
The	version	of	record	of	this	manuscript	has	been	published	and	is	available	in	
Communications	of	the	ACM,	Vol.	60	No.	11,	Pages	26-28.		10.1145/3144174

Keeping the Machinery in Computing Education
Richard Connor, University of Strathclyde, Scotland, Richard.Connor@strath.ac.uk

Quintin Cutts*, University of Glasgow, Scotland, Quintin.Cutts@glasgow.ac.uk

Judy Robertson, University of Edinburgh, Scotland, Judy.Robertson@ed.ac.uk

*Corresponding Author

We don’t think there can be “computer science” without a computer. Some efforts at deep

thinking about computing education seem to sidestep the fact that there is technology at the core

of this subject, and an important technology at that. Computer science practitioners are

concerned with making and using these powerful, general-purpose engines. To achieve this,

computational thinking is essential; however so is a deep understanding of machines and

languages, and how these are used to create artefacts. Efforts to make computer science

entirely about “computational thinking”, in the absence of “computers”, are mistaken, in our

opinion.

As academics we were invited to help develop a new curriculum for computer science in

Scottish schools, covering ages 3-15. We proposed a single coherent discipline of computer

science with foundations running from this early start, similar to disciplines such as

maths. Pupils take time to develop deep principles in those disciplines, and with appropriate

support the majority of pupils make good progress. From our background in CS education

research, we saw an opportunity for all children to learn useful foundations. Nobody knows

exactly the right CS curriculum for the average five-year old, as we've not taught them CS

before, but we are unconvinced of the coherence of many current curricula: an underlying

intellectual and developmental framework seems to be missing, and such a framework is our

principal offering to the curriculum.

We understand both the desperate calls from industry to meet the labour market demands of

the digital economy, and the extraordinary environment that will be our children's, with ever

more blurring of digital and human worlds. Hence, we wanted a curriculum that properly

grounds their understanding of that non-human world and gives every child the opportunity,

should they wish, of a future career in our area. Our school systems have these aspirations

in teaching about the natural world – why not the digital world also?

https://doi.org/10.1145/3144174

The	version	of	record	of	this	manuscript	has	been	published	and	is	available	in	
Communications	of	the	ACM,	Vol.	60	No.	11,	Pages	26-28.		10.1145/3144174
	
In March 2017, the new curriculum was formally adopted at government level, and its

delivery has started. A teachers’ guide is here: www.teachcs.scot and we encourage

interested readers to look at the full guide there.

All curriculum design requires compromise. We have balanced: our initial vision of a

curriculum that captures the essence of computation at the heart of the digital revolution; the

practical realisation that only a small amount of resource is available for teachers'

professional development; the requirement to re-use a varied body of existing early-years

computing educational material; and the desire from government to direct computing

education down a narrow agenda to fill a perceived skills shortage.

Nonetheless, we have kept in view throughout our overarching framework consisting of three

main points that we think is the real contribution of the curriculum, and the three points are

the focus of this Viewpoint. In the following sections we show: the essence of our proposed

three-point underpinning, developing three essential strands of learning, and the way these

have been eventually interpreted in the adopted curriculum. The success, or otherwise, of

our core ideas remains to be seen!

Computational Foundations

We aimed to identify a core framework for the discipline that is equally relevant to a child, a

university student or a software engineer.

The essence of computation is clear: the Church-Turing thesis. Some kind of computational

mechanism --- whether the Scratch programming environment, a Turing Machine, or the

Lambda Calculus --- can be used to model any tail-recursive numeric function… and

therefore anything which can be computed… and furthermore all such mechanisms are

somehow equivalent.

To be of interest, such mechanisms should be restricted to those which can perform some

kind of modelling function over another domain or world. That is, they can be set up in such

a way that their operation, when viewed in the context of the other domain, can be seen as

simulating some aspect of that domain. Hence a programming language can be used to

model an aspect of the real world; a processor can be set up with appropriate machine code

to model a computation expressed in a programming language; a lambda calculus

expression, under the application of reduction, can provide the result of some recursive

function.

The	version	of	record	of	this	manuscript	has	been	published	and	is	available	in	
Communications	of	the	ACM,	Vol.	60	No.	11,	Pages	26-28.		10.1145/3144174
	
A deep understanding of computer science requires the following three aspects, our three-

point framework, which can be neatly separated as the understanding of:

1. Domains that can be modelled by computational mechanisms,

2. The computational mechanisms themselves, and

3. How to use the computational mechanisms to model aspects of the domains.

It is our belief that a computer scientist is habitually and implicitly aware of these, and indeed

is expert at quickly assimilating new instances of them. We believe this is a core skill with

many applications to a modern process- and information-driven world.

Computational Thinking, as well as the learning delivered via the Unplugged approach, are,

we believe, largely captured within the first aspect. The skill of programming, as taught even

at university level, is mostly within the third. The second all-important aspect seems to be

often neglected, at least until the later stages of a computing degree. It has long been a wry

observation of the authors that, while “programming” is taught right from the start of

university computing courses, more “advanced” topics such as programming language

syntax and semantics are typically taught much later on. This begs the question: how can

one learn to program in the absence of such knowledge? Research shows that

concentrating on explaining how programs work, rather than writing them, helps students

early on to learn programming. Could it be that we normally teach “by example” only, rather

than ever properly defining the domain in which the modelling is performed, or even the

domain being modelled?

Our Curriculum

The resulting curriculum is formally structured around these three aspects. Here we outline

how they are presented to non-computer scientists – see the detail at www.teachcs.scot.

The vocabulary and concepts used are accessible to those who need to read them; the

difficulty of this should not be under-estimated, it is hard for an academic computer scientist

to communicate with a teacher of early years computing.

Each of our three main aspects persists through the five defined levels of the curriculum,

from age three to fifteen; the text here is mostly aimed at teachers of the lower levels.

The	version	of	record	of	this	manuscript	has	been	published	and	is	available	in	
Communications	of	the	ACM,	Vol.	60	No.	11,	Pages	26-28.		10.1145/3144174
	
1: Understanding the world through computational thinking

The first aspect looks at the underlying theory in the academic discipline of Computing

Science. Theoretical concepts of Computing Science include the characteristics of

information processes, identifying information, classifying and seeing patterns.

This aspect is about understanding the nature and characteristics of processes and

information. These can be taught through Unplugged activities (fun active learning tasks

related to Computing Science topics but carried out without a computer) and with structured

discussions with learners. There is a focus on recognising computational thinking when it is

applied in the real world such as in school rules, finding the shortest or fastest route between

school and home, or the way objects are stored in collections.

Learners will be able to identify steps and patterns in a process, for example seeing

repeated steps in a dance or lines of a song. In later stages, learners will begin to reason

about properties of processes, for example considering whether tasks could be carried out at

the same time, whether the output of a process is predictable, and how to compare the

efficiency of two processes.

Learners will identify information, classify it and see patterns. For example, learners might

classify and group objects where there is a clear distinction between types or where objects

might belong to more than one category.

2: Understanding and analysing computing technology

This aspect aims to give learners insight into the hidden mechanisms of computers and the

programs that run on them. It explores the different kinds of language, graphical and textual,

used to represent processes and information. Some of these representations are used by

people and others by machines, for example, a verbal description, a sequence of blocks in a

visual programming language such as Scratch, or as a series of 1s and 0s in binary.

In this aspect, learners will learn how to ‘read’ program code (before writing it in the next

aspect) and describe its behaviour in terms of the processes they have learned about in the

first aspect, processes that will be carried out by the underlying machinery when the

program runs. For example, learners could read a section of code and predict what will

happen when it runs or if lines of code change order. Learners will learn and explore

different representations of information and how these are stored and manipulated in the

computing system under study.

The	version	of	record	of	this	manuscript	has	been	published	and	is	available	in	
Communications	of	the	ACM,	Vol.	60	No.	11,	Pages	26-28.		10.1145/3144174
	
3: Designing, building and testing computing solutions

The third aspect is about taking the concepts and understanding from the first two aspects

and applying them. Learners will create solutions, perhaps by designing, building and

testing solutions on a computer or by writing a computational process down on paper. In

doing so, they will learn about modelling process and information from the real world in

programs, and what makes a good model to represent or solve a particular problem.

Learners will create representations of information. For example, learners could make lists,

tables, family trees, Venn diagrams and data models to capture key information from the

problems they are working on.

Learners will use their skills in language to create descriptions of processes that can be

used by other people. For example, a computer program is a great way to describe a

process.

Learners will understand how to read, write and translate between different representations

such as between English statements, planning representations and actual computer

code. For example, developing skills in writing code could be scaffolded by studying worked

examples or by giving learners jumbled lines of code and asking them to put the lines into an

appropriate order.

Although solutions can be created in a many ways, it is expected that all learners will

experience creating solutions on computers. This shows learners that computers implement

exactly what they, the learners, have written and not what they intended, as well as giving

them practice in debugging.

Reflections

We have presented a curriculum which explicitly connects computational thinking with the

more mechanical aspects of computing, with particular concentration on the explicit

modelling of computational domains by computational mechanism. Not everyone needs to

become a software engineer or computer scientist; the curriculum provides valuable learning

at all levels, including the essential foundations for those who wish to study the subject

further. While our curriculum is informed by previous educational computing research, we

emphasise quite different learning outcomes via our three-point framework.

