França et al., 2016, Scheffer, 1998) or 

recovery from acidification (Battarbee et al., 2012).  Furthermore, the use of lake types as 

categorical variables may have reduced their explanatory power.  In the future, it might be 

possible to incorporate sampling event-specific values that could also account for within-year 

variation as can occur for the presence and duration of stratification (Huber et al., 2012, 

Jöhnk et al., 2008, Wagner & Adrian, 2009), especially in polymictic lakes (Taranu et al., 

2012) but also for variation in colour (Lenard & Ejankowski, 2017).  Nevertheless, the use of 

lake types is an efficient means of simplifying statistical models and of providing information 

for managers on the types of lakes at risk of generating algal blooms.  It is also possible that 

idiosyncratic responses to environmental change at the individual lake level could arise from 

interactions with other chemical, physical and biological environmental factors.  A way to 

account for this would be to allow the slopes of individual lakes to vary in the model 
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structure, but due to limited data points within a lake we were unable to do this; further 

exploration using long-term datasets would be informative.  

 

Implications for managing the risk of cyanobacteria in the future 

The first take-home message for management is that the sensitivity of cyanobacteria to 

multiple anthropogenic stressors, and consequently the risk of water quality issues, will not 

be the same for all lakes.  Thus, some lake types may require greater management 

intervention than others, and lakes that are currently not at risk (i.e. do not exceed WHO 

guideline thresholds) may develop problems in the future e.g. polymictic humic lakes. The 

broad typologies used are similarly adopted (e.g. Havens & Nürnberg, 2004), and relevant, 

outside of Europe although some regions globally may have additional lake types that would 

need considering (e.g. endorheic lakes in North America and Africa).   

The second take home message, and perhaps a more generalisable outcome, is that 

our results suggest that in most lake types, management will become increasingly necessary 

because of the additional effects of climate change (temperature and retention time) on 

cyanobacterial abundance.  As climate effects cannot be locally controlled, this means that 

existing models detailing phosphorus targets needed to minimise harmful algal blooms 

(Carvalho et al., 2013) may have to be revised to mitigate these effects (Jeppesen et al., 

2009).  We do not make any quantitative recommendations here but indicate that this will be 

a likely management scenario for most lakes.   

It should also be emphasised that we make reference here to the effects and control of 

phosphorus as it is often considered the limiting nutrient in lakes (Phillips et al., 2008, 

Schindler et al., 2008), however nitrogen can also play a key role (Beaulieu et al., 2013, 
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Conley et al., 2009, Maberly et al., 2002, Paerl et al., 2016).  Under projected climate 

scenarios, it is expected that there will be an increase in nitrogen loading because of enhanced 

runoff in the north temperate region  (Sinha et al., 2017), the effects of which may also 

depend on ecosystem type.  For example, shallow lakes are often nitrogen limited during the 

summer (Dolman et al., 2016, Søndergaard et al., 2017) and so enhanced loading could 

increase the carrying capacity in lakes with sufficient phosphorus.  An increase in nitrogen 

could also trigger a shift from a macrophyte, clear water state to a turbid phytoplankton 

dominated state (e.g. Olsen et al., 2015).  A lake type approach should also be applied to 

other important or emerging stressors such as changes in TN. 

It should be emphasised that this is a broad view of management at a lake type level; 

the relationships that we present within lake types describe the generalised response for this 

population of lakes.  However, we found that the natural variability among lakes within a 

lake type was much larger than the variance explained by the stressor effects. The 

implications of this are that, for a given value of a stressor (or combination of stressors, 

depending on the model), the abundance of cyanobacteria may vary considerably among 

lakes of the same type (Fig. 3b).  Thus, while these models can be used to assess potential 

risk across a population of lakes (within a specific lake type), and inform where to prioritise 

monitoring for risk management, they are not appropriate for decision-making at the 

individual lake level.  This view reflects the perspective which warns of copy and paste 

management methods for different lakes (Lürling et al., 2016). 
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Final remarks 

Our results indicate that the response of cyanobacteria to multiple stressors varies greatly 

with lake type, much more so than chlorophyll-a, highlighting the complex nature of 

biological and community responses to environmental conditions and that a ‘one-size fits-all’ 

approach is not appropriate in order to understand and manage the risks of harmful algal 

blooms.  Although individual lakes tended to show idiosyncratic responses, the use of lake 

type categories allows a clear generalisation of lake responses that are helpful to lake 

managers to target measures to minimise risks.  In the future, the use of this approach, along 

with large-scale datasets and rigorous statistical analysis, will improve our ability to forecast 

responses of cyanobacteria to future environmental changes, including recovery through 

management and changes in climate. 
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Table 1. Response and explanatory variables included in the analysis. Means ± standard deviations and minimum and maximum values in parentheses, 

are summarised by each lake type.  Total number of lakes in the analysis was 494.   

 Phytoplankton parameters Stressors 

Lake type Number of  

lakes  

Total 

cyanobacterial 

biovolume (mm
3
 L

-

1
) 

Chlorophyll-a (μg 

L
-1

) 

Mean monthly 

total phosphorus 

(μg L
-1

) 

Mean monthly air 

temperature (°C) 

Monthly retention 

time (days) 

Polymictic       

low alkalinity, clear 

 

3 0.005 ± 0.01   

(0 – 0.02) 

3.21 ± 1.8   

(1.2 – 5.6) 

9.6 ± 5.1         

(4 – 15) 

15.7 ± 1.9  

(13.6 – 18.6) 

21.7 ± 22.8  

(7.6 – 61) 

low alkalinity, humic 

 

15 3.1 ± 17         

(0 – 114) 

10.1 ± 12.4  

(1.2 – 61) 

21.4 ± 17.5  

(3.6 – 91) 

14.6 ± 1.9  

(9.1- 18) 

17.3 ± 29.6  

(1.7 – 207.7) 

med-high alkalinity, clear 

 

89 7.9 ± 21         

(0 – 224) 

34 ± 33          

(2 – 238) 

50.1 ± 25.8  

(10 – 100) 

17 ± 2.9       

(9.1 – 24.0) 

48 ± 68.6     

(0.2 – 339.7) 
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med-high alkalinity, humic 

 

45 1.0 ± 2.0        

(0 – 11) 

20.1 ± 22.1     

(1 – 120) 

35.8 ± 20.6     

(2 – 98) 

16.2 ± 2     

(10.6 – 20) 

32.9 ± 53.7  

(0.6 – 351) 

Stratified       

low alkalinity, clear 

 

70 0.05 ± 0.3      

(0 – 5.3) 

3.3 ± 2.6              

(0.2 – 21.5) 

8.2 ± 4.9              

(1 – 37.6) 

14.0 ± 2.6        

(6.6 – 19.9) 

82.3 ± 86.6        

(2.9 – 363.2) 

low alkalinity, humic 

 

70 0.17 ± 0.9      

(0 – 12.1) 

8 ± 11.8       

(0.3 – 110.3) 

14.5 ± 11.8          

(2 – 97) 

14.8 ± 2.4           

(6.2 – 20.2) 

63.3 ± 74.2          

(1.8 – 359.9) 

med-high alkalinity, clear 163 1.9 ± 3.7        

(0 – 31) 

16.5 ± 54         

(0.7 – 1025) 

31.7 ± 20.1          

(2 – 99) 

17.1 ± 2.7        

(5.5 – 24) 

83.0 ± 81.7          

(2.5 – 360) 

med-high alkalinity, humic 39 1.0 ± 2.6            

(0 – 26) 

16.0 ± 22.3     

(1.4 - 185.8) 

33.2 ± 28.3      

(2 – 100) 

15.6 ± 3.0        

(5.3 – 20.6) 

82.5 ± 96.6       

(3.6 – 356) 
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Table 2.  Linear regression mixed effect models explaining cyanobacteria biovolume and chlorophyll-a concentration.  The models explain cyanobacterial 

biovolume (natural log, mm
3
 L

-1
) and chlorophyll-a concentration (natural log, μg L

-1
) in different lake types and result from backward stepwise selection, 

starting with a model with full interactions between the independent variables:  mean monthly total phosphorus (TP, μg L
-1

), mean monthly air temperature (ºC) 

and monthly retention time (days).  TP and retention time are log transformed and all explanatory variables are standardised (mean centred and divided by the 

standard deviation) for comparability.  Lakes are split into polymictic and stratified lakes (average conditions) and within each mixing regime into a further four 

types defined by combinations of alkalinity (low, med-high) and colour (clear, humic).  Each model has an additional error term which accounts for differences 

between individual lakes, after accounting for the fixed effects, this is the random intercept term.  The variance explained by the models is presented as marginal 

R
2
 which describes the proportion of variance explained by the fixed factor(s) alone and conditional R

2
 which describes the proportion of variance explained by 

both the fixed and random factors.  The significance level is denoted as ***p < 0.001; ** p < 0.01; *p < 0.05, ·p < 0.1 

   Model coefficients (standard error) R
2 

Model  Lakes Lake Type TP Temp Retention TP x Temp Marginal Conditional 

 Cyanobacteria 

1a 3 polymictic, low Alk., clear Insufficient data 

2a 15 polymictic, low Alk., humic  1.25 (0.65)˙  1.15 (0.58)˙  1.71 (0.73)* 0.07 0.77 

3a 89 polymictic med-high Alk., clear   0.74 (0.27)**  0.05 0.69 

4a 45 polymictic med-high Alk., humic -0.05 (0.54) -0.22 (0.61) 0.78 (0.34)* 1.82 (0.73)* 0.16 0.61 

5a 70 stratified, low Alk., clear  0.54 (0.25)*  0.49 (0.16)**   0.05 0.63 

6a 70 stratified, low Alk., humic   0.29 (0.12)*  0.41 (0.19)*  0.03 0.61 

7a 163 stratified, med-high Alk., clear  0.77 (0.23)***    0.03 0.54 

8a 39 stratified, med-high Alk., humic     0.00 0.80 

 Chlorophyll-a 
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1b 3 polymictic, low Alk., clear Insufficient data 

2b 15 polymictic, low Alk., humic  0.61 (0.17)***  0.45 (0.16)**   0.84 (0.20)*** 0.28 0.61 

3b 89 polymictic med-high Alk., clear  0.70 (0.10)***  -0.15 (0.06)*  0.21 0.78 

4b 45 polymictic med-high Alk., humic  0.32 (0.16)* -0.71 (0.19)***  0.30 (0.09)**  1.03 (0.22)*** 0.43 0.55 

5b 70 stratified, low Alk., clear  0.31 (0.07)***    0.09 0.58 

6b 70 stratified, low Alk., humic  0.35 (0.07)***    0.09 0.67 

7b 163 stratified, med-high Alk., clear  0.65 (0.07)***  -0.19 (0.06)**  0.29 0.63 

8b 39 stratified, med-high Alk., humic  0.51 (0.08)***  0.03 (0.04)   0.08 (0.04)* 0.35 0.81 
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Figure captions 

Colour versions 

Fig. 1 Distribution of lake location (a) and cyanobacteria biovolume (b) by lake type.  Lake 

types are combinations of: alkalinity, low (<0.2 mEq L
-1

) and med-high (>0.2 mEq L
-1

); 

humic content, clear (colour <30 mg Pt L
-1

) and humic (colour > 30 mg Pt L
-1

); and mixing 

type, stratified and polymictic.  In (b) the shaded areas are for exceedance of low, 2 mm
3
 L

-1
, 

(light grey) and medium, 10 mm
3
 L

-1
, (dark grey) WHO (World Health Organisation) 

recommended threshold values for drinking and bathing (Chorus & Bartram, 1999), the 

conversion of WHO cell number to biovolume was taken from Carvalho et al (2013).  

Cyanobacteria biovolume (mm
3
 L

-1
) is log transformed and averaged for each individual lake.  

Letters indicate significant differences (at p <0.05) in mean cyanobacteria between groupings 

of lake types, Tukey’s test for multiple comparison following an ANOVA (supplementary 

material).  Note that observations of cyanobacteria biovolume in polymictic, low alkalinity, 

clear lakes are from three lakes only, this lake type is not subsequently modelled as there is 

insufficient data for more complex multi variable modelling. 

Fig. 2 Model summaries highlighting climate effects (temperature and retention time) for the 

response of (a) cyanobacteria and (b) chlorophyll-a.   Each lake (point) is coloured according 

to statistically significant climate effects estimated for the lake type to which the lake 

belongs.    Warmer colours represent positive climate effects, cooler colours represent either 

no climate effect or a negative climate effect (only applicable for retention time in 

chlorophyll-a models).  n/a are polymictic, low alkalinity, clear lakes (n = 3) which had 

insufficient data for analysis.  See Fig. 1 for the spatial distribution of lake types.  
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Fig. 3 Marginal and conditional variance explained by the models. (a) Boxplot of conditional 

R
2 

(blue) and marginal R
2
 (green) from all lake type models (n = 7 lake types) for 

chlorophyll-a and cyanobacteria responses.  (b) Random effect plot of the response of 

cyanobacteria to TP in polymictic, low alkalinity, humic lakes (while keeping temperature 

constant).  The fixed response is shown by the bold black line, individual lake responses are 

shown by the orange lines (i.e. differences in the intercept). 

Grayscale versions 

Fig. 1 Distribution of lake location (a) and cyanobacteria biovolume (b) by lake type.  Lake 

types are combinations of: alkalinity, low (<0.2 mEq L
-1

) and med-high (>0.2 mEq L
-1

); 

humic content, clear (colour <30 mg Pt L
-1

) and humic (colour > 30 mg Pt L
-1

); and mixing 

type, stratified and polymictic.  In (b) the shaded areas are for exceedance of low, 2 mm
3
 L

-1
, 

(light grey) and medium, 10 mm
3
 L

-1
, (dark grey) WHO (World Health Organisation) 

recommended threshold values for drinking and bathing (Chorus & Bartram, 1999), the 

conversion of WHO cell number to biovolume was taken from Carvalho et al (2013).  

Cyanobacteria biovolume (mm
3
 L

-1
) is log transformed and averaged for each individual lake.  

Letters indicate significant differences (at p <0.05) in mean cyanobacteria between groupings 

of lake types, Tukey’s test for multiple comparison following an ANOVA (supplementary 

material).  Note that observations of cyanobacteria biovolume in polymictic, low alkalinity, 

clear lakes are from three lakes only, this lake type is not subsequently modelled as there is 

insufficient data for more complex multi variable modelling. 
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Fig. 2 Model summaries highlighting climate effects (temperature and retention time) for the 

response of (a) cyanobacteria and (b) chlorophyll-a.   Each lake (point) is coloured according 

to statistically significant climate effects estimated for the lake type to which the lake 

belongs.    Warmer colours represent positive climate effects, cooler colours represent either 

no climate effect or a negative climate effect (only applicable for retention time in 

chlorophyll-a models).  n/a are polymictic, low alkalinity, clear lakes (n = 3) which had 

insufficient data for analysis.  See Fig. 1 for the spatial distribution of lake types.  

Fig. 3 Marginal and conditional variance explained by the models. (a) Boxplot of conditional 

R
2 

(white) and marginal R
2
 (grey) from all lake type models (n = 7 lake types) for 

chlorophyll-a and cyanobacteria responses.  (b) Random effect plot of the response of 

cyanobacteria to TP in polymictic, low alkalinity, humic lakes (while keeping temperature 

constant).  The fixed response is shown by the bold black line, individual lake responses are 

shown by the grey lines (i.e. differences in the intercept). 
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